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Land Acknowledgement:

The PME-NA 44 Conference is held on unceded Indigenous land including the traditional
homelands of the Cherokee, Shawnee, and Yuchi. The connections of Indigenous Peoples to this
land continues to the present day. As we begin our conference it is important to acknowledge our
place, both geographically and historically, paying tribute to the land and our ancestors—and
honoring both. We note that just speaking the word Tennessee is a tribute to a first nations’ word
for “where the river bends.” The genocide, forced displacement, and cultural erasure of indigenous
peoples resulting from the colonization of this land is particularly felt here, where the Trail of
Tears cut through Middle Tennessee. In the midst of this history, Native American Indians tell
their story today—including the joy of return. Founded in 1980, the Native American Indian
Association of Tennessee is working to improve the quality of life for Indigenous People in this
state. This includes raising funds to one day build the Circle of Life Indian Cultural Center, which
will showcase a research library, exhibit halls, emergency relief support, job training, and education.
These efforts help to close the circle of hatred and prejudice so that all Tennesseans can come
together in freedom and pride.

An important goal of land acknowledgments is to increase support of local Indigenous
communities. You can support the work of the Native American Indian Association of Tennessee
by donating at naiatn.org. You can also learn more about the history of Tennessee's Indigenous
communities by visiting the First Peoples exhibit at the Tennessee State Museum, which is about 3
miles from the conference site. More information is at tnmuseum.org.

This statement was created in conversation with local Indigenous leaders and informed by the
Native Governance Center's Guide to Indigenous Land Acknowledgment.
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PME-NA History and Goals

PME came into existence at the Third International Congress on Mathematical Education (ICME-3)
in Karlsrihe, Germany, in 1976. It is affiliated with the International Commission for Mathematical
Instruction. PME-NA is the North American Chapter of PME. The first PME-NA conference was
held in Evanston, Illinois in 1979. Since their origins, PME and PME-NA have expanded and
continue to expand beyond their psychologically oriented foundations.

The major goals of the International Group and the North American Chapter are:
1. To promote international contacts and the exchange of scientific information in the
psychology of mathematics education;
2. To promote and stimulate interdisciplinary research in the aforesaid area, with the
cooperation of psychologists, mathematicians, and mathematics teachers; and
3. To further a deeper and better understanding of the psychological aspects of teaching and
learning mathematics and the implications thereof.

PME-NA Membership

Membership is open to people who are involved in active research consistent with PME-NA’s aims
or who are professionally interested in the results of such research. Membership is open on an
annual basis and depends on payment of dues for the current year. Membership fees for PME-NA
(but not PME International) are included in the conference fee each year. If you are unable to attend
the conference but want to join or renew your membership, go to the PME-NA website at
http://pmena.org. For information about membership in PME, go to http://www.igpme.org and
visit the “Membership” page.
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Elected Members

Karl W. Kosko (Chair) — Kent State University (2019 — 2022)
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Preface

On behalf of the 2022 PME-NA Steering Committee, the 2022 PME-NA Local Organizing
Committee, and Middle Tennessee State University, we welcome scholars to Nashville, Tennessee,
USA, for the Forty-Fourth Annual Meeting of the International Group for the Psychology of
Mathematics Education — North American Chapter, held at the Loews Vanderbilt Hotel.

The goal of PME-NA is to promote the international exchange of research on the psychology of
mathematics education and to promote an ever-deepening understanding of the psychological aspects
of teaching and learning mathematics. Psychology, the study of mind and behavior, encompasses
biological influences, social pressures, and environmental factors that impact how learners think and
act. As members of PME-NA, it is necessary that we attend both to the contexts in which the teaching
and learning of mathematics takes place and to the experiences of individual participants, while
considering the multiple voices, histories, systems, and social structures present in our learning spaces.
In recent years, our contexts and experiences have been forever impacted by the world-wide COVID
pandemic and a renewed struggle for civil rights in many of our communities.

This year’s conference theme, Critical Dissonance and Resonant Harmony, reflects not only the
time and place that we gather, but also the time and place in which we conduct our academic work.
Dissonance can be jarring to experience, whereas harmony can be pleasing. We gather in Nashville -
Music City - which is no stranger to both dissonance and harmony. Walk the streets and you will
experience both, as vibrations felt in your body or heard in your ear. Look closer and you will see
both, knitted in the very fabric of our identity. We are not only the site of lunch counter sit-ins,
Freedom Rides, the final approval for women’s suffrage (the 19th Amendment to the U.S.
Constitution), the Teens for Equality Black Lives Matter rally, and the Annual March for Black
Women in STEM, but also The Trail of Tears, countless acts of oppression, and reactionary legislation
limiting citizen’s rights—most recently those of LGBTQIA+, BIPOC, and Immigrant communities.
We know that dissonance is necessary for change and liberation, and so has a critical component. We
also know that harmony occurs when multiple voices and forces join simultaneously to amplify and
enrich, achieving a resonance that pushes through to the other side and finds a better way. Still, in
reality, dissonance and harmony cycle, neither seemingly fully formed, and often sharing contiguous
or ovetlapping spaces. The PME-NA community will gather in this place in 2022, traveling from
locations across North America that are experiencing similar dissonances and harmonies.

It is in this context that we conduct our work in the field of mathematics education, as researchers
who value the contributions and experiences of each and every person. In preparation for PME-NA
44, we invited all presenters to reflect on how their work impacts the contexts and experiences of
members in mathematics learning communities, particularly those who are on the margins of these
communities, and to address what these reflections mean for their work. Reflection may have included
consideration of the following questions: How does your work challenge a settled mathematics
learning status quo? How does your work help to create more socially just contexts for learning and
teaching mathematics? How does your work have an impact on society more broadly, beyond
individual mathematics classrooms and school districts? How does your work improve learning
conditions for each and every mathematics learner? Whose voice does your work center in the
mathematics learning process? What can be learned from reflecting on this question? This proceedings
represents the work of mathematics education scholars as they took up this call for reflection.
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We hope the PME-NA 44 conference provides a communal space for critical reflection and
conversation on how our individual and collective work contributes to dissonant and harmonious
movements in our field as it relates to the psychological aspects of teaching and learning mathematics.
We recognize that what is perceived as dissonant or harmonious varies among cultures and even
individuals and is by no means universal. And so, we look forward to the opportunities for
conversation and learning across our international community as we share instances of dissonance
and harmony that can serve to propel research toward action and change.

This year’s conference will be attended either in-person or remotely by close to 600 researchers, faculty
members, and graduate students from around the world including Canada, Mexico, Colombia, and
the USA. Approximately 800 authors are represented by the papers in this volume. Each paper was
reviewed by multiple referees in a double-blind process. After initial reviews were submitted, Strand
Leaders reviewed feedback and made selections for papers to include in the conference. Finally, the
local conference committee made decisions based on reviewer and strand leader feedback and
constraints of the conference space. The result was an overall acceptance rate of 66% with the final
papers comprised of 101 research reports, 140 brief research reports, 84 Posters, and 16 Working
Groups. In addition, we conducted a doctoral consortium in conjunction with the conference during
which 23 late-stage doctoral researchers engaged with mentors and each other to support their
research. These scholars presented their in-progress work as posters during our poster sessions.

In 2021, the PME-NA Steering Committee voted to require all working groups wishing to continue
their work at a subsequent conference to produce a report on their work following the conference.
Therefore, this proceedings contains a report of work conducted in 2021 along with a proposal for
the work to be conducted at the 2022 conference for each returning working group. These reports are
found in Chapter 17.

This conference and publication would not have been possible without the support of many in our
field: strand leaders who put forth efforts to ensure the quality of the papers selected for the
conference program, colleagues who supported the local organizing committee as we navigated the
unchartered territories of planning a conference during a pandemic, plenary speakers who took up our
vision for the theme, a Steering Committee which supported us while allowing space for us to follow
our own vision, and the many scholars who share their brilliant work with our field through this outlet.
We thank Middle Tennessee State University for supporting our efforts to lead this conference. We
also thank Samantha Drown and Sarah Johnson for their work in compiling this proceedings.

The local organizing committee hopes that you engage with this research by looking for both
dissonances and harmonies within these papers that enrich the ways in which your own work can
continue to support the learning and teaching of mathematics.
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RE-MEMBERING PLACE: MATHEMATICAL ACTIONS FOR INNOVATIVE,
RESILIENT, AND CULTURALLY RICH COMMUNITIES

Florence Glanfield Cynthia Nicol Jennifer S. Thom
University of Alberta, Canada University of British University of Victoria,
glanfiel@ualberta.ca Columbia, Canada Canada
cynthia.nicol@ubc.ca jethom@uvic.ca

How might mathematics educators recognize discourses as resonating harmonies in their
practices as researchers? In this paper we share individual experiential narratives guided by
Ojibway author Richard Wagamese’s Medicine Wheel teachings in the four directions of East
(humility), South (trust), West (introspection), and North (wisdom). As we journey through
(re)ymembering place we offer opportunities for recognizing resonating harmony(ies) and algo-
rhythms in our practices as mathematics education researchers and for engaging with critically
dissonance discourses and actions. This (re)membering supports relating with each other,
mathematics, communities, and place in ways that are more sustainable, inter-connected, and
kincentric.

Keywords: place and land education, Indigenous perspectives, ecological perspectives,
mathematics education

Introduction

We, Florence, Cynthia, and Jennifer, all mathematics educators and researchers, use Ojibway
author Richard Wagamese’s (2011) four direction Medicine Wheel teachings to share our
individual research journeys. We use stories (Clandinin & Connelly, 2002) to re-member and re-
think our individual actions and the ways those individual actions have woven together to
become collective work. Wagamese’s teachings follow the direction that Earth travels each day.
Just as humans have said that the start of the day is in the East, Wagamese’s Medicine Wheel
teachings also begin in the East. This paper is written in the four directions; East, South, West,
and North. Wagamese’s Medicine Wheel teachings start the section; followed by stories of each
of the authors.

East

THE OLD ONES say that humility is the foundation of everything. Nothing can exist
without it. Humility is the ability to see yourself as an essential part of something larger. It is
the act of living without grandiosity. Humility, in the Ojibway world, means "like the earth."
The planet is the epitome of a humble being, with everything allowed the same opportunity
to grow, to become. Without the spirit of humility there can be no unity, only discord.
Humility lets us work together to achieve equality. Humility teaches that there are no greater
or lesser beings or things. There is only the whole. There is only the great, grand clamour of
our voices, our spirits, raised together in song. (Wagamese, 2011, p. 9)

Humility: The Power of Place (Cynthia)

It’s common for cliffs on Haida Gwaii along Canada’s Pacific northwest coast to receive
10m high waves, for spruce trees to dance in a southeast storm, and for the ocean to leave
platters of cockles, clams, crab, and octopi on its beaches when the tide is out. Haida Gwaii is a
land between sea and sky where the worldview Gin ‘waadluuwan uu gu dil adiidaa “everything
depends on everything else” speaks to the synergetic relationship between humans and
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nonhumans, natural and Supernatural Beings. It is a place where “culture” says Haida artist and
activist Guujaaw “actually is our relationship to land” (Guujaaw as quoted in Jones, 2006 p.
29). The inlets and shores of Haida Gwaii are nutrient-rich and tempered with warm offshore
currents feeding a diversity of life. In spring grey whales migrate between their winter breeding
areas in California and their summer feeding waters in the Bering Sea. From our little log cabin
on Haida Gwaii’s North Beach, living without electricity or running water, we could see the
whales along their route, releasing their breath with spectacular spray as they prepared for the
next dive.

One spring afternoon out in our 12 ft Zodiac boat, we found ourselves surrounded by a pod
of grey whales. A kilometre off-shore with no other boats in sight, we shut down the motor as the
greys circled. Maybe they were curious about who had ventured into their territory. Maybe the
bottom of our Zodiac looked familiar from a whale’s perspective, but different enough to make
them curious, take notice, and check us out. Three maybe four barnacled backs rose from the
water, one flipping a tale wider than the length of our dwarfed boat. Their breath lingered while
we held our own.

Without warning one broke from the circle and swam directly toward us. Grey whales can
reach 15 m (about 50 ft) in length. I imagined this massive being flicking us in the air like a dog
playing catch with a ball. We sat still, as still and humble as what Atleo calls an “insignificant
leaf floating in a spring well” (Atleo 2011, p. 98). The power in this moment lay with this whale.
As the whale slipped smoothly and quietly — planned and precise — under our boat and rose on
the other side we acknowledged our respect with thanks. And, as if this magnificent animal heard
us, the whale circled back. Resting its head on the water’s surface, we met eye-to-eye, feeling
once again the power of this relationship and our place within it. This whale’s gaze and ‘playful’
interaction reminded us of our own fragility as visitors in their realm.

Haida oral stories speak of interactions between humans and nature and Supernatural Beings
as sharing skins. Under our skins, both human and nonhuman, we are reminded that we are all
connected, sharing this power of place.

Humility and Earth (Jennifer)

“Humility, in the Ojibway world, means ‘like the earth. ...[HJumility ... is the foundation
of everything. Nothing can exist without it.” (Wagamese, 2011, rearranged, p. 9).

These words which describe the Ojibway world re-mind me of my Chinese grandmother’s
family name. “Chan” written as Chinese characters [ (see also Figure 1) animate familiar
meanings of place, direction, and temporality to those of Ojibway meanings for East. i means
earthly place, landscape, ancient, and abundant. ¥ as the sun rising from behind the tree is East
which infers morning but also spring as the first season of the new year. Thus, not only does the
direction of East locate Earth as place but it also posits Earth as originary and foundational. Just
as light appears, day breaks night, and from winter comes spring, it is from the East where new
beginnings and possibilities emerge.
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Figure 1. Chinese characters for “Chan”

“Humility, in the Ojibway world, means ‘like the earth. ...[H]umility ... is the foundation
of everything. Nothing can exist without it.” (Wagamese, 2011, rearranged, p. 9).

Deeper within the layers of Wagamese’s description, I hear the wor(1)ds of Japanese-
Canadian curriculum scholar Ted Aoki. Aoki (2004a) remembers and reminds that the word
humility is etymologically akin to earth. From humilis meaning “on the ground”, dhghem or
humus as “earth”, and don as "place" (Humility, 2022), the very word has originated and evolved
from earth. Humility as described by Aoki (2004a) is “concerned with lived space[s] where
people dwell communally ... with others [and] earth under the sky.” (p. 300) And just as humility
comes from Aumus, Aoki (2004a) remembers and reminds that we Aumans do too.

While East marks first light, new beginnings, and starting points, humility calls for
contemplation of what has come before. Humility makes returning to and reconsidering onto-
epistemologies of place possible. In doing so, it allows for movement and change. Returning
then is not simply ‘turning around’ or ‘going back’ but ‘turning again’. Further, from the East
turning again conceptually conjures notions of a turning point or starting anew.

For me, East signifies the first part of my journey as graduate student. Asked by my
supervisor why I decided to pursue further studies in mathematics education, I explained to her
that: “When I am in the mathematics classroom, there are certain things and events I can see and
theoretically explain through constructivism. However, there are all sorts of other things and
events [ know or sense are happening but all I can do is point to them. I have no means by which
to describe them yet I desperately want to understand them.” Digging deeper, I was also
conflicted with the idea that if “WE ARE CONNECTED TO THIS EARTH” (Thom, 2012, p. 2)
then why is it that school mathematics feels so disconnected. These “things” and “events” were
just a few of the items on what was becoming an ever-growing list. Many were contradictions I
experienced between my home life and life lived as mathematics student and teacher. From
ontologies to epistemologies to cultural discourses to the metaphorical nature of language to
meanings of place. My hope was that these questions would be the start of a new journey for me.
A journey that would require me to re(-)turn and explore the place of classroom mathematics and
if necessary, bring forth possibilities for ‘re-rooting the learning space’ and develop an
understanding for what it means to ‘mind where children’s mathematics grow’ (Thom, 2012).
Understanding Humility in Relation to the Boreal Forest (Florence)

I grew up on a ranger station in what is now called northeastern Alberta. My father was a
forest officer and grew up in the prairies. My Métis mother was born and raised in the North
primarily living in a variety of small communities around a huge fresh water lake. The ranger
station was located on the edge of boreal forest and farmland. A boreal forest is full of deciduous
and coniferous trees; land that includes muskeg (or bogs), freshwater lakes, rivers, and streams.
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The land sustains a vast number of animal and plant species - species that also sustain human
life. I grew up eating “wild meat” such as moose, deer, partridge, ducks, goose, and fish. I grew
up picking and eating wild berries and learning about some medicines that were available in the
forest.

I also grew up being in the boreal forest, learning from my Métis grandparents and from my
parents about what it means to pay attention to the land. I grew up learning how to ‘find my way’
through the forest and learning to pay attention, for example, to the ways in which moss grows
on trees as you might need the moss to build a fire for warmth. A large part of these early years
was understanding forest fires. Forest fires were feared and at the same time celebrated. Forest
fires were feared because of the way that they could impact human life. My father would be
called away when a fire was spotted in order to begin to work with others on the initial attack;
hoping that the fire could be contained in order to protect humans and human properties. At the
same time there was a contradiction because a boreal forest relies on a forest fire for rejuvenation
and growth. Nutrients are released, seeds are released for some species of trees, and fires open
the canopy to allow new growth (Natural Resources Canada, 2022).

It was always fascinating to me to watch the way that a forest ‘rejuvenated’ following a fire.
The years following a forest fire would mean that we needed to pay attention to reading the land
in a different way because there would be new growth. You would notice the new jack pine
seedlings that could now grow because of the fire. We would pay attention to the places that
fireweed would grow across the burned area as fireweed was often the first ‘new growth’ we
would see. We would spend time ‘reading’ the changes in the land after a fire and noticing the
changes in the ways that the animals would live around the land that had been burned.
Sometimes it would mean hunting in a new place for the moose or deer because the growth of
the plants had changed because of the fire.

Often throughout these early years of my life we were taught to live with the forest because it
was a way to learn about how to ‘survive’ with the forest. Even though we learned a lot about
reading the land we also learned about respecting the land as the land can be changed quickly
and dramatically by rain or no rain, fire or no fire, and extraordinary winds. Learning about
‘surviving’ taught me about humility; I was taught to respect the land, the weather, and the
species that sustained our family. As I reflect on these early years now, I was learning about
uncertainty and interdependence of humans and nonhumans living with earth or land.

South

TRUST IS THE spiritual by-product of innocence. My people say that innocence is more
than lack of knowledge and experience, it's learning to look at the world with wonder. When
we do that, we live in a learning way. Trust, the ability to open yourself to teachings, is the
gateway for each of us to becoming who we were created to be. All things bear teachings.
Teachings are hidden in every leaf and rock. But only when we look at the world with
wonder do the teachings reveal themselves, and trust is also the ability to put those teachings
to work in our lives. Trust is, in fact, our first act of faith and our first step towards the
principle of courage that will guide us (Wagamese, 2011, p. 57).

Trust: Relations Take the Time it Takes (Cynthia)

As shapeshifters, Supernatural Beings appear in Haida stories told for generations. They’re
carved into poles, masks, and jewelry, and painted on bentwood boxes, woven into cedar hats,
and tattooed on bodies. I've learned from Haida Elder Gwaaganad Diane Brown that it is here,
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Haida Gwaii, where multispecies kinship between human and nonhuman, natural and
Supernatural is honored — where, for example, “we treat the ocean as our relative.”

Supernatural Being Kugann Jaad (Figure 2) appeared for Haida artist Billy Yovanovich when
working on his ideas for mathematics education on Haida Gwaii. It is Kugann Jaad, says Billy,
who is known for her ability to restore balance and equity “with her strength, wisdom, and vision
she guides us, speaking with both her hands and her eyes with knowledgment of what is to
happen, what will happen, or even provide resources to meet challenging situations (Nicol et al.,
2020, p. 17-18).

Figure 2. Kugann Jaad by Billy Yovanovich

Kugann Jaad for me helps tell the story of working with Haida communities, first as a
beginning teacher, and then for the past 17 years as an academic to connect community, culture,
and mathematics within the culture and place of Haida Gwaii. The task, when first started,
seemed challenging but doable: work with six teachers (Indigenous and non-Indigenous;
elementary and high school; from the north and southern parts of the Island; beginning and
experienced) and the Principal of Indigenous Education to create practices and resources that
ground and strengthen relationships between people, mathematics, and place. Teachers with
more than 20 years of experience found themselves questioning their own assumptions,
challenging what they noticed as deficit perspectives, and recognizing the complex work needed.
We were excited about these modest results and humbled by the time it took. With community
we took two years to develop a common workable set of questions that we called the PAIRS
approach to highlight place, relationships and Indigenous storywork with mathematics, and
another three years to develop a book as a collection of community Elders’ stories alongside
mathematical adventures.

Our efforts seemed to move forward and backward at the same time. Off-Island teachers
typically left the Islands within 5 years, new teachers joined the project, and the work would
begin again. Kugann Jaad loves a good puzzle, and as shapeshifter can slip into the skins of
others to lend a hand when needed. Perhaps it was Kugann Jaad who helped us accept that the
strength of this work was felt not within a couple years, or 5 years, or even 10. It came with
intergenerational teachings — when for instance I found the daughter of one of my former Haida
students in my university teacher education mathematics class. I had taught her mom, her
aunties, and some of her uncles, all of whom, I have since learned, shared with her their good
stories of learning mathematics in my class many years ago. Now here she was in my university
class eager and ready to embrace mathematics as a new teacher. Kagann Jaad reminds us to trust
the time some learnings take.
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Trusting Wonder (Jennifer)

“[O]nly when we look at the world with wonder do the teachings reveal themselves"
(Wagamese, 2011, p. 57).

Wonder as Wagamese (2011) explains allows for an openness to the world, opportunity to
receive its teachings, and inspires hope as well as promise to “live in a learning way” (p. 57). For
me, his teachings evoke insights and sensibilities which resonate with &F (see also Figure 3).
Pronounced “shi” in Japanese and Cantonese, =F can be interpreted as “tera (sic) [or]
[E]arth/measure [as] ‘temple,” a sacred place where one may be allowed to hear the true measure
of earth beings, mortals in the nearness of divinity.” (Aoki, 2004d, p. 374) & is “to speak/to
sound [w]ithin the ‘mouth’ that sounds forth or sings, over layered with three echoes and a
lingering note.” (Aoki, 2004d, p. 374). #F expresses reverence and awe for Earth as place and
teacher. Moreover, given the opportunity to learn by “listening to the land” (Glanfield et al.,
2021, p. 258), “to hear .... the inspirited beat of earth’s rhythm” (Aoki, 2004d, p. 374-375) as
“land-guaging algo-rhythms” (Glanfield et al., 2021, p. 258) opens possibilities for humans to
speak and sound them forth into the world so they may endure. In trusting wonder, I am learning
that “to [hear] and read the (con)texts of the natural world intimately and openly implies that
‘language ... is not a specifically human possession, but is a property of the animate earth, in
which we humans participate’ (Abram, 2010, p. 11)” (Thom, 2019a, p. 252).

lingering note
terra or Earth/measure
—
p — g
echoes-— | g
T i,

mouth — 'I:I\

Figure 3. Chinese characters for “shi”

Doing so prompts me to revisit Alan Bishop’s “assertion that all human cultures ‘do’
mathematics—that is, count, measure, design, play, locate, and explain (Bishop, 1988)” (It’s
Spring, 2022, p. 6). Here it is as if in its resurfacing, Bishop’s assertion asks to be re(-)turned.
Wondering as Wagamese does and as & implies, I wonder:

[What [inspirited algo-rhythms might be heard if] such a focus [for mathematics education]
recognizes not only human activities as mathematical but emphasizes ways of knowing, doing,
and being which are inherently grounded in and come from the land and Earth [such as when]:

~ Sun and moon rise (and set)

~ Seasons change

~ Spiders web

~ Raindrops dance upon the water’s surface

~ Maple seedlings spin and spiral from tree to ground

~ Bat and fish and tree and pea tendril ... just “know” where they are and how to get to where

they need to be (It’s Spring, 2022, p. 6)
~ Humpback whales work together to net and feed.
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What do I Trust (Florence)

The south direction in my life are the years that I was in formal postsecondary education. I
first of all began to not trust as I was provided with implicit and explicit messages about
silencing the teachings I had with my family in relation to the boreal forest. I wanted to be a
mathematics teacher so when I finished high school I entered university to study mathematics
first and then education second. Through those first two degrees I was taught a lot of different
theories and practices. Theories about ways that children learned, theories about why humans act
the way they do, theories about relationships, theories about the ‘best’ way to teach mathematics,
theories about the best ways to assess student learning, and theories about the actions of the
‘best’ teachers. It felt like the years of formal education were a different world as I did not know
or could not ‘see’ the ways in which the interdependencies that I learned about in my early years
belonged in this world of theories that suggested an “if then” philosophy. That is, if x action is
taken then y event will happen. This was contradictory to the philosophy that I grew up with as I
was learning to ‘read’ the land, a philosophy that paid attention to interdependence and
relationships.

As I began my teaching career I felt like I needed to implement all that I learned through my
formal education. I often think about how, in my first 1.5 years of teaching, I spent hours and
hours reviewing the “cumulative files” of each youth that were registered in my mathematics
classes prior to the beginning of each school term. I did this because I believed that if I ‘knew’
about the youth in my classes then I could plan the ‘best’ program for each. I think about how I
would spend hours and hours to make sure I could solve every mathematics problem in the
assignments I planned to give because I thought that the “best” mathematics teacher was the
mathematics teacher that had all of the correct answers. I think about how I would plan well in
advance and how I wanted to keep up with my teaching colleagues in order to make sure |
covered the curriculum in the same time frame. I wanted to quit teaching after those first 1.5
years because it was not anything like I had imagined.

As I began to learn about the youth that were with me in the classroom, I started to notice
that the “cumulative files” didn’t really tell me anything about who the youth were as
individuals. The “cumulative files” often shared information about what the youth could not do
and rarely did those notes reveal what the youth could do. I began to wonder if [ was thinking
about the youth in a deficit way. I began to realize that all of my planning ahead did not pay
attention to what was happening with each collection of humans in any one class. So while
planning ahead was important I also noticed I had to be prepared for the different observations
from the youth in each class. I realized that my planning ahead did not recognize the
interdependence of a classroom. I began to realize that questioning my practices was moving me
away from the predominant “if then” philosophy of my university years and moving closer to the
“interdependence and relationship” philosophy of my early years.

West

ON THE MEDICINE Wheel, introspection is the "looks within place." Humility and trust
offer many teachings, and introspection is a means of seeing how those apply to our lives. It's
a place of vision. It's a resting place where the story, the song each of us has created up to
this moment can be inspected and those things deemed unnecessary be let go. It's a place of
courage, because the hardest place to look is within. Many people stop here, deterred by the
trials of the journey and the sudden hurts that sometimes make life hard. But introspection is
meant to bring us to balance. It is the place where all things are ordered, where all things ring
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true at the same time. Balance allows us to move forward, and when we do, the journey
becomes wondrous again by virtue of our ability to see the whole trail. (Wagamese, 2011, p.
107).

Introspection: What are you? (Cynthia)

At a community potlatch feast in a northern BC Indigenous community a young girl sitting
next to me turned and proudly declared her heritage: “I’'m Nisga’a!” Then, with what seemed an
obvious question to her, and looking straight at me asked, “What are you?”

What am I? I could answer who am 1? or Where are you from? But what am 1? It’s taken a
few years for me to learn how to respond to that question. Growing up as a non-
Indigenous/settler in the Kootenay territory of southern British Columbia, in a predominantly
white Euro-centric community, my heritage was rarely questioned and certainly invisible. We
were taught nothing about the system of residential schools, lasting for over 160 years, involving
more than 150,000 children in an education that offered more abuse than teaching. How is it
possible that such atrocities occurred but then were erased from Canadian education? Even while
I taught on Haida Gwaii these experiences were rarely spoken or only whispered.

My work with rural and Indigenous communities continues to deepen my own self-gaze to
“disrupt molded images” (Dion, 2007), and settler colonial logics (Donald, 2012). This involves
working with communities toward building relationships with land through personal experience,
drawing upon stories and ancestral knowing through listening to Elders, and (re)membering
respectful and responsive mathematical learning environments by connecting math, community
and culture.

Through the teachings of Haida Elder Gwaaganad and Haida artist/activist Guujaaw I’'m
learning more about “what” [ am. Gwaaganad spoke at our project meetings of the need to treat
the ocean as our relative, as a member of the family. The ocean is neither an object, nor unending
resource, nor even something that needs protection. The ocean is a relative, the ocean is kin.
Similarly, Guujaaw spoke of the importance of ancient cedar trees to the Haida people. If “the
trees are gone [due to industrial logging]” said Guujaaw, “then we’re just like everyone else.”
The trees and the land including the ocean and waterways define what it means to be Haida.

Learning about relationships with the ocean and forests, as relatives, opened pathways for
listening to the possibilities the land and waterways offer as teachers. Gwaaganad and Guujaaw
led us in (re)membering long views of time and experiences of food harvesting with the
changing ocean life, changing harvesting practices, and the revitalizing of ancient pedagogies of
place. Opening myself up to embrace these kinds of obligations to the land/ocean, to be
respectful and responsible for caring for the non-human world brings me closer to understanding
what I am.

What am I? I’m still not sure I have a full response to this question, but I do know that it
speaks to a more kincentric (Salmoén, 2001) way of being, one that supports living in the world in
more relational and emergent ways.

Simultaneous Complementarities (Jennifer)

"Introspection... ‘looks within place.’ ... [A] place of vision... where ... the song each of us
has created up to this moment can be inspected .... [W]here all things ring true at the same time.”
(Wagamese, 2011, p. 107).

As I sit, “keeping watch” (Thom, 2012, p. 363), reflectively circling back and reflexively
circling forth, I can appreciate and more deeply understand the onto-epistemological meanings of
place that connect and (in)form my journey as mathematics education researcher. Now from the
West, it is my Chinese grandfather’s family name 5% “Taahm” and my surname “Thom” that
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appears, inviting my further contemplation. Similar to F or “shi”, 5 depicts a mouth which
sounds or sings forth, echoes, and holds a lingering note. &L translates as “early west.” (see also
Figure 4). (How curious it is that 5% foretells my grandfather’s journey from Hoiping China to

Vancouver Island, singing forth as it echoes my family’s history in the “early west” during the
turn of the 20» century onward.)

West
lingering note \ ' 4 ’
echoes -
early
mouth

Figure 4. Chinese characters for Taahm/Thom

Looking again, the Chinese characters for West bare other meanings which suggest
reflection. For example, “dusk” as the time of day when the sun disappears below the horizon
and the season of autumn. Both resonate with Wagamese’s description of West as “a resting
place” and “a place of vision” that affords “look[ing] within place” and “introspection”
(Wagamese, 2011, p. 107). Perhaps more intriguing is how the idea of “early west” presents as
“all things ring[ing] true at the same time.” (Wagamese, 2011, p. 107). That is, sunrise and
sundown; early or soon and late, morning and evening; even beginning and end. And as well,
while autumn signifies a time of ripening, harvest, and plenty, it is also a time of decay, death,
and decline.

These ‘opposites’ which could be viewed as contradictory can also been understood as
wonderous spaces in which to “see the whole trail” (Wagamese, 2011, p. 107). Not as distinct or
separate parts that compete with one another but in the harmonious and discordant ways they
come together to dialectically (in)form “a space of conjoining and disrupting, indeed, a
generative space of possibilities, a space wherein in tensioned ambiguity newness emerges.”
(Aoki, 2004b, p. 318). So understood, dwelling within such edgy yet fecund spaces inspires my
inquiry and occasions my learning into: how STEM and the cultural commons (Bowers, 2016)
enable eco-centric intelligences within communities (Thom, 2019b); conceptualizing modern
and ecological discourses in ways other than an impasse (Thom, 2021); alternative meanings and
purposes for STEM within Indigenous and ecological perspectives (Glanfield et al, 2021);
dynamics of mathematical ideas as individual and collective phenomena (Thom, 2012);
mathematical drawings as act and artifact (Thom & McGarvey, 2015); mathematical perception
and representation (Thom et al., 2021); and bodily experiences and mathematical conceptions
(Thom, 2017, 2018; Thom et al., 2015; Thom & Hallenbeck, 2021; Thom & Pirie, 2002; Thom
& Roth, 2011).

Indigenous Knowledge Systems and University Teachings (Florence)

I turn to university and to teachings of Indigenous knowledge systems in the west. After
years of teaching I return to study a graduate degree in educational administration as I want to
learn more about schools and how schools and school systems come to see youth as deficit. |
imagine that [ will become a school administrator that will make a change in the school system. I
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never become a school administrator. When I finish the graduate degree I begin to work with the
provincial ministry of education in developing and implementing provincial mathematics
programs and developing student assessment materials. I also began to notice that who I am as
an Indigenous person made a difference when I was working with communities across Northern
Canada around mathematics programs. I remember being invited to sit with Indigenous
community members in the northwestern part of the Northwest Territories, outside of the normal
mathematics program activities, when the community learned I was Métis. At another
community in the Northwest Territories an Elder talked with me about how the number system
in the Dene dialect was not a base 10 system when she learned I was Métis. The Elder told me
about how numbers were important in communities traditionally but that it was about ‘enough’
and not always needing ‘more.” These were ideas that I had not previously learned. Indigenous
community members would tell me how they were working to have Indigenous languages
present within schools. I was asked about the languages that my family spoke and I began to
inquire within my family about the Indigenous languages that were spoken, as I could not
remember Indigenous languages being spoken.

What I was learning through my living is that the predominant “if then” philosophy so
evident in much of my formal education and the policy work was being replaced in my living
with the “interdependent relational” philosophy of my early years. As I entered into a PhD
program I searched for theoretical frameworks and methodologies that more closely aligned with
an “interdependent relational” philosophy. The searching was not easy; but I had the opportunity
to learn about narrative inquiry (Clandinin & Connelly, 2004) and an enactivist view of
cognition (Maturana & Varela, 1992; Varela, Thompson & Rosch, 1991). These views ‘aligned’
with what [ was learning from Indigenous knowledge holders as I was making sense of doctoral
studies and aligned with an “interdependent relational” ontological stance.

North

TO BE TRULY wise is to understand that knowing and not knowing are one. Each has the
power to transform. Wisdom is the culmination of teachings gleaned from the journey around
the circle of life, the Medicine Wheel. Circles have no end. We are all spirit, we are all
energy, and there is always more to gain. This is what my people say. When the story of our
time here is completed and we return to spirit, we carry away with us all of the notes our
song contains. The trick is to share all of that with those around us while we're here. We are
all on the same journey, and we become more by giving away. That's the essential teaching
each of us is here to learn. (Wagamese, 2011, p. 151).

Our journeys traveling through Wagamese’s Medicine Wheel teachings, East (humility) to
South (trust) to West (introspection) bring us to North (wisdom) and our questions of what this
journey means for mathematics education. We are aware of the colonizing role mathematics and
mathematics education has played and continues to play as “one of the most powerful weapons
in the imposition of Western culture ... [and] a secret weapon of cultural imperialism” (Bishop,
1990, p. 51). And so, we ask: How does (re)membering place give rise to discourses and actions
that are both resonating harmonies and critically dissonant in mathematics education? How can
(re)membering place help challenge more dominant ways of being in relation — from
exploitation, violence and oppression over land, animals, humans, language and cultures
(Calderon, 2014; Seawright, 2014) to more intimate experiences of dwelling together humans
and more-than-humans for the wellbeing of all (Abram, 2011).
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We acknowledge calls in the literature to re-imagine mathematics education to address
current global challenges (e.g., Adams, 2018; Barwell, 2018; Glanfield et al., 2019; Nicol et al.,
in press; Wolfmeyer et al., 2017). For instance, critiques of educating for STEM, are gaining
attention in teacher education (Khan, 2020; Nicol et al., 2020), curriculum (Wolfmeyer et al.,
2018a; Thom, 2021) and communities (Thom, 2019b; Wiseman et al., 2020); design (Glanfield
et al., 2020), interdisciplinarity (Yaro, Amoah & Wagner, 2020), social justice (Davis & Renert,
2013; Wolfmeyer et al., 2018b); and mathematical formatting (Barwell, 2018; Skovsmose,
2021).

In addition, there are calls to address issues such as equity and the need to rehumanize
mathematics education (Guitérrez, 2017, 2018); to teach and assess in ways that build upon the
strengths of students from marginalized groups and communities (Aguirre & del Rosario Zavala,
2013; Celedon-Pattichis, Musanti & Marshall, 2010); and to recognize intersectionality (Bullock,
2017; Gholson 2016).

Yet, with Wagamese (2011), we have traveled the four directions to offer narratives for
mathematical ways of being that support a more holistic engagement with human and natural
environments. Where place, and land, is teacher.

In the Chinese language:

wisdom is inscribed in a family of words: human, humility, humus, and humor, all
etymologically related as they are, too, in our language. The Chinese characters of a wise
leader read sei-jin 52 _\—a person who, indwelling with others A, stand between heaven and
earth I, listening H to the silence, and who, upon hearing the wor[1]d, allows it to speak I
to others so others may follow. (Aoki, 2004c, p. 214).

What kind of a place is this? A place where there is room for words like humor, human,
humus, humility to live together. In such a place, to be humiliated is to be reminded that we
are communally ecologic, that the rhythmic measures of living [with] Earth come forth
polyphonically in Aumor and human and humus and humility. (Aoki, 2004a, p. 300)

We end as we began with questions ...

1. What are the conditions that make possible ethical and rigorous engagement across
communities in resonant harmonies and critical dissonances that can help us move
together towards improved relationships and wiser futures, as we face unprecedented
global and local challenges?

2. What are some guidelines, approaches, and practices for ethical and respectful
engagement with communities that can help us to work together in holding space for each
other human and more-than-human in the place of mathematics education?

3. How do we learn together, to co-construct and learn to be with each other, the land and
our more than human kin, in ways that are compassionate, sensory, interconnected, and
with humility, courage, wonder and trust in caring for life over the long haul? And what
is the role of mathematics education in this?
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The development and use of learning trajectories is a body of research that has made enormous
contributions to the field of mathematics education, offering insight into the teaching and
learning of topics at all levels. Simultaneously, the work of building learning trajectories can
benefit from explicitly adopting an anti-deficit stance, incorporating ways to center student
voices from an asset-based perspective. In this paper I propose two related constructs to support
this work: decentering and second-order models. In decentering, researchers work to set aside
their own knowledge to understand students’ reasoning as viable. This can support models of
student mathematics that position student thinking as rational, powerful, and productive. I
provide one example of the work of decentering and discuss ways to build learning trajectories
that emphasize students’ strengths and competencies.

Learning trajectories research has played a prominent role in the field of mathematics
education, and it continues to exert influence on the teaching and learning of mathematics. In a
recent plenary address to PME-NA, Steffe (2017) remarked that the construction of learning
trajectories is “one of the most daunting but urgent problems facing mathematics education
today” (p. 39). The influence of this sphere of research is evident in funding priorities at the NSF
and the IES, in special journal issues (Duncan & Hmelo-Silver, 2009), in topics conferences
(e.g., the learning trajectories panel held at the VARGA 100 Conference in 2019), and in special
reports (Daro et al., 2011; Taguma & Barrera, 2019). For instance, the National Research
Committee (NRC) issued a special report in 2009 identifying a set of goals for young children
based on learning trajectories, which ultimately led to the use of learning trajectories as a
foundation for the Common Core standards in mathematics (Clements et al., 2019). We also see
the prominence of learning trajectories research for PME-NA as reflected in plenary paper topics
(e.g., Battista, 2010; Confrey, 2012; Sarama, 2018; Steffe, 2017).

Researchers have defined and theorized learning trajectories in a variety of ways. Simon
(1995) initially coined the term “hypothetical learning trajectory” to describe “the learning goal,
the learning activities, and the thinking and learning in which students might engage” (p. 133).
Clements and Sarama (2012) described a learning trajectory as a depiction of students’ thinking
and learning in a specific mathematics domain and a “related, conjectured route through a set of
instructional tasks designed to engender those mental processes or actions hypothesized to move
children though a developmental progression of levels of thinking” (p. 83), and Confrey and
Maloney (2010) described a learning trajectory as a progression of cognition that represents
ordered, expected tendencies developed through empirical research aimed at identifying the
likely steps students follow. There is variation in the degree to which researchers characterize
learning trajectories as being (a) connected to particular task sequences, (b) influenced by
specific teaching actions or other contextual factors, and (c) depictions of strategies, skills, or
performances versus concepts and operations; for a more expanded discussion of these
differences, see Battista, 2010, or Ellis et al., 2014. For my work, I have found Steffe’s (2012)
characterization to be particularly useful. He described a learning trajectory as a model of
students’ initial concepts and operations, an account of the observable changes in those concepts
and operations as a result of students’ interactive mathematical activity in the situations of
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learning, and an account of the mathematical interactions that were involved in the changes. I
consider task sequences to be a part of mathematical interactions, but the emphasis is on the
interactions themselves, including particular teaching moves, students’ activity and conversation
with one another, and students’ interactions with tools, artifacts, and representations.

As a body of research, learning trajectories have made enormous contributions to the field.
They have offered insight into major milestones of students’ conceptual development for a
variety of topics, including measurement (Battista, 2010; Clements & Sarama, 2009; Sarama et
al. 2011), composition of geometric figures (Clements et al., 2012), fractions (Maloney &
Confrey, 2010; Steffe, 2012b; Steffe & Olive, 2010; Wright, 2014), early algebra (Blanton et al.,
2015; Hackenberg & Lee, 2015), geometry (Fitri & Prahmana, 2020), function (Ellis et al., 2016;
Fonger et al., 2020), and probability (Rahmi et al., 2020; Wijaya & Doorman, 2021), among
others. Learning trajectories research informs not only standards development, but also
curriculum, pedagogical decision making, teacher noticing, and professional development
(Clements, 2007; Confrey et al., 2014; Hackenberg & Sevinc, 2022; Liss, 2019; Meyers et al.,
2015; Suh et al., 2021; Steffe, 2004). However, this body of research has also weathered
critiques. These critiques include concerns about an overfocus on tasks, cautions about the need
to better attend to variation in students’ progression, scrutiny of the basis for the construction of
learning trajectories, and calls to more explicitly address equity and inclusion.

An overfocus on tasks can occur when learning trajectories offer only task sequences paired
with learning goals, without attending to the teaching actions and other contextual factors that
are important for supporting students’ development. Relatedly, learning trajectories can be
construed as generalizable or transportable from one situation or context to the next, as if
students, teachers, classrooms, and cultures were interchangeable. It is important to recognize
that trajectories developed in one context may not always appropriately depict students’ learning
in a markedly different context. Additionally, not all students will progress in the same way
throughout any given trajectory. Learning is more individualized, context-dependent, and
idiosyncratic than what could ever be depicted in a neat, ladder-like sequence. Certainly, many
researchers who construct learning trajectories are aware of these constraints. For instance,
Clements and Sarama (2012) wisely reminded the reader that their task sequences are not
necessarily the only or even the best path for learning and teaching, but are instead merely
hypothesized to be “one fecund route” (p. 84). Nevertheless, learning trajectories have, at times,
been interpreted in overly broad or simplified ways.

A more central issue that [ would like to tackle in this paper is the models that constitute the
basis of learning trajectories. In particular, it is worth considering the affordances and constraints
of these models for developing and using learning trajectories to highlight students’
competencies. In order to do so, I now turn to a consideration of first-order and second-order
models, advocating for the use of second-order models to advance an asset-based perspective.

The Potential Pitfalls of Building Learning Trajectories from First-Order Models

Learning trajectories that are built on the foundation of the researcher’s understanding of the
discipline are based on what we call first-order models (Steffe & Olive, 2010). First-order
models, or first-order knowledge, are the models that one constructs “to order, comprehend, and
control his or her own experience” (ibid, p. xvi). There is robust evidence of reliance on
researchers’ first-order knowledge of mathematics in learning trajectories research. For instance,
Clements and Sarama (2012) described a hypothetical learning trajectory as one involving
conjectures about a possible learning route that aims at significant mathematical ideas, and a
specific means to support and organize learning along this route. Those mathematical ideas are

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee
State University.

16



the researcher’s ideas: “The trajectory is conceived of through a thought experiment in which the
historical development of mathematics is used as a heuristic” (p. 82). To offer a few other
examples, Confrey and colleagues (2014) used the term learning trajectory to refer to “clusters
and sequences of standards and their related descriptors” (p. 720), Baroody et al. (2022) depicted
the goals of a learning trajectory to be based on “the structure of mathematics, societal needs,
and research on children’s thinking about and learning of mathematics” (p. 195), and Andrews-
Larson et al. (2017) described their hypothetical learning trajectory as content-specific
documentation of common milestones and learning environments supporting students’
progression across those milestones. Certainly, not all studies reporting on learning trajectory
development conceive of learning trajectories in this manner. For instance, Confrey (2006)
underscored the importance of the learner in guiding this work, emphasizing the centrality of
students’ voices and disciplinary perspectives, and others have published learning trajectories
that reflect this aim (e.g., Fonger et al., 2020; Steffe, 2012; Steffe & Olive, 2010). Nevertheless,
there remains a strong emphasis on learning trajectories that are based on researchers’ own
mathematics as starting points.

Building learning trajectories from first-order knowledge can offer important affordances.
Such trajectories reflect the researcher’s nuanced, in-depth understanding of the relevant content
and key learning goals, as well as research-based knowledge of how to support student learning.
At the same time, trajectories developed from first-order knowledge may also position students
in terms of how they measure up against researchers’ knowledge of the discipline. Moreover, this
framing runs the risk of depicting students in terms of falling short. Adiredja (2019)
characterized this stance as “epistemological violence”, particularly towards minoritized students
and students from marginalized communities, when the research we conduct positions students’
knowledge as inferior or problematic. Furthermore, such a stance centers the perspective of the
expert rather than that of the student. Certainly, many thoughtful scholars are careful to consider
these issues in both their construction and use of learning trajectories, emphasizing the potential
of learning trajectories to be asset-based models (e.g., Clements & Sarama, 2012; Hunt et al.,
2020; Meyers et al., 2015; Suh et al., 2021). There is nothing inherent in a learning trajectory that
requires it to be constructed as a deficit-based tool. Nevertheless, learning trajectories built from
first-order models may fail to identify, sufficiently explore, or acknowledge the competence and
brilliance of student thinking. In fact, as a field we run the risk of learning trajectories being used
to bolster deficit stances towards minoritized and marginalized students, particularly when the
trajectories over-privilege formal language, consistency in understanding, or straightforward and
direct change in understanding (Adiredja, 2019). Adiredja pointed out that it is not that these
mathematical goals are bad, but rather, an inflexible privileging of such goals can interact with
deficit master-narratives to devalue the mathematical sensemaking of students, particularly
students of color.

Learning trajectories built from first-order knowledge can also run the risk of encouraging
teachers and other stakeholders to use them in a manner that places students on a continuum,
with some positioned as more advanced and others positioned as deficient. Such an emphasis is
reminiscent of the studies focused on achievement gaps, which allow researchers to
“unconsciously normalize, the ‘low achievement’ of Black, Latina/Latino, First Nations, English
language learners, and working-class students without acknowledging racism in society or the
racialization of students in schools” (Gutiérrez, 2008, p. 359). Moreover, this treatment of
learning trajectories may miss important nuances, not only about student thinking and reasoning,
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but also about the ways in which students may shift from one understanding to another based on
complex, interrelated factors.

What, then, is the alternative? Researchers can instead psychologize students’ mathematics
by constructing second-order models, which are the hypothetical models observers construct of
their students’ knowledge in order to explain their observations of students’ states and activities
(Steffe & Olive, 2010). They are referenced to the researcher’s first-order mathematics, as well
as the researcher’s conceptions and interpretations of the language and actions of students. These
second-order models are sometimes referred to as the mathematics of students; students’ first-
order models (their own models of mathematics) are referred to as students’ mathematics (Steffe,
2017).

Building Learning Trajectories from Second-Order Models

In building learning trajectories that are elaborations of second-order knowledge, we concern
ourselves with identifying the mathematics of students and elaborating students’ mathematical
concepts and operations. I consider these learning trajectories to be coproduced by students and
researchers (Steffe, 2012). Although initial hypothetical learning trajectories may be informed by
a researcher’s first-order mathematical knowledge, in combination with their knowledge of
student thinking, these trajectories are nascent, ill-formed, and flexible. The learning trajectories
that are consequently built out of teaching actions with students are accounts of students’ initial
concepts and operations, an account of the observable changes in those concepts and operations
as a result of teaching and learning actions, and an account of the teaching and learning actions
that led to the changes.

Building learning trajectories as second-order models encourages, or perhaps even requires, a
different epistemology of mathematics, one that deviates from Western naive realism traditions.
Drawing on Piaget’s epistemological beliefs, von Glasersfeld (1982) wrote that “The cognitive
organism is first and foremost an organizer who interprets experience and, by interpretation,
shapes it into a structured world” (p. 612). This one sentence conveys a radical departure, as von
Glasersfeld put it, from traditional ideas of not only knowledge, but of reality itself. Knowledge
is not a more or less accurate representation of reality. We construct our conceptions of reality
through perception, not directly, and we cannot maintain a belief about knowledge being a
reflection of reality by simply acknowledging that our reflection may not always be very
accurate. This is not to say that von Glasersfeld denied reality; rather, he considered it to emerge
only through bumping up against constraints. From this perspective, it does not make sense to
judge knowledge based on its accuracy; in fact, this would be impossible, because it would
require comparing one’s knowledge to an independently existing reality and judging the
closeness of the match. How can any human do this without direct access to that reality? Instead,
knowledge is successful if it is viable, i.e., when it is not impeded by constraints.

Within this framing, there is no such thing as a mathematics that resides outside of human
experience. The very concept of the second-order model is based on an epistemology that
considers mathematics to be a product of the functioning of human intelligence. Students’
mathematics is the mathematics. Certainly, we can compare our second-order model of the
mathematics of a student to our first-order model of our own mathematics. In doing so, it is
productive to understand that there are two mathematics, and both are legitimate. This requires a
rejection of the Platonist knowledge traditions that frame mathematics as universal and objective.
It also requires one to position students’ ways of knowing and thinking as rational, rather than
inferior when compared to standard strategies, procedures, and conventions (Louie et al., 2021).
As L. Steffe explained, “students are ‘never wrong’ even though their thinking may not appear as
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viable with respect to certain situations or ways of thinking. Mistakes are always an observer’s
concept” (personal communication, October 5, 2022). Louie and colleagues argued that a failure
to position students’ reasoning as legitimate can discourage teachers from attending closely to
unconventional ways of thinking and seeking to understand them, much less valuing or inviting
them. I argue that this can also be true of researchers’ treatment of students’ ideas. In contrast, if
we understand that students’ mathematics is the mathematics, then we will be compelled to take
students’ reasoning and competencies as the starting point for building any learning trajectory.

One way to build second-order models is through the process of conceptual analysis, which
is a process guided by the question, “What mental operations must be carried out to see the
presented situation in the particular way one is seeing it?”’ (Steffe, 2017, p. 78). Thompson and
Saldanha (2000) described conceptual analysis as articulating the conceptual operations that,
“were people to have them, might result in them thinking the way they evidently do” (p. 315).
Engaging in conceptual analysis draws on a researcher’s ability to decenter, and can support the
development of the epistemic student. Below I discuss each of these constructs in turn.
Decentering

Piaget (1955) introduced the idea of decentering to characterize the actions of an observer
attempting to understand how an individual’s perspective differs from their own (Teuscher et al.,
2016). Piaget developed this idea to describe an aspect of a child’s development: when a child
learns to decenter, they begin to abandon egocentrism and develop the capacity to consider
another’s perspectives, thoughts, and feelings (Piaget & Inhelder, 1967). Steffe and Thompson
(2000) then extended Piaget’s construct to characterize a teacher’s stance towards a student,
particularly in terms of a teacher’s ability to adjust their actions in order to understand a student’s
thinking.

Arcavi and Isoda (2007) described decentering as:

the capacity to adopt the other’s perspective, to ‘wear her conceptual spectacles’ (by keeping
away as much as possible our own perspectives), to test in iterative cycles our understanding
of what we hear, and possibly to pursue it and apply it for a while. Such a decentering
involves a deep intellectual effort to be learned and exercised (p. 114).

Decentering is a stance that attends to both mathematical thinking and social interactions. It
entails interacting with students reflectively, in a conscious attempt to set aside one’s own
knowledge to understand a student’s reasoning as viable (Thompson, 2000). This reflective
stance towards interactions with students is crucial for creating viable second-order models, and
such efforts are hampered if a teacher — or a researcher — does not make concerted efforts to
differentiate the mathematics of students from one’s own mathematics. Steffe and Ulrich (2020),
in distinguishing between responsive / intuitive interaction and analytic interaction, described the
latter as a process of stepping out of analyzing students’ thinking in ongoing interaction. All of
the researcher’s attention is absorbed in trying to think like the students, and produce and
experience mathematical realities that are intersubjective with their own first-order models.

If researchers do not decenter, students’ thinking and reasoning may not be considered
worthwhile models of the environment in their own right, and instead may be positioned only in
relation to standard models (i.e., the researcher’s models) of mathematical knowledge. The
construction of learning trajectories that are not a consequence of decentering may then position
students as falling short, with insufficient attempt to understand or model students’ thinking as
viable, powerful, and potentially productive, even in times when it deviates from canonical
mathematics. In contrast, a decentering researcher “always assumes that a student has some
viable system of meanings that contribute to her or his actions” (Teuscher et al., 2016, p. 439).
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Teuscher and colleagues went on to point out that the ideas of correct versus incorrect become
largely irrelevant beyond informing one’s future actions. This is not to suggest that correctness is
unimportant. Rather, when engaged in the hard work of decentering, correctness is not a notion
that contributes utility to building second-order models. A student does not position their own
knowledge as incorrect, and decentering means seeing the world with the student’s mathematical
eyes.

The Epistemic Student

Hackenberg (2014) defined an epistemic student as an organization of schemes of action and
operation that undergo change over time. The epistemic student is a model, one that is composed
of the ways of operating common to all students at the same level of development “whose
cognitive structures derive from the most general mechanisms of co-ordination of actions” (Beth
& Piaget, 1966, p. 308). I see the epistemic student as a useful model of characteristic
mathematical activity that is developmental, generalized, and dynamic (Ellis, 2014). It is an
abstraction (Piaget, 1970), meant to explain some ways of operating that we suspect may be
common across students.

The epistemic student is a helpful construct because students who share initial concepts and
operations often respond in somewhat common ways to thoughtful instructional interactions.
This does not mean that every student will respond identically, but typically there are a
manageable number of ways of reasoning that bubble up repeatedly across participants and
contexts. The epistemic student can be a useful model for trying to walk the tightrope between
overgeneralization and over specificity. I acknowledge that it is not appropriate or even accurate
to claim that my second-order models and resulting learning trajectories, which are developed
from small numbers of students in specific contexts, would extend to all students in all contexts.
To do so would ignore the variation in students’ experiences, backgrounds, and positionalities, as
well as the variation in classrooms, schools, and cultures. Simultaneously, the work of building
learning trajectories necessarily entails a belief in the value of creating scientific (rather than
experiential) models with the potential of being useful across different students and contexts.
Learning Trajectories Built from Second-Order Models Emphasize Anti-Deficit Stances

The body of learning trajectories research has been critiqued for not adequately considering
equity or addressing student diversity (e.g., Zahner & Wynn, 2021). Some may even be used in
ways that can reinforce deficit perspectives. A deficit perspective is “a propensity to locate the
source of academic problems in deficiencies within students, their families, their communities, or
their membership in social categories (such as race and gender)” (Peck, 2021, p. 941). In
contrast, an anti-deficit perspective begins with the assumption that students are capable of
reasoning mathematically and that they bring productive resources for learning mathematics. It
acknowledges that learning is time-consuming, and that “imperfect articulations of mathematical
ideas and some inconsistencies in the student’s current conception are a natural part of the
process” (Adiredja, 2019, pp. 416-417). Furthermore, adopting an anti-deficit perspective means
locating the source of students’ academic challenges within the racist, sexist, and ableist
institutional structures that restrict, or even actively oppose, access to high-quality educational
opportunities. When considering student thinking, a researcher considers and identifies the assets
and competencies that students possess, rather than what students lack.

A goal of learning trajectory construction must be to position student thinking as rational,
powerful, and viable, and from that position, seek to understand why students reason the way
they do. It is our job, as researchers, to construct second-order models that reflect a value that
student thinking is sensible and intelligent. In constructing learning trajectories, we must begin
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with that stance, identify student concepts and operations so that we can meet students where
they are, and then consider productive teaching interactions that can support students’ shifts from
one way of thinking to the next. In doing so, we must also understand and acknowledge that
these shifts may be idiosyncratic, time-consuming, and messy, as is learning itself. By starting
from a model of the mathematics of students, we can then construct models for how teachers
might interact with students to bring forth productive changes in their concepts and operations.
The learning trajectories that my colleagues and I produce (e.g., Ellis et al., 2016; Fonger et
al., 2020) emphasize students’ strengths and competencies, even when student thinking differs
from canonical mathematics. We see an important outcome of our learning trajectory work to be
that of highlighting those strengths and competencies with stakeholders. The goal of our work is
to understand why students reason the way they do, and to show how students can and do think
in ways that are thoughtful, reasonable, and nuanced, even if, at first glance, one might only see
an incorrect answer or a puzzling strategy. Like many others (e.g., Clements & Sarama, 2012),
our learning trajectories provide multiple viable paths and do not claim to represent the only (or
even the best) route to learning. Centering the mathematics of students is explicit in our
theoretical framing and constitutes the starting point for creating and refining trajectories.

An Example of Building a Learning Trajectory from Second-Order Models

Our learning trajectories are depictions of concepts and mental operations, in concert with
teaching interactions and in relation to task sequences, set in specific teaching and learning
concepts. The concepts and mental operations are the mathematics in our trajectories. As an
example, my colleagues and I constructed a learning trajectory of students’ understanding of
exponential growth from a covariation perspective (Ellis et al., 2016). That trajectory in its
entirety is beyond the scope of this paper, but I will highlight here four of the operations we
identified: (1) Explicit coordination of change in y-values for 1-unit change in x-values, (2)
Coordination of change in y-values for multiple-unit changes in x-values: repeated multiplication
imagery, (3) Coordination of change in y-values for multiple-unit changes in x-values:
exponentiation imagery, and (4) Coordination of change in y-values for any unit change in x-
values, for any Ax. Mathematically, from our perspective, these are all the same operation. For an
exponential function y = ab”, it is possible to coordinate the change of any two y-values with any

two corresponding x-values according to the relation % = b*27*1 and the value of Ax is
1

immaterial. Conceptually, however, these are not the same operation. In our work with students,
my colleagues and I found that coordinating changes in x-values and corresponding y-values for
unit changes in x is different from coordinating for large changes in x. Additionally, one can
engage in coordination for large changes in x either by appealing to repeated multiplication
imagery, or by appealing to a different set of stretching or scaling images. Furthermore,
managing this type of coordination for cases when the change in x is less than 1 draws on a
different set of concepts, and students can engage in operations (1) — (3) long before they can do
operation (4).

What students can do and how they can reason is always rational from their perspective. Not
yet being able to engage in operation (4) is something that a researcher would describe as a
constraint for the student. But, from the student’s perspective, there does not exist a more
“advanced” way to coordinate exponential growth. Students are always reasoning with their
available conceptual operations. For teachers, then, it is advantageous to understand how
students may be operating, so that they do not impose ways of thinking on the students that run
counter to the students’ reasoning. Curricular treatments of exponential growth, however, to the
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extent that they might address a coordination approach at all, do not distinguish these forms of
reasoning, because they can all be handled with the same formula. In contrast, my teaching
interactions with students revealed that it is sensible for students to draw on different imagery
when constructing these operations, and that transitioning from one form of reasoning to another
can be effortful and may require specific instructional support. In short, such a transition is a
significant intellectual achievement. Without this knowledge, teachers and textbooks will not
distinguish them, and students may consequently experience challenges in making sense of
expressions such as 2(/'7; after all, when the meaning of exponents presented to students in
school is only that of repeated multiplication what does it mean to engage in such multiplication
1/7 times? Now that we are aware that these operations are mathematically different for students,
we can help improve the teaching and learning of exponential growth ideas.

As an example of the decentering work that supported our understanding of the mathematics
of students, consider a task in which students are provided with a table of height values at certain
times for a special plant called a Jactus, which grows exponentially (Figure 1).

Figure 1: Table of Week and Height Values for a Doubling Jactus

If I were to solve this problem, I would take the ratio of any two consecutive height values in the
table that were a quarter of a week apart. That ratio is approximately 1.189, and so I can divide
the height at week 0.5 by 1.189 to find the missing height value. The question is written in an
unusual way, because it asks students about how the plant grows in a quarter of a week, but the
table has an empty spot for the height value at a specific time, 0.25 weeks, which is actually a
slightly different question. This was a “serendipitous mistake” (Tasova et al., 2021), because it
enabled us to identify a form of reasoning about which we had been unaware prior to students
encountering the task. Our initial intention was to support the idea that the ratio of height values
for any quarter-week gap will always be the same.

When working with 8"-grade participants who had never before had school instruction on
exponential growth, we initially expected that they would use a strategy like the one I described,
because they had already used that strategy with prior tables. For instance, when encountering
tables with uniform gaps of 1 week, 2 weeks, or 5 weeks, our students had divided height values
to determine the plant’s growth for the corresponding amount of time. But in this case, they did
not leverage this strategy. For instance, consider the work of one of our participants, Uditi (a
self-chosen pseudonym). In describing herself, Uditi discussed her experiences as an immigrant
to the midwestern United States from India. She shared that she enjoyed mathematics and
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science, which was why she had volunteered for our research study, and she preferred expressing
her ideas in small groups rather than with the whole class. When encountering the task in Figure
1, Uditi wrote the expression “1 x 05> She then proceeded to use a cumbersome guess and
check strategy to determine the missing value that would go in the blank to yield the plant’s
height at 0.5 weeks, which she knew had to be approximately 1.414. By doing this, Uditi
determined that the growth factor was 2, and then laughed ruefully as she saw that the task
description had already told her that the Jactus doubled each week. She then wrote the equation,
“Height = 1 « 2¥*k”_and then substituted 0.25 for the exponent to determine the height at 0.25
weeks.

Uditi’s strategy was correct, and it was also creative. It revealed an understanding of many
important ideas, including the idea that she could write a correspondence relation of the form y =
1b* because the initial height at Week 0 was 1 inch. Her strategy, however, also surprised me and
my colleagues, because it was different from what she had done before, and it was also more
cumbersome and difficult than just dividing. Moreover, Uditi was not the only student who
approached the problem in this surprising way. Other students across two different teaching
experiments did as well, which suggested to us that there was an important conceptual issue with
that task that we had not anticipated. In combination with other students’ responses to similar
tasks, we began to realize that the value of Ax was critical. If one week is the period of time for
the plant to double its growth, then it became clear that asking students to determine what
happened within a week was a conceptually different task than asking students what happened
across a span of multiple weeks — even though, from our perspective as researchers, the two tasks
were mathematically identical.

Part of the job of creating second-order models is to engage with students reflectively,
attempting to decenter in order to understand why their behavior and reasoning is sensible. Uditi
and other students could already write expressions such as y = x%2°, therefore presumably using
decimal and fractional exponents to determine a fixed height value. What puzzled us was that
they could also divide two height values to determine an amount of growth for a given time span.
Why, then, did Uditi not do so with this task? Our goal was to now try to understand Uditi’s
reasoning that drove the unanticipated strategy. In doing so, we hypothesized that it was because
Uditi could attribute two meanings to an equation such as height = 23, but only one meaning to
an equation such as height = 2%°, The expression 2* in the first equation meant two things to
Uditi: It could be a static height value, such as the plant’s height at 3 weeks, or it could be a
measure of growth, i.e., how many times larger the plant grows in height for a time span of 3
weeks. But the expression 2%, we hypothesized, could be the plant’s static height value at 0.25
weeks, but not how many times larger the plant would grow in a time span of 0.25 weeks. We
suspected two reasons for this, both related to students’ meanings for multiplication. The first is
that determining growth across multiple weeks entails generalizing the operation of
multiplication to an exponential context. This is fairly easy to do, as many students hold an
expectation that multiplication makes bigger (Greer, 1987). They can extend their meaning of
doubling by mentally repeating the operation multiple times across multiple weeks. In contrast,
0.25 weeks is less than a week, and there is no easy way to extend the operation of doubling to a
fraction of a week. Furthermore, Uditi and the other students we worked with had all received
school instruction that described exponential growth as repeated multiplication. The image of
repeated multiplication does not easily lend itself to decimal exponents, as it is difficult to
imagine such an operation.

Our efforts to construct a second-order model of Uditi’s mathematics via her activity with
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this and related tasks led us to realize that constructing exponents less than 1 as a representation
of growth is its own separate mathematical concept. This is not something I understood prior to
working with Uditi and other students. We learned that in order to make sense of non-natural
exponents as representations of growth, it is useful to invite students to shift to images that do
not entail repeated multiplication. For our participants, this meant creating an image of change in
the plant’s height between weeks that represented an action of stretching, or scaling. For
instance, Pei’s drawing (Figure 2) shows a Jactus stretching as it doubled from Week 1 to Week
2 to Week 3, on the right, and then he was able to reverse his doubling operation to imagine
halving the Jactus’s height to see how tall it would be at Week 2 on the left. Once Uditi
developed a similar scaling image, she was then able to answer the following question: “Say a
plant grows 3 times as tall every week. How many times taller will it grow in 1 day?”. Uditi
wrote “31%” and explained, “There are seven day(s) in a week. So, I divided one week into seven
parts, which represent one day.” She could now conceive of an expression such as 34 to
represent a measure of growth, not just a static height value.

Figure 2: Pei’s Drawing of a Doubling Jactus

Before my teaching interactions with Uditi, I was unaware that an expression such as y = ab”
could represent two different ideas, a static value or an expression of growth. Certainly, this is
not a big idea, and its truth is obvious to me now. Nevertheless, the concept was not originally
part of my own first-order knowledge, nor was I aware that the mental imagery needed to
undergird the second idea would need to be different from the first in order to accommodate non-
natural exponents. Thus, my participants’ mathematics served as a source of novel mathematics
for me as a researcher, as it could also do for teachers who make use of the learning trajectory.

This approach toward the creation of learning trajectories shifts mathematical authority to the
students. Uditi’s mathematics served as a source of new mathematics for me. As a researcher, it
was my job to understand her mathematics, why it made sense conceptually, and then determine
ways to support her to create the meanings and images that would be productive for fostering an
understanding of nonnatural exponents. This work centers student thinking as the core of our
activity. Moreover, a productive stance to aid in my own decentering is to ask the question why.
Why did Uditi’s activity make sense? Why did she use the strategy that she did? Researchers
must ask these questions with the assumption that there is always a sensible reason driving the
student’s activity. We simply need to be careful enough in our own research to find it. Moreover,
in doing that work, we as researchers can grow in our own first-order knowledge: knowledge of
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the mathematics itself, of student thinking about mathematics, of the concepts and operations
needed to make sense of particular ideas, and of the kinds of tasks and teaching moves that can
support the development of those ideas.

I would like to close this extended example by pointing out that this model of a learning
trajectory, with the four operations I shared, differs from learning trajectories that are (a) a
proposal of the kinds of reasoning we should expect from students based on content analysis, (b)
a specification of target performances, (¢) a set of strategies, (d) a network of constructs that one
might encounter through curriculum and/or instruction, or (e) a set of tasks that could be
provided as stand-alone problems. An elaboration of a learning trajectory built from second-
order models will identify student concepts and operations in relation to both tasks and teaching
actions. I do not mean to denigrate or minimize the incredibly valuable contributions that prior
learning trajectories have made, but rather, to articulate and clarify my vision of what a learning
trajectory could be when it is built from second-order models.

Learning Cannot be Separated from Activity and Context

Helping our students develop stretching and scaling images for exponential growth turned
out to be a productive route for their learning. Furthermore, because we saw the type of
reasoning Uditi demonstrated in other students, our construction of the epistemic student from
Uditi and her peers supported a model in which one may need explicit support to shift from a
repeated multiplication image to an alternate image. Sharing second-order models in this manner
can also help mathematically experienced adults, such as curriculum authors and teachers,
understand and appreciate a different mathematics from the one they already know. In this
manner, learning trajectories research can play a role not only in helping the field better
understand how to support student learning of particular mathematics topics in the curriculum, it
can — and should — determine what mathematics should be in the curriculum to begin with.

Nevertheless, emphasizing stretching and scaling images may not necessarily be a
universally productive route. The degree to which it proves to be fruitful for other students in
other contexts is an open question. As I alluded to above, researchers have raised concerns about
the need to attend more explicitly, and more theoretically, to the role that teaching interactions
play in influencing student learning (Empson, 2011; Simon et al., 2010). This body of work
challenges the assumption that features of learning are transportable, or that it is possible to study
effective teaching and learning in a particular context and tease out some key aspects that can
then be generalizable to other contexts. Mathematics learning occurs in interaction, not only via
teaching actions, but also via tasks, tool use, student discourse, classroom norms, school and
community settings, and in relation to students’ identities, histories, and positionalities (Nasir et
al., 2008). Because mathematics learning does not occur in isolation from these sociocultural
contexts, it is wise to avoid overly strong claims about the transportability of any particular
finding. Learning trajectories research is a worthwhile endeavor not just for its potential to
broadly improve the teaching and learning of particular topics (Baroody et al., 2022), but also to
develop a set of contextualized, specific case studies of the types of reasoning that can exist and
can be supported in particular ways.

Build Learning Trajectories that are Engines of Equity
I have advocated for the usefulness of the epistemic student as a construct that can help
researchers navigate a balance between over generalizability and over specificity. In what might
seem like an odd turn, I am now going to argue against my own argument, or, at least, consider
an alternate stance. That stance is this: If the epistemic student is an idealized abstraction, a
model composed of common ways of operating, this leads me to question what type of student
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we imagine when evoking the epistemic student. Analyzing student reasoning without attending

to sociocultural diversity runs the risk of reinforcing deficit narratives about minoritized students
and students from marginalized communities (Zahner & Wynn, 2021). And yet, the construct of

the epistemic student may encourage this form of analysis.

Studies of cognition and equity are frequently positioned as separate areas of research in
mathematics education (Adiredja, 2019). For instance, Adiredja has pointed out that racial and
gender inequities are seldom considered in cognition studies, and, furthermore, engaging in
analysis that does not include these positionalities of the students we study does not make our
research apolitical: “Rather, it has the impact of maintaining the status quo that is the dominant
master-narrative about White male exclusive membership in mathematics and centering
education around their needs and concerns” (ibid, p. 426). One way to begin to address this
limitation can be to extend the notion of the epistemic student to understand the identities and
positionalities of our research participants who contribute to the epistemic student model. We
can invite studies highlighting the powerful reasoning of marginalized and minoritized students,
including being deliberate about who we include as participants in research opportunities, being
thoughtful about the ways in which we engage our participants in research, and being explicit
about our participants’ positionalities.

We must build learning trajectories that are explicitly and theoretically organized from an
asset-based perspective. Such trajectories can begin with efforts to understand our students’
cultural competencies, and by drawing on our students’ backgrounds and out-of-school
knowledge and practices, rather than ignoring or even excluding them. Deliberately creating
learning environments that leverage students’ cultural and linguistic strengths supports their
mathematical reasoning (Abdulrahim & Orosco, 2020). This means, then, broadening our
starting point for the construction of hypothetical learning trajectories. Rather than beginning
only with our first-order knowledge of mathematics, combined with research and pilot studies
about student learning, we can also incorporate (a) hypothesized second-order models, (b)
research on students’ funds of knowledge relative to the topic at hand, and (c) information about
our participants’ values, interests, and knowledge. In this manner, learning trajectories research
can meaningfully center student voices, and can serve as a bridge connecting research on
cognition and equity.
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Learning progressions have become an important construct in educational research, in part
because of their ability to inform the design of coherent standards, curricula, assessments, and
instruction. In this paper, I discuss how a learning progressions approach has guided our
development of an early algebra innovation for the elementary grades and provide examples of
how this approach can help challenge a settled mathematics learning status quo about the kind
of algebra students can learn, when they can learn it, and how all students can be successful.
Empirically derived learning progressions are an important part of designing early algebra
innovations that can open new curricular pathways for teaching and learning algebra, creating
accessible and effective avenues of learning for all students.

Keywords: Algebra and algebraic thinking, learning trajectories and progressions, elementary
school education

Using a Learning Progressions Approach to Develop an Early Algebra Innovation

Over a decade ago, my research interests turned towards a question that I view as critically
important in teaching and learning algebra: Does early algebra matter? Since I assume early
algebra does matter, perhaps a better way to frame this question is to what extent does early
algebra matter, in what ways does it matter, and how might we capture or measure this? There
are deep implications for the answers to these questions. A truly effective integration of early
algebra (or, algebraic thinking in the elementary grades) would entail significant costs because it
requires “deep curriculum restructuring, changes in classroom practice and assessment, and
changes in teacher education—each a major task™ (Kaput, 2008, p. 6). Such costs highlight the
need for carefully constructed models of early algebra instruction—models that have been
missing from elementary grades mathematics. However, these models, as curricular roadmaps
for developing children’s algebraic thinking across elementary grades in a deep, systemic way,
are essential to understanding early algebra’s impact.

To build such a model, our research team turned to a learning progressions approach.
Learning progressions have become an important construct in educational research (Clements &
Sarama, 2004, 2009; Confrey et al., 2014; Simon, 1995; Stevens et al., 2009), in part because of
their ability to inform the design of coherent standards, curricula, assessments, and instruction
(Daro et al., 2011). We focused our work on the development of several core components
aligned with this approach (e.g., Clements & Sarama, 2004; see also Fonger et al., 2018): (1)
empirically-derived learning goals around algebraic thinking in elementary grades; (2) grade-
level instructional sequences designed to address these learning goals; (3) validated assessments
to measure students’ understanding of core algebraic concepts and practices as they advance
through the instructional sequences; and (4) progressions that specify increasingly sophisticated
levels of thinking students exhibit about algebraic concepts and practices in response to an
instructional sequence. A learning progressions approach served two purposes in our work. It
provided an over-arching “large-grain-size-level” framework to guide our design of a Grades K—
5 early algebra intervention from which we might measure the impact of early algebra on
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children’s algebra readiness for middle grades. It also provided a theoretical mechanism for
identifying “small-grain-size-level” cognitive foundations in children’s algebraic thinking that,
along with other existing research in the field, could inform the development of our intervention.

At a large-grain-size level, we used a learning progressions approach (e.g., Shin et al., 2009,
Stevens et al., 2009) in the development of learning goals, grade-level instructional sequences,
and grade-level assessments for K-5. Using Kaput’s (2008) content analysis of algebra as a set
of key aspects (ways of thinking algebraically) and core strands (content domains where
algebraic thinking occurs), we identified core algebraic thinking practices of generalizing,
representing, justifying, and reasoning with mathematical structure and relationships as an
underlying conceptual framework for the design of our goals, sequences, and assessments
(Blanton, Brizuela et al., 2018). We viewed a conceptual framework organized around algebraic
thinking practices as critical to avoid designing instructional sequences based simply on the use
of ubiquitous “algebra” tasks (e.g., solving equations) and not cohesively grounded in what it
means to think algebraically.

To develop our learning goals, we analyzed the treatment of the core algebraic thinking
practices in several dimensions: (1) empirical research on Grades K-8 students’ algebraic
thinking; (2) national curricular frameworks and standards such as the Principles and Standards

for School Mathematics (National Council of Teachers of Mathematics [NCTM], 2000) and
Common Core State Standards (National Governors Association Center for Best Practices
[NGA] & Council of Chief State School Officers [CCSSO], 2010); (3) Grades K-8 curricular
materials (e.g., Everyday Mathematics, Singapore Math, Investigations); and (4) formal algebra
content at both secondary and postsecondary levels. We then organized early algebra content to
align with strands in Kaput’s (2008) algebra content analysis, in particular, “the study of
structures and systems abstracted from computations and relations” (Strand 1) and the “study of
functions, relations, and joint variation” (Strand 2) (p. 11). These strands also aligned with core
content around which the early algebra research base had coalesced. Based on this, we structured
our findings on early algebra content within several “Big Ideas” (e.g., Stevens et al., 2009), or
content domains, where core algebraic thinking practices can occur: Generalized Arithmetic;
Equivalence, Expressions, Equations, and Inequalities; and Functional Thinking. We then
unpacked the role of algebraic thinking practices within each Big Idea by delineating core
algebraic concepts related to the practices, claims that specify the nature of skills or
understandings expected of students regarding a specific concept, evidence in students’ work that
would indicate they had developed the skills or understandings specified in our claims, and
research-based difficulties and misconceptions that students have with a concept (Shin et al.,
2009). The concepts, claims, evidence, and difficulties or misconceptions associated with the
algebraic thinking practices within each Big Idea informed the development of grade-specific
learning goals.

Using our learning goals, we then constructed grade-level instructional sequences for each of
Grades K—5 by designing specific task structures that connected the algebraic practices with
related claims about the skills or understandings that might reasonably be expected of students.
For example, for Generalized Arithmetic we designed sequences of tasks that created
opportunities to generalize arithmetic relationships, to represent these relationships in different
ways, to develop appropriate general arguments for justifying the arithmetic relationships
students observed, and to use arithmetic generalizations students developed as objects (Sfard,
1991) for reasoning with novel problems or properties of arithmetic that make computational
work more efficient. Grade-level learning goals were used to guide content for these task
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structures. For example, the types of arithmetic relationships addressed at a particular grade, the
types of representations used to express them, or the nature of arguments students might develop
to show relationships were valid, were guided by our learning goals. We then used design
research (Cobb et al., 2003) to field-test and refine our proposed grade-level instructional
sequences. Finally, we used these task structures to develop validated, grade-level assessments
by which we could measure within-grade and across-grade (longitudinal) growth in children’s
algebraic thinking in order to understand early algebra’s impact.

Our effort to design a broader, multi-year (Grades K—5) approach to developing students’
early algebraic thinking—essentially, components (1)—(3) above—aligns with what is sometimes
characterized as “learning progressions” (Stevens et al., 2009). At the same time, a smaller grain
size approach was needed to fill in “gaps” in empirical research on our understanding of
children’s algebraic thinking (essentially, component (4) above), particularly in the early
elementary grades where the research base was less developed than that for Grades 3—5. Because
of its narrow scale in terms of a focus on specific algebraic concepts or practices within short
instructional timelines (e.g., weeks), this second aspect of our work might be seen as more akin
to learning trajectories (e.g., Stevens et al., 2009). This “small-grain-size-level” research was
critical for identifying increasingly sophisticated levels in students’ thinking about a particular
practice or concept within a Big Idea. For example, we identified trajectories in students’
thinking about concepts such as a relational understanding of the equal sign (Blanton, Otalora
Sevilla et al., 2018) and variable and variable notation (Blanton et al., 2017), as well as for
practices such as generalizing functional relationships (Blanton, Brizuela et al., 2015; Stephens
et al., 2017), generalizing arithmetic relationships (Ventura et al., 2021), and justifying claims
about arithmetic relationships (Blanton et al., 2021).

Regardless of the nomenclature used or whether focusing on “big” ideas over a broad span of
time (e.g., multiple years) or “small” concepts in a narrow span of time (e.g., weeks), a learning
progressions approach has provided a flexible theoretical paradigm with key features aligned
with our core research goals: identifying increasingly sophisticated ways students come to think
about an algebraic concept or practice in response to an instructional sequence (Duschl et al.,
2007; Simon, 1995; Smith et al., 2006); attending to specific content domains rather than general
cognitive structures in how we design our instructional sequences to study early algebra’s impact
(Baroody et al., 2004); organizing content within these domains to facilitate the development in
students’ understanding of algebraic concepts and practices over time (Smith, et al., 2006); and
relying on classroom-based empirical research, rather than just a logical analysis of the
discipline, to understand how students’ early algebraic thinking develops (Stevens et al., 2009).

The value of this approach extends beyond its role as a research paradigm, however. One of
the organizing questions of the PME-NA 2022 conference—How does your work challenge a
settled mathematics learning status quo?—is at the heart of early algebra’s goal of
“democratizing” students’ access to algebra. By democratizing access to algebra, we mean
opening up pathways to students for whom the traditional “arithmetic-then-algebra” approach—
teaching arithmetic in elementary grades, followed by formal algebra in secondary grades—has
been unsuccessful (e.g., Hiebert et al., 2005) and has limited students’ access to STEM career
and workforce opportunities (e.g., LaCampagne, 1995; NCTM, 2000). These challenges have
been particularly felt among students from historically underserved communities (e.g., Moses &
Cobb, 2001; Museus et al., 2011). For example, elementary grades students from lower
socioeconomic (SES) backgrounds are two times more likely to be deficient in mathematics than
students from higher SES backgrounds (U.S. Dept. of Education, NCES, 2007). This makes such

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee
State University.

32



students especially vulnerable in later formal algebra courses, which impacts their chance for
success in college (U.S Dept. of Education, 2008) and access to STEM-related disciplines and
careers. The promise of early algebra, then, is to address existing inequities in school
mathematics and broaden students’ access to STEM disciplines. In what follows, I consider a
few examples of how our work, built around learning progressions, has helped challenge the
status quo of settled mathematics learning around the kind of algebra students can learn, when
they can learn it, and how all students can be successful.

Representing Generalizations Using Variable Notation

The traditional “arithmetic-then-algebra” approach to teaching and learning algebra has
entailed certain views about what kind of algebra content should be taught and when. One aspect
of algebra that has historically been largely outside the purview of elementary grades is variable
and variable notation. Our work takes the view that variable notation is a useful tool that children
can begin to understand and use from early elementary grades. From this perspective, we have
sought to understand trajectories in students’ thinking about variable and the use of variable
notation to represent arithmetic and functional relationships. While the act of symbolizing a
generalization is central to algebraic thinking, the way in which a generalization is represented
can vary. In elementary grades, non-conventional forms such as natural language and
drawings—symbol systems whose meanings are already available to young children—have
historically been prioritized as a more productive way to represent generalizations (Resnick,
1982).

Part of the hesitation for the use of variable notation with young children has likely been due
to strict interpretations around Piaget’s formal stages of development, along with the concern
that premature formalisms (Piaget, 1964) might lead to meaningless actions on symbols (Blanton
et al., 2017). It is reasonable to assume that the well-documented challenges adolescents have
with the concept of variable and the use of variable notation (e.g., Knuth et al., 2011;
Kiichemann, 1981) would be even more prominent among younger, elementary grades children.
Yet, unlike younger children, adolescents are expected to build a mathematical understanding of
literal symbols to notate variable quantities affer they have deeply developed ways of thinking
about letters in linguistic contexts (e.g., Braddon et al., 1993). This suggests that difficulties with
variable notation may be more related to conflicts generated by students’ use of literal symbols
in mathematical contexts that rely on the understandings they already have about literal symbols
in non-mathematical contexts (McNeil et al., 2010).

Research, however, increasingly supports that variable notation can be a valuable tool for
young learners (e.g., Blanton, Stephens et al., 2015; Brizuela et al., 2015; Carpenter et al., 2003;
Cooper & Warren, 2011; Dougherty, 2008; Fuji & Stephens, 2008). Learning progressions have
helped us better understand why this might be the case. In a recent study (Blanton et al., 2017),
we explored a trajectory in first graders’ understanding of variable and use of variable notation to
represent functional relationships. The conceptual space of interest here is the level at which
children do not yet understand the concept of variable quantity nor how to use variable notation
to represent a variable quantity, a level we characterize as pre-variable/pre-symbolic. The close
analysis involved in mapping out a learning trajectory helped surface a more nuanced view of
students’ understandings about variable and variable notation. In particular, we observed that
students’ whose thinking was “pre-variable” did not yet perceive a variable quantity in a
mathematical situation. As such, they naturally searched for other tools and ways of
understanding within their conceptual field to make sense of a situation involving an unknown.
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How might this manifest in students’ mathematical actions? When young learners at a pre-
variable/pre-symbolic level of thinking encounter a situation with a variable quantity, they
typically assign a numerical value to the quantity, either randomly or based on some numerical
feature of the situation. They might also propose (hypothetically) that the quantity be measured
or counted to determine a specific value, even though it cannot be. This is not an unreasonable
approach, given that students’ mathematical experiences are, typically, fully centered on
arithmetic at this point, where quantities are known or can be counted or measured and
represented by a numerical value. Moreover, a child whose thinking is pre-variable (that is, the
child cannot imagine or does not “see” an unknown within a situation) would not reasonably be
expected to look for literal symbols (or even non-conventional representations such as natural
language) to symbolize a quantity. Instead, we would expect them to use the tools and ways of
understanding already available to them, which are arithmetic in nature.

As students progress in their thinking, some pick up the use of algebraic notation before they
can perceive variable quantities. Such cases are indicated by the use of literal symbols as labels
or to represent objects rather than quantities. That is, students recognize that a literal symbol can
be used to recognize something, but not a variable quantity, since this is outside of their
conceptual field. However, once variable and variable notation co-emerge in children’s thinking,
children begin to use variable notation in meaningful ways to symbolize variable quantities
(Blanton et al., 2017). Through our construction of a learning trajectory around variable and
variable notation, we came to see that the challenge was not that young learners cannot
understand (and, thus, should not be exposed to) variable notation. It is, rather, that they have
learned to interpret mathematical situations through an arithmetic lens which leads to certain
ways of (arithmetic) problem solving that are inadequate for situations involving variable
quantities. Instead, if they first learn to perceive a variable quantity, this motivates the need for a
symbol system—whether conventional or not—to represent the quantity. Once they perceive a
variable quantity, the symbolic system—including the use of literal symbols—can be
meaningfully used to represent unknowns.

Our findings elsewhere support that children can learn to use variable notation in meaningful
ways. For example, in a large-scale, randomized (CRT) study in 46 elementary schools on the
effectiveness of our Grades 3—5 instructional sequences (i.e., early algebra intervention), we
found significant differences in how treatment students, who were taught the intervention as part
of their regular curriculum, were able to represent functional relationships with variable notation
in comparison to control students, who were taught only their regular curriculum. Figure 1
compares treatment and control students’ use of variable notation and natural language (words)
to represent a functional relationship they observed using data they had culled from a problem
situation. Not only were treatment students significantly better able to represent a function with
variable notation (as well as with words) than control students, treatment students were also
significantly better able to use variable notation than words. (Even students in control schools
were better able to use variable notation than words, although the differences were not
significant).

The point here is that a learning progressions approach has enabled us to better understand
potential challenges to young learners’ understanding of variable and variable notation and to
design instruction that can significantly improve their understanding, both of which call into
question the long-held view that young learners should focus on representational tools that are
already available to them (e.g., natural language, diagrams). While we strongly support young
learner’s use of representational systems such as natural language, we equally support the
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introduction of variable and variable notation in appropriate ways to young learners and view
learning progressions research as a means to help shift perceptions that variable and variable
notation is beyond the grasp of young children.
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Figure 1. Comparison of treatment and control students use of variable notation to
represent a functional relationship.

Developing Mathematical Arguments

Justifying claims about mathematical relationships is central to early algebraic thinking, yet
the role of justifying or proving in school mathematics has historically been limited, particularly
in elementary grades (Ball et al., 2002; Stylianides, 2016). However, studies suggest that
deductive reasoning emerges in the elementary grades (Falmagne, 1980) and that with
appropriate instruction, students can learn to use deductive—rather than empirical—reasoning to
develop mathematical arguments (Stylianides & Stylianides, 2008). This challenges the long-
held view that children’s lack of ability to reason deductively is due to a developmental
constraint and, instead, points to limited classroom opportunities as the more likely cause for
their challenges with building good, grade-appropriate mathematical arguments (Stylianides,
2016; see also, e.g., Ball & Bass, 2003; Carpenter et al., 2003; Lampert, 1992; Maher & Martino,
1996). Studies suggest that the lack of argumentation in elementary grades has far-reaching
implications in that it detaches students from sense-making (Staples et al., 2012) and can
promote difficulties with proof and proving in high school (e.g., Coe & Ruthven, 1994; Knuth et
al., 2002; Stylianides & Stylianides, 2008).

Stylianides and Stylianides (2008) and Stylianides (2007) suggest that research that details
trajectories in children’s thinking in response to instructional sequences focused on
argumentation can help us understand how young children come to reason deductively in
response to specific instructional conditions. Because justifying mathematical relationships is a
core practice in our conceptual framework, we are interested in how students’ come to build
strong mathematical arguments in response to instruction. We recently conducted a study in
which our goal was to identify progressions in Grades K—1 children’s understanding of parity
arguments and underlying concepts (e.g., even and odd numbers) in response to our Grade K and
Grade 1 instructional sequences (Blanton et al., 2021). Our particular focus was on how
children’s understanding of representation-based proofs (Schifter, 2009)—versus empirical
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arguments—developed from the start of formal schooling, before their introduction to any parity
concepts.

While our sample was small due to the design nature of our work, our findings were similar
to those of other researchers who have conducted extensive work in this area (e.g., Schifter et al.,
2009; Stylianides, 2007; Van Ness & Mabher, 2019). For example, even in kindergarten, we
found that students were able to construct informal structural parity arguments that did not rely
on the use of specific or even generic numbers. What we found even more surprising was how
rare empirical arguments were in these early grades, even though such arguments are a
predominant proof strategy in secondary grades (Coe & Ruthven, 1994; Staples et al., 2012). For
example, kindergarten students were unfamiliar with the concepts of pair and even and odd
numbers prior to our instructional sequence in Grade K, but by Grade 1 pre-test (i.e., after the
Grade K sequence), many students routinely used a pairs strategy (where numbers that can be
represented as pairs of cubes are even and those that cannot be represented in this way are odd)
to reason about the parity of numbers represented in concrete, visual, and abstract forms. More
importantly, out of a group of 10 students interviewed, no student used an empirical argument to
justify why the sum of an even and an odd would be odd. Six out of ten were able to correctly
use a structural argument involving a pairs strategy (three students could not build either type of
argument; one student was not asked this question).

In developing trajectories in children’s thinking about particular algebraic concepts or
practices, we have found that introducing algebraic thinking earlie—even as early as
kindergarten—can help mitigate the development of misconceptions in students’ thinking that
can occur within an arithmetic-focused approach to instruction. We have observed this in
students’ understanding of variable quantity and variable notation, where engaging students in
mathematical tasks that first help them perceive variable quantities can support their use of
variable notation in meaningful ways. We have seen that the early introduction of representation-
based arguments can help offset entrenched forms of empirical reasoning by providing students
with an accessible, grade appropriate process for justifying their claims. We have seen early
attention to functional relationships between quantities mitigate an ingrained focus on recursive
patterns in function data that makes it difficult in later elementary grades to re-focus students’
thinking on co-varying quantities. We have seen concrete and visual tools help students begin to
think relationally about the equal sign even before symbols and equations are introduced, thereby
disrupting the operational thinking that is often fostered through arithmetic work focused on
standard forms of representations (Blanton, Otalora Sevilla et al., 2018). In this way, learning
progressions in early algebra research has helped challenge historically settled notions (even
some of our own) regarding what algebraic concepts should be addressed and when. But early
algebra’s mission to democratize access to algebra is broader than “what” or “when.” It is
ultimately about “who.” In what follows, I briefly touch on some of our evidence around this.

Challenging Perceptions of Who Can Do Algebra

The underlying premise of early algebra is that developing children’s informal notions about
mathematical structure and relationships, beginning in kindergarten, will better prepare them for
success in formal algebra in later grades. As described earlier, our work has focused on the use
of a learning progressions approach to build the tools with which we could explore this premise,
and we are starting to see the contours of an answer to the question of whether early algebra
“matters.” Our recent 3-year randomized (CRT) study on the effectiveness of the Grades 3—5
early algebra “intervention” (i.e., grade-level instructional sequences) offers some evidence of
this. The study was conducted in 46 schools across urban, rural, and suburban settings, where the
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intervention was taught by classroom teachers as part of their regular mathematics instruction.
We found overall that, at each of Grades 3-5, students who received the intervention as part of
regular instruction significantly outperformed their peers who received only regular instruction
in both their knowledge of algebraic concepts and practices and their use of algebraic strategies
to solve tasks (Blanton et al., 2019). Moreover, treatment students maintained a significant
advantage over control students in middle grades, one year after the intervention ended (Stephens
etal., 2021).

Algebraic thinking in the elementary grades is now codified as essential to algebra education
in frameworks such as the Common Core State Standards for Mathematics (NGA Center &
CCSSO0, 2010). Through the adoption of these standards, many states have elevated the role of
algebra, leaving students potentially vulnerable to a persistent marginalization in school. With
students from underserved communities already underrepresented in STEM professions (Oscos-
Sanchez et al., 2008), the long-term implications for the inequity of access to educational on-
ramps for students around early algebra are significant. As such, early algebra innovations
should be designed to ensure that they are inclusive of learners across diverse classrooms. So,
while our overall results are promising, it was (and continues to be) important for us to further
unpack our findings for students in different demographics and learning conditions. One example
of this was our comparison in the performance of a subset of participating treatment and control
schools for which the majority of students were from underserved communities (i.e., 100% low
SES, 94% underserved racial minorities). We found that, like our overall population, treatment
students again significantly outperformed control students at each of Grades 3—5 on both their
knowledge of algebraic concepts and practices and their use of algebraic strategies to solve tasks
(Blanton et al., 2019). To visualize the significance of this finding, Figure 2 compares the
performance of students in treatment and control schools for this subset of schools along with the
performance of the overall control group. In addition, it also shows that, while treatment students
from schools with underserved communities did underperform the overall control group prior to
the intervention, by the end of Grade 3 they outperformed even the overall control group
(although not significantly) and maintained this advantage throughout the end of the intervention
in Grade 5.

60
50
40
30

20

10

Category 1 Category 2 Category 3 Category 4

e Treatment_US Control_US = = = Control_Overall

Figure 2. Comparison of performance for underserved students (US) in treatment and
control schools with control students overall.
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These promising results support findings from other studies that show providing students
from historically underserved communities with more challenging learning environments in
elementary grades can increase mathematics proficiency (Lee, 2011; Zilanawala et al., 2018).
While it’s difficult to tease out whether the role of a learning progressions approach was
sufficient for these results, we can say that when a learning progressions approach was used, we
have found a significant improvement in a// learners’ ability to think algebraically.

Building on this, we are continuing to explore how to develop a more inclusive early algebra

intervention in Grades K—2. We expanded our recent design work around instructional sequences

and assessments in Grades K-2 to include a more intentional focus on students with learning
differences in order to understand how these students make sense of the algebraic concepts and
practices in our intervention and how its features (e.g., concrete and visual tools) support
learning. We have found that tools such as balance scales helped students analyze equations and
reconsider unfamiliar equation forms (Stephens, Sung, Strachota et al., 2022), even prior to
developing strong computational skills. Further, we have documented how these tools mediated
the abilities of diverse learners to generalize and represent what they notice about structure and
relationships involving parity concepts (Strachota et al., 2021)

While this work is ongoing, our Grades K-2 instructional sequences already show promise
overall in developing children’s algebraic thinking. We recently conducted a small, one-year
cross-sectional study (n = 80) in each of Grades K—2 that examined the potential of each grade-
level sequence when taught by classroom teachers. After only a one-year intervention in each
grade, we found a marginally significant interaction between treatment condition and
performance that showed gains favoring treatment students in their understanding of early
algebra concepts such as the structure of evens and odds, mathematical equivalence and
equations, properties of arithmetic, the representation of varying unknown quantities, and
functional thinking [F (1, 58) = 3.794, p=.056] (Stephens, Sung, Blanton et al., 2022). Further,
we found no significant three-way interaction among treatment condition, performance on the
assessment, and grade level, suggesting that the impact of the intervention was similar across
grade levels. With these findings for Grades K—2 and our more fully developed findings about
the effectiveness of our Grades 3—5 intervention, we are optimistic about the innovation’s
potential to positively impact all students’ experiences in algebra.

Conclusion
A learning progressions approach has been central in our efforts to develop an empirically

grounded model for teaching and learning algebra that can increase all students’ opportunities for

success in algebra. It has provided both a framework for developing an innovation to measure
early algebra’s impact and a mechanism to examine fine-grained details in how children’s
algebraic thinking develops. It has also helped us think about how to reframe learning around an
asset-based perspective in which instruction can build on the rich ways students think about
algebraic concepts and practices, rather than from a deficit model built around students’
misconceptions. Designing innovations from a perspective of what students can do (or, as Jim
Kaput used to say, the “happy stories”) can minimize the need to design for the purpose of
“undoing” misconceptions in students’ thinking that arise when elementary grades instruction
does not attend to algebraic concepts and practices. Early algebra innovations based on learning
progressions can open new curricular pathways for teachers and create effective avenues of
learning that can democratize all students’ access to algebra. We are hopeful that such models
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can continue to challenge the national discourse on teaching and learning algebra around the kind
of algebra students can learn, when they can learn it, and how all students can be successful.
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INTENTIONALITY IN USING LEARNING TRAJECTORIES TO “REFRAME”
TEACHER NOTICINGS TOWARDS ANTI-DEFICIT AND ASSET-BASED
INSTRUCTION
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Learning Trajectories have the potential to be used as a tool to advance equity by explicitly
connecting to anti-deficit framing and asset-based instruction. This plenary paper highlights
research on three use cases for learning trajectories (LT) with an intentionality around
promoting equity: 1) the use of LT based Lesson Study with vertical teams of teachers to position
students as capable and teachers as knowledgeable, 2) the use of LT coupled with anti-deficit
framing in curriculum design research to provide students with access to rigorous educational
resources and asset based instruction, 3) the use of LT with formative assessment to develop
preservice teachers’ equitable teaching practices to advance students understanding. The
presenter invites the PMENA community to consider how learning trajectories can be coupled
with powerful equity-focused research and frameworks to disrupt the status quo, broaden the
notion of learning mathematics, eliminate labeling, and dismantle inequitable structures and
hierarchy in the mathematics classroom.

Keywords: Learning Trajectories and Progressions, Anti-deficit Orientation, Asset-based
Instruction, Teacher Noticing, Professional Development, Preservice Teacher Education

Introduction

In this paper, I discuss how learning trajectory (LT) research should attend to equity by
providing access to rigorous educational resources, positioning students as capable and teachers
as knowledgeable, and questioning the curriculum and high stakes assessment practices. I do this
work by engaging and privileging the voices of teachers and coaches as co-designers and
researchers in Lesson Study and Curriculum Design Research with the focus on rehumanizing
mathematics for students (Gutiérrez, 2018).

I am a first generation Korean American mathematics education scholar, who attended my
formative years of elementary schools in the 70s between two countries, experiencing Korean as
a second language and also what was at the time called, English as a second language. |
experienced first-hand differential learning experiences (NCTM, 2020; Jong et al., 2020) where
some students were centered and others marginalized. Experiencing schooling in two countries, I
also noticed the differential treatment of the teaching profession, one where it is a revered and
noble profession and the other where the teacher’s professional judgment is constantly
questioned and viewed where anyone can teach. This has motivated me to focus my work on
elevating the voices of teachers and the teaching profession in the US and building on students’
mathematics strengths, particularly those who are marginalized in the mathematics classroom.
My research is informed by a commitment to equity and culturally sustaining pedagogy in
mathematics education. I work mostly with schools that are racially, culturally, and linguistically
diverse and receive title 1 funding. My research has focused on LT use in Lesson Study and
Community-based Math Modeling to connect mathematics to students' lived experiences,
attending to both cognitive and socio-cultural perspectives. I lean on the work of Aguirre et al.’s
(2013) centering their definition of equity where,
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All students in light of their humanity — personal experiences, backgrounds, histories,
languages, physical and emotional well-being—must have the opportunity and support to learn
rich mathematics that fosters meaning-making, empowers decision-making, and critiques,
challenges and transforms inequities/injustices. Equity demands responsive instruction that
promotes equitable access, attainment, and advancement for all students” (p. 9).

Given my research orientation, my plenary paper focuses on two questions-1) How do we use LT
with teachers and coaches as a tool to deepen teacher knowledge and promote asset-based
instruction, especially for students who have been historically marginalized? 2) How might we
use LT to “reFrame” teacher noticings towards an anti-deficit orientation?

Shifting from Deficit to Anti-deficit Orientation by “reFraming” Teacher Noticings

This PMENA Plenary event in 2022 marks a significant time in our society, where we
experienced the struggles and pain due to the Pandemic as well as systemic racism and escalation
of racial tension leading to the Black Lives Matter movement. The pandemic unleashed hate,
xenophobia and scapegoating leading to AAPI Hate with racist rhetoric. Labeling the "Asian"
community as a monolith with an erasure of individual identity and the myth of the model
minority or that “Asians are good at math” perpetuates a stereotype that is racist and
dehumanizing (Shah, 2019), ignoring the huge diversity of linguistic, socio-economic, political
and cultural backgrounds. It also masks the issues that different communities may need different
supports in the school setting to succeed and excel. The Pandemic magnified the inequities that
have long-existed in our society, education and communities. Deficit framed discourse streamed
the media with outcries of “learning loss”, while educational organizations worked hard to fight
against this harmful language and discourse (i.e., Where is Manuel? A rejection of ‘Learning
Loss’ TODOS, 2020). In addition, the danger in the discourse that marks the achievement of
marginalized students being “more behind” in their learning, again perpetuates a pernicious
mindset of achievement gap that our community has worked tirelessly to move away from
(Gutierrez, 2008). Our professional organizations showed solidarity in fighting against systemic
racism and this deficit framing and advocated for the “Mo(ve)ment to Prioritize Antiracist
Mathematics: Planning for This and Every School Year” (TODOS, 2020), and AMTE’s (2022)
statement on “Equitable and Inclusive Mathematics Teaching and Learning” and the press
release on systemic racism advocating for practices that draw on students’ mathematical,
cultural, and linguistic resources/strengths, and challenge policies and practices grounded in
deficit- based thinking. The voices from our leading mathematics educational organizations
(NCSM, NCTM & ASSM, 2020, 2021) “In Continuing the Journey: Mathematics Learning 2021
and Beyond”, and “In Centering Our Humanity: Addressing Social and Emotional Needs in
Schools and Mathematics Classrooms” (TODOS, 2020) advocated for math educators and school
leaders to keep our focus on teachers, families and students well being, during this contentious
socio political climate and Pandemic.

Rather than returning to the pre-pandemic status quo, Ladson-Billings (2021) argued for a
“hard re-set” for a new “post-pandemic pedagogy” stating,

In a re-set school environment, we will begin a school year with an accurate assessment of
what students already know. The school year will have varied and regular formative
assessments to determine how well students are understanding what they are taught, and an
end of the year assessment would be keyed to what was actually taught in their classrooms.
Assessment would no longer be a punitive tool to “catch” students but rather a diagnostic and
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developmental tool that will tell teachers and schools how to adjust their curriculum and
pedagogy (p. 74).

And yet, we know the opposite is happening where teachers are again being pressured to “catch
students up” so that they can once again administer high-stakes tests. This is problematic as we
know as scholars like Louie et al. (2021) describe the danger when a teacher with a framing
around “closing the racial achievement gap” implicitly frames Black, Hispanic, and Indigenous
students as mathematically lacking and White students’ achievement as the standard by which
they should be measured (Gutiérrez 2008; Martin 2009). This framing makes one more likely to
attend closely to Black, Hispanic, and Indigenous students’ errors without attending to their
knowledge or strengths, to interpret these errors as evidence of misconceptions and failures,
leading to deficit noticing.

Instead, we should be focused on varied and regular formative assessments to holistically
determine how well students are understanding what they are taught and focus on asset based
pedagogy like Complex Instruction (Horn, 2012; Cohen et al., 1999; Eli & Wood, 2016) where
we develop teachers skills in assigning competence in student work. Research from Cohen et
al.’s (1999) work on Complex Instruction showed that when teachers praised low-status students
publicly for a task-related accomplishment, those students' participation increased; their status
differences were mitigated or eliminated; and ultimately, their achievement increased.

When teachers better understand the learning trajectory continuum and anticipate a broader
range of strategies, teachers can spot the strength of students along the LT continuum who may
typically not get highlighted (Suh et al., 2018). In fact, Empson (2011) reflected on the 2010
PMENA and noted how LT impacts teacher professional noticings, “As teachers interact with
students and decide how to proceed, there are many types of decisions to be made — how to
gather information about children’s thinking, how to respond to it appropriately in the moment,
how to design tasks that extend it, and even what to pay attention to” (p. 587).

Figure 1: Reflecting Multi-dimensional Noticing for Equity (van Es et al., 2022)

Developing teachers' ability to assign competencies requires specialized skills of equitable
noticing (Jacobs et al., 2010; Jacobs & Spangler, 2017; Kalinec-Craig et al., 2021; Jilk, 2016;
Jong, 2017; Wager 2014). More recently, van Es et al. (2022) described a framework for
Multidimensional Noticing for Equity, a system of noticing to disrupt inequities. Their framing
towards a more multidimensional noticing for equity include the perspective of “taking account
for how the histories and cultures of teachers, learners, and mathematics —and the broader
historical, cultural, and political contexts in which they exist—are at play in moment-to-moment
classroom interactions” (van Es et al, 2022, p.115 citing Louie, 2018; Mendoza et al., 2021; Shah
& Coles, 2020). In their more expansive framework, the multidimensional noticing was used to
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interpret teachers’ enactment of culturally sustaining instructional practices organized around a)
Stretch, which captures the relation of teachers’ noticing to both their own and students’ past and
futures, and (b) Expanse, which reflects the breadth and range of what teachers identify as
noteworthy in moments of classroom interaction teaching and teacher noticing (see Figure 1).

Louie et al. (2021) discuss the importance of framing as a way to challenge deficit discourses
about marginalized students that devalue the knowledge and abilities of students of color in
classrooms in the US. They note,

Deficit discourses may give rise to deficit noticing, wherein teachers attend almost
obsessively to the errors and shortcomings of students of color; interpret errors and
shortcomings as evidence of deficiencies in students, their families, or their cultures; erase
students’ assets; and disregard schooling practices and social structures that limit students’
opportunities to learn and thrive. (p. 96)

Louie et al.’s (2021) most recent work framed anti-deficit noticing explicitly emphasizing how
Framing is critically important in the ways teachers Attend, Interpret and decide to Respond (see
Figure 2)

Figure 2: FAIR framework for Anti-deficit Noticing (Louie et al., 2021)

These two frameworks helped our research team think more broadly as we worked with our
teachers in how we needed to frame anti-deficit orientation and asset-based instruction when
working with learning trajectories. An important implication that we gleaned from the Multi-
dimensional Noticing for Equity (van Es et al., 2022) is that although noticing captures the
moment-to-moment events, what teachers notice and attune to is multidimensional in that it takes
into account historical knowledge of the student, class and context and attends to the complexity
of the instruction at play (i.e. Culturally Sustaining Pedagogy). The FAIR framework for Anti-
deficit Noticing (Louie et al., 2021) noted the importance of being intentional and explicit when
framing toward anti-deficit orientation to shift teachers noticing from deficit to anti-deficit
noticing (See Figure 1). In particular, this FAIR framework’s emphasis on framing allowed our
team to pay close attention to “how we notice” students as full human beings with many
mathematical strengths and resources, framing math learning as a creative exploration of ideas
and framing interaction and interpersonal relationship as integral to learning (Louie et al., 2021).

Expanding the Notion of Math Competence using LT and Students’ Assets
We emphasize in our LT PD work that teachers bring these multiple aspects and framing into
view as they engage in multidimensional noticing. We focus on encouraging narrative that
emphasizes the strengths students bring to the classroom including their mathematical thinking
as well as their disposition and mathematics practices. LT has a long history in mathematics
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education research (Battista, 2011; Blanton et al., 2015; Clements & Sarama, 2004, 2009;
Confrey et al., 2009, 2011; Ellis, 2014; Hackenberg, 2013; Ebby et al., 2020; Petit et al., 2020;
Simon, 1995; Steffe & Olive, 2010; and others cited in the synthesis by Lobato & Walters, 2017)
and well featured in past PMENA proceedings and has many metaphors and descriptors
including a climbing wall (Confrey et al., 2021), in a conceptual corridor (Confrey, 2006);and
levels of sophistication plateaus (Battista, 2004), just to name a few. Confrey and Maloney
(2010) describe learning trajectories as

a researcher-conjectured, empirically-supported description of the ordered network of
constructs a student encounters through instruction (i.e. activities, tasks, tools, forms, of
interaction and methods of evaluation), in order to move from informal ideas, through
successive refinements of representation, articulation, and reflection, towards increasingly
complex concepts over time. (p. 968)

Clements and Samara (2004) describe learning trajectories for early childhood mathematics for
narrow sequences of topics as “a conjectured route through a set of instructional tasks designed
to engender those mental processes or actions hypothesized to move children through a
developmental progression of levels of thinking” (p. 83).

The affordance of using LT deepens teachers' understanding of the progression of student
learning-drawing upon their knowledge of the learning trajectories to make instructional
decisions. More specifically, LTs have been used with teachers and researchers to better
understand how students come to understand concepts (Battista 2004; Hackenberg & Tillema
2009) and to use “the learning goal, the learning activities, and the thinking and learning in
which the students might engage” (Simon 1995, p. 133) to provide direction for teachers as they
plan learning activities and predict the potential reasoning, misconceptions, and learning of
students. Hypothetical learning trajectories (Simon 1995) have also been used in professional
development settings to enhance instructional practices. Wilson et al. (2015) reported on a study
using professional development where LTs bridged “guidelines for student-centered instruction
with domain-specific understandings of students’ thinking for teachers” (p. 227).

According to Sztajn et al. (2012) existing research on teachers’ use of learning trajectories
“shows that as teachers make sense of trajectories, these trajectories can support growth in
mathematical knowledge, selection of instructional tasks, interactions with students in classroom
contexts, and use of students’ responses to further learning” (p. 149). Research on Learning
Trajectory based Instruction (LTBI, Sztajn et al., 2017) and the specific design decisions (Sztajn,
2010) the team attended to revealed the importance of setting discursive norms to focus on
student thinking and teaching from a strength-based perspective particularly “at a time when
deficit perspectives and language of differentiated instruction (such as having “high”, “medium”,
and “low” children) to express ideas about student learning have been normalized.” (Sztajn et al.,
2017, p. 30). With the many descriptors that include terms like “trajectory”, “progression”,
“increasingly complex”, “levels of sophistication” (Battista, 2010), some caution that translated
LT research can be misused as hierarchical levels that teachers use to sort students and
dangerously place labels on students as being high or low. In fact, Myers et al. (2014) concluded
that learning about LTs without additional support was insufficient to challenge deeply rooted
ideas about student abilities. Even with attention to the design of PD, Myers (2014) found that
teachers with severe deficit orientation used LTs to talk about what students could not do as
opposed to thinking about moving students forward. Through discourse intervention, teachers
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started to use ability as a temporary descriptor to present students’ current mathematical
performance and used language from the LT to support these claims. The explicit attention to
having teachers refer to the LT language instead of labels for students demonstrated the potential
of LTs to support equitable instruction.

Celedon-Pattichis et al. (2018) asset-based approaches to mathematics education are a
conscious way to move away from deficit perspectives by teaching in ways that view students’
language and culture as well as families’, and communities’ ways of knowing (Civil 2007,
Bartell et al., 2017) as intellectual resources to engage with mathematics in the classroom. Asset
based approaches offer a more humanizing view of student thinking that extends beyond school
mathematics and recognizes that mathematics thinking and learning happens at home and in
communities but is often unrecognized in school settings. Opening up learning trajectories to be
able to recognize other forms of math thinking and experiences is key. Celedon-Pattichis et al.
(2018) also cautioned the community to recognize that not all communities and families focus on
counting and operations in the specific way that Cognitively Guided Instruction (CGI) has
described. Studies that combined CGI with culturally responsive instruction improved the
mathematics performance of Native American students with learning disabilities (Hankes, et al.,
2013) and other studies with culturally and linguistically diverse students engaged in complex
CGI problem solving where teachers drew from language and culture as intellectual resources
showed positive outcomes (Celedon-Pattichis et al., 2010; Turner et al., 2008).

Below I share use cases with LT PD and curriculum design research where coupling LT with
asset-based approaches yielded anti-deficit teacher noticings. I detail how the use of vertical
lesson study teams and other PD structures focused on learning trajectories and multidimensional
noticing supported the development of anti-deficit professional noticings. I will refer to my
research team as “we” in the case studies to represent the collaborative efforts of multiple
researchers and doctoral students from the VDOE projects called TRANSITIONS and Bridging
for Math Strength and an NSF project called IMMERSION.

Case #1: Synthesizing Previous Research on using Learning Trajectory-based Lesson
Study- Appreciating Students’ Robust Understanding

For over a decade, my colleagues and I used Learning Trajectory based Lesson Study (LTLS,
Suh et al., 2021; Suh et al., 2019a; Suh et al., 2019b; Suh et al., 2018; Suh et al., 2017; Suh &
Seshaiyer, 2014) in a series of multi-year state funded project called TRANSITIONS, where we
worked with vertical teams of K-8 teachers, studying, planning, implementing and reflecting on
teaching through rich tasks. In the Study phase of the Lesson Study (Lewis, 2012) instead of
focusing on grade level standards, we used Confrey’s (2012), five elements to unpack the LTs
and to plan and anticipate strategies for a rich task starting with discussing: 1) the conceptual
principles and the development of the ideas underlying a concept; 2) strategies, representations,
and “conceptions”; 3) meaningful distinctions, definitions and multiple models; 4) recognizing
coherent structure or pattern in the development of progressively complex mathematical ideas ;
and 5) bridging standards or identifying the underlying concepts.

In Suh et al.’s article (2019a) we detailed a LTLS with a group of teachers ranging from
Kindergarten to six grade, at an elementary school near a military base with the highest mobility
rate of 33% in the district. With this transient population, the LTLS team wanted to use LT to
bridge coherence in their curriculum. The team chose the often used submarine sandwich sharing
task related to equipartitioning (Confrey et al., 2021; Confrey et al. 2009) typically used in
Grades 3 or 4. They decided to launch the first lesson iteration in the Kindergarten classroom to
study how very young students might approach this task. We framed the LTLS using elements

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee
State University.

48



from the Teaching for Robust Understanding (TRU) Framework (Schoenfeld & The Teaching
for Robust Understanding Project, 2016), particularly focusing on the dimensions of equitable
access to content using the LT and agency, ownership, and identity described as “ the extent to
which students are provided opportunities to contribute to conversations about disciplinary ideas,
to build on others’ ideas and have others build on theirs—in ways that contribute to their
development of agency (the willingness to engage), their ownership over the content, and the
development of positive identities as thinkers and learners” (p. 9).

Though teachers studied the Equipartitioning LT during the Study phase of the LTLS, seeing
how students approached equipartitioning through the Lesson Study surprised the educators and
brought the LT to life. They noticed the strength in Kindergarten students being able to halve
equal sized parts and share among friends, and understand the context of fair share. One group
split the 6 sandwiches into 12 halves and made sure everyone of the 8 friends had equal sized
parts (halves) and decided to remove 4 halves not eaten. Another group contributed the idea that
there were some extras and wanted to use up the whole set of sandwiches and gestured cutting
the halves into another half (fourths). Knowing how students approached this task allowed
teachers to think about how to advance students to exhaust the whole without leaving any part of
the sandwich unused. We used the LT “look fors” to help us better understand criteria for
equipartitioning:

1. Having the correct number of parts

2. Exhausting the whole, leaving no parts unused

3. Having equal-size parts

(LT TurnonCC website, Confrey et al., n.d.).
Through lesson study, this vertical team saw this same lesson enacted in second, fourth and sixth
grade classrooms. In our debrief, instead of focusing on grade level standards, the focus of the
conversation came from observing how the students responded to the task related to the
equipartitioning LT ‘look fors’ as well as using language from like non-anticipatory sharing,
additive coordination to multiplicative coordination (Empson & Levi, 2011) as shown in Figure
3.

Figure 3: Analysis of Student Thinking using Equipartitioning LT on Sharing Tasks

The kindergarten teacher was proud to share the brilliance of her students and the LTLS team
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acknowledged and appreciated the informal understandings that emerged in earlier grades as
valuable prerequisites for building more complex ideas.

In another vertical lesson study through an NSF project called IMMERSION (Suh et al.,
2022), a team of 3rd through 6th grade teachers wanted to celebrate the Lunar New Year by
making mooncakes with the many Asian students who celebrated the holiday. This school with
its culturally and linguistically diverse student population identified 71% Latinx, 14% Asian,
11% White, 2 % Black and 3% others with 73% qualifying for free and reduced fee, embraced
culturally sustaining pedagogy viewing students’ home and community cultural practices as
resources “to honor, explore, and extend” (Paris, 2012, p. 94). Scaling up a recipe is a rich task,
typically classified as a middle grade proportional reasoning task but because there was a real
need to scale up a recipe that was set for 6 servings, the teachers chose this task and decided that
the first iteration would be launched in a 3rd grade classroom. As teachers discussed the learning
trajectory continuum, they identified the skills that students have already developed like skip
counting, as well as emerging skills like repeated addition and multiplication, connecting to
future learning goals like scaling up using a ratio table. They discussed the connection to
students’ assets in terms of cultural funds of knowledge (Moll et al., 1992) and family practices
in cooking and emphasized bringing in realia for measurements as well as the ingredients to
connect to students’ multiple knowledge bases (Turner et al., 2013). They anticipated some
students using manipulatives/realia to make sense of figuring out how many times their recipe
might have to be scaled up based on the serving size, in addition to repeated addition, using
multiplication facts as well as using as manipulatives and tables. Just like the previous task with
the sharing sandwich, students in third grade used their multiple knowledge bases (Turner et al.,
2013) to figure out how much of the ingredients they would need to make enough mooncakes.
Teachers noted how students used manipulatives to figure out how many batches they would
need (the scale factor) and noted how they used their fingers or notes on paper as they scaled up
the ingredients. This coordination through iterative skip counting is the precursor to recognizing
the covariation nature of early proportional reasoning (Steinthorsdottir & Sriraman, 2014).

With this in mind, teachers recognized that these emergent ways of keeping track with their
fingers and scaling up was a brilliant way of thinking and reflected formative strategies to show
covariation. Teachers were seeing the LTs in action as they observed student work and thinking
(see Figure 4).
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Figure 4: Analysis of Student Thinking using Early Proportional LT on Scaling up a

Recipe with LT Chart from Riehl & Steinthorsdottir, 2014

Through both of these LTLS, we found that,

1.

The observers as well as the host teacher acknowledged and appreciated the brilliance
and quality of students’ fraction and proportional reasoning and positioned students'
conceptions and multiple strategies as strengths.

The coach facilitated a productive debrief with the participating teachers to verify,
validate and sometimes dispute the hypothetical learning trajectories based on their
observations noting that they saw some attributes of more advanced thinking with earlier
formative strategies.

Bridging the learning trajectories through a rich task across multiple grade levels allowed
teachers to better focus on LT and talk less of grade level standards. Seeing the students
work vertically across grades k-6 allowed teachers to appreciate informal understandings
as valuable prerequisites for building more complex ideas.

Teachers can play an active role in validating LTs with researchers and at times disrupt
notions of traditional sequencing of mathematics prescribed by standards.

Rich tasks can go beyond the realm of standards and provide a low floor and high ceiling
where teachers can use their knowledge of LT to highlight students’ strengths and
position students as capable along the LT.

Lessons learned from LTLS informed our most recent work below with LT based professional
development and curricular design activities that highlight the ideas of using LT as a tool to build
on students’ assets and promote anti-deficit framing in our work.
Case #2: Using LT with Formative Assessment to Build on Math Strength- Multi-
dimensional Professional Noticing focused around Anti-deficit Framing

This case study began in 2020 at the start of the pandemic when mathematics leaders in the
state department of education approached our team to create curriculum resources for teachers to
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support deep conceptual learning around essential concepts. One of the problems of practice
presented was that teachers were skillful at finding what gaps students had in their understanding
but did not always know where to go next to advance student thinking. In reflecting on this
problem of practice, I thought back to Shaun Harper’s (2010) paper called An Anti-Deficit
Achievement Framework for Research on Students of Color in STEM, where he states that the
kinds of questions we ask can focus on failure and not successes. For example, we can reframe
the question- “Why do so few pursue STEM majors?” (Deficit-Oriented Questions) to “What
stimulates and sustains students' interest in attaining degrees in STEM fields?” (Anti-deficit
reframing). He notes that it is both important to unearth systemic inequities and barriers as well
as identify structures and strategies that support students of color to thrive. In this same vein, we
wanted to reorient this problem of practice from, “How do we work with students once we know
the gaps in their understanding?” to “How do we spot students’ strengths and use that to advance
their learning in mathematics?”’

In our design research, we invited teachers and coaches as our co-designers, tapping into the
geniuses in our schools (Wiseman et al., 2013) to build an LT based curricular resource site for
educators. The key design components for our design institute included asset-based instruction,
knowledge and integration of learning trajectories as our teacher designers created formative
assessment with bridging activities. Bridging for Math Strength design work engaged teachers to
unpack LT, use formative assessment to articulate the ‘look-fors’ for building on math strength
and purposeful questions to advance student learning through a designed set of learning activities
along that continuum. The participants in our Math Strength Design team included twenty-seven
K-8 teachers and coaches working as teacher designers in teams of three. The summer design
institute took place in June of 2020 with Implementation Cycles in Fall 2021 and Spring 2022.
We used a rapid prototyping method with iterative design and refinement through
implementation cycles.

Using a variety of research-based strength building strategies in our Design Institute, we
equipped our teachers with the knowledge and research on Learning Trajectories and concrete
strategies to support asset-based thinking. This included:

1) Locating relevant usable LT research translated for practitioners —
(https://www.learningtrajectories.org/, http://www.ogapmath.com/,
https://www.sudds.co/ Blanton, 2008; Empson & Levi, 2011; Ebby et al., 2020;
Hackenberg, 2013; Petit, st al., 2020; Steffe & Olive, 2010)

2) Broadening the notion of math competence and smartness with Complex Instruction
(Kobett, & Karp, 2020; NCTM, 2020; Jilk, 2016; Kalinec-Craig, et al., 2021; Horn, 2012;
Lotan, 2003; Cohen et al., 1999; Featherstone et al, 2011)

3) Anti-deficit & Multi-dimensional Noticing frameworks (Louie et al., 2021; van Es et al.,
2022)

4) Lesson Study to collectively learn about students’ brilliance in thinking and strategies
competence (Lewis, 2022; Suh & Seshaiyer, 2014)

5) Evaluating and sequencing learning activities to advance students’ thinking

We used the data sources including the designed module, implementation narrated through
Flipgrid, a recording platform, debrief webinars about the implementation cycles and interviews
with teacher designers.

Our research questions focused on 1) How can we use LT with teachers and coaches as a tool
to deepen teacher knowledge and promote asset-based instruction for students? 2) How might we
use LT to “reFrame” teacher noticings towards anti-deficit orientation?
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Each of the fall follow- up sessions with teacher designers included debriefs around
implementing the modules and analyzing student work. Using Flipgrid, the teacher-designers
narrated their implementation so other teachers could follow their process. They started by
sharing the formative assessment they chose, and then outlined the sequence of activities picked
based on the student work on the formative assessments. Knowledge of LT helped them
sequence learning activities for students. These voices centered teachers and coaches in the LT
and focused the lesson implementation to elevate the strengths of students.

Below Kelly shares her implementation of the LT based curricular resource with some of her
students. The excerpt brings to life how a coach might use LT as a tool to build on students’
strengths. In her noticings (see Figure 5), she honored this student’s funds of knowledge when he
shared with her, “Well I like 7s because I watch a lot of football so I’'m good at counting by 7s”.
She interprets his strengths then decides that she would respond by asking questions to see how
he might recognize patterns and apply reasoning strategies. She planned for questions such as,
“What do you notice about the relationship of 7x2, 7x4, and 7x8? You mentioned you felt
comfortable with 7s. What other numbers feel friendly to you? How could you use them to solve
more challenging facts?” In deciding on rich educational learning experiences to strengthen his
reasoning, she proposed a center activity called Strive to Derive which is a game that shows
arrays that students can break apart to rehearse the strategy of using known derived facts or
distributive property. In addition, she proposed visual number strings to build on patterns and
relationships for multiplication.

Figure 5: Providing question prompts to support asset based/anti-deficit noticings

In our analysis we found that using formative assessment and LT based bridging activities as a
curricular resource during the pandemic revealed the power of removing high stakes testing and
letting teachers use formative data in meaningful and humanizing ways. One of the teachers
shared, “It was liberating because I didn’t think so much about grade level standards and the
state assessment. Instead, I focused on the LT and where students showed strength and built on
their strength through routines, rich tasks and games.” The LT-based curricular structure
supported teachers and coaches in reframing how they view student learning beyond grade
levels- moving away from language like “below grade level” and “at risk”. Sienna, an
instructional coach, found that the LT structure helped teachers see their students’ learning as a
progression and consider next steps rather than visualizing a gap between students’ current
understanding and the “final goal of the standard”. Kara had a similar epiphany in her second
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grade classroom. She found that the LT structure allowed her to focus on conceptual
understanding in her second grade students’ work rather than simply quantifying the number of
incorrect answers, stating “When you go to grade something or check it over, I’'m not necessarily
looking at ‘Oh, they got 15 out of 20. They’re missing a bunch.’ ...I’'m really zoning and honing
in on what patterns I can find. I feel like that’s what this cycle has taught me is that there are
patterns in student work.” Kara’s attention to patterns in her students’ work allowed her to
identify their position on the LT and plan targeted instruction to support their learning as well as
identify strengths and growth areas.

Case #3:PST Teachers Use of LT to Assess Student Thinking and Design Sequence of
Activities

This next case illustrates ways LTs can be used with preservice teachers to prepare them as
competent mathematics teachers. The term “learning trajector(ies)” appears at least sixty-three
times in the document for the Standards for Preparing Teachers of Mathematics (SPTM)
published by the Association of Mathematics Teacher (AMTE, 2017). For example, Standard
EC3 and EC7 emphasizes the importance of LT in curricular knowledge as well as for
assessment.

EC.3. Mathematics Learning Trajectories: Paths for Excellence and Equity: Well-prepared
beginning teachers of mathematics at the early childhood level understand learning
trajectories for key mathematical topics, including how these learning trajectories connect
to foundational knowledge, curriculum, and assessment frameworks. [Elaboration of
C.14]

EC.7. Seeing Mathematics Through Children’s Eyes: Well-prepared beginning teachers of
mathematics at the early childhood level are conversant in the developmental
progressions that are the core components of learning trajectories and strive to see
mathematical situations through children’s eyes. [Elaboration of C.3.1]

Supporting PSTs on how to use LT and formative assessment to strengthen student thinking

is a priority in a mathematics methods course. Focusing on these two standards, I designed

an assignment called Learning Trajectory-based Formative Assessment & Sequenced Digital
Math Activities. In this assignment, PSTs planned and enacted asset-based solutions that included
digital tools as learning activities. The goal of the tasks was to re-engage students in mathematics
as the students worked to develop their sense of agency, identity, and ownership in their
mathematical learning. This case focuses on how PSTs used learning trajectory research to
analyze formative assessment data and then sequenced bridging activities using digital
technologies to enrich mathematics instruction for individual and collective learning. PSTs also
learned to use digital technology teacher dashboards, which allowed them to be responsive by
providing ease of analysis of student proficiency, facilitating immediate feedback, and providing
information to form targeted small groups to support student learning. The Learning Trajectory-
based Formative Assessment and Digital Math Activities (Suh et al., 2022) assignment was
designed using two important frameworks, Learning Trajectory Based Instruction (LTBI, Sztajn
et al., 2012) and Technological Pedagogical Content Knowledge (TPACK, Mishra, P., &
Koehler, M. J., 2006))

Sara mapped out her learning trajectory concept map with the core idea of ‘unitizing’
(Lamon 1994, Steffe 1992, 1994) as “operating with singleton units to coordinating composite
units” (Singh 2000, p. 273) highlighting the array as part of the development of spatial and
numeric composite (Battista, 2012) necessary for multiplicative reasoning.
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Figure 6: Sample Formative Assessment that Puzzled the Preservice Teacher

Sara, had been working with a student named Selena who could draw rows and columns

with dots to model multiplication, and use repeated addition (see Figure 6), but oftentimes she
would be off by 1 or 2 with her final answer. Sara was curious how to support Selena. She
watched her during a formative assessment and noticed that for every problem, she would count
every dot. Knowing that she wanted to move the student from counting all to seeing “many as
one” as a composite unit, she found a technology tool called Bunny Times (see Figure 7) that
worked with an array model with an added feature. Her analysis of the tool highlighted the
affordance of the “fog feature” actually helped Selena advance to other strategies that were more
efficient like skip counting or adding on from a known fact. She liked this applet because the
visual helps students make connections between rows and columns. The game can be scaled in
the size of math facts. Additionally, ‘fog’ can settle over the field obscuring some of the answers
disallowing counting. Facts can be differentiated when starting the game.

Figure 7: Learning activity that supports unitizing and skip counting

Sara stated in her assessment report,
For my target student, I plan to use Bunny Times math after working with her on skip
counting. Bunny Times allows for multiplication facts to be scaled to learner
readiness. Additionally, it can be played with all rows and columns visible or with some
hidden under a layer of fog. For my student, with practice on unitizing, skip counting, and
counting on, I hope that she will be able to complete problems using the “fog” feature.
Through the assignment, Sara learned that she could lean on her clinical faculty, a math coach in
the school as well as her course instructor to assess where her student was in the multiplicative
learning trajectory. She reflected on this practice-based assignment stating,
I think this assessment will prove to be one the most important things which happened to this
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student in 3rd grade. Because of her fabulous math disposition and other areas of

proficiency, it is likely that her struggles with unitizing and counting would have been

masked and not observed. This project allowed for data collection, meeting with a math

specialist, testing, and ultimately transferring that into specific intervention. -Sara, the PST
This PST noticed many strengths in this child's mathematical understanding related to
multiplication and the intervention built on those strengths to stretch the student to be a stronger
mathematician.

Implications for Mathematics Teacher Educators and Researchers

In reflecting on PMENA 2022°s Theme on Dissonance and Harmony, I share some
concluding thoughts and implications for mathematics teacher educators and researchers. First,
we need to take the notion of a “hard reset” (Ladson-Billings, 2021) seriously to dismantle
inequitable structures and practices that exist in mathematics teaching and learning and challenge
the status quo. We found in our LTLS research how teachers can play an active role in validating
researcher-conjectured LTs and at times challenge the traditional sequencing of mathematics
prescribed by standards. We have viewed LT as a tool to help reframe teachers thinking about
what students are capable of doing and finding a strength based asset orientation to instruction
(Bartell et al., 2017). Building on the work of LTBI and our previous work around LTLS (Suh et
al., 2018), the project that began during the pandemic called “Bridging for Math Strength” with
the professional development and design research study continues to go through iterations of
refinement with our model and products to support teachers teaching and student learning. With
this work, we focused on changing the narrative and mindset of teachers, moving away from
looking at gaps and solely focusing on error patterns (deficit-approach) to finding strengths in
student thinking and using the LT to advance student thinking based on strengths and growth
areas. Working on explicitly noticing and assigning competence (Gresfali et al., 2009) to shift
classroom status and using LT has helped look for the strengths and where to move students
forward in their learning. Too often data-talk focuses on looking at gaps using white
performance as a standard to show how marginalized students are performing. Bridging the
learning trajectories through a rich task across multiple grade levels allowed teachers to better
focus on LT and talk less of grade level standards as the final arbiter of learning.

In order to create more socially just contexts for learning and teaching mathematics, we
propose a paradigm shift in learning more deeply about the LT so that we can assess student
strength and make a path of learning activities through rich tasks, place more emphasis on
formative assessment and move away from gap gazing that continues to persist with state
assessment (Gutierrez, 2008). Catalyzing Change Early Childhood (NCTM, 2020) - shows that
students often marginalized are not given rich tasks instead given more rote learning. We
advocate moving away from a “my students can’t” narrative and the opportunity gaps that exist
from students engaging in rigorous tasks. Continuing with data meetings with state assessments
to “close the achievement gap” and catch students up will perpetuate deficit discourses, deficit
noticing, obsession over errors and shortcomings of students of color blaming deficiencies in
students, their families, or their cultures (Louie et al., 2017). Instead, Celedon-Pattichis et al.,
(2018) urges researchers and mathematics teachers to embrace asset-based approaches to
mathematics education and to consciously move away from deficit perspectives that view
students, parents, and communities as lacking in different aspects that enable them to be ready
for schooling (Coleman et al., 2016). They encourage the mathematics education community to
appreciate the math knowledge/experiences that students bring from home and communities and
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by doing so students bring ways of thinking that broaden mathematics beyond what is written in
standards or embodied in curriculum.

To impact society more broadly, beyond individual mathematics classrooms and school
districts our work must improve learning conditions for each and every mathematics learner.
With a hard reset and a focus on asset-based instruction and anti-deficit noting with the
intentional use of learning trajectory (LT) with equity focused PD, our work revealed that
teachers felt liberated and empowered to open up varied and expansive ways to discuss students’
mathematics competencies, name students’ strength and position students as capable. LTLS
allowed teachers to be researchers and share their expertise and validated research-conjectured
LT with real classroom data. This positioned them as knowledgeable and elevated their status as
learning scientists. With the Bridging for Math Strength project, the use of LT coupled with anti-
deficit framing in curriculum design research provided teachers with a tool and the language to
analyze student thinking and plan rigorous educational resources and asset-based instruction for
their students.

Lastly, the use of LT with formative assessment in the practice-based assignment for
preservice teachers provided a scaffolded learning experience in the field with multiple educators
supporting them with LT research and equitable teaching strategies to advance students'
understanding. As I close this paper, I invite the PMENA community to consider how learning
trajectories can be coupled with powerful equity focused research (Gutierrez, 2007; Celedon-
Pattichis et al., 2018; Hand, 2012; Wager, 2014) and frameworks (Aguirre & Zavala, 2013;
Bartell et al., 2020; Yeh et al., 2020) to disrupt the status quo, broaden the purposes of learning
mathematics (NCTM, 2020), eliminate labeling, and dismantle inequitable structures and
hierarchy in the mathematics classroom. In continuing this work, I invite mathematics
researchers and math teacher educators to consider border crossing (Silver & Lunsford, 2017) as
boundary spanners (AACTE, 2018) to not only translate but engage teachers and researchers in
the viewing the relationship between research and practice in education as bidirectional rather
than unidirectional so that “research could/should influence/inform practice, but also that
practice could/ should influence/inform research” (Silver & Lunsford, 2017, p. 36) while
centering the voices of students who are at the margins and attending to the socio-political lens
with their LT research.
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LEARNING TRAJECTORIES RESEARCH NEEDS A HARD RE-SET: USING PCTM
TO CENTER COGNITION, CONTEXT, AND CULTURE
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Research on LTs remains a central topic in mathematics education. In this plenary paper, 1
argue that LT-based research needs a hard re-set if it is to play a role in creating more equitable
and anti-oppressive experiences for historically marginalized students. I begin with an overview
of LT-based research presented during PME-NA plenary sessions, which I examine through a
lens of cognition, context, and culture. I assert that a continued focus on cognition reproduces
the status quo and causes dissonance for many learners. I then discuss equity in LT research and
how it has evolved throughout the years. Next, I offer Political Conocimiento in Teaching
Mathematics (PCTM) as a framework that can support us in asking the complex sociopolitical
questions needed to create liberatory spaces in mathematics teaching and learning. I end by
inviting the field to commit to centering equity in their LT-based research as a political act.

Keywords: Equity, Inclusion, and Diversity; Social Justice; Teacher Educators; Learning
Trajectories and Progressions

Introduction

For many of us, the past two years have been challenging mentally, emotionally, physically,
and spiritually. There are multiple pandemics affecting our students. And while news of a
looming recession and midterm elections may be dominating media outlets, the pandemics of
racism, cisheteropatriarchy, redlining, xenophobia, ableism, wealth inequality, food insecurity,
and climate change are still alive and well. Right-leaning states, politicians, and media are
openly attacking supports aimed at remedying these pandemics. Capitalism continues to thrive at
the expense of the very Black and Brown people whose ancestors built this country. Wars and
threats of wars are happening around us. And while the United States stands ready to send
money overseas to maintain its interests, it fails to protect its own citizens from police brutality
or ensure clean drinking water as a human right.

Teachers and schools are also facing some of the greatest attacks we have seen in decades.
Texas, Georgia, and Florida continue to compete in a “race for the bottom” as they seek to define
and ban “divisive topics,” create anti-woke laws, ban books, whitewash this nation’s history, and
further marginalize students who identify as LGBTQIA+ by developing policies intended to
destroy their safety. Teachers are left exhausted by the pandemics, ongoing attacks, and fears of
being sued or otherwise humiliated in any attempt to support students specifically harmed by
these pandemics. Education remains a political pawn. Schools are underfunded. And politicians
would rather spend tax dollars enforcing racist laws instead of paying teachers what they
deserve. These conditions further exacerbate teacher burnout leading many school districts to
start the year with an unprecedented number of vacancies.

Instead of critical mathematics education scholars being consistently asked to defend the
relevance of their work as if the context of concurrent pandemics doesn’t impact the teaching
and learning of mathematics, we need to shift the conversation to examining how each of these
cells of mathematics education research serves to maintain or liberate us from the multiple
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pandemics plaguing our nation. As we meet on these stolen lands, I implore our community to
take up Aguirre et al.’s (2017) call for engaging in equity-oriented mathematics education
research as a political act as well as what Ladson-Billings (2021) termed a “hard re-set.” Ladson-
Billings (2021) used the term hard re-set as a mantra and called for us to center students and
culture in an effort to build a more humane future. Specifically, she stated:

We must re-think the purposes of education in a society that is straining from the problems of
anti-Black racism, police brutality, mass incarceration, and economic inequality. The point of
the hard re-set is to reconsider what kind of human beings/citizens we are seeking to produce.
(Ladson-Billings, 2021, p. 72)

LT-based research needs a hard re-set that can only be achieved if our community adopts a
critical stance that centers equity. Doing so requires holding cognition, culture, and context
together while using a critical lens. To date, LT research has privileged cognition at the expense
of culture and context, and that disregard has led to inequitable uses. To make this point, I first
discuss the history of LTs in plenary sessions at PME-NA in relation to cognition, culture, and
context. Next, I establish my positionality and history with LT-based research. I then discuss the
current state of equity-based approaches in LT research, and offer Political Conocimiento in
Teaching Mathematics (PCTM) as a framework for our field to consider in order to enact the
hard re-set needed (Gutiérrez, 2017). I end with questions and implications for the field.

Learning Trajectories at PME-NA

The North American Chapter of the Psychology of Mathematics Education (PME-NA) has a
detailed history of centering LTs in its conference. In his 2010 plenary session and paper, Mike
Battista spoke about the similarities and differences between Learning Progressions (LPs) and
LTs, and what it meant for students to move through LPs/LTs (e.g., milestones, levels of
sophistication). After highlighting differences in theoretical framings, the nature of levels, and
the inclusion of instruction as a way to differentiate LTs and LPs, Battista turned to his work
with Cognitive Based Assessments (CBAs). He noted that a CBA LP outlines students’
conceptions, obstacles, plateaus, and mental processes needed to advance for a given topic
(2010, p. 66). While Battista notes that movement through progressions is not unilateral because
“students' learning backgrounds and mental processing differ[s],” there was no specific mention
or acknowledgment of the sociocultural and political environment this instruction, assessment,
and research validation occurred in. We are also left to wonder how Battista defines learning
backgrounds and to what extent, if any, that definition captures the rich knowledge students
bring from their homes and communities. Battista ended his paper by calling on researchers to
exercise caution when using quantitative techniques to develop and validate LPs so as to not
misapply such techniques or ignore how this thread of work interacts with research on learning
(Battista, 2010, p. 69). It is noteworthy that Battista’s caution to the field centered cognition and
upholding principles of research methodology while tangentially addressing context and ignoring
culture.

Susan Empson (2010) questioned the novelty and usefulness of LTs in Battista's plenary in
an invited critique and reaction. After offering a summary of LTs and drawing on Simon’s
(1995) discussion of a hypothetical learning trajectory, Empson pondered LTs’ place in teaching
and research. In addition to posing questions for consideration, Empson acknowledged the
importance of context when she cautioned the field not to underestimate the role of tasks,
teachers, and teaching in LT research. She also reminded us to acknowledge disciplinary
practices in the same way we focus on content, which is critical since LTs are tools used for
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teaching and ultimately derive meaning from classroom contexts. Finally, this paper noted that
LTs ultimately need to be useful for teachers and that the creation and use of LTs must be an
interactive process that involves careful study of how teachers use them. Empson’s paper
reminded us of the importance of context in cognition-based research. This paper did not
explicitly address culture.

In 2012, Confrey offered a plenary paper summarizing how LTs were used in the
development of the Common Core State Standards for Mathematics (CCSM). A major premise
of this work was to support state leaders in distilling elements of the new standards into smaller
pieces of information supported by research on student learning over time. Another key element
of her paper was presenting components of LTs in ways that were useful for teachers, resulting
in the creation of a hexagon map of K-8 mathematics standards. As Confrey described the
hexagon map, she provided a rationale for its design, noting how different big ideas were
connected (e.g., counting, addition, and subtraction), how some content supported the learning of
other ideas (e.g., equipartitioning supporting the development of division and multiplication),
and why some topics were visually clustered between others (e.g., length area and volume are
nestled between equipartitioning on one side and shapes/angles on the other). This plenary
offered a detailed analysis of a multiplication and division LT coupled with figures, strategies,
and multiple representations. Confrey and team unpacked each trajectory by articulating
conceptual principles, strategies, representations, misconceptions, meaningful distinctions in
language, coherent structure, and bridging standards, which centered cognition.

Confrey explicitly stated that the hexagon map did not address the standards for
mathematical practice (which could have inserted relevant connections to culture and context)
but noted that students would surely use various practices as they progressed through the
trajectory (2012, p. 8). She then posited that when LTs are properly unpacked and coordinated
with standards, teachers can be better supported to connect underlying mathematical principles.
She ended this paper by inviting the field to consider the usefulness of the hexagon maps as one
example of what coherence across standards could look like, with the ultimate goal of supporting
teachers as they transitioned to using the CCSS (Confrey, 2012). While the hexagon maps and
associated unpacking offered valuable information related to cognition, a sociopolitical lens was
not evident. As such culture was not discussed and context was not addressed. Given the social
and political nature of teaching and how the CCSS were created, such connections would have
been valuable as they could have contextualized this national movement and addressed teachers'
concerns around new mandated curricula and tests that accompanied these standards.

The next plenary talk on LTs featured Julie Sarama in 2018. In a response to the conference
theme, Looking back, looking ahead.: Celebrating 40 years, Sarama discussed how mathematical
knowledge developed in young children and shared brief highlights from her work. Her
definition of LTs, which she noted is rooted in constructivism, acknowledged the importance of
instruction and mathematical tasks. As Sarama unpacked the tenets of Hierarchic
Interactionalism, she noted several points that were central to young childrens’ innate skills and
environment. She ended this chapter by offering an example of a student named Justin
progressing through the LT-based Building Blocks curriculum. Sarama highlighted this student’s
growth in counting, addition, and subtraction as one example of how student thinking across
multiple LTs is interactive and can grow concurrently (Sarama, 2018). Again, this plenary paper,
and the original paper from which the example was drawn, centered cognition (and cognitive
science) and did not provide insight on the context of Justin’s “growth,” his culture, who the
teacher was, and the broader sociopolitical context this study occurred in.
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In reflecting on these plenaries, Battista’s took a cognitive approach. Empson pushed back
and acknowledged context but left much unsaid about culture. Using a constructivist paradigm,
Confrey and Sarama attend to context in limited ways (e.g., standards, curriculum) but did not
include culture or other sociopolitical factors. My goal in providing this brief historical overview
through a lens of cognition, context, and culture was not to freeze any of these scholars in time as
working toward equity is a journey and not a destination. Rather, I sought to highlight how each
of the plenary papers privileged cognition (when written) at the expense of context and culture,
thus casting equity to the sidelines. While these scholars moved the field forward in monumental
ways by disrupting understandings of how mathematical content is organized and reframing
students as capable of rich mathematical thinking, they did not go far enough to disrupt other
problematic strongholds in mathematics teaching and learning (e.g., tracking, low expectations).
This review of previous LT-focused plenaries at PME-NA highlights the timeliness and necessity
of the current conference theme, as scholars were specifically invited to consider their work
through a sociopolitical lens. I hope this paper and resulting discussion contribute to a collective
examination of why a hard re-set is needed in LT-based research if it is to play any role in
leading toward a more “antioppressive and equitable human experience” in mathematics
teaching and learning (Aguirre et al., 2017, p. 127).

Positionality

Before moving forward, it is important that I provide context on who I am and how I came to
this work. I am not an outsider to LT-based research. In fact, [ have an intimate history with LTs,
and most of my time as a graduate research assistant for my master’s and doctoral programs was
spent on large-scale, NSF-funded, LT-focused grants. Earlier in my program, I worked on a
research team to develop LTs for equipartitioning and rational numbers. As a graduate assistant,
I conducted numerous clinical interviews and worked with my teammates to construct and
validate LTs. Our team regularly met and engaged with other LT experts in the field, many of
whom I cite in this paper, and worked to support the development of our state's mathematics
standards. During that time, several concerns began to arise in the field around the construction
and validation of LTs. Many of these questions were aimed at the diversity, or lack thereof, of
the student population upon whom LTs were constructed and validated. Our team considered that
feedback and began to intentionally recruit research participants in various settings to diversify
our student sample. I recall being curious about this critique and wondering if students from
different racial, cultural, and linguistic backgrounds would demonstrate different pathways
through our sets of tasks. At that time, my equity lens was not sophisticated enough to recognize
that engaging diverse students in a fairly “rigid” set of tasks was unlikely to produce different
outcomes. In fact, as I reflect on this approach to diversifying the student sample in our research,
I now see that we worked to accumulate more in the sample, rather than pause and
fundamentally reorganize the research design. I was also only beginning to understand the
impact of context and interlocking systems of oppression. And as such, I was not yet able to a)
question the rationale for centering cognition, b) form arguments about how the clinical
interview structure excluded context, ¢) understand how students intersectional identities
influenced their work on our tasks, or d) understand how the social and political context of
standards, funding, and other external forces impacted our research work.

After transitioning to another project, my focus shifted from developing and validating LTs
in rational numbers to designing LT-based professional development. While on this project, our
team worked on translating and coordinating early grades LTs focused on number, counting,
addition, and subtraction, into useful tools for teachers across grades K-5. This research project,
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titled Learning Trajectories Based Instruction (LTBI), served as the basis for my dissertation. As
we sought to understand and develop a model for sow teachers learned to use LTs, I, along with
other team members, became interested in how teachers’ implementation of LTBI looked
different across various subsets of their student population. I had grown as a person and a scholar
and was much more aware of equity, justice, and how the systemic nature of marginalization in
schools maintained opportunity gaps and systematically excluded minoritized learners.

After ending my high school teaching career to complete my doctorate full-time, I was much
more attentive to culture and context. I had also grown increasingly frustrated with the ways
“new trends” and “innovative curricular materials” in mathematics teaching and learning yielded
the same results year after year (e.g., opportunity gaps, tracking). Because of the national
attention LTs were receiving at the time, and how they were being used to develop curriculum
and assessment, [ wanted to be proactive in considering how they could be used equitably.
Therefore, I worked with my team to articulate a theory of Equitable Learning Trajectory Based
Instruction (E-LTBI), which I then investigated in a case study of four teachers for my
dissertation (Myers, 2014). This E-LTBI framework resulted from simultaneously considering
Gutiérrez’s (2007) four dimensions of equity and our existing LTBI framework (Myers et al.,
2015). I share more about this work in my review of LTs and equity after providing a brief
overview of LTs/LPs and critiques.

Learning Trajectories
Several definitions of LTs have been offered in the field. Clements and Sarama (2004) define
LTs as

descriptions of children’s thinking and learning in a specific mathematical domain and a
related, conjectured route through a set of instructional tasks designed to engender those
mental processes or actions hypothesized to move children through a developmental
progression of levels of thinking, created with the intent of supporting children’s
achievement of specific goals in that mathematical domain. (p. 83)

Confrey and Maloney’s (2010) definition of LTs features similar language but notes that
trajectories a) are empirically supported, b) include activities, tools, and assessments in addition
to tasks, and c) highlight the iterative nature movement, reflection, and refinement as students
move from informal understandings to formal ideas (p. 2). Research around LTs exists in three
primary areas: development and validation (constructing LTs in different domains and content
strands) (Battista, 2004; Blanton et al., 2015; Confrey et al., 2009; Maloney & Confrey, 2010;
Gravemeijer et al., 2003; Fonger et al., 2020), informing instructional tools (e.g., standards,
curriculum, and assessment) (Clements, 2002; Clements & Sarama, 1998; Confrey, 2012; Daro,
Mosher, & Corcoran, 2011; Mosher, 2011), and, more recently, professional learning for teachers
(Bargagliotti & Anderson, 2017; Clements & Sarama, 2009; Edgington, 2012; Sarama et al.,
2016; Suh & Seshaiyer, 2015; Sztajn et al., 2012; Wickstrom, 2014; Wilson et al., 2013; Wilson
et al., 2015; Wilson et al., 2017). Lobato and Walters (2017) conducted a detailed review of
research on LTs and LPs in mathematics and science education. They produced a taxonomy of
approaches to learning trajectories and progressions, which they refer to as LT/Ps. At each level,
they described the approach, offered an example, highlighted the features, outlined the methods
used, and discussed the purpose, benefits, and tradeoffs. I invite readers to study the full paper to
learn more about the breadth and depth of research around developing and validating various
LT/Ps.
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It is important to note that I do not seek to offer a distinction between LTs and LPs nor
advocate for one over the other. I encourage readers interested in the LT vs. LP discussion to
read Battista (2010) and Ellis, Weber, & Lockwood (2014), as both papers offer a detailed
account. The relevant similarity from my perspective is that while LTs and LPs center cognition
and narrowly reference context (in noting the importance of carefully selected tasks and
pedagogical moves), neither body of research explicitly addresses the social, cultural, or political
context in which the research, validation, creation, and intended uses occurred. Moreover, 1
argue that both LTs and LPs offer a narrow definition of what mathematics is, whose
mathematics is privileged, and why we engage with it, thus missing an opportunity to expand the
view of what counts as mathematics (Aguirre et al., 2017).

Critiques of LTs (and LPs)

Critiques of LTs and LPs in mathematics and science education are not new. In the National
Research Council (NRC) report Taking Science to School, the authors provide an overview of
teaching and learning science in grades K-8. In their chapter on learning progressions, much of
which aligns with LTs mathematics education, the committee highlighted how LPs can be used
to map students' understandings and unify science topics that have previously been disconnected.
The committee ended this chapter by discussing the design challenges of LPs and stated,

No single learning progression will be ideal for all children, since they have different
instructional histories, bring different personal and cultural resources to the process of
learning science, and learn in different social and material environments. The best learning
progressions are those that make effective use of the resources available to different children
and in different environments. This is the challenge that we are farthest from responding to
effectively with the current research base. (NRC, 2007, p. 222)

The committee later noted that although they recognized inequities in science education and
the dire need to address them, they were unsure about what recommendations to make related to
modifying instruction for diverse learners. Their suggested agenda for future action included
focusing on the effectiveness of different instructional strategies, the unpacking of systemic
inequities across schools, and the need for specific research that examined the complexity of
culture, language, and socioeconomic status (NRC, 2007). This report summarized the cognitive
aspects of LPs in science and pointedly expressed the absence of context, culture, and other
sociopolitical constructs.

In a 2011 paper, an expansion of her 2010 plenary response, Empson questioned what LTs
afforded, foregrounded, and obscured, which parallels the current conference theme of
dissonance and harmony. I appreciated that this more detailed analysis considered both promises
and pitfalls of LTs by making the case that learning is as much contextual and social as it is
cognitive. Empson went on and acknowledged that teaching was a relational act that “depends
fundamentally on interpersonal relationships of trust and respect.” (Empson, 2011, p. 587). What
was underdeveloped in this paper was the explicit unpacking of the word contextual and the
historical and political nature of those contexts. Additionally, when children’s differences were
alluded to in the text, the words race, gender, culture, language, sexual orientation, or ability
were not explicitly mentioned. When we do not intentionally name the different elements of
students’ intersectional identities we can inadvertently reify some scholars' beliefs that LTs only
need to focus on “cognitive differences.” I argue that while this critique pushed for the inclusion
of context (and culture to some degree) in LT research, a sociopolitical could have strengthened
this critique. Just as Empson argued that learning cannot be separated from teaching, I argue that
teaching cannot be separated from the teacher. Since teachers hold a range of beliefs and biases
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about who can do mathematics and who should be afforded opportunities for “rigorous”
mathematics, neglecting to use a sociopolitical lens secures an oppressive, anti-black, anti-
immigrant, anti-poor, anti-LGBTQ, ableist system. We must explicitly engage teachers’ beliefs
as we center context and culture in conversations about LTs.

In their examination of equity in LT/LP research, Delgado and Morton (2012) analyzed
existing research using a cognitive constructivist framework. They noted that this framework
was aligned with their definition of equity. These authors pushed against “equity for all” (or
dominant framing of equity) and embraced a postmodern definition of equity that “acknowledges
existing inequities in society [and] proposes responsive, individualized attention to students in
order to compensate for past lack of opportunities and to promote social justice” (Delgado &
Morton, 2012, p. 205). As they examined LT/LP research that explicitly considered “issues of
equity,” the authors found that student populations lacked diversity (or didn’t report any
demographic information), only focused on common themes amongst students’ mathematical
ideas instead of capturing all students’ ideas, and failed to consider how students’ family and
community knowledge shaped their engagement in tasks and resulting movement through a
trajectory. The authors concluded their paper and stated,

Research groups developing LPs and LTs should ideally include advocates for certain groups
of students, for example, an expert on special education and team members that are deeply
knowledgeable about the culture of minority students. Developing learning progressions and
learning trajectories that do not address inequity in educational opportunities in math and
science for students will only exacerbate the current problem. As the learning sciences,
science education, and mathematics education fields continue to negotiate and define the
nature of LPs and LTs, an expansion to include equity concerns at the forefront can greatly
benefit groups that have been traditionally underserved. (Delgado & Morton, 2012, p. 209)

LTs and Equity

In this section, I present three ways “equity” has been addressed in LT-based research. First,
I highlight Sarama & Clements’ body of work as an example of a dominant framing of equity as
it primarily focuses on access and achievement (Gutiérrez, 2007). I also discuss how their
attention to equity has shifted over time to include some critical framings of equity. Next, I
discuss equitable uses of LTs by highlighting two cases: LTBI and Suh et al. (2022). After
showing how Clements and Sarama’s work influenced my dissertation study and led to the
development of the E-LTBI framework, I transition to the work of Suh and colleagues who built
from our LTBI findings and intentionally embedded equity in their LT-based PD model. I
conclude by highlighting the work of Zahner and Wynn (2021), who centered equity in an
attempt to address gaps in representation in LT development.

Dominant Framing. One area of LT & equity research focuses on how LTs can offer access
and support achievement for minoritized students. The body of work of Clements and Sarama
represents decades of research and tens of millions of dollars of grant funding from large-scale
funders (e.g., The National Science Foundation and Institution of Education Sciences), which led
the development of curriculum (Clements & Sarama, 1998; Sarama & Clements, 2019),
conferences, and the creation of research centers. Because these scholars' definition of LTs and
the resulting body of work has been so influential in LT-based research, I draw on it as one
example of a dominant framing of equity. Consider the large-scale randomized trial that was
conducted and published in several venues (Clements et al., 2013; Sarama et al., 2012). The
authors noted that they chose their research site because “children from low-resource
communities and who are members of ethnic and linguistic minority groups demonstrate
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significantly lower levels of mathematics achievement than children from higher-resource,
nonminority communities” (Clements et al., 2012, p. 2). The authors went on to note that their
LT-based PD model, “include[d] guidelines for promoting equity through the use of curriculum
and instructional strategies that have demonstrated success with underrepresented populations”
(Clements et al, 2012, p. 4). Findings from this and similar studies indicated that African-
American students in their experimental groups scored significantly higher than their
counterparts in control groups. One conclusion of this study was that “centering instruction
around LTs may focus teachers’ attention on students’ thinking and learning in mathematics
rather than their memberships in ethnic groups and thus avoids perceptions that negatively affect
teaching and learning” (Clements, Sarama, Wolfe & Spitler, 2012, p. 26). In their 2014 book
chapter, Clements and Sarama stated, “several "gold standard" randomized control trial studies
have shown that curricula and professional development based on learning trajectories increase
children's achievement more than those that do not.” (p. 7). They went on to say, “learning math
at an early age is critically important for young children, especially those from disadvantaged
communities” (Clements & Sarama, 2014, p. 8).

Clements and Sarama’s attention to and expression of equity continued to grow and expand
throughout the years. They sharpened their perspective by explicitly addressing six myths about
LTs, three of which are germane to this analysis (Clements & Sarama, 2017/2019). First, they
argued that LTs are asset-based because they help teachers recognize and build upon students’
thinking. Next, they defended critics' notions of LTs being narrowly focused by noting that LTs
are “deeply constructivist” and address broad ranges of ideas. Finally, they stated, “Learning
trajectories are expressly built to be adaptable to different cultures, groups, and individuals. One
important adaptation is for different cultures. Learning trajectories take funds of knowledge from
all communities seriously and encourage using such funds” (Clements & Sarama, 2017/2019, p.
2).

More recently, Clements et al. (2020) suggested that teachers who know how to use the three
components of an LT are better suited to understand the complexity of early mathematics content
and offer instruction that is more closely aligned with students’ current conceptions, thus
providing more robust mathematics experiences for all children. They stated that such
environments are necessary for “vulnerable children who live in poverty, are members of
linguistic and ethnic minority groups, or...children with disabilities” (Clements et al., 2020, p.
1). They suggested that early-childhood teachers could benefit from sustained PD focused on
learning trajectories that also included direct support for engaging children with learning
disabilities. The authors ended this paper by announcing their STEM Innovation for Inclusion in
Early Education Center, which they noted is a critical step in ensuring equity and excellence in
early STEM experiences. Ongoing work from this team continues to suggest that LT-based PD
positively impacts students from “low-resource communities” (Sarama, Clements & Guss,
2021).

As I followed this and other bodies of LT-based research over the years, I observed how the
discussions of context and culture have both evolved by expanding the attention given to equity
and, in some cases, remained stagnant by only considering equity in relation to student
achievement. [ have paid particular attention to how students were described and positioned in
these and other studies. I would encourage Clements and Sarama to consider how the language
they used to dispel myths in their 2017/2019 resource document may be at odds with how often
students and their communities are referred to as low resource, vulnerable, and minority.
Although those phrases were often used as demographic descriptions, doing so without a
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sociopolitical lens may serve to reify the deficit orientations Clements & Sarama seek to disrupt.
It is also important to note how context was included (e.g., as a description or as a mediating
variable in a statistical model, etc.) and whether or not the context of the study was situated in
the historical context of schools and schooling in the United States (e.g., critical explanations of
sociopolitical factors that intentionally created disadvantaged or low-resource communities).
Finally, I invite the reader to carefully consider how this dominant view of equity and its
evolution was inextricably tied to cognition, which overwhelmingly excluded critical discussions
of context and culture.

Equitable Usage of LTs. A second area of equity and LT research focuses on the ways LTs
are used in instruction. The Learning Trajectories Based Instruction (LTBI) research project (for
which I was a graduate research assistant) is one such example (Sztajn et al., 2012). This study
used Clements and Sarama’s early number, counting, addition, and subtraction LTs in a multi-
year research project with K-2 teachers. In our 2015 paper From implicit to explicit: Articulating
equitable learning trajectories based instruction, my colleagues and I argued that although we
initially considered our LT-based research with teachers to attend to issues of equity, what we
learned in our work caused us to reconsider some of those assumptions (Myers et al., 2015).
Similar to other cognition-focused teacher learning models, our project centered students’
thinking, disrupted notions about the “traditional sequencing of mathematics,” and created space
for students' individual thinking to emerge and be positioned as valuable along various
trajectories. Teachers in our study deepened their knowledge of K-2 mathematics content,
appreciated the language the trajectory afforded them, and began to recognize and value a range
of students’ mathematical contributions (Edgington, 2012; Myers, 2014; Wilson et al., 2015). In
this sense, one assumption of our work built on Clements et al. (2012) suggestion that by using
LTBI, teachers would see that all children were capable of mathematics, potentially reducing
their focus on other demographic factors.

Unfortunately, the suggestion that focusing on cognition could reduce attention to other
factors did not hold true in our work, highlighting how good intentions and race-evasive
approaches are not enough to effect radical change across diverse groups (Rodriguez, 2003). As
a result, we saw LT language taken up and used oppressively such as when teachers replaced the
language of “low students” and “high students” with LT-based vocabulary (e.g., the low students
being renamed the direct counters). Results from my dissertation highlighted that most LT-based
work aligned with a dominant approach to equity (Myers, 2014) and that the elements that
connected to Gutiérrez’s (2007) critical axis were shallow or maintained dominant framing.
Moreover, in my paper titled, The unintended consequences of a learning trajectories approach,
I reported on a teacher, Elizabeth, who possessed several deficit orientations about her students.
This teacher also shared that she wasn’t confident in her own mathematics knowledge and
therefore taught science instead of mathematics to her kindergarten students. Although this
teacher made “gains” in her content knowledge and began offering LT-based instruction in her
classroom, several issues emerged. A primary concern was that this teacher’s deficit orientations
about students overshadowed what she learned about LT-based instruction. This teacher
ultimately used knowledge gained in the PD to justify retaining kindergarten students from
minoritized groups, and the LT-based language she acquired in our sessions provided
“credibility” to her decisions as a teacher (Myers, 2015).

It is important to note that my dissertation study sought to examine what equity may look like
as a by-product of participating in LT-based PD, as equity was not explicitly centered in the PD
design. Building upon findings from LTBI-based research, Suh and colleagues considered that
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LT-based PD was not enough to disrupt teachers’ beliefs about minoritized students. Therefore,
she and her team intentionally embedded equity in their LT-based teacher learning study design,
simultaneously centering cognition, context, and culture. They engaged teachers in professional
development focused on LTs, asset-based instruction, and cognitive demand (Suh et al., 2022).
They hypothesized that pairing LTs with equity-oriented and anti-deficit frameworks for noticing
(Louie et al., 2021; van Es et al., 2022) would help teachers recognize students' multiple
knowledge bases. They suggested that this framework would support teachers to assign
mathematical competence to their students. The authors noted that teachers in their study moved
beyond discussing “gaps” in students' understanding to using what they referred to as “strength-
based language” (Suh et al., 2022). It is unclear from these findings if the shift from “gap-based
language™ to “strength-based language” reflected a change in teachers’ beliefs or if teachers were
merely using the “new language” that had become normalized in the professional learning space,
potentially as a proxy for previously held viewpoints (Myers et al., 2013; Wilson et al., 2017).
The field can benefit from continued research that examines how similar findings (e.g., strength-
based language) relate to broader conceptions of socially just and anti-oppressive learning
environments.

Representation in LT Development. A final area of equity and LT research focuses on who is
used in constructing LTs. In noting the absence of diversity in the student population of much
LT-based work, Zahner & Wynn (2021) conducted clinical interviews with 23 multilingual
students using LT-based tasks focused on proportional reasoning and linear functions. This study
of twenty-five ninth-grade students (primarily Latinx, Asian, and African American), ten of
which were multilingual, provided valuable insights into how the linguistic complexity in
mathematics tasks impacted how students approached tasks and explained their reasoning,
thereby influencing their potential “ranking” or placement on a content-focused LT. Their
findings call into question the role of language in previous large-scale work conducted to create,
norm, and validate LTs. Given that many initial LT-based studies did not consider language or
the linguistic complexity of tasks in the study design, we are left to wonder how students
interpreted tasks. Even when scholars acknowledged demographics (e.g., language status) in
large-scale studies they typically neglected to present analysis around how language mediated
performance on standardized tests. Zahner and Wynn’s research is an example that culture and
context can be centered while simultaneously investigating cognition.

Summary

For organizational purposes, I presented these two sections (critiques of LTs and equity in
LT-based research) separately. Readers should note that some of this work occurred concurrently
and that some of the shifts in how equity was presented in LT-based research were in direct
response to the ongoing critiques of equity in LT research (e.g., Empson, 2010, NRC, 2007,
Sztajn and Wilson, 2019), LT-based conferences and working groups, and other conversations
that have continued in the field. Despite a small shift in how scholars have attended to equity in
their LT work, cognition is still the focus, and I argue that we have not yet met the call of
centering equity in LT research as both a political act and a collective responsibility. I also note
that in order for an LT-based re-set to happen in ways that honor Aguirre et al.’s (2017) call, we
must pause to unpack a) how discussions of “equity” have (or have not) evolved in LT-based
work, b) whether we have been intentional about acquiring the knowledge necessary to make the
shifts in genuine ways, ¢) if our work focuses on the full humanity of students’ experiences and
moves beyond acknowledging their test scores, and d) how we have chosen to foster and
cultivate critical collaborations that value the expertise of a range of scholars, colleagues, and
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families. In what follows, I describe PCTM and suggest that this framework can help us ask the
complex, sociopolitical questions needed (Gutiérrez, 2013) for us to examine LT-based as we
consider how cognition, context, and culture are necessarily entangled.

Using PCTM to Critically Consider Cognition, Culture, and Context

In honoring the conference theme and Aguirre et al.’s (2017) call to be intentional about
discussing interlocking systems of oppression with colleagues, I suggest that Political
Conocimiento in Teaching Mathematics (PCTM) can provide the field with a lens to examine
LT-based research and ask complex questions. Because PCTM explicitly engages content,
pedagogy, social context, and politics, it is suitable for examining LT-based research across its
three primary domains (e.g., development and validation, informing instructional tools, and
professional learning with teachers). For too long, large-scale research projects (e.g., LTs and
Cognitively Guided Instruction) have been conducted in mathematics education and taken up by
the mainstream without engaging a sociopolitical lens during conception. Equity-oriented
scholars have then dedicated their careers to proving how the initial work was not grounded in
equity while also considering how to “re-mix” the research and curricula to meet their justice-
oriented agendas (Maldonado et al., 2022). My goal in offering this framework is to call for an
end to this two-phased approach that centers cognition first and then leaves equity-oriented
scholars to consider culture and context. After describing PCTM, I unpack questions posed in the
conference theme to illuminate the power of this theoretical framework.
Political Conocimiento in Teaching Mathematics

PCTM is a theoretical framework that highlights the unique ways that mathematical
knowledge for teaching (MKT), pedagogical content knowledge (PCK), knowledge of students,
and political knowledge are entangled (see Figure 1) to produce a unique way of knowing that
teachers (and researchers) need to consider as they teach and conduct research, especially with
historically marginalized students. Here, I list two elements of this framework that make it useful
to critically analyze LT-based teaching and learning. First, PCTM explicitly links content,
pedagogy, knowledge with students and communities, and political knowledge (e.g., power
dynamics) and situates the entanglement of each of these in a social and historical context
(Gutiérrez, 2012). This linkage does two things. One, it dispels the “false dichotomy” between
mathematics and equity that some scholars assert (Aguirre et al., 2017), making it inconceivable
to conduct research on cognition and teaching without attending to context and culture. Two, this
linkage asserts that political knowledge is not merely added to the other dimensions. On the
contrary, engaging a political lens causes us to re-examine the other components (Gutiérrez,
2012). As such, one would not consider developments related to content and pedagogy (e.g.,
develop a LT-based curriculum) and then question how to use it with diverse learners. Instead,
this framework embraces the tensions that exist when these individual pieces are entangled,
thereby allowing us to ask richer questions and reflect on decisions we make to foreground or
background different dimensions (Myers, Gutiérrez & Kokka, in press). Using such a framework
at the onset of LT-based research would have eliminated many of the critiques that came later
since culture, race, language, communication patterns, task design, teacher and researcher
identity, etc., would have all been considered in the development and validation phases.
Embracing this tension allows us to see that dissonance and harmony can coexist while we also
question who experiences dissonance and who experiences harmony (Gutiérrez, 2009a).
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Figure 1. Political Conocimiento in Teaching Mathematics (Gutiérrez, 2012)

Second, the word conocimiento is drawn from the Spanish verb conocer. The Spanish word
saber represents a “fixed” kind of knowing (e.g., to know facts, how to follow steps, to know a
piece of information). The verb conocer, however, represents a fluid type of knowing that is
contextual (e.g., to know a person, to know of a place). This distinction is critical as conocer
asserts that context and conditions are essential to framing how we know (Gutiérrez, 2017). This
kind of knowledge prevents us from objectively knowing “low-income students,” “minority
students,” or “English language learners” in a fixed or homogenous way and, as such, applying a
“best practice” to that population with the hopes of minimizing an achievement gap. A teacher or
researcher using PCTM as a lens would first question how a “best practice” was developed. That
person would ask, “best for whom? Best under which conditions? Best to what end? Best for
what outcome?” Using this type of framework also problematizes the treatment of groups of
students as static objects of our research and suggests that knowledge must be co-constructed
with learners, families, and community partners. Reframing knowing as relational also reminds
us that how we know is always changing because our environments and sociopolitical contexts
are ever-changing. Moreover, as scholars, our knowing about LTs is also fluid as we continue to
re-negotiate our work in light of new understandings about our intersectional identities, new
scholarship, etc. PCTM is undoubtedly a powerful theoretical framework that the field can use to
consider complex questions similar to those posed in this year’s conference theme. In the next
few paragraphs, I consider two of the thematic questions through the lens of PCTM.

How does LT-based teaching challenge a settled mathematics learning status quo?

Using PCTM allows us to answer this question in two ways. First, it is important to
acknowledge the historical and political contexts that afforded the “mathematics learning status
quo” to be created and maintained for so many years, leading to dissonance. Our field can benefit
from engaging in discussions around how mathematics has been socially constructed in a way to
maintain systems of oppression (Gutiérrez, Myers & Kokka, 2022, in review). Using PCTM
forces us to unpack the political nature of the status quo, understand who is negatively affected
by it, and develop a comprehensive approach to address the problem instead of accepting it as
the norm or rushing to a “quick fix.”

Second, PCTM allows us to consider how questioning mathematical content (thereby
questioning mathematical content knowledge) can lead us to work toward harmony. Given that
the four elements of the PCTM framework are entangled and that the resulting knowledge is
relational, pulling one thread in an attempt to disrupt a status quo necessarily challenges our
ways of knowing, allowing us to consider the other dimensions and reimagine mathematics
learning more broadly. For example, several studies demonstrated that LT-based professional
development supported teachers in understanding the complexity of mathematics content, how
underlying ideas were connected, that mastery was not a prerequisite for more sophisticated
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ideas, and that informal understandings were valuable prerequisites for building more complex
ideas. This work is important. What was missing from those conversations is specific research on
how changes in teachers' MCK interacts with the other elements of PCTM, to potentially disrupt
other status quos in mathematics teaching and learning. For example, does the “asset-based” lens
teachers acquired during LT-based PD support them in reframing their understanding of the
mathematical practices (e.g., centering a range of communication and argumentation styles,
debunking traditional notions of precision) through a sociopolitical lens? Moreover, even when
teachers develop an “asset-based” lens as a result of LTs and constructed counternarratives about
students’ thinking, what did this mean for how teachers recognized and valued students’
humanity? Did “disrupting inequity” in mathematics thinking lead teachers to advocate for
greater change? And did changes in beliefs, if any, persist over time? If LT-based teaching
continues to treat mathematics as disconnected from students, families, communities, and
contexts, how can we expect to truly eradicate inequity in mathematics teaching and learning?
How does LT-based teaching have an impact on society more broadly, beyond individual
mathematics classrooms and school districts?

This question naturally engages each element of the PCTM framework as we consider how
LT-based teaching and learning (content and pedagogical knowledge) might impact society
(students, communities, politics) more broadly (our/theirstories). I argue that, to date, much of
what we have seen in LT-based teaching supports long-standing notions that mathematics is a
neutral and culture-free domain. As we examine mainstream curricula and approaches to
teaching mathematics, we see that there is still a focus on drill and memorization, even though
worksheets have been traded for digital tools. PCTM helps us see that school-based mathematics
is still privileged at the expense of home, community, and place-based mathematical knowledge.
We have not considered how to use our collective power to disrupt standardized testing and its
oppressive effects. Instead, much LT-based work has been advertised in support of helping our
students perform better on tests. PCTM can support scholars in thinking about using LT-based
research to “play the game” and “change the game” (Gutiérrez, 2009b). This question reminds us
that because teaching happens in classrooms, which are housed in schools, which are located in
communities, which are a part of society, any classroom level teaching and research ultimately
has an impact on these other spaces. Whether that impact upholds the status quo or redistributes
power is a question scholars delve into while remembering our moral obligations (Stephan et al.,
2015) and embracing a “productively self-critical” disposition (Kilpatrick, 2013, p. 73 as cited in
Larnell et al., 2016).

Conclusion

Before I close, I return to the case of Elizabeth, who used what she learned in LT-based PD
to justify retaining historically marginalized students in kindergarten. As I mentioned, this
teacher showed growth in her content knowledge. She also used what she learned to attend to
students’ thinking and plan next steps aligned with the trajectory. But when her “content-focused
reform efforts” didn’t produce the results she expected to see on students’ quarterly benchmark
tests, deficit narratives entered the conversation (e.g., if they weren’t eating free breakfast in the
morning we could do extra practice, their parents don’t spend enough time with them at home).
What was missing? How did Elizabeth need to be supported to question the usefulness of an LT-
based approach across all students? What tools did Elizabeth need to support her so that she
could ask questions about the nature of standardized testing instead of asking questions about
her students and their families? Was Elizabeth ever providing “equitable and high-quality
instruction” if these comments were indicative of her beliefs about students? And what does it
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mean that Elizabeth chose to retain students instead of advocating for them? Frameworks like
PCTM help us ask these questions about Elizabeth’s case. Part of our moral obligation as
scholars is to ensure that we consider how cognition, context, and culture are entangled and the
type of professional learning experiences teachers need to understand the political nature of their
work, not just the cognitive aspects. LT-based PD alone is insufficient for ensuring equity and
justice.

Mathematics teaching, learning, and research are political acts (Aguirre et al., 2017; Larnell
et al., 2016). And as such, we must use care in conducting our work and consider what’s at stake
when we don’t approach our research critically. In this paper, I built the case for using PCTM as
a theoretical framework to examine LT-based research to support the hard re-set needed if LTs
are ever going to be relevant in creating a more humane and just mathematics experience for
historically marginalized students. I also submit that it is necessary to pause, reflect, and engage
in the self-work and education needed to prepare for this re-set. This paper contributes to that
pause by adding to critical discussions about LT-based research and suggesting a theoretical
framework that can support our collective efforts. Despite increasing explicit attention to equity
in LT research, a sociopolitical lens is still needed as we grapple with considering LTs at the
intersection of cognition, context, and culture. We need to continue to unpack the various
definitions of equity that guide our work and engage in conversations across research paradigms
to build critical LT-based research models. And while we cannot change the LT research that has
come before us, we can strengthen our commitment to equity and justice by asking more
complex questions that critically hold cognition, context, and culture together.
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UNDERGRADUATE LATIN* QUEER STUDENTS’ INTERSECTIONALITY OF
MATHEMATICS EXPERIENCES: A BORDERLANDS PERSPECTIVE
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Vanderbilt University

luis.a.leyva@vanderbilt.edu

The cisheteropatriarchal climate of STEM education shapes oppressive experiences for queer
and trans* (QT) students majoring in the sciences. Intersectionality of STEM experiences for QT
students of color is missing in the literature. Thus, it has been unexplored how undergraduate
STEM as a racialized space shapes variation in experiences among QT students. Such
intersectional analyses are especially necessary in mathematics -- a discipline socially
constructed as ‘neutral’ despite being a gatekeeper to STEM degrees for historically
marginalized groups. To address this area of needed research, this paper presents findings from
an analysis of undergraduate Latin* QT students’ intersectionality of mathematics experiences
as STEM majors with a focus on peer relationships. I conclude with implications for research
and practice to disrupt mathematics education as white, cisheteropatriarchal space.

Keywords: gender, intersectionality, Latin*, sexuality

Introduction
Ximena (they/them), a Mexican agender! pansexual person in their senior year of college
studying mechanical engineering, considered dropping the major due to invisibility of their
identity that made them question their ability. They saw mathematics education as valuable for
increasing historically marginalized populations’ access to engineering and other STEM careers.

A lot of it [dropping engineering] had to do with imposter syndrome. And I think a big
influence within that was lack of visibility. I really felt like I didn’t fit in because everyone in
my class is a male or white... When I was going to drop out, I was going to switch to math
teaching... Even when I become an engineer, [ want to help students understand math
because I feel math can be a way to gatekeep these really good jobs... Math should be
accessible, so that’s why I was like, ‘I’ll just pursue that’... I want to inspire people of color
and people in the Latinx community and queer folks to go into these STEM jobs... I want to
stop it from being all just straight white men.

This perspective reflecting Ximena’s use of their role as a mathematics educator to diversify
scientific professions was shared during their individual interview as a participant in my research
study about the experiences of queer and trans*? (QT) students of color in STEM majors. The
narratives of undergraduate QT students of color in STEM like Ximena are central to the study’s
analysis to understand their experiences of intersectionality (Crenshaw, 1991), which refers to

! Agender is a gender identity of being genderless.

2 Queer refers to all marginalized sexual and nonnormative gender identities. 7rans* describes individuals who
depart from their assigned gender at birth and move across socially-constructed boundaries in normative views of
gender, including those who do and do not pursue medical gender-affirming treatment as well as those who identify
with binary and nonbinary genders (Nicolazzo, 2017). The term’s asterisk, much like in computer searches, ensures
broad inclusion of gender identities and expressions (e.g., transgender, transfeminine, trans man, transsexual). To
avoid reinforcing trans* erasure, I use the phrase queer and trans* and the corresponding acronym Q7.
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multiply-marginalized people’s unique forms of oppression and agency at the juncture of racism
and other overlapping systems of power. Ximena’s quote conveys agency to use mathematics
education in addressing the systemic issue of limited diversity in STEM, which transpired into a
distinctly intersectional experience of invisibility as a Mexican queer engineering student.

Prior research has importantly shown how cisheteropatriarchy (i.e., a system of oppression
that marginalizes QT people and cisgender women by reinforcing heterosexual and cisgender
identities as normative and upholding misogyny) shapes undergraduate STEM as oppressive for
QT students (Cech & Waidzunas, 2011; Miller et al., 2020). However, QT students of color were
underrepresented in study samples, and the lack of intersectional analyses left implicit how
racism figured into QT students’ experiences of cisheteropatriarchy in STEM. The present
analysis addresses these limitations in extant research by exploring variation in experiences of
oppression and agency among undergraduate Latin*> queer STEM majors like Ximena. This
analysis comes from a larger study that exclusively sampled Black, Latin*, and Asian QT
students in STEM to examine variation in intersectionality specific to race, gender, and sexuality.

My analysis pays particular attention to the influence of mathematical contexts on Latin®* QT
students’ experiences while pursuing STEM majors. As raised in Ximena’s opening quote,
mathematics has played a long-standing role in higher education as a gatekeeper to STEM
degrees and careers for historically marginalized groups. For example, research has shown that
Latin* students’ racialized experiences in undergraduate mathematics have a major influence on
perceptions of their academic ability and decisions to continue coursework required for STEM
majors (e.g., Leyva, 2016; Oppland-Cordell, 2014). Epistemologies of neutrality and objectivity
in mathematics, which are rooted in ideologies of antiBlack racism (e.g., colorblindness) and
cisheteropatriarchy (e.g., gender neutrality), insidiously reinforce the discipline’s oppressive
nature through educational opportunities that frame social identities and experiences as irrelevant
(Gutiérrez, 2017; Leyva, McNeill & Duran, 2022; Martin, 2009). Constructions of mathematics
as ‘neutral,” therefore, also marginalize QT learners who may internalize that their queerness is
distracting or unwelcome due to pervasive silence about their identities (Kersey & Voigt, 2020;
Yeh & Rubel, 2020), which may negatively impact their STEM persistence (Leyva, McNeill,
Balmer, et al., 2022). Mathematics education must be interrogated to inform instructional and
support practices that affirm historically marginalized identities in STEM. An intersectional lens
of analysis allows for complex insights that are essential to developing such practices, which are
less readily attainable when attending to only a single axis of social oppression. The present
study advances such inquiry in undergraduate mathematics research where QT students’
racialized experiences went unaddressed (e.g., Voigt, 2022) and intersectionality among Latin*
students specific to QT learners was an unexplored area of study (e.g., Oppland-Cordell, 2014).

The PME-NA 44 conference theme, “Critical Dissonance and Resonant Harmony,” addresses
how experiences of dissonance are “necessary for change and liberation” in struggles for justice
across educational and societal contexts. Harmonious justice is characterized as resonance in
multiple stakeholders amplifying each other’s voices in disrupting oppressive forces tied to
racism and overlapping systems of power. Applying the PME-NA 44 theme as a lens to interpret
Ximena’s opening quote, the invisibility of Latin* and queer students in engineering and STEM
more broadly shaped dissonance between their intersectional identity and mathematical contexts

3 The asterisk in Latin* considers fluidity in gender identities across the Latin American diaspora (Salinas, 2020).
The term Latin* responds to (mis)use of Latinx, a term reserved for gender nonconforming peoples of Latin
American origin and descent (Salinas & Lozano, 2019).When describing student participants in the present analysis
who did not identify as trans*, I use the phrase Latin* queer. Otherwise, I used the broader descriptor Latin* QT.
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that produced feelings of imposter syndrome. Ximena’s agency through their motivation to teach
mathematics depicts an effort to seek justice by dismantling gatekeeping to STEM careers. Such
effort fosters resonance for future generations of Latin®* QT students between their identities and
STEM pursuits. The following research questions for the present study are framed to examine
dissonance and agency across Latin* QT students’ intersectionality of mathematics experiences:

1. What oppressive contexts of mathematics education contribute to Latin* QT students’
experiences of dissonance as STEM majors?

2. What agency do Latin* QT students exhibit to manage intersectional oppression from
dissonant experiences in mathematics and protect their identities while pursuing STEM?

In what follows, I present the study’s guiding theoretical perspective and methods to address the
research questions. This paper presents findings specific to peer relationships in mathematics that
shaped Latin* QT students’ intersectionality of experiences. I conclude by discussing the study’s
scholarly significance and implications for educational research and practice.

Theoretical Perspective

The theory of borderlands (Anzaldta, 1987/2007) from Chicana feminist thought served as
the guiding theoretical perspective for the study. As a theory of the flesh (Moraga & Anzaldua,
1981/2021), Gloria Anzaldua drew on her lived experience to develop borderlands as a lens for
theorizing intersectional oppression and agency. Borderlands theory captures how an individual
at the juncture of multiple, contradictory systems of power (e.g., racism, misogyny, homophobia)
can experience an oppressive sense of liminality and ambivalence that can also be a site for
transformative resistance. Anzaldta, a sixth-generation Chicana lesbian born in Texas near the
U.S.-Mexico border, described this push-pull dynamic between racialized constructions of
nation-state and cisheteropatriarchy at the juncture of these two power systems:

As a mestiza, [ have no country, my homeland cast me out; yet all countries are mine because
I am every woman'’s sister or potential lover. (As a lesbian, I have no race, my own people
disclaim me; but I am all races because there is the queer of me in all races). (p. 102)

This experience of liminality for Anzaldua and other multiply-marginalized individuals is
theorized to be existing at the borderlands, wherein la frontera (the border) is a “metaphor for all
types of crossings — between geopolitical boundaries, sexual transgressions, and the crossings
necessary to exist in multiple linguistic and cultural contexts” (Cantii & Hurtado, 2012, p. 6).
Borderlands theory “seek[s] enlightenment of the ambiguity and contradiction of all social
experience” (Canti & Hurtado, 2012, p. 5) to generate complex insights into multiply-
marginalized individuals’ intersectionality of experiences.

There are three key constructs from borderlands theory that provided a foundation for the
present study. First, Nepantla (liminality) refers to the space of being neither here nor there and
the multiplicity of realities, as depicted in Anzaldia’s quote above, where new knowledge is
produced. This space is characterized by la mezcla (the hybridity) at the borderlands of
competing sources of power, which generates new understandings of the world that inform
multiply-marginalized individuals’ ability to engage in border-crossings. Second, mestiza
consciousness refers to individuals’ outsider-within knowledge at the borderlands. This critical
awareness of not being fully accepted on either side of the border is an empowering source of
knowledge for challenging oppressive dualities and coming into one’s full, intersectional
identity. Anzaldta (1987/2007) argues that mestiza consciousness provides individuals with a
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sense of conocimiento (familiarity with) that allows for an interconnected understanding of
others’ experiences at the borderlands. This knowledge production is a foundation for building
coalitions and advancing collective action against intersectional injustices. Finally, la facultad
(ability) refers to individual agency in leveraging knowledge produced through a sense of
liminality at the borderlands to engage in border-crossings and resist oppressive systems.
Borderlands is a foundational theoretical perspective in scholarship advancing justice for QT
people of color (Brockenbrough, 2015; Ferguson, 2004; Kumashiro, 2001), including work
specific to Latin* QT communities (Aguilar-Hernandez & Cruz, 2020; Hames-Garcia &
Martinez, 2011; Hernandez et al., 2021; Rodriguez, 2003). To illustrate, the concept of mestiza
consciousness provided an orientation for the development of gay Latino male studies from a
space of solidarity with Chicana and Latina lesbian scholarship (Hames-Garcia & Martinez,
2011). Latin* trans and nonbinary scholars have extended borderlands theory by disrupting its
binary conceptualization of gender and sexual oppression to make visible the intersectional
realities of border-crossing among Latin* gender nonconforming people (Cuevas, 2018;
Hernandez et al., 2021). Thus, borderlands theory offers a promising foundation for the present
study of Latin* QT students’ intersectionality of mathematics experiences as STEM majors.

Methods

The analysis presented in this paper comes from a larger study exploring intersectionality of
experiences among undergraduate queer and trans* (QT) students of color pursuing STEM
majors. A total of 39 students who identify as Black, Latin*, and Asian, including mixed-race,
are included in the sample. The larger study examines students’ narratives of oppression and
agency to elucidate features of STEM classroom instruction and co-curricular support spaces
experienced as affirming or marginalizing of their intersectional identities. For the present paper,
I focus on an analysis specific to Latin* QT participants’ mathematics experiences.

Study Context and Participants

Participants in the larger study were recruited across four U.S. universities in 2019-2021. The
study began in 2019 at Lorde University— a large, research-intensive, elite, and private
historically white institution (HWI; see Leyva, McNeill, Balmer, et al., 2022). The research team
expanded the study in 2020 to include three large, research-intensive, and public HWI contexts —
Ferguson University, Moraga University, and Rivera University. The three public HWIs were
purposefully selected for their strong records of success with enrolling and granting bachelor’s
degrees to Black and Latin* students according to recent higher education policy reports
(Excelencia in Education, 2018; Harper & Simmons, 2019). Rivera University received the
federal designation as a Hispanic-Serving Institution (HSI). In addition, Moraga University and
Rivera University were selected as institutions recognized for their efforts in promoting positive
campus life experiences for QT students (Campus Pride, 2020). Ferguson University was also
selected for its institutional legacy of preparing undergraduate students from racially minoritized
backgrounds to pursue STEM graduate degrees and professional careers.

The purposeful selection of university sites made space for variation in how different
institutional contexts and student support offerings shaped intersectionality of STEM experiences
among QT students of color. For example, the multi-institutional study design allowed our team
to look across student experiences in private and public HWIs across different U.S. regions.
Inclusion of the three public universities with strong records of racial equity, including Moraga
University as a HSI and Ferguson University with its history of addressing racial inequities for
STEM access, served to explore the extent to which culturally-affirming institutional missions
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and efforts provided intersectional support in STEM for queer of color identities. Our selection
of Moraga University and Rivera University allowed us to consider how nationally-recognized
support for minoritized gender and sexual identities impacted QT students of color in STEM.

For participant recruitment, the research team asked staff and student leaders for university
offices and organizations to share information about the study with undergraduate networks.
These offices and organizations had missions relevant to the scope of the study, including those
of social affinity (e.g., queer student alliances), STEM (e.g., American Society of Civil
Engineers chapters), and intersections of social affinity and STEM (e.g., Society for the
Advancement of Chicanos/Hispanics and Native Americans chapters). See Leyva, McNeill,
Balmer, et al. (2022) for details about recruitment across the four universities. The analytical
sample for the present paper includes all 16 Latin* QT students from the study. This sample
reflected variation in ethnoracial identity (e.g., Colombian, Mexican, Puerto Rican), queer sexual
identity (e.g., bisexual, gay, pansexual) and STEM major (e.g., computer science, mathematics,
mechanical engineering). Six Latin* participants held gender-expansive identities, such as
agender, female/questioning, genderfluid, nonbinary, and transmasculine. Four students attended
Lorde University, three attended Ferguson, four attended Moraga, and five attended Rivera.
Data Collection

The research team used five data sources for rich, multidimensional portraitures of Latin* QT
students’ intersectionality of STEM experiences. First, participants completed a demographic
survey to collect information about their identities (race, gender, and sexuality), year of study,
STEM major, course enrollment, and campus involvement. For participants recruited in 2020-
2021 during the COVID-19 pandemic and the transition to remote learning in higher education,
the survey asked participants to indicate any preferred accommodations of the study design to
ensure comfort with their participation (e.g., addressing privacy concerns about discussing their
gender and sexuality via Zoom from home). Second, each participant submitted a STEM
autobiography. The autobiographies were written reflections about being QT students of color in
STEM, including responses to prompts about memorably positive and negative experiences,
socially-aftfirming academic and co-curricular spaces, and influential people. One autobiography
prompt asked participants to reflect on the role that mathematics played in their STEM
trajectories as QT students of color and vivid memories from their experiences. The third data
source was event journaling (Leyva, Quea, et al., 2021; Leyva, McNeill, Balmer, et al., 2022).
Throughout the study, participants kept an ongoing record of events across STEM spaces (e.g.,
classrooms, study groups) experienced as supportive/encouraging or unsupportive/discouraging
of their identities (see Leyva, McNeill, Balmer, et al., 2022 for more details about journaling).

The two final data sources were an individual interview (60-90 minutes) and group interview
(90-120 minutes). Participants completed the survey and autobiography prior to the individual
interview (Interview 1). Interviews with Lorde University participants were completed in person
and before the start of the COVID-19 pandemic. Interviews with participants enrolled in other
universities were scheduled after the start of the pandemic in 2021 and completed on Zoom. All
interviews were semi-structured, audiotaped, and transcribed. Two research team members
conducted each interview. To the extent possible, we matched participants and interviewers with
similar racial, gender, and sexual identities. Such matching was an effort to increase comfort in
discussions about racism, misogyny, cissexism, and heteronormativity in STEM.

Interview 1 explored participants’ perspectives on being QT students of color in and out of
STEM, major influences on their STEM pursuits, coping strategies for STEM persistence, and
recommendations for queer of color inclusion in STEM. The protocol revisited excerpts from
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participants’ STEM autobiographies and event journaling related to these themes. For
participants interviewed during the pandemic, we also explored participants’ views on the
influence of COVID-19 on their STEM experiences. In particular, participants were asked about
standout moments in online/hybrid classrooms that positively or negatively impacted their
identities, nature of their campus involvement, and relationships with peers and family members.

After Interview 1, participants completed a group interview (Interview 2). I adopted my
group interview methodology of presenting 3-4 prompts for stimulated-responses to explore
variation in participants’ intersectionality of STEM experiences (see Leyva, 2021 and Leyva,
McNeill, Balmer, et al., 2022 for more details about the interview methodology). The prompts in
Interview 2 featured excerpts from research about QT students” STEM experiences (e.g., Cech &
Waidzunas, 2011; Kersey & Voigt, 2020) and intersectionality of campus experiences among QT
students of color (e.g., Nicolazzo, 2016; Vega, 2016). The excerpts provided concrete starting
points to stimulate group dialogue about emergent themes from preliminary data analysis,
including cisheteronormativity in STEM instruction and perceptions of STEM ability linked to
race and gender. To explore variation in opportunities for intersectional support across different
universities in our study, one prompt included excerpts that featured reflections from QT
students of color in prior research about their experiences of campus climate and identity-related
support offerings at their institutions. We followed the presentation of these excerpts with
statements about the advancement of diversity and equity at participants’ home institutions.
These statements were used to probe the extent to which participants perceived opportunities for
identity support in their broader campus contexts influencing their STEM pursuits. After
participants were presented with each interview prompt, we asked them about their general
interpretations, degree of perceived relevance to their experiences, and recommendations for
increasing queer of color inclusion in relevant practices of STEM education.

To the best of our ability, each participant who completed Interview 2 was paired with at
least one other participant of a similar race-gender identity. Such identity-matching across the
group interviews was an attempt to avoid participants feeling their perspectives were tokenized
and create space for variation in responses to interview prompts among students with a similar
intersectional identity. When we conducted Interview 2 via Zoom with participants after the
onset of the COVID-19 pandemic, we also tried to have representation of participants enrolled in
different universities for each interview to allow for discussion of similarities and differences in
their STEM experiences across institutional contexts. We completed three group interviews with
Latin* QT participants who attended different universities but shared a similar race-gender
identity (namely, Latina cisgender women, mixed-race Hispanic and Latina cisgender women,
and Latine gender-expansive people). For example, the group interview for mixed-race Hispanic
and Latina participants included Erica (mixed, cisgender, bisexual Latina of Brazilian descent* in
Rivera University), Laura (Mexican and Chinese pansexual female at Ferguson University) and
Tamara (mixed-race Hispanic, Peruvian/white masculine woman lesbian at Moraga University).
Data Analysis

The research team used the framework of STEM Education as a White, Cisheteropatriarchal
Space (WCHPS, Figure 1; Leyva, 2021; Leyva, McNeill, Balmer, et al., 2022) to guide data
analysis. The WCHPS framework provides a lens for examining how interplay between racism
and cisheteropatriarchy in STEM educational contexts shapes intersectional experiences of
oppression and agency for multiply-marginalized individuals, including QT students of color.

4T use wording from participants in describing their identities.

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee
State University.

84



Each framework dimension (ideological, institutional, and relational) attends to a level of
influence in STEM education at which white cisheteropatriarchy (the juncture of white
supremacy and cisheteropatriarchy) impacts multiply-marginalized individuals’ experiences. The
ideological dimension addresses beliefs, norms, and values that organize STEM educational
practices. The institutional dimension explores structural inequities that constrain opportunities
for achievement and participation in STEM, in addition to forms of individual agency in
navigating such oppressive structures. The relational dimension addresses interactional forms of
oppression and agency in STEM education. These dimensions are interconnected, thus allowing
the WCHPS framework to examine how white cisheteropatriarchy shapes intersectionality of
STEM experiences in complex ways. Elsewhere (Leyva, McNeill, Balmer, et al., 2022), I
provide more details about developing the WCHPS framework.

Figure 1: Framework of STEM Education as a White, Cisheteropatriarchal Space

Data analysis was completed in four stages. First, the research team inductively coded
participants’ data to flag aspects of their mathematics experiences corresponding to each
WCHPS dimension. We coded for instances of oppression, supportive forms of structural
disruption, and agency across ideological, institutional, and relational levels of Latin* QT
students’ experiences. (See Leyva, Balmer, et al., 2021 and Leyva, McNeill, Balmer, et al., 2022
for more details about coding.) The second stage of analysis was constructing an analytical
narrative for each participant of navigating white cisheteropatriarchy in mathematical spaces as
Latin* QT students majoring in STEM. These narratives were developed by following the
critical race methodology of counter-storytelling (Soloérzano & Yosso, 2022), which centers
racially minoritized people's experiences of oppression for theorizing resistance to racism and
other interlocking systems of power. Each participant’s counter-story was structured around
oppression, structural disruptions, and agency across WCHPS dimensions identified in coding.

The third stage of analysis was identifying themes across the 16 Latin* QT participants’
counter-stories that address our two research questions. To address the first research question, we
identified themes about oppression through experiences of dissonance between participants’
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identities and mathematical contexts. We addressed the second research question by identifying
themes of agency specific to participants’ behaviors and motivations for navigating dissonance to
protect their Latin* QT identities and success as STEM majors. The fourth and final stage of data
analysis was interpreting the themes through the lens of borderlands theory (Anzaldua,
1987/2007) and its uptake in Latin* queer studies with an expansive theorizing of gender (e.g.,
Cuevas, 2018). In particular, the borderlands concept of Nepantla served to elucidate how
dissonance in Latin* QT participants’ mathematics experiences reflected liminality at the
juncture of power systems that limited full affirmation of their intersectional identities. Mestiza
consciousness supplied a lens to account for participants’ critical awareness of how white
cisheteropatriarchy operated in mathematical contexts, including how it was reinforced through
dissonant educational practices. The construct of la facultad elucidated Latin* QT students’
agency to manage dissonance in mathematics as a white, cisheteropatriarchal space. Overall, our
analysis captured how white cisheteropatriarchy in STEM educational contexts shaped the
borderlands of Latin* QT students’ intersectionality of mathematics experiences.

To sharpen our data analysis, the research team conducted member-check interviews with
available participants after data collection was complete. Eleven of the 16 Latin* QT students in
the study sample completed a member check. We structured member-check interviews in three
parts corresponding to each of the framework dimensions. During each interview part, the
interviewers read a section from the participant’s counter-story to convey our understanding of
oppression, disruptions, and agency at each level of the WCHPS framework. Participants, who
were positioned as experts of their lived experiences during the interviews, were prompted to
suggest edits and add content to ensure an accurate analysis in their counter-stories. The
interviewers also asked participants a series of questions to clarify and further elaborate on
important ideas raised in each counter-story section read to them.

Positionality

Our research team (one faculty member, three doctoral students, eight master’s students, and
two undergraduate students) are members of the Power, Resistance and Identity in STEM
Education (PRISM) Lab at Vanderbilt University. The team has robust social diversity across
intersections of race (African American, Black, Latin*, biracial, white), gender (cisgender,
nonbinary, transmasculine), and sexuality (demipansexual, gay, lesbian, pansexual, queer,
heterosexual, unsure). Most of the team collected and analyzed data from Latin* QT participants.
Milner’s (2017) framework on positionality in educational research guided the team’s self-
reflections to avoid dangers of approaching our study without consciousness for the influence of
our identities and experiences. These reflections avoided the seen danger of not interrogating our
respective areas of privilege and oppression. The team adopted an asset-based research approach
by making space for understanding Latin* QT participants’ agency and resistance in
mathematical contexts, thus avoiding the unforeseen danger of readers perceiving QT students of
color as powerless victims of oppressive educational systems. To mitigate the unseen danger of
misinterpreting participants’ sensemaking about intersectionality of their experiences, we
completed interviews and coding in pairs to have multiple researcher perspectives present in data
collection and analysis procedures. We also completed member checks described earlier to
strengthen the trustworthiness of our findings. Team members bracketed their lived experiences
from those of participants to avoid the unseen danger of distorting participants’ realities, all
while remaining critical of oppressive STEM structures and systems through use of the counter-
storytelling methodology. I avoided the unseen danger of flattening variation in oppression and
agency that Latin* QT students experienced by infusing voices from multiple participants in the

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee
State University.

86



findings, including a cross-case analysis of counter-stories for two participants with different
ethnoracial, gender, and sexual identities. Although this is a solo-authored piece, I solicited
feedback from team members who analyzed Latin* QT participants’ data to ensure the final draft
of our analysis accurately reflects our collective work.

Findings

Themes across the 16 Latin* QT participants’ counter-stories reflected how two
mathematical contexts shaped experiences of dissonance and agency: (i) curricula and instruction
and (i) peer relationships. To respect space limitations, I present themes about peer relationships
in this paper. I develop themes for curricula and instruction elsewhere (Leyva, 2022, 2023).

Half of the participants (Daniela, Erica, Koyotl, Laura, Ros, Steven, Teresa, Ximena)
reflected on how peer relationships produced dissonance with their Latin QT identities across
mathematical contexts. One theme was the lack of social diversity in STEM majors and
mathematics classrooms, which brought forth feelings of isolation and imposter syndrome as
well as struggles to build identity-affirming networks of support. Koyotl (he/him; Indigenous
American, gay, transmasculine person of Mexican descent; third-year computer science major in
Rivera University), for example, shared how the main impact of mathematics on his experience
as a computer science major was making him feel “lonely as a LGBTQ+ student in STEM”
(Autobiography). Being in mathematics classrooms, where he was the only queer student to his
knowledge and often felt “alone in a room full of white students” (Autobiography), brought him
to feel academically inferior to students from majority groups. Similarly, Erica (she/her; mixed,
cisgender bisexual Latina of Brazilian descent; third-year computer science major in Rivera
University) managed a sense of imposter syndrome due to a lack of peer diversity, which was not
the case at the community college from where she transferred and “actively [saw] older students
or more students of color” (Interview 1). She reflected on building a strong connection at the
community college with an older student who identifies as a lesbian in her pre-calculus course,
“We were able to connect over the fact that she was also around my age and came from an arts
[background]... That was a really great way of [feeling like] ‘Okay, well, clearly I’'m not the
only older student or I’'m not the only queer one’” (Interview 1). Opportunities to build diverse
networks of peer support in STEM were limited, which shaped dissonance in Erica’s experience.

The second theme specific to peer relationships was marginalization through interactions
during collaborations with peers in mathematical contexts, including microaggressions of ability
as well as instances of cisgender women being fetishized or hypersexualized. To develop this
theme, we look across counter-stories from two Latin* queer STEM participants (Ros and
Daniela). The counter-stories are structured in three parts. I open each counter-story with a short
biographical sketch of Ros and Daniela. To address the study’s first research question about
experiences of dissonance, the second part of each counter-story depicts peer relationships that
limited affirmation and support for Latin* queer participants’ identities as mathematics learners.
The final part of each counter-story answers the second research question about agency. In this
portion of the counter-stories, I account for participants’ behaviors and motivations for managing
and resisting dissonance through peer relationships to protect their identities and STEM success.
I conclude the findings section by applying borderlands theory and the WCHPS framework in a
cross-case analysis of Ros’s and Daniela’s counter-stories.
Ros’s Counter-Story

Ros (they/she/he) is a Mexican, bisexual, and genderfluid person majoring in mechanical
engineering as a senior in Rivera University. They saw themself as being female-presenting and
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recognized their privilege of passing as white. Family played a central role in Ros’s motivation
to succeed as a future engineer. They perceived their academic accomplishments as giving back
to their parents for their sacrifices, including how their mother was unable to use her computer
engineering degree from Mexico after immigrating to the U.S. Success in mathematics allowed
Ros to serve as a role model for younger cousins aspiring to become engineers, “The only
introduction my cousins and I had to it [calculus] was through media, and now it’s nice to be one
of the family members they can come to for help” (Autobiography). Ros felt a strong sense of
acceptance as a queer person from his family, which he described as different from “traditional
Latino ones” (Interview 1) where homophobia and transphobia rooted in religious beliefs
resulted in some of her Latin* friends being disowned or having their queerness disregarded.

In addition to family, peer relationships that affirmed Ros’s full identity as a Mexican queer
engineering student were important for Ros’s persistence in navigating the cisheteropatriarchal
culture of STEM. His most positive STEM educational experience was having a peer network of
support in high school engineering classes, which he described as “all Latinx and a few were
LGBTQ+ as well so [he] always felt like [they] were all on the same plane” (Autobiography).
Establishing such peer connections was more difficult as an engineering major with students
largely coming from white, wealthy backgrounds and where the space felt “very cishet male-
dominated... [and] very masculine” (Interview 1). As further developed in the remainder of
Ros’s counter-story, the exclusionary space of undergraduate STEM contributed to Ros’s sense
of vulnerability when meeting and working with unfamiliar peers in different contexts (e.g.,
study groups, engineering organization meetings). The constant threat of facing homophobic and
transphobic microaggressions about their academic ability and queer identity in peer interactions
shaped dissonance for Ros in mathematical spaces. To navigate such dissonance as a Latin*
queer student, Ros carefully studied unfamiliar STEM peers’ interactions to assess if they would
be accepting of their queerness before sharing their pronouns and discussing their identities.

Dissonant influences. Dissonance in Ros’s mathematics experience as a mechanical
engineering major arose from navigating cisheteronormativity in peer interactions. Ros described
how their queerness was often overlooked or stigmatized and how they felt underestimated in
terms of their academic ability. Ros described facing peers’ microaggressions about her
mathematical ability couched in humor, “I have heard some jokes along the lines of people
finding it interesting that I am skilled in math when ‘Queer people are bad at math’ is apparently
a stereotype” (Autobiography). He expressed uncertainty if such peer humor was coming from a
space of homophobia and transphobia or whether it served as a coping mechanism for fellow
queer students in STEM, “If you’re saying that weird gay joke, does that mean that you’re going
to be against my identity? Or is it one of those things where... you’re also queer and you’re just
joking about it to cope?” (Interview 1). The ambiguity of humor that invoked microaggressions
of mathematical ability produced dissonance in Ros’s experience as a queer engineer.

Queer oppression in peer humor was one aspect of a broader culture of cisheteronormativity
that Ros experienced in mathematical and scientific spaces. This oppressive culture made Ros
feel vulnerable to facing homophobia and transphobia when joining new STEM study groups
with unfamiliar peers. To illustrate, Ros recounted their most negative experience as a Latin*
queer student in STEM as being when they were misgendered and assumed to be straight during
a small study group session for an introductory calculus or physics course.

I went out of my comfort zone to sit at a group with people I didn’t know... all of which
seemed like cis men minus one woman. As we were getting along, the woman turned to me
and said something along the lines of ‘It’s nice to see another regular girl at these things, it’s
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always all guys or the girls who come are lesbians.’ It was really jarring to me because |
neither identify as a woman nor am [ straight so as she said this to me I had to sit with the
knowledge that my identity was something she was bothered by. And because I wasn’t
familiar with this group, I just chuckled awkwardly and switched the topic. (Autobiography)

The groupmate’s assumption that Ros was a cisgender, heterosexual woman suggests a feeling of
relief from patriarchal, male-dominated STEM spaces. At the same time, this assumption points
to the cisheteronormative culture of STEM that erases queer people as well as produces undue
labor for queer students like Ros about disclosing or concealing their gender and sexuality.
Building peer networks in STEM was a taxing endeavor for Ros in terms of constantly preparing
themself for students “making assumptions based on what you look like... [and] mak[ing]
comments that are probably going to be hurtful and homophobic and transphobic” (Interview 1).
The dissonance that Ros experienced as a queer person navigating cisheteronormativity in
STEM peer relationships also took form in campus meetings for identity-based engineering
organizations and programs. Although Ros felt a reprieve from the hypermasculinity of their
major in events for women in engineering, the focus on cisgender women produced tensions
about sharing their genderfluid identity and made them feel like an imposter, “When I do go to
events that are specifically for women, I’m kind of like, ‘Do I say that I don’t identify as a
woman? Does that make me not belong in this space even though I appear female?’” (Interview
1). Ros also felt conflict with her queer identity in the university’s chapter for the Society of
Hispanic Professional Engineers (SHPE). He described how SHPE’s strong focus on racial
affinity, in addition to traditional, culturally-mediated views on gender and sexuality among
student members, made expression of his queer identity inaccessible in this Latin* affinity space.

With SHPE, I didn’t so much expand on my gender and sexual identity because... everybody
in those spaces bonds over the fact that they identify as Hispanic or Latino, so it’s not as
prioritized. They are a little bit better about having pronouns available and all of that at some
of their meetings, but most of them, it’s just traditional. And there’s also this stigma... with
people who are more traditionally Hispanic... especially first-generation immigrants aren’t
always onboard and as progressive when it comes to gender and sexuality. (Interview 1)

SHPE, as a single-identity affinity space that left cisheteronormative beliefs of gender and
sexuality in Latin* culture uninterrogated, limited opportunities for Ros to find community with
Latin* peers that embraced her full identity. With Ros having received the “biggest backlash...
from people with Latino backgrounds against [his] sexuality” (Interview 1), including family
members in Mexico, he chose not to engage his queerness with SHPE peers. Dissonance between
Ros’s Latin* queer identity and STEM peer groups, including study groups and spaces for
identity affinity in engineering, limited peer support that affirmed their intersectional identity.
Agency. One strategy that Ros adopted to navigate cisheteronormativity in peer relationships
when working in study groups was not disclosing their queerness right away to protect themself
from homophobia and transphobia, “If I do go into these spaces, I’'m not really like, ‘Hey, these
are my pronouns. Please respect them. Please respect me.’ I’ll let you assume whatever you want
to assume” (Interview 1). Ros described entering new spaces of STEM peer collaboration as
“learning how to read the room and learning... what’s going to be acceptable and what’s not
going to be acceptable” (Interview 1) in terms of identity expression. Although Ros also
experienced transphobia during groupwork in high school, the presence of Latin* QT peers in
her engineering classes who “reaffirmed what [she] was feeling and helped [her] work through
that whole gender identity thing” (Interview 1) mitigated oppression in collaborations. With the
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challenge of building diverse networks of peers who would provide similar forms of support in
the engineering major, Ros readily concealed his queerness, much like he did when misgendered
in the study group, to cope with the dissonance experienced in STEM peer relationships.

Another behavioral strategy that reflected Ros’s agency in managing dissonance as a Latin*
queer engineering student was entering new spaces with unfamiliar individuals alongside peers
with whom they feel comfort and trust. Ros reflected on the significance of such peer
connections as a STEM major, “Making connections has been the biggest thing in finding
support with people that you feel comfortable with. It is one of the most essential things I've
found to try to get through college with my identities” (Interview 1). To illustrate, Ros developed
a close relationship with a queer classmate and SHPE leader whose openness about her identity
increased her comfort with attending SHPE meetings. This strategy of “mak[ing] a connection
first with the person before going into a space” (Interview 1) depicts Ros’s agency in protecting
himself from cisheteronormativity at intersections of STEM and Latin* cultures to overcome
dissonance that limited access to peer support networks across mathematical spaces.

Daniela’s Counter-Story

Daniela (she/her) is a bisexual, mixed-race Latina (Colombian/Cuban and white) in her third-
year as a computer science major at Lorde University. Being a mixed-race queer woman meant
that “the thing that impacts a lot of [her] experiences is a lack of identity” (Interview 1),
especially as someone who sees herself as “be[ing] a part of two cultures and then a part of
neither culture at the same time” (Interview 1). This sense of liminality in Daniela’s experience
made it initially difficult for her to find community on campus as a STEM student. At the same
time, Daniela faced peers’ racialized and gendered assumptions that her accomplishments were
not based on merit but rather affirmative action. This “recipe for imposter syndrome” (Journal)
as a mixed-race Latina in STEM made her feel constantly devalued and defeated.

In managing identity-specific challenges and academic struggle in computer science as a
difficult major, Daniela built a supportive community of diverse, like-minded peers in and
beyond the engineering school. She reflected on how such community supported her STEM
persistence as a mixed-race queer Latina, “If there are people that are like you, you can ask them
for help and form a community... If [ didn’t have an engineering community, I don’t know what
I would do. I’d probably fail” (Interview 1). She identified three sources of peer community: (i)
the university’s SHPE chapter; (i) a professional engineering fraternity; and (iii) a group of
women of color who met at a conference for gender equity in technology. Representation of
queer people and opportunities to exchange stories of identity-based struggles created space for
Daniela to comfortably engage her bisexuality in these STEM collectives, which contrasted her
STEM classroom experiences where “you leave yourself at the door” (Interview 1). SHPE was
also a space where she could be open about the “feeling of not fully being able to own up to
[being] Latinx” (Interview 1) and could learn more about Latin* culture, which she felt was
taken from her as a child raised to believe that being white was more socially acceptable. The
collective of women of color in technology fields, which included another queer student, was a
space for openly sharing and processing personal histories of misogyny in STEM. Daniela
described how this community of healing and empowerment in STEM conveyed how “from the
struggle you can form really good bonds with people” (Interview 1), which they sustained
through regular check-ins and sharing professional development resources.

I now highlight how peer relationships in mathematical contexts (namely, fetishizing and
sexualizing behaviors from male peers) contributed to Daniela’s experiences of dissonance as a
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mixed-race bisexual Latina in STEM, which exemplifies the gendered struggles she processed in
the women of color collective. Next, [ address Daniela’s agency in coping with such dissonance.
Dissonant influences. Daniela reflected on how the overrepresentation of white male
students in her mathematics classes made her hyperconscious of being fetishized and
hypersexualized when interacting with them. Such hypersexualization felt racialized to Daniela
as a mixed-race Latina, “In terms of my sexuality... I’ve had to be very conscious of people
fetishizing. So, it’s very common for guys to be, ‘Oh, I think Latinas are really hot, and I want
their mom to make me tacos,” which I find super offensive and creepy” (Interview 1). Daniela
described the risk of being hypersexualized when seeking male peers’ support with mathematics,
“I typically have to [ask] a man, who always makes a sexual advance on me... These advances
make it really hard to focus and feel comfortable in math classes. This is especially annoying
because math classes are incredibly difficult” (Autobiography). The discomfort Daniela felt from
being hypersexualized added to the challenge of understanding content in mathematics courses.
As a computer science major, Daniela was often one of the only women in collaborative
groups, which made her feel vulnerable to being hypersexualized, “If I'm working on an
assignment with a group of people, that group of people is going to be predominantly male, and
they’re all going to be making advances, typically. And that’s something that’s pretty
obnoxious” (Interview 1). To depict how “mathematics has always been an awkward
experience” (Autobiography) navigating male peers’ fetishization and hypersexualization, she
recalled being the only woman in a study group where one male placed his foot on hers to keep
her from moving away, another invited her to study in his room, and another asked for her phone
number. Male peers’ behaviors capture how Daniela was perceived as a sexual object before she
was seen as a mathematics classmate. Despite this discomfort, she reflected on the “pressure to
not turn guys down” (Interview 1) in her study groups and classes because rejecting their sexual
advances jeopardized access to peer support in mathematics. In the following section addressing
Daniela’s agency, I highlight how she strategically used her bisexuality to keep male peers
interested in helping her with mathematics despite their oppressive advances. The white,
heterosexual male gaze in mathematics, thus, shaped Daniela’s experience of dissonance as a
bisexual Latina navigating racialized fetishization and hypersexualization in peer relationships.
Agency. Agency in Daniela’s experience to protect her academic success in the masculinized
spaces of mathematics courses is reflected in strategic expressions of her sexual identity. She
shared how although claiming to be a lesbian could stop male peers from hypersexualizing her,
presenting as bisexual ensured that they would remain interested in her and continue to help her.

Maybe it would be easier if I just told them that I was a hundred percent lesbian, not
interested in them, and they wouldn’t make advances at all. But then I also consider, maybe
then they wouldn’t help me study, you know? And then they wouldn’t be interested in
assisting me anymore, or interacting with me anymore. (Interview 1)

Daniela used her bisexuality strategically by playing into male classmates’ fetishization and
hypersexualization as a way of maintaining access to peer support in mathematics. Such agency,
while protective of Daniela’s academic success, reinforced dissonance in her STEM experience.
Another way that Daniela exhibited agency in managing unwanted sexual attention was
toning down feminine self-expression through dress, particularly in STEM classrooms where she
was underrepresented as a femme Latina. Daniela described preferring to wear crop tops and
artsy, quirky clothing that departed from what she described as the “engineering uniform”
(Interview 1), a hoodie and T-shirt. However, she worried that her preferred dress would make
her hypersexualized and subjected to negative judgment from STEM peers and faculty as “some
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dumb girl that is dressed inappropriately for class” (Interview 1) who put more attention into her
appearance than academics. As a result, Daniela saw sacrificing her femininity through dress as
protecting her not only from being hypersexualized, but also having her intellect undermined.

One thing I leave of myself behind is... I don’t wear the clothes I wanted to wear to school a
lot because... I don’t want other students to think I look dumb... If you look like you took
care of yourself [as an engineering student], people say you’re not smart... I also don’t want
to be wearing anything that could possibly be sexualized by people. (Interview 1)

Making intentional choices of dress was a strategy that Daniela adopted to protect herself from
the dissonance between her intersectional identity and masculinized environments of STEM
classrooms. By “going for as asexual as possible in classes” (Interview 1), Daniela’s dress
captured a self-preserving form of agency in response to how femininity was disassociated from
STEM ability as well as male peers’ racialized hypersexualization in mathematical contexts.
Although Daniela’s selectivity in dress alleviated dissonance rooted in the white, heterosexual
male gaze in classrooms, she had to sacrifice aspects of her identity for such self-preservation.
Cross-Case Analysis

Looking across Ros’s and Daniela’s counter-stories through the lens of borderlands, their
experiences of dissonance in peer relationships demonstrate Nepantla through a sense of
liminality about bringing their full Latin* queer identities into mathematical contexts, especially
collaborative settings like study groups. Ros’s and Daniela’s experiences at the juncture of
racism and cisheteropatriarchy (e.g., navigating culturally-mediated tensions of disclosing
queerness in SHPE, managing racialized fetishization from male peers) made them feel a sense
of being “neither here nor there.” The counter-stories also depict mestiza consciousness through
critical awareness of the white, cisheteropatriarchal gaze in peer interactions that shaped
dissonance across the intersectionality of their experiences. This awareness also informed agency
or la facultad in using their motivations and strategic forms of self-expression to protect their
Latin* queer identities and ensure academic success. In what follows, I develop two conclusions
from a cross-case analysis of Ros’s and Daniela’s counter-stories through the lens of borderlands
and the WCHPS framework. These conclusions address how Latin* queer students’ experiences
of dissonance and agency exemplify navigating the borderlands of mathematics education as a
white, cisheteropatriarchal space across ideological, institutional, and relational levels.

First, the counter-stories show how dominant constructions of mathematics and STEM as
neutral can leave racialized, cisheteropatriarchal climates of educational contexts unchallenged.
Daniela’s perception of STEM classrooms as disconnected from identities and social
experiences, for instance, left her grappling with the liminality of being a mixed-race queer
Latina struggling to find socially-affirming community as a computer science major. She
ultimately found relational support in STEM co-curricular contexts, including SHPE and a
conference for gender equity in technology fields, that made space to process her experiences of
Nepantla and coming into her intersectional identity. These spaces, thus, disrupted ideological
notions of STEM as neutral to offer Daniela opportunities to heal from the dissonance of being a
mixed-race queer Latina in computer science. Unfortunately, such ideological disruptions were
absent in formal institutional contexts, including peer collaboration in mathematics courses, that
subjected Daniela to being fetishized and hypersexualized as a queer woman of color working
with predominantly white, heterosexual male peers. Daniela’s awareness of the white,
cisheteropatriarchal gaze across classrooms and groupwork in mathematics illustrates mestiza
consciousness that guided her agency (la facultad) through strategic self-expression in dress and
disclosure of her queer sexuality. Ros’s counter-story similarly depicts such awareness of facing
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intersectional marginalization as a Mexican genderfluid, bisexual person in STEM peer
interactions where homophobic and transphobic perspectives went unchecked (e.g., jokes about
queer people lacking mathematics ability, having their queer identity overlooked in SHPE
meetings). Both counter-stories capture how ideological assumptions of neutrality in
mathematical spaces can perpetuate Latin* queer oppression in exclusionary climates of peer
relationships linked to a lack of social diversity (institutional influence) and toxic interactions
involving microaggressions of ability and sexual harassment (relational influences). Therefore,
being at the borderlands for Daniela and Ros as Latin* queer STEM majors meant managing
oppressive peer relationships reinforced through assumptions of mathematics as a neutral space.
Second, both Latin* queer students’ counter-stories portray the undue cognitive labor placed
upon them to adopt strategies for protecting their identities and success across oppressive
contexts of peer relationships in mathematics. To illustrate, Ros’s keen awareness of how
homophobic and transphobic ideologies influenced peer interactions, such as their most negative
STEM experience of being misgendered and assumed to be straight in a study group, taxed them
with the burden of concealing their queerness until peers said or did something that signaled
being accepting of their genderfluid and bisexual identities. Ros exhibited similar awareness of
the cisheteropatriarchal culture in the SHPE organization that informed her decision to attend
meetings when accompanied by a peer with whom she can confide her queer identity. Critical
awareness of study groups and SHPE meetings as potentially oppressive spaces depicts Ros’s
mestiza consciousness that led to investing cognitive energy in determining how to present
himself with unfamiliar peers and ensuring the presence of queer-affirming peers for his safety.
While these behavioral strategies depict agency or la facultad from Ros in managing queer
marginalization through peer relationships, such self-protection came at a cost with Ros only
being able to embrace certain aspects of their identity as a Latin* queer student in STEM.
Daniela faced a similar reality in terms of sacrificing her gender expression through feminine
dress to protect herself from hypersexualization in mathematics classrooms. Furthermore, Ros’s
counter-story conveys how institutional spaces of identity support for STEM majors often failed
to account for experiences of queerness and intersectionality. The cisnormative framing of
gender support in programs for women in engineering left Ros with a sense of liminality as a
genderfluid person who presents as female and the labor of concealing their queerness to avoid
being deemed as not belonging. She described how tensions of being a queer SHPE participant
were due to traditional views of gender and sexuality in Latin* culture that also shaped dismissal
of her sexuality from family, specifically cousins living in Mexico who were also sources of
motivation for excelling in mathematics. Ros’s liminality in SHPE and programs for women
engineers captures his experiences of Nepantla in terms of being “neither here nor there” as a
beneficiary of institutional support. The affirmation that Ros felt for their full identity from
immediate family and in high school engineering with Latin* queer peers was missing. Ros,
thus, was taxed with the same cognitive labor of protecting their queerness in peer collaborations
for mathematics coursework even in institutional spaces like SHPE designed to resist oppression
in formal STEM contexts. The labor imposed on Ros and Daniela to cope with intersectional
oppression across peer relationships in groupwork and co-curricular programs reflects realities at
the borderlands with needed disruptions of white cisheteropatriarchy in mathematical contexts.

Discussion
The present study’s scholarly significance is twofold. First, the focus on Latin* queer
students contributes insights about intersectionality that went unexamined in research about
Latin* students and QT students in undergraduate STEM (e.g., Convertino et al., 2022; Hughes,
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2017 McGee, 2016). Findings uncovered intersectional forms of dissonance that Ros and Daniela
managed between their Latin* queer identities and peer relationships in mathematical spaces. For
example, Daniela’s counter-story depicts her strategic ways of sharing her queer sexuality and
expressing her gender through dress to navigate the white, cisheteropatriarchal gaze in
mathematics courses, which subjected her to unwanted sexual attention from male peers who
were also sources of academic support. Second, representation of Latin* gender nonconforming
students in the study extends understandings of gender equity in mathematics education. Over
the years, equity-oriented research in mathematics education has framed gender as a binary and
disconnected from other dimensions of social experience, including race and sexuality (Leyva,
2017; Leyva & Mahtab, in press). By centering intersectionality of mathematics experiences for
Latin* students with queer gender identities, this study disrupts the long-standing erasure of
trans* and nonbinary students of color in mathematics education for more complex insights on
how racialized forms of trans* oppression impact gender equity. To illustrate, Ros’s counter-
story conveys struggle in finding peer support across study groups and pre-professional
engineering societies that affirmed their genderfluid identity. Along with feeling like an imposter
in programs for women in engineering that mainly catered to cisgender women, Ros felt tensions
about participating in SHPE where cisheteronormative ideologies of gender and sexuality in
Latin* culture influenced their perceptions of peers’ acceptance of their queer identity.

Findings from the present study raise implications for research to generate more nuanced
insights into Latin* QT students’ intersectionality of mathematics experiences. One implication
is exploring how differences in ethnoracial backgrounds, immigration history, and ability to pass
as white, cisgender, and/or heterosexual shape variation in intersectional oppression and agency.
Although Ros and Daniela both identified as members of the Latin®* community, their racialized
experiences differed. Social norms of gender and sexuality in Mexico shaped Ros’s concerns
about facing homophobia and transphobia from cousins living there, which can be likened to the
vulnerability he felt about engaging his queerness with Latin* engineering peers. Daniela’s
upbringing in a mixed-race household with Colombian-Cuban and white parents, who she felt
distanced her from Latin* culture, produced conflict in identifying as Latina. Peer relationships
in SHPE helped her come into her intersectional identity and overcome struggles in finding
community as a mixed-race, queer woman in STEM. Future research that continues unpacking
within-group differences in participants’ racial backgrounds, including mixed-race experiences,
disrupts monolithic representations of Latin* QT students in mathematics and contributes robust
understandings of intersectionality for this population. A second implication for research is
further exploring variation in Latin* QT students’ intersectionality of mathematics and STEM
experiences across different types of higher education institutions, including HSIs. Although Ros
attended a HSI with a mission for providing culturally-affirming opportunities to Latin* students,
the cisheteropatriarchal culture of STEM environments, even in spaces of racial affinity like
SHPE, limited their access to networks of peer support like they had in high school engineering,
This finding illustrates the importance of future research that continues to explore how structures
and practices at HSIs and other institutions with missions for serving minoritized populations
(e.g., women’s colleges) disrupt intersectional marginalization in mathematics classrooms and
other STEM contexts for Latin* QT students. Such research in HSIs responds to calls for insights
about queer-affirming institutional support that serve Latin* QT students (Vega et al., 2022).

The study’s findings also raise implications for educational practice. Both counter-stories
addressed peer collaboration for mathematics coursework as a context where participants
experienced dissonance with their Latin* queer identities. This finding points to the importance
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of instructors co-constructing norms of collaboration with their class that resist influences of
white cisheteropatriarchy and expand Latin* QT students’ comfort with groupwork. Examples of
norms include students reflecting on how much space they have occupied, checking in on
students who have not shared ideas, using peers’ chosen names and pronouns, and avoiding
assumptions of peers’ gender, sexual, and other identities. These norms foster accountability to
ensure that group members, including Latin* QT students, feel safe and comfortable to
participate. This accountability alleviates the vulnerability that Ros and Daniela reported about
navigating racialized-gendered judgments of ability, possibilities of being hypersexualized, and
uncertainties of homophobia and transphobia that negatively impacted their experiences in peer
collaboration. Instructors can ensure students engage in alignment with co-constructed norms by
re-visiting them as a class when they observe groups departing from them, modeling norms
through behavior and discourse during instruction, and encouraging adoption of these norms to
structure collaboration in peer study groups and other contexts outside of the classroom.

Another practice implication is adopting an expansive approach to identity-based support in
affinity spaces for STEM majors from historically marginalized groups. Findings captured
limitations to peer support that participants experienced in spaces like SHPE and programs for
women in engineering, where they were unable to bring their full intersectional identities as
Latin* queer individuals. Leaders for STEM affinity spaces must interrogate how they frame
gender inclusion to avoid reinforcing cisnormative exclusion like Ros had experienced. In
addition, the design of STEM affinity spaces for Latin* students (e.g., SHPE) and QT students
(e.g., Out in STEM) must give explicit attention to experiences of intersectionality to ensure a
robust sense of inclusion and support for Latin* QT students. Daniela’s ability to process
complexities of being a mixed-race queer Latina in SHPE exemplifies how such intersectional
support was available to her in a space for racial affinity.

Conclusion

This study portrays undergraduate Latin* QT students’ experiences at the borderlands as
aspiring STEM majors navigating white cisheteropatriarchy in mathematical contexts. Ros’s and
Daniela’s counter-stories shed light on dissonance between their intersectional identities and
exclusionary peer relationships, in addition to their individual agency for coping with such
dissonance to protect their identities and success in STEM. With participants’ accounts of agency
involving the sacrifice of their queer identities, disruptions of mathematics education as a white,
cisheteropatriarchal space are needed to advance intersectional justice for Latin* QT students.
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Curriculum, Assessment, and Related Topics
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“MIRROR LOGIC”: A PRESERVICE MATHEMATICS TEACHER’S THINKING
ABOUT RADIAN IN THE CONTEXT OF LIGHT REFLECTION

Hanan Alyami Lynn Bryan
Purdue University Purdue University
alyamih@purdue.edu labryan@purdue.edu

Integrated science, technology, engineering, and mathematics (iSTEM) education allow learners
to utilize multiple disciplinary perspectives. However, the discipline of mathematics remains
underrepresented in iSTEM curriculum. To explore the nature of mathematical thinking with an
iISTEM curricular approach that emphasizes mathematics, we investigated the thinking of a
preservice mathematics teacher, Alex (pseudonym), who engaged in a task-based digital activity
involving radian angle measure in the context of light reflection. Findings suggest that Alex’s
ways of thinking comprise mathematical terminology, concepts, and processes, including
mathematical ways of thinking about light reflection. The findings in this report suggest that
emphasizing mathematics in this iSTEM context provided an opportunity for new ways of
thinking about radian angle measure, and about how angle measure relates to light reflection.

Keywords: curriculum, geometry and spatial thinking, integrated STEM

Despite more than a decade of science, technology, engineering, and mathematics (STEM)
reform initiatives toward integrated STEM (iISTEM) approaches (National Academy of
Engineering [NAE] and National Research Council [NRC], 2014; National Council of
Supervisors of Mathematics [NCSM] and National Council of Teachers of Mathematics
[NCTM], 2018; NRC, 2013), the underrepresentation of mathematics in iSTEM education
curriculum remains (English, 2016; Fitzallen, 2015). Given the need to develop iSTEM
curriculum where mathematics holds equal importance as other disciplines (Baker & Galanti,
2017), it is incumbent upon educators to find ways of foregrounding mathematics within iSTEM
experiences to better develop learners’ understanding not only of core mathematics content and
practices but also about how core mathematics content and practices meaningfully relate to other
disciplines. English (2016) and Fitzallen (2015) called for approaches that address how
mathematical concepts and practices contribute to the learning and understanding of other STEM
disciplines in iISTEM instructional contexts. Additionally, Li et al. (2019) called for research that
attends to how thinking in content-based approaches relates to thinking in other disciplines. We
take up these calls (English, 2016; Fitzallen, 2015; Li et al., 2019) with purposeful attention to
situating mathematics as pivotal in the iISTEM experience. We argue that iSTEM experiences
that foreground mathematics can contribute to mathematical thinking, and we consider how
mathematical thinking relates to other STEM disciplines. We specifically explore a preservice
mathematics teacher’s [PMT’s] thinking about the mathematical concept of radian angle measure
in the context of light reflection. The research question guiding this report is “What ways of
thinking does a PMT demonstrate upon interacting with a digital task that involves radian angle
measure and light reflection?”

Theoretical Framing
To answer the research question, we took a constructivist perspective (Schunk, 2012) on the
construct of thinking, and spatial thinking in particular, which we describe in the following
sections. Additionally, we clarify our perspective and definition of iSTEM curricular approaches.
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iISTEM Curriculum

Curricular approaches that involve iSTEM have been defined in various ways in the literature
(Navy et al., 2021), with teachers, administrators, and policy makers having different views on
iISTEM education (Breiner et al., 2012; Holmlund et al., 2018). In this report, our perspective of
1ISTEM curriculum involves instructional activities with learning goals of content and/or
practices from one or more of the STEM disciplines, as anchors, along with engineering and/or
engineering design practices, as integrators. Additionally, iISTEM curriculum activities involve
opportunities to emphasize twenty-first century skills in a real-world, authentic context, to be
solved through collaboration, communication, and teamwork (Bryan & Guzey, 2020).

There are many challenges when it comes to implementing iISTEM curricular approaches
(English, 2016; Fitzallen, 2015). One of these involves distinctions in the knowledge base
between disciplines (Williams et al., 2016). For example, discipline-specific words have explicit
definitions and are used in unique ways in that discipline (Morgan & Sfard, 2016) despite use
and overlap of such words in other disciplines. For example, the light reflection principle (Figure
1) is understood as the equality of the angle of incidence and the angle of reflection relative to a
perpendicular to the mirror known as the normal (o = ). The light reflection principle can also
be understood as the equality of the angles of incidence and reflection relative to the mirror (y =
d). In this context, the term normal line refers to perpendicularity in relation to the scientific
phenomenon of light reflection. A person with a mathematical perspective might refer to the
normal line in the context of light reflection, using its mathematical property of perpendicularity,
rather than using the term itself.

Figure 1. Demonstration of the principle of light reflection

Despite the challenges, research and reviews have reported the effectiveness of iSTEM
education approaches on learners’ engagement, motivation, interest in STEM, and increased
mathematical achievement (Honey et al., 2014; Stohlmann, 2018; Zhong & Xia, 2020).
However, little is known about learners’ mathematical thinking as they engage in iSTEM
instruction (Li et al., 2019). Hence, this study focuses on the ways of thinking that are involved
in an iISTEM task that involves radian angle measure and light reflection.

Ways of Thinking

Our definition of ways of thinking builds on Harel’s (2008) description of thinking as a
learner’s established cognitive characteristics, and Thompson et al.’s (2014) extension of Harel’s
(2008) definition, where thinking is the consistency in a learner’s reasoning about mathematical
situations. Building on these descriptions, we interpret ways of thinking as the thought patterns a
learner demonstrates when reasoning about a particular concept given a specific situation that
evokes such reasoning. For example, researchers demonstrated that PMTs think of radian angle
measure as angles expressed in terms of w (Akkoc, 2008; Fi, 2003). Additionally, Moore et al.
(2016) reported that PMTs’ thinking about radian angle measure incorporates a unit circle
diagram (Figure 2) to perform calculations. These studies suggest that through their prior
coursework and experiences, PMTs may have developed a thought pattern to reason about radian
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angle measure. Such reasoning makes the use of special angles expressed in terms of w, and/or
using calculational strategies an established way of thinking about radian angle measure.

Figure 2. A typical diagram of the unit circle

Spatial Thinking

We characterize ways of thinking with particular attention to spatial ways of thinking.
Commonly known as spatial reasoning, we use the term spatial ways of thinking to refer to
thought patterns that include “the ability to recognize and (mentally) manipulate the spatial
properties of objects and the spatial relations among objects” (Bruce et al., 2017, p. 146), through
“a collection of cognitive skills comprised of knowing concepts of space, using tools of
representation, and reasoning processes’” (NRC, 2006, 12). Spatial thinking is associated with
various disciplines and is correlated with achievements in both mathematics (e.g., Clements &
Sarama, 2009; Mix, 2019; Mulligan et al., 2018), and other STEM disciplines (e.g., Newcombe,
2010, 2013; Newcombe & Shipley, 2015; Pruden et al., 2011). However, there are few
opportunities for students to engage in spatial thinking in school (Clements & Sarama, 2011;
Sinclair & Bruce, 2015; Whiteley et al., 2015). Because spatial thinking is associated with
achievements in mathematics in addition to achievements in other disciplines (Bruce et al.,
2017), it is appropriate to investigate the ways of thinking involved in an iSTEM curricular
approach with attention to spatial ways of thinking.

While spatial thinking is usually associated with visualization, Whiteley et al. (2015)
suggested addressing and legitimizing broader spatial ways of thinking, including symmetrizing,
comparing, decomposing-recomposing, situating, orienting, and scaling. We describe these
spatial ways of thinking in the methods section (Table 1), however, we note that the spatial ways
of thinking we mentioned do not represent all spatial ways of thinking, nor do they exist in
isolation of each other and/or other ways of mathematical thinking (Davis et al., 2015). For
example, Munier and Merle (2009) built on NCTM’s (2000) recommendation to interrelate
geometry and spatial thinking to provide 3-5 graders the opportunity to explore angle measure
through physics-based teaching sequences, one of which included light reflection. Through an
iterative process of spatial experimentation and geometric knowledge development, the 3-5
graders were able to discover light reflection principle, by attending to the symmetry between the
angle of incidence and the angle of reflection relative to the mirror (y = & in Figure 1). This
illustrates students’ use of symmetrizing as a form of spatial thinking in conjunction with the
notion of angle as a form of mathematical thinking to discover light reflection principle.
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Methods
Research Design

We employed a qualitative case study design (Flyvbjerg, 2011) to examine a PMTs
mathematical thinking during a lesson that was part of an iISTEM unit embedding the design of a
periscope (Alyami, in-press). The lesson entailed a digital task that involved radian angle
measure in the context of a light reflection scenario (described further in the following section).
Participant and Task

The PMT participating in this study was Alex (pseudonym), who was enrolled in a
mathematics teacher preparation program at a large Midwestern university. Alex volunteered and
was compensated for his time after the first author briefly presented the opportunity in his
secondary mathematics methods course. While Alex likely encountered the concepts of radian
angle measure and light reflection during his K-16 schooling, he was not offered a formal
learning session about radian or light reflection prior to participating in this study.

A Desmos activity (i.e., Radian Lasers) comprised the task in this report, where Alex typed
values of angle measure (in radian) to adjust a laser and one or two mirrors so the laser beam
would successfully pass through three stationary targets at once (Figure 1). The angles of the
laser and the mirror are relative to the horizontal and in standard position, where positive angle
values are counterclockwise and negative angle values are clockwise. The task consisted of two
warm-up activities to familiarize Alex with the functionality of the digital interface, followed by
six challenges. A benefit of the Radian Laser task is that the angles needed to situate the mirror
were not limited to the common special angle (e.g., n/6, n/3, n/2). For example, one way of
solving Challenge 1 is by positioning the laser upwards at an angle that is 5n/6 radian, with the
mirror angled at a 5/12 radian, which is not a common special angle (Figure 4).

Figure 3. A challenge from the Radian Lasers activity

Figure 4. Challenge 1, where the angle of the mirror is not a common special angle

Following principles of structured, task-based interviews (Goldin, 2000), Alex engaged with
the Radian Lasers task in a semi-structured, think-aloud interview setting, where he could use his
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own language to make sense of the task (van Someren et al., 1994). The semi-structured setting
provided an opportunity to ask for elaborations (e.g., How do you know that? How would you
represent your thinking?), which were informed by the responses Alex provided throughout the
interview to encourage him to clarify his thinking.
Data and Analysis

The think-aloud, semi-structured interviews, led by the first author, took place virtually, were
video recorded, and lasted approximately one hour. The interview video and time-stamped
transcript comprise the data for this study. To analyze the data, the first author used a whole-to-
part inductive approach for coding (Erickson, 2006), beginning with playing and watching the
whole video without coding, stopping, or pausing. Then, NVivo software was used to code the
media file, as described by Wainwright and Russell (2010). At this stage, the unit of analysis
consisted of one or more sentences that formed coherent statements in which Alex described his
thinking about how to reposition the angle of the laser and/or the mirror. To further analyze these
statements, we used thematic analysis, which is a coding strategy that involves identifying
themes in the data that are informed by the research questions, theoretical framework, and
literature review (Saldana, 2013). Specifically, we coded Alex’s statements with attention to
spatial ways of thinking described in Whiteley et al. (2015). As part of thematic analysis, we
were open to the development of new categories that emerged from the data. Table 1 contains the
codes that were evident in the data.

Table 1: Coding Scheme of All Spatial Ways of Thinking Utilized by Alex

Code Description

Locating Thinking about where objects are situated and/or positioned.

Orienting Thinking of how objects are situated and/or positioned in relation to each other.

Comparing Thinking about angle size in relation to itself or another angle (bigger, smaller, etc.)

Decomposing- Thinking of a whole as spatially broken into a specific number of parts, and/or

Recomposing spatially adding up parts to form a specific whole.

Symmetrizing Thinking and applying properties such as congruence and symmetry with similar
parts spatially facing each other around an axis.

Visualizing Thinking visually of geometric objects and managing their characteristics.
Includes: Managing both visible and imagined visual information.

Diagramming Thinking of and managing geometric objects and patterns through drawing

Includes: Gestures depicting semantic content (e.g., tracing angles as if to represent
the angles on a typical unit-circle diagram) (Sinclair et al., 2018).

After coding all the transcript, the first author reviewed statements that were coded with
multiple codes to provide a meaningful interpretation of the coded data “so that more can be
gleaned from the data than would be available from merely reading, viewing, or listening
carefully to the data multiple times” (Simon, 2019, p. 112). To answer the research question and
provide evidence for our argument, the interpretation of the data focused on Alex’s ways of
thinking in relation to radian angle measure, and in relation to light reflection.

Findings
We describe in this section the mathematical and spatial ways of thinking Alex demonstrated
upon engagement with the digital task, Radian Lasers. To argue that this iSTEM experience,
which foregrounds mathematics, contributes to mathematical thinking and brings mathematics in
relation to other STEM disciplines, we organize the two sections of the findings to start with
Alex’s ways of thinking in relation to radian angle measure. We then describe his ways of
thinking in relation to making sense of light reflection.
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Ways of Thinking about Radian Angle Measure Beyond the Special Angles

Since the angles needed in Radian Lasers are not limited to common special angle (e.g., 7/6,
n/3, w/2), Alex needed to think beyond the special angles commonly represented on a typical
diagram of the unit circle (Figure 2). When a challenge required a noncommon angle, Alex
estimated the measure of angle based on spatial comparisons and estimating the angles in
between. For example, to reason about Challenge 1 (Figure 4), Alex initially situated the mirror
at /3 radian (left side of Figure 5), and noted that “the laser is hitting the mirror at a
perpendicular angle ... and that tells me that this angle needs to be slightly bigger.” The previous
statement suggests that Alex is observing the result of situating the mirror at n/3 radian angle,
and then comparing the size of the resulting angle in relation to the angle that would lead the
laser to hit the third target. Alex then entered n/2 for the mirror (right side of Figure 5), as he
stated that “maybe n/2 would increase the angle,” which caused the laser to reflect beyond where
the third target is located. Upon missing the third target, Alex said “Okay, so I know it’s between
n/3 and /2.”

Figure 5. Alex’s trials of /3 & /2, sending the laser respectively below & above the target

However, Alex was not familiar with a special angle that is between n/2 and n/3, and asked
the first author if he could try an input such as 2.57/6 for the angle. When he entered 2.57/6, he
observed the laser hit the third target. The interviewer asked Alex to explain why he questioned
his ability to use the fraction, 2.5m/6. Alex explained:

The 2.57/6 was not like an option in my head because that’s not, like one of the things that
are usually mentioned or like associated with like radians. The reason why I got there is
because I knew it was in between /2 and /3 but with the list of all, like the radians that I
know, /2 and n/3 are, like right next to each other, and there's, like no whole number & over
anything in between those two numbers.

Alex’s explanation is in reference to a typical diagram of a unit circle (Figure 2), where n/3
and n/2 are represented without depicting other angles between them. Alex recognized the need
for an angle between n/3 and n/2, which led him to try the value between 2n/6 and 3n/6. He
concluded that the angle would be 2.57/6.

Mathematical Ways of Thinking about Light Reflection

In this section, we provide an analysis of Alex’s ways of thinking as he makes sense of the
scientific phenomenon of light reflection. We describe Challenge 3 of the Radian Lasers which
could be solved by positioning the laser downward at an angle that is -n/6 radian, with the mirror
being angled at a 5n/12 radian, to reflect the laser beam to the third target at the bottom (Figure
6).
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Figure 6. A possible solution for Challenge 3 from the Radian Lasers task

Alex used diagramming to represent his visualization of the challenge as alternate interior
angles, then extended his diagramming with a focus on the mirror (Figure 7). Alex explained that
“this entire thing [points to the mirror in Figure 7] is m, and so then I tried to find out what these
two [the angles of incidence and reflection relative to the mirror] would be remaining, and I got
... 5m/12 because there’s two of them so I have to split the angle in half, because these two
angles are equal.” Alex’s explanation of the mirror as a straight angle where its measure
represents the “entire thing is m,” suggests his thinking about the straight angle as a whole. Alex
then decomposed the straight angle into /6, which he concluded from the alternate interior angle
theorem, and two angles that “would be remaining.” Alex’s elaboration demonstrates his
attention to symmetry as he has “to split the angle in half because these two angles are equal.”

Figure 7. Alex’s diagramming of Challenge 3 of the Radian Lasers

This example illustrates Alex’s mathematical ways of thinking to make sense of the angle at
which to situate the mirror. Alex’s ways of thinking involved mathematical concepts (i.e.,
alternate interior angles), as well as various spatial ways of thinking (i.e., diagramming,
decomposing, and symmetrizing). Alex went further to describe the light reflection principle
from a mathematics perspective. Specifically, when Alex described his diagramming for
Challenge 3 (Figure 7), he pointed at the angle the laser makes with the mirror upon reflection
and stated, “this whole entire angle is 7/6. I know the bisector, it, each angle would be like 7/12.
Then I know that this angle bisector is perpendicular with, you know, the mirror.” Alex’s
description of the bisector of /6 as “perpendicular” to the mirror illustrates his mathematical
thinking about the science of light reflection, which he referred to as “adjust[ing] for mirror
logic.” The significance of the angle’s bisector is because the angle the laser makes upon
reflecting from the mirror (i.e., n/6) is the sum of the angles of incidence and reflection relative
to the normal (y = § in Figure 1). However, Alex described the mathematical property of the
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normal line as perpendicular to the mirror, instead of using the science terminology. Alex’s
explicit description of the science of light reflection through his mathematical perspectives was
not elicited by the interviewer. Alex utilized his mathematical ways of thinking to make sense of
the principle of light reflection. While Alex did not explicitly use the terminology, “angle of
incidence” or “angle of reflection,” he was meaningfully incorporating mathematical thinking to
make sense of the science of light reflection.

Discussion

To date, there are few iISTEM curriculum materials that emphasize mathematical concepts as
the anchor discipline (English, 2016; Fitzallen, 2015), despite evidence of the benefits of iISTEM
curricular approaches on mathematical achievement and development of mathematical
understanding (Stohlmann, 2018). Additionally, there are few opportunities to engage in spatial
thinking in schools (Clements & Sarama, 2011; Sinclair & Bruce, 2015; Whiteley et al., 2015),
despite the role of spatial thinking in understanding both mathematics (e.g., Mix, 2019) and other
disciplines (e.g., Newcombe & Shipley, 2015; Pruden et al., 2011). Our report illustrates a
purposeful integration approach with a focus on mathematics in the context of science within an
iISTEM unit. We argue that iSTEM experiences that foreground mathematics can meaningfully
contribute to mathematical thinking, in addition to enhancing how mathematics relates to other
STEM disciplines. The Radian Lasers as an iSTEM approach that emphasized mathematics
provided Alex, a PMT, the opportunity to utilize mathematical and spatial ways of thinking
about radian angle measure (e.g., alternate interior angle, perpendicular lines, angle bisector,
visualization, diagramming, comparing), and to relate angle measure to light reflection principle.

Previous studies suggest that PMTs’ thinking about radian angle measure is limited to special
angles expressed in terms of w (Akkoc, 2006; Fi, 2003) and calculational strategies using the unit
circle (Moore et al., 2016). Similarly, Alex initially referred to some of the special angles on the
unit circle. However, the Radian Lasers task constrained these established ways of thinking as
Alex was not able to only depend on few special angles. Alex used spatial comparison to think
beyond the special angles that are associated with the unit circle. This suggests that the Radian
Lasers as an iSTEM activity that focused on radian angle measure in a science context provided
an opportunity for Alex to reason about radian angle measure beyond the special angles. Alex’s
use of multiple spatial ways of thinking reflects Davis et al.’s (2015) discussion that the spatial
ways of thinking do not exist in isolation of each other and/or in isolation of other mathematical
ways of thinking. Specifically, to reason about the functionality of the mirror, Alex used
diagramming as a spatial way of thinking in relation to a mathematical concept (i.e., alternate
interior angle theorem), and in relation to other spatial ways of thinking (i.e., Symmetry and
Decomposing-Recomposing).

Alex’s mathematical ways of thinking assisted him in not only applying mathematical
content and processes (e.g., alternate interior angles, spatial thinking), but also in making sense
of light reflection. The iISTEM activity in which Alex engaged brought mathematics to bear in a
situation that represents a scientific phenomenon, which allowed for the construction of a
relationship between a scientific phenomenon and a mathematical concept. Our findings align
with English (2016) and Fitzallen’s (2015) call for educators and curriculum developers to
capitalize on iISTEM approaches that emphasize mathematics, as well as Li et al.’s (2019) call
for research that explores thinking in iSTEM contexts. The report illustrates how iSTEM
approaches that foreground mathematics have the potential to support learners’ thinking of not
only mathematical content, but also meaningful mathematical applications and connections to
other STEM disciplines.
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This paper explores how a professional learning community (PLC) redesigns high school
mathematics lessons towards a shared commitment. We describe the nature of a PLC'’s collective
curricular vision to illuminate how teachers can come to new understandings as a group in
order to shift the ways students experience mathematics. Using the curricular noticing
framework (attending, interpreting, and responding), we analyzed the meetings of a PLC with six
teachers as they individually presented lessons to be redesigned with a focus on the group’s
shared commitment. Findings indicate three ways ideas were introduced that led to expansive
responses, which suggests this analytic approach could identify ways in which a PLC can work
towards new curricular decisions.

Keywords: Curriculum, Teacher Noticing, Teacher Beliefs

A central part of mathematics teaching is the design of lessons within a system of constraints
(Brown, 2009). After teaching a lesson, teachers may reconsider specific design decisions based
on their individual interpretations of the enacted lesson (what we refer to as redesign).
Recognizing new curricular opportunities, however, is then limited to what prior experiences this
individual teacher has had and what personal frameworks they use to make sense of their
curriculum (what we refer to as curricular vision) (Darling-Hammond et al., 2005; Drake &
Sherin, 2009). Teachers work under the demands of larger systemic constraints (e.g., policy,
social messages of learning loss) as well as local constraints (e.g., administrative agendas with
standardized testing, co-planning opportunities, curriculum access). Teachers, therefore, are
limited within their redesign decisions — not by choice, but by pressure.

We are concerned that these constraints on curricular decision-making may prevent teachers
from making ambitious changes to their teaching, thus maintaining the status quo for their
students’ experience and learning. Redesigning a lesson with other teachers that reimagines a
given individual’s curricular vision by challenging the given constraints can enable different
types of experiences to inform teacher curricular decisions. When teachers are members of a
professional learning community (“PLC”) committed to a shared curricular vision, individuals
then have new things to consider, negotiate, and think about in their own redesign choices.
Therefore, we are interested in understanding the nature of collective redesign to illuminate how
PLCs can come to new understandings as a group with a shared commitment in order to shift the
ways students experience mathematics.

In this paper, we begin to answer the questions: (1) What is the nature of curricular decision
making for teachers with a shared design commitment in a PLC? and (2) What enables an
expansive curricular decision? We will illustrate how a group of teachers collectively arrived at
and engaged with decision decisions that expanded potential opportunities for students. With
better understanding of the potential ways groups of teachers can collectively redesign lessons,
we hope to inform how PLCs with a shared commitment can potentially catalyze broader
opportunities for students in mathematics classrooms.
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Theoretical Framework

We use the curricular noticing framework (attending, interpreting, and responding) as a way
to trace and describe the nature of lesson redesign in the PLC individually and across a group.
Curricular Noticing

Any decision that a teacher makes as part of the profession is shaped by the lenses
(interpretation) with which they engage. Additionally, teachers’ designs are also influenced by
the phenomena (e.g., student work, textbook tasks, assessment data) to which they pay attention
(attending). Together, these contribute to a teacher’s professional decisions to act (responding).
Teacher’s shifting lenses can contribute to teachers attending to, interpreting, and making
pedagogical responses consistent with a particular goal when reflecting on a lesson enactment
(Baldinger, 2017; Louie, 2018; Louie et al., 2021; van Es et al., 2014). Curricular noticing builds
on the teacher noticing framework to describe how the phases of noticing (attending,
interpreting, and responding) take place when teachers are designing or adopting any form of
curricular materials (e.g., textbooks, enacted videos of lessons) (author, year). Although teachers
may pass through a sequence of attending-interpreting-responding (“A-I-R”), the phases are not
strictly sequential so that, for example, an interpretation may cause a teacher to redirect their
attention. In addition, not all may lead to curricular decisions. For example, a teacher’s
interpretation that follows their attention may lead them to decide to not move forward with a
particular action (i.e., response).

Increasingly, the noticing framework has begun to provide insight into how teachers identify
patterns towards challenging systemic inequities in mathematics classrooms. Research in teacher
noticing has begun to explore how individual teaching stances, such as deficit perspectives
(Louie, 2018; Louie et al., 2021) or particular goals (Hand, 2012) can influence the extent to
which teachers’ interpretations lead to disrupting or perpetuating inequitable practices via
responses. However, curricular noticing has not yet explored how a teacher’s frameworks (i.e.,
curricular vision) can impact possible curricular responses. We argue that curricular noticing can
support our understanding of how teachers challenge and disrupt systematic patterns of thinking
due to the structural systems of schooling and testing, particularly within mathematics education.
Curricular Vision as a Commitment within PLCs

An individual’s curricular vision, when interacting with others' own curricular vision, can
create disruptive responses within group lesson design. Because curricular noticing happens
from the standpoint of an individual’s curricular vision (Dietiker et al., 2018), a group of
individuals working together in a PLC means there are multiple curricular visions (potentially
overlapping or shared in some cases). These curricular visions are positioned to interact and
influence what responses are possible from individuals within the PLC and the PLC as a
collective. When a group of teachers choose to align their own curricular visions towards new
possibilities (which we will call collective curricular vision), their collaboration can support
curricular responses related to students’ potential mathematical learning experiences in new
ways.

We conceptualize this shared stance for a collective curricular vision as a form of
commitment. Evidence of a member’s commitment to the collective curricular vision, therefore,
is the explicit intention of aligning to a shared stance based not only on personal frameworks but
also shared frameworks. The connection between a groups’ shared commitment and the
alignment to that commitment can either make space for new types of curricular responses (what
we will call expansive responses) or prevent curricular responses from taking form during a
group conversation (what we will call restrictive responses).
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Methods

This study is a qualitative analysis of a lesson redesign meeting with a group of teachers with
a shared commitment for how their interactions led to potential expansive opportunities for
students. Pairs of teachers from three high schools (one urban comprehensive public school, one
suburban comprehensive public school, and one urban private charter) in the Northeast were
selected to participate. The 6 teachers, along with 2 researchers, participated in the redesign
meeting. At this meeting, teachers took turns sharing video clips and data from a lesson they had
taught the previous year and which they wanted to redesign. The data used here is based on audio
recordings of workshops between the teacher who shared the lesson (the “lead teacher”) and
other teachers in the professional learning community. This design group was part of a larger
project aimed at creating aesthetic opportunities for their students. Using video of enacted
lessons as a form of curricular materials allows for curricular noticing to take in embodied,
emotional, and verbal expressions of mathematics engagement.

Case Selection Process

Of the six redesign meetings, two were selected to be analyzed. To select, we looked for
three qualities: (1) the participation of multiple members of the group; (2) conversation that
specifically attended to the shape of content (i.e., curricular); and (3) conversation that included
reference to the shared commitment: improving students’ aesthetic opportunities.

In one session, Ms. Elm presents a lesson she previously designed and taught about the
Rational Root Theorem (RRT). In another, Ms. Willow, presented an introduction to inverses
lesson that she designed, taught, and wanted to redesign. Both of these audio recordings met the
above three criteria, and had 5-minute segments that included all three pieces of criteria. These
5-minute segments were chosen for in-detailed analysis because of clear evidence of individual’s
members noticing and the noticing across members of the PLC. Therefore, the described
segments show examples of exchanges towards expansive or restrictive responses.

Analytical Methods

The audio recordings were transcribed and analyzed for their curricular noticing (Dietiker et
al., 2018). To identify instances of curricular attending, we analyzed the discourse for evidence
of teachers “taking in” (ibid, p. 525) what was under discussion (e.g., presented by the lead
teacher or introduced by another member of the PLC). To identify instances of curricular
interpreting, we analyzed the discourse for evidence that a teacher made sense of what was
attended to using their knowledge base in relation to their goals (e.g., evaluating a suggestion for
its benefits). Finally, we identified instances of curricular responding by looking at decisions of
action, both proposed and accepted (i.e., selecting a polynomial).

For each coded utterance, we analyzed how it related to the prior coded utterances. For
example, when analyzing a coded utterance, we asked “was there a prior moment of attending,
interpreting, or responding to another utterance that supported this utterance?” After compiling
these threads of connected utterances, we identified the types of threads that emerged most
frequently and connected to the groups’ expansive responses.

Findings
With a collective curricular vision in a PLC, we found that the curricular noticing of the
group of teachers were collectively shaped as follows: 1) prior responses were pulled back into
the discourse as something to attend to, 2) prior interpretations were pulled back into the
discourse as something to attend to with new interpretation, and 3) prior responses were
impacted by the shifts in collective attending and interpreting. These characteristics, in turn,
enabled this group to generate expansive responses. To show this, we present two exchanges
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from different parts of the design meeting to illustrate each of these characteristics, and describe
how those either led to restrictive or expansive responses. In the first, based on a lesson on the
RRT, all three characteristics were present and described. In the second, focused on redesigning
a lesson that is an introduction to inverse functions, two of the three characteristics were present
and described. In the first, based on a lesson on the RRT, all three characteristics were present
and described. In the second, focused on redesigning a lesson that is an introduction to inverses,
two of the three characteristics were present and described.
The Collective Redesign of Ms. Elm’s Lesson on the Rational Root Theorem

Summary of Design Meeting. [1] At the start, the group watched an abbreviated video of
key moments of the lesson enacted the prior year, selected by Ms. Elm. In this lesson, Ms. EIm
had students use guess and check to test potential roots of given polynomials (cubic functions
and quartic functions) in order to conjecture the RRT. Within this context, Ms. Elm presented the
guess and check process as identifying “suspects” towards solving the mystery of the
corresponding polynomial roots. She grappled with a tension; how could the lesson have students
eliminate roots in such a way that they have time to understand the concept behind the RRT
while keeping the aesthetic potential of mystery intact.

[2] After viewing the video, Ms. Spruce says:

I loved the four guesses part...that was where you could definitely see like the kids
[snapping], getting excited. What I wondered was... could you implement that earlier? To
like generate more excitement...as you go up in degree and complexity, start taking away the
number of guesses, because I think that would also generate the sense of...excitement, but in
between there do some stuff to facilitate...better guesses

[3] Immediately after this comment, Mr. Palm points out that there was no evidence of
students’ verbally articulating what the learning objective is, and raises a question about the
curricular goal of the lesson (ex: “do you want them, by the end of this...?”), offering multiple
potential learning objective goals. [4] Ms. Elm replies:

I mean ideally, I would love them to do all the things you said...that’s really a tall order for
one period...the key piece...sometimes there are so many potential factors that [the RRT]
doesn’t seem very efficient, but as the polynomial becomes more depressed, like that process
is super-efficient when you’re looking at your new p and q... If there’s any way... um... but
like I don’t know if we ever got to that idea, so, um...I just don’t know.

[5] As the conversation progresses, Ms. Spruce continues thinking aloud about the polynomial's
leading coefficient (p) and its constant (g), suggesting that students, although not yet
understanding the relationship between the roots and the polynomials, might get a sense of what
could be a root. Ms. Willow and Ms. Elm continue to discuss how students’ intuitive sense of
numbers can lead them to making connections. [6] Ms. Willow suggests changing the
polynomials to encourage students to focus on the coefficients. [7] Ms. Elm builds on this by
saying that the new choice of coefficients should not visually mislead students (such as having
p=1 and g=5 when the roots are not 1 and 5. [8] Ms. Spruce jumps in and describes this option as
“kinda interesting,” which [9] is echoed by Mr. Ash as a potential moment of “beauty.”

Characteristic 1: Attending to a Prior Response. In [2], Ms. Spruce drew attention to the
students’ embodied reaction to the prior design choice of guesses. This focus on students’
emotional and aesthetic reaction is connected to the larger groups’ commitment toward
captivating lessons. Then in [5], Ms. Spruce attended to her prior response, interpreting it as a
way to connect to students' intuitive sense around numbers (i.e., connecting roots with the
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coefficients). Others continue attending to students’ aesthetic reactions via numerical attunement
[6, 7] and embodied excitement [9]. Collectively, these responses change the direction of the
redesign; the focus on the original lesson in terms of students’ articulating learning objectives
shifted toward how the problems can make space for an increased aesthetic experience in a way
that also contributes to students’ learning.

Alternatively, this characteristic can limit curricular responding, such as in the case of Ms.
Elm [4] attending to Mr. Palm’s response [3]. The expansiveness of future responses began to
close — her use of “I don’t know” signifies that Mr. Palm’s utterance overwhelmed her from

responding at all. Unlike the previous example, here an A-I-R chain begun in [2] was interrupted.

Characteristic 2: New Attending and Interpretation of a Prior Response. Ms. Willow’s
prior response in [6] suggests that coefficients should be selected in such a way that students are
learning through their intuitive sense. However, Ms. Elm in [7] attends to and interprets
numerical attunement as misleading and unsupportive of sensemaking. This leads to a new
response of a lesson design that does not have the potential to mislead students. Although this
example can be read as one that restricts responses, the fact that the utterance [7] named a design
challenge actually positioned the group to consider responding in two ways one, to either resolve
that problem through a design-related response, or two, to shift what was attended to how it was
interpreted that allows for a new expansive response. Therefore, the act of attending and
interpreting a prior response enabled the group to name a problem, creating an opportunity to
think more deeply about lesson redesign towards the shared commitment of student aesthetic
experience [8-9].

Characteristic 3: Attending to Prior Interpretation. When Ms. Elm’s interpretation in [7]
was then attended to by Ms. Spruce [8], a new opportunity for students’ aesthetic responses was
created (i.e., the tension could potentially lead to a moment of excitement when students are able
to find a pattern). This made space to consider aesthetic opportunities within the redesign. So,
although the interpretation of the problem set in relation to students’ numerical intuition was
named as a potential issue [7], that interpretation was expansive because it was considering
aesthetic characteristics within a lesson redesign. So, not only did that initial interpretation
encourage continued noticing around aesthetic, but also made space for the reframing of the
interpretation as an opportunity [8], which, in turn, acts as an example of enabling a subsequent
expansive response.

The Collective Redesign of Ms. Willow’s Lesson on Introduction to Inverses

Summary of Design Meeting. [1] In the beginning of this episode, the PLC is discussing
how to adapt the opening task from the original lesson. [2] Ms. Dogwood proposes prompting
students to compose x2 + 3 and vVx — 3. [3] Ms. Spruce follows by saying, “Do you want them
to have that in their minds when they go to [Problem] three?”’, which asks students to match
functions that are inverses from a list of linear functions. Ms. Willow share this concern, saying:

[4] Ms. Willow: Oh, I see, because then I might be giving them stuff that has squaring...

[5] Ms. Spruce: Which isn’t necessarily the end of the world, if you allow yourself to have
awareness. ..

[6] Mr. Ash: You could just ask for linear(s). Like on [Problem] 3...you could restrict [the
given types of functions].

Following this moment, the group discusses the difficulty students might have with
simplifying the composed functions. This includes [7] Ms. Dogwood wondering if students
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would know to “square out” a radical, [8] Ms. Willow naming that doing so would be “really
hard,” and [9] Ms. Dogwood describes this process as “ugly.”

[10] Ms. Willow then suggests creating a problem within the set that requires three
operations to simplify the composed functions. She continues [11] by saying the three steps
could more clearly illustrate the “doing and undoing” that is key to inverse functions, compared
to prior suggestions that potentially resulted in the composition not “coming out nice.” [12] Ms.
Dogwood, in turn, articulates how inputs could influence whether the composition is “nice” and
responds by suggesting that the group thinks of problems that would have a “nice” composition

b 13

with the original problem’s “yucky” elements (such as fractions). Ms. Willow continues:

[13] Ms. Willow: I'm worried though, because if they try composing these...it would be
three halves times two-thirds x plus one minus one... they’re gonna be like, ‘Oh, okay, so
that’s like x plus one minus one, it cancels out...

[14] Mr. Ash: But that would be a nice opportunity for you to...because that’s a common
mistake that you saw happening later on...[say] maybe ‘here’s an opportunity, don’t
forget to distribute.’

[15] Ms. Dogwood: But I think Ms. Willow’s wondering...how can [the students] trouble
that’s not right? Then your question begs, like, how come? We have to distribute.”

[16] Ms. Willow: I don’t know how that will make them feel when we do all the
canceling...like, if they just tried to cancel and it didn’t work, then suddenly all this
canceling does work, does that feel better or worse?

[17] Ms. Cherry: Well maybe they understand why it’s so special, like woah, you know?
Because everything cancels out.

Characteristic 1: Attending to a Prior Response. When considering Mr. Ash’s [6] use of
the prior response [3], we see how he encouraged the PLC to design in such a way that considers
students’ intuitive number sense to understand why the functions are inverses. When bringing
Ms. Spruce’s [3] response back into as something to attend to, Mr. Ash [6] opens the community
to consider how clarifying what students have in their minds could be influenced by a restriction
to the types of problems being presented. So, Mr. Ash responds by suggesting that restricting the
problem set to linear equations (as opposed to incorporating quadratics and square root functions
as inverse pairs) could serve as a better way to focus students’ attention.

In another moment, we see a sequence of utterances where what is attended to stems from a
prior utterance’s response. An example of this starts when Ms. Willow [13] attends to Ms.
Dogwood’s response in [12] to create a pair of functions that, when composed, is “nice,”
although the coefficients may be “yucky.” Ms. Willow responds [13] by naming that students'
intuitive sense of what cancels could also be an issue towards their understanding of inverses and
what actually cancels. Then Ms. Willow’s response [13] was then attended to by Mr. Ash in
[14], where this could be leveraged to support their conceptual understanding of the need to
distribute [16]. This illustrates how prior responses that are pulled back into the discourse can
result in expansive responses when the process is compounded by happening multiple times in a
TOowW.

In another example, the PLC attends to prior responses of multiple members of the group at
the same time. Ms. Dogwood [15] draws attention to both Ms. Willow’s [13] and Mr. Ash’s [14]
prior responses about students’ intuitive sense by interpreting students’ need to challenge their
intuitive sense of canceling (as opposed to just refocusing the attention). This happens again
when Ms. Cherry [17] attends to the same two responses that Ms. Dogwood just attended to.
Here, Ms. Cherry interprets those responses by naming the importance of students understanding
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why the expressions cancel in order to have a positive aesthetic experience while canceling. This
interpretation results in a new response where Ms. Cherry suggests that some of the tensions
named in the prior responses could potentially be a moment where students “understand why
[composing inverses] is so special.”

Characteristic 2: New Attending and Interpretation of a Prior Response. Ms. Spruce, in
[3], responded when she suggested clarifying what the lead teacher (Ms. Willow) wanted
students to have in their minds while solving the subsequent problems. Ms. Willow [4] attended
to Ms. Dogwood’s original attending in [2], but interprets it using Ms. Spruce’s [3]
interpretation of how prior problems in the set could influence their approach to new problems.
Ms. Willow’s response [4], in turn, becomes the same response that Ms. Spruce previously had
— that is, that the lead teacher (here, being Ms. Willow herself) needs to clarify what she wants
students to have in their mind. So, although it could be said that Ms. Willow did not contribute
anything novel to the conversation, she was able to elevate the prior response in a way where
members of the PLC could recognize the design challenge as Ms. Willow was inferpreting it in
relation to the commitment.

Another instance where prior responses are reimagined with new attending and interpreting
is when Ms. Willow [16] refines the response of students' intuitive sense of what cancels as an
issue. Here, she highlights the need to design problems that do not confuse students by attending
to students’ embodied feelings of when canceling “works” or “doesn’t” work. So, Ms. Willow
brings in the interpretation that students can feel better or worse when there are “inconsistent”
responses with canceling. This new attending and interpreting of prior responses now brings in
students’ affective reactions when considering their intuitive sense of numbers and the
relationship to the problem set. So, instead of only focusing on how students can mislead
themselves or on the “ah-ha!” moments that students might have due to their intuition, Ms.
Willow draws attention to the tensions that might arise during the lesson. This reimagining
oriented teachers to the broader affective experience that students may have when engaging with
this topic through new expansive responses. Students’ opportunities to have positive aesthetic
experiences, on the other hand, may have been restricted if the PLC had not considered the
broader affective experience as presented within the redesign.

Discussion

By highlighting the role of collective curricular vision, this paper argues how teachers who
collectively redesign lessons with a shared commitment can shift their attention and
interpretation of what other teachers offer towards more expansive views of mathematics
learning. When a PLC’s collective curricular noticing is guided by a commitment that
intentionally disrupts constraints within the design process, such as attending to students’
emotional reaction to a mathematical concept over attending to standardized testing scores, the
way in which noticing functions within the collective can lead to expansive responses. In
addition, when a PLC's curricular noticing, despite being guided by a shared commitment, tends
to stray away from the collective beliefs in any capacity (such as reinforcing design habits that
are traditionally inequitable, redirecting the group from an expansive response), restrictive
responses can emerge. In terms of the curricular noticing framework, we can see an alignment to
the collective curricular vision’s commitment through (a) what an individual decides to attend,
interpret, or respond to with during PLC conversations, and (b) the expansiveness or
restrictiveness of resulting responses. This, in turn, informs curricular responses toward
reimagined ways for students to think about, engage with, and experience mathematics.
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Analyzing curricular noticing as a collective practice within the curricular noticing
framework sheds light on the way in which teachers are listening to each other, considering
different ideas, and hearing other teachers’ own attending, interpreting, and responding to the
same noticing within the same discussion. Being able to trace the way in which members of a
PLC build upon each other’s contributions shows that a response helps move the group towards
deeply understanding what they care about in terms of the shared commitment; we are now able
to see how this is done by tracing the process of fine-tuning the question they are really vexed
with to ensure the PLC’s commitment is salient in how decisions are made within the redesign.
Although individuals in a PLC bring in their own interpretations through their experiences, they
are being exposed to and building off of the noticing that is happening within the collective.

This analysis illustrates that, through the product of years of teaching, collective sensemaking
around aesthetic, and co-design work as part of a PLC, expansive curricular responses are
possible through emergent discourse. Identifying this contributes to the mathematics education
field by shedding light on the nature of collective curricular noticing and how expansive
curricular responding develops in response to a shared commitment and a space to design lessons
aligned to that commitment. Knowing this, there is a call for PLCs to develop a curricular vision
around a shared commitment, such as increasing aesthetic opportunities for students. With this in
place, we can begin to think about the emergence of expansive curricular noticing across
redesign sessions between educators. This focus opens up potential opportunities for students —
when a teachers’ curricular noticing is including and expanding beyond content goals, a students’
learning experience can begin to include a wider range of experiences is equally if not more
important towards shaping an enjoyable, expansive, and engaging learning experience for young
people in a space that typically marginalizes them. A shared attunement to an expansive ideology
(be it aesthetic, or another touchstone towards a more equitable learning space), and the resulting
curricular responses, has the potential to become expansive when rooted in a professional
learning community.
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Validity and validation is central to conducting high quality quantitative mathematics education
scholarship. This presentation aims to support scholars engaged in quantitative research by
providing information about the degrees to which validity evidence related to their instrument
use or interpretation, were found in mathematics education scholarship. Findings have potential
to steer future quantitatively focused scholarship and support equity aims.
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The inferences and interpretations drawn from quantitative assessments are largely grounded
in the validity evidence and their associated claims (AERA et al., 2014; Carney et al., in press;
Kane, 2016). Mathematics education scholarship using quantitative assessments has not
consistently adhered to strong validity and validation practices as seen by the limited presence of
validity evidence related to many instruments used with K-12 students and teachers (Bostic et al.,
2019, Bostic et al., 2021; Krupa et al., 2019). A purpose for the present study is to serve as an
educative piece for mathematics educators who intend to develop or use quantitative assessments
in their research. We offer results about the degree to which validity has been taken up in
mathematics education scholarship that uses quantitative instruments.

Related Literature

The Standards for Educational and Psychological Testing ([Standards] AERA et al.,
2014) describe five sources for validity: test content, response process, relations to other
variables, internal structure, and consequences from testing. Reliability is a related but not
sufficient condition of validity (AERA et al., 2014; Kane, 2012). While the Standards describe
some approaches for each source, those descriptions are not intended to be exhaustive. A special
issue of Psicotherma (2014, 26(1)) includes articles related to each of those sources. Here again,
the authors of those articles indicate that their description of each validity source is to introduce
readers to that source and are not intended to be comprehensive. Thus, there is a need for a more
comprehensive list of data collection approaches related to each validity source.

Mathematics education scholarship has started to address validity within the context of
quantitative research across K-20 students, as well as preservice and inservice teacher settings
(e.g., Bostic & Sondergeld, 2015; Carney et al., 2017; Gleason et al., 2019; Hill & Shih, 2009;
Melhuish & Hicks, 2019; Walkowiak et al., 2014; Wilhelm & Berebitsky, 2019). These authors
provide discussions about how they explored validity evidence and serve as potential roadmaps
for others doing validation work. There are some common approaches to gathering validity
evidence. The present study intends to summarize literature about approaches to gathering
validity evidence so that quantitative assessment developers, users, and reviewers have a more

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee
State University.

118



comprehensive understanding of what has been done previously, and what approaches are viable.
Our research question was: In what ways is validity evidence and arguments present in
mathematics education scholarship that uses quantitative instruments between 2000-2020?

Methods
Context for study

In 2019, 39 mathematics education scholars convened at a 2-day conference led by the
authors. Scholars included mathematics educators, psychometricians, special educators, and
policy experts who had previously conducted quantitative mathematics or statistics education
assessment work. Conference leaders asked attendees to form small groups and brainstorm
viable data collection approaches that might generate validity evidence for that source. After
sharing ideas, groups rotated to each approach and left feedback, followed by whole-group
discussions. The product was an extensive list with at least five unique approaches to gathering
validity evidence for each validity source. There were still questions about whether there were
other approaches and how to define some of these approaches for a broad audience (e.g., factor
analysis). To that end, the authors of this submission reviewed literature and sought definitions to
create an Evidence Types Guidebook. The definitions were sent to conference attendees for
feedback and revised as needed. Independent of that work, conference attendees have been
conducting syntheses of literature across a variety of contexts including teacher education,
elementary and secondary students, and statistics education.

An Evidence Types Guidebook served to facilitate the identification of approaches typically
utilized within a validity evidence type. For each of the evidence types (i.e., test content,
response processes, internal structure, relation to other variables, and consequences of testing)
within the Guidebook, a general definition of the type was given, followed by a list of methods
commonly used to support a validity claim within the respective category. For example, the
internal structure section included approaches such as factor analysis, item response theory,
latent class analysis, and other approaches commonly used to assess and support claims of
validity related to the internal structure of a quantitative instrument. Each of these methods also
contained definitions and citations for further exploration and information. The Guidebook
content was aligned with the validity evidence repository framework and served to support
participants, in general, throughout the framework application process.

Data Sources and Analysis

Our data collection and analysis process is summarized here; more details are provided in
Bostic et al. (2022). The PRISMA statement guided the literature search (Rethlefsen et al.,
2021). The top 24 mathematics education journals (Williams & Latham, 2017) were searched for
studies using quantitative instruments. Articles that included quantitative instruments were culled
to create a list of instruments. Next, validity evidence was sought for each instrument through a
literature search using google scholar. Instrument names and keywords were used to generate an
appropriate sample space. As an example from teacher education, over 3,000 articles were
examined, which led to over 300 instruments Evidence was coded as being connected to a
validity source or reliability. Validity claims in support of arguments were also coded. We share
results from those syntheses as a means to illuminate the frequencies of various approaches as
well as opportunities for use of new approaches.

Findings
Overall, synthesis groups searched for validity evidence of 190 instruments and found 278
articles with descriptions of validity evidence (see Table 1). The majority of articles (83%) did
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not contain an interpretation statement or a use statement. In addition, 73% of the articles that
contained validity evidence did not specify any claims. An example of a use statement comes
from the Statistics Education synthesis group: “The availability of an instrument such as the
Attitudes Toward Research (ATR) scale which has been designed for students, may provide
information concerning motivational aspects associated with learning research, and might also

have potential for identifying distinctive attitude profiles of students who find research

problematic. Overall however, this study’s results validate the utility of the ATR scale in
measuring student attitudes toward research” (Papanastasiou, 2005, p. 23).

Table 1. Instrument and Article Overview

Elementary Secondary Statistics Teacher
(K-6)Tests (7-12) Tests (K-20)Tests Education Combined
& Instruments & Instruments & Instruments Instruments
Number of 59 27 16 88 190
1nstruments
Number of articles 92 36 52 98 278
ﬁ?“’lfst"ﬁtian 17 4 19 7 47
erpretatio 18.48% 11.11% 36.54% 7.14% 16.91%
statement
Articles with a 18 2 20 2 42
use statement 19.57% 5.56% 38.46% 2.04% 15.11%
Articles with a 37 6 15 15 73
claim 40.22% 16.67% 28.85% 15.31% 26.26%

Considering the distribution of the five types of validity as well as reliability: Internal structure,
reliability, and test content were the most frequently located. Table 2 shows the frequency of
each evidence type across different areas. The most frequently used method for each evidence
type is displayed in Table 3. Some frequencies are quite high (e.g., alignment with frameworks)
whereas the mode for other validity sources was quite low (e.g., quantitative DIF analysis).

Table 2. Evidence Type Frequency

Elementary Secondary Statistics Teacher
(K-6)Tests (7-12) Tests (K-20)Tests Education  Combined
& Instruments & Instruments & Instruments  Instruments
Consequences of 4 0 5 1 10
Testing 1.73% 0.00% 2.81% 0.69% 1.71%
Internal Structure 48 ! 34 29 118
20.78% 21.88% 19.10% 20.14% 20.17%
Relations to Other 33 1 27 19 80
Variables 14.29% 3.13% 15.17% 13.19% 13.68%
Reliability 68 9 29 53 159
120
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29.44% 28.13% 16.29% 36.81% 27.18%

Response Process 27 3 3 6 9
11.69% 9.38% 7.30% 4.17% 8.38%
Test Content >l 12 70 36 169
22.08% 37.50% 39.33% 25.00% 28.89%
Total Number of 231 32 178 144 585
Evidence Types

Table 3. Mode of approach for each validity source and reliability

Validity Source or Reliability Most common type of approach (count, %)
Test content Alignment with frameworks n=45,26%
Response Process Student written work n=19,38%
Relations to Other Variables Correlation analysis n=41,51%
Internal Structure Confirmatory factor analysis n =41, 34%
Consequences of Testing Item functioning such as DIF n=3,30%
Reliability Internal consistency, alpha n=19, 38%
Discussion

It is clear from analyzing the validity evidence from this sample of instruments that
modern notions of validity and validation arguments (AERA et al., 2014; Author, in press; Kane,
2016), have not necessarily been taken up by the field. We do not blame authors for this
omission. It may be that validity evidence is removed during the editing process. Authors may
not be prepared to conduct validation work. It has also been shown that 75% of mathematics
education graduates take two or less quantitative research courses, where validity and validation
might be discussed (Shih et al., 2019). Few instruments presented in existing scholarship are
accompanied with an explicit statement describing the intended interpretation and use of test
scores. Further, we found little validity evidence based on consequences of testing and response
processes. Given current equity issues in mathematics education, it is a concern that there is not
more evidence of consequences from testing and bias, especially to ensure fair use of the score
interpretations from the tests.

Validity is naturally an equity issue (AERA et al., 2014; Cronbach, 1988). Otherwise,
tests may have bias and test scores may be used unfairly. Cronbach (1988) proclaimed, “Tests
that impinge on the rights and life chances of individuals are inherently disputable” (p. 6).
Furthermore, the inferences drawn from tests that lack a validity argument may not be accurate
(Carney et al., in press). To yield accurate inferences about student learning or teacher practice, it
is critical for scholars to have tests and instruments with strong validity evidence and robust
validity arguments.
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Over the past decade, teachers have increasingly turned online to supplement their mathematics
curriculum and some research regarding where and how teachers search has been completed.
However, there are many open questions regarding this rising phenomenon, one of which is
learning more about what teachers do after finding a mathematics activity online. We report on
a subset of a survey of elementary school teachers across the United States about their use of
elementary mathematics activities found via virtual resource pools, for this manuscript, we share
results on two questions related to teachers’ adaptation of elementary mathematics activities
they obtained.

Keywords: Curriculum; Elementary School Education; Instructional Activities and Practices

Prior to the rise of the internet, most schools adopted elementary school mathematics
textbooks and provided teachers with associated teaching materials with the understanding that
this was “all” teachers needed to have at their disposal to teach mathematics successfully
(Browne & Haylock, 2004; Remillard, 2005). However, over the last decade, many teachers have
turned online to various virtual resource pools to supplement their elementary mathematics
curriculum. Teachers may search for activities on online teacher marketplaces such as Amazon
Inspire, Pinterest or TeachersPayTeachers, or they may search on more vetted sites such as
professional organizations like the National Council of Teachers of Mathematics. Recent
research shows ever-increasing popularity of teachers’ curriculum supplementation via virtual
resource pools (Hu & Torphy, 2020) but overall, this supplementation is not well-understood by
the mathematics education research community. According to Silver who completed a literature
review on online resource supplementation, most research “tends to center phenomena closely
related to supplementation (e.g. virtual resource use, teacher social media use) rather than
supplementation itself” (2021, p. 2). This paper seeks to study the act of supplementation,
specifically that of adaptation of supplemental mathematics activities found online by elementary
teachers.

Literature Review

To situate this work, we share literature related to lesson supplementation with resources
found on virtual resource pools and lesson adaption more generally. We then share the focus of
this study.
Lesson Supplementation from Virtual Resource Pools

Teacher supplementation can be described as any change teachers make to curriculum
resources provided by officials at their schools or districts (Silver, 2021). Teachers have always
supplemented their classroom resources but Hodge et al. (2019) discusses the increase of teacher
supplementation as a recent phenomenon due to increasing internet use and the implementation
of the Common Core Standards. With the rise of the internet came a variety of virtual resource
pools which Silver (2021) defines as “websites that host curriculum resources for download by
teachers to use either alongside or instead of their school-adopted textbooks” (p. 1). Thus, VRPs
include websites hosted by textbook companies, professional organizations, open educational
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resources, online teacher marketplaces and more general sharing sites like Pinterest that teachers
use to search for supplementary curriculum resources.

One finding of a recent review of research is that “teachers curriculum supplementation is
massive in scope” (Silver, 2021, p. 6). Surveys of teachers looking at their VRP supplemental
usage has shown this increase with Davis et al. (2013) reporting 60% of teachers reporting
supplementing their curriculum to more recent studies reporting over 80% (e.g. Sawyer et al.,
2019a; Carpenter & Shelton, 2021; Tosh et al., 2020). Research shows that teachers often also
turn to social media sites such as Instagram and Twitter as spaces to search for materials on
various VPRs (e.g. Carpenter & Kruka, 2014: Carpenter et al., 2020) which is further
complicated by the number of teacherpreneurs who promote their self-created resources on these
and other social media sites (e.g. Hu & Torphy, 2020; Shelton & Archambault, 2019).

One question researchers have studied is teachers’ reasons for supplementing their classroom
curriculum. From his synthesis of research Silver (2021) describes teachers’ reported motivations
are largely to fill holes they perceive with their provided curriculum, to assist their students or
make teaching better for themselves. Sawyer et al. (2019a) found that teachers reported
alignment to standards and student engagement to be the most important factors for teacher
supplementation via VPRs. In contrast, Schroeder et al. (2019) found “idea gathering” as the
main purpose for teacher supplementation with other reasons related to improving the classroom
environment and increasing student engagement (p. 171). Specific to the TeachersPayTeachers
VRP, teachers cited the following reasons for supplementation: to fill gaps in existing curriculum
related to concepts or skills, to make learning fun, to provide additional practice for students and
for inspiration when they were not sure how to approach a particular lesson (Carpenter and
Shelton, 2021). Taking together, these results point to teachers’ carefully searching for and
choosing supplementary resources that meet their curricular needs and the needs of their
students. For this study, we are interested in what happens after teachers choose a supplemental
curricular resource. Specifically, do they use the supplement as they found it or do they adapt it
in some way.

Lesson Adaptation

For the purpose of our study, we utilize Davis et al.’s (2011) description of adaptation,
“Adaptations can include insertions, deletions, or substitutions, for example, and may be based
on aspects of the teachers’ contexts, their students’ needs and strengths, and their learning goals,
knowledge, beliefs, identities, and orientations” (p. 797). Studies researching adaptation have
focused on teachers’ reasoning (e.g. Choppin, 2011; Drake & Sherin, 2006; Carpenter & Shelton,
2021) with results showing reasons for adaptation falling into two main categories: improving
instruction for students and making teaching better for teachers.

Methods of adaptation vary across elementary school subjects; researchers have investigated
methods of adaptation in reading (e.g. Parsons, 2012), science (e.g. Forbes, 2011), as well as the
subject studied for this paper, mathematics (e.g. Choppin, 2011; Remillard, 1999; Sherin &
Drake, 2009). Sherin & Drake (2009) found that mathematics teachers typically adapt their
activities in a three-step cycle: omit, replace, and create. They explain that teachers first remove
items from a mathematics activity and then replace it with something that they find useful and
that they believe will better support their students’ learning. If this is not deemed sufficient,
mathematics teachers create new curricular elements to support student learning in their
classroom (Sherin & Drake, 2009). In a more recent study, elementary preservice and inservice
teachers reported adapting resources they found on Pinterest often with the top reported reason
for adapting given as “meeting student needs and attending to grade-level standards.” (Schroeder

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee
State University.

124



etal., 2019, p. 173). Because Schroeder et al.’s (2019) study was not subject specific and was
specific to teachers searching for supplemental resources on one particular VRP, Pinterest, the
current study both broadens and narrows the question of adaptation by looking at elementary
teachers’ supplemental mathematics activities found on any VPR. Specifically, this study seeks
to answer the following two research questions:
1. How often do US elementary teachers report adapting mathematics activities they find on
VPRs?
2. How do US elementary teachers describe how they adapt mathematics activities they find
on VPRs to fit the needs of their students?

Conceptual Framework

For this study, we adopt the Teacher Curriculum Supplementation Framework (Silver, 2021)
that includes four dimensions surrounding teacher supplementation as a tool to guide research:
the teacher’s reasons for supplementation, the supplement’s source, the teacher’s supplemental
use pattern and features of the supplement itself. In the literature review, we discussed what is
currently known about teacher’s reasons for supplementation, the fact that teachers’ use of
supplemental resources is massive and have indicated that for this study, we are not considering
specific VRP sources from which supplements are sought. We are, however, interested in the
supplement itself, specifically how often and how teachers choose to adapt a supplemental
elementary mathematics activity.

When considering the supplement itself, researchers may study features like the visual
appeal, educational quality and how these affect student learning. Silver (2021) notes that most
research in this area is researcher determined meaning researchers use their expertise to study the
curricular supplements. Research in these areas regarding elementary mathematics supplemental
activities have shown supplements tend to be low in quality (e.g. Hertel & Wessman-Enzinger,
2017; Sawyer et al., 2019b; Shapiro et al., 2021), but that does not mean teachers use the
supplement as they find it. Because of this, Silver (2021) suggests that more work is needed
looking at ““a teacher’s supplementation process from start to finish” (p. 24). While this study
does not follow teachers’ full process, it does begin to consider what happens to a supplement
after it is chosen which meets the call by Hu and Torphy (2020) to focus more on the
compilation, distribution and diffusion of supplements into the classroom.

Methodology

This study reports on a subset of a survey conducted in June 2018 that asked teachers 23
questions about their elementary mathematics VPRs search practices including how often, where
they searched, what they were looking for when they searched, and how often and how they
adapted resources they found. Results on how often, where and what teachers reported looking
for when searching for supplemental activities was reported in Sawyer et al. (2019a).
Data Collection

To distribute the survey, we emailed the presidents of all 50 state affiliates for both the
National Council of Teachers of Mathematics and the Association of Math Teacher Educators,
thus obtaining our participants through a snowball sampling technique (Weiss, 1994). We also
posted the survey link on multiple social media sites including Twitter, Facebook, and Instagram
using #elemmathchat, #edchat, #mathchat, #elemchat, #mtbos, #iteach, #iteachmath, and
#numbersenseroutines. After the emails and social media posts were sent, the survey was open
for seven weeks. 601 teachers responded; they hailed from 48 states, excluding Delaware and
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South Dakota, as well as three US territories. They were currently teaching kindergarten through
sixth grade and had between zero and 36+ years of teaching experience.

There were two survey questions specifically focused on teacher adaptation. The survey
questions that we report on in this paper include:

1. How often do you adapt mathematics activities you find online?

2. How do you adapt activities you find online to fit the needs of your students?

For responding to frequency of adaptation, teachers choose one of the following five scaled
responses, “Always; Most of the time; About half the time; Sometimes; Never”. For responding
to how they adapt, we purposefully did not define what we meant by what constitutes “how” to
not limit our study to a specific definition of the term. However, we did focus the question on
how teachers adapted to fit student needs which is in line with Schroeder et al. (2019)’s finding
that the majority of adaptions focused on student needs. We were interested in how adaptations
were made to elementary mathematics supplements for students, not for teachers.

Of the 601 elementary teachers who responded to the survey, 496 answered the question
about how often they adapted online elementary mathematics activities but only 290 teachers
provided a descriptive narrative about their adaptation process. We therefore answer research
question 1 using the 496 teacher responses, but answer research question 2 with the 290 teacher
responses.

Data Analysis

This mixed methods study used both quantitative and qualitative data analysis. We
implemented descriptive statistics when describing how often teachers reported adapting
elementary mathematics activities. We applied the constant comparative method through
grounded theory to analyze qualitative data provided by the teachers in their descriptive
narratives explaining how they approach adapting to meet the needs of their students (Glaser &
Strauss, 1968; Miles, Huberman, & Saldana, 2013). For the qualitative analysis, we used
Qualtrics’s coding tool. First, we ran a keyword analysis of the open-ended responses. We then
used the most common terms along with the constant comparative method through grounded
theory to allow for additional terms to emerge (Glaser & Strauss, 1968; Miles, Huberman, &
Saldana, 2013). One researcher did this initial work. Once data saturation was reached, an
additional researcher worked with the coder to collapse keywords and identify overarching
themes. At this point, keywords were collapsed into larger categories. Teachers whose responses
did not include common keywords were individually coded into the four overarching categories
by the two researchers. Questions about responses or instances where the two researchers could
not agree were brought to a third researcher for consultation.

Findings

Research Question One: How Often

Less than 1% of the teachers (n=4) said that they never adapt a supplemental math activity.
The majority of the teachers reported that they adapt sometimes (21.6%, n=107), about half of
the time (21.6%, n=107) or most of the time (40.9%, n=203). 15% (n=75) of the teachers
reported adapting their supplemental mathematics activities all of the time. Taken together, these
results show adaptation to be a common practice with 78% of the teachers indicating that they
adapt elementary mathematics activities found on VRPs at least half of the time.
Research Question Two: Teacher’s Reported Reasons for Adapting

While the teachers were asked how they adapt supplemental activities to fit the needs of their
students, the four overarching categories regarding teacher responses did not all relate
specifically to student needs. The four categories were 1) Adapted for different learning needs;
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2) Adapted for classroom implementation; 3) Adapted for mathematics content; 4) Adapted for
visual appeal. Keywords and definitions for each of these categories are provided in Table 1.

Table 1: Teacher’s Collapsed Adaptation Categories with Keywords and Definition

Category
(count, %)

Keywords

Definition

Adapted for Different Learners

Adapted for Classroom
Implementation

Adapted for Mathematics Content

Adapted for
Visual Appeal

English Language Learners

Needs**

Special Education

Level of Difficulty**
Easy/Hard/Difficult/Levels/
Rigor/Advance/Struggle

Differentiation™*

Scaffold

Manipulatives

Directions™

Time

Structure®*
Independent/Group/Partner
/One-on-One/Centers

Technology
Video/PowerPoint/iPad/

Smart

Board/Computer/Tech

Standards
Common Core/
District/State

Numbers*

Content

Alignment

Curriculum

Format

Font

Design

Size

Picture/Image

Visual

The teachers adapted the
activities to meet
different learner needs.

The teachers adapted the
activities by adding
elements or taking
elements away by
altering the
implementation of the
activity in their
classroom.

The teachers adapted the
activities by adding
elements or taking
elements away to by
altering the
mathematical content.

The teachers adapted the
visual aesthetics of the
activity.

*The keyword was coded in 10% or more of responses. **15% or more

Adapted for different learning needs. We found 64% (n=191) of the teachers reported
adapting elementary mathematics to meet the needs of different types of learners. This category
included teacher descriptions about adapting the online activity through differentiation or
through making accommodations for students with special needs, often involving discussions of
levels of difficulty. For example, a teacher stated that they adapted online mathematics activities
by “Change[ing] level as necessary, add[ing] scaffolding and modeling” which we coded as
adapting for different learning needs. Multiple teachers reported focusing adaptations on
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“increasing the rigor,” and others reported adapting “to differentiate.” Other teachers discussed
adaptation for specific student groups (e.g. English-language learners (ELLs)) or based on
cultural needs as seen in the following response, “I rewrite to provide access for English learners.
I remove unnecessary language to assure that | am measuring math, not language. I also rewrite
lame attempts at ‘multiculturalness,’”. Responses such as these highlight the main finding that
these teachers are sensitive to their different learners’ needs both mathematical and outside of the
mathematics itself and place these needs at the forefront of their minds when they consider how
to adapt elementary mathematics activities they find on VPRs.

Adapted for classroom implementation. While not necessarily specific to student needs,
we found that 45% (n=134) of the teachers reported adapting supplemental activities to adjust to
the teachers’ facilitation or more specifically, how they would implement the activity in their
classroom. Responses in this category included reported adaptations such as adding
manipulatives, changing directions, modifying suggested timing, or changing the activity from
individual to a group game. These examples show implementation changes that directly affect
student engagement with the activity. For example, a teacher stated they adapted by, “adding
follow up activities, or changing the directions.” Others teachers described changing methods of
implementation to meet their teaching style or classroom structure such as the following teacher
who described, “If it is a PDF, I may turn it into a Smart Notebook that I can utilize for whole
group instruction,” or another teacher who reported adapting to “tie it [the activity] to a lesson or
activity from our current math standard and another subject we might be studying, such as
science, social studies, health, etc.” While there were additional responses similar to the previous
two, the majority in the classroom implementation category related to changing implementation
structure regarding directions such as “cross out questions” or “extending time” ... and “print
them on task cards for a game.” These examples show minor adaptations allowing the teacher to
change a task to make it structurally work in their classrooms but also point to structural changes
that they deem necessary to assist student learning and engagement.

Adapted for mathematics content. We found that 26.5% (n=79) of teachers reported
adapting their supplemental materials specifically for the mathematics content. These teachers
indicated they changed the specific mathematical ideas represented in the online activities. For
example, one teacher stated that they, “Use larger or smaller numbers in place of what’s
provided [or] use fractions or decimals instead of whole numbers.” These adaptations allow for
the structure of the activity to be used across mathematical topics. Another teacher reported that
they “change numbers to fit a more appropriate range for students” thus altering the mathematics
specifically. Yet others reported changing the mathematics to make activities easier or more
difficult depending on their students’ needs.

Teachers also identified changing content to address specific standards. A teacher stated that
they adapted the activities for different standards, “to ensure alignment.” Teachers also indicated
adapting activities by changing the style of questions that were presented. For example, one
teacher stated, “I reformat questions so they align with the style of questions students will see on
State tests.” Another teacher reported,

The advertised grade level items I find online tend to be too easy for my grade level. If I go
up a grade level those tend to not totally align with my state standards. Usually I can only use
about 70% of what is provided [from VRPs].

These show teachers adapting the level of the mathematics content and the way questions are
posed to students because of state or district requirements.
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Adapted for visual appeal. The least common thematic category was adaptation for visual
appearance accounting for only 22 teacher responses (7.4%). Responses in this category included
teachers who described their adaptations regarding superficial aspects of the activities not related
to content or implementation. For example, a teacher described changing “color to black and
white” and another referred to making activities “more durable by laminating,” and yet another,
“Sometimes I retype it to make it in a format I like.” One teacher provided reasoning for visual
changes related to student needs; they explained that they adapted by adding “larger spacing,
fonts and pictures. I made it easier for my students to see it and fill it in.” Most of the responses
in this category were accompanied by descriptions that fell into the other three categories as well,
such as this one that explicates visual appeal along with adapting for different learners.
Importantly, only two teachers, including the first one presented in this paragraph, only discussed
adaptations based on visual appeal.

Overall. Many teachers provided short, simplistic responses when describing how they adapt
their supplemental elementary math activities for their students’ needs, but despite their brevity,
the responses indicated an overlap between the four identified thematic categories of adaptation
for many teachers. For example, one teacher described their adaptation process as, “Increase the
rigor and retype it”. Other teachers provided additional details, such as the following teacher who
explained,

I may make the activity whole group so everyone can benefit. I also will sometimes change
or clear-up the directions. I find that I need to often increase the rigor. I use TpT
[TeachersPayTeachers] a lot and there tends to be a 3-5 band that is often too basic.

This response was unique, not because of the overlap of various ways they adapt, but because the
response provides rationale for the need to adapt the rigor.

Discussion

These results indicated that 99% of teachers identified some form of adaptation of their
classroom activities. When asked how they adapt these activities to meet student needs, 64% of
the teachers who responded indicated adapting elementary mathematics activities found on VPRs
to meet the needs of specific learners, such as English-language learners or special education
students. This is a promising result because research has shown online supplements can cause
harm to certain students, with Polikoff and Dean (2019) specifically discussing this issue for
ELLs and Harris et al. (2020) discussing supplements that embody racist ideas. These studies
were for history and English supplements, but we find it encouraging that some elementary
teachers report adapting for these specific learners for mathematics.

Many teachers discussed changing the implementation structure of supplemental activities
which mirrors an often-cited reasons teachers provide for searching for supplemental activities
(e.g. Sawyer et al., 2019a; Carpenter and Shelton, 2021) regarding searching to increase student
engagement. Teachers also reported adapting the mathematics content. Given that the quality of
elementary mathematics supplements themselves tends to be low (Sawyer et al., 2019b; Shapiro,
2021), it is good to learn that teachers are adapting the mathematics content. These results also
mirror the finding that teachers (Schroeder et al., 2019) and preservice teachers (Schroeder &
Curcio, 2022) often adapt supplemental resources to align with state or district standards. The
findings seem to indicate that teachers are not finding what they want when searching for
elementary mathematics activities on VRPs. We find it interesting and encouraging that teachers
appear to be taking a critical stance when evaluating and selecting supplemental elementary
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mathematics activities and that they expect to adapt what they find to better meet the needs of
their students.

Through this study, we have gained further insight into what teachers do with elementary
mathematics curricular supplements they find on VRPs and the answer is that they tend to adapt
these supplements prior to classroom implementation. We agree with Silver (2021) that “it is
essential that we understand teachers’ supplementation decisions in order to develop teachers
who supplement skillfully and responsibly” (p. 17). We believe the teachers would benefit from
training regarding mathematics supplementation that goes beyond how to search and includes
information on the adaptation process, but also moves further and follows teachers to the
implementation process of these supplemental activities.

Limitations

This research does come with limitations. For example, it must be noted that a teacher’s
perception of what an activity is suggesting to do in a classroom could be incongruent with the
creators’ intent for the activity. Because we did not have access to either the supplemental
activities that the teachers originally found or to teachers’ adapted supplemental activities, we are
unable to compare. The research field could learn from a comparative study to learn whether or
not teachers are, for example, successful at increasing the rigor of a supplemental activity or if an
adaptation for a specific learner actual increases the student’s learning. Finally, this investigation
was conducted prior to the pandemic; it is possible that teachers’ adaptation of supplemental
activities has changed how they adapt elementary mathematics activities in their in-person
classrooms. More research is needed in this area.

Conclusion

Teachers have become their own curators of supplemental curricular resources and part of
this curation process involves adaptation. Our research suggests that, in general, teachers adapt
the supplemental elementary mathematics activities they find on VPRs. They adapt for various
reasons related to student support but the most reported reasons relate to different learners and
classroom implementation. Given the wide variance of student needs and structural parameters
within each classroom, adaptation seems perhaps inevitable for effective teaching, but more
remains to be learned about how adaptations are enacted and the effects on student learning. We
believe it would benefit teachers to be explicit about their adaptation processes and discuss it
with fellow teachers as a way to provide more information to the overall VPR supplementation
process.
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INTERACTIVE DYNAMICS IN TASK-BASED CURRICULAR MATERIALS
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Given the importance of students’ interactions to their opportunities to learn mathematics, 1
investigate the interactive dynamics that are encouraged in two U.S. high school task-based
written curricular materials and the purposes for interaction that they communicate. I conduct a
thematic analysis to organize the functions of dynamics that encourage students to interact with
peers’ ideas (e.g., through dialogue) and with their own ideas (e.g., through reflection). Peer-
interactive dynamics in this sample focused on sense-making, negotiation, and comparison. Self-
interactive dynamics focused on developing awareness of thinking, formalization of new
algebraic ideas, exploration, and precise language. I discuss how patterns among these themes,
across who interaction is designed for and across curricular materials, could generate future
lines of inquiry connecting the design of curriculum to student learning.

Keywords: Curriculum, Instructional Activities and Practices, Metacognition

Written curricular materials can organize the landmarks of subject matter together with a
plan for learners’ thinking and development (e.g., Remillard & Heck, 2014); in other words, they
can communicate intended opportunities to learn for students (Brown et al., 2009). The
actualization of opportunities to learn mathematics, however, is strongly linked with the quality
of students’ interactions with mathematical ideas in the classroom (Cohen et al., 2003; Gresalfi,
2009; Haertel et al., 2008; Hiebert & Grouws, 2007). Because of the strong influence of written
curricular materials on teachers’ enactment and students’ experiences (Choppin et al., 2018;
Remillard & Heck, 2014), we could better understand how curriculum connects to learning by
examining the interactions curricular materials encourage.

In the following paper, I present findings from an analysis of the types of student interactions
recommended in two U.S. high school mathematics curricula (i.e., interactive dynamics). I chose
to examine task-based curricula as their approach depends upon students’ activity as a primary
instructional method. I was guided by the following research question: What functions can be
ascribed to the interactive dynamics in teachers’ guides of task-based curricula? 1 begin with a
review of what is known about the relationship between interactions and mathematics teaching
learning and follow with a description of my method and results. I use these findings to
exemplify some of the current purposes of interaction in task-based curricula, discussing some of
the patterns in results and connecting with literature to recommend areas for future exploration.

Interactions in Mathematics Teaching and Learning

Hiebert and Grouws (2007) argue that opportunities to learn mathematics are generated
through interacting and grappling with key conceptual ideas. In classrooms that center student
discourse and activity, students may grapple as they engage their peers’ contributions. Webb et
al. (2014) found that students’ engagement with one another’s thinking (beyond giving
explanations) was significantly related to student achievement. Moreover, they found that
teachers’ actions (namely, their follow-up questioning strategies) were influential in establishing
a classroom where such engagement could develop. Research has shown, however, that even in
classrooms with consistent discourse among students, not all students experience the same
potential for interactions with peers’ ideas (Gresalfi, 2009; Reinholz & Shah, 2018). These
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findings suggest open questions about how curricular materials could support and structure
teachers to facilitate all students’ high-level engagement with their peers’ contributions.
Interaction that promotes learning in the classroom may not be limited to students engaging
others’ ideas; research has also shown the importance of students interacting with their own
thinking around mathematics content (e.g., Cohen et al., 2003). Piaget’s theory of reflective
abstraction (2001), for example, suggests that a learner must engage with their own thinking after
accommodating a new idea to encourage stable meanings. Furthermore, Jansen (2020) suggests
that teachers play an active role in designing instructional structures that encourage consideration
of how one’s own ideas have changed over time and through experiences with revision and
reflection. Although these interactions are considered to be central to teaching practice, studies
have yet to explore how curricular materials might support or communicate particular strategies.

Method

To respond to my research question, I conducted a qualitative content analysis (Mayring,
2015) and accompanying thematic analysis (Terry et al., 2017) of the interactive dynamics
constructed in teachers’ guides of one unit each in two task-based curricular materials:
Hllustrative Mathematics (IM) and the Interactive Mathematics Program (IMP). I selected these
texts as they each satisfied my conditions for a task-based curriculum: 1) the student-facing
materials took the form of bounded activity with an established instructional goal (i.e., a task),
and 2) the teacher’s guide encouraged facilitation of student activity and dialogue as the primary
mechanism of instruction (i.e., learning was framed as task-based). Moreover, the two curricula
selected each contained an instructional unit focused on the same content. Specifically, I
examined an instructional unit from each set of curriculum materials that encouraged students’
work with standard form linear equations, systems, and inequalities (“Unit 2: Linear Equations,
Inequalities, and Systems” in IM Algebra 1 and “Cookies” in IMP Year 2). This choice allowed
me to account for variation in teacher’s guide recommendations due to mathematical topic.

[ analyzed the teacher’s guide text surrounding a task. In IM, I considered each numbered
activity within a lesson (except the cool-down) a task. In IMP, I considered each titled activity
listed in the table of contents to be a task. I focused on the text for each task that was marked as
an expected component of teacher’s facilitation (e.g., “Activity Synthesis” or “Doing the
Activity” sections). I omitted sections that were described as additional supports.

To begin my analysis, I first coded sentence-by-sentence within a task for interactive
dynamics. 1 assigned this code if the teacher’s text described enactment in a way that would
explicitly encourage a student (or students) to respond to a contribution related to the algebraic
content of the mathematical task. For example, a request for a student to share a content-related
response to a peer’s mathematical contribution would constitute an interactive dynamic; a
request for a student to simply share an idea with the class would not (e.g., Webb et al., 2014).

After that, I assigned additional codes to sentences describing interactive dynamics. First, if
the text expected a teacher to encourage their students to respond to their peers’ ideas (e.g., a
dialogue), I coded it as a peer-interactive dynamic. A response to students’ own ideas (e.g., a
reflection) would constitute a self-interactive dynamic. I also coded if an interactive dynamic
encouraged teachers to engage all of their students or some of their students. If such engagement
was not specified (e.g., the teacher asks a question to “students™), it was classified as intended for
some students, as no structure was described that would ensure reaching all.

Once interactive dynamics had been catalogued in both curricula, I constructed themes from
the data to identify patterns and relationships across and within codes (Terry et al., 2017).
Through my themes, I sought to explore structures that were common and unique to each task-
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based curriculum and considered what they expressed about learning mathematics. In the results
that follow, I describe and exemplify these themes. I note that these findings are preliminary.

Results

In my results, I characterize themes in the functions of peer-interactive and self-interactive
dynamics in the sampled texts. Peer-interactive dynamics in this sample focused on sense-
making, negotiation, and comparison. Self-interactive dynamics focused on developing
awareness of thinking, formalization of new algebraic ideas, exploration, and precise language.
Peer-Interactive Dynamics: Sense-Making, Negotiation, and Comparison

In the teachers’ guides of these task-based curricula, I found that peer-interactive dynamics
directed toward all students emphasized understanding each other’s ideas. Teachers’ guide
prompts in both IM and IMP encouraged teachers to facilitate making sense of one another’s
solutions (e.g., “Have students discuss their solutions in groups and try to understand one
another’s work,” IMP, 2010, p. 25). In IM specifically, this sense-making process was always
accompanied by a request for reaching consensus around solutions. For example, the “Launch”
of one lesson gave teachers the following instruction:

Tell students that when one student explains, the partner’s job is to listen and make sure that
they agree and that the explanation makes sense. If they don’t agree, the partners discuss
until they come to an agreement. (IM, 2019, p. 140)

As this quote shows, this peer-interactive dynamic centered a negotiation-based process (i.e.,
“discuss until they come to an agreement”) and engaged all students with partners in the process.
Peer-interactive dynamics reaching some students, however, occurred frequently in full-class
discussions facilitated by the teacher and less commonly encouraged consensus-building. Rather,
I identified one central theme in such peer-interactive dynamics: looking for similarities and
differences. This theme was common across both curricula.

Examples of peer-interactive dynamics encouraging some students to look for similarities
and differences ranged from short, general requests to more specific, task-focused requests. For
instance, a prompt in IM encouraged the teacher, “After each student presents, ask if others
solved it in the same way” (IM, 2019, p. 244). I note how this prompt, aimed to engage student
volunteers, could be applicable across a variety of tasks. Other prompts, however, encouraged
student volunteers in full-class discussions to center on “the variations among the graphs for each
inequality” (IMP, 2010, p. 26) or “whether these equations all represent the same relationship”
(IM, 2019, p. 53). In contrast, none of the peer-interactive dynamics described for a// students (as
shown above) were task-specific requests.

Self-Interactive Dynamics: Awareness, Formalization, Exploration, and Definition

Self-interactive dynamics reaching a// students differed between IM and IMP texts. In the IM
sample, self-interactive dynamics promoted metacognitive awareness for all individuals during
full-class Math Talk routines. Math Talk routines encouraged students to engage a short series of
mental math exercises to launch a central idea of the lesson. All Math Talks included the
following instruction: “Give students quiet think time for each problem and ask them to give a
signal when they have an answer and a strategy” (IM, 2019, p. 49). In this way, despite the full-
class setting of the activity, IM encouraged all students to reflect on their own ideas and included
a structure to support this behavior.

IMP, on the other hand, employed self-interactive dynamics of developing new algebraic
structures for all students, which was strongly connected to the structure of the curriculum
around a unit problem. In IMP, students begin the “Cookies” unit working an open problem and
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recording their progress; they then re-engage that problem at checkpoint moments during the unit
as they build related mathematical ideas through other tasks. For example, students’ first
engagement with the “Cookies” unit problem asks teachers to “have groups use the inequalities
to check that the combinations discussed earlier really do satisfy the constraints” (IMP, 2010, p.
4). This self-interactive dynamic for all students (through groups) could support students to
transition from open strategies to the application of an algebraic structure (i.e., inequality
statements), supporting their progress in the unit problem task.

I identified self-interactive dynamics reaching some students primarily in the form of
questions the teacher could pose to individuals or the full-class during group work or
discussions. Such questions were most often highly task-specific. Moreover, many of the themes
for self-interactive dynamics reaching some students reflected the same themes reaching all
students, falling again along curricular lines. IM continued to include prompts that encouraged
metacognitive awareness (e.g., “How do you know that the expression gives us the liters of water
in Tank A after m minutes?” IM, 2019, p. 165). IMP continued to include prompts directed
toward developing new algebraic structures (e.g., “Encourage students to keep plotting
points...until they realize that the boundary between satisfying the inequality is the line
corresponding to the equation P + 1 =140,” IMP, 2010, p. 19).

However, I also interpreted new themes in the samples of self-interactive dynamics reaching
some students: namely, exploring current algebraic structures and defining terminology and
concepts. Exploring current algebraic structures could be found in both curricula, encouraging
students to investigate, apply, or interpret the situations and structures of the problem (e.g., “Ask
whether there is any way to adjust the statement 4(-2) > 3(-2) to make it true,” IMP, 2010, p. 9).
Defining terminology and concepts, on the other hand, was most salient in IM: “If students refer
to edges and vertices as ‘lines’ and ‘points,” ask if they remember the ‘math names’ for these
things” (IM, 2019, p. 51). As the example illustrates, these self-interactive dynamics in IM
pressed students who used these terms to interact with ideas to develop precise language skills.

Discussion

My findings highlight how two task-based curricular materials communicate the functions of
students’ interactions in the classroom, both with students’ peers’ ideas and their own.
Collectively, these findings illustrate what interactive dynamics can be designed to achieve with
students; they also generate new questions about how interactions can be structured to support all
students’ opportunities to learn. I described that, although peer-interactive dynamics for all
students encouraged general understanding and negotiation, dynamics for some students
encouraged comparison in task-specific scenarios. Given that opportunities to learn may be
experienced differentially across classrooms (e.g., Gresalfi, 2009), this finding suggests a factor
of influence and leverage. Future research could investigate how peer-interactive dynamics in
curricula could support goals of both sense-making and comparison through structures that
support all students to engage with specific mathematical ideas.

Self-interactive dynamics, on the other hand, differed by curriculum, suggesting that
interactive dynamics may also support curricular priorities. IM emphasized building students’
metacognitive awareness and precision of mathematical language. IMP strived to leverage
students’ own ideas to build new algebraic structures. Future study could examine the
relationship between these interactive goals and teachers’ enactment (e.g., Brown et al., 2009)
and students’ ultimate experiences of opportunities to learn in the classroom. By examining the
intentions for interactive dynamics in written curriculum, we can better understand how to design
support for the interactions that occur during student learning.

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 135
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee
State University.



References

Brown, S. A., Pitvorec, K., Ditto, C., & Kelso, C. R. (2009). Reconceiving fidelity of implementation: An
investigation of elementary whole-number lessons. Journal for Research in Mathematics Education, 40(4), 33.
https://doi.org/10.5951/jresematheduc.40.4.0363

Choppin, J., Roth McDuffie, A., Drake, C., & Davis, J. (2018). Curriculum ergonomics: Conceptualizing the
interactions between curriculum design and use. International Journal of Educational Research, 92, 75-85.
https://doi.org/10.1016/.ijer.2018.09.015

Cohen, D. K., Raudenbush, S. W., & Ball, D. L. (2003). Resources, instruction, and research. Educational
Evaluation and Policy Analysis, 25(2), 119—142. https://doi.org/10.3102/01623737025002119

Gresalfi, M. S. (2009). Taking up opportunities to learn: Constructing dispositions in mathematics classrooms.
Journal of the Learning Sciences, 18(3), 327-369. https://doi.org/10.1080/10508400903013470

Haertel, E. H., Moss, P. A., Pullin, D. C., & Gee, J. P. (2008). Introduction. In P. A. Moss, D. C. Pullin, J. P. Gee, E.
H. Haertel, & L. Jones Young (Eds.), Assessment, equity, and opportunity to learn (pp. 1-16). Cambridge
University Press. https://doi.org/10.1017/CB0O9780511802157.003

Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. In F. K.
Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 378-392). Information
Age Publishing.

Ilustrative Mathematics. (2019). Algebra 1 unit 2 teacher guide. lllustrative Mathematics.
illustrativemathematics.org

Interactive Mathematics Program. (2010). Cookies teacher guide. Key Curriculum Press.

Jansen, A. (2020). Rough draft math: Revising to learn. Stenhouse Publishers.

Mayring, P. (2015). Qualitative content analysis: Theoretical background and procedures. In A. Bikner-Ahsbahs, C.
Knipping, & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education. Springer.
https://doi.org/10.1007/978-94-017-9181-6 13

Piaget, J. (2001). Studies in reflecting abstraction. Psychology Press Ltd.

Reinholz, D. L., & Shah, N. (2018). Equity analytics: A methodological approach for quantifying participation
patterns in mathematics classroom discourse. Journal for Research in Mathematics Education, 49(2), 140-177.
https://doi.org/10.5951/jresematheduc.49.2.0140

Remillard, J. T., & Heck, D. J. (2014). Conceptualizing the curriculum enactment process in mathematics education.

ZDM, 46(5), 705-718. https://doi.org/10.1007/s11858-014-0600-4

Terry, G., Hayfield, N., Clarke, V., & Braun, V. (2017). Thematic analysis. In C. Willig & W. Stainton-Rogers
(Eds.), The SAGE handbook of qualitative research in psychology. SAGE Publications Ltd.
https://doi.org/10.4135/9781526405555

Webb, N. M., Franke, M. L., Ing, M., Wong, J., Fernandez, C. H., Shin, N., & Turrou, A. C. (2014). Engaging with
others’ mathematical ideas: Interrelationships among student participation, teachers’ instructional practices, and
learning. International Journal of Educational Research, 63, 79-93. https://doi.org/10.1016/j.ijer.2013.02.001

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee
State University.

136


https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6
https://www.zotero.org/google-docs/?gC7aO6

HOW THE TEACHER AND STUDENTS IMPACT THE UNFOLDING OF
MATHEMATICAL IDEAS ACROSS A LESSON

Amanda Huffman Leslie Dietiker Andrew Richman
Purdue University Boston University Boston University
huffma33@purdue.edu dietiker@bu.edu asrich@bu.edu

By highlighting the curriculum modifications that lead to maintaining, or enhancing, the
mathematical quality of an algebra lesson introducing the substitution method for solving
systems of equations from an algebra textbook, we present an analysis of how a teacher and her
students impact how the mathematical ideas unfold across the lesson and how they are
experienced. Using a narrative-based analytical approach to write the stories of the written and
enacted lessons, we found key similarities and differences in the lessons. In comparing the
mathematical plots, we found evidence of how the teacher and students alter the unfolding story
with the incorporation of more jamming than seen in the text and more questions developed
based on the students’ needs and their responses.

Keywords: Curriculum; Teaching Practice; Algebra and Algebraic Thinking

Research has demonstrated that teachers combine pedagogical practice, contextual factors,
and the curriculum when teaching a lesson (e.g., Remillard & Heck, 2014). Teachers make
pedagogical and contextual decisions (e.g., restricting calculators) based on the needs of their
students, the context of learning, and their own prior experiences. While the text offers resources
for the lesson and can certainly impact the teacher’s instruction and students’ learning (Remillard
et al., 2014), what happens in the classroom often appears quite different than what the textbook
authors intended since the actions of both teachers and students are influenced by a variety of
prior experiences, goals, and perspectives. Ben-Peretz (1990) refers to the set of intended and
unintended curricular uses of written curriculum materials as curriculum potential and describes
the subset of these that are viewed favorably by its authors in the curriculum envelope. This
theoretical framing implies there are a range of appropriate and beneficial interpretations and
uses of all written curriculum materials.

However, there is little understanding of the ways in which lessons can vary within the
curriculum envelope. Therefore, in this study, we illustrate how complex interactions between
teachers and students in an enacted lesson shifts how the lesson unfolds while still drawing from
the elements of the textbook lesson and maintaining its overall intentions. We present the case of
one enacted algebra lesson implemented to a group of students from a set of written materials
that were explicitly designed to increase the mathematical quality of courses by providing
students access to rich, conceptually connected mathematical ideas. In this case, the enacted
lesson maintained (or even enhanced) the mathematical quality of the lesson as written and thus
is within the curriculum envelope. By highlighting the curriculum modifications that lead to
maintaining, or enhancing, the mathematical quality of the written materials (e.g., its aesthetic
opportunities, rigor), we begin to address the research question: /n an enacted lesson that is
within the curriculum envelope, in what ways can the teacher and students impact how the
mathematical ideas unfold across the lesson and how they are experienced? We present a new
methodology to comparing enacted and written curriculum that focuses not only on content, but
also on how the content unfolds across the lesson. This comparison allows us to see how enacted
lessons can maintain or even enhance the mathematical quality of the lesson for students and
could reveal potential strategies for taking advantage of the design of the curriculum.
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Theoretical Framework

To compare mathematics lessons how mathematical ideas unfold, we interpret the lessons as
a form of narrative. Similar to how literary stories can captivate a reader by the withholding and
revelation of information (Nodelman and Reimer, 2003), mathematics lessons can similarly
structure how information emerges, enabling curiosity and encouraging a reader to build interest
in learning more (Dietiker, 2015). A mathematical story is a metaphorical interpretation of how
the mathematical ideas unfold across a lesson, connecting the beginning with the end. Note,
however, that mathematical stories are not limited to contextualized word problems, but rather
describe the twists and turns of the mathematical revelations throughout a lesson. As with
literary stories, mathematical stories have characters (i.e., mathematical objects, such as
algebraic expressions) that are manipulated and changed through action (i.e., mathematical
transformations, such as substituting an expression to make an equivalent equation). In addition,
these mathematical characters and actions play out in one or more mathematical settings (i.e., the
representational space, such as symbols on paper or manipulatives) (Dietiker, 2015).

In a literary story, the text communicates via a narrator, and its interpretation focuses on how
the text communicates to a reader in ways that are both logical (i.e., what makes sense) and
aesthetic (i.e., what it makes a reader feel) (Bal, 2009). Mathematical stories in written
curriculum materials operate similarly; the text narrates the story, and it can be read for how it
communicates to potential readers—who in this case are teachers and students. Reading a written
mathematical story for how it communicates requires identifying how the mathematical ideas,
which are assumed to be unknown from the start, emerge and change as the story proceeds. For
example, if a new definition or a theorem is presented that has not yet entered the story, it is
interpreted as a new revelation even if it is already familiar to the researcher.

Enacted mathematical stories (i.e., those that unfold within classroom) also have narrators
and can be interpreted by how the mathematical ideas emerge and change across a lesson.
However, in this case, the narration occurs both by the written curriculum (e.g., when a task is
read from a worksheet) or by a human (e.g., when a teacher introduces a topic or when a student
describes how they solved a problem). Thus, enacted mathematical stories are more like guerilla
theater, where the teachers and students are both actors and audience members contributing to
and experiencing the story (Dietiker et al., in progress). The teachers in enacted mathematical
stories can also have a role in storytelling, as they may have specific intentions for how the
mathematical story will progress, which impacts their decisions in the moment. For example,
when a student raises a new mathematical idea that alters what is known at that point in a story,
the teacher can choose what to do with that information (e.g., suppress, elaborate) based on how
they want the mathematical story to progress.

The way a mathematical story unfolds has a potential aesthetic impact on its readers, what we
refer to as its mathematical plot. A mathematical plot “describes the aesthetic response of a
reader as he or she experiences a mathematical story, perceives its structure, and anticipates what
is ahead” (Dietiker, 2015, p. 298). The way in which the mathematical ideas play out over time
can spur curiosity in a reader, leading them to pose new questions (e.g., asking how can that be?)
and seek information (e.g., recognizing that two equations are equivalent) that answer them. As
new facts are revealed, a reader has an opportunity to make progress on what is known about the
questions they have adopted at that point in the story. According to literary theory, stories that
offer numerous sustained questions simultaneously are more compelling (Barthes, 1974). The
transition of what is known about a question, from when it opens to how it is answered is
referred to as a story arc. A story arc can be short-lived when a question is answered quickly

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee
State University.

138



after being asked, or can be longer when a question remains unanswered and is still in
consideration throughout portions of the lesson. Since some questions may never be resolved,
some story arcs may remain open at the end of the story. Others may be abandoned when it is
clear to a reader that the story has moved on. With multiple story arcs open, a student may sense
a growing mystery, while a decrease may cause a reader to sense relief (Dietiker, 2015).

Methods

This study is part of a larger exploratory study that initially examined the different ways
experienced (i.e., more than five years of experience) Algebra I teachers enacted the same
textbook lessons. Using the mathematical story framework, this study compares one teacher’s
enacted lesson juxtaposed with the written lesson through a narrative-based analytical approach.
In this section, we describe the context of the written and enacted lessons and describe how we
interpreted and compared their mathematical plots. Note that we share our interpretations and
they may vary from other groups completing this same process. Therefore, a key to this analysis
is that both the written and enacted stories were analyzed using a consistent process. Our
interpretation of these mathematical stories represents a consensus of a diverse mixture of
mathematics education researchers, practicing teachers, mathematicians, and graduate students,
and thus were informed by a mixture of perspectives regarding curriculum, mathematics, and
teaching. Our interpretations represent a potential interpretation of a novice learner, as we took
into consideration the story’s previous revelations while setting aside our prior knowledge.
Sources of Data

The written lesson in this study, Lesson 4.2.1 from the CPM Core Connections Algebra
textbook (Dietiker et al., 2006), introduces the substitution method for solving a system of linear
equations. All elements of the lesson as provided in the teacher’s edition were analyzed, which
includes the student-facing materials (i.e., tasks, explanations) and suggestions to the teacher.

The enacted lesson, which was based on lesson 4.2.1 from the CPM Core Connections
Algebra textbook (Dietiker et al., 2006), was observed in Ms. Turner’s (all names are
pseudonyms) Southern United States high school Algebra I course for special education students
during the Fall of 2015. Ms. Turner’s classroom consisted of six students, all of whom were
Black, seated in small groups. The lesson was videotaped using three cameras: one facing the
front board and two facing the students. In addition, audio recorders were placed on student
desks about the room. The main video recording facing the front board, along with the audio
recorders, was used to build the lesson transcript.

Ms. Turner, who is White, was in her 19th year of teaching and was selected to be observed
for this study based on her expertise. For six years prior to this study, Ms. Turner led
professional development for mathematics teachers in addition to coaching fellow teachers in her
district for the previous seven years. Prior to the observation of this lesson, Ms. Turner was
interviewed for information on her school demographics, her goals for the lesson, and her
anticipated challenges during the lesson. According to Ms. Turner, from the pre-interview, the
learning goal for this lesson was for students to rewrite the two equations with two variables as a
single equation in a single variable by using a suitable substitution expression. After the
observation, she was interviewed again about her reflections and was asked to discuss her
curricular decisions that were made throughout the lesson.

The Written Mathematical Story

The lesson begins with the students solving the system y = —x — 7 and 5y + 3x = —13
using a method that was introduced in a prior lesson, namely, the equal values method (i.e., a
process that involves solving each of two equations for the same variable and then setting the
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two resulting expressions equal to each other). After providing the students a few minutes to
solve the system of equations, the teacher is encouraged to stop the students and launch a
discussion about whether it would be useful to have an easier method. A task then introduces the
substitution method for the same system of equations, and the teacher is encouraged to use strips
of paper with parts of the expressions to build the equations to aid in a discussion of the logic of
the new method. Four more systems of equations are then given for students to solve using this
new method. One of these results in a new situation (i.e., no solution). The lesson concludes with
the task prompting students to figure out a way to know if the solution of a fictional student is
correct or not.
The Enacted Mathematical Story

Ms. Turner started the lesson by reviewing the equal values method. She then prompted
students to solve a system of equations (i.e., y = —x — 7 and 5y + 3x = —13) with this method.
After the students struggled to solve the problem for a few minutes, Ms. Turner stopped the
students and offered a new method to the students with a reasoning of why this new method was
beneficial (i.e., you can avoid ugly numbers). Using the paper switching method described in the
teacher’s guide, Ms. Turner introduced the students to the substitution method. Figure 1 shows
the paper switching process with (a) the original system of equations formed by cards and
symbols, (b) the system after switching the cards in the top equation, (c) the same systems with
the y cards switched in the top and bottom equations, and (d) the same system after switching the
bottom y card with the —x — 7 card in the top. Before Ms. Turner even started through the
process one student indicated insight, but she quickly quieted the student. She continued to guide
the students through the substitution method with the paper switching visual. After “showing her
(Ms. Turner’s) magic” (i.e., the substitution method), the students practiced solving two more
systems of equations using their new method.

(2) (b) (©) (d)

Figure 1: Paper switching process.

Interpreting the Mathematical Story and Plot

In order to analyze and compare the mathematical plots of the written and enacted lessons,
the researchers analyzed each portion of both stories for opportunities for new understanding. To
interpret the stories, we analyzed the text of the story; the text of the written lesson included the
suggested components of the lesson in the teacher’s guide including all tasks and statements,
while the text of the enacted lesson was the transcript from the classroom.

Analyzing the mathematical plots required three passes through each text. Each pass was first
performed individually and then the group of researchers met to resolve differences. First, the
researchers divided the text into agreed upon acts, where each act represented a portion of the
story during which the mathematical story advanced and different acts were marked by changes
in the mathematical characters, actions, or settings. Second, the researchers identified all the
questions raised, either explicitly or implicitly, by the curriculum, teacher, or students in the text.
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Third, we used Barthes’ (1974) codes to describe the transition from question to answer and any
suspense or surprise in between: question formulation, promise of an answer, snare (misleading
information), jamming (unanswerable question), suspension (delayed answers), partial answer
(progress), and disclosure of the answer (endorsing the answer).

With both the written and enacted mathematics lessons coded for their mathematical plots,
the researchers analyzed how the mathematical plots of the written and enacted stories were
similar and different.

Findings

The mathematical plots, which reveal how the stories unfolded in the lessons, are provided in
Figure 2 (as written) and Figure 3 (as enacted). The acts (in columns) are presented in order from
left to right, while the mathematical questions are listed in the order they emerged in the left
column. The shaded cells, representing the story arcs, contain letters for Barthes’ (1974) plot
codes, where a: Question by Teacher or Environment, b: Question by Student, c: Promise,
d: Progress by Teacher or Environment, e: Progress by Student; f: Snare, g: Jamming,
h: Suspension, and i: Disclosure.

Figure 2: Mathematical plot of the Core Connections Algebra textbook Lesson 4.2.1.
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| 7-Coqd IS B0 T 0 T s 0 3 ) S s ) S e B IS S A

1 What is the substitution method? ad ceg de de ed ded ed de de
2 What makes a system too messy to solve with equal values? a e d d
3 How do you solve a system of equations with the equal values method? a d de g
4 How do you solve the system y=-x-7 and 5y+3x=-13 using the equal values method? ade ed gd
5 What is the solution to the system of equations y=-x-7 and 5y+3x=-13? ade ed e ed ed ed dei
6 Can I set these two equations equal to each other and start solving? aei
7 What do we need to do to one of these equations to solve with equal values method? aei
8 How do we isolate y in the equation Sy+3x=-13? ae gd
9 What should I do with -13 and -3x, and why? aei
10 How do we use algebra tiles to help us solve equations? af gh d| d
11 What makes this new method easier? aeg d | d i
12 What does that student mean by "you put it in the place of y?" bg d di
13 What does the "=" symbol represent? aed de e
14 Is y=-x-7 equivalent to -x-7=y? Why? aei
15 Is the system equivalent if we switch the [y] terms? Why? aei
16 Can the y in the bottom equation be switched with the -x-7 in the top equation? Why? aei
17 Is the equation y=y true? ae
18 How do we solve this new one-variable equation? aed ei
19 Why do we have to use the distributive property? ae
20 How do I multiply 5 by -x? bei
21 How do I solve -2x=227? aei
22 Once I have a value for one variable, how can I find the other variable? aed def
23 What mistake is she predicting? adei
24 What is -x when x is negative? bei
25 What is the solution for the system x=2y+4 and 3x+2y=-28 when using substitution? aed ed dei
26 What is the solution to the system y=3x and 2y-5x=4 when using substitution (4-33a)? adei
27 How can you tell if the solution x=4 and y=2 is correct for the system without solving? aege
28 What is the solution of 3(3x+5)=427 aed

Figure 3: The Mathematical Plot of the Enacted Lesson.

In comparing the mathematical plots, we found evidence of how the teacher and students
alter an unfolding story within the curriculum envelope for the benefit of student experiences.
Specifically, we discuss three shifts in the enacted mathematical story: (a) additional jamming by
Ms. Turner’s added questions and interactions with her students, (b) Ms. Turner’s students’
increased engagement through her verbal declaration of knowing what mistake her student was
about to make and evidence of her understanding of her students and the rapport she has built
with them, and (c) added questions asked by the teacher in response to her students’ needs while
addressing the algebraic processes of solving the systems of equations.

Added Jamming in the Enacted Story

In the enacted lesson, specifically in Act 5, Ms. Turner’s actions of posing the problem to
solve a system of equations (i.e., y = —x — 7 and 5y + 3x = —13) using the equal values
method created multiple instances of jamming, or an experience where you think you are going
to get an answer and then the story threatens and drops hints that you may not get the answer.
Both the written lesson Question 5 and the enacted lesson Question 4 (What is the solution to the
system of equations y = —x — 7 and 5y + 3x = —13?) created a similar instance of jamming as
the posed problem became too messy to solve. However, Ms. Turner added additional questions
around this problem which added more jamming to the enacted story:

3 How do you solve a system of equations with the equal values method?
8 How do we isolate y in the equation 5y + 3x = —13?
10 How do we use algebra tiles to help us solve equations?

12 What does that student mean by “you put it in the place of the y”?

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee
State University.

142



That is, these additional questions (i.e., Question 3, Question 8, Question 10) offered support for
her students as they tried to solve the given system of equations using the equal values method.
Then, when Ms. Turner stopped the class as the problem became too messy, abandoning the
equal values method to solve the given system of equations, this simultaneously disrupted
Question 3, Question 4, and Question 8. As Ms. Turner moved on to introduce the substitution
method, Question 12 was introduced by a student, but this question was quickly jammed in order
for Ms. Turner to walk through the entire process of the substitution method step-by-step with
the paper switching method.

During the paper switching demonstration, beginning in Act 5, another element of jamming
occurred as one student quickly picked up on what to do. Ms. Turner stopped the student from
sharing his complete thought, to continue explaining the process and to ensure the other students
followed the substitution method. Ms. Turner enabled this aesthetic moment in her classroom by
deciding in the moment to quiet her students' aha moment, as the other students in the class
would benefit from a guided introduction to substitution. After Ms. Turner explained a little
more, she returned to the student who was eager to share and quickly saw how the substitution
method worked when doing the paper switching visual provided by the curriculum. These added
elements of jamming and Ms. Turner’s deviations enhanced the lesson for her students while
providing her students access to rich, conceptually connected mathematical ideas as the author(s)
intended in the written lesson.

Predicting a Student’s Error in the Enacted Story

In Act 11, Ms. Turner’s response, “I guarantee you’ve made a mistake and I’ll eat my words
if you didn’t,” while the students are solving for y to finish solving the system of equations after
as a class they found the value for x created question 23. Question 23, What mistake is she
predicting? is not in the written lesson, but enhanced the lesson as Ms. Turner knew what her
student was going to do. This student had mixed up the double negative in the problem, and this
student action led to the formulation of Question 26, What is -x when x is negative? These two
questions were added to the enacted story based on the teacher’s predictions and the student’s
mistake. Again, these questions were created in the moment and based on the context of the
lesson and Ms. Turner’s students, something not seen in the written story.

Additional Questions to Solve the System in the Enacted Story

In the enacted story, Ms. Turner also added questions not found in the written story. These
added questions supported the students as they worked to understand the substitution method and
solve systems of equations, as the students needed reminders and guidance in solving the
equation for one variable once they made the substitution (e.g., reviewing the distributive
property). These additional questions demonstrate how Ms. Turner’s pedagogical practice and
contextual factors impacted the enacted lesson. The first occurrence of added questions is at the
very beginning as Ms. Turner guided the students in recalling the equal values method from the
previous lesson. Ms. Turner added the following questions:

6 Can I set these two equations equal to each other and start solving?
7 What do we need to do to one of these equations to solve with equal values?
8 How do we isolate y in the equation 5y + 3x = -13?

9 What should I do with -13 and -3x, and why?

10 How do we use algebra tiles to help us solve equations?
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These additional questions helped students to start solving the system of equations. These
questions were not raised when the written substitution lesson was analyzed, since both the equal
values method and how to solve an equation for one variable were presumed prior knowledge.
Seeing Ms. Turner's introduction of these questions indicates the need for the students’ prior
knowledge to be recalled as a class. This also demonstrates how Ms. Turner knew her students
and the context of the lesson and made adjustments to meet them where they were in supporting
their development of the substitution method.

This is not the only time Ms. Turner added additional questions to the enacted lesson. The
next occurrence was seen when guiding the students through the substitution method. Ms. Turner
added additional questions (i.e., Questions 18 - 21) to assist the students in solving the system of
equations using substitution. Ms. Turner even referred back to a visual representation, algebra
tiles, and also discussed the distributive property while solving the equation for x after
substituting in the expression for y. These added questions made the lesson fit the students and
allowed the students to engage in the rich mathematical task.

18 How do we solve this new one variable equation?
19 Why do we have to use the distributive property?
20  How do I multiply 5 by -x?

21 How do I solve -2x=22?

Discussion

Our findings reveal how, in the enacted lesson, the teacher’s questioning and the questions
and responses of the students altered the story of the written lesson while still maintaining its
overall intentions. The students’ needs were known by the teacher and the students’ responses
and actions (i.e., “I already know what y is”, forgetting a negative) enhanced the lesson. Ms.
Turner’s use of the introductory problem, the paper switching visual, and the practice problems
showed her use of the curriculum when teaching the lesson, while the added jamming, prediction
of a students’ error, and added questioning demonstrated Ms. Turner’s use of pedagogical
practice and contextual factors when teaching the lesson. These experiences enhanced the lesson
for these students and allowed these students to complete the mathematical task and learning
goal envisioned by the authors. Ms. Turner’s crafting and improvisation of the lesson in the
moment supported the written lesson.

Through our narrative-analytical approach, we illustrated how complex interactions between
a teacher and students in an enacted lesson shifted how the lesson unfolded while the lesson still
drew from the elements of the textbook lesson. We demonstrated how one enacted lesson
maintained, and even enhanced, the lesson for the students. Additional research is needed to
highlight other enacted lessons also maintaining, and possibly even enhancing, the written
lesson. Additionally, further research is needed to explore how to support teachers in recognizing
the potential strategies of implementation that take advantage of the design of the curriculum
materials so that more enacted lessons maintain or enhance the mathematical quality for students.
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We report the results of the second of two pilot studies from an intervention designed and
developed based on a validated trajectory of students’ fraction concepts. Results suggest that
designing and developing interventions that draw upon practices based in mathematics
education and theory (e.g., utilizing students’ own problem-solving actions, basing activities on
learning trajectories, and supporting students to notice and discuss their problem-solving
strategies) was an effective means of bolstering conceptual understanding and performance for
the students we learned from in this work.
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Designing fraction instruction to meet the needs of diverse learners is a challenge facing
educators today. One need often outlined in the literature is designing and testing curricular
materials that build conceptual understanding, especially for students with learning difficulty
(MD) and learning disability (LD). Observed performance differences that students with MD
experience are concerning because conceptual knowledge mediates differences in overall
performance in fraction skills between students with and without MD (Vukovic, 2012). Yet, we
contend that the inadequate progress is likely the result of an opportunity gap caused not by a
lack of knowledge or sub-optimal cognitive ability but instruction that does not provide these
students access to their conceptual capacities or advance their understanding.

One innovative approach to bolstering access and advancement of conceptual knowledge of
fractions is the use of learning trajectories as a grounding for intervention design and innovation.
Learning trajectories include a goal, developmental stages of thinking, and activities designed to
explicitly promote the stages of thinking to bolster concepts of fractions (Clements et al., 2020).
Unfortunately, although basing instruction on learning trajectories is often recommended, “there
is little direct evidence to support this approach” (p. 3).

We report the results of the second of two pilot studies (see Hunt et al., 2020) from an
intervention designed and developed based on a validated trajectory of students’ unit fraction,
partitive fraction (i.e., non-unit fractions less than one), and iterative fraction (i.e., non-unit
fractions greater than one) concepts. The research questions for this study are: (a) To what extent
does a supplemental fraction intervention implemented in a school intervention setting and based
on trajectories of students’ fraction learning demonstrate evidence of increased student
outcomes, defined as conceptual advance evidenced by units coordination, for students with LD
and MD? And (b) Is there a statistically significant increase in score on a standardized measure
of fractional concepts and operations after participating in a supplemental fraction intervention
implemented in a school intervention setting for students with LD and MD?

Conceptual Framework
The learning trajectory utilized in the current study addresses the concepts of fractions as a
coordination of units. Units coordination is defined as the number of units children can bring into
fraction problems to think and reason with (Hackenberg et al., 2016) and involves the processes
of partitioning, iterating, and the eventual combination of partitioning and iterating into a single
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process (Hackenberg, 2007; Norton & Wilkins, 2010; Wilkins et al., 2013). Partitioning is the
mental or enacted action of dividing a unit into equal-sized parts. As students become more fluid
with partitioning, they can mentally pull out a created fractional unit from the whole and
understand it in relation to the whole without destroying the whole. They begin to iterate, or

: . . 1 2
repeat, the fractional unit to make larger units (e.g., use S to make g).

At first, students make sense of larger fractional units within the bounds of the whole (two-
level units coordination). Over time, students will learn to combine partitioning and iterating into
a single process called splitting. Splitting involves anticipating the results of partitioning a whole
concurrently with iterating a fractional unit (Hackenberg, 2007; Norton et al., 2018). When
students can split, they can understand larger fractional units outside of the bounds of a whole
(three-level units coordination). Students will often combine the two processes sequentially
before combining them into a single operation. We hypothesized students with LD could utilize
similar processes to build a concept of fractions toward the learning goal, “Fractions are numbers
that have magnitude determined by the coordination of the numerator with the denominator.”

Methods
Participants and Data Sources

The pilot study took place in one suburban elementary school located in the Southeastern
United States. The school enrolled approximately 1,050 students: of these students, 5.1%
received special education services and 75.8% were from underrepresented groups. Students
were selected based upon five criteria: (a) currently in fourth or fifth grade, (b) previously
identified as requiring at least Tier II intervention in mathematics in response to sustained low
performance and poor progress on grade-level curriculum, (c) have a weakness is fraction
concepts and applications as identified by the classroom teacher, (d) performance of less than
30% on a screener of fraction concepts from the state’s end-of-grade test, and (e) provide
information parental consent and student assent. When students who met the criteria were
identified, the school selected participants.

The process yielded a total of 10 students — two of whom received Special Education
services (LD) and four who received 504 or Tier 3 services for math difficulty (MD) -
participated in the study. These 10 students comprised two intervention groups, with five
students in Group 1 and five students in Group 2. Of the 10 students, three were females, seven
were males, nine were People of Color, and one was White. Students were between nine and 11
years of age. Intervention attendance for the nine out of the 10 students was high (100%).

Our intervention was designed to support the fraction learning of students with LD. Yet,
schools often include both students with LD and MD in supplemental mathematics instruction.
We included students with LD and MD to match school norms and procedures.

Data sources for conceptual advance included video data, accompanying student work, and
researcher field notes for each session. For performance change, 16 items pulled from the 2018-
2019 North Carolina Department of Public Instruction (DPI) released third, fourth, and fifth
grade End-of-Grade (EOG) Exams were used as a distal measure of performance because they
measured the Number and Operations Fraction Standards students were assessed upon across
elementary school. The measure was also group-administered and included six items measuring
third grade standards, two items measuring fourth grade standards, and eight items measuring
fifth grade standards. Internal consistency ranged from 0.90 to 0.94.
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Study Design & Data Analysis

A one phase, mixed methods quasi-experimental approach drove this research (Creswell &
Plano Clark, 2018). Qualitative data were considered primary in the design, consistent with the
study emphasis on changing students’ conception and appropriate with small sample sizes.

Data analysis to detect conceptual change was done on several levels. First, constant
comparison methods (Leech & Onwuegbuzie, 2007) and classical content analysis (Grbich,
2007) were used to document and quantify students’ partitioning and iterating processes within
each problem for each student. Researchers examined each student’s (a) partitioning and
iterating actions used to solve each problem (b) the student’s utterances as they solved problems
along with how they named, or quantified, their solution, (c) whether the student appeared to
have a plan/strategy before having to act, and (d) any observable evidence related to the student’s
units coordinating. We used peer debriefing and collaboration to search for evidence that
confirmed or refuted claims made across the data to build reliability and validity in the coding
process. We had 86% interrater reliability for individual analyses of codes across the entire set.
Researchers then quantified the number of occurrences for each code (e.g., how many times
partitioning was observed) by dividing the totals by the total number of all codes.

Second, researchers used emergent coding to document how students’ observable processes
across the tasks and after the second, fourth, sixth, and tenth instructional sessions were or were
not consistent with the stages of units coordinating learning trajectory confirmed in previous
years of the project. Generally, researchers looked for evidence of the stages of units students
could either (a) describe before activity in the problems or (b) used with activity in the problems.
The analysis was iterative and included multiple perspectives to make confirmatory claims about
patterns in the data consistent with conceptual advance. We established 100% interrater
reliability after peer debriefing and collaborative work. Finally, to detect initial differences in
performance on fraction state standards as a result of the instructional trajectory (i.e., before and
after the intervention within the same group of students), a one-tailed paired sample t-test was
used to evaluate statistically significant differences on the distal measure. The IV was time; the
DV was score. The level of significance was set at 0.05.

Results

Three nuances in partitioning consistent with our learning trajectory were coded across the
intervention sessions: (a) In action halving (i.e., students engaging in halving strategies in the
midst of problem-solving), (b) In action linked (i.e., students engaging in partitioning linked the
number of sharers in the midst of solving problems), and (c) Before action linked partitioning
(i.e., students describing a partitioning plan that was linked to the number of sharers before
solving the problem). After session two of the intervention, 56% of students used in action
halving-based partitioning, and 23% and 21%, respectively, used in action planned or before
action linked partitioning. After Session Four, 11% of students continued to use in action
halving-based partitioning, 34% of students used in action linked partitioning; before action
linked partitioning (55% of students) became the dominant method. After the eighth session,
only 23% of students were in action partitioning. The final session showed a slight uptake in
students’ use of in action (33%) versus before action (67%) partitioning. The two students with
LD both started the intervention using in-action halving partitioning. After session two, one
continued to use in-action halving while the other progressed to in action linked partitioning.
After session six, both progressed to and consistently used before action linked partitioning.
Increased use of sophisticated partitioning alongside decreases in rudimentary partitioning
showcases growth.
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The forms of iteration uncovered and coded in the analysis were (a) in action trial and error
(i.e., students created an equal share and did not correctly adjust it longer or shorter), (b) in
action adjustment (i.e., students created an equal share and corrected adjusted its magnitude) and
(c) planned (i.e., students accurately created an equal share and used iterating to confirm the part

as ;). After Session Two, 45% of students used in action trial and error iteration, 55% used in

action adjustment, and 0% used planned iteration. After Session Four, the percentage of students
using in action adjustment for iteration increased to 34%, and students using planned iteration
increased to 22%, and the use of in action trial and error iteration was relatively unchanged
(44%). After the eighth session, trial and error iteration was used by only one student (11%),
while in action adjustment and (44%) planned (45%) iterating was dominant. Both students with
LD began the sessions iterating in action trial and error. After session four, one student
progressed to a stable use of planned iterating for the remaining sessions. The other student
evidenced planned iteration in the tenth session.

Advances in units coordination emerged in the data that were consistent with students’
advances in conceptual processes. After Session 4, most (89%) of students coordinated two
levels of units in action (i.e., had to act within a problem to think about fractions as coordinated
in magnitude with a whole), while one student (11%) came into the problems coordinating one
level of units. After Session 8, students who bring in two levels of units into problem activity
increased to 33%; students coordinating two levels of units in action fell to 56%. In the final
session, 67% of students (inclusive of both students with LD) brought two levels of units into the
problems. Process advances and units coordination mark students’ conceptual advances.

A paired-samples t-test was conducted to compare performance score on a distal measure of
students’ fraction knowledge before and after participating in the instructional trajectory. A
histogram confirmed the normality of the data. There was a statistically significant difference in
group scores from pre-test (m = 4.56, sd = 2.07) to post-test (m = 6.78, sd = 3.87), t = 2.23,
p = 0.03. Our results suggest that engaging in our fractions intervention positively impacted
students’ performance. When examining the performance of the students with LD on an
individual basis, there was a statistically significant difference in scores from pre-test to post-
test,t = 2.24,p = 0.03 and t = 7.85, p < 0.0001, respectively, for both students. Our results
suggest that our intervention also positively impacted the performance of students with LD.

Discussion

Very few studies in mathematics education or special education evaluate the effectiveness of
student-centered interventions based on mathematics education instructional practices and theory
on improving student outcomes (see Hwang et al., 2019; Shin & Bryant, 2015). We provide
evidence regarding an intervention designed and developed based on a validated trajectory of
students’ unit fraction, partitive fraction, and iterative fraction concepts (Hunt et al.., 2020).
Designing and developing interventions that draw upon practices based in mathematics
education and theory (e.g., utilizing students’ own problem-solving actions, basing activities on
learning trajectories, and supporting students to notice and discuss their problem-solving
strategies) was an effective means of bolstering conceptual understanding and performance for
the students that we worked with in this study. More work is needed to substantiate our findings.
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Traditionally, mathematics is taught without a connection to the real world which makes it
abstract and difficult for students to understand, thereby resulting in low mathematics
achievement. This study investigated the learning experiences of Grade 8 students as they
participated in project-based learning (PBL) as part of an interdisciplinary mathematics
education (IdME) unit of study. Qualitative data were collected in the form of student self-
reflections and interviews. Findings suggest that students were able to improve their
mathematics knowledge and understanding by implementing mathematics concepts in real-world
contexts. We argue that students not only understand mathematics better but also realize its
importance as a discipline when it is taught through real-world projects.
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Mathematics knowledge and processes are used in everyday life. Furthermore, skills
developed through engaging with mathematics, such as logical thinking and problem solving, are
critical in tackling complex global problems of the 21 century. Despite the importance of
mathematics in our society, Canadian secondary students’ mathematics achievement is declining
(Allison & Geloso, 2021). A majority of the students find mathematics education vague, abstract,
and detached from reality and real-life situations (Mosvold, 2008). Indeed, in secondary schools,
mathematics has traditionally been taught without any connection to other subjects (Chi, 2021)
despite curricula calling for interdisciplinary approaches to teaching and learning (e.g., Ontario
Ministry of Education, 2016; Québec Education Program, 2001). Moreover, there is a dearth of
literature that provides concrete examples and evidence of mathematics being taught in
connection to other subjects, especially in the context of Canada. This paper presents a case of
interdisciplinary mathematics education (IdME) being implemented in a Grade 8§ mathematics
course at a small, independent school in the province of Québec. Specifically, our study is guided
by the following research question: How does IIME contribute to students’ learning experiences
with mathematics?

Perspectives

An interdisciplinary approach to teaching and learning involves curriculum organized around
common learning across various disciplines where students learn concepts and skills that are
common to two or more than two disciplines (Costley, 2015; Helmane & Briska, 2017).
Specifically, in IIME, mathematics is taught in an interdisciplinary way (Chao-Fernandez et al.,
2019). IdME presents mathematics in a wider context (Chi, 2021), combined with one or more
disciplines and everyday knowledge to encourage problem solving and inquiry (Williams et al.,
2016). In IdME, mathematics can be combined with a wide range of disciplines including
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science, arts, or languages (Brante & Brunosson, 2014; Lovemore et al., 2021; Serrano Corkin et
al., 2020). Studies indicate that IIME increases students’ engagement (Madkins & Morton, 2021;
Satterthwait, 2019; Serrano Corkin et al., 2020) and improves students’ mathematics knowledge
and understanding (Altin et al., 2021; Brante & Brunosson, 2014); both serving as crucial
predictors of students’ mathematical achievement.

A common approach for IAME is project-based learning (PBL)(Chi, 2021). PBL is an
instructional method that allows students to engage with the content at a deeper level and bridge
theory and practice (Condliffe, 2017). In PBL, students engage in complex tasks based on
challenging questions or problems in authentic contexts (Bell, 2010; Laur, 2013). Students
design, problem-solve, make decisions, and investigate topics of personal interest (Aydin-
Giinbatar, 2020; Lin et al., 2015). PBL helps students in “establishing conceptual associations
between the learnt knowledge” (DemiRel, 2010, p. 48) and hence, improves their academic
achievement in mathematics (Giirgil & Cetin, 2018). Indeed, a study by Holmes and Hwang
(2016) found that students who initially had little belief in their mathematics skills “expressed
mastery or learning goals™ as result of engaging with PBL (p. 459). PBL has also shown to
increase students’ understanding of mathematics concepts by making students capable of
applying mathematics knowledge to real-life situations (Boaler, 1997; Fain et al., 2015; Holmes
& Hwang, 2016).

Research Context and Methods

The study took place within a context of a research-practice partnership with a small,
independent girls’ school in Québec. The Grade 8 mathematics teacher, Stephanie (all names are
pseudonyms), was keen to integrate IIME into her teaching practice, and more specifically, used
PBL as a means to achieving this goal. As such, she developed the “Lifestyles Project”,
comprised of three tasks: the Hobby, Careers and, Bedroom Design tasks. Tasks were
purposefully interdisciplinary and designed in collaboration with teachers from other subject
areas (science, English language arts, and visual arts, respectively). In the first task, students
chose a hobby of personal interest and identified and explored science and mathematics concepts
associated to the hobby. The second task required students to select a future career, find a job in
this career, and calculate the salary that they would receive (given required tax deductions). In
the final task, students designed a 3D, scaled model of the bedroom of their dream apartment
considering mathematical constrains like size and surface area. Tasks were interspersed
throughout the academic year, each spanning 2-3 weeks in length. Study participants were all of
the students in Stephanie’s Grade 8 mathematics course (n=16).

A qualitative case study method (Denzin & Lincoln, 2011; Stake, 2006), was used to explore
the Grade 8 students’ experiences with the Lifestyles Project. There were two sources of data for
this study: 1) student self-reflections, and 2) student interviews. Students completed written self-
reflection after most PBL classes to capture their experiences during the Lifestyles Project. Semi-
structured interviews (Gubrium & Holstein, 2002) were conducted at the end of the year in
which students were asked about their thoughts and feedback about the Lifestyles Project and
IdME more generally. Interviews were audio-recorded and transcribed verbatim. Interview
transcripts and student self-reflections were coded in a series of coding cycles using an inductive
thematic analysis approach (Guest et al., 2011). Qualitative data analysis software NVivo was
used to efficiently organize and code the data using a code book developed by the research team.
We then selected codes specific to students’ learning experiences in mathematics through an
iterative process and categorized this data by seeking out emerging patterns and themes.
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Findings

The aim of this study was to explore how IdME, as enacted through the Lifestyles Project,
supported Grade 8 students’ learning experiences with mathematics. In this section, we present
two major themes that emerged from the data: 1) how the Lifestyles Project allowed students to
connect mathematics to the real world, and 2) how real-world contexts supported the students’
mathematics learning.
Connecting Mathematics to the Real World

Through the Lifestyles Project, students applied mathematics to realistic contexts. Students
reflected on how the Lifestyles Project allowed them to see how mathematics could be used in
the real world. For example, Raza shared,

I learned that interior designing has math in it, because interior designers need to know how
much the total surface area is of something. And they can’t just pick up like, go buy a couch
or something, and hope it fits. They really need to measure it, so it fits.

Or as another example, Cymbi described how the Careers task allowed her to learn about taxes.
She said, “I loved learning new things like what QPIP (Québec Parental Insurance Plan) taxes
were and why were they used. Because I never knew about these things, it was all so new!”
Students recognized and discovered that many mathematics concepts are immediately applicable
and helpful in problems and tasks that they may encounter in their daily lives.
Real-World Contexts to Support Students’ Mathematics Learning

In addition to allowing students to see the usefulness of mathematics, real-world applications
helped the students deepen their mathematics knowledge. Students’ mathematical understanding
was strengthened when they could connect mathematics with real-world applications relevant to
their own lives. For example, in reflecting on the Bedroom Design task, Junan said,

I think [the task] was also really good for understanding total surface areas a lot. On a paper,
I don’t count the backside (of furniture)...we can’t see it. But, like actually seeing it (in 3D)
because now if [ were to look at my closet or something, I could say like, oh, I wouldn’t
count this because I can’t see it is touching the wall.

Here, Junan described how calculating the surface area of a real 3D model instead of a 2D
drawing on a paper allowed her to better understand the concept of surface area. Similarly,
Cymbi described how designing her bedroom reinforced the importance of mathematics
knowledge. She said, “Measurements really are important and proportions because like, I found
myself making a table that was like, shorter than the bed and then I was like, oh my god, that
doesn’t make any sense.” Here, Cymbi shared how measurement errors would result in major
problems in this real-world context. Indeed, through the Lifestyles Project, students realized the
value and importance of both mathematics and mathematics knowledge in broader, non-
academic contexts.

Students also shared that the Lifestyles Project provided them an opportunity to develop a
stronger understanding of mathematics concepts that they had previously learned in the course.
For example, Junan said, “I was okay at [surface area] before, but especially now, like when I
was looking at the actual shape, I was like, 'Oh, wait, I don’t count this, [ don’t count that.” A
similar response was given by Aura who felt that the Bedroom Design task “helped with like,
what we were learning in class was like, lateral area and total surface area.”

Although the majority of students enjoyed the Lifestyles Project, some felt that the real-world
contexts were a hinderance to their mathematics learning. As Rose said, “I wouldn’t want [class]
always to be these projects, because I would want to learn some math and stuff...I would prefer
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the majority of the year to be math”. This response indicates that some students drew a clear
boundary between ‘mathematics’ and these ‘(Lifestyle) projects’. These students did not see the
Lifestyles Project as incorporating mathematics, whether it be the mathematics concepts or
processes that they previously learned, or the students’ conceptions of what mathematics is and
how to do it. Kobu explained, “We’re learning about stuff [in a way] that we wouldn’t like,
conventionally learn about in math class.” Indeed, for some students, learning mathematics in a
way that they were not accustomed to was challenging.

Discussion and Conclusion

The focus of this study was to explore how interdisciplinary mathematics education (IdME),
implemented through project-based learning (PBL), contributed to the students’ learning
experiences with mathematics. In the “Lifestyles Project”, Grade 8 students participated in a
variety of tasks that involved integration of mathematics with other disciplines (i.e., science,
English language arts, visual arts). Findings suggest that the students were able to make sense of
mathematics concepts by applying them to real-world contexts, which provided them with an
opportunity to enhance their mathematics learning and improve their mathematical
understanding.

The relevant and authentic contexts of the Lifestyles Project allowed students to realize how
mathematics can be implemented in the real world (Brante & Brunosson, 2014). Furthermore,
these contexts underscored the importance of mathematics as a discipline that is inherently
present and correlated to all disciplines. When engaging in IIME through the Lifestyles Project,
the students recognized the need to apply integrated mathematics knowledge to engage in real-
world design and problem solving tasks. Indeed, the students seemed to “understand how
mathematics inter-relates with other school subjects and with the real life” (Chi, 2021, p. 667).
We argue that IIME encouraged students to learn by “demonstrating the real-world relevance of
their education” (Newell, 2010, p. 11). In connecting mathematics to real-world contexts, the
students seemed to be better able to understand mathematics concepts that were initially
perceived to be complex and abstract. This strengthened understanding of new and previously
learned mathematics concepts, in turn, improves students’ academic achievement, both in
mathematics and more generally across disciplines (Applebee et al., 2007). Despite its positive
impact on students’ mathematics learning, some students found IdME to challenge their
perception of mathematics education. Indeed, some students had preconceived notions that
mathematics should be taught in isolation and not connected to real-world contexts. This is in
contrast to research indicating that students are generally more positively inclined towards an
interdisciplinary learning approach as compared to traditional approaches to teaching and
learning (Ghisla et al., 2010; Zhan et al., 2017).

While these findings may not be generalizable to wider contexts, our study provides further
evidence of the positive potential of IIME as a means to enhancing students’ learning
experiences with mathematics. We encourage researchers and educators alike to further consider
the ways that IIME can be used to transform mathematics instruction and allow students to
thrive.
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Utilizing an innovative and theoretically-grounded approach, we extend the work of cognitive
scientists and mathematics educators who have previously documented the impact of comparison
on students’ learning in algebra with the goal of transforming the learning that occurs in eighth-
grade geometry classrooms. The purpose of this paper is to examine the types of comparisons
participants made during think aloud interviews when engaging with curricular materials that
have them examine multiple solution strategies. This research seeks to extend the work of using
comparisons in algebra to determine if using comparisons in geometry will help improve
students’ mathematical understanding.

Keywords: Curriculum, Geometry and Spatial Reasoning, Middle School Education

Introduction

Dissonance is defined, in part, as “an instance of such inconsistency or disagreement”
(Merriam-Webster, 2022). There is much to be learned through these inconsistencies, especially
in regards to learning mathematics, for it is through this dissonance that students work to make
sense of the inconsistencies and develop stronger mathematical arguments. By simply comparing
different solution strategies to a mathematics problem, students can draw out inconsistencies to
deepen their mathematical thinking.

Utilizing an innovative and theoretically grounded approach, we extend the work of
cognitive scientists and mathematics educators who have previously documented the impact of
comparison on students’ learning in algebra (Star, Pollack, et al., 2015), with the goal of
transforming the learning that occurs in middle grade geometry classrooms. Comparing and
contrasting objects is a powerful learning tool with deep roots in cognitive science literature.
Goldstone, Day, and Son (2010) stated, “research has demonstrated that the simple act of
comparing two things can produce important changes in our knowledge” (p. 103). There is
empirical support from cognitive scientist literature for the use of comparing contrasting
examples for learning about business negotiations (Gentner et al., 2003), heat flow in science
(Kurtz et al., 2001), children’s learning (Loewenstein & Gentner, 2001; Namy & Gentner, 2002),
and 1n studies of infants 4 to 6-months old (Oakes & Ribar, 2005). In mathematics education,
research on comparing has proven effective in learning: estimation (Star & Rittle-Johnson, 2008,
March, 2009), the concept of an altitude for a triangle (Guo & Pang, 2011), and equation solving
(Rittle-Johnson & Star, 2007, 2009; Rittle-Johnson, Star, & Durkin, 2012).

Theoretical Framework
Comparisons are a powerful way to improve learning across disciplines; having students
compare and contrast different strategies has produced gains in students’ knowledge of algebra
(Lynch & Star, 2014; Star, Newton, et al., 2015; Star, Pollack, et al., 2015). Furthermore,
comparison of multiple strategies also plays a prominent role in policy documents. In particular,
one of the five recommendations for improving mathematical problem solving for middle grade
students noted in the released Practice Guide from the U.S. Department of Education

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee
State University.

157



(Woodward et al., 2012) was to have students examine multiple problem solving strategies.
Similarly, one of the Common Core State Standards for Mathematics (NGA, 2010) mathematical
practice standards is for students to be able to construct viable arguments and critique the
reasoning of others, specifically that, “Mathematically proficient students are also able to
compare the effectiveness of two plausible arguments” (p. 10). When students share their ideas
and evaluate the thinking of others in class discussions, they develop the ability to construct
mathematical arguments; the practice of critiquing peers is thought to enhance mathematical
understanding (Lampert, 1990; Silver, Ghousseini, Gosen, Charalambous, & Strawhun, 2005).

Researchers have developed contrasting case materials to address typical Algebra I content
that students struggle with or that elicit student misconceptions (see Star, Pollack, et al., 2015;
Star, Rittle-Johnson, & Durkin, 2016). Star and colleagues’ Algebra I curriculum is focused
around worked example pairs (WEPs), where each WEP shows two fictitious students solving
one or more algebra problems. The intent of each WEP is for students to directly compare and
contrast, line-by-line, the methods that the two fictitious students use in solving each problem.
Star and colleagues (2015) have demonstrated that teachers’ implementation of the contrasting
cases materials, including whole class and small group discussions around the WEPs, can lead to
increased procedural knowledge, procedural flexibility, and conceptual knowledge of Algebra I
topics.

The research in this proposal seeks to extend this work to geometry content and to further
enhance the effectiveness of this approach for geometry by creating digital materials with
animations. Because a major goal of the project is to establish a scientific foundation for
animated contrasting cases as a basis for the learning of geometry, this paper seeks to answer an
initial question: What types of comparisons between mathematical strategies do students make?

Design of Materials

Our digital curricular materials center two fictitious students’ voices at the center of
mathematics learning, and each lesson includes five unique features: a page for the first fictitious
student’s solution strategy on a given geometry task, a page for the second fictitious student’s
solution to a geometry task (which could be the same or different task shown on first student’s
page), a page with both students’ strategies side-by-side, a discussion sheet with four questions
for the students to answer, and a thought bubble page summarizing the key mathematical
concepts in the problem. The discussion sheet and thought bubble page are designed to make the
instructional goal of each WEP more explicit and for students to summarize their work from the
WEPs (Star, Pollack, et al., 2015).

There are four units, each containing either five or six WEPs, that cover the geometry content
in the 8™ grade CCSSM (NGA, 2010). Each unit introduces two new characters; for this paper
we will refer to the characters as Jaxon and Maxine. As we created the materials, we considered
several design features: animations and colors to draw student’s attention to the geometric
content in meaningful ways, characters’ methods purposefully selected to spark comparisons,
geometric thinking of the WEP characters, and diversity of characters throughout the units.

Methods
After fully developing the 8™ grade geometry materials, and due to shifts in classroom-based
research due to COVID, we conducted 56 hour-long open-ended semi-structured clinical
interviews (Piaget, 1976; Opper, 1977), in the form of think alouds, with individual participants
(n = 42). Our goal was to elicit student thinking as participants engaged with the materials and
discussion questions, not to get them to a “correct” response (Opper, 1977). Consistent with
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Opper’s description of the clinical method, we used the students’ language, paced the interview
to each student’s speed, and encouraged students to elaborate on their thinking. In order to
engage participants in each phase of the WEP during the interviews, we followed a detailed
protocol: examine Jaxon’s method, examine Maxine’s method, horizontally compare Jaxon and
Maxine’s methods, solve the problems on the discussion page, and read the thought bubble at the
end. If needed, we had questions for each phase of the protocol to probe student thinking. At the
end, we asked if they had any questions for us or any final thoughts on the materials.

We transcribed each interview and began a priori (Saldafia, 2013) coding based on our key
design features (Animations, Colors, Comparison Between Characters, Diversity of Characters,
Geometric-Thinking of WEP Characters). We then added emergent (Saldafa, 2013) Level 1
codes for the students’ geometric thinking and curricular form and Level 2, 3, and 4 codes as
appropriate. We met to develop the codebook and then each coded several interviews
individually. We then met to discuss any discrepancies and came to agreement on all codes.
Once we had finalized our codebook, two coders independently coded each transcript and the
third researcher resolved all disagreements. The average initial agreement between the pairs of
coders was: 88.92% for Level 1 codes, 82.76 for Level 2, 81.04% for Level 3, and 88.09% for
Level 4. This paper specifically analyzes the Level 1 Comparison Between Characters codes to
determine what types of comparisons the participants made regarding Jaxon and Maxine’s
solutions strategies. Below, we report on the types of comparisons they made and give examples
of each type.

Findings
Comparisons Between Characters

We observed 756 (23.27% of all Level 1 codes) instances where students were making
comparisons between the WEP characters (Table 1). Most often they were discussing differences
between the characters (n = 484), but they also noted similarities (n = 267) and used both WEP
characters’ strategies to verify a mathematical idea (n = 5). Looking at the Level 3 codes,
regardless if students were pointing out a similarity or difference in Jaxon and Maxine’s
strategies, participants often referred directly to the method they were using to solve a problem.

Specifically, when pointing out differences, students most often described differences in the
methods the characters used to solve a problem (n = 380). For example, when analyzing
strategies related to translating a figure, one student stated, “Jackson is more plotting it out, while
Maxine is subtracting the values to go left or down. They both had it in the same spot, which is
good; I think that's the idea.” This student realized Jackson is using a visual geometric method,
while Maxine is using an algebraic approach, yet they arrive at the same answer. This student
was attending to the visual/algebraic aspects of Jaxon and Maxine’s approaches. Students noted
differences in the students’ methods regarding WEP specific content. For example, in a WEP
designed to have students understand why the interior angle sum in a triangle is 180 degrees, one
student said, “Alex like ripped his triangle apart and... what did Morgan do? And Morgan, just
drew the line and just used like the parallel cut by transversal stuff to figure everything out. To
figure out that it was 180 degrees.” Here the student is attending to specific mathematics content
in the WEP.

Students noted similarities based on the method students were utilizing in the WEP. In a
WEP focused on verifying similarity using transformations, one student noted, “they both show
that the triangle is similar, I guess. They both did show that the side lengths are proportional. As
you can see.” Another student, working in a WEP focused on reflections, stated, “They're both,
they're both flipped to the other side, depending on if it's the x or y axis, they're both being
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flipped.” Here the student noticed that Jaxon reflected his triangle over the x-axis, whereas
Maxine reflected hers over the y-axis. This student was later able to make a generalization about
what happens to the coordinates of a figure when it is reflected over the x-axis and y-axis. These
comparisons helped students analyze benefits and drawbacks of the WEP characters’ methods
and make informed decisions about their preferred strategy for solving similar problems.

Table 1: Number Codes at Each Level

Level 1 n Level 2 n Level 3 n Level 4 n
Answer 55
Similarities 267 Method 162
Problem 50
Answer 69
Liked Better 37
Same Result 20
Comparison Way I Would Do It 33
Between 756
Characters Differences 484 Method 380 Easier 55
Unsure 3
Visual/Algebraic 26
WEP Content Specific 206
Problem 35
Led to
Understanding

Conclusions and Implications for Future Work

We have begun to document the types of comparisons students made during think aloud
interviews regarding fictitious student methods to mathematics problems. This research shows a
viable scientific basis for using comparisons to explore multiple solution strategies of students,
as students were able to note similarities and differences in the strategies. Given critiquing
reasoning is important to deepening mathematical understanding (Lampert, 1990; Silver,
Ghousseini, Gosen, Charalambous, & Strawhun, 2005), these findings are a step towards
documenting the ways in which contrasting cases can be used in geometry. Future research will
analyze if these comparisons of the fictitious students’ solution strategies advance students’
knowledge of geometry content, provide them with more flexible solution strategies, and equip
them to better critique the reasoning of their peers.
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Teaching teachers how to notice student mathematical thinking has received growing attention
over the years. While descriptions of preservice teachers’ experiences while learning to notice
have been documented, there are still questions about how the curriculum can afford preservice
teachers the best opportunities to develop their skill to professionally notice. In this paper, we
examine a curriculum designed to teach preservice teachers how to professionally notice
through the lens of Variation Theory of Learning. We posit Variation Theory of Learning
provides insight into critical elements preservice teachers should be exposed when learning to
professionally notice.

Keywords: Preservice Teacher Education; Content Courses; Professional Noticing; Variation
Theory of Learning

Research on prospective teacher noticing has grown considerably over the past decade
(Amador et al., 2021; Dindyal et al., 2021). Like practicing teachers, prospective teachers are
required to understand children’s mathematical thinking, interpret what their thinking implies for
their current understanding, and decide where children need to go next in order to advance their
learning (Jacobs et al., 2010; Leatham et al., 2015; Van Zoest & Stockero, 2012). The skill of
attending to, interpreting, and responding to children’s mathematical thinking is known as
professional noticing (Jacobs et al., 2010). Intentionally developing the aforementioned skills in
content courses for preservice teachers has shown mixed results (Superfine et al., 2015), and
there are still questions regarding what experiences preservice teachers should have in content
courses in order to grow their capacity to professionally notice students’ mathematical thinking.

In this paper, we examine an experimental curriculum designed to start preservice elementary
teachers on their journey to learning how to professionally notice. To investigate the potential
learning opportunities afforded by the designed curriculum, we adopt Variation Theory of
Learning (Marton, 2015). We argue Variation Theory of Learning (VTL) provides a useful lens
for analyzing curriculum in order to determine what could be made possible to learn about
professionally noticing.

The Context and Curriculum

Development of preservice teachers’ capacity to professionally notice typically occurs within
methods courses (e.g. McDulffie et al., 2014; Schack et al., 2013); however, the intricate
relationship between what teachers notice and their content knowledge for teaching (Dick, 2017;
Jong et al., 2021) suggests preservice teachers may benefit from intentional experiences to
develop noticing skills simultaneously with content knowledge. As the integration into content
courses is relatively new, designing instruction with professionally noticing in mind needs
careful thought and consideration.

The noticing curriculum discussed in this paper is experimental and contains multiple content
modules. Each module has four phases designed to weave the learning of content and the
learning of noticing together. The focus of this paper is on the potential learning of professional
noticing provided by the structure of the various modules within the four phases of module 1 as
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examined through the lens of VTL. We discuss the potential learning within the context of the
first content module: counting strategies related to addition and subtraction as used with word
problems.

Within Phase 1, the preservice teachers are prompted to solve a task (Figure 1) in as many
ways as possible. The various solution strategies will then be shared and discussed as a class, and
together they will hypothesize other ways students might solve the task. The goal of this phase is
for preservice teachers to see and understand multiple counting strategies related to a single task
their future students might use.

Professor Peabody took a sample of sixteen beans from a container. He recorded two

lima beans and nine pinto beans. He forgot to record the number of navy beans before

he dumped them back into the container. How many navy beans were in his sample?
Figure 1: Task from Counting Strategies Module

In Phase 2, the preservice teachers watch a video case of a teacher implementing the same
task with her elementary students in Phase 2. The preservice teachers read a description of the
elementary classroom context and are encouraged watch the video twice: first without a specific
purpose and again to answer reflecting questions. The goal of this phase is to support the
preservice teachers in noticing children’s mathematical thinking, attending to the various
solution strategies and making interpretations about them, and in providing evidence to support
their claims. Phase 3 has preservice teachers analyze student work samples for a task with the
same context but new numbers. The work samples came from the same students in the video
case. The purpose of this phase is to have preservice teachers recognize there are multiple
representations within which they can notice and attend to student mathematical thinking.
Finally, in Phase 4, the preservice teachers review student work samples from the same students
of a new task with a different context, but accessible using similar counting strategies. The intent
of this phase is to extend preservice teachers’ noticing of student work related to counting
strategies with respect to other problem contexts.

The Variation Theory of Learning

A theory developed from empirical research in the classroom, the Variation Theory of
Learning (VTL) (Marton, 2015) is uniquely suited to the investigation of learning opportunities
in a postsecondary classroom for prospective teachers. VTL has two main tenants: humans
discern elements of our world by attending to difference against a background of sameness; and
one cannot learn unless there is something to be learned, which is called the object of learning
(OL). VTL examines learning through the lens of variation that occurs with respect to the OL
(Runesson, 2005). To discern the OL, one must see the OLs necessary dimensions of variation
and their features. Dimensions of variation (DoVs) are important components to understand in
order to make sense of the OL, while features are characteristics of the DoVs (Figure 2).

Figure 2: Structure of VTL Terminology
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Marton (2015) describes four types of variation: 1) contrast, 2) generalization, 3) fusion, and
4) repetition. The type of variation depends on which dimension is in focus for the learner (Table
1). In order to discern the OL, one must first separate the necessary DoVs from each other. To
separate a dimension from the others, the learner must experience a contrast followed by a
generalization in relation to that DoV. The progression from contrast to generalization separates
the focus DoV from the others, which is best done one dimension at a time (Pang & Marton,
2013). The learner must then bring the dimensions back together again with a fusion.

Table 1: Types of Variation

Type of Variation Dimension in Focus Other Dimensions
Contrast Variant Invariant
Generalization Invariant Variant

Fusion Variant Variant
Repetition Invariant Invariant

Beyond articulating the relationships between the object of learning, dimensions, features,
and types of variation, Marton (2015) describes the various perspectives from which one can see
these elements. An OL can be identified or determined from three different perspectives: the
intended object of learning, the enacted object of learning, and the lived object of learning. The
distinctions between these three elements are akin to recognizing what the teacher or curriculum
designer intends to be learned (intended OL) is potentially different from what is made possible
to learn during instruction (enacted OL) and from what the individual students actually learn
(lived OL). In this paper, we analyze the curriculum from the perspective of the intended OL.

Seeing the Curriculum through the Lens of Variation Theory of Learning

In this section, we analyze the elements of the curriculum from the lens of VTL in order to
articulate what the curriculum could afford the preservice teachers to learn about professional
noticing. To that end, we establish the intended OL as: professionally noticing student thinking
related to counting strategies and consider how the variation within the curriculum addresses that
intended OL.

For the aforementioned intended OL, we envision two necessary dimensions (Figure 3). The
first dimension relates to a teacher’s understanding of counting strategies (DoV1), while the
second dimension is the act of noticing student mathematical thinking (DoV2). Whether or not
prospective teachers have opportunities to learn the OL depends on the careful structuring of
variation which make the dimensions and OL visible to learners in the curriculum.

Figure 3: Learning to Notice VTL Structure
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To uncover what the curriculum affords preservice teachers to learn about professional
noticing, we examined the phases through the lens of VTL. Specifically, we considered the
variation that could arise both within and across DoV1 and DoV2 as the preservice teachers
progress through the four phases (Table 2). We hypothesize preservice teachers will have ample
opportunity to discern elements surrounding DoV 1. In particular, experiences within and from
Phase 1 and Phase 2 surface a contrast and a generalization related to the idea that the strategies
elementary students might employ to solve problems differ from how the preservice teachers
themselves would solve the problem. Furthermore, the preservice teachers have opportunities to
grapple with and understand the multiple counting strategies students might employ.

On the other hand, the curriculum does not explicitly provide the preservice teachers an
opportunity to separate DoV2, noticing student thinking, from other dimensions through a
contrast. To provide a contrast and open DoV2, one could encourage preservice teachers to see
the authentic classroom instruction through various lenses such as classroom management, or
how the students are grouped, or who is given authority to talk, in order to discern what it means
to notice a specific element of instruction. The curriculum does afford the preservice teachers an
opportunity to experience the dimension in Phase 3 through an induction, which is the same type
of variation as a generalization without a contrast happening first. Finally, the curriculum
provides an opportunity for preservice teachers to bring the dimensions together through a fusion
in Phase 4.

Table 2: Variation across Phases

Variation Type DoV1: Counting Strategies DoV2: Noticing of Student Thinking

Contrast Phase 1 — preservice teachers see Does not occur
different solution strategies for the
same task. The solutions are from
their classmates.

Generalization  Phase 2 - When watching the Phase 3 — Moving from Phase 2 to
classroom video, the focus is still Phase 3, solution strategies and
on the different solution strategies,  students remain invariant, but
however actual elementary students representations of student thinking
are now surfacing those strategies.  (verbal/written) changes.
*#*Technically an induction.

Fusion Phase 4 — A new task context is provided that allows for the solution
strategies and what the preservice teachers notice to vary.

Conclusion and Discussion
In this brief, we show how VTL as a lens to examine curriculum explicitly identifies and
illuminates what the preservice teachers could have the opportunity to learn about professional
noticing through engaging with the phases in the curriculum. Furthermore, the theory provides
insight into elements that may be missing from the curriculum, such as providing an opportunity
for students to learn what it means to notice a particular element emerging during instruction,
like student thinking. In this, we offer insights into how VTL may support researchers and
teacher educators in their development of preservice teachers’ professional noticing of children’s
mathematical thinking.
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In this paper, we report findings from an analysis of four triangle congruency lessons from a
grade 8 mathematics textbook from China, using the Mathematics Curriculum as A Story
framework developed by Dietiker (2015). We found that the Chinese textbook organized the four
lessons under a four-level-plot structure to answer only one overarching explorative question:
“Can we guarantee triangle congruence using a sub-set of conditions?” which connects triangle
congruence criteria well for easier sense making. We also found that the textbook provides
students with varied reasoning and proof opportunities by embodying rich actions and real-life
context in the tasks. The findings of this study demonstrate the illuminating power of the
Curriculum as a Story framework to fill the gap of current textbook analysis research.

Keywords: Curriculum, Geometry and Spatial Reasoning, Middle School Education

Objectives

Mathematics textbooks have long been regarded as a bridge between the intended
curriculum, such as national curriculum standards, and the implemented curriculum, i.e., the
actual teaching in the classroom (Valverde et al., 2002). They determine, to a high degree, what
teachers teach and what students learn (Stein et al., 2007). Fan et al. (2013) proposed a
framework for classifying the literature on mathematics textbook research studies that includes
four main categories: role of textbooks, textbook analysis and comparison, textbook use, and
other areas. The primary goal of all these analyses is to provide a proxy measure for the potential
learning opportunities afforded by each textbook.

Using approaches described above, research on mathematics textbooks have made significant
contributions to identify and report features that can be used as the basis for comparisons.
However, these findings collectively, still fail to provide a sense of the changes and flows of the
mathematical content throughout a textbook nor are they able to account for the aesthetic of
sequencing and presenting ideas in one way verse another way. As an old Chinese fable says, it
would not be possible for a group of blind people to get an idea of what an elephant looks like by
just sharing their individual experience obtained from touching parts of the real elephant.
Recognizing this limitation of the current research on mathematics textbook analysis, Dietiker
(2015) proposed a conceptualization of mathematics textbook as a story that provides a holistic
view of curriculum to examine the connections as well as sequences between mathematical
ideas. Thus, applying Dietiker's (2015) narrative framework, our current investigation is guided
by a general question, "how does a textbook tell a story of triangle congruency?" Specifically, we
focus on understanding how an eighth-grade mathematics textbook published by People’s
Education Press (PEP, 2013) in China tell the story of triangle congruency.

We chose the concept of congruency as the content focus for this study for two main reasons.
First, it is an important and common topic in geometry curriculum worldwide (Jones & Fujita,
2013). The idea that a partial set of all angle and side length measures can guarantee congruency
between two given polygons is a unique property of triangles, which provides a rich setting for
developing students’ geometric intuition and ability to perform deductive proof (Wang et al.,
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2018). Second, previous studies found triangle congruence a challenging topic for students
worldwide (e.g., Wang et al., 2018). A recent review comparing the introduction of triangle of
congruency in a Chinese and a U.S textbook found that while both textbooks introduced the
same set of congruent triangle conditions to their students, the sequence of how these criteria
were introduced were quite different (Lo, Zhou & Liu, 2021). The findings of the present study
on Chinese lessons will lay the beginning of the groundwork for the future investigation on the
effect of different approaches mathematics textbooks use to present triangle congruence
theorems on students’ learning.

Theoretical Perspectives

According to Dietiker (2015), a mathematics story contains four main elements:
mathematical characters, mathematical actions, mathematical setting, and mathematical plot.
Mathematical characters are “figures” that were brought into existence by descriptive naming
that could be in a variety of forms such as words, graphs, tables, or symbolic forms. In a story,
mathematical characters can take on multiple forms via the process of mathematical character
development which could be the main focus of the story. In addition, a story can also be about
the relationships among multiple mathematical characters. Mathematical actions are
manipulations taken on a mathematical character that results in a mathematical change. Other
than moving a mathematical story forward, mathematical actions can create a new mathematical
character for a story. Dietiker (2015) gave an example of a story of counting to find the quantity
of the number of remaining objects after removing one at a time. This sequence of action will
result in a surprising result of naming a quantity when nothing is left to be counted.

Dietiker (2015) defines mathematical setting as the space in which the mathematical
character emerged and developed via mathematical actions. One way to conceptualize a
mathematical setting is the mathematical representation in which mathematical characters move
about which can affect both the richness and the interpretations of the story. For example, a
“function” character that lives in a mathematical setting of multiple representations afford richer
learning opportunities for students to know this character.

A mathematical plot is the “potential temporal dynamics of the story that encourages (or
discourages) a reader to continue to advance through the mathematical story” (Dietiker, 2015, p.
299). Dietiker and Richman (2017) identify two main features of a mathematical plot: the
sequence of the events unfolded within the story, and both the known and unknown felt by the
reader as they were propelled to read on by the moment-to-moment tension. Dietiker (2015)
suggested that a careful analysis of a mathematics curriculum via mathematical characters,
actions, settings, and plots would help teachers and curriculum developers identify the potential
challenging spots for the students which could then guide the future curriculum improvement.

Methodology

The design of the study was informed by the theoretical perspectives and framing outline
above and the analysis was conducted by the constant comparative analysis (Stake, 2000).
Setting:

The Chinese education system is highly centralized. There is only one set of national
mathematics curriculum standards: Compulsory Education Mathematics Curriculum Standards
(CMCS) (Ministry of Education, 2012) which have to be followed strictly by all textbook series.
In CMCS, the content of triangle congruence is considered as a part of a larger topic,

Triangles. Under the topic of Triangle, CMCS has six expectations: 1) understand special lines in
triangles, 2) explore and prove triangle sum theorem and its deduction, 3) master triangle
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congruence, 4) explore and prove the properties of angle bisector line and perpendicular bisector,
5) explore isosceles triangle and right triangle, and 6) explore the Pythagorean theorem and its
converse theorem. In this study, the lessons we focused on belong to third expectation: master
triangle congruence.

Data Set

An eighth-grade math textbook published by People’s Education Press (PEP, 2013) was
selected for this analysis. Among Chinese textbook publishers, People’s Education Press has the
longest history in developing K-12 curriculum in all subjects, and their mathematics textbooks
were most widely analyzed (e.g., Cai & Jiang, 2017; Fan & Zhu, 2007). The primary data set for
this study is the section 12.2 of the eight-grade mathematics textbook. PEP Math devoted four
lessons to the five congruent triangle criteria: side-side-side (SSS; Lesson 1), side-angle-side
( SAS; Lesson 2), angle-side-angle and angle-angle-side (ASA & AAS; Lesson 3), and
hypotenuse-Leg (HL; Lesson 4). There was also additional investigation of the criteria that did
not work such as side-side-angle (SSA) in Lesson 2 and in angle-angle-angle (AAA; Lesson 3).
Data Analysis

The analyses of the congruent triangle units were carried out jointly by the three authors
based on the narrative framework developed by Dietiker (2012, 2015). Each of the authors first
read the textbook unit independently following the reading practices discussed in Dietiker (2012)
as discussed below. We each wrote a story summary based on our notes taken during this first-
read with an eye toward prompts, questions and anticipations, as well as character development.
We shared and discussed our interpretations multiple times to meet a consensus. Constant
comparisons (Stake, 2000) were used throughout the process to look for emerging themes and
evidence that either support or inconsistent with our ongoing narrative. Then we met on-line to
develop the first joint story summary by combining all the distinct details as well as resolving
any differences in our own reading of the story. The same process was repeated to fine-tuning
each story by focusing on the other constructs of the framework, like actions and settings.

The mathematical story of triangle congruency we will be sharing with you is influenced by
our own unique prior experiences with textbooks, mathematics, and education systems and
cultures. All of us received K-16 education in Chinese education systems and came to the United
States for our graduate degrees in mathematics education. Crossing cultural learning and
teaching provided us a comparative perspective on mathematics curriculum which motivates us
as mathematics teacher educators to conduct curriculum analysis and provide suggestions for
developing effective curriculum. when we developed our knowledge and skills of mathematics
curriculum analysis.

Findings

Because of the space limitation, we will limit our findings on the plots and actions of the
stories. We will first describe the four-level plots of the congruent triangle story. Then, we will
take a closer look at the plots around the introduction and development of the first explored
condition: SSS. Finally, we identify several different types of actions employed by the students
when investigating various mathematical characters: triangles with various types of properties.
Plots

PEP Math introduces the congruent triangles as a special case of congruent figures that have
the same sizes and shapes. Therefore, when two triangles are congruent (AABC =AA'B'C'),
their three corresponding sides and angles are congruent. That is, the following six conditions
exist: AB=A'B', BC=B'C', CA=C'A"; £A=zA', zB=¢B', £C=£C". Our read of the story
uncovered four levels of plots as seen from Figure 1.
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Note: L1_E1 means Lesson 1 Exploration 1; 2S1A means two pairs of congruent sides and one
pair of congruent angles; A tick off means could guarantee triangle congruency; Cross means
could not guarantee triangle congruency.

Figure 1: Four level mathematical plots of the congruent triangle story

First-level plot. The students were invited to explore the first-level, the overarching, plot via
the following question: “Is it possible to identify various subsets of these six conditions that will
also make two triangles congruent?”

Second level plots. In order to answer the questions posted in the first-level plot, students
need to identify the potential subsets of these six conditions. Using a listing strategy, students
may know the possible subsets including only one set, two sets, three sets, four sets, and five sets
of congruent sides or angle conditions may guarantee triangle congruency. Therefore, to support
the development of the first-level plot, there are five potential second level plots: will one, two,
three, four, or five sets of congruent sides or angle conditions guarantee triangle congruency. The
textbook first invited the students to ponder the following question “Will one or two sets of
congruent sides or angle conditions guarantee triangle congruency?” by a series of drawings:
“Start with an arbitrary triangle AABC. Then draw a triangle AA'B'C' with just 1 criteria (one
pair of congruent sides or one pair of congruent angles) or 2 criteria (two pairs of congruent
angles, two pairs of congruent sides or one pair of congruent angles and one pair of congruent
sides) of AABC. Is AA'B'C' guaranteed to AABC? (p. 35). The students were expected to
provide counterexamples to reach the conclusion “no”.

Third-level plots. The story then asked students to explore the question: “Will three sets of
congruent conditions guarantee triangle congruency?” Answering this question led to an
exploration of the third-level of plots. There are four kinds of combinations of three subsets of
these six congruent conditions could be three pairs of congruent sides (3S0A), two pairs of
congruent sides and one pair of congruent angles (2S1A), two pairs of congruent angles and one
pair of congruent sides(1S2A), three pairs of congruent angles (0S3A). For each kind of
combination, different order of congruent conditions leads to different arrangements, which leads
to the fourth-level of plots.
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Fourth-level plots. As Figure 1 shows, we identified eight different arrangements, including
SSS; SSA, SAS, ASS; SAA, ASA, AAS; and AAA, all these can be considered different
characters of the story. However, because a triangle is a closed figure with three sides and three
angles, SSA can be understood as ASS, SAA can be understood as AAS. Therefore, we shaded
ASS and AAS in grey, which are not explored by the textbook. After exploring all the six
general arrangements, the textbook explored hypodense-leg (HL) which was a special case of
SSA that was rejected earlier. Specifically, PEP confirmed five triangle congruency criteria in
the following sequence: SSS, SAS, ASA, AAS, and HL It also rejected two criteria: SSA along
with SAS, and AAA right after AAS.

The story ends with an exploration of a special case of right triangles (HL), a new character.
The text invited students with the following question “With a pair of right triangles that already
shared a pair of congruent right angles, what other conditions would be needed to establish their
congruency?” The story then pointed to the students that based on the triangle congruent
theorems already learned, two right triangles will be congruent if either 1) the pairs of two sides
of the right angles were congruent or 2) there is a pair of congruent sides and a pair of congruent
acute angles. Notice that the first condition will lead to SAS with the right angles be the
congruent angles, and the second condition will lead either to ASA or AAS. However, the
textbook did not provide these reasoning directly. Those two conditions were left for the students
to explore. After those two conditions were confirmed, there was only one case left: What if the
two right triangles shared a pair of congruent hypotheses and another pair of side. Note that this
is the condition of SSA which was rejected as a valid congruency condition in the earlier lesson,
so the students were likely to be intrigued.

A Closer Look at the Plots of The First Lesson on SSS

The story asks students to conduct the following exploration: Draw an arbitrary triangle.
Then draw another triangle such that their three side measures are equal. Cut the triangle out and
place it on top of the original triangle. Are they congruent? While the narrative initially leaves it
open to the various approach students may use to answer this question, the story soon provides
detailed step-by-step straight-edge & compass constructions to create a new triangle that has
three sides congruent to those of the original triangle. Then students are asked if their steps are as
same as the narrative and what conclusion they can reach from this exploration. The story then
affirms the SSS condition. Further, the students are reminded of a previous experiment of
creating a triangle with three wooden sticks. Once the triangle is created, both the shape and size
of the triangle is determined.

The story then provides two worked-out examples to help students apply the newly learned
SSS condition. The first example can be seen in Figure 2.

In AABC,AB = AC,

Segment AD connects A and D,
where D is the midpoint of BC.
Prove that AABD = AACD

Figure 2. The first worked-out example after SSS is introduced (p. 36, PEP, 2013)

Before showing students the complete proof, the story first provides a pre-analysis, asking
students to identify SSS conditions in the given problem. One pair of congruent sides, AB=AC,
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was already given. Segment AD, as a shared side, provides the second pair of congruent sides,
AD=AD. The condition that D is the midpoint of side BC provides the third pair of congruent
sides, BD=CD. The second worked-out example shows students how to construct a congruent
angle with the straightedge & compass -using the SSS condition as follows (Figure 3).

1) As in the figure, use O as the center of the circle,
arbitrary length as the radius, draw an arc that
intersects OA and OB at points C and D.

2) Draw aray 0'A’. Use O’ as the center, the length
of OC as the radius, draw an arc intersects O'A’ at
point C’.

3) Use C' as the center, the length CD as the radius,
intersects the arc drawn in Step 2 at point D.

4) From D’, draw aray O'B’. ThenzA'O'B’ =
£AOB.

Figure 3. The second worked-out example after SSS is introduced (p. 37, PEP, 2013)

The story of the SSS ends with two exercises that could be completed by students. The first
exercise is another deductive proof similar to the worked-out example in Figure 2. The second
exercise is a construction of an angle bisector of a given angle in the context of a construction
trade as seen in Figure 4.

Construction workers often use a carpenter square to
bisect an arbitrary angle. They used the following
method as shown in the diagram: £ZAOB is an arbitrary
angle. On the segments OA and OB, pick OM=0ON.
Move the carpenter square so that the same distance
markers on the two legs of the carpenter square will
coincide with M and N. Then the ray formed by the
vertex of the carpenter angle, C, and point O will be the
angle bisector of ZAOB. Why does this method work?

Figure 4. The second exercise at the end of SSS story (p. 37, PEP, 2013)

Actions

The story of congruent triangles in PEP Math engaged students in several different types of
actions when exploring conjectures, establishing congruent criteria, constructing deductive
proofs or to solving problems embedded in the real-life context that require the use of triangle
congruent criteria they have just learned. Table 1 includes the frequency of each action type
needed for the 20 tasks analyzed in this units. All tasks require multiple actions to complete.

Table 1. Frequency of each action within the story

Action Drawing Straight-edge Translating Applying Corres- Joining &

Type and direct & compass ponding separating
comparison construction

Frequency 9 6 28 18 11 2
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The first action is “drawing and direct comparing”. When a conjecture was first posted, the
students were advised to draw a triangle with the given condition to see if different ones could be
created. If so, the original condition was rejected. If no different triangle could be drawn, the
story then guided students to the second action, “the straight-edge & compass construction.” This
action was used to prove SSS, SAS, ASA and HL. The third action is “translating”, for example,
when students read the statement “...D which is the midpoint of AB” in Figure 2, they need to
translate that statement into the existence of two congruent line segments, AD and BD. And
when they see the diagram in Figure 2, they need to translate the image of a “shared side” of two
triangles into the existence of a congruent side relationship in these two triangles.

The fourth action is “applying”. This includes both applying various congruent conditions to
perform conductive deductive proofs as well as solve word problems embedded in real-life
context. It also includes applying previous learned properties such as vertical angles are
congruent and sum of the three interior angle measures of any triangle is 180° were used to
identify pairs of congruent angles. The vertical angle property was first used in a worked-out
example in Lesson One and then in an exercise in Lesson Three. And the property that the sum
of the three interior angle measures of any triangle is 180° was used in a worked-out example in
Lesson Three when applying ASA condition to prove AAS.

The fifth action is “corresponding”, students need to mentally manipulating the figures in the
problem in order to establish the corresponding sides and angles correctly. The sixth action is
“joining or separating”, for example, a pair of congruent sides of two triangles could be
constructed from two congruent sub-segments and a shared segment via either the addition or
subtraction property. Example in Figure 5 requires both the fifth and the sixth actions. The
problem statement already contains a pair of congruent sides, AB=DC, and one pair of congruent
angles, 2B = «C. It is likely that students would think of using the SAS condition. They needed
to mentally orient those two triangles given in the figure based on the locations of the
corresponding angles and sides to identify the pair of two triangles, AABF and ADCE, that are
likely to be congruent. To establish the congruency between these two triangles, they would need
an additional pair of congruent sides: BF and CE. Here is where they need to use the constant
addition property BE=CF on a shared line segment EF so that BE+EF=CF+FE. Thus, BF = CE.

The points E and F are on the segment BC,
BE=CF, AB=DC, £B=4C. Prove £A=4£D

Figure 5. An example of an exercise requires two different actions p. 39, PEP, 2013)

Conclusion and Implications

In this paper, we tell a story of how a Chinese textbook, PEP Math, helps their students to
develop their concepts of triangle congruency based on the “Mathematics curriculum as a
mathematical story” framework outlined by Dietiker (2012, 2015). The main plot started with
SSS, a condition with three congruent sides, and proceeded systematically through the conditions
with two sides and an angle, one sides and two angles, and three angles. Both the valid and
invalid conditions were investigated under a specific case. The entire story ended with an
investigation on right triangles which is a special case as one congruent condition was
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guaranteed. A variety of mathematical actions were used both in real life context and deductive
proofs to provide students with rich opportunities to make conjectures, conduct systematic
investigation, and apply what they have learned in new explorations.

These findings have two significances. First, it shows that using the curriculum as a story
framework, especially the plot component, brought new affordance for examining curriculum
coherence in a structural perspective that went beyond tasks analysis. Second, it shows the
possibility of organizing the exploration of different triangle congruence criteria as an inquiry
that could be systematically examined. All the lessons we analyzed are designed and organized
to answer only one overarching explorative question: can we guarantee triangle congruence
using a sub-set of conditions? Doing so, the criteria are well connected which is easier to make
sense of.

This story is told from the perspectives of three mathematics education researchers who grew
up with Chinese education systems. We acknowledge the influence of this background. The
mathematics story framework provided us a holistic lens to investigate the topic of congruency.
Even though we are familiar with the content, the story framework not only allow us to view
mathematics content through a literary lens but also help us to capture nuance information that
were hidden from us before this investigation. For example, PEP follows the similar lesson
structure and provide multiple opportunities for students to use the same sets of mathematical
actions while investigating conjectures and solving problems that are embedded in a variety of
different settings. Using straightedge & compass construction as the only action to establish the
congruent condition makes it necessary to start the story with SSS condition. These approaches
reflect a distinct philosophy of the curriculum design including how the content is organized to
follow the logical sequence and how the topic connects with other previous mathematical ideas
and prepare for the future learning. They also open a variety of research questions that worth
investigation. For example, how might our read of the congruent triangle story similar or
different from the reads by teachers and students? Do stories on other important mathematics
topics such as quadratic functions told by PEP math share the same design features such as
arranging content based on logical sequence and high intensity of repeatedly utilizing the same
mathematical actions? Similar investigation on the stories told by other mathematics textbooks
may uncovered more curriculum design features that can be used to create appealing and have
the high potential to help students. particularly those who are on the margins of these
communities, to reach the learning goals as called by the 2022 PMENA Conference Theme.

Future studies could use these kinds of rich textbook analyses to develop assessment
items that are more sensitive to the variations in the story told by different mathematics
textbook that might contribute to the difference in student performances. For example,
Common Core State Standards defines congruent figures via rigid transformations, which
is different from the straightedge & compass construction typically used by the Chinese
textbooks. Fan et al. (2017) found no significant difference in students’ ability to solve
general proof questions from their quasi-experimental study with two groups of eighth-
grade Chinese students. The control group received regular instruction based on straight-
edge & compass constructions, while the transformation instruction was integrated into
their regular lessons on writing proof in the experimental group. However, the
experimental group performed much better than the control group on challenging
problems involving constructing auxiliary lines. More stories of the introduction and
development of other important mathematics topics would make it possible to deepen the
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investigation on the link between textbook and student learning, suggested by Fan et al.
(2013) as a critical research area that needs more work.
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Over the past few decades, researchers have adopted forms of abstraction introduced by Piaget
to build explanatory models of student and teacher knowledge. Although Piaget’s forms of
abstraction have proved productive for developing models of knowledge, their broader
applicability to mathematics education remains an open question. In this brief report, we extend
these forms of abstraction in order to analyze hypothetical outcomes of teachers’ enactment of
instructional materials.

Keywords: Cognition, Learning Theory, Curriculum

Piaget’s (1970, 2001) genetic epistemology has played a critical role in mathematics
education via researchers adopting his theory to develop models of students’ mathematics,
models of teachers’ mathematics, and models of student-teacher interactions. Researchers
carrying out this work have provided important insights into those meanings that prove
productive for students’ mathematical development, as well as those meanings that constrain
students’ mathematical development (Steffe & Olive, 2010; Thompson, 2013). Furthermore,
these researchers have provided useful ways to characterize teaching in terms of teacher
knowledge necessary to build upon students’ ways of thinking (Liang, 2021; Tallman, 2015).

An important construct spanning these contributions is that of abstraction. Stated generally,
abstraction is the process by which an individual develops stable, generalized knowledge
structures. To Piaget, abstraction provided a vehicle to developing precise accounts of
knowledge development while also articulating generalized differentiated characteristics of
knowledge structures. Piaget proposed several forms of abstraction including empirical, pseudo-
empirical, reflecting, and reflected abstraction (Montangero & Maurice-Naville, 1997; Piaget,
2001). Mathematics educators have adopted these forms to provide differentiated accounts of
student and teacher knowledge in numerous contexts (Ellis et al., in preparation; Tallman &
O’Bryan, in preparation; Thompson, 1994).

Given the usefulness of Piaget’s forms of abstraction for developing accounts of student and
teacher knowledge, it is plausible that the forms of abstraction are productive for analyzing other
aspects contributing to the teaching and learning of mathematics. In this brief report, we extend
Piaget’s forms of abstraction in order to analyze instructional materials. Specifically, we analyze
two secondary teachers’ instructional materials for teaching quadratic growth in order to develop
hypotheses of the knowledge students may abstract from engaging in those materials. Because
this 1s a brief report, we close with potential implications of this work and future directions
building on this preliminary analysis.

Background
Ellis et al. (in preparation) and Tallman and O’Bryan (in preparation) synthesized Piaget’s
forms of abstraction and described how mathematics education researchers have adapted these
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forms of abstraction to be viable in their areas of research. Empirical abstractions primarily
concern observables and foreground sensory-motor experience, and reflected abstractions rest on
a subject’s consciousness of their ways of operating. These two forms of abstraction are critical
aspects of knowledge development, but they are less relevant to the analysis of secondary
mathematics instructional materials when compared to the two forms of reflective abstraction
that are pseudo-empirical abstraction and reflecting abstraction.

Speaking on pseudo-empirical abstraction, Piaget (1977) explained, “When the object has
been modified by the subject’s actions and enriched by the properties drawn from their
coordinations...the abstraction bearing upon these properties is called ‘pseudo- empirical’
because...the facts it reveals concern, in reality, the products of the coordination of the subject’s
actions...” (p. 303). To Piaget, a critical aspect of pseudo-empirical abstraction is that such an
abstraction requires the presence of perceptual material or observables and foregrounds actions
on that available material. Drawing on the work of Moore (2014), Ellis et al. (in preparation)
argued for extending Piaget’s construct of pseudo-empirical abstraction so that “perceptual
material” or “observables” includes the products of activity, even if these products of activity are
purely cognitive. As they illustrated, such an extension of pseudo-empirical abstraction is
productive for developing viable models of students’ mathematics at numerous levels.

Piaget’s distinction between pseudo-empirical abstraction and reflecting abstraction rested on
the extent perceptual material or observables are required. Ellis et al. (in preparation) noted that
the broader interpretation of pseudo-empirical abstraction provided above requires a more
restrictive framing of reflecting abstraction. A primary difference between these two forms of
abstraction is that while the source material for pseudo-empirical abstractions is perceptual
material or the result of actions, the source material for reflecting abstractions is the coordination
of a subject’s actions themselves. Reflecting abstractions thus involve differentiating an action
from the effect of an action so that the actions themselves can be projected to a level of
representation and taken as objects of thought (Ellis et al., in preparation; Tallman & O’Bryan, in
preparation; Thompson, 1994). As we illustrate with our task analysis, these differences in the
source material for a subject’s abstractions have important implications for their learning.

Project Setting and Methods

The current work is situated in a multi-year project investigating students’ generalizing
including the ways in which teachers support generalizing in their teaching (Ellis et al., in press;
Ellis et al., 2017). Our approach to generalization is cognitive, drawing on an actor-oriented
perspective as detailed by Ellis et al. (in press). The project’s guiding research questions are:
What are the opportunities for generalizing in classroom settings? Specifically, what types of
instructional moves, student engagement, and enacted tasks support classroom generalizing? The
current paper addresses these questions by investigating the abstractions potentially supported
during the implementation of instructional materials.

The project involves two high school teachers and two middle school teachers. We
concentrate this paper on the two high school teachers’ instructional materials in order to restrict
our focus to one content area. We analyzed the instructional materials using conceptual analysis
(Thompson, 2008) with a guiding framework of the forms of abstraction identified above. At its
most general level, conceptual analysis involves answering the question, “What mental
operations must be carried out to see the presented situation in the particular way one is seeing
1it?” (von Glasersfeld, 1995, p. 78). With respect to analyzing curricular materials, conceptual
analysis involves developing hypothetical accounts of realized curriculum (Kilpatrick, 2011) or
conveyed meanings (Tallman & Frank, 2020). This is accomplished via generating and
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interpreting “typical” solutions to the instructional materials using the lens of abstraction in
combination with ways of reasoning held by secondary mathematics students as suggested by
research (Ellis, 2011; Ellis & Grinstead, 2008; Fonger et al., 2020; Moore et al., 2019).

Tasks and Task Analysis

The two secondary teachers’ instructional activity focused on quadratic growth. The
instructional activity explored a sequence of discretely growing shapes (see one example in
Figure 1) with the intention that students identify patterns in quantities’ values including their
first- and second-differences. The primary goal and generalization of the activity was to identify
that for successive equal increases in Q A of a situation (e.g., sail size), Q B (e.g., sail area)
increases by constantly increasing amounts, and that such a covariational relationship is modeled
by a quadratic relationship. We discuss hypothetical pseudo-empirical and reflecting abstractions
against the backdrop of the aforementioned goal. Underscoring that the forms of abstraction are
cognitive constructs, we discuss each form of abstraction using a typical solution that involves a
student generating a table of values, first-differences, second-differences, and a formula.

Figure 1: Example Activity (left) and a “Typical” Student Solution (right)

Pseudo-Empirical Abstraction

After working a series of activities like that presented in Figure 1, a student might observe
that each time they obtain constant second-differences in a quantity, a quadratic formula models
the situation. Recall that pseudo-empirical abstractions are those abstractions that foreground
“perceptual material” or “observables” including the products of activity. In the case of the
example activity (Figure 1), the products of activity include a table of values and a quadratic
formula. Thus, the observation of the student would be a pseudo-empirical abstraction if their
association is strictly based on noticing that constant second-differences were accompanied by a
quadratic formula. The abstraction consists of an indexical association between constant-second
differences and a quadratic formula with no logico-mathematical operations forming the basis for
that association. The actions that produced the table of values and formula are inconsequential to
the abstraction except in that they yielded an outcome or product to act as source material for the
student’s abstraction. We contrast this with a reflecting abstraction in the next section.
Reflecting Abstraction

A limitation of pseudo-empirical abstractions stems from the abstraction foregrounding the
products of actions rather than the actions themselves. For instance, and based on our
experiences with students, the abstraction described in the previous section often results in the
student associating a quadratic formula with constant second-differences regardless of how the
other quantity’s values are ordered in a table (e.g., non-constant first-differences in Q A that
produce constant second-differences in Q B). In the case of the example activity and solution in
Figure 1, a reflecting abstraction that foregrounds the coordination of actions and their results
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would involve a student reflecting upon both the quantitative referents of their tabular activity, as
well as how their relationship necessitates a quadratic formula.

With respect to the tabular activity, this would involve the student conceiving first-
differences as the amount by which a quantity increases (or decreases) and second-differences as
the amount by which a quantity’s increase increases (or decreases) as shown in Figure 2.
Furthermore, because a reflecting abstraction foregrounds the coordination of actions as opposed
to the products of actions, the student’s abstraction would include awareness that the constant
“+1” increases in size are intrinsic to the constantly increasing increase in area. With respect to a
quadratic formula model, a reflecting abstraction involves understanding how the
aforementioned quantitative relationship necessitates a second-degree polynomial. Although the
connection between the two is not trivial, researchers (Ellis, 2011; Ellis & Grinstead, 2008;
Fonger et al., 2020) have illustrated its feasibility for students including those in middle grades.

Figure 2: Conceiving first- and second-differences quantitatively

Discussion and Future Work

Although we are not aware of studies that have used the aforementioned forms of abstraction
to develop hypothetical accounts of student activity in the context of teachers’ instructional
materials, mathematics education researchers and teachers have been sensitive to the role of
abstraction in instructional design. For example, it is impossible to read the collective works of
Steffe or Thompson and not sense the forms of abstraction directly informing their work even
when not explicitly mentioned. As another example, Oehrtman (2008) provided a more general
description of how Piaget’s notion of abstraction can inform a layered sequence of activities so
that students have the opportunity to reflect upon and identify common structures in their actions
across a variety of contexts. In each of these cases, researchers leveraged abstraction in the
context of their own research-based work and design. We find it important to include a
complementary focus on teachers’ extant instructional materials, as those materials play a
significant role in students’ educational experiences.

We illustrated that an abstraction framing provides a way to analyze instructional materials
and produce differentiated accounts of knowledge development. Moving forward, we envision
several productive avenues to continue investigating the viability of this framing. First, the
current report is limited to one content area. Future work should look to extend the framing to
other content areas including those not within secondary mathematics. Second, our analysis of
the instructional materials consists of Aypotheses. A more holistic account should include a focus
on students’ realized abstractions, as well as the role of teacher knowledge and instructional
moves in students’ construction of those abstractions. Third, we envision that an abstraction
framing can provide a cognitive-focused approach to modifying instructional materials and their
implementation. For instance, based on analysis like that provided here and then investigations
into students’ realized abstractions and aspects of instruction contributing to the construction of
those abstraction, researchers and teachers can look to modify instructional materials to better
support students’ reflecting (and reflective) abstraction of productive meanings.
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DESIGNING INSTRUCTIONAL SEQUENCES FOR ETHICAL, CRITICAL AND
MATHEMATICAL REASONING

Luke T. Reinke Jordan T. Register Michelle Stephan
UNC Charlotte UNC Charlotte UNC Charlotte
LReinke@uncc.edu jtrombly@uncc.edu Michelle.Stephan@uncc.edu

Designers of critical mathematics instruction have documented difficulties in simultaneously
fostering the development of critical consciousness while supporting students in developing
understandings of new mathematics. However, confining justice-oriented tasks to applications of
previously learned mathematics limits the degree to which these tasks will be taken up by
teachers. We describe our attempt to employ heuristics from the instructional design theory of
realistic mathematics education [RME] to create a sequence aimed at developing students’
critical and ethical reasoning while also developing new mathematical understandings of ratio,
proportion and percents. We propose emergent adaptations to two of the realistic mathematics
education design principles then propose an additional ethical principle to guide the
development of future RME sequences.

Keywords: Curriculum; Learning Trajectories and Progressions; Rational Numbers &
Proportional Reasoning; Social Justice

Ernest’s work in the philosophy of mathematics education has set the stage for the argument
of ethics as its first philosophy (Ernest, 2013). For Ernest (1998) “ethics arises from the ways in
which persons live together and treat each other” (p. 9) including what is deemed right or wrong
when making decisions and how we generate knowledge. He proposes that ethics should serve as
the foundation for mathematizing and philosophizing and calls for “an ethics of mathematics”
that acknowledges its social responsibility as well as its implications for freedom, justice, and
cooperation (Ernest, 1998, 2013). “Ethics in mathematics education supports, and lays the
foundation for, concerns about social justice” in that issues of social justice are concerned with
the social activity of groups and the fair enjoyment of social benefits, while issues of ethics are
concerned with interactions between people more generally (Atweh & Brady, 2009, p. 268).
From this perspective, ethical considerations are based upon people’s moral responsibility to one
another, establishing “social justice concerns as a moral obligation, rather than charity, good will
or convenient politics” (Atweh & Brady, 2009, p. 268). Accordingly, we view ethical reasoning
as notions of what is right or wrong in social contexts, with considerations of social justice as
one of its key components.

A primary goal of an ethical mathematics education is fostering students’ epistemological
empowerment through mathematics (Ernest, 2002). In other words, developing both
mathematical and social empowerment in which the learner establishes a sense of self-efficacy in
“the language, skills and practices of using and applying mathematics” in school settings, and
their ability to use mathematics to “participate more fully in society through critical
mathematical citizenship” (Ernest, 2002, p. 1). Such an education concerns the individuals’
growth of confidence in using mathematics, creating knowledge, validating it, and transforming
the world through mathematics (Ernest, 2002). Educators have attempted to develop students’
awareness of the power that mathematics holds to both help and harm society through the
teaching of critical mathematics, which aims to develop students’ critical consciousness, or
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awareness of social, political, and economic oppression (Frankenstein, 1983; Freire, 1970;
Gutstein, 2006). If ethical reasoning is primarily concerned with notions of what is right or
wrong, we see critical consciousness as the component of ethical reasoning concerned with
identifying oppressive systems. While critical mathematics focuses on responding to these
systems, ethical mathematics also includes the responsible creation of mathematical products.
Many efforts at implementing critical mathematics have done so with students who experience
intersecting oppressions; this is understandable, given that developing critical consciousness is a
pillar of culturally relevant teaching (Ladson-Billings, 1995). Some scholars, though, have
argued for the importance of developing critical consciousness of students from communities of
privilege, proposing that without such consciousness, students from these communities may,
wittingly or unwittingly, abuse the disproportionate power they wield, which continues the
dehumanizing effects of oppression on both the powerful and those with less power (Kokka,
2020; Stephan et al., 2021). These scholars propose that critical mathematics, like any critical
pedagogy, works toward liberating the oppressed and oppressors (Freire, 1970).

Tensions in Designing for Ethical and Mathematical Reasoning

Reports on efforts to design and implement critical mathematics lessons aimed at developing
students’ mathematical power and critical consciousness highlight the difficulty of the work. One
primary tension, raised by numerous scholars, involves balancing the goals of developing
students’ mathematical power so that they can succeed in dominant mathematics while also
developing their critical consciousness (Gutiérrez, 2002). Gutstein (2006) proposes that
productively navigating this tension is possible but admits that he relied primarily on a reform-
based but non-critical textbook series, Mathematics in Context, to develop students’
mathematical power. Brantlinger (2013) also grappled with the tension between the two goals.
After finding himself unable to navigate the tension by simultaneously addressing social justice
and mathematical concepts, he then tried separating them hoping for later syntheses. Brantlinger
ultimately concluded that he was unable to resolve the tension between the two goals, at least in
the secondary mathematical setting of geometry which the project addressed. Other scholars
document teachers’ (rather than their own) efforts to implement social justice themed
mathematical lessons and their attempts to navigate the tension by separating social justice
contexts and the development of mathematical ideas (Turner et al., 2009; Bartell, 2013) or
simply focusing primarily on either the mathematical goals or social justice goals, leaving the
other goal as more of a background possibility if the opportunity arises (Bartell, 2013).

In our reading of the literature on critical mathematics and teaching math for social justice,
we noticed that studies of implementation were well grounded in the literature on critical
mathematics and tenets of teaching math for social justice, but these studies tend not to cite
instructional design theories for developing mathematical ideas. In other words, while the social
justice aspect of these lessons was grounded in theory, the mathematical aspect relied on the
intuition of the teachers or instructional designers rather than an established instructional design
theory. We hypothesized that this theoretical imbalance may contribute to the difficulty in
designing for new mathematical concept development simultaneous with critical consciousness.
In our attempt to address the goals of developing new mathematical ideas through ethical and
critical contexts, we relied heavily on an instructional design theory that uses realistic contexts to
ground the development of mathematical ideas.
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Instructional Design Principles

To reconcile the aforementioned tensions, we anchored our study to critical mathematics
frameworks (Frankenstein, 1983; Gutstein, 2006; Skovsmose, 1994) as well as the Dutch
instructional theory of realistic mathematics education [RME] (Gravemeijer, 1994), which
provides a robust set of design principles for developing sequences that develop students’
mathematical understanding. Van den Heuvel-Panhuizen and Drijvers (2014) present six core
teaching principles which correspond to instructional design heuristics: activity, reality, level,
intertwinement, interactivity, and guidance. Rather than elaborate all six, we focus on the reality
and level principles to illustrate how we foregrounded these particular heuristics in our design
activity when confronted with critical and ethical challenges.

The reality principle advises that instructional sequences begin in experientially real
scenarios. The term experientially real does not mean that problem contexts need to be authentic,
or real-world, but rather the problem context needs to be imaginable, so that students can act on
the problem elements in sensible ways. An earlier interview study of similarly aged students
(Stephan et al., 2021) inspired an initial conjecture of how this principle might be adapted for
critical mathematics instruction: we hypothesized that problem contexts in which students felt
like they themselves were targets of oppressions could be a more experientially real starting
point for students than situations where others were targeted.

The leveling principle describes the notion that students’ understanding passes through
various stages. Their early conceptions often involve concrete, context-bound solutions to initial
problems. As their understanding develops, their models of these situations become more abstract
and less attached to these problem situations, and become models for use in other,
mathematically isomorphic situations (Gravemeijer, 1999). Our earlier work provided a
hypothesis of how this principle might be adapted for the development of critical mathematics
instructional sequences as well; we conjectured that students’ initial understandings of how they
themselves were targeted might lead to an empathy for other vulnerable populations.

Given our experience in designing RME sequences, we were hopeful that we could develop
an instructional sequence that simultaneously developed students’ understanding of new
mathematical concepts (namely proportional reasoning and percent change) while also
developing their critical and ethical reasoning. The following questions guided our study:

Research Question
When designing a mathematics instructional sequence for developing ethical and critical
reasoning,

1. What adaptations to the existing RME design heuristics emerged and why?

2. What additions to the existing RME design heuristics emerged and why?
Method

Setting

In identifying a suitable context for our study, we drew on Kokka’s (2020) conceptualization
of privilege as the “set of advantages one group has over others, granted because of membership
or perceived membership in social categories" (Kokka, 2020, p.3). This conceptualization
considers race, socioeconomic status, and educational privilege, as well as other intersectional
identity traits including, but not limited to, sexual orientation, gender, and ability status, that are
both interrelated and influence students’ experiences of privilege and marginalization (Kokka,
2020, p.3). As such, the instructional sequence was designed with partners who work at a school
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we refer to as Lakeview Charter Middle School (LCMS). The student population at LCMS is
approximately 68% White, 13% Black, 8% Asian or Pacific Islander, 6% multiracial, 6%
Hispanic and less than 1% Native American. Families are responsible for providing
transportation for their students to and from school. There is no possibility for students to have
free or reduced lunch due to the requirement that students bring their lunch from home. Due to
these requirements, the student population generally draws students from economically
advantaged families. The Design Team consisted of the three co-authors (two white females and
a white male in comfortable socioeconomic positions) as well as two LCMS teachers (one male
and one female) and their principal (female), all three being people of color. The team met four
times over the summer to brainstorm contexts and develop an outline of the unit, then the three
co-authors worked and met intermittently over two months to develop the unit.
Data Analysis

Data for this paper consisted of field notes that captured design decisions as well as 13
different iterations of the instructional sequence, which aimed to develop students’ understanding
of ratio, proportion, and percent change within a context of nicotine vaping. To analyze our
design decisions related to ethical and critical challenges, two co-authors independently coded
the documents by marking each instance in which an ethical or critical challenge was raised. We
then compiled the results and resolved any inconsistencies. For instance, both coders identified
tensions related to a task asking students to analyze a graph showing the correlation between the
amount of nicotine users ingest per day and the proportion of those users who meet the
established criteria for addiction; students were asked “how many mg of Nicotine would you say
leads to addiction in most people?”” One author coded this as an ethical challenge, recalling the
team’s discussion of whether the idea of a threshold might encourage students who are interested
in vaping to try to vape ‘just under the amount’ they think would get them addicted. The other
author noted a critical tension with this same task recalling that the 5 mg threshold proposed by
epidemiologists seemed somewhat arbitrary to the design team, who did not want the students to
accept this threshold uncritically. Upon discussion, both codes were deemed appropriate.

Findings

Our analysis suggests some extensions to the RME reality and leveling design principles as
well as the inclusion of an additional principle. We first discuss some new perspectives on the
reality and leveling principles and then introduce the ethics principle.
Navigating the Reality Principle in Choosing Critical Contexts

When searching for an experientially real context to serve as the semantic grounding for the
instructional sequence, we found ourselves rejecting many of the contexts that would have been
rich for critical investigation because they were not didactically rich, in the mathematical sense.
For example, the mathematics involved in water contamination, lead poisoning, and air pollution
were too complex to support our ratio and percent learning goals. At other times, the context may
have been didactically rich, and from the designers’ point of view, critically rich, but when
considering it from the students’ points of view, they would not be engaging or may produce
anxiety in students. Exploring critical issues around SAT [a college entrance exam] scores was
one such context that the teachers rejected for two reasons. First, at this middle school, the SAT
is introduced very early to students and is a topic that students are confronted with frequently.
The teachers felt that students hear about it so often that they may not be interested in it.
Furthermore, they felt their students are overly pressured to perform well on the SAT and this
might produce anxiety.
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After two brainstorming sessions, we decided on developing a unit related to the context of
vaping, because we deemed the context to be both didactically rich and critically rich from the
students’ perspective. Because researchers had documented efforts to target teenagers with candy
and fruit vaping flavors as well as sensational advertising (e.g., Center for Disease Control,
2016), the context also fit our initial hypotheses about how an experientially real situation, where
students themselves were targeted, could provide initial access to critical perspectives. Tobacco
companies’ targeting of African American communities with advertisements and promotions for
highly addictive menthol cigarettes (Henriksen et al., 2012) and their efforts to attract Native
American customers with ethically questionable promotions (Lempert & Glantz, 2019) provided
potential opportunities for students to practice empathy and critical intuition about situations
where other populations are targeted.

Navigating the Leveling Principle in Choosing an Entry Point

Once we settled on the vaping contexts, we grappled with the joint goals of staying authentic
to the context, while also following the RME modeling principle of beginning with more
informal models and progressively introducing more formal models. In our attempt to find an
accessible starting point for the unit, we initially looked for authentic ratios related to vaping that
students could visualize using contextual imagery. We learned that nicotine channels require two
molecules of nicotine to open the receptor, but quickly realized that that particular 2:1 ratio was
likely too simple to prompt students to develop creative informal solutions; furthermore, the ratio
does not change, so that particular relationship did not support an instructional sequence. Aware
of the frequent use of varying concentrations of lemonade or other beverages at the beginning of
ratio instructional sequences, we also attempted to begin the sequence by investigating the
concentration of nicotine in e-cigarette cartridges, but we could not find a way to avoid the use of
fractions or decimals because of the small concentration of nicotine relative to the other
ingredients, so the authentic situation proved too complex.

Ultimately, we decided that the ratio of puffs per hour presented an accessible and rich
possibility. Students could draw pictures of puffs of smoke and either hourglasses or small clock
faces to represent hours, so that they could visualize and iterate the ratio. Once we had identified
an accessible entry point, we attempted to identify realistic problems that involve this
relationship.

e Given the data for an individual, can we determine if they are puffing more than they
were? In other words, is the individual possibly becoming addicted?

e Who puffs more, one individual or another?

e How long would one cartridge last, given a set puff rate?

Navigating both Reality and Leveling Principles in Developing the Sequence

Given our desire to use the puff per hour ratio and a dearth of authentic data for individual
vapers, we decided that for the outset of the instructional unit, we would not use actual data.
Rather we would create fictional data within the vaping context, to provide maximum flexibility
to meet our needs in developing the mathematical concept. Leaning on the RME principle of
experientially real or imaginable scenarios, we created a fictional story of a teen named Sara,
who tracked her puffing using a smartphone app. This fictional story allowed us the flexibility to
start with appropriately accessible ratio (3 puffs:1 hour), ask a variety of questions (How many
puffs would she take in 8, 24 hours?) and adjust that ratio as needed to increase complexity (5
puffs:2 hours) Although we incorporated real-world data (one cartridge contains enough vape
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liquid for approximately 200 puffs), much of the data was hypothetical, yet positioned students
as friends, wondering if Sara should worry about increases in her puffing.

Once we had progressed from informal (pictorial) to preformal (long ratio tables) to formal
(short ratio tables analogous to formal proportional notation using equations) representations of
ratios, we then made a design decision to transition to an authentic and not hypothetical scenario:
determining a reasonable puff rate threshold for different concentrations of vaping liquid that
would correlate to a scientifically-backed definition of addiction.

An emergent design heuristic. The tensions between authenticity and the desire to attend
to the leveling principle and our decisions in navigating the tension illustrate an emergent design
heuristic that represents our efforts to adapt the reality and leveling principles to a critical
mathematical instructional sequence. When the authentic data and mathematical relationships
proved more complex to provide an accessible and didactically rich starting point, we employed
the use of relevant, believable, fictional stories in early stages of the progression to provide
access to informal strategies and more accessible number choices. Then, once students were able
to use more formal representations that could be used for other situations, we transitioned to
more authentic, non-fictional inquiry.

Our efforts to design with and for ethical reasoning resulted in a number of situations for
which existing RME principles provided little guidance. In response, we propose an additional
principle.

The ethics principle: A seventh principle

In designing mathematics instruction for ethical and critical reasoning, we found ourselves
facing design challenges that were not addressed in the six principles. The analysis of our design
field notes indicated that we were attending not only to the nature of the problems we chose to
provoke students’ ethical awareness, but also calling into question the ethics of our choices as
designers. Thus, we humbly introduce the ethics principle that has emerged from our work. The
ethics principle refers to the fact that mathematics is done by human beings and thus has the
potential for bias, at best, and oppression, at worst. Conversely, doing mathematics can be
liberatory and students must learn to recognize the impact that their mathematical solutions may
have on the world. This principle can be viewed in two ways. First, designers must intentionally
build ethical problem solving into instruction to provide opportunities for ethical decision
making to arise. Second, designers themselves must problematize the ethical dimensions of their
design activity and products. The ethics principle manifested itself in two ways during our design
work: attending to ethics in the grounding context and attending to ethics when writing
problems.

Attending to ethics in the grounding context. Using the context of vaping presented our
first ethical challenge. We wondered if it was ethical to have discussions about vaping with
teenagers, and worried in particular about introducing a potentially harmful practice to students
who may not have been aware of the practice before our instruction. We considered whether we
should use the names of actual companies, such as JUUL, in our materials, as that might promote
the company’s product to students. Another ethical consideration that emerged was that some
students might be vaping and become anxious when they learn of the potential negative health
consequences.

Potential design solution. We resolved these ethical dilemmas by consulting outside
stakeholders such as the school’s principal, teachers, and teenagers. As a member of the design
team herself, the principal agreed that vaping might be a controversial topic for some parents, but
revealed that the health teacher teaches about nicotine, and many students will already know
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about it. The teachers on the design team talked with other teachers, one of whom had a child in
the class. The teacher-parents indicated that they did not think the vaping context would be
harmful to their children. Finally, we talked with some teenagers who indicated that most teens
know about vaping, adding that many middle schoolers they know are actually engaging in the
practice. This feedback from stakeholders at the school led us to settle on the vaping context.

Attending to ethics in the problems. Once we committed to vaping as the context, there
were ethical issues that arose as we wrote specific problems. We considered launching the
instructional sequence with a video from the Truth Initiative (Shank, n.d.) that shows teens
glorifying vaping, participating in vape challenges, and getting a buzz from the nicotine. Our
intention was to acknowledge upfront that teens are vaping and to invite them into a serious
conversation. From an ethics perspective however, we worried that the content of the video
might inadvertently encourage teens to vape because it looks cool and fun.

A second time we were confronted with an ethical dilemma as designers occurred when we
were considering introducing the idea of a “nicotine threshold” amount. A nicotine threshold
refers to the minimum amount of nicotine an individual could ingest without becoming addicted.
We worried that students who want to vape might think that, as long as they stay under this
threshold, they can vape without getting addicted.

A third ethical issue arose as we were writing problems that might help students see
themselves as the target of vaping companies. We created an instructional task that showed
actual advertising photos by vaping companies. These advertisements contained pictures of
candy flavored vape juice products, the Sesame Street Muppet Elmo encouraging vaping, young
people partying with vape products, and famous entertainers holding vape pods. Our intent was
to have students analyze the advertisements to see that vape companies were intentionally
promoting their product to youth, but we worried the ads would attract students to the product.
They might be inclined to think that vaping looks cool; or if my favorite stars do it, it must be ok.

Potential design solution. One way we attended to these ethical dilemmas involved creating
what we refer to as a contextual storyline. We intentionally introduced a fictional character
named Sara who became increasingly aware that she might be vaping enough to become
addicted to nicotine. The mathematical problems we introduced not only supported our
conjectured mathematical learning trajectory, but were couched in an ongoing narrative of Sara
thinking about her vaping habit. We weaved the mathematical and contextual trajectories
together so that students would develop proportional reasoning as they helped Sara and other
fictional teen characters think about addiction. As the mathematical learning goals shifted to
percent, the storyline changed to using a fictional app called the 1Vapeless meter so students
could analyze how close Sara was to her self-imposed vaping limit. In this way, we used Sara’s
storyline to both develop students’ mathematical understanding of ratio and percent while also
learning about how vaping, even in small amounts, might lead to nicotine addiction. We also
elicited students’ knowledge from health class about the potential health consequences of
nicotine throughout the storyline. In this way, we hoped the storyline we created would, at
minimum, de-glorify vaping and maximally, deter students from using nicotine.

Discussion and Implications
In this study, we attempted to address an identified tension from previous studies of critical
mathematical lessons: the difficulty in simultaneously teaching new mathematical concepts as
well as ethical/critical reasoning. Unable to find critical mathematics studies that utilize
established mathematics instructional design theories, we attempted to use tenets of realistic
mathematics education to support our design toward the mathematical goals, while also attending
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to critical mathematics frameworks. One notable difference that emerged between the lessons we
developed and lessons present in the existing literature is that we designed a sequence of lessons,
built on researched learning trajectories for ratio and proportion (Civak, 2020; Stephan,

2021) and critical contexts. Our instructional sequence also began with contexts that positioned
the students we worked with as targets of oppressive acts, and then proceeded to inquiries into
how tobacco companies targeted populations with marginalized identities that many of our
students did not possess. Prior reports and published resources tend to represent individual
lessons, rather than carefully sequenced tasks built upon learning trajectories.

Through our work, we found that the RME design heuristics were helpful for supporting our
design efforts, yet we needed to adapt two of the existing principles (the leveling and realistic
principles) and add a new principle. First, our adaptation to the reality principle led us to a better
understanding of the demands of selecting an appropriate anchoring, experientially-real context.
Others have identified the step of determining justice-oriented contexts for a given student
population and determining the mathematical topics that are relevant to that context. In addition
to this, we also needed to determine whether contexts were didactically rich, meaning that
problems inherent to the context lent themselves to develop a variety of models, from informal,
context-bound models to more formal models. Furthermore, we needed to identify contexts that
presented a variety of critical and mathematical questions; vaping for instance, had many
different considerations including how to determine whether someone is vaping more, data
related to teens’ vaping practices, and the targeting of various groups with advertising.

Our second adaptation involved the leveling principle. Once we had determined a
didactically rich, critical context, we found ourselves oscillating between posing problems with
complete fidelity to the context and fictionalizing certain aspects of the situations. For example,
we attempted to use real stories and actual data from social media and research articles for
problem contexts, but sometimes the numbers and procedures in the reports were too complex to
support students at that particular point in the mathematical learning trajectory. Thus, in order to
develop a sequence that adhered to the leveling principle, we needed to fictionalize aspects of
that context at times.

Finally, in addition to adapting the leveling and reality principles to design instruction with
authentic critical contexts, we found the need for an additional RME heuristic. Ernest (2013)
argues that the ethical considerations of problem contexts must be considered and should be the
foundation for mathematization, yet none of the current RME principles provide much guidance
to designers who create instructional sequences with attention to ethics and social justice. We
illuminated the ways in which ethical considerations emerged for us during the design process
and presented several instances when the design team encountered ethical dilemmas and the
ways we resolved them. Consequently, we suggest the addition of an ethics design principle to
RME and argue that, not only should instructional materials support students’ development of
ethical reasoning but that designers themselves must also be alert to and problematize the ethical
dimensions of their designs for students.

In our description of these adaptations and additions to the RME heuristics, we must also
clarify that these are proposals at an early stage of the design research project. We have
developed and piloted an initial version of the instructional sequence, but we have yet to analyze
the data on implementation. Thus, we are careful not to propose that the adaptations to the RME
principles are final, rather they are emergent and likely to need further revision. As our work
progresses, it will be important to apply and continue to revise these principles in other settings
with other students, mathematical topics, and justice-oriented contexts.
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A STUDY OF THE CONSISTENCY IN NEW YORK STATE FIRST YEAR MATH

EXAMS
Stephanie Schaefer Deborah Moore-Russo
American College of Education University of Oklahoma
stephanie.schaefer@ace.edu dmr@ou.edu

As standards documents have been introduced over the past 20 years, many states have seen an
evolution in both the standards and related high stakes exams. For many teachers across the
U.S., the rollout of standards and exams has not been an experience that builds trust in state
education leaders. In this study, we consider three major changes in the first-year high school
math exams in New York State since 2002, looking at consistency in item types, topics addressed,
and student performance. Shifts in all were noted, but the changes in topics, especially when not
obvious by the names given to standards, are suggested as the mostly likely to misinform or
misguide teachers. We consider how state educational leaders are working to build trust for the
next iteration of standards. While this study is particular to one state, the methods and findings
should be of interest to others who study curriculum and testing in high schools.

Keywords: Algebra and Algebraic Thinking; Assessment; High School Education; Standards

The National Council of Teachers of Mathematics (NCTM, 1989) introduced its first
standards document just over 20 years ago. This launched an evolution of mathematics
curriculum standards and related assessments. NCTM (2000) published a subsequent set of
standards in just over 10 years, and the Common Core Standards were published 10 years later
(National Governors Association Center for Best Practices & Council of Chief State School
Officers, 2010). While having a national organization, such as NCTM, put forth standards helped
bring more coherence to mathematics instruction across the United States, this led to significant
disruptions at the state level. State education leaders subsequently made changes in their
standards and state assessments that were rolled out to teachers, while legislation (e.g., No Child
Left Behind, 2002) put in place mandates that implemented state assessment accountability.

Researchers report that state assessments have been associated with intense stress for
teachers, and teachers report feeling that the high-stakes state exams often undermine meaningful
learning and instruction (Barksdale-Ladd & Thomas, 2000). This feeling of pressure is regardless
of the state in which teachers work (von der Embse, Pendergast, Segool, Saeki & Ryan, 2016),
and studies have reported on state assessment accountability and its impact on teacher stress and
teachers’ intentions to leave the teaching profession (e.g., Ryan et al., 2017).

A reconstitution of the mathematics curriculum based on standards has brought about
research that compares states’ curricula and adoption (Senk & Thompson, 2020) as well as
research that considers states’ suggested coverage and placement of key topics in the curricula
(e.g., Nagle & Moore-Russo, 2014; Stanton & Moore-Russo, 2012). However, little has been
published about the high-stakes state exams themselves. How much did changing standards
impact state assessments, particularly those that were being administered for the first year of
high school mathematics? In order to consider this question in light of a new set of state
mathematics standards that will soon impact state assessments, the overarching research goal of
this study is to look at changes in first-year high school mathematics state exams in New York
State (NYS) over the past 20 years. The three specific research questions include:
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1. How consistent have state exams been over the past 20 years, in terms of the topics
covered, types of items included, and student performance on the exams?

2. How do previous exam topics compare to current first year mathematics state standards?

3. How are state education leaders preparing teachers for the upcoming changes in standards
and state exams?

Theoretical Framework
Social capital theory can focus on notions ranging from power (Fine, 2001) to economic
transactions (Hardin, 1999) to mechanisms that build common values (McNiell, 2007). In all of
these, there is interconnectivity that involves some level of trust. Trust is the belief that an entity
(be it an institution or an individual) will act in ways that are consistent with one’s expectations
of positive behavior (Algan, 2018). It is an expectation that arises that is based on shared norms
(Fukuyama, 1996). Trust helps reduce uncertainty (Luhmann, 1979) and helps deliver optimal
outcomes by strengthening relationships and preventing defection (Six, van Zimmeren, Popa &
Frison, 2015). Hardin (2002) suggests that norms produce trust, which he describes in the first
person as the perception that you have “an interest to take my interests in the relevant matter
seriously...you value the continuation of our relationship” (p. 2).

In organizations, subordinates’ trust in those over them has been found to be related to
employee commitment and job satisfaction (Colquitt, Scott, & LePine, 2007; Dirks & Ferrin,
2002). Burke, Sims, Lazzara, and Salas (2007) suggest that this trust is based on aspects such as
accountability, transparency, and consistency (Kim & Lee, 2018). Consider the mathematics
education community in a state as an organized entity with teachers in roles that might be
considered subordinate to those who create high-stakes exams. The state’s educational leaders
show trust in teachers with their administration and marking of the exams. However, if one has
listened to teacher lounge grumblings or has read media reports (Domanico, 2021; Strauss, 2012;
Taylor, 2016), it calls to question how much this trust has been reciprocated. To begin to
understand teacher trust in state education leaders and mandated state testing, there are many
aspects that could be studied. A logical initial investigation is to study how consistent state
exams have been looking at different measures of consistency. For that reason, this study
considers looks the three iterations of the NYS exams for first-year high school math in terms of
consistency and using the current math standards as a lens. It also considers how NYS education
leaders are preparing teachers for future revisions to the standards and related exams.

Current Study
Since this study focuses on a particular state, we first detail the sequential shifts that have
occurred in first-year high school mathematics in NY'S. Next, we situate ourselves and
experiences as researchers for this study.
Context.

From 2002 to 2020, there were three changes in standards that affected the first-year math
exams in NYS: the old standards (Math A) from 2002-2009, the recent standards (Integrated
Algebra) from 2008-2015, and the current standards from 2014-2020. Each exam administration
occurred in January, June, and August. Each exam consisted of multiple choice and constructed
response items corresponding to the relevant standards. In some years, two versions of the exam
were available during transitional periods between standards. There were a total of 2287 items
that were graded and publicly available on the NYS Regents’ website (NYS Office of State
Assessment, 2021): 764 old items (2002-2009), 857 recent items (2008-2015), and 666 current
items (2014-2020).
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Research team.

The research team consists of two members who have firsthand experience with the changes
in NYS standards and assessments in high school mathematics. The lead researcher is a former
NYS secondary mathematics teacher who experienced: the old exams as a student, the recent
exams as a pre-service teacher, and the current exams as an in-service teacher. As part of her
dissertation work (Schaefer, 2020), Schaefer did an in-depth study of NYS state assessments
focusing on readability. While focusing on readability, other changes across the years became
obvious. The second researcher worked in a Department of Learning and Instruction in a
university located in NYS; she taught the secondary mathematics education classes for pre-
service teachers from 2004 to 2014, a period that overlapped the old, recent and current
standards.

Data Collection and Standard Classification
All items from first-year old (n=764), recent (n=857), and current (n=666) NYS exams were
used as data. A sample of 10% of current exam items were classified using the current standards
to obtain interrater reliability with NYS standard classification (Schaefer, 2020). Cohen’s k was
calculated to determine agreement (k = 0.903, p < 0.05). Discrepancies were then analyzed, and
the NYS classification was accepted in each area of discrepancy. All old and recent items were
then coded by the first using the current standards. Both authors discussed any items that were
difficult to code until consensus was reached.

Findings
In this section we present findings in the order of the research questions. The findings are then
followed by relevant discussion.
Exam Consistency
We first consider how consistent the first-year mathematics exams have been in NYS. We look
at the topics covered by the exams in light of the standards that applied at the time of the exams.
We then consider the types of items on the exams. Finally, we investigate any changes in student
performance.
Item Topics. The old, recent, and current exams had a wide variety of topics based on their
individual standard systems. Table 1 notes the different topic areas for each of the exams in
terms of the distributions by the relevant standards at the time. The recent standards show the
emphasis on an integrated curriculum, with the inclusion of a Geometry standard, that was not
present in either the old or current standards. The old exams had the greatest difference in topic
names as compared to recent and current exams. Consider the current standard of Number and
Quantity. On old exams, the Number and Numeration standard was the focus for 8% of exam
items, and the Operations standard was the focus for 19% of exam items. On recent exams,
Number Sense and Operations was the focus of 8% of exam items. On current exams, Number
and Quantity was the focus of 5% of exam items. Measurement decreased from being the focus
on 19% of items on the old exam to 6% on recent exams, and it was not considered a high school
mathematics standard and was therefore not the focus of any items on the current exam. The
emphasis on functions shifted from accounting for 18% of the items on old exams, under the
Patterns/Functions standard, to being melded in with Algebra in recent exams. Functions is a
standard by itself and represented the focus of 37% of the items on current exams.
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Table 1: Topic Areas and Relative Distributions of Exams.

Old Exam Recent Exam Current Exam
Standard Dist. Standard Dist. Standard Dist.
Math Reasoning 7% Algebra 54% Algebra 50%
Operations 19% Geometry 16% Functions 37%

Number & Numeration 8%  Number Sense & Ops 8%  Number & Quant 5%
Model/Multiple Reps  20%  Stats & Probability ~ 16% Stats & Probability 9%

Measurement 19% Measurement 6%
Uncertainty 8%
Patterns/Functions 18%

Item Types. Exams since 2004 but prior to current exams seemed to be more heavily weighted
toward multiple-choice items. When the old exams were initially administered, the relative
weighting (in terms of point distribution) of multiple-choice items was 47%. Then, the o/d exam
was revised so that the relative weighting of multiple-choice items was 71% of exam points.
Recent exams had a similar 69% relative weighting of multiple-choice items. The current exams
relative weighting decreased to 56% of the total points. Most notably, there was also a six-point
constructed response item added to current exams, replacing the three-point items that were on
previous exams. Table 2 outlines the differences in item type distributions with the relative
weighting for each item type in relation to the overall total exam point value.

Table 2: Item Type Distributions and Relative Weighting to Total Point Values for Exams

Old Exam Old Exam Recent Exam  Current Exam
Jun02-Jun03 Jan04-Jun09 JunO&-Junl5  Junl4-Jan20

| | ] | |
n RelWt* n RelWt n RelWt n Rel Wt

Item Type & Value

|
Multiple-Choice (MC Items)
2-point 20 47% 30 71% 30 69% 24 56%

Constructed Response (CR) Items

2-point 5 12% 5 12% 3 7% 8 19%
3-point 5 18% 2 7% 3 10% 0 0%
4-point 5 24% 2 10% 3 14% 4 19%
6-point 0 0% 0 0% 0 0% 1 7%
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Student Performance. In order to consider exam consistency, we now look at student
performance on the exams. For the NYS Regents, passing an exam is equivalent to receiving at
least 65% of the total points on an exam. However, some students with disabilities are given a
55% passing rate, depending on their Individualized Education Programs (IEPs). A score at or
above 85% is considered passing with distinction. For this reason, Table 3 displays the passing
rates at or above 65% and 85% for all students taking the first-year math exams in NYS as well
as the passing rates at or above 55%, 65%, and 85% for students with documented disabilities
who took these exams (NYS Education Department, 2022).

Note the passing rate of scores that are 65% or higher on exams has decreased for all students
going from 73% on old exams to 72% on recent exams to 70% on current exams. The passing
with distinction rates (i.e., scores of 85% or higher) have decreased more markedly for all
students going from 25% on old exams to 16% on recent exams to 13% on current exams. Now
consider only the population of NYS students with disabilities and their performance on the o/d,
recent, and current exams. Students with disabilities’ passing rates of 55% or higher have
increased from 64% to 66% to 67%, respectively, while passing their passing rates of 65% have
decreased from 45% to 42% to 39%, respectively. There has also been a decline in student with
disabilities who pass with distinction (i.e., with scores of 85% or higher) from 6% to 2% to 1%
respectively.

Table 3: Relative Passing Rates on Exams for All Students and Students with Disabilities

Old Exam Recent Exam Current Exam
Item Type & Value n=1,552,177 n=1,933,213 n=1,324,731
| ] | |
>55% >65% >85% >55% >65% >85% >55% >65% >85%
| ] ] ] ] ] ] | | I |
All Students 0 o o 0 0 o
1 = 4,980,809 73%  25% - 72% 16% - 70% 13%
Students with
Disabilities 64% 45% 6%  66% 42% 2%  67% 39% 1%

n=700,048

Comparison to Current Standards

We now use the current standards as a lens to consider shifts in the topics covered on exams for
the past 20 years. When considering the items on old, recent, and current exams (as displayed in
Table 4), it is obvious that there have been shifts in the topics that are covered. This is most
notable when looking that the number of items that were on the old exams (73%) and recent
exams (57%) that do not apply to the current standards. For example, measurement and
geometry are no longer part of the first-year mathematics curriculum in NYS. For the Algebra
standard, there has been a respective shift from 22% to 29% to 50% respectively on old, recent,
and current exams, with the items on the current exams primarily focusing on this standard. For
the Functions standard, there has also been a notable increase from 1% to 4% to 37%
respectively on old, recent, and current exams. This is due to introducing the concept of function
as well as an emphasis on introducing and using functional notation (rather than only considering
equations, such as y = 2x + 3). There have been less dramatic shifts in the percentages of items
that address the Number and Quantity and the Statistics and Probability standards. There have
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also been some shifts within individual topics as to which subtopics are emphasized. However,
most of these shifts are based on the large increases in all the subtopics under the Algebra and
Function standards.

Table 4: Counts of Items on Exams by Current Standards’ Topics/Subtopics

old Recent Current

| Topic and Subtopic Areas n % n % n %
Algebra 166 22% 248 29% 331 50%
Arith w/ Polynomials & Ratl Expressions 19 2% 21 2% 34 5%
Creating Equations 22 3% 38 4% 82 12%
Reasoning w/ Equations & Inequalities 109 14% 139 16% 144 22%
Seeing Structure in Expressions 16 2% 50 6% 71 11%
Functions 7 1% 34 4% 244  37%
Building Functions - - 1 <1% 37 6%
Interpreting Functions 7 1% 25 3% 153 23%
Linear, Quadratic, & Exponential Models - - 8 1% 54 8%
Number and Quantity 19 2% 27 3% 33 5%
The Real Number System 2 <1% - - 18 3%
Quantities 17 2% 27 3% 15 2%
Statistics and Probability 13 2% S8 7% 58 9%

Interpreting Categorical & Quantitative Data 13 2% 58 7% 58 9%
None Applicable 559 73% 490 S57% - -

Preparations for Upcoming Changes in Standards

Another change in NYS is coming, with the Next Generation Math Standards (NYS
Education Department, 2017a). When the o/d curriculum evolved to the recent curriculum, there
was a significant shift in topic areas covered in the standards. In the shift from the recent to the
current curriculum, similar topic areas were used; yet standards were condensed and there was a
move away from an integrated curriculum. Now, from the current to the future Next Generation
Math Standards, NYS educational leaders have created resources (i.e., a snapshot document and
a crosswalk) to better explain how standards have been added, modified, or removed.

In the Snapshot document (NYS Education Department, 2019a), there were three categories
that highlighted the major changes from current to future standards. These categories including
mapping the future standards to the future curriculum, outlining which standards moved to
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another level of the mathematics curriculum, and additional clarification on current standards
pertinent to the future curriculum. The Crosswalk document (NYS Education Department,
2019b) included detail clarifying the standards based on input from conference calls hosted by
the NYS Education Department. These comments included notes that clarified more information
about the standards. For instance, there was specific information regarding fluency expectations
and how the first-year standards differed from those for the third-year math course, Algebra II.

The NYS Education Department created two committees that included both educators and
parents for the future standards. There were also opportunities for public commentary on the
draft document with over 750,000 comments from more than 10,500 people on the AIMHighNY
2016 survey (NYS Education Department, 2017b). This information was first used to create an
initial version of the future standards in 2017 that has since been revised and disseminated in
June 2019.

Probably most importantly, there has also been a longer roll-out period for the future
standards than existed in past years when transitioning between standards. Initial information on
the future standards was provided to teachers in 2017. The NYS Department of Education has
also considered the impact of the pandemic and are taking its impact into account regarding the
implementation of the future standards, which are not slated to be implemented and used for
Algebra 1 exams until September 2023 (NYS Education Department, 2021).

Discussion
In conclusion, there have been some shifts in first-year high school math exams in NYS over the
past 20 years. This is noted both in the item types and their weightings. It is also noted in student
performance on the exams, especially in students passing with distinction. However, the areas
where the revisions have been the most dramatic, especially in the impact on teachers, are in the
topics that are covered on these exams.

Much of the discontent with the roll out of standards in the past is likely due to the lack of
communication and a disruption in the continuity of topics that were included in the standards
and on the exams. Change, by its very nature, disrupts consistency. However, there are
mechanisms that can make change easier. There are also practices that can downplay change so
that it is less evident initially, but this has consequences when it is realized that the change was
more dramatic than initially believed. Having standards with similar topic names helped teachers
transition from recent to current standards. However, what counted as Algebra for the recent
exams was not the same as what counted as Algebra in the current exams. While 54% of the
recent exam items were classified as addressing Algebra topics under the recent standards; only
29% of the recent exam items were classified as Algebra topics under the current standards. For
example, ratios and proportions (including the three basic right triangle trigonometric ratios)
were considered part of the subtopics covered in the recent Algebra standards, but they are not
part of the current Algebra standards. Using the same topic name for a standard that represents
different subtopics misinforms and can misguide teachers. When Algebra means one thing for a
few years and then something else, it could have felt like a breach of trust for many teachers.

It is heartening that the NYS Department of Education has been more transparent and open to
suggestions from teachers (and others) in the transition to future math standards that will be
adopted soon. One way that this is noted in the inclusion of accessible documents that carefully
map out the continuity across and evolution in topics. Optimistically, the research team is
hopeful that the rollout of the future standards will be smoother than it was for past transitions of
standards in NYS.

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee
State University.

198



The input of teachers (as well as of other constituents in the learning process) is key to
building trust. But bi-directional communication between teachers and state education leaders is
not all that is needed to help teachers transition between curricular standards. There needs to be a
logical, coherent evolution that builds on, rather than totally replaces, existing standards.
Moreover, this evolution needs to be clearly communicated to all, but especially to teachers.
Consistent transparency as to the coming changes and how they are line up with, build on, and
improve the current standards would be of benefit and would help develop more trust between
teachers and state education leaders.

Limitations, Future Study
While an obvious limitation is that this study only looks at NYS, the methods used and the
underlying message are pertinent to those who study high school mathematics in other states,
especially those interested in curricular standards and state exams. Other studies that investigate
how different states have handled curricular shifts in standards and state assessment exams
would be of great value. It would be interesting to see how future work could springboard from
studies such as this to delve into more qualitative work on how trust is built or breached between
teachers and state education leaders, especially in light of high stakes testing.
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HOW DO MULTI-DIGIT MULTIPLICATION PROBLEMS PROMOTE
PROCEDURAL FLEXIBILITY? AN ANALYSIS OF TWO FOURTH GRADE
TEXTBOOKS
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Procedural flexibility promotes efficient problem solving in mathematics. However, it is unclear
whether and how elementary-grades textbooks promote this skill. The current study investigated
lessons within two fourth grade math textbooks to determine how math tasks promote procedural
flexibility within the domain of multi-digit multiplication. I developed and applied two
frameworks to analyze the multiplication strategies and instructional strategies that might
promote procedural flexibility that were presented in textbooks The textbooks differed in the
number and types of multiplication strategies included. Neither textbook showed much
variability in terms of instructional strategies, and there was little alignment between
multiplication and instructional strategies. Future research could investigate additional textbook
features such as teachers’ guides study additional avenues for promoting procedural flexibility.

Keywords: Elementary School Education, Curriculum, Number Concepts and Operations,
Standards

Historically, students in the United States have underperformed in mathematics (see the
National Center for Educational Statistics, 2021). This lack of proficiency in math leaves many
students unprepared for more advanced math courses such as Algebra. To remediate this, math
researchers and educators have been targeting strands of mathematical thinking that may help
students develop deeper understanding of mathematical concepts as well as more effective
problem-solving skills (National Research Council, 2001).

One such strand of math learning is procedural flexibility. Procedural flexibility refers to
students’ abilities to think flexibly and adaptively about strategies for problem solving, thereby
facilitating students’ abilities to discern between multiple strategies and apply the most efficient
strategy (Digital Promise Global, 2021; National Research Council, 2001; Star, 2005;
Verschaffel et al., 2007). Procedural flexibility is a crucial skill for later math subjects such as
Algebra (Rittle-Johnson et al., 2020; Star, 2005). Recent research has also emphasized the
importance of procedural flexibility in its relation to both procedural and conceptual knowledge
of problem solving (see Newton et al., 2020; Schneider et al., 2011). Having the procedural
knowledge to accurately and fluently solve problems allows students to discern efficient
problem-solving strategies and thus evoke procedural flexibility when selecting which strategy to
use (Star, 2005). Similarly, conceptual knowledge of a topic can help students reason flexibly
about problems (Durkin et al., 2017; Schneider et al., 2011). For example, a student who does
not understand the standard algorithm for multi-digit multiplication but who has conceptual
understanding of multiplication might be able to think flexibly and develop their own strategy for
solving the problem. Improvements in procedural flexibility is also associated with increases in
conceptual understanding (DeCaro, 2016; Durkin et al., 2017, 2021; Newton et al., 2020). Thus,
procedural flexibility is an important aspect of mathematical thinking.

Procedural flexibility is also embedded in the Common Core State Standards for
Mathematics (CCSS-M; 2016) and is emphasized across grade levels, with standards stating that
students should have “skill in carrying out procedures flexibly, accurately, effectively, and
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appropriately” (CCSS-M, 2016). Its prominence both in the CCSS-M and in research suggests
procedural flexibility may be a crucial skill to emphasize in mathematics instruction.

Conceptual Framework

While procedural flexibility is integral to math learning, it is unclear whether and how
students learn procedural flexibility in the classroom. A central artifact to a math classroom is the
textbook, which provide curricular materials that guide teachers’ instruction (Lloyd et al., 2017).
Therefore, this analysis will examine textbooks to explore in what ways textbooks promote the
use of multiple strategies and procedural flexibility in problem solving.
Procedural Flexibility and Multiple Strategies

The ability to use and apply multiple strategies while problem solving is intricately tied to
procedural flexibility. The CCSS-M (2016) emphasize the use of multiple strategies in problem
solving. For example, the standard 4.NBT.B.5 mentions five different multiplication strategies
students should be able to apply when solving problems. Other standards similarly include
multiple strategies, implicitly emphasizing the importance of procedural flexibility. Equally
important is the ability to apply strategies effectively. DeCaro (2016) found that students who
were primed to use a specific strategy solved later problems less efficiently than those who were
not primed, suggesting that this mental constraint affected students’ abilities to efficiently apply
strategies to solve problems. Promoting flexibility in thinking, then, may help students apply
strategies more efficiently when problem solving.
Instruction of Procedural Flexibility

Researchers and educators have developed ways for procedural flexibility to be taught
through instruction. One method is through comparing multiple strategies (Durkin et al., 2021;
Rittle-Johnson et al., 2020), often through comparing two worked examples that show the same
problem solved in two different ways. In one study, Durkin et al. (2021) tested curricular
materials designed to foster comparison between multiple strategies for solving linear equations.
They provided teachers supplemental worked example pairs (WEPs) that presented multiple
strategies for solving the same problem as well as questions that prompted students to compare
and analyze each strategy. Students whose teachers used multiple strategies in instruction and
asked students to compare multiple strategies performed better on the posttest, particularly in the
domains of procedural flexibility, than students whose teachers did not engage in these practices.

Other instructional strategies could be associated with increased procedural flexibility as
well. A method often used in textbooks is to require students to solve a problem using a specific
strategy, allowing students to engage with a multitude of strategies while problem solving (see
Great Minds, 2016; MacMillian-McGraw Hill, 2009 for examples). Other techniques include
encouraging students to reflect on strategies used during problem solving (Star et al., 2015;
Woodward et al., 2012) and asking students to choose between strategies when problem solving.
Multi-Digit Multiplication

The current study of multiple strategy use and procedural flexibility is situated in the domain
of multi-digit multiplication. Prior work on procedural flexibility has been done at the pre-
Algebra or Algebra level (e.g., Durkin et al., 2021; Rittle-Johnson et al., 2020; Star, 2005), and
less work has been done at the elementary level. Yet there is reason to believe that procedural
flexibility is important for early grades, as well. As mentioned above, the CCSS-M standards
(particularly for fourth and fifth grade) emphasize procedural flexibility through prompting
students to perform operations fluently (CCSS-M, 2016). In particular, standards for multi-digit
multiplication include multiple problem-solving strategies, suggesting this may be a fruitful
domain to introduce strategy choice. Additionally, developing procedural flexibility when
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solving multiplication problems can help students solve problems more accurately and quickly
(Digital Promise Global, 2021), which can help students solve more complex problems in later
subjects. Finally, the role of procedural flexibility in developing conceptual knowledge (Rittle-
Johnson et al., 2015; Schneider et al., 2011), as well as the prominence of flexible thinking in
more advanced problem-solvers (Star & Newton, 2009) makes it a crucial skill for students to
learn early on. Thus, it is important to explore in what ways procedural flexibility is taught in
elementary mathematics classes and how curricular materials such as textbooks might promote
this skill.

Research Questions
The current study examines the viability of two novel frameworks, consisting of multi-digit
multiplication strategies and instructional strategies promoting procedural flexibility, through
applying them to two fourth grade mathematics textbooks. My specific research questions are:

1. What strategies do fourth grade mathematics textbooks specify for students to use when
multiplying multi-digit numbers?

2. In what ways do problems in fourth grade mathematics textbooks promote procedural
flexibility of multiplication strategies?

3. How aligned are strategies used for solving multi-digit multiplication problems and

practices promoting procedural flexibility?

Methods

Data Sources

Two textbooks were analyzed for this study: Math Connects (MacMillian-McGraw Hill,
2009) and Eureka Math (Great Minds, 2016). These textbooks were selected because of their
accessibility to classrooms; Math Connects is written by a major U.S. textbook manufacturer,
and Eureka Math is available for free online. Lessons within each textbook that focused
specifically on multi-digit multiplication were selected for analysis. Within those lessons, |
coded all independent practice problems for whether they contained multi-digit multiplication.

These problems, hereby called math tasks, included both arithmetic problems that students had to

solve and worked examples that asked questions about a worked-out problem.
Analytic Framework

To analyze what multiplication strategies and instructional techniques promoting procedural
flexibility were promoted in fourth grade mathematics textbooks, I developed two frameworks
with which to code math tasks. Math tasks were coded holistically, meaning that both the
instructions and the task itself were included in the codes and analysis. Additionally, codes were

additive, and a math task could have more than one code from each framework. Codes within the

two frameworks were both research-based and data-based (DeCuir-Gunby et al., 2011). An
initial list of codes was developed from prior literature. Additional codes that emerged through
patterns in the data were then added to the frameworks, and previously coded problems were
recoded to align with the updated framework. These frameworks are detailed below.

Strategies for Multi-Digit Multiplication. Math tasks were coded as prompting a specific
multi-digit multiplication strategy if the strategy was explicitly included in the instruction (e.g.,
“Solve this problem using the standard algorithm™) or prompted via a visual scaffold (e.g.,
inclusion of an area model). Codes generated from prior literature included codes based on
memorization (Lampert, 1986) and mental math (Rathgeb-Schnierer & Green, 2018), the use of
physical objects when solving problems (Lampert, 1986), the use of area models (Kwon & Son,
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2019), and the use of conceptual strategies such as the distributive property and other
multiplication properties (e.g., the commutative property, decomposition; Ambrose et al., 2003;
Lampert, 1998), and additional abstract strategies (Baek, 2006). Emergent codes included
multiplication strategies such as the standard algorithm, using partial products, using a place
value chart, or using drawings to solve the problem, all of which were common in the data
sources (e.g., Great Minds, 2016; MacMillian-McGraw Hill, 2009) but were not represented in
the literature. Finally, repeated addition was added based on the author’s prior knowledge of
multiplication strategies.

Instruction Promoting Procedural Flexibility. Math tasks coded as including instructions
promoting procedural flexibility if there were specific instructions (e.g., “Choose a strategy to
solve the problem below”) instructing students to #ow to apply multiplication strategies to solve
the problem. Initial codes emerging from the literature included asking students to compare
strategies (Durkin et al., 2021) and reflect on strategy use (Star et al., 2015; Woodward et al.,
2012). Later codes that emerged from the data sources included specifying a strategy for use
while solving a problem and choosing between multiple strategies (Great Minds, 2016;
MacMillian-McGraw Hill, 2009).

Connection Between Strategies and Procedural Flexibility. To address the third research
question, the multiplication strategy framework and the instructional strategy framework were
aligned to determine if there were patterns in co-occurrences of multiplication strategies and
instructional strategies. It is plausible that some multiplication strategies may align better with
certain instructional techniques to promote procedural flexibility. For example, more advanced
strategies may be paired with promoting strategy choice because students have a greater
repertoire of strategies from which to choose. Likewise, strategies that employ visual scaffolds
often promote student reflection on the strategy used to help students align the scaffold with the
numerical representation.

Results

Lessons in Math Connects ranged from having 21 to 47 multi-digit multiplication tasks,
while lessons in Eureka Math ranged from having 4 to 19 multi-digit multiplication tasks. There
were 302 math tasks in the specified Math Connects lessons, compared with 142 tasks in the
specified Eureka Math lessons. Of those, multi-digit multiplication was included in 266 tasks in
Math Connects (266 problems, no worked examples) and 140 tasks in Eureka Math (138
problems, two worked examples). These were the math tasks used in the analyses that follow.
Research Question 1: Fourth Grade Multiplication Strategies

First, I examined whether the strategies included in the framework appeared in the textbooks.
The number of math tasks that explicitly included a multiplication strategy differed between the
two textbooks. Overall, 14.3% (n = 38) of multi-digit multiplication tasks in Math Connects
included multiplication strategies, while 74.3% (n = 104) tasks in Eureka Math contained at least
one multiplication strategy for student use. Table 1 shows the number and proportion of
multiplication strategies that appear in each textbook. Twelve out of the 14 strategies included in
the framework were found in at least one of the textbooks. Two strategies, repeated addition and
physical objects, were not found explicitly in the tasks in either textbook.

The amount and distribution of multiplication strategies differed between the two textbooks.
Within the nine coded lessons in Math Connects, four different strategies were explicitly stated,
with only two (Memorization and Mental Math) stated more than once. In contrast, among the 14
Eureka Math lessons coded, ten different strategies were evident, and all were present multiple
times. The types of strategies varied between the two textbooks, as well. Math Connects
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contained a high number of math tasks that prompted students to use memorization (n = 27) or
mental math skills (n = 9), strategies that were not stated in Eureka Math. The most prevalent
strategies in Eureka Math were related to decomposition and visual aids, including partial
products (n = 45), use of a place value chart (n = 28), and use of an area model (n = 24). These
strategies were largely absent from Math Connects. Eureka Math also suggested that students use
the standard algorithm (n = 23), often in conjunction with other strategies, such as using a place
value chart. This strategy was similarly absent from Math Connects. Finally, the number of math
tasks that included multiple strategies differed between the two textbooks, as well. Half of the
104 math tasks in in Eureka Math (n = 52) included multiple strategies. This included asking
students to choose between strategies, including multiple strategies to solve the problem, or
specifying multiple strategies to solve the problem. No math tasks in Math Connects included
more than one strategy.

Table 1: Number and Percentage of Math Tasks that Suggest Specific Strategies

Textbook

Strategy Code Math Connects Eureka Math

(n = 38 tasks) (n =104 tasks)
Memorization 27 (71.1%) -
Mental Math 9 (23.7%) -
Standard Algorithm - 23 (22.1%)
Physical Objects - -
Area Model - 24 (23.1%)
Place Value Chart - 28 (27.0%)
Other Drawings/Symbols - 9 (8.7%)
Partial Products 1 (2.6%) 45 (43.3%)
Repeated Addition - -
Distributive Property - 9 (8.7%)
Relational Comparison - 10 (9.6%)
Decomposition 1 (2.6%) 8 (7.7%)
Additional Abstract - 7 (6.7%)
Strategies
Other Strategies - 6 (5.8%)

Note. Percentage add up to more than 100 because some tasks prompted students to use more
than one strategy.

Creating overall categories of strategies. As strategies were coded, patterns emerged
between the categories. Some categories required memorization, some included visual scaffolds,
some required the use of underlying conceptual knowledge, and some simply required use of a
rote procedure. To facilitate comparison, I created four overarching categories within which
strategies were sorted. Strategies were sorted by similarities in knowledge needed by students to
apply the strategies. The four categories of Memorization, Procedures, Visual Scaffold, and
Conceptual Understanding can be seen in Table 2.

Table 2: Multiplication Strategies Categorized by Knowledge Needed
Category Explanations Strategies/Original Codes
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Memorization Relies on memorized facts or prior Memorization, Mental Math

knowledge
Procedure Using a rote procedure to solve problem  Standard Algorithm
Visual Scaffold  Requires use of a visual scaffold (either Area Model, Place Value,
physical object or symbolic) Physical Object, Other
Drawings/Symbols
Conceptual Incorporates conceptual knowledge or Repeated Addition, Partial
Knowledge understanding of multiplication Products, Distributive

Property, Decomposition,
Additional Abstract Strategies
Other Strategies  Strategies that do not fit into one of the Relational Comparison, Other
four above strategies

The overall strategy categories presented in Table 2 were then graphed to display the number
of problems within each category presented in Math Connects and Eureka Math, depicted in
Figure 1. The Math Connects column shows primarily Memorization strategies; indeed, these
strategies make up 94.7% of coded strategies in the textbook (n = 36). In contrast, the
Memorization category does not appear explicitly in Eureka Math. Instead, most problems coded
involve conceptual understanding (n = 69, 66.9%) or present visual scaffolds (n = 54, 51.9%).

0.8

0.6

0.4

0.2

Math Connects (n = 38 strategies) Eureka Math (n = 169 strategies)

OMemorization ®Procedure mVisual Scaffold OConceptual Knowledge ©OOther

Figure 1: Percentage of Multiplication Strategies within Overall Categories
Note. The number of strategies in Eureka Math totaled to more than 104 because some math
tasks prompted the use of multiple strategies.

Research Question 2: Instructional Strategies that Promote Procedural Flexibility

I next looked at whether the math tasks incorporated instructional strategies that promoted
procedural flexibility. Figure 2 shows the percentage of tasks in each textbook that included
problems that might promote procedural flexibility. All instructional techniques included in the
framework were seen in the two textbooks; however, the percentages of instructional strategies
differed. Within Math Connects, 28.3% (n = 47) of tasks employed instructional strategies that
may promote procedural flexibility, compared with 69.0% (n = 98) of tasks in Eureka Math. In
both textbooks, the most frequently used instructional component was to specify a strategy for
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students to practice (e.g., use the standard algorithm to solve this problem). The distribution of
the other types of instructional techniques between the two textbooks was similar, with little
variability between the techniques.

0.8
0.6
0.4

0.2

Proportion of PF Practices

—I—ll—ll—l_

Specific Strategy Choice Comparison Reflection Other

O Math Connects (n = 47 tasks) mEureka Math (n = 98 tasks)

Figure 2: Number of Instructional Techniques that Promote Procedural Flexibility

Research Question 3: Alignment of Multiplication Strategies and Procedural Flexibility
Finally, I looked at whether there were relationships between instructional strategies

multiplication strategies. Table 3 shows the alignment between these two axes in both textbooks.
Overall, there was not a certain strategy that was paired a certain instructional strategy. However,
the two strategies that were paired with reflecting on strategy (partial products and
decomposition) in Math Connects were categorized as Conceptual Strategies. Interestingly, three
tasks in Eureka Math promoted students to choose between four different strategies (standard
algorithm, partial products, student-created area model, and distributive property).

Table 3: Alignment Between Instructional Strategies and Multiplication Strategies

Instructional Strategy Math Connects Eureka Math Multiplication
Multiplication Strategies Strategies
Specify Strategy Memorization (n = 36) Conceptual Strategies (n =61)

Visual Scaffold (n = 56)
Procedural (n = 20)
Other (n=12)

Choice - Conceptual Strategies (n = 6)
Visual Scaffold (n = 3)
Standard Algorithm (n = 3)
Other (n=1)

Comparison No Strategy (n = 1) -

Reflection No Strategy (n = 6) -
Conceptual Strategies (n = 2)
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Discussion

The current study explored what multiplication strategies and instructional strategies
promoting procedural flexibility are presented in fourth grade mathematics textbooks and
whether the presentation of multiplication strategies and instructional strategies were related.
Using novel frameworks developed through prior literature and patterns in the data, I found that
most multiplication and instructional strategies included in the frameworks were found in at least
one of the two textbooks. Some multiplication strategies included in the framework, such as
repeated addition and using physical objects, were not explicitly included in either textbook.
Additionally, there was not much variability in the instructional techniques, nor was there overall
alignment between multiplication strategies and included and instructional techniques to promote
procedural flexibility. These results illustrate what can be learned from applying these
frameworks to examine curriculum materials.

The frameworks illuminated great differences between the two textbooks coded. The
majority of math tasks coded in Eureka Math prompted students to use at least one multiplication
strategy when solving problems, yet over 85% of math tasks coded in Math Connects did not
specify a strategy, instead often asking students simply to “Multiply.” Additionally, although
both textbooks overwhelmingly used the “Specify Strategy” instructional technique, the other
instructional strategies promoted in the two textbooks differed, with tasks in Eureka Math
prompting student strategy choice and tasks in Math prompting reflection and comparison.
Interestingly, neither textbook showed a strong alignment between multiplication strategies and
instructional techniques for procedural flexibility. This was likely because there was not much
variety in instructional techniques, as both textbooks primarily promoted the “Specify Strategy”
technique and did not have many tasks that promoted other techniques. Although presenting
multiple strategies for solving multiplication problems might inadvertently promote procedural
flexibility, pairing this with instructional strategies that explicitly promote procedural flexibility
might lead to greater gains in this skill. Future research might investigate whether this alignment
is present in other parts of the textbook or within parts of the enacted lesson.

Limitations and Future Directions

A limitation of this study is that only two textbooks were used to demonstrate the viability of the
constructed frameworks. Using a broader variety of textbooks as well as including more recent
textbooks as data sources for the developed frameworks would give a more complete picture of
what multiplication and instructional strategies are presented in fourth grade mathematics
textbooks. Additionally, only independent practice problems were considered in the described
analyses. Multi-digit multiplication problems also appeared in other parts of the lessons, such as
parts developed for whole-class instruction. Future studies should consider analyzing these
textbook features, as well as prompts included in teachers’ guides, to analyze how procedural
flexibility is promoted through curriculum enactment.

Conclusion
Procedural flexibility is an important, yet often underemphasized, facet of mathematics learning.
This skill can be emphasized explicitly in textbooks, and teachers may be able to further
emphasize it through instruction. Small changes in the multiplication and instructional strategies
seen in textbooks would likely be beneficial to students in helping them think flexibly and
adaptively about problem solving. In learning flexible thinking at an early age, students may be
better able to think flexibly about problem solving throughout their mathematics careers.
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The purpose of this study is to examine how proportional reasoning is introduced and developed
in two widely used U.S. and Korean mathematics textbooks for grades 6-7. Seven research-based
frameworks that identify student learning opportunities for understanding of proportional
reasoning were used to analyze the textbooks. The results showed that American textbooks
include more problems that require explanations and make use of more effective contextual and
number structure of problems than Korean textbooks. In contrast, Korean textbooks make a shift
from providing highly contextualized problems to presenting abstract and purely computational
problems, which aligns with the process of concreteness fading. In addition, Korean textbooks
contain more unique types of topics and representations.

Keywords: Proportional reasoning, textbook analysis, cognitive demands of math tasks

Proportional reasoning has been recognized as a key concept in mathematics for middle
grades students to develop (Common Core State Standards Initiative, 2011). However, research
indicates that students have considerable difficulties understanding proportional reasoning
because they tend to apply additive or subtractive thinking processes rather than multiplicative
processes (Karplus, Pulos, & Stage, 1983). Students’ difficulties with proportional reasoning
may be largely attributed to the quality of their learning environments, such as textbooks that
influence what is to be taught and what students learn (Alajmi, 2009; Stigler, Fuson, Ham, &
Kim, 1986; Weiss, Pasley, Smith, Sanilower, & Heck, 2003). Given the important role of
textbook in mathematics teaching and learning, this study, focusing on the case of proportional
reasoning, examines learning opportunities presented in representative American and Korean
textbooks. The study aims to compare various aspects of the structure and sequence of the
lessons on proportional reasoning, and the characteristics of the problems presented in the
lessons in American and Korean textbooks. Specifically, the study addressed the following
questions: (1) When and how are ratios, rates, and proportional reasoning introduced and
developed in American and Korean textbooks?; (2) What similarities and differences are
observed in the content of ratios, rates, and proportional reasoning in American and Korean
textbooks?

Theoretical perspectives
Student difficulties and recommended strategies for proportional reasoning
Proportional reasoning has been seen as a cornerstone of secondary mathematics curricula
because it 1s important for understanding of percentages, gradient, trigonometry, and algebra
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(NCTM, 2006). Accordingly, students’ concepts of proportion have long been a focus of
mathematics education research and have been explored about students’ errors and difficulties in
relation to proportional reasoning tasks (Lo & Watanabe, 1997). One of the roots of difficulties
with proportional reasoning is that students have a weak understanding of the part/whole
relationships described in fraction notation. Students often struggle with solving some
proportional reasoning problems that involve the use of fraction notations (Norton, 2006).

Research has consistently emphasized students’ difficulties with proportion and proportion-
related tasks and applications and explored pedagogical ways to improve students’ development
of proportional reasoning (Behr, Harel, Post & Lesh, 1992; Lo & Watanabe, 1997). First,
research has recommended to contextualize problems in real-life situations, as it can activate
students’ familiar experiences and informal knowledge for sense-making (Resnick & Omanson,
1987). Representing proportion concepts by using various models rather than numbers and
symbols may increase students’ conceptual understanding. Thus, concreteness fading, which
refers to the process of beginning with concrete representations and then fading into more
abstract ones, is found to be effective in developing students’ conceptual understanding
(Goldstone & Son, 2005). In addition, providing problems with high levels of cognitive demand
gives students more opportunities to think and reason in given mathematical tasks. Research
indicates that using high-level and cognitively complex tasks is important to develop the capacity
to think, reason, and solve problems (Stein & Lane, 1996). Furthermore, it is also recommended
to provide proportion tasks in a wide range of contextual (e.g., part-part-whole, scaling, well-
chunked) and number (e.g., integer or non-integer answers) structures so that students can apply
multiplicative thinking into various types of situations (Lamon, 1999). We use these research-
based instructional strategies to identify student learning opportunities for understanding of
proportional reasoning.
Textbook comparison

Analyses of mathematics textbooks have examined textbooks across countries and have
brought many alternatives and insights to the field for improving instruction on challenging
mathematical ideas. Prior international comparative studies have shown that curricula in Asian
countries contain more tasks that are framed in concrete and real-life situations and provide more
cognitively difficult problems, compared to the U.S. For example, Murata (2008) examined the
presentation of addition and subtraction in the U.S. and Japanese textbooks and found that
Japanese textbooks included more contextualized problems than the US textbooks, which mainly
utilized computation problems. Similarly, Ding and Li (2010) compared Chinese textbook series
with the two U.S. series on the topic of distributive property and found that the main problem
context was computation problems in the U.S. textbooks, whereas it was word problems in the
Chinese textbooks. Son and Senk (2010) also compared Korean and American textbooks with
standards-based and traditional American textbooks and found that Korean textbooks include
more problems that required students to explain than American textbooks. However, some
studies have shown inconsistent results [see Fan and Zhu (2007), Li (2000), Hong and Choi
(2014), Son and Senk (2010)]. While some studies revealed that American textbooks contained
more problems with higher level cognitive demand, problems that required students to provide
explanation, and multiple representation than either Chinese or Korean textbooks, other studies
reported different findings. Examining whether these findings are consistent with the results of
the previous international comparative textbook studies in the present study will enhance the
current understanding of what students learn in the U.S. and Korea.
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Methods

Representative and widely used American and Korean textbooks were chosen for this
international comparative analysis. For American textbooks, Eureka Math or Engage NY
modules (EM) (www.engageny.org) were chosen for its popularity (Opfer, Kaufman, &
Thompson, 2016). There is only one set of textbook series developed on the national Korean
curriculum standards by the Ministry of Education (KM).

The textbook analysis in this study focused on two aspects of textbooks: (1) the structure of
the lessons and topics, and (2) the nature of the problems. For the analysis of the textbooks’
structure of the lessons and topics, the introduction and development of the concepts of ratio,
rate, and proportional reasoning as well as topics arrangement were examined. The analytical
framework shown in Table 1 was utilized to analyze the nature of the problems in depth. The
analytical framework consists of the following seven categories: concrete fading (Ding & Li,
2010), cognitive demand (Stein, Smith, Henningsen & Silver, 2000), perspectives (Beckmann &
Izsak, 2015; Shield & Dole, 2012; Thompson, 1994), task types (Cramer, Post, & Currier, 1993),
contextual and number structure (Lamon, 1993), response types (Charalambous et al., 2010;
Mayer et al., 1995), and problem solving difficulty (Hsu & Silver, 2014).

Table 1. Categories and subcategories of analytical framework

Analytical framework Subcategories

1. Concreteness Fading Word Problem

Visual Representation

Word Problem with Visual Representation
Abstract

2. Cognitive Complexity Memorization
Procedures without Connections
Procedures with Connections

Doing Mathematics
3. Perspectives Multiple Batches
Variable Parts
4-a. Contextual Structure Well-chunked

Part-part-whole
Associated Sets
Stretcher/Shrinker
Symbolic

4-b. Number Structure I-I-1
I-W-1
I-B-1
I-B-N
N-B-N
N-N-I
N-N-N
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4-c. Response Type Numerical Answers Only
Algebraic Expressions Required
Explanation Required

5. Problem-solving Easy
Difficulty Medium
Hard

Problems are coded as instances, according to the definitions of each analytical framework.
After coding, we counted the frequency of all the problems in each subcategory of the analytical
frameworks. A Microsoft Excel spreadsheet was used to record the frequency and percentage.
The number and percentage of problems that were demonstrated in each subcategory were
recorded in the spreadsheet. The counts and percentages of problems were summed, and are
reported in the Findings section.

Summary of findings
The nature of problems with ratio, rate, and proportional reasoning
Table 2 presents the total number of problems in both textbooks counted. In total, there are
679 problems and 236 problems in EM and KM, respectively. Further, when the frequency and
percentage distribution of total problems were categorized per concept, EM present percent
problems most frequently and ratio problems least frequently. In contrast, KM include
proportional reasoning problems most frequently and percent problems least frequently.

Table 2. Total frequency of problems in Korean and EM

EM (n=679) KM (n=236)
Gr Rati R Perc Proporti Grad Ra R Perc Propor
ade 0 ate ent onal e (Vol) tio ate ent tional Tota
(Modu (%) ( (%) reasoning Total % ( (%) reasoning 1
le) %) (%) ) %) (%)
2
48 5
6 80 10 45 0 234 (53 2 17 0 90
) (34) 9(47) (19) (0)  (100%) 6(1) ) 8) (19) (0)  (100%)
0
7 15 28 0 133 176 5 © 0 80 85
ey © 16 (0) (75)  (100%) 6(2 (6 ) 0) (94)  (100%)
0 0
7 0 © 269 0 269 0 © 0 61 61
“) 0 ) (100 (0)  (100%) 62 (O ) 0) (100)  (100%)
2
53 5
95 13 314 133 679 (22 (1 17 141 236
(14) 7 (20) (46) (20)  (100%) ) 1) @) (60) (100%)

Concreteness fading and visual representation types
Table 3 shows the frequency and percentage of concrete and abstract problems in EM and
KM. The results showed that both textbooks provide most problems in concrete contexts (e.g.,
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EM: 93% and KM: 81%). For abstract problems, only 7 % of the total problems in EM were
situated in purely mathematical contexts, while 19 % in KM were framed in abstract contexts. It
may seem that EM used more concrete problems than KM. However, it should be noted that the
majority of problems in KM was word problems with visual representation, whereas the greater
part of problems in EM was word problems. In KM, there were 45 % word problems with visual
representation, 33% word problems, and 3% visual representation problems. In EM, 50 % word
problems, 28% word problems with visual representation, and 15 % visual representation
problems. This may indicate that KM situate the majority of their problems in concrete situations
by using visual representation, while EM contextualize their problems through word problems.

In addition, the process of concreteness fading is not obvious in EM. Although concrete
representations outnumbered abstract ones in EM, word problems were used most frequently
(50%) followed by word problems with visual representation (28%) and visual representation
problems (15%). This trend indicates that the frequency of concrete representation types used
may not necessarily indicate the transfer from concreteness to abstractness. In contrast, the
frequency of concrete representation types used in KM decreases in the following order: word
problem with visual representation (45%) - word problem (33%) - visual representation problem
(3%). This may show that there is a concreteness fading process within the concrete problems in
KM. Moreover, given that KM contained 45% word problems with visual representation, 33 %
word problems, and 19% abstract problems, there was a gradual fading process from concrete to
abstract representations across problem types. Research shows that although providing learning
opportunities in more concrete representations may activate students’ familiar experiences for
sense-making (Resnick & Omanson, 1987), making connections between concrete and abstract
representations than just using concrete representations is found to be more effective in
developing students’ conceptual understanding (Goldstone & Son, 2005). This may imply that
KM may be more advantageous in facilitating students’ conceptual development on such abstract
concept as proportional reasoning.

Table 3. The frequency and percentage of concrete and abstract problems

Concrete
Word problem Visual Word problem Abstract Total
(%) representation with visual (%) (%)
(%) representation (%)
EM
Grade 6 M1 98 (42%) 37 (16%) 70 (30%) 29 (12%) 234 (100%)
Grade 7 M1 65 (37%) 28 (21%) 72 (41%) 2 (1%) 176 (100%)
Grade 7 M4 177 (65%) 28 (10%) 51 (19%) 16 (6%) 269 (100%)
Total 340 (50%) 103 (15%) 193 (28%) 47 (7%) 679 (100%)
KM
Grade 6
Vol.1 38 (42%) 5 (6%) 37 (41%) 10 (11%) 90 (100%)
Grade 6 Vol.
2 25 (29%) 1 (1%) 21 (25%) 38 (45%) 85 (100%)
Grade 6 Vol.
2 15 (25%) 1 (1%) 45 (74%) 0 (0%) 61 (100%)
Total 73 (33%) 7 (3%) 98 (45%) 47 (19%) 236 (100%)
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Cognitive demand and problem-solving difficulty

The majority of the tasks is procedures without connections and procedures with connections
in both textbooks. Problems with the highest level cognitive demand, doing mathematics, are
little represented in both textbooks. EM have a higher percentage of low cognitive demand tasks
(54%) than that in KM (42%). This result does not align with the finding from Hong and Choi
(2013) reporting that the majority of problems in American and KM require lower level
cognitive demand and more than 80% of problems only require simple algorithms or formulas.

Note that EM have more “procedures without connections” (43%) than “procedures with
connections” (37%), while KM have more “procedures with connections” (39%) than
“procedures without connections” (36%). This may show that KM contain more cognitively
challenging problems that require students to use their understanding of concepts and underlying
principles and procedures. However, it also should be noted that the problems in KM are
generally either a problem with a series of easy subproblems. For example, the subproblems
require students to follow at least four steps to complete the problem in EM, while the
subproblems in KM ask for one step to complete the problem. Also, based on the analysis of
problems in terms of problem solving difficulty, the majority of problems in KM (88%) are easy-
level, which requires only one step to complete the problem, whereas EM contain four times
more problems that are at least medium-level (49%), which consisted of two or four steps, than
KM (12%). This indicates that EM are expected to complete tasks with more steps than Korean
students.

Figure 1. The distribution of cognitive demand tasks in both textbooks

Perspectives: Multiple Batches vs Variable Parts

Table 4 illustrates the percentage distribution of problems based on the perspective of
multiple batches and variable parts drawn from Beckman and Izsak (2015). A higher percentage
of problems that utilized the multiple batches perspective than the variable parts perspective in
both textbooks. EM included a higher percentage of problems with the multiple batches
perspective (61%) than KM (24%). By contrast, KM included a higher percentage of problems
that utilized both the multiple batches and variable parts perspective (36%) than EM (5%). This
may show that EM focus on the development of the multiple batches perspective, while KM
intend to develop both perspectives. Different from Beckman, the results of our study show that
KM, as the curriculum of one of the mathematically high-performing countries, not only utilized
the multiple batch perspective, but also the variable parts perspective in developing students’
proportional reasoning ability through providing the problems that utilized both perspectives.
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Table 4. Frequency and percentage of multiple batches and variable parts perspectives

EM
Grade Multiple
Batches Variable Parts Both Neither Total
29 234
6 (1) 95 (41%) 13 (6%) (12%) 97 (41%) (100%)
176
7 (1) 93 (53%) 0 (0%) 0 (0%) 83 (47%) (100%)
269
7(4) 229 (85%) 7 (3%) 3 (1%) 30 (11%) (100%)
679
Total 417 (61%) 20 (3%) 32 (5%) 210 (31%) (100%)
KM
35 90
6 (1) 25 (28%) 0 (0%) (39%) 30 (33%) (100%)
49 85
6(2) 3(4%) 6 (7%) (57%) 27 (32%) (100%)
6(2) 52 (85%) 0 (0%) 2 (3%) 7 (12%) 61(100%)
86 236
Total 80 (24%) 6 (3%) (36%) 64 (27%) (100%)

Contextual and number structure

We further explored contextual and number structure in missing value problems to explore
the learning opportunities for proportional reasoning concepts. We found that the main
contextual structure of missing value problems in EM is the stretcher/shrinker problems (47%),
whereas the symbolic problems (1%) were minimally represented. In KM, the majority of
problems are well-chucked (32%) and part-part-whole (30%) problems, while the least
frequently represented problems were associated sets (9%). In EM, all four semantic types were
evenly utilized in grade 6. The well-chunked and stretcher/shrinker type were most frequently
utilized in grade 7. This may suggest that EM began with a balance of all four semantic types
and then moved to the stretcher/shrinker problem type in missing value problems. In contrast,
KM initially used the stretcher/shrinker problem type, and then heavily relied on using the part-
part-whole and the well-chunked problem type. This finding may show that that EM utilized
more appropriate contextual structures of their missing value problems than KM, as their
students develop conceptual understanding of proportional reasoning, based on the level of
difficulty.

Table 5. Percentage of contextual structure of missing value problems in both textbooks

EM (n=192)
Grade Well Part-Part- Associate Stretcher Symboli Total
(Module) Chunked Whole (%) d Sets (%)  /Shrinker (%) c (%)
(%) (%)
6 (1) 28 (32) 18 (21) 18 (21) 20 (23) 303) 87 (100)
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7(1) 29 (60) 5(11) 12) 13 (27) 0 (0) 48 (100)

7 (4) 0(0) 0(0) 0(0) 57 (100) 0(0) 57 (100)
Total 57 (30) 23 (12) 19 (10) 90 (47) 3(D) 192 (100)
KM (n=90)
Well Symboli

Grade Chunked Part-Part- Associate Stretcher c Total
(Vol) (%) Whole (%) d Sets (%)  /Shrinker (%) (%) (%)

6 (1) 1(5) 7 (31) 1(5) 13 (59) 0(0) 22 (100)

6(2) 6 (14) 20 (45) 6 (14) 3(7) 9 (20) 44 (100)

6(2) 22 (92) 0 (0) 1(4) 1(4) 0 (0) 24 (100)

Total 29 (32) 27 (30) 8(9) 17 (19) 9 (10) 90 (100)

Discussion and Implications

This study showed notable similarities but also striking differences between EM and KM.
The goal of cross-cultural comparison is to know in what measure the learning opportunities
provided by textbooks get enacted in classroom practice and student learning. Our findings
indicated that how this comparative study of textbooks may contribute insights to improve the
learning environments of proportional reasoning. Korean textbooks’ emphasis on the process of
concreteness fading and skillful use of high level cognitive demanding problems are consistent
with prior findings that Asian students are involved in more meaningful and desirable material to
learn mathematics. Korean approaches in developing students’ explicit understanding, such as
the unique construction of lessons, may be helpful for textbook designers in America and other
countries. Our study also showed that EM provide more opportunities for students to solve
mathematics problems with complex number structures, but also to explain and reason about the
problems than KM. EM encourage their students to be independent in solving mathematics
problems by asking them to create visual representations to justify their reasoning. These
findings seem to conflict with the findings that Asian textbooks present more problems requiring
explanation and problems with multiple visual representations than American textbooks.
Developers of KM can benefit from EM’ approaches in using various strategies, such as a wider
range of number structures and visual representations, and stressing more critical thinking.
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INFLUENCE OF CONTEXT ON TEACHERS’ ASSESSMENT PRACTICES
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The process of assessing students is a fundamental part of teaching and learning
mathematics. The assessment practices a teacher chooses are shaped by their values while also
being shaped by the context of the school, district, state, and country where the teaching takes
place. This can result in gaps between teachers’ values and practices. In this study, we use
student work sample interviews with five secondary mathematics teachers to illustrate their
values around assessment, the factors that influence their assessment practices, and how their
agency influences their assessment decisions. We focus on the important role contextual factors
can play in shaping teachers’ agency and assessment choices. These findings have implications
for teacher education and further research around how assessments are used.

Keywords: Assessment, teacher beliefs

The process of assessing students is a fundamental part of teaching and learning
mathematics. The assessment practices a teacher chooses are shaped by their values while also
being shaped by the context of the school, district, state, and country where the teaching takes
place. Enacting high-quality assessment practices has been identified as a key factor in preparing
future mathematics teachers (Association of Mathematics Teacher Educators, 2017). Prior
research has highlighted teachers’ assessment practices and their values related to assessment
within and outside of mathematics education (e.g., Barnes et al., 2014; Beswick, 2011; Brown,
2004; Davis & Neitzel, 2011; Remesal, 2007). Just as there may be gaps between mathematics
teachers’ values and instructional practices more generally (Beswick, 2011), such gaps may
extend to assessment practices in particular. Despite this, teachers’ assessment practices are used
as factors in measuring teaching effectiveness (e.g., Sato, 2014; Sato et al., 2008).

Given these conditions, researchers in the Network for Excellence in Teaching (NExT)
sought to investigate multiple measures of teaching effectiveness (NExT Teacher Effectiveness
Work Group, 2018). One such measure built on D’Souza’s (2012) Teacher Assessment/Pupil
Learning Protocol (TAPL) which was used to examine assessment practices and how they evolve
with early career high school English teachers over a period of five years. Using D’Souza’s
TAPL, NEXT created a student work sample interview protocol to measure teacher effectiveness
across disciplines. As part of our participation in NExT, we implemented the student work
sample interview with recent graduates of the secondary mathematics licensure program in a
Midwest University.

In a student work sample interview, teachers select student work from a recent assessment
they implemented and then discuss the pieces of student work with an interviewer. Through
piloting this interview protocol, we gathered important data for the NExT consortium and the
teacher preparation program. Beyond programmatic evaluation, we also noticed interesting
patterns related to teachers’ values and assessment practices. We therefore engaged in a process
of open coding, drawing on the principles of grounded theory (Charmaz, 2006). We arrived at
two research questions: (1) What factors influence how secondary mathematics teachers enact
assessment practices? (2) How does their enactment align with their values about assessment?
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Literature Review

In this section, we highlight relevant literature related to assessment and teacher agency.
These two constructs are key to understanding the themes that emerged from our interviews.
Assessments Serve Multiple Purposes for Multiple Audiences

Assessments generate artifacts that serve multiple purposes for multiple audiences (Davis &
Neitzel, 2011; Remesal, 2007). In addition to students and teachers, audiences for assessment
artifacts include parents, caregivers and what Davis and Neitzel (2011) call the “higher-ups”—
people such as school administrators, district leaders, and policy makers. With multiple and
potentially conflicting audiences come multiple conceptions of the purposes of assessment.
Teachers’ conceptions exist along a continuum from a focus on the pedagogical purposes of
assessment to a focus on the accountability purposes of assessment (Barnes et al., 2014).

At the pedagogy end of the continuum, students and teachers are the primary audiences for
assessments. Pedagogical purposes of assessment include informing instruction, facilitating
learning, and providing evidence of student understanding. For students, assessments align with
the content in the curriculum (Davis & Neitzel, 2011), demonstrate their progress toward
learning goals (Karp & Woods, 2008), and offer an opportunity to receive feedback. On the
alternative extreme of the continuum, the “higher-ups” are the driving audience. Here,
assessments are used as measures for teacher and school accountability (Brown, 2004). As an
example, teachers may choose to use classroom assessments as intentional preparation for high
stakes, standardized assessments to adhere to expectations from the “higher-ups” audience and
their focus on accountability (Davis & Neitzel, 2011). In this example, the audience of the
“higher-ups” and their beliefs about the purpose of assessment influence classroom assessment
practices. The accounting role of assessment is punctuated in mathematics education because
most students in the United States take a high stakes mathematics assessment at the end of every
school year starting in third or fourth grade.

Enacting Assessment Values

Teacher values around assessment, including where such conceptions might fall along the
continuum, influence classroom decisions (Biesta et al., 2015). However, a teacher may hold
competing goals and values for their approach to assessment (Thomas & Yoon, 2014). For
instance, a mathematics teacher may value teaching practices that support a deep conceptual
understanding of essential learning goals. They may also value preparing their students for
success on high stakes assessments. The first value may require teachers to allocate extended
instructional time to a single learning goal. The second value may require teachers to follow a
particular curriculum or set of standards within a specific time frame. These two values may
come into conflict when students need more time to master a particular learning goal but also
need to move on to the next learning goal to complete the curriculum before the high stakes
assessment. How a teacher decides which value to prioritize depends on teacher agency. Teacher
agency is the degree to which teachers can enact their values in classroom practices within the
culture and context of the school (Biesta et al., 2015).

Teacher agency is situated by context and a complex relationship between educational
theory, practice, and environment (Biesta et al., 2015). Thomas and Yoon (2014) found that
teachers prioritized their pedagogical values when making instructional decisions until one of
three conflicting values came into play: (1) requirements about time, curriculum, or assessment;
(2) potential success for future learning; and (3) respect for students’ cultures. For instance, a
secondary mathematics teacher who was committed to student-centered learning might not enact
that value when it came in conflict with preparing students for assessments by completing the
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national curriculum in the available time. In this case, the teacher switched to teacher-led
instruction and limited the time allocated for a specific learning goal, despite their personal
feelings that the concept was important, because it was not part of the required curriculum.

When there is tension between conflicting assessment values, particularly between
pedagogical and accountability purposes, teachers may feel less agency around the accountability
purposes of assessment. As a result, teachers may prioritize accountability purposes even to the
detriment of their pedagogical values. Teachers’ choices related to navigating conflicting values
are influenced by the amount of agency they perceive in decision making. In this study we
connect the research by Barnes et al. (2014), Thomas and Yoon (2014) and Biesta et al (2015) to
discuss agency and how it relates to assessment values and practices with early career teachers in
mathematics.

Methods

This study emerged as a result of piloting the student work sample interview protocol from
the NExT digital handbook (NExXT Teacher Effectiveness Work Group, 2018). The interview
protocol was based on D’Souza’s (2012) case study of early career teachers’ assessment
practices. D’Souza found that a student work sample interview protocol encouraged reflective
practices with early career teachers that supported growth and development around assessment
practices. Those findings motivated our choice to pilot this interview protocol, in particular
because we were interested in how a protocol designed to work across disciplines might be used
in the context of early career mathematics teachers. Unlike D’Souza, who implemented the
TAPL with participating teachers routinely over five years, we piloted the NExT student work
sample interview protocol once with each of our participating mathematics teachers.

Data Collection

Participants for this study were drawn from the approximately 40 secondary mathematics
teachers who were in their first three years of teaching and had graduated from the secondary
mathematics teacher licensure program at a Midwest university. All 40 teachers were invited to
participate in the study and five teachers elected to participate. Four teachers taught at middle or
high schools in the same Midwest state as the licensure program; the fifth taught in a school in
the southeast United States.

Each teacher selected a recent assessment they had used in their mathematics courses and
submitted a set of student work samples to the researchers prior to an individual interview. The
only parameters for the teachers in this study was to select an assessment that had enough student
work to drive a conversation about the learning that was present. The selected assessments
ranged from two questions on a single skill to a summative unit test or project. The student work
samples were graded and represented a range of student mastery.

The semi-structured interview included five main sections: (1) context questions focused on
understanding the school setting, (2) description of the assessment, (3) discussion of student
work samples, (4) implications for advancing student learning, and (5) a final reflection. The
context questions asked teachers to share anything they felt was important for the researchers to
know about their students and school. In the second section, teachers described the assessment
and the learning activities that led to or followed the assessment. The majority of the interview
time was dedicated to the third section, reviewing and analyzing the student work samples.
During this portion of the interview, teachers were asked to organize the student work into three
categories: demonstrated mastery, approaching mastery, and still needs support. The teachers
then described what they noticed in each sample and explained why they categorized the student
work as they did. Teachers were then asked about the next steps they wanted to take to further
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student learning. Finally, each interview concluded with an opportunity to reflect on the
experience of participating in a student work sample interview, as well as any reflections about
the licensure program. Each interview lasted approximately 60-90 minutes. All interviews were
video recorded and transcribed for analysis.

Data Analysis

To analyze the interviews, we used two distinct but complementary approaches. The first
approach followed the NExXT digital handbook (NEXT Teacher Effectiveness Work Group, 2018)
which suggests using rubrics provided to measure the effectiveness of teachers’ assessment
practices. These rubrics were adapted from edTPA. They evaluated (1) assessment planning, (2)
analysis of student learning, (3) feedback on student learning, and (4) analysis of student learning
to inform teaching. Using these rubrics for the initial purpose of piloting the materials from the
handbook, we began to notice additional patterns in the data.

These initial observations led us to engage in a more systematic, open analytic process. Our
second approach applied grounded theory to code and analyze the interviews. Grounded theory
starts with a general area of research interests and uses the coding of qualitative data to identify
patterns (Charmaz, 2006). Those initial patterns inform subsequent research questions and
coding to arrive at a theory from the data. We concluded by looking at the results from these two
analytic approaches to identify any further patterns evident in the data.

Results

Our analysis resulted in three key findings. First, we found that the mathematics teachers
demonstrated high-level indicators of effectiveness relative to the pre-existing rubrics. In
particular, they demonstrated values related to assessment that align with high-quality
instructional practices. Second, through our use of open coding, we identified a wide variety of
factors that influence how teachers enact their assessment values. Finally, we describe how
teachers revealed tension between their assessment values and their perceived agency to enact
those values.

Teachers’ Assessment Views

We found evidence that all five teachers in the study demonstrated assessment practices and
values that aligned with high-level indicators described in the NExT handbook. Teachers
demonstrated that they (1) believe all their students can do well on mathematics assessments, (2)
can differentiate feedback and analysis based on knowledge of individual students, (3) view
assessment as ongoing, and (4) can design and implement assessments that provide students with
opportunities for deep mathematical learning.

Mastery and ongoing assessments. A high-level performance indicator states that teachers
use an “assets-focused approach to describing student progress towards learning goals”. We
found that all five teachers demonstrated this indicator in how they responded to interview
prompts to discuss the student work samples. The interview protocol asked teachers to categorize
their work samples based on student mastery. Despite this prompt, all five teachers resisted
grouping the samples and instead discussed each piece of student work individually. The
teachers consistently tailored their discussion and ideas for further instruction based on their
knowledge of each individual student. They described the student understanding they saw
demonstrated in the work and discussed how that aligned with the individual’s progress towards
their overall mathematics goals. We found their collective decision to discuss students
individually rather than as a group to be evidence that the teachers were focused on each
students’ mastery level on the assessment and their progress toward the learning goals. The
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teachers discussed student work in a way that consistently indicated that they believed all
students would master the learning goal eventually.

Tied to the concept that all students would eventually master the learning goal, we also found
that teachers approached assessment as ongoing. Teacher A, for example, said, “I like giving at
least two chances on each test.” This teacher went on to describe how additional opportunities
for students to take assessments combined with standards-based grading provides Teacher A
with a more comprehensive understanding of student mastery. Like Teacher A, all participants
discussed intentionally providing ongoing assessment opportunities that enable students to
demonstrate mastery of the learning goals beyond the first assessment.

Assessments as opportunities for deep mathematical learning. Another indicator of
productive assessment practices from the student impact rubrics was opportunities for deep
learning. To demonstrate valuing deep mathematical learning through assessment practices,
teachers might require students to communicate mathematical arguments through their work
and/or develop mathematical ideas. Teachers in our study demonstrated this in multiple ways.
Teachers C and D analyzed student learning based on the ability to communicate valid
arguments to support their work. Teacher B designed assessments that encouraged students to
construct new mathematical ideas alongside checks for understanding.

To Teacher D, having the correct steps in a geometric proof was only part of demonstrating
learning mastery. They also felt students must be able to create and communicate a valid
argument through their work in a way that others can understand. Teacher D explained that they
were not only looking for an accurate answer. “I also want them to understand that this is
communication and it should be written to be read. I'm looking to motivate the idea that we're
doing math as both a deductive and social activity.” To assess that, Teacher D designed an open-
ended project with student choice that allowed students to prove geometric theorems using
paragraphs, annotated diagrams, or a two-column format. Teacher B’s assessment design also
encouraged students to think critically and advance conceptual understanding. Their assessment
included questions that asked how a data summary would change if a new value was added to the
data table. Students were also asked to make predictions about outliers, which served as a pre-
assessment to the next lesson. These examples demonstrate that these early career teachers were
prepared to design assessments with opportunities for deep learning by developing mathematical
ideas and communicating mathematical arguments rather than focusing assessments solely on
procedural fluency.

Factors that Influence Enactment of Assessment Values

The teachers indicated that there are a variety of factors that influenced how they enact their
assessment values in practice. These factors included influence from administration, influence
from their teacher preparation program, and their perceived agency in classroom decisions.

Influence from the teacher preparation program. All five teachers discussed assessment
practices and values that were influenced by their teacher preparation program. These influences
include practical elements of teaching and learning of mathematics, such as implementing
multiple forms of assessments, incorporating unit plans they designed during their university
coursework, and considering specific examples of student misconceptions in assessment design.
They also demonstrated theoretical understanding of assessment practices by citing specific
readings they had studied and the socioemotional needs of students.

For example, Teacher C reflected on their assessment and discussed designing assessments
that were accurate measures of student understanding, which requires questions that can tease out
misconceptions. The assessment selected by Teacher C was part of a routine created by the
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mathematics team at their school to improve student skills on selected standards. In this
assessment, students solved two questions using the distance formula. Both questions involved
finding the distance of a horizontal line segment from the origin to another point. Teacher C
critiqued their assessment, referencing a specific task from their teacher preparation program
which revealed that students can develop misconceptions about triangles when the base is always
horizontal to the x-axis. They applied that experience to this assessment and explained that future
versions of this assessment should include questions that solve for the distance of both horizontal
and diagonal lines. This example highlights the high-level indicators of designing and
implementing assessments that are accurate measures of student understanding and using
evidence in student work to measure nuanced growth towards the learning goal.

Teacher C explained, however, that adjusting assessment questions created a new set of
challenges for department collaboration and measuring student growth. Their assessment was
designed as an intervention strategy with multiple opportunities for reassessment. As such, one
of the goals was consistency both in assessments/reassessments and across classrooms. Teacher
C described the complexity of wanting to design assessments collaboratively and implement
assessments that were consistent enough to support student growth through reassessments, while
also varying the questions to be a true measure of what the students know. Teacher C’s
commitment to each of these values were influenced by their program, but the reality of
navigating those values while collaborating with a department sometimes created tension.

Influence from school administrators. The interview data revealed that the teachers’
assessment practices were strongly influenced by their school administrators’ view of assessment
in mathematics teaching and learning. The teachers expressed feeling tension between their
assessment values and the assessment practices encouraged or enforced by their school
administrators. The teachers described a complex and contextualized reality that influenced their
ability to implement high level assessment practices.

Multiple teachers described tension between the values developed during their program and
their administrator’s views on assessment. For example, Teacher E discussed how their district’s
“data driven” assessment plan felt at odds with the values learned during their program. “We
were taught about all the awesome ways that you could do things. Which is great...But I don't
know if that effectively prepared me for walking into a school where that's the exact opposite of
what they do”. Teacher E felt that pressure from the district to maximize student performance on
standardized tests influenced instructional and assessment decisions that went against the
practices learned as a pre-service teacher.

Similarly, Teacher C shared that their school leadership viewed mathematics learning
through a procedural lens.

The program prepared me wonderfully for actually teaching mathematics, but navigating
[my] district’s and administration's attitude towards mathematics is more difficult...the
decision makers in our administration conceptualize mathematics as all procedural. [...] How
to navigate that while pushing towards the ultimate goal of making mathematics education
about understanding is a thing that I feel like I don't know.

Through their work in the teacher preparation program, Teacher C learned to value
understanding in mathematics teaching and learning, yet their administration viewed
mathematics as “all procedural”. Both Teachers C and E described feeling frustrated about how
the “higher ups” views of assessment purposes influenced their ability to enact practices that
align with their personal assessment values. They offset those tensions by creating ongoing
assessment opportunities that provided students with additional chances. The teachers explained
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that in their respective departments, the mathematics teachers chose to integrate reassessments
and test corrections to better align their values with the required assessment expectations.

Finite learning time. Limited learning time also appeared to be a significant factor for how
teachers enacted their assessment values. We define learning time as available time for
instruction and intervention based on scope and sequence constraints. All five teachers talked
about learning time. The teachers described immense pressure to maintain scope-and-sequence
pacing for the year. This is particularly notable since our interview questions focused strictly on
assessment without any reference to instructional time. Teacher B reflected on this from their
position as the sole mathematics teacher at their school, saying, “I feel kind of blessed almost to
be the only teacher because I get to work on my own schedule...and really use data from
assessments to help guide my teaching.” This contrasts with teachers who felt bound by their
pacing guides. These teachers described feeling pressure to “push through the content” faster
than the students could handle and having to “hustle to convince” students to get extra help
during lunch or after-school. These time barriers also affected how much time teachers felt they
had to provide feedback and modify their instruction based on assessment data.

These influences from the teacher preparation program, school administrators, and learning
time all contributed to situations where teachers found themselves with competing goals relating
to assessment. In the next section, we turn to the construct of agency to help us understand how
teachers navigated these competing values.

Complex and Contextualized Teacher Agency About Assessment

Despite our finding that these five teachers demonstrated high-level indicators with respect to
their assessment values, how they were able to enact those values was contextualized through the
complex realities of their schools. Our data highlights complexities around administrators’ view
of assessment purposes in mathematics and the relationship between learning time and
instructional decisions. Teachers navigated these contexts based on their perception of agency
over teaching practices. In some circumstances teachers felt agency to align their assessment
values with practices, such as using assessment data to inform classroom decisions and designing
assessments with opportunities for deep mathematical learning. At the same time, all of the
teachers described situations where they felt pressure to enact assessment practices that went
against their values. One area where teachers demonstrated agency was in designing year-long
assessment plans with ongoing assessments. All of the teachers were required to meet assessment
expectations set by the “higher ups”. This included weekly department-wide skill assessments, a
minimum of two summative assessments every four weeks, or administering assessments that
were closely tied to high stakes standardized assessments. However, all five teachers also
incorporated ongoing assessment practices or assessments designed to allow solutions in
multiple representations within their school’s larger assessment plan. Teachers were able to find
space within those expectations to enact their assessment values based on the degree of agency.

Discussion

Our study had three findings. First, all five teachers demonstrated high-level performance
indicators for assessment values. Second, factors influenced how teachers enacted their values -
including tension created by the “higher ups” views and expectations about assessments in
mathematics. Third, teachers navigated this tension by agency that was contextual. A key finding
from this study showed that mathematics teachers recognized a misalignment between their
assessment values and their agency to enact those values.

We argue that the degree of teacher agency to enact assessment values depends on where the
conflicting values lie on the continuum of purposes of assessment (Barnes et al., 2014). When
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the purpose of assessment was at the pedagogical end of the continuum, teachers were doing the
assessing and had agency to align their values with classroom practices. In our study, we saw this
when teachers used multiple forms of assessment, created ongoing assessment practices, and
individualized feedback. However, when the conflicting values were between accountability
purposes from the “higher ups” and pedagogical purposes, teachers yielded their values to
conform to expectations. At this end of the continuum, teachers were being assessed while they
were assessing student understanding. The “higher ups” use assessment as a form of control and
accountability to evaluate teacher effectiveness (Barnes et al., 2014). When there is tension
between the teachers’ assessment values and higher ups views of mathematics assessments,
teachers are put in a position where they must choose between their evaluation of teacher
effectiveness or pedagogical practices that align with their values.

One of the most striking themes from our data was the influence learning time had on
teachers’ assessment practices. All of the teachers in our study cited the pressures of learning
time as a driving factor for instructional decisions that misalign with their values. Thomas and
Yoon (2014) found that time was one of three factors that influenced a teacher to abandon their
pedagogical values in order to conform to accountability purposes of assessment. In that study,
time was grouped with curriculum and assessment. Echoing Thomas and Yoon, we posit that
required curriculum and high stakes assessments, as well as learning time, are factors that
influence teachers’ agency to enact their assessment values. Furthermore, we argue that teachers
felt pressured to disregard their values because time, curriculum, and high stakes assessments are
at the accountability end of the continuum of assessment purposes.

“Higher ups” make decisions and set policies that they believe will help students learn
mathematics, such as scope-and-sequencing and departmental teaching strategies. However, their
lens of understanding these practices is often driven by standardized assessments, which means
that it is still largely procedural. Mathematics teachers, through their licensure programs, have a
complex and nuanced understanding of teaching mathematics for conceptual understanding that
align more strongly with pedagogical purposes of assessment. Our findings support research that
continues to think about ways to use available learning time for deep learning rather than
focusing solely on procedural skills. Our data shows that less pressure around maintaining a
scope-and-sequence may enable teachers to better enact their assessment values.

Our study piloted a teacher interview protocol that was adapted from D’Souza’s (2012)
TAPL with early career mathematics teachers. Similar to D’Souza, we found that this protocol
was an effective tool in understanding teachers’ practices and values around assessment. We
found that when implemented with secondary mathematics teachers, the student work protocol
revealed both indictors of high-level assessment practices and contextual factors that might
prevent teachers from enacting those practices. We posit that teacher agency is a key component
to enacting assessment values and is tied to the continuum of purposes of assessment (Barnes et
al., 2014). Since accountability purposes influence teachers’ agency, evaluations of teacher
effectiveness should include opportunities for teachers to identify when they felt pressured to act
against their values. The NEXT student work sample protocol is one alternative to evaluate
teachers’ assessment values and practices.
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We report the findings from our efforts to co-design statewide instructional frameworks to
support elementary and middle school mathematics teachers’ and leaders’ implementation of
state standards in ways that align with visions of high quality mathematics instruction. In this
paper, we explore whether districts as well as individual teachers took up the instructional
frameworks, their reasons for doing so, and the ways they used them to support instruction. Our
findings indicate that the instructional frameworks were widely adopted across the state,
supported teachers’ pacing and sequencing efforts, and provided opportunities for professional
learning. However, school/district leaders and classroom teachers had different views on why
their district decided to take the frameworks up, indicating a communications divide that needs
to be addressed in future co-design efforts.

Keywords: Systemic Change, Curriculum, Design Experiments

The notion of vision has long been researched as an important part of a teacher’s ability to
enact thoughtfully adaptive teaching (Duffy, 1998). Additionally, a shared vision of high-quality
instruction among administrators, teachers, and other stakeholders, is essential for professional
development and collaborations to be effective in schools (Birkeland & Feiman-Nemser, 2012;
Fulton, et al., 2010) and for the implementation of new programs or policies (Gamoran, et al.,
2003). The importance of common vision of mathematics instruction is reflected in Cobb and
Jackson’s (2011) theory of action for large scale instructional improvement in mathematics,
which includes vision of high quality mathematics instruction (VHQMI) underlying a coherent
instructional system as one of five key elements. What counts as “high quality” in mathematics
education is debatable, but a large body of research suggests that HQMI involves listening to
students and building on their representations and strategies to encourage sense making.
Teachers who aspire to this vision are often constrained by district policies (e.g., scripted
curricula, strict pacing and sequencing) and state mandates (e.g., assessments, standards).
Although these conditions have constrained mathematics teachers across the country, we
describe a research-practice partnership (RPP; Coburn, et al., 2013) that aims to co-design
infrastructures and resources that support North Carolina mathematics teachers to develop and
enact common visions of high-quality mathematics instruction (VHQMI). In this paper, we
report the findings from our efforts to co-design statewide instructional frameworks to support
elementary and middle school mathematics teachers’ and leaders’ implementation of state
standards in ways that align with VHQMI. Specifically, we explore whether districts as well as
individual teachers took up the frameworks and why.

Co-designing for Shared VHQMI Through Instructional Frameworks
Research suggests that pacing guides are often viewed as a constraint to enacting visions of
practice (Duggan, et al., 2018). They undermine teachers’ flexibility to meet individual student
needs as district expectations of strict adherence to weekly or daily schedules contribute to the
need to “cover everything,” often by dropping conceptual-based, student-led activities in favor of
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teacher-directed activities (Bauml, 2015). In North Carolina [NC], school districts had each
created their own pacing guides to sequence instruction based on statewide standards. Differing
levels of capital and expertise among districts resulted in widely varied pacing guides, some co-
created by district-wide teams of elementary math specialists and, in other districts, created by
K-12 district curriculum leaders with no particular expertise in mathematics education. North
Carolina teachers and leaders identified this as a problem of practice that could be leveraged to
build towards a more coherent vision across the state. Thus, we convened teams including
teachers, instructional coaches, administrators, and curriculum leaders from 19 diverse and
representative school districts, higher education faculty from eight universities and state leaders
from the NC Department of Public Instruction [NC DPI] to co-design an elementary and a
middle school pacing guide that would be grounded in research on learning progressions
(Common Core Standards Writing Team, 2013) and could be adapted statewide. The co-design
teams decided to address their concerns about common VHQMI, and the productive vs. non-
productive uses of pacing guides by envisioning a pacing document that goes beyond “what to
teach when.” Focused on the idea that curriculum materials can themselves can be educative
(Drake, et al., 2014; Davis & Krajcik, 2005) the co-design teams set a goal of promoting a shared
instructional vision by developing suggested state-wide, grade-level pacing guides, re-named
instructional frameworks (IFs) to denote their role beyond traditional pacing documents that:
1) Emphasize curriculum guidance, not prescriptive pacing, 2) Focus on central ideas with links
to exemplary curriculum materials, lessons, and instructional strategies, 3) Allow for flexibility
and unpredictability based on differences in teachers, students, and contexts, 4) Address
development of student reasoning and how to build upon it (i.e., learning progressions), and 5)
Are adjusted frequently based on feedback from teachers. The co-design teams completed first
drafts of the IFs in fall 2017, sought feedback through a statewide survey from stakeholders,
made revisions and rolled the IFs out in spring 2018. Importantly, the NC DPI adjusted the
content of their free, optional interim assessments [Check-Ins] to align with the [Fs sequencing
and pacing. Like the Check-Ins, districts had the option to use the IFs to guide implementation of
the mathematics standards for the 2018-2019 school year. At this time, the elementary and
middle school IFs have been available and adapted statewide for three years. In this paper, we
share findings related to three research questions:

RQ1: For districts that adapted the IFs, what did participants think was the reason for uptake?

RQ2: What aspects of the frameworks did individual teachers report were their favorite?

RQ3: How did teachers report using the frameworks?

Research Methods

This work is part of an ongoing Design-based Implementation Research (DBIR) state-wide
project that is in its seventh year, having partnered with hundreds of NC mathematics educators.
In 2019, a survey was distributed through the state agency’s listservs to approximately 20,000
mathematics teachers, school administrators, and district mathematics leaders. Of the 813
educators that responded to the survey, we analyzed only the responses of participants who
worked with grades that would potentially use the IFs. These 538 responses represented 74% of
the NC school districts. Of the respondents, 60 were School-based Coaches/Curriculum
Facilitators, 38 District Curriculum Personnel, 4 Principals/Asst. Principals, and 436 Classroom
Teachers. The respondents worked in elementary (320), middle (181), elem/middle (11),
middle/high (16), and elem/middle/high school (10) settings. In this report, we analyzed the
answers to a block of questions/prompts related to implementation of the IFs:
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Question 1: Did your district use the instructional frameworks?
Prompt 1: If you know what influenced your district’s decision to use the IFs, rank and
order the reasons below: match/align to the state quarterly assessments, match the
textbook or math program used in my district, align to State resources, match our current
sequencing and pacing of instruction, address the development of student reasoning and
how to build upon it based upon research, were co-designed by a large number of people,
were created with feedback from teachers and leaders, and I do not know.
3. Question 2: What are your favorite aspects of the instructional frameworks? (Pick up to 3
choices): [same choices as Prompt 1].
4. Question 3: How did you use the IFs (Select all that apply): as a resource among a
variety of resources, a resource to supplement a textbook or math program, to determine
pacing and/or to sequence instruction, to gain a better understanding of what the
standards mean, to gain a better understanding of the mathematics, to understand vertical
alignment.

N —

Findings

Of the 75 district leaders, school coaches, and principals/asst. principals who answered
question 1, 85% (n=64) reported that their district was using the IFs, 13% (n=10) said they were
not using the IFs, and 2% (n=1) said that they did not know. These 75 mathematics leaders
represented 53 of 115 districts or roughly 46%. We used responses from district and school
leaders only because we believe they have the most accurate knowledge of the district’s
decisions, whereas a teacher does not always have direct knowledge of their district’s intentions.
Interestingly, of the 227 classroom teachers who answered this question, 78% of respondents say
that their district uses the IFs, 8% say that they do not, and 14% do not know. This suggests
some coherency between teachers’ and leaders’ knowledge of whether the IFs are being used
within their districts. The fact that 14% report that they do not know whether their district
adapted the IFs or not suggests there may be a communication challenge between districts and
teachers. Overall, we are encouraged by the high number of districts that report using the IFs.
Why Did Districts Take Up the Instructional Frameworks?

We separated responses to survey prompt 1, if you know why your district decided to use the
IFs, by education role. According to district leaders, school coaches and principals/asst.
principals, the top three ranked reasons that districts chose to use the IFs were that they matched
the state quarterly assessments, matched the district’s textbook/curriculum and incorporated
feedback from teachers and leaders. In contrast, classroom teachers reported that their district
chose to use the IFs because they matched the textbook/curriculum, matched their district’s
current pacing guide, and aligned to the State’s resources. In this case, teachers and teacher
leaders only agree that the district used the IFs because they match the textbook/curriculum of
their district. Otherwise, there is little agreement. It is significant to notice that educators who are
closer to their district’s decision making process, report that assessments were an important part
of their decision while classroom teachers ranked assessments in the bottom three reasons they
thought their district used the IFs. This finding indicates that there is miscommunication between
districts and teachers and suggests infrastructuring as a potential problem to address in working
towards shared VHQMI.

What Were Individuals’ Favorite Aspects of the IFs?

Of the 302 respondents to Question 2, approximately 50% chose matched the state quarterly
assessments as one of their top three favorite aspects of the IFs. Not far behind was the fact that
the IFs address the development of student reasoning and how to build upon it based on research
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(40%) and that they match their district’s current pacing guide (36%). Disaggregating the
responses by role group (teachers and leaders), there is no difference which suggests regardless
of role responsibilities, participants valued the same aspects of the IFs. In particular, the IFs seem
to be valued for their intended purpose: suggested pacing of standards. Second, the IFs are
valued for aligning standards with the assessments. Surprisingly, the second most valued
characteristics of the IFs involved the fact that they are based upon the development of student
reasoning and research. Taken together, these findings suggest that educators value the resources
for addressing their practical challenges, assessments and pacing, and must be attended to in
resource design. Further, grounding resources in research was a characteristic that was valued by
those who took it up.

How did individuals use the IFs?

Question 3 asked participants to select among a variety of ways that they used the IFs in their
classroom instruction or professional work (if leaders). From the 226 responses, the three most
prevalent uses of the frameworks were to gain a better understanding of what the standards mean
(51%), as a resource among a variety of resources (51%), and to determine pacing and/or to
sequence instruction (47%). Less common responses included using the frameworks to gain a
better understanding of the mathematics (36%), to understand vertical alignment (31%), and as a
resource to supplement a textbook or math program (14%).

Discussion

The goal of this DBIR project was to work towards statewide shared VHQMI by co-
designing instructional frameworks to address the shared problem of practice of non-productive
uses of pacing guides and the many disparate, district-created pacing guides across the state. The
IFs were taken up widely and served their purpose as a guide for sequencing and pacing and also
as a tool to promote professional learning. Findings about why and how districts used the IFs
and what was most valued about the tool have implications for future co-design. First,
perceptions about why districts took up the IFs differed between leaders and teachers, indicating
a lack of communication. Continued co-design to promote shared VHQMI needs to support
communication across role groups. Second, respondents valued that the IFs addressed the
development of student reasoning and how to build upon it based on research, and yet this
component was not among the top reasons respondents perceived as a reason districts chose to
use the frameworks. In other words, respondents valued that the tool was research-based and
focused on student reasoning, but it was not a determiner of uptake in the way that alignment to
state assessments was. Thus, the co-design process needs to include negotiating the existing
structures within the communities for which tools are being created. Finally, intentionally
seeking feedback from all role groups in the system is essential in co-design. In the case of the
IFs, getting feedback at multiple levels allowed for attention to the differing needs that were
expressed, resulting in high uptake and buy-in, opportunities for learning, and movement toward
shared VHQMI. As one respondent noted:

The instructional frameworks could be the beginning of a powerful movement in North
Carolina towards Student Centered Mathematics Instruction. The frameworks are so detailed
regarding rationale for clusters that it serves to support teacher professional learning. I think
that we need so many more professional learning opportunities where teachers from all over
the state can come and collaborate and learn from each other.
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This research report describes a Learning Trajectory-based Curricular Design project that
engaged teachers and coaches in the design and implementation process. As the project team, we
focused on deepening teacher designers’ understanding of the learning trajectory (LT) while
situating student learning along a continuum to advance student thinking. Analysis of the design
and implementation cycle demonstrated that teacher designers used their professional judgment
and knowledge of LTs to assess the quality and appropriateness of curricular resources as they
made instructional decisions to meet the needs of diverse learners. School-based coaches used
these teaching resources as a type of professional development for identifying student strengths
and “packaged’ the resources for teachers who were overwhelmed from teaching during the
pandemic. We discuss the importance of applying LT research for asset-based instruction.

Keywords: Learning Trajectories and Progressions, Teacher Knowledge, Instructional Activities
and Practices, Standards (Strand: Curriculum, Assessment, and Related Topics; Mathematical
Knowledge for Teaching)

COVID-19 interrupted teaching and learning in unprecedented ways and presented
multifaceted challenges for students and teachers. As educators worked hard to support student
learning in mathematics, the field looked for innovative ways to mitigate the challenges. In the
spirit of PMENA 44’s theme, Critical Dissonance and Resonant Harmony, we share how
researchers and teacher designers worked collaboratively in design-based research to move
beyond the “dissonance” created by COVID to build a curricular resource framed by learning
trajectories (LT) and asset-based instruction to bring “harmony” to educators striving to meet the
needs of every student.

The Need to Translate Learning Trajectory Research to Practitioners

We situate our work in uncertain times, as Ladson-Billings (2021) calls in a “re-set school
environment”, where she asks educators to use an accurate assessment of what students already
know with varied and regular formative assessments to determine how well students are
understanding what they are taught. In this way, assessment is not a “punitive tool to ‘catch’
students but rather a diagnostic and developmental tool that will tell teachers and schools how to
adjust their curriculum and pedagogy”(Ladson-Billings, 2021, p.75). This re-set requires teachers
to be deeply knowledgeable about the learning trajectory (LT). It is critically important to
introduce LT research to practitioners due to the scale of disruption and overwhelm of teachers
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in the post COVID-19 learning environment. Teaching that incorporates an understanding of LTs
has the potential to make instruction more efficient and supportive of learning mathematics for
understanding (Suh et al., 2014; 2021). Clements & Sarama state that a LT describes:

Children’s thinking and learning in a specific mathematical domain, and a related,
conjectured route through a set of instructional tasks designed to engender those mental
processes or actions hypothesized to move children through a developmental progression of
levels of thinking, created with the intent of supporting children’s achievement of specific
goals in that mathematical domain. (Clements & Sarama, 2004, p. 83)

In many academic and practitioner resources, the terms LTs and learning progressions are
used interchangeably with the emphasis on the developmental progression of levels of thinking
within a conceptual domain. Confrey’s notion of LT/progression is described as:

A researcher-conjectured, empirically-supported description of the ordered network of
constructs a student encounters through instruction (i.e. activities, tasks, tools, forms of
interaction and methods of evaluation), in order to move from informal ideas, through
successive refinements of representation, articulation, and reflection, towards
increasingly complex concepts over time. (Confrey & Maloney, 2010, p. 1)

According to Confrey (2012), there are five elements of LTs that teachers need to
understand: 1) the conceptual principles and the development of the ideas underlying a concept;
2) strategies, representations, and “conceptions”; 3) meaningful distinctions, definitions and
multiple models; 4) recognizing coherent structure or pattern in the development of progressively
complex mathematical ideas; and 5) bridging standards or identifying the underlying concepts
that “bridge the gap” between standards. Focusing on the five elements of LTs can improve
instructional planning as teachers anticipate student strategies, representations, and conceptions
that can be attributed to students’ strengths and resources for building on their understanding.
The potential of Learning Trajectory-Based Instruction (LTBI) in professional development (PD)
settings has also been explored by the collective work of Sztajn et al. (2012), Wilson et al.
(2015), and Myers et al. (2015), who examined how teachers’ discursive patterns about students
as mathematics learners changed as the teachers engaged with the LT in PD. In particular, they
noted that teachers initially voiced expectations about students’ mathematical ability related to
student age or grade level. But as teachers’ understandings of LT developed, their voiced
expectations began to acknowledge that students’ prior experiences influenced students’
performance.

Asset-based instruction and the use of rigorous mathematics were central to the framing of
our project and aligns with one of the key recommendations in Catalyzing Change in Early
Childhood and Elementary School (NCTM, 2020) to develop “deep mathematical
understanding” and build students “as confident and capable learners” (p. 11). Using Asset-based
approaches to planning instruction is a conscious way to move away from deficit perspectives
(Celedon-Pattichis et al., 2018). Teachers’ explicit attention to focusing on strength in students’
thinking and what children are capable of doing helps teachers in avoiding biases that impair
teaching and learning. According to Gresalfi et al. (2009), what counts as “competent” gets
constructed through an interaction between the opportunities that a student has to participate in a
particular mathematics classroom and the student’s uptake of those opportunities, meaning that
structures that promote equitable participation and interaction are key. Positive and discourse-
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rich classrooms (NCTM, 2000; Stein & Smith, 2011) allow each student to have feelings of
success and pride (NCTM, 2020). The instructional decision to formatively assess and highlight
student thinking during discussions has important implications for assigning competence, as it
suggests what students are accountable for and to whom they are responsible for sharing their
thinking with (Gresalfi et al., 2009). We believe that by finding strength in students’ multiple
knowledge bases (Turner et al., 2016; Kobett & Karp, 2020), teachers are better able to assign
competence in student thinking, while broadening the notion of what competence means and
building student agency and a positive sense of identity (Civil, 2007; Gonzalez, Moll, & Amanti,
2005; Aguirre et al., 2013; Lotan 2003; Cohen et al., 1999; Gresalfi et al., 2009).

Figure 1: Mathematics Learning Trajectory-based Curricular Design Framework

Context for our Math Learning Trajectory-based Curricular Design for Practitioners

The professional development design institute used a LT-based Curricular Design framework
(Figure 1) which incorporated LT research, asset-based instruction, and rigorous instructional
resources with high levels of cognitive demand. The team of teacher designers curated
curriculum modules aligned to state-selected bridging standards. Bridging standards connect
content across units within grade levels and articulate prerequisite knowledge for standards in
future grades. The modules designed for each bridging standard consisted of five components: a)
a zoomed-in LT bridge that illustrated the connection between students’ strengths, bridging
concepts, and the targeted learning standard; b) “big ideas” about the principles and development
of each LT; c) important assessment “look-fors” that included strategies, representations, and
“conceptions” to use for formative assessment; d) purposeful questions to assess, clarify, and
advance students’ mathematical ideas; and e) cognitively-demanding bridging activities,
specifically routines, rich tasks, and games.

The LT research embedded in the modules provided direction for teachers to predict their
students’ potential reasoning, misconceptions, and learning. The modules were designed to
support teachers in examining student thinking according to levels of cognitive proficiency rather
than age or grade level. The curricular focus on asset-based instruction was intended to challenge
and expand what teachers value and consider to be mathematical competence. Based on
formative assessment of students’ strengths, the modules guide teachers to select targeted
activities in response to students’ understandings and to support further learning.

Methods
Context and Participants
Using design-based implementation research, this qualitative case study (Stake, 1995)
followed six early elementary mathematics educators from a professional development program
to understand how these teacher designers applied a LT framework and asset-based lens while
designing and testing curricular materials through two implementation cycles. After each
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implementation cycle, teacher designers attended an implementation debrief meeting to share
their experiences and change recommendations.

The teacher designers were purposefully recruited for the professional development based on
their leadership and teaching experiences. The design process began in the midst of the
Pandemic in the summer of 2021 with a 30 hour-one week Design Institute. Teacher designers
then implemented the design modules in their classrooms during the fall of 2021 with iterative
cycles of refinements. We met three sessions online to debrief each cycle of implementation. In
the spring of 2022, we interviewed a core group of our teacher designers to learn about how they
continued to use the LT based instructional modules to support diverse learners. This case study
followed six total participants: three math coaches, Jana, who taught 11 years in the classroom
and 7 years as an instructional coach; Mia, who taught 14 years as a classroom teacher and 14 as
a coach; and Sienna, who taught 9 years as a classroom teacher and 18 years as a coach; a first
grade teacher, Rebecca, who has taught 3 years, and two second grade teachers, Kara, who has
taught 9 years, and Naomi, who has taught for § years.

Data Collection and Analysis

Three data sources were analyzed for this case study: video clips from implementation
debrief meetings that served as focus group meetings, student work, and teacher reflection forms.
The implementation debriefs were conducted in focus groups with smaller groups of the entire
teacher designers which allowed us to invite individual comments while also situating those
comments in context of the group that worked together during the design process (Morgan,
2011). Based on the data analysis from this focus group debriefs, we selected six teacher
designers to conduct one on one interviews. The research team used open coding first
individually, keeping analytical memos which provided preliminary analysis allowing “processes
of discovery in the material” (Morgan, 2011, p.14). Next, the research team employed Knodel’s
(1993) grid analysis to ensure researcher fidelity to the transcripts during subsequent analysis.
Grid analysis allowed the research team to review transcript segments associated with each
subtopic and calibrate the codes and categories to ultimately identify recurring themes.
Overarching Research Questions

Our design based implementation research questions included:

RQ1) How do teacher designers use the Mathematics LT-based Curricular Modules during
their implementation cycles?

RQ2a) How does involvement in this design project influence teacher designers’ future
work? b) In what ways did teacher designers’ deep dive into LTs translate into their use of LTBI
in coaching or leading school districts? ¢) How does the focus on strengths-based instruction
influence teacher designers’ approach to their instruction or work with teachers?

Results

In addressing the first research question, how do teachers use the Mathematics LT
Framework/LT-based Curricular modules during their implementation cycles, our findings
revealed two themes. First, teacher designers used their professional judgment and knowledge of
LTs to assess the quality and appropriateness of curricular resources for supporting students in
meeting specified learning goals. Secondly, curricular materials designed using the LT
framework supported teacher designers’ understanding of students’ learning and informed their
instructional decision making.
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Teacher designers’ demonstrated their professional judgment by assessing the quality and
appropriateness of the curricular materials. Teacher designers implemented formative
assessments and bridging activities to assess the quality and requirement criteria of each teaching
resource. For example, through implementation and assessment of a teaching resource, Kara
determined that it did not meet the requirement criteria of a rich task and recommended it be
used instead as a formative assessment. Kara stated that “a lot of those tasks, they feel like
worksheets. It was basically just a list of questions. ... That feels like a quick check. No richer. It
didn’t feel like anything too different than a quiz-like question.” Kara questioned the “richness”
of the teaching resource and determined that it would not be appropriate as a “rich task™ but
instead could be useful in other ways. Kara’s assessment was affirmed by another teacher
designer.

Teacher designers also used their knowledge of their students to assess the value of teaching
resources. Rebecca found it difficult to implement a computer-based game with her first grade
class due to the technological expertise needed to play it. Although the mathematical concepts of
the game were well-aligned to her students’ needs, they struggled with the website. Rebecca
adapted the game to a paper-based format which was more accessible to her students. Mia used
her knowledge of her students in a slightly different way. The substantial changes she witnessed
in her students’ mathematical confidence helped her realize the “richness” of the teaching
resource. She reflected on how the high-quality teaching resources changed the ways students
engaged in their mathematics learning, stating that “it was a huge difference just within a week’s
time. They felt more confident. That was the biggest thing I took away, the kids were not afraid
of being wrong anymore, and they were very comfortable with being able to manipulate and do
the work.”

Additionally, the teacher designers critiqued teaching resources according to their alignment
along the LT. After playing the game “Race to 100” with her second grade class, Kara
determined that the game was a strong teaching resource for moving her students along the place
value LT. Other teacher designers noted that while some games did not align well to a bridging
standard, other games could be used for several bridging standards.

Teacher designers’ reflections on their students’ learning in response to the LT-based
curricular modules revealed a second theme and provided a lens for teacher designers to notice
their students’ understanding and make instructional decisions. Jana, an instructional coach,
discussed how the resources helped teachers in her school identify and address unfinished
learning from previous grades. Because the curricular design used bridging standards, Kara was
able to look for resources aligned to prior grades to support the prerequisite skills and knowledge
her students needed for their current grade stating, “If you want to reteach anything, let’s say I'm
teaching second grade this year, so I’'m going to reteach this first grade skill before I teach the
second grade skill.” Bridging standards were an important element of LTs for both Jana and
Kara. This focus on underlying mathematical concepts allowed them to see a progression of
complexity and shift along the trajectory as needed to find the appropriate teaching resources for
their students.

The LT-based curricular structure supported the teacher leaders in reframing how they view
student learning. Sienna, an instructional coach, found that the LT structure helped teachers see
their students’ learning as a progression and consider next steps rather than visualizing a gap
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between students’ current understanding and the “final goal of the standard”. Kara had a similar
epiphany in her second grade classroom. She found that the LT structure allowed her to focus on
conceptual understanding in her second grade students’ work rather than simply quantifying the
number of incorrect answers, stating “When you go to grade something or check it over, ’'m not
necessarily looking at ‘Oh, they got 15 out of 20. They’re missing a bunch.” ...I’m really zoning
and honing in on what patterns I can find. I feel like that’s what this cycle has taught me is that
there are patterns in student work.” Kara’s attention to patterns in her students’ work allowed her
to identify their position on the LT and plan targeted instruction to support their learning. Kara
pinpointed her students’ understanding of double-digit addition and made appropriate
instructional decisions, stating “We just started teaching double digit addition. I know they know
their facts, but they aren’t getting regrouping. Okay, well then that’s what they need. We don’t
need to work on the basics. It’s not that they can’t add... They can add single digit numbers, so
how can I break that down when we go to add something more complicated than that.” Likewise,
Rebecca suggested that the LT approach helps lessons to be more effective because they focus
on where students are and their precise needs. The teaching resources were cognitively
demanding and grounded in LT research, thus equipping Kara to look beyond the number of
incorrect responses, focusing instead on student understanding and instructional decisions.

Naomi found the open-ended formative assessment questions to be valuable for revealing
students’ prior knowledge. On a formative assessment question asking for a number less and
greater than 153, Naomi observed, “that open-ended part of those two questions shows their
thinking. Like who’s thinking one more or one less. For what’s greater than 153, one of my kids
wrote 582... That gave them a way to show other numbers they know, not just one more, one
less.” From the formative assessment, Naomi realized that her students needed more experience
with numbers beyond the typical hundreds chart and chose the Mystery Number routine to
broaden their exposure. In addition, she appreciated how an open-ended task allowed her to see
the edges of student thinking with students naming different magnitudes of numbers that fit the
criteria for the Mystery Number.

In addressing research question 2a) “How does involvement in this design project influence
teacher designers’ future work?”, we found that teachers noted the ease of usability as a “grab
and go resource”. Teachers reported an advantage that all the materials were conveniently
organized on a website, saying, “It is truly a one stop shop it really, really i1s” and “since we were
already going to teach this anyways, it’s easy and convenient, it is a one stop shop.” However,
this also led to a disconnect between the original project goal of sourcing pedagogically rich
resources and instant implementation of those resources. In several instances, teacher designers
initially liked the material, but struggled with implementation. Sienna said, “I really struggled
with [the task], to the point where I actually had to create my own little recording sheet.” She
described a conceptual hands on lesson using base ten blocks, which required monitoring and
listening to students working in the moment. The recording sheet helped her keep track and
assess various student strategies. While teacher designers attributed successful implementation to
the convenience of the materials, that convenience led to a perception that a “one stop shop” did
not require the same amount of lesson planning.

With the disrupted instruction due to COVID-19, Jana noticed “gaps” in students’
understanding, but found these resources useful for understanding and redefining the specific
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nature of the “gaps” using strength-based language. For example, Jana states, “third graders who
have first grade gaps and second grade gaps, this LT has been really important for [teachers] and
really useful.” Similarly Mia transitioned from “gaps” to strength-based language by noticing
that teachers were more focused on student work rather than “just number correct.” Mia also
reported increased student confidence saying, “It was a huge difference just within a week's time
and [the students] felt more confident. The kids were not afraid of being wrong anymore, and
they were very comfortable with being able to manipulate and do the work.” Mia also reported
teacher confidence saying, “The teachers were like blown away that our kids can actually do
this.” This transition from “gaps” to strength-based language was particularly important as
teachers implemented previous and current grade standards. Jana explained that “A lot of our
teachers are trying to become experts in [prior grade] areas that they're not used to being an
expert and having the LT and activities at their fingertips has been super helpful so far” because
it helps teachers to “think more about the next steps that the students need.”

In addressing research question 2b) “In what ways did teacher designers’ deep dive into LTs
translate into their use of LTBI in coaching or leading school districts?”’, we found that
mathematics specialists and school-based coaches used these resources as a type of professional
development to look at LTs using student strengths. Sienna described this as, “looking at more
about what is the next step, the thing that [students] need, what is it that our students do know
and because of that we're thinking more about the progression of the students, rather than the
end.” Mia explained that these resources were especially beneficial after the disrupted learning
due to COVID-19 because they “gave me a tool, because I kind of felt as lost as they did. [sic]
we've never done this before, we've never faced it... I feel like anybody I've told about it, I feel
like it makes so much sense, the fact that it's [strength-based] like this is, this is what they need
to come in with versus where they're going.” However, the way the coaches implemented the
resources varied. Mia created classroom-ready Google Slides for a routine. “I just kind of
developed these little snippets of little activities of Google slides that I would use with the
students and the teachers.” Mia also explained the need for creating supplemental resources
because “my teachers [sic] are stressed, they are worn out” and by “packaging” the resources,
she can share them with teachers and the many long term substitute teachers in her school.
Further, these resources have been accepted and distributed at multiple leadership levels from
teachers, principals, and even division levels. Leaders at Jana’s school and district were also
eager to distribute the modules. She stated, “Our curriculum supervisor at the division level is the
one who's really pushing it out for our division [sic] and in our curriculum unit guides that we
have for each of our units k-5 with the PDFs from the bridging site have been dropped in so
teachers have access to the site. They know about it, they've had to go through video training on
it.”

In addressing research question 2¢) “How does the focus on strengths-based instruction
influence teacher designers’ approach to their instruction?”’, we found that teacher designers
began to have a more holistic view of student knowledge and they were less overwhelmed.
Making the connection to growth mindset, Sienna noted that the teachers she works with were
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“thinking more about the next steps that the students need rather than ‘they can't get to the
standard’ or ‘they're not doing the standard.’ It's more about ‘this is where they're at, this is the
next step they need to know.”” For example, Mia shifted focus from percentage correct to
patterns evident in student work, reporting, “there are patterns in student work, and you can often
find that they're doing one thing correctly and then they're just misinterpreting whatever next
step.” This perspective of highlighting strengths reduced teacher stress, because “it just kind of
helps it not seem as overwhelming because you can see progress in a student, even though
they're not achieving the standard, if you're looking at their strengths and what they do know.”

Implication of our Study
This design-based research suggests several practical applications for teachers, coaches, and

curriculum developers. Firstly, this research showed that teacher designers’ knowledge of LTs
supported their instructional decision making. The teacher designers who participated in the
professional development program were recruited for their level of experience and recognized
mathematics education leadership. And yet, after participating, they felt more equipped to
identify and implement rich strength-based lessons. Specifically, teacher designers knew more
about LTs and how to interpret student work in order to identify their strengths on the LT.

Secondly, this research showed that teacher designers who were coaches or leaders
distributed their understanding about strength-based LTBI on both a small scale, such as coach to
teacher, and large scale, such as school or district settings. While the structure of the modules
provided support for teachers’ understanding of the LT, coaches needed to constantly refer back
to the resources until teachers used consistency when implementing them. All leaders reported
that the materials were organized, accessible, easy to modify, and invoked discussions about
student strengths and differentiated lessons.

Finally, this design research gives insight on the important aspects to consider when
designing curricula and resources. The resources in this project were sourced by a recruited
group of teacher designers. Through multiple cycles, the teacher designers vetted and
implemented the resources, gathered student work, and discussed the implementation to validate
the choice of activities. This cycle allowed teacher designers to propose, explore, discuss, and
finally edit those resources in order to make them more user-friendly and applicable to the
standards. This research demonstrated significant ways that practitioners can engage with
learning trajectory research to transform “post pandemic pedagogy” (Ladson-Billing, 2021),
reframing the predominant conversation from “educational gaps” to student progress along the
LT continuum.
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This inquiry explores elementary mathematics teachers’ curriculum work as they integrated a
new component, Number Talks, into their existing curriculum assemblages. Number Talks are
short 5-15 minute whole group discussions with specific procedures focusing on students’
strategies for mental computations. Assemblage theory was used to frame how participants
modified Number Talks when incorporating them into their classrooms. Participants described
how they integrated Number Talks into their existing curriculum assemblages, collaborated with
colleagues creating overlapping assemblages, and deterritorializing Number Talks to change
their functionality. We discuss the implications of participants changes to Number Talks and the
adjustments participants made to their existing curriculum assemblages.

Keywords: Curriculum, Elementary Education.

Number Talks began in the 1990’s and have increased in popularity informing professional
development, books, and educational blogs (https://www.mec-math.org/number-talks/). The
effects of Number Talks, however, are largely under investigated (Matney et al., 2020). Number
Talks are teacher facilitated discussions centered on students’ mathematical strategies for solving
computational tasks (Parrish & Dominick, 2016). These conversations typically last between five
and 15 minutes. Number Talks follow specific procedures in which students solve a task
mentally, share solutions, and describe their strategies in a whole group discussion. Due to the
focus on students’ ideas and strategies, Number Talks alter the role of the teacher moving from a
traditional teacher-directed mathematics classroom to a more student directed classroom (Brown,
Stein, & Forman, 1996) requiring significant changes to practice for most mathematics teachers
(Cobb & Jackson, 2011). As teachers’ professional knowledge expands and new curriculum
resources are introduced teachers’, curriculum work also changes (Gueudet & Trouche, 2009).
This study aims to examine teachers’ curriculum work as they integrated Number Talks into their
mathematics classroom. The following research question guided the inquiry: how do elementary
mathematics teachers assemble Number Talks?

Theoretical Perspective

Linear or mechanistic frameworks of curriculum are restrictive and reductive and have
dominated the conceptualization of curriculum in mathematics education (Fleener, 2002).
Moreover, curriculum defined as a bounded series of learning goals isolated from the learning
environment is static (Doll, 1993; Grumet, 1988). While researchers (e.g., Remillard, 2005;
McDulffie et al., 2018) acknowledge teachers implement curricula materials in unique ways and
Cai’s (2014) leveled framework considers what occurs in the classroom (i.e., intended
curriculum) findings have done little to influence how curriculum is conceptualized. This study
embraces the temporality, connectivity, and in process conceptualization of curriculum
advocated by Grumet (1988).

Deleuze and Guattari’s (1987) theorization of assemblages provided a space for teachers’
curriculum work to be considered in process. Deleuze and Guattari described an assemblage as a
collection of heterogenous components organized to perform some function. Assemblages are

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee
State University.

242


https://www.mec-math.org/number-talks/

temporary and transform quantitatively and qualitatively as components are added or removed.
For example, a teacher enacting a Number Talk may use Number Talks procedures, allow
students to select the numbers for the mathematical task, and add a checking your solution
component to conclude the discussion in which students use sticky notes on the board to verify
their answer. The additions and modifications to Number Talks changes the functionality of this
curriculum. Each component works together for a moment in time creating an assemblage.
Moreover, an assemblage is not simply a product, but rather the coming into existence or the
need to organize, reorganize, and/or construct. As the assemblage shifts or sharpens boundaries
map out an assemblage’s territory (i.e., territorialization). Conversely, as changes occur, or new
components are introduced an assemblage blurs or fragments and deterritorializes.

Methods

Part of a larger Convergent Mixed Methods study (Creswell & Plano-Clark, 2011), this paper
explains results from a qualitative analysis of teacher participant interviews, examining ways
teachers planned, adapted, and assembled Number Talk curriculum with their already enacted
district-driven curriculum.
Participants, Setting, Procedures, and Instruments

Seventeen elementary teachers—teaching 4™, 5 and 6™ grade mathematics—from Duval
County School District in the Western United States participated in the interview stage of the
study during the fall of 2021. Four of the participants were enacting Number Talks for the
second year, while 13 introduced Number Talks into their classrooms for the first time. Each
participant engaged in one 15-minute semi-structured interview via Zoom. Interviews focused on
teachers’ planning process and how Number Talks were being implemented in their classrooms.
The interview included questions, such as: (1) what role do Number Talks play in your
mathematics classroom?; (2) how do you select number talks?; (3) what adjustments if any, did
you make to incorporate Number Talks into your classroom? The researchers created memos in
the form of written notes during and following the interviews.
Analysis

An open-coding scheme was used to analyze the memos. Codes were condensed into
categories (e.g., integration of Number Talks and curriculum, number sense, and Number Talks
procedures). While this process offered a level of analysis, it left the data segregated. A different
method of analysis was needed to create opportunities for entanglement. Taking a writing
approach to analysis Markham’s (2012) bricolage-style of writing (i.e., layered text) or the
bringing together of various writing piece was taken up. We initially engaged in analytic memo
writing, summarizing the interviews as a collection. Then layered writing was used to bring
together interview memos from each participant to create a composite piece (see Figure 1). The
layered writing approach created a grass like structure as new concepts and ideas sprouted
between previous text.
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Figure 1: Layered writing excerpt

Preliminary Findings

Through the leveled writing analysis tracings or patterns emerged. Participants described the
integration of Number Talks into their existing curriculum assemblages, collaborating with
colleagues creating overlapping assemblages, and deterritorializing Number Talks to change
their functionality. The subsequent section explores these tracings.

Integrating Number Talks into Existing Curriculum Assemblages

Introducing a new component, Number Talks, into participants existing curriculum
assemblages detteritorialized, or disrupted, their assemblages. The boundaries of their curriculum
assemblages and daily schedules blurred as participants made adjustments. Participants stated
one of the biggest challenges was finding time for the Number Talks. Taylor described this
challenge, “I had to find time. Where was I going to find the time where it would be effective for
students?” Some participants eliminated components of their existing curriculum assemblage.
Madison replaced a component, a warm-up worksheet, with Number Talks, “I used to do a
warm-up worksheet. I have gotten rid of the worksheets and my spiral review. This is really
strange because I used to give 10 problems and now just give one problem.” Other participants
modified their curriculum assemblages. Amanda addressed the issue of time by changing her
morning routine using the Number Talk as bell work. Lana on the other hand moved her math
lesson to a different part of the day to allow for an extended math lesson. To accommodate time
constraints, participants used Number Talks at varying frequencies (e.g., Jessica used Number
Talks every day, Rachael tries to do them two or three times a week).

Participants’ conceptualization of how Number Talks fit into their curriculum assemblages
ranged from siloed events to integrated components. Participants who conceptualized Number
Talks as siloed events either separated Number Talks from the mathematics lesson enacting them
at a different point in the day or used Number Talks before the mathematics lessons but saw
them as independent events. Stephanie took up a siloed approach, “I do it [Number Talks] first
thing in the morning when the students come in. It does not tie into the math lesson.” Lana also
held a siloed conceptualization. Although Number Talks were taught at the same time as the
mathematics lesson—immediately prior to the lesson—they were unconnected events. Kenny on
the other hand conceptualized Number Talks as integral components of the mathematics lesson.
Kenny used Number Talks to start class and help students get into a mathematical mindset—he
described Number talks as a safe place for students to share ideas and lead into the mathematical
content of the day. Some participants conceptualized Number Talks as an integrated part of the
curriculum but were not yet able to match their conceptualization to their teaching practice.
Integrating new components is a process and Dana said she is currently doing Number Talks
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unrelated to the lesson; however, she wants to eventually tie them into class.
Overlapping Assemblages

Participants’ curriculum assemblages overlapped as they collaborated with colleagues and
students. Many of the participants planned Number Talks with their team or other colleagues in
their building. Participants noted working with colleagues when struggling to get students to try
a specific strategy. For example, Alexa was unable to get her students to use a regrouping
strategy. She worked with her team to change mathematical tasks like 68-13 to 63-18 to promote
the use of a regrouping strategy. Participants’ curriculum assemblages also overlapped when
they brought student strategies from a colleague’s class and used it in their own number talk to
demonstrate a specific strategy.

In addition to working with colleagues to develop Number Talks, participants both explicitly
and implicitly built Number Talks with their students. Participants (e.g., Marissa and Taylor)
implicitly worked with students to adjust pacing based on students’ responses to previous
Number Talks. Amanda planed with students providing them opportunities to select the numbers
for the Number Talk.

Teachers Deterritorialization of Number Talks

As participants integrated Number Talks into their classrooms, they made modifications in
order for the Number Talks to function in their classroom. Participants interpreted Number Talk
procedures in their own way and adjusted to match their teaching style. Some participants tried
to follow the Number Talk procedures as intended. Jessica used dot talks when introducing her
class to the Number Talk procedures of hand signals, giving solutions, and sharing strategies.
Alexa altered students’ physical space moving students to the floor to decrease distractions and
ensure students were working the task in their heads instead of writing out their process. Other
participants modified Number Talk procedures. Carolyn provided students with sticky notes to
record their ideas. COVID-19 also presented challenges participants needed to address and
pushed on participants’ Number Talk assemblages. For example, Alexa created “calling bodies”
or remote students assigned to in person student who communicate via phone call or zoom
discussions.

Discussion and Conclusion

Findings elicit questions about how Number Talks are integrated into existing curriculum
assemblages. Framing teachers’” work with Number Talks using assemblage theory provided
opportunities to examine participants’ work as temporal and changing with their integration,
overlapping components, and modifications. In efforts to accommodate a new component,
Number Talks, into their existing curriculum assemblage participants added and removed
elements from both their pre-existing curriculum and to Number Talks. Continued research is
needed to understand teachers’ curriculum work with Number Talks over time. Additionally,
future research could consider how teachers’ curriculum work with Number Talks impacts
students’ agency and number sense development.
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The instructional materials that mathematics teachers use impact student learning (Remillard
et al., 2014; Lloyd et al., 2017). However, purchasing instructional materials are expensive,
hence districts are turning to open source materials such as Illustrative Mathematics (IM). Unlike
many other free online resources for instructional materials (e.g. Pinterest (Shapiro et al., 2019)),
IM is a comprehensive curriculum with a scope and sequence and is aligned with Common Core
content and practice standards (Ed Reports, 2022). The high school IM curriculum became
available in 2019 and the elementary curriculum in 2021, so little research has been done on
teacher perceptions of the curriculum. This poster aims to address this by sharing teacher
perceptions of the IM curriculum using data from teacher interviews from year 1 and year 3 of

their implementation of IM.

All Algebra 1 teachers throughout an urban district began using IM in 2019-2020 (year 1)
and it continued to be the primary instructional resource provided by the district in 2021-2022
(year 3). We interviewed 22 Algebra 1 teachers in year 1 and 13 in year 3 about their perceptions
of the IM curriculum using an interview protocol. The protocol ranged from open-ended
questions, such as “What do you think about the Illustrative Mathematics curriculum?” to more
specific, e.g. “How does IM support your ELL students?” The interview transcripts were read to
uncover themes that emerged, common themes were grouped when appropriate, and then the
interviews were reread to code for the emergent themes. Finally, we recorded how many teachers

Background

Methods

expressed an idea represented by each emergent theme.

Some themes stayed the same from year 1 to year 3. For example, over 50% of the teachers
in both years noted the benefit of IM’s use of real-world contexts for Algebra 1 topics. Over 50%
both years also noted a challenge in not enough time for teaching everything. Other themes
changed over time. In year 1, teachers appreciated having ready-to-use materials (in previous
years they had to create their own teaching resources), however, in year 3, teachers were more
likely say the appreciated the design of the curriculum, for example, how it spiraled the content.

As the districts move to open-source instructional materials such as IM it is important to
understand how teachers are perceiving the curriculum so that curriculum designers, researchers,

Findings

Conclusion

Ji Yeong I
Iowa State University
jiyeongi@iastate.edu

Betsy Araujo Grando
Iowa State University
betsya@iastate.edu

and district decision makers can use the information to better support teachers.

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee

State University.

247



References

Ed Reports. (2022). Kendall Hunt’s Illustrative Mathematics Traditional (2019). Edreports.org.
https://www.edreports.org/reports/overview/kendall-hunts-illustrative-mathematics-traditional-2019

Lloyd, G. M., Cai, J., & Tarr, J. E. (2017). Issues in curriculum studies: Evidence-based insights and future
directions. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 824-852). Reston, VA:
National Council of Teachers of Mathematics.

Remillard, J. T., Harris, B., & Agodini, R. (2014). The influence of curriculum material design on opportunities for
student learning. ZDM—International Journal on Mathematics Education, 46(5), 735-749.

Shapiro, E. J., Sawyer, A. G., Dick, L. K., & Wismer, T. (2019). Just what online resources are elementary
mathematics teachers using?. Contemporary Issues in Technology and Teacher Education, 19(4), 670-686.

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 248
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee
State University.


https://www.edreports.org/reports/overview/kendall-hunts-illustrative-mathematics-traditional-2019

ANALYZING THE LEVELS OF COGNITIVE DEMAND OF TASKS IN
MATHEMATICS TEXTBOOKS AND UNIVERSITY ENTRANCE EXAMS

Seyedehkhadijeh Azimi Asmaroud
Keywords: University entrance exams; Text book; Levels of cognitive demand

The University Entrance Exam (UEE), a comprehensive 4-5 hours multiple-choice exam
known as Konkour, is a centralized nationwide test for high school graduates to gain admission
to higher education in Iran. These UEEs have been the sole criterion for students’ admission to
universities for more than four decades (Salehi & Yunus, 2012). As students' performance in the
UEE is a critical factor influencing their future careers, it is essential that UEEs, as assessment
tools, be aligned with school curriculums.

This study was part of a larger study that compared the type of the mathematics questions in
two series of high school mathematics textbooks, old-series (2016-2018) and new-series (2019 -
2021), with the type of mathematics questions used in the UEEs in the aforementioned periods.
The underlying rationale for focusing on the textbooks used in these two periods was that these
textbooks are used nationwide and reflect a good picture of the nature of tasks implemented by
teachers to prepare students for UEEs. In this study, the result of the study about geometry
questions will be discussed.

This study draws from a framework developed by Smith and Stein (1998) about the Levels of
Cognitive Demands (LCD) of tasks. This framework categorizes mathematical tasks according to
the level of cognitive demands in two categories: a) low-level, including Memorization (LM) and
Procedures Without Connections (LP), and b) high-level, including Procedures With
Connections (HP) and Doing Mathematics (HDM). Questions related to topics in ratio and
proportion, angle relationships in circles, Thales theorem, similarities and its applications,
polygons, and area from 10th and 11th-grade textbooks (305 tasks), and also questions related to
the same topics in UEEs (34 questions) were coded based on this framework. To ensure the
validity of the study, I asked a colleague (Creswell & Miller, 2000) to do coding independently
for random questions from UEEs and two textbooks series, then we compared assigned codes.

The findings of the study indicate that the levels of the tasks related to geometry concepts in
the old textbook series were predominantly at HP and LP levels (respectively 38% and 36%).
The majority of tasks in the new textbook series were at the HP level (49%). There were more
HDM tasks in the new textbook series (31 % in comparison to 18% in the old book series). There
were not any questions at the LM level in UEEs in both periods. The percentage of questions in
UEEs in HP level was much higher in comparison to the two textbook series (53% in 2016 -
2018 UEEs and 66% in 2019- 2021 UEEs). The percentages of questions at the HDM level were
21% in 2016 - 2018 UEEs and 17% in 2019 - 2021 UEEs (tables including more detailed
information will be presented in the poster).

Research showed that throughout the classroom sessions LCD of tasks stay the same or
decline (Stein, Grover, & Henningsen, 2001). Thus, considering the findings of the study that
shows on average the LCD in UEEs are higher than the LCD of tasks provided in both textbook
series, it seems that including more tasks in higher LCD is required in the school's curriculum.
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Using a test for a purpose it was not intended for can promote misleading results and
interpretations, potentially leading to negative consequences from testing (AERA et al., 2014).
For example, a mathematics test designed for use with grade 7 students is likely inappropriate for
use with grade 3 students. There may be cases when a test can be used with a population related
to the intended one; however, validity evidence and claims must be examined. We explored the
use of student measures with preservice teachers (PSTs) in a teacher-education context. The
present study intends to spark a discussion about using some student measures with teachers. The
Problem-solving Measures (PSMs) were developed for use with grades 3-8 students. They
measure students’ problem-solving performance within the context of the Common Core State
Standards for Mathematics (CCSSI, 2010; see Bostic & Sondergeld, 2015; Bostic et al., 2017;
Bostic et al., 2021). After their construction, the developers wondered: If students were expected
to engage successfully on the PSMs, then might future grades 3-8 teachers also demonstrate
proficiency?

Methods

Data came from three sources: (a) an expert panel content review, (b) Rasch (1980)
modeling of PSM scores, and (c¢) consequences from testing data from PSTs and PSM
administrators. 178 PSTs from a Midwest university completed the PSMs. They came from two
teacher education programs: grades K-5 or grades 4-9. PSMs 3-8 were completed in their
program’s first-year and again in the fourth-year. The intended use for the PSMs was formative
and for program evaluation. They were informed that results did not impact course grades.
Content and consequences data were gathered from mathematics content and mathematics
education instructors. Qualitative data were analyzed using thematic analysis (Miles et al., 2016).
Quantitative data were analyzed with WINSTEPS© (Linacre, 2019).

Findings & Discussion
Content experts felt items were appropriate for use with PSTs and connected with content
from their classes. PSMs 3-8 fit the Rasch model indicating good psychometric quality. Finally,
thematic analysis of consequences data indicated that the PSMs felt no different than a unit test
and offered formative data to adapt instruction. Collectively, these findings help to inform the
potential uses of the PSMs, a student measure, for use with a related population, PSTs.
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Introduction and the Purpose of the Study
The COVID-19 pandemic led to a global lockdown and compelled the institutions to shift to

emergency remote teaching. This transition and the lack of knowledge of using technology
affected teaching practices, including assessment. Confronted with new contexts for assessment
and threats to validity caused by ineffective proctoring, many instructors had to rethink how to
evaluate student progress. This study investigates the common characteristics of college algebra
assessment in six dimensions and determines any changes during emergency remote teaching. In
addition, the analysis compares the college algebra instructors’ views about the purpose of
evaluation. Finally, the study tested the efficacy of a new tool that instructors can use to analyze
their assessments.
Research Questions

What are the characteristics of the exams given by college algebra professors? What are
the college algebra teachers’ beliefs about the purpose of assessment? How did these
characteristics change during ERT, and what changes persisted after returning to normal
teaching? What factors determined which changes faculty chose to retain?
Study Framework

The study framework consists of six dimensions. Cognitive demand, first introduced by
Bloom (1956) and revised by Tallman et al. (2016), contains seven hierarchal levels starting at
remember at the base and create at the top. Three additional dimensions, item format, task
representation, and solicited solution, were adapted from Tallman et al. (2016). Additionally, the
framework contains two new dimensions developed for study: computational demand and verbal
demand.

Methodology and Results
Data Collection
Participants of this study are 30-40 college algebra instructors from two- and four-years
institutions in Texas that have taught college algebra before, during, and after the COVID-19
pandemic. The study uses three data sources: mid-term and final tests to determine the
characteristics of college algebra tests, online surveys to determine the instructors’ beliefs about
the purpose of assessment and focus-group meetings on Zoom with a subset of instructors.

Results

The preliminary results of twenty tests showed a low level of cognitive demand where 65%
of the items were level 2 (recall and apply procedures). On the other hand, a focus group meeting
showed that the instructors emphasized higher levels of cognitive demand. Furthermore, 65% of
the items are multiple-choice, and 80% are symbolic.
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We surveyed 524 elementary teachers from 46 states about their mathematics curricular
decision-making during the COVID-19 pandemic (Giorgio-Doherty et al., 2021). Building on
findings from this study, we designed protocols for individual and focus group interviews with
teachers from the same school to further explore the complexity of teachers’ curricular use
revealed in the survey. Here, we report findings from these interviews. The research questions
guiding our study were: (1) How do teachers create coherence across their curricular resources?
(2) How and why do teachers select or evaluate and adapt curricular materials to teach
mathematics? and (3) How do teachers perceive their curricular autonomy? We found most
teachers were using multiple curricular materials (some mandated and some not, ranging up to
11 different sources of materials) to plan and teach mathematics. We found teachers frequently
focused on content (e.g., connections to key concepts, standards, or lesson objectives) as the key
focus of creating coherence between materials for students and for lesson planning. Content
coherence also seemed to drive differentiation. Most teachers reported differentiating more than
usual to address larger learning gaps across students in their classes due to the pandemic.
Teachers stated a preference for curricular materials (like ZXL) which allowed them to find tasks
on particular content and assign students practice problems related to that content at grade level
and above/below. Teachers varied in how they responded to different solution strategies
presented by different materials. Some teachers provided coherence by directing students to
rewrite directions so they use the same solution strategy as in prior lessons from other materials;
other teachers felt students experienced better connections to content as they made sense of
different solution strategies from different materials. Several teachers used TeachersPayTeachers
(TPT), with some reporting materials on TPT engage students better than materials from their
primary curriculum, do not need modifications, or better meet their instructional preferences. We
found teachers who reported high levels of enjoyment and confidence in teaching mathematics
made the most adaptations to curricular materials and most often designed their own. Many
teachers reported adapting curriculum to be more engaging to students. This included adding
visuals or enlarging text size and creating opportunities for problem-based and hands-on
learning. Some reported adapting or creating materials to make connections to the world or be
more culturally relevant. Overall, teachers reported high levels of curricular autonomy for all
curricular materials, including mandated materials (median score of 7 out of 10) and non-
mandated or suggested materials (all scoring 10 out of 10).
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DIMENSIONS OF CARE: A DIFFERENT APPROACH TO ANALYZE TEACHERS’
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Literature Review

Teachers' refined thinking about how students learn mathematics is visible in their
curriculum decisions when planning. They make decisions influenced by many factors: the
design of the materials, teachers’ knowledge, skills, beliefs, goals, and context (Remillard et al.,
2009). In addition to these factors, I argue that mathematical care influences teachers’ decisions.
The mathematical care component is conceptualized in this research as a driven factor for
attending to students’ cognitive processes of learning mathematics and continuously adapting the
mathematical activities based on students’ specific needs. These two actions align with the first
two phases that characterize the notion of a caring relationship largely discussed by Noddings
(2013): engrossment (receptive to the learners’ needs), and motivational displacement (respond
with help to the identified needs). Responding to every student's mathematical needs means
making modifications, adaptations, and accommodations to the curriculum (Remillard et al.,
2014; Stein et al., 2007). For example, adaptations of the mathematical activities in relation to
students' mathematical needs could be in the form of incremental challenges for the students who
gave up learning mathematics (cultivating a growth mindset set (Dweck, (2008)) or higher
cognitive demanding tasks for students with an increased interest in mathematics (Benbow, et al.
1992), warm-up activities to supply motivation (Williams, 1984) or providing a visual context
for English learners (Slavit & Ernst-Slavit, 2007). According to Noddings (2013), students’
responses to these actions represent the third component that completes a caring relationship:
recognition. When teachers “act with special regard for the particular person in a concrete
situation" (Noddings, 2013, p. 24) they demonstrate care for students. Students who enter into a
mathematical caring relation "have a sense of being seen by the teacher" (Hackenberg, 2005,
p.47), and that is a feeling of being listened to, with ideas valued, and, perhaps, understood.

Methodology

The paper's contribution lies in exploring teachers' rationale when making decisions
regarding the mathematical activities they select and the changes they make. For example,
designing tasks in relation to students' ways of operating mathematically (Hackenberg, 2005) or
accommodations for the students with learning disabilities that do not reduce the level of
engagement (Barr et al., 2021) represent dimensions of care related to the students' cognition.
Providing recreational problems to show the fun side of mathematics (Cooney, 1985) represents
a dimension of care for getting students excited when doing mathematics. Selecting tasks that
give students opportunities to show their intelligence in various ways while the teacher is
positioning students as competent by coding a variety of skills, mathematical and non-
mathematical, disrupting the hierarchy of intellect and giving voice to all students (Louie, 2017),
represents a dimension of care for equity. Thus, this research constructs dimensions of care by
analyzing episodes from literature that link needs, decisions, and feelings.
Research Question

The research question is how mathematical care can be conceptualized as a factor that
influences teachers' curricular decisions?
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There is growing agreement that effective mathematics instruction starts from teachers’
careful and purposeful planning (NCTM, 2014). However, teachers’ planning often only includes
teachers’ decision making before instruction or it only consists of selecting tasks and organizing
the ways they will enact the tasks with students (Kilpatrick et al., 2001). Because planning
individual lessons typically comes after teachers have already established a larger sequence of
lessons, it is important to examine how teachers plan at the larger curriculum level. Despite the
existence of different curriculum level planning, little attention has been given to teacher
planning on larger curriculum levels (e.g., unit planning, course planning). To this end, the
purpose of this study was to answer the question: How are the processes of experienced Algebra
I teachers’ unit planning similar with and/or different from one another?

As part of a larger dissertation study on experienced algebra teachers’ unit planning, I
analyzed the processes (e.g., practices, sequences) of 5 experienced Algebra I teachers from
school districts of varying sizes across the nation, who actively designing curriculum units came.
By adapting Roche et al.’s (2014) teacher planning framework, 1 identified the teaching practices
that the teachers enacted in unit planning. I then created diagrams of the teachers’ unit planning
processes (e.g., unit planning timings and sequences) using /logic models (Yin, 2014).

The experienced teachers engaged with a set of seven unit planning practices and the
sequencing of these practices followed a general sequence across the teachers—a) checking and
examining curriculum documents, b) setting learning goals, ¢) mapping out lessons and
assessments, d) planning lessons, €) planning assessments, f) modifying lessons and assessments,
and g) evaluating implemented unit plans. To plan units, the teachers engaged with the practices
not only before units but also during and even after units. Although they enacted the majority of
the unit planning practices before unit, they continued their unit planning during unit as they
modified the unit pacing or assessments based on what they actually taught and students’
progress towards the unit-end goals. After every unit, the teachers evaluated their implemented
unit plans through self-reflection or student feedback regarding the unit pacing and difficulty.
Thus, the experienced teachers’ unit planning consisted of the teaching practices for planning,
implementing, and reflecting unit plans.

The present study expanded the traditional conception of teacher’s unit planning to that
including not only planning but also enacting and reflecting. This expanded conception aligns
with Sherin and Drake’s (2009) conception of teachers’ curriculum use before, during, and after
instruction. Thus, this finding noted teachers’ continuous engagement with planning and the
reflective aspects of planning, which two were often missing from the body of literature on
teacher planning. The findings shed light on experienced algebra teachers’ planning processes of
larger curriculum units. In addition, it provides a better understanding of the nature of teachers’
unit planning and a snapshot of how teachers aim to help students learn outside of the classroom
environment, which potentially inform us of supports that we may offer teachers to promote
alternative approaches to or sequences of the unit planning practices.
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The instructional materials available to teachers relate to the types of learning opportunities
afforded to students (Hiebert & Grouws, 2007). As school districts undergo ambitious
mathematics reform, various stakeholders are brought together to make key decisions related to
the instructional materials provided and endorsed by the district. The various stakeholders that
constitute a district’s curriculum committee likely bring various perspectives about the form and
function of features of instructional materials they consider high-quality (e.g., Saxe et al., 1999).
Further, stakeholders likely also hold varying views about for whom those high-quality forms are
“appropriate” (e.g., Jackson et al., 2017). The purpose of this project was to gain insight about
the features of instructional materials committee members viewed as “high-quality,” specifically
(1) the degree to which there was coherence in the form and function of those features across
committee members and (2) committee members’ views about students’ mathematical
capabilities in relation to those features.

This work was conducted across a year-long research-practice partnership between a group
of special education researchers and one school district. The district was undergoing ambitious
mathematics reform in light of persistent course failure at the high school, thus prompting district
leaders to make strides toward vertical alignment. A mathematics curriculum committee (N = 25)
was formed and consisted of district-level coordinators, building-level administrators,
instructional coaches, general education teachers, special education teachers, early childhood
teachers, dual-language program teachers, all of whom served students across early childhood
and through Grade 12. All committee members were invited to participate in two interviews
about their experiences being on the committee and their views about what constituted high-
quality instructional materials. Thirteen (52%) of the committee members consented to
participate in the first round of interviews, which were conducted in November and December
2021. The majority of interviews were conducted via Zoom (n =10), although a few committee
members preferred to meet in person. We used a semi-structured interview protocol, and all
interviews were audio recorded and later transcribed.

To address the second articulated purpose, preliminary findings suggest members of the
curriculum committee viewed some features as appropriate for all students (e.g., “[enrichment
activities] can work for everyone.”), some features as specifically not appropriate for some
students (e.g., “[materials that allow for multiple ways of solving] can be difficult and
challenging [for] students who, maybe their brains process in a different way, or they process at a
different rate.”), and some features that were both appropriate and not appropriate for particular
groups. A second round of interviews will be conducted in April and May 2022. Practically,
results from this study could be used to inform the ongoing work of this committee as the district
moves into the piloting phase of their reform effort. Beyond this school district, findings from
this work could reveal critical, but perhaps overlooked, components of ambitious reform,
including the need to uncover committee members’ views about students’ capabilities and
consider the relation of such views to decisions about instructional materials.
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Over the past two decades, increasing demand for quality education has been the focus of
many educators in the United States who have introduced the standards-based education
movement (Ravitch, 1995). Countries worldwide present standards as national curricula
(Schmidt et al., 1997). Regardless of their title, such curriculum or standards define the vision for
what is important for the nation’s children to learn in their schooling. Research shows that there
is a connection between mathematics standards and the mathematics performance of the students
(Akkoc, 2008). Furthermore, research on students’ achievement in mathematics attributes
achievement disparities to the curriculum and argues that different curriculum standards may
produce different results (Cai, 2004). This comparative standards analysis of mathematics
standards addresses one secondary mathematics topic, trigonometry of four countries as we
investigated similarities and differences in learning expectations for students from Ghana, South
Africa, the United States’ proxy Common Core State Standards for Mathematics (CCSSM), and
Zambia. Stigler and Perry (2014) emphasized that better understanding of one’s own culture
gained through comparative studies leads researchers and educators to a more explicit
understanding of their own implicit theories about how children learn mathematics. Without
comparison, we tend not to question our own traditional teaching practices, and we may not even
be aware of the choices we have made in constructing the educational process. We employed
Webb's (2007) Depth of Knowledge (DOK) to analyze cognitive expectations to draw
similarities and differences. Analyzing curriculum standards offers insight into the recommended
level at which trigonometry should be taught.

Preliminary findings show the CCSSM has more strands compared to Ghana, South Africa,
and Zambia. Findings suggest that all the four countries’ standards have similar trigonometric
concepts although the standards vary across DOK levels. For example, all four countries have
standards related to drawing trigonometric functions. However, as seen in Table 2, Ghana and
Zambia’s standards contain a lower-level verb (e.g., to draw) while the CCSSM’s and South
Africa’s standards emphasize a higher-level verb (e.g., to model). We noted that the CCSSM and
South Africa did not have any standards at level 1 (e.g., recall and reproduction) while Zambia
had 3 and Ghana had 1. Likewise, compared with Ghana and Zambia, the CCSSM was more
likely to emphasize higher-order thinking skills at level 3 and level 4 with 11 standards out of 14,
while South Africa had 9 standards at higher levels (i.e., level 3, level 4) out of 14. Ghana had 2
standards at levels 3 and 4 out of 8 total standards, while Zambia had 5 standards at levels 3 and
4 out of 14 total standards. Our qualitative analysis showed that all four countries study
trigonometric ratios in right-angled triangles and use right-angled triangles to solve problems.
The CCSSM were not written to a particular order of grade while the South Africa, Ghana, and
Zambia syllabuses are tailored to grade levels, for example, the South African syllabus has
trigonometry run throughout the senior secondary level from grade 10 through to grade 12 while
the Zambian syllabus has trigonometry taught only in grade 11. Future studies could extend this
study by analyzing additional curriculum resources such as textbooks.
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Introduction

Numerous organizations have provided recommendations for what mathematics K-12
students should learn (National Council of Teachers of Mathematics, National Governors
Association Center for Best Practices & Council of Chief State School Officers) and for what
preservice mathematics teachers and current mathematics majors should learn (AMTE, 2017;
CBMS, 2012; Saxe & Braddy, 2015). There are also recommendations for what the mathematics
students should study prior to calculus (Cohen, 1995). Cohen (1995) made recommendations for
what mathematics content students should study prior to calculus, which included number sense,
symbolism and algebra, geometry, function, discrete mathematics, probability, and statistics, as
well as mathematical proof. In a more recent publication, Saxe & Braddy (2015) recommend
updating curricula to also address real world connections and affective dimensions of students’
learning of mathematics. The purpose of the current study is to examine the content included in
college mathematics courses taken prior to calculus in order to better understand how
universities are implementing the recommendations about which content to include. Examples of
such courses include college algebra, trigonometry, and quantitative reasoning.

Data for this study were 76 course syllabi from 50 public research-intensive universities in
the southeastern United States. Each syllabus was analyzed to note the topics covered. These
topics were then grouped into categories and tallied using a frequency table. The number of
unique courses that contain content related to a specific topic are shown in Table 1.

Table 1. Frequencies of mathematical topics in course syllabi

Financial 40 Logic 26 Set Theory 19
Mathematics
Probability 39 Statistics 34 Math in the Real World 40
Graph Theory 18 Voting Theory 15 Combinatorics 16
Algebra 25 Operations Research 24 Game Theory 10
Number Theory 14 Geometry/Topology 16 Linear Algebra 10

The topics with the most occurrences were Financial Mathematics (40), Math in the Real
World (40), Probability (39), and Statistics (34). Conversely, the subjects with the fewest
occurrences were Number Theory (14), Game Theory (10), and Linear Algebra (10). The
average number of unique topics was approximately 4.645 topics per class. Several classes
contained only one topic while others contained up to eleven unique topics. The topics that
occurred most frequently seem to have real-world connections, as recommended by Saxe &
Braddy (2015) and Cohen (1995). Additional data need to be collected to better understand
affective dimensions related to learning mathematics and how these courses prepare students to
appreciate the beauty of mathematics, use technology efficiently, and communicate effectively.
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Purpose and Theoretical Framework
This study examines whether a focus on diagramming and language can facilitate

mathematical problem solving for multilingual learners (MLs)—i.e., those identified as English
learners. To meet MLs’ strengths and needs in mathematics, we posit that three interdependent
focus areas must be integrated: an asset-based approach towards MLs (e.g., NASEM, 2018; de
Araujo et al., 2018; Moschkovich, 2002); student engagement with rigorous mathematics (e.g.,
Moschkovich, 2013) facilitated by the use of mathematical diagrams (e.g., Stylianou & Silver,
2004; Woodward et al., 2012; Driscoll et al., 2012); and language-focused instructional strategies
(Celedon-Pattichis & Ramirez, 2012; Lee et al., 2013; Driscoll et al., 2016; Baker et al., 2014).

Methods

We designed and studied a grade 6 fraction division unit with supports for MLs such as
language strategies (e.g., the 3 Reads, structured pairs work, sentence starters) and student use of
diagrams (e.g., number lines, area models). We conducted a cluster randomized trial; this poster
focuses on: How did participation in these lessons impact students’ diagramming in their
fraction division problem solving? Teachers were randomly assigned to use “business-as-usual”
fraction division units (control) or our fraction division unit (treatment). Students completed a
pre/post fraction division assessment, which was scored for Diagramming based on their
representations of quantities and relationships for each item. The analytic sample included data
from 246 treatment students (12 teachers) and 229 control students (11 teachers). We estimated
the treatment effect of our unit on students’ Diagramming scores and modeled the relationship
between treatment and the Diagramming outcome through a series of multilevel regression
models with students nested within teachers.

Results and Implications

When analyzing Diagramming scores, the best fitting model, controlling for prior
diagramming ability and fraction understanding, ML status, and attendance, indicated a
statistically significant adjusted mean difference, representing a medium-to-large effect (b =
571, p <.01). Evidence of a positive treatment effect, and no statistically significant interaction
between ML status and condition, suggests that MLs made similar growth as their monolingual
peers. By providing empirical evidence about lessons th