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Land Acknowledgement: 

The PME-NA 44 Conference is held on unceded Indigenous land including the traditional 
homelands of the Cherokee, Shawnee, and Yuchi. The connections of Indigenous Peoples to this 
land continues to the present day. As we begin our conference it is important to acknowledge our 
place, both geographically and historically, paying tribute to the land and our ancestors—and 
honoring both. We note that just speaking the word Tennessee is a tribute to a first nations’ word 
for “where the river bends.” The genocide, forced displacement, and cultural erasure of indigenous 
peoples resulting from the colonization of this land is particularly felt here, where the Trail of 
Tears cut through Middle Tennessee. In the midst of this history, Native American Indians tell 
their story today—including the joy of return. Founded in 1980, the Native American Indian 
Association of Tennessee is working to improve the quality of life for Indigenous People in this 
state. This includes raising funds to one day build the Circle of Life Indian Cultural Center, which 
will showcase a research library, exhibit halls, emergency relief support, job training, and education. 
These efforts help to close the circle of hatred and prejudice so that all Tennesseans can come 
together in freedom and pride.  

An important goal of land acknowledgments is to increase support of local Indigenous 
communities. You can support the work of the Native American Indian Association of Tennessee 
by donating at naiatn.org. You can also learn more about the history of Tennessee's Indigenous 
communities by visiting the First Peoples exhibit at the Tennessee State Museum, which is about 3 
miles from the conference site. More information is at tnmuseum.org.  

This statement was created in conversation with local Indigenous leaders and informed by the 
Native Governance Center's Guide to Indigenous Land Acknowledgment. 
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PME-NA History and Goals  
PME came into existence at the Third International Congress on Mathematical Education (ICME-3) 
in Karlsrühe, Germany, in 1976. It is affiliated with the International Commission for Mathematical 
Instruction. PME-NA is the North American Chapter of PME. The first PME-NA conference was 
held in Evanston, Illinois in 1979. Since their origins, PME and PME-NA have expanded and 
continue to expand beyond their psychologically oriented foundations.  
 
The major goals of the International Group and the North American Chapter are:  

1. To promote international contacts and the exchange of scientific information in the 
psychology of mathematics education;  

2. To promote and stimulate interdisciplinary research in the aforesaid area, with the 
cooperation of psychologists, mathematicians, and mathematics teachers; and  

3. To further a deeper and better understanding of the psychological aspects of teaching and 
learning mathematics and the implications thereof.  

 
PME-NA Membership  
Membership is open to people who are involved in active research consistent with PME-NA’s aims 
or who are professionally interested in the results of such research. Membership is open on an 
annual basis and depends on payment of dues for the current year. Membership fees for PME-NA 
(but not PME International) are included in the conference fee each year. If you are unable to attend 
the conference but want to join or renew your membership, go to the PME-NA website at 
http://pmena.org. For information about membership in PME, go to http://www.igpme.org and 
visit the “Membership” page.  
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Preface  
 
On behalf of the 2022 PME-NA Steering Committee, the 2022 PME-NA Local Organizing 
Committee, and Middle Tennessee State University, we welcome scholars to Nashville, Tennessee, 
USA, for the Forty-Fourth Annual Meeting of the International Group for the Psychology of 
Mathematics Education – North American Chapter, held at the Loews Vanderbilt Hotel.  

The goal of PME-NA is to promote the international exchange of research on the psychology of 
mathematics education and to promote an ever-deepening understanding of the psychological aspects 
of teaching and learning mathematics. Psychology, the study of mind and behavior, encompasses 
biological influences, social pressures, and environmental factors that impact how learners think and 
act. As members of PME-NA, it is necessary that we attend both to the contexts in which the teaching 
and learning of mathematics takes place and to the experiences of individual participants, while 
considering the multiple voices, histories, systems, and social structures present in our learning spaces. 
In recent years, our contexts and experiences have been forever impacted by the world-wide COVID 
pandemic and a renewed struggle for civil rights in many of our communities. 

This year’s conference theme, Critical Dissonance and Resonant Harmony, reflects not only the 
time and place that we gather, but also the time and place in which we conduct our academic work. 
Dissonance can be jarring to experience, whereas harmony can be pleasing. We gather in Nashville -  
Music City - which is no stranger to both dissonance and harmony. Walk the streets and you will 
experience both, as vibrations felt in your body or heard in your ear. Look closer and you will see 
both, knitted in the very fabric of our identity. We are not only the site of lunch counter sit-ins, 
Freedom Rides, the final approval for women’s suffrage (the 19th Amendment to the U.S. 
Constitution), the Teens for Equality Black Lives Matter rally, and the Annual March for Black 
Women in STEM, but also The Trail of Tears, countless acts of oppression, and reactionary legislation 
limiting citizen’s rights—most recently those of LGBTQIA+, BIPOC, and Immigrant communities. 
We know that dissonance is necessary for change and liberation, and so has a critical component. We 
also know that harmony occurs when multiple voices and forces join simultaneously to amplify and 
enrich, achieving a resonance that pushes through to the other side and finds a better way. Still, in 
reality, dissonance and harmony cycle, neither seemingly fully formed, and often sharing contiguous 
or overlapping spaces. The PME-NA community will gather in this place in 2022, traveling from 
locations across North America that are experiencing similar dissonances and harmonies. 

It is in this context that we conduct our work in the field of mathematics education, as researchers 
who value the contributions and experiences of each and every person. In preparation for PME-NA 
44, we invited all presenters to reflect on how their work impacts the contexts and experiences of 
members in mathematics learning communities, particularly those who are on the margins of these 
communities, and to address what these reflections mean for their work. Reflection may have included 
consideration of the following questions: How does your work challenge a settled mathematics 
learning status quo? How does your work help to create more socially just contexts for learning and 
teaching mathematics? How does your work have an impact on society more broadly, beyond 
individual mathematics classrooms and school districts? How does your work improve learning 
conditions for each and every mathematics learner? Whose voice does your work center in the 
mathematics learning process? What can be learned from reflecting on this question? This proceedings 
represents the work of mathematics education scholars as they took up this call for reflection.  
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We hope the PME-NA 44 conference provides a communal space for critical reflection and 
conversation on how our individual and collective work contributes to dissonant and harmonious 
movements in our field as it relates to the psychological aspects of teaching and learning mathematics. 
We recognize that what is perceived as dissonant or harmonious varies among cultures and even 
individuals and is by no means universal. And so, we look forward to the opportunities for 
conversation and learning across our international community as we share instances of dissonance 
and harmony that can serve to propel research toward action and change. 
 
This year’s conference will be attended either in-person or remotely by close to 600 researchers, faculty 
members, and graduate students from around the world including Canada, Mexico, Colombia, and 
the USA. Approximately 800 authors are represented by the papers in this volume. Each paper was 
reviewed by multiple referees in a double-blind process. After initial reviews were submitted, Strand 
Leaders reviewed feedback and made selections for papers to include in the conference. Finally, the 
local conference committee made decisions based on reviewer and strand leader feedback and 
constraints of the conference space. The result was an overall acceptance rate of 66% with the final 
papers comprised of 101 research reports, 140 brief research reports, 84 Posters, and 16 Working 
Groups. In addition, we conducted a doctoral consortium in conjunction with the conference during 
which 23 late-stage doctoral researchers engaged with mentors and each other to support their 
research. These scholars presented their in-progress work as posters during our poster sessions.  
 
In 2021, the PME-NA Steering Committee voted to require all working groups wishing to continue 
their work at a subsequent conference to produce a report on their work following the conference. 
Therefore, this proceedings contains a report of work conducted in 2021 along with a proposal for 
the work to be conducted at the 2022 conference for each returning working group. These reports are 
found in Chapter 17. 
 
This conference and publication would not have been possible without the support of many in our 
field: strand leaders who put forth efforts to ensure the quality of the papers selected for the 
conference program, colleagues who supported the local organizing committee as we navigated the 
unchartered territories of planning a conference during a pandemic, plenary speakers who took up our 
vision for the theme,  a Steering Committee which supported us while allowing space for us to follow 
our own vision, and the many scholars who share their brilliant work with our field through this outlet. 
We thank Middle Tennessee State University for supporting our efforts to lead this conference. We 
also thank Samantha Drown and Sarah Johnson for their work in compiling this proceedings.  
 
The local organizing committee hopes that you engage with this research by looking for both 
dissonances and harmonies within these papers that enrich the ways in which your own work can 
continue to support the learning and teaching of mathematics.  
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RE-MEMBERING PLACE: MATHEMATICAL ACTIONS FOR INNOVATIVE, 
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How might mathematics educators recognize discourses as resonating harmonies in their 
practices as researchers? In this paper we share individual experiential narratives guided by 
Ojibway author Richard Wagamese’s Medicine Wheel teachings in the four directions of East 
(humility), South (trust), West (introspection), and North (wisdom). As we journey through 
(re)membering place we offer opportunities for recognizing resonating harmony(ies) and algo-
rhythms in our practices as mathematics education researchers and for engaging with critically 
dissonance discourses and actions. This (re)membering supports relating with each other, 
mathematics, communities, and place in ways that are more sustainable, inter-connected, and 
kincentric. 

Keywords: place and land education, Indigenous perspectives, ecological perspectives, 
mathematics education 

Introduction 
We, Florence, Cynthia, and Jennifer, all mathematics educators and researchers, use Ojibway 

author Richard Wagamese’s (2011) four direction Medicine Wheel teachings to share our 
individual research journeys. We use stories (Clandinin & Connelly, 2002) to re-member and re-
think our individual actions and the ways those individual actions have woven together to 
become collective work. Wagamese’s teachings follow the direction that Earth travels each day. 
Just as humans have said that the start of the day is in the East, Wagamese’s Medicine Wheel 
teachings also begin in the East. This paper is written in the four directions; East, South, West, 
and North. Wagamese’s Medicine Wheel teachings start the section; followed by stories of each 
of the authors. 

East 
THE OLD ONES say that humility is the foundation of everything. Nothing can exist 
without it. Humility is the ability to see yourself as an essential part of something larger. It is 
the act of living without grandiosity. Humility, in the Ojibway world, means "like the earth." 
The planet is the epitome of a humble being, with everything allowed the same opportunity 
to grow, to become. Without the spirit of humility there can be no unity, only discord. 
Humility lets us work together to achieve equality. Humility teaches that there are no greater 
or lesser beings or things. There is only the whole. There is only the great, grand clamour of 
our voices, our spirits, raised together in song. (Wagamese, 2011, p. 9) 

Humility: The Power of Place (Cynthia) 
It’s common for cliffs on Haida Gwaii along Canada’s Pacific northwest coast to receive 

10m high waves, for spruce trees to dance in a southeast storm, and for the ocean to leave 
platters of cockles, clams, crab, and octopi on its beaches when the tide is out. Haida Gwaii is a 
land between sea and sky where the worldview Gin ‘waadluuwan uu gu dil adiidaa “everything 
depends on everything else” speaks to the synergetic relationship between humans and 
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nonhumans, natural and Supernatural Beings. It is a place where “culture” says Haida artist and 
activist Guujaaw “actually is our relationship to land” (Guujaaw as quoted in Jones, 2006 p. 
29). The inlets and shores of Haida Gwaii are nutrient-rich and tempered with warm offshore 
currents feeding a diversity of life. In spring grey whales migrate between their winter breeding 
areas in California and their summer feeding waters in the Bering Sea. From our little log cabin 
on Haida Gwaii’s North Beach, living without electricity or running water, we could see the 
whales along their route, releasing their breath with spectacular spray as they prepared for the 
next dive. 

One spring afternoon out in our 12 ft Zodiac boat, we found ourselves surrounded by a pod 
of grey whales. A kilometre off-shore with no other boats in sight, we shut down the motor as the 
greys circled. Maybe they were curious about who had ventured into their territory. Maybe the 
bottom of our Zodiac looked familiar from a whale’s perspective, but different enough to make 
them curious, take notice, and check us out. Three maybe four barnacled backs rose from the 
water, one flipping a tale wider than the length of our dwarfed boat. Their breath lingered while 
we held our own. 

Without warning one broke from the circle and swam directly toward us. Grey whales can 
reach 15 m (about 50 ft) in length. I imagined this massive being flicking us in the air like a dog 
playing catch with a ball. We sat still, as still and humble as what Atleo calls an “insignificant 
leaf floating in a spring well” (Atleo 2011, p. 98). The power in this moment lay with this whale. 
As the whale slipped smoothly and quietly – planned and precise – under our boat and rose on 
the other side we acknowledged our respect with thanks. And, as if this magnificent animal heard 
us, the whale circled back. Resting its head on the water’s surface, we met eye-to-eye, feeling 
once again the power of this relationship and our place within it. This whale’s gaze and ‘playful’ 
interaction reminded us of our own fragility as visitors in their realm. 

Haida oral stories speak of interactions between humans and nature and Supernatural Beings 
as sharing skins. Under our skins, both human and nonhuman, we are reminded that we are all 
connected, sharing this power of place. 
Humility and Earth (Jennifer) 

“Humility, in the Ojibway world, means ‘like the earth. …[H]umility ... is the foundation 
of everything. Nothing can exist without it.” (Wagamese, 2011, rearranged, p. 9). 

These words which describe the Ojibway world re-mind me of my Chinese grandmother’s 
family name. “Chan” written as Chinese characters 陳 (see also Figure 1) animate familiar 
meanings of place, direction, and temporality to those of Ojibway meanings for East. 陳 means 
earthly place, landscape, ancient, and abundant. 東 as the sun rising from behind the tree is East 
which infers morning but also spring as the first season of the new year. Thus, not only does the 
direction of East locate Earth as place but it also posits Earth as originary and foundational. Just 
as light appears, day breaks night, and from winter comes spring, it is from the East where new 
beginnings and possibilities emerge. 
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Figure 1. Chinese characters for “Chan” 

“Humility, in the Ojibway world, means ‘like the earth. …[H]umility ... is the foundation 
of everything. Nothing can exist without it.” (Wagamese, 2011, rearranged, p. 9). 

Deeper within the layers of Wagamese’s description, I hear the wor(l)ds of Japanese-
Canadian curriculum scholar Ted Aoki. Aoki (2004a) remembers and reminds that the word 
humility is etymologically akin to earth. From humilis meaning “on the ground”, dhghem or 
humus as “earth”, and don as "place" (Humility, 2022), the very word has originated and evolved 
from earth. Humility as described by Aoki (2004a) is “concerned with lived space[s] where 
people dwell communally ... with others [and] earth under the sky.” (p. 300) And just as humility 
comes from humus, Aoki (2004a) remembers and reminds that we humans do too. 

While East marks first light, new beginnings, and starting points, humility calls for 
contemplation of what has come before. Humility makes returning to and reconsidering onto-
epistemologies of place possible. In doing so, it allows for movement and change. Returning 
then is not simply ‘turning around’ or ‘going back’ but ‘turning again’. Further, from the East 
turning again conceptually conjures notions of a turning point or starting anew. 

For me, East signifies the first part of my journey as graduate student. Asked by my 
supervisor why I decided to pursue further studies in mathematics education, I explained to her 
that: “When I am in the mathematics classroom, there are certain things and events I can see and 
theoretically explain through constructivism. However, there are all sorts of other things and 
events I know or sense are happening but all I can do is point to them. I have no means by which 
to describe them yet I desperately want to understand them.” Digging deeper, I was also 
conflicted with the idea that if “WE ARE CONNECTED TO THIS EARTH” (Thom, 2012, p. 2) 
then why is it that school mathematics feels so disconnected. These “things” and “events” were 
just a few of the items on what was becoming an ever-growing list. Many were contradictions I 
experienced between my home life and life lived as mathematics student and teacher. From 
ontologies to epistemologies to cultural discourses to the metaphorical nature of language to 
meanings of place. My hope was that these questions would be the start of a new journey for me. 
A journey that would require me to re(-)turn and explore the place of classroom mathematics and 
if necessary, bring forth possibilities for ‘re-rooting the learning space’ and develop an 
understanding for what it means to ‘mind where children’s mathematics grow’ (Thom, 2012). 
Understanding Humility in Relation to the Boreal Forest (Florence) 

I grew up on a ranger station in what is now called northeastern Alberta. My father was a 
forest officer and grew up in the prairies. My Métis mother was born and raised in the North 
primarily living in a variety of small communities around a huge fresh water lake. The ranger 
station was located on the edge of boreal forest and farmland. A boreal forest is full of deciduous 
and coniferous trees; land that includes muskeg (or bogs), freshwater lakes, rivers, and streams. 
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The land sustains a vast number of animal and plant species - species that also sustain human 
life. I grew up eating “wild meat” such as moose, deer, partridge, ducks, goose, and fish. I grew 
up picking and eating wild berries and learning about some medicines that were available in the 
forest. 

I also grew up being in the boreal forest, learning from my Métis grandparents and from my 
parents about what it means to pay attention to the land. I grew up learning how to ‘find my way’ 
through the forest and learning to pay attention, for example, to the ways in which moss grows 
on trees as you might need the moss to build a fire for warmth. A large part of these early years 
was understanding forest fires. Forest fires were feared and at the same time celebrated. Forest 
fires were feared because of the way that they could impact human life. My father would be 
called away when a fire was spotted in order to begin to work with others on the initial attack; 
hoping that the fire could be contained in order to protect humans and human properties. At the 
same time there was a contradiction because a boreal forest relies on a forest fire for rejuvenation 
and growth. Nutrients are released, seeds are released for some species of trees, and fires open 
the canopy to allow new growth (Natural Resources Canada, 2022). 

It was always fascinating to me to watch the way that a forest ‘rejuvenated’ following a fire. 
The years following a forest fire would mean that we needed to pay attention to reading the land 
in a different way because there would be new growth. You would notice the new jack pine 
seedlings that could now grow because of the fire. We would pay attention to the places that 
fireweed would grow across the burned area as fireweed was often the first ‘new growth’ we 
would see. We would spend time ‘reading’ the changes in the land after a fire and noticing the 
changes in the ways that the animals would live around the land that had been burned. 
Sometimes it would mean hunting in a new place for the moose or deer because the growth of 
the plants had changed because of the fire. 

Often throughout these early years of my life we were taught to live with the forest because it 
was a way to learn about how to ‘survive’ with the forest. Even though we learned a lot about 
reading the land we also learned about respecting the land as the land can be changed quickly 
and dramatically by rain or no rain, fire or no fire, and extraordinary winds. Learning about 
‘surviving’ taught me about humility; I was taught to respect the land, the weather, and the 
species that sustained our family. As I reflect on these early years now, I was learning about 
uncertainty and interdependence of humans and nonhumans living with earth or land. 

South 
TRUST IS THE spiritual by-product of innocence. My people say that innocence is more 
than lack of knowledge and experience, it's learning to look at the world with wonder. When 
we do that, we live in a learning way. Trust, the ability to open yourself to teachings, is the 
gateway for each of us to becoming who we were created to be. All things bear teachings. 
Teachings are hidden in every leaf and rock. But only when we look at the world with 
wonder do the teachings reveal themselves, and trust is also the ability to put those teachings 
to work in our lives. Trust is, in fact, our first act of faith and our first step towards the 
principle of courage that will guide us (Wagamese, 2011, p. 57). 

Trust: Relations Take the Time it Takes (Cynthia) 
As shapeshifters, Supernatural Beings appear in Haida stories told for generations. They’re 

carved into poles, masks, and jewelry, and painted on bentwood boxes, woven into cedar hats, 
and tattooed on bodies. I’ve learned from Haida Elder Gwaaganad Diane Brown that it is here, 
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Haida Gwaii, where multispecies kinship between human and nonhuman, natural and 
Supernatural is honored – where, for example, “we treat the ocean as our relative.” 

Supernatural Being Kugann Jaad (Figure 2) appeared for Haida artist Billy Yovanovich when 
working on his ideas for mathematics education on Haida Gwaii. It is Kugann Jaad, says Billy, 
who is known for her ability to restore balance and equity “with her strength, wisdom, and vision 
she guides us, speaking with both her hands and her eyes with knowledgment of what is to 
happen, what will happen, or even provide resources to meet challenging situations (Nicol et al., 
2020, p. 17-18). 

 
Figure 2. Kugann Jaad by Billy Yovanovich 

Kugann Jaad for me helps tell the story of working with Haida communities, first as a 
beginning teacher, and then for the past 17 years as an academic to connect community, culture, 
and mathematics within the culture and place of Haida Gwaii. The task, when first started, 
seemed challenging but doable: work with six teachers (Indigenous and non-Indigenous; 
elementary and high school; from the north and southern parts of the Island; beginning and 
experienced) and the Principal of Indigenous Education to create practices and resources that 
ground and strengthen relationships between people, mathematics, and place. Teachers with 
more than 20 years of experience found themselves questioning their own assumptions, 
challenging what they noticed as deficit perspectives, and recognizing the complex work needed. 
We were excited about these modest results and humbled by the time it took. With community 
we took two years to develop a common workable set of questions that we called the PAIRS 
approach to highlight place, relationships and Indigenous storywork with mathematics, and 
another three years to develop a book as a collection of community Elders’ stories alongside 
mathematical adventures.  

Our efforts seemed to move forward and backward at the same time. Off-Island teachers 
typically left the Islands within 5 years, new teachers joined the project, and the work would 
begin again. Kugann Jaad loves a good puzzle, and as shapeshifter can slip into the skins of 
others to lend a hand when needed. Perhaps it was Kugann Jaad who helped us accept that the 
strength of this work was felt not within a couple years, or 5 years, or even 10. It came with 
intergenerational teachings – when for instance I found the daughter of one of my former Haida 
students in my university teacher education mathematics class. I had taught her mom, her 
aunties, and some of her uncles, all of whom, I have since learned, shared with her their good 
stories of learning mathematics in my class many years ago. Now here she was in my university 
class eager and ready to embrace mathematics as a new teacher. Kagann Jaad reminds us to trust 
the time some learnings take. 
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Trusting Wonder (Jennifer) 
“[O]nly when we look at the world with wonder do the teachings reveal themselves" 

(Wagamese, 2011, p. 57). 
Wonder as Wagamese (2011) explains allows for an openness to the world, opportunity to 

receive its teachings, and inspires hope as well as promise to “live in a learning way” (p. 57). For 
me, his teachings evoke insights and sensibilities which resonate with 詩 (see also Figure 3). 
Pronounced “shi” in Japanese and Cantonese, 寺 can be interpreted as “tera (sic) [or] 
[E]arth/measure [as] ‘temple,’ a sacred place where one may be allowed to hear the true measure 
of earth beings, mortals in the nearness of divinity.” (Aoki, 2004d, p. 374) 言 is “to speak/to 
sound [w]ithin the ‘mouth’ that sounds forth or sings, over layered with three echoes and a 
lingering note.” (Aoki, 2004d, p. 374). 詩 expresses reverence and awe for Earth as place and 
teacher. Moreover, given the opportunity to learn by “listening to the land” (Glanfield et al., 
2021, p. 258), “to hear .... the inspirited beat of earth’s rhythm” (Aoki, 2004d, p. 374-375) as 
“land-guaging algo-rhythms” (Glanfield et al., 2021, p. 258) opens possibilities for humans to 
speak and sound them forth into the world so they may endure. In trusting wonder, I am learning 
that “to [hear] and read the (con)texts of the natural world intimately and openly implies that 
‘language … is not a specifically human possession, but is a property of the animate earth, in 
which we humans participate’ (Abram, 2010, p. 11)” (Thom, 2019a, p. 252). 

 
Figure 3. Chinese characters for “shi” 

Doing so prompts me to revisit Alan Bishop’s “assertion that all human cultures ‘do’ 
mathematics—that is, count, measure, design, play, locate, and explain (Bishop, 1988)” (It’s 
Spring, 2022, p. 6). Here it is as if in its resurfacing, Bishop’s assertion asks to be re(-)turned. 
Wondering as Wagamese does and as 詩 implies, I wonder: 

[W]hat [inspirited algo-rhythms might be heard if] such a focus [for mathematics education] 
recognizes not only human activities as mathematical but emphasizes ways of knowing, doing, 
and being which are inherently grounded in and come from the land and Earth [such as when]: 

~ Sun and moon rise (and set) 
~ Seasons change 
~ Spiders web 
~ Raindrops dance upon the water’s surface 
~ Maple seedlings spin and spiral from tree to ground 
~ Bat and fish and tree and pea tendril ... just “know” where they are and how to get to where 

they need to be (It’s Spring, 2022, p. 6) 
~ Humpback whales work together to net and feed. 
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What do I Trust (Florence) 
The south direction in my life are the years that I was in formal postsecondary education. I 

first of all began to not trust as I was provided with implicit and explicit messages about 
silencing the teachings I had with my family in relation to the boreal forest. I wanted to be a 
mathematics teacher so when I finished high school I entered university to study mathematics 
first and then education second. Through those first two degrees I was taught a lot of different 
theories and practices. Theories about ways that children learned, theories about why humans act 
the way they do, theories about relationships, theories about the ‘best’ way to teach mathematics, 
theories about the best ways to assess student learning, and theories about the actions of the 
‘best’ teachers. It felt like the years of formal education were a different world as I did not know 
or could not ‘see’ the ways in which the interdependencies that I learned about in my early years 
belonged in this world of theories that suggested an “if then” philosophy. That is, if x action is 
taken then y event will happen. This was contradictory to the philosophy that I grew up with as I 
was learning to ‘read’ the land, a philosophy that paid attention to interdependence and 
relationships. 

As I began my teaching career I felt like I needed to implement all that I learned through my 
formal education. I often think about how, in my first 1.5 years of teaching, I spent hours and 
hours reviewing the “cumulative files” of each youth that were registered in my mathematics 
classes prior to the beginning of each school term. I did this because I believed that if I ‘knew’ 
about the youth in my classes then I could plan the ‘best’ program for each. I think about how I 
would spend hours and hours to make sure I could solve every mathematics problem in the 
assignments I planned to give because I thought that the “best” mathematics teacher was the 
mathematics teacher that had all of the correct answers. I think about how I would plan well in 
advance and how I wanted to keep up with my teaching colleagues in order to make sure I 
covered the curriculum in the same time frame. I wanted to quit teaching after those first 1.5 
years because it was not anything like I had imagined. 

As I began to learn about the youth that were with me in the classroom, I started to notice 
that the “cumulative files” didn’t really tell me anything about who the youth were as 
individuals. The “cumulative files” often shared information about what the youth could not do 
and rarely did those notes reveal what the youth could do. I began to wonder if I was thinking 
about the youth in a deficit way.  I began to realize that all of my planning ahead did not pay 
attention to what was happening with each collection of humans in any one class. So while 
planning ahead was important I also noticed I had to be prepared for the different observations 
from the youth in each class. I realized that my planning ahead did not recognize the 
interdependence of a classroom. I began to realize that questioning my practices was moving me 
away from the predominant “if then” philosophy of my university years and moving closer to the 
“interdependence and relationship” philosophy of my early years.  

West 
ON THE MEDICINE Wheel, introspection is the "looks within place." Humility and trust 
offer many teachings, and introspection is a means of seeing how those apply to our lives. It's 
a place of vision. It's a resting place where the story, the song each of us has created up to 
this moment can be inspected and those things deemed unnecessary be let go. It's a place of 
courage, because the hardest place to look is within. Many people stop here, deterred by the 
trials of the journey and the sudden hurts that sometimes make life hard. But introspection is 
meant to bring us to balance. It is the place where all things are ordered, where all things ring 
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true at the same time. Balance allows us to move forward, and when we do, the journey 
becomes wondrous again by virtue of our ability to see the whole trail. (Wagamese, 2011, p. 
107). 

Introspection: What are you? (Cynthia) 
At a community potlatch feast in a northern BC Indigenous community a young girl sitting 

next to me turned and proudly declared her heritage: “I’m Nisga’a!” Then, with what seemed an 
obvious question to her, and looking straight at me asked, “What are you?” 

What am I? I could answer who am I? or Where are you from? But what am I? It’s taken a 
few years for me to learn how to respond to that question. Growing up as a non-
Indigenous/settler in the Kootenay territory of southern British Columbia, in a predominantly 
white Euro-centric community, my heritage was rarely questioned and certainly invisible. We 
were taught nothing about the system of residential schools, lasting for over 160 years, involving 
more than 150,000 children in an education that offered more abuse than teaching. How is it 
possible that such atrocities occurred but then were erased from Canadian education? Even while 
I taught on Haida Gwaii these experiences were rarely spoken or only whispered. 

My work with rural and Indigenous communities continues to deepen my own self-gaze to 
“disrupt molded images” (Dion, 2007), and settler colonial logics (Donald, 2012). This involves 
working with communities toward building relationships with land through personal experience, 
drawing upon stories and ancestral knowing through listening to Elders, and (re)membering 
respectful and responsive mathematical learning environments by connecting math, community 
and culture. 

Through the teachings of Haida Elder Gwaaganad and Haida artist/activist Guujaaw I’m 
learning more about “what” I am. Gwaaganad spoke at our project meetings of the need to treat 
the ocean as our relative, as a member of the family. The ocean is neither an object, nor unending 
resource, nor even something that needs protection. The ocean is a relative, the ocean is kin. 
Similarly, Guujaaw spoke of the importance of ancient cedar trees to the Haida people. If “the 
trees are gone [due to industrial logging]” said Guujaaw, “then we’re just like everyone else.” 
The trees and the land including the ocean and waterways define what it means to be Haida.  

Learning about relationships with the ocean and forests, as relatives, opened pathways for 
listening to the possibilities the land and waterways offer as teachers. Gwaaganad and Guujaaw 
led us in (re)membering long views of time and experiences of food harvesting with the 
changing ocean life, changing harvesting practices, and the revitalizing of ancient pedagogies of 
place. Opening myself up to embrace these kinds of obligations to the land/ocean, to be 
respectful and responsible for caring for the non-human world brings me closer to understanding 
what I am. 

What am I? I’m still not sure I have a full response to this question, but I do know that it 
speaks to a more kincentric (Salmón, 2001) way of being, one that supports living in the world in 
more relational and emergent ways.  
Simultaneous Complementarities (Jennifer) 

"Introspection... ‘looks within place.’ ... [A] place of vision... where ... the song each of us 
has created up to this moment can be inspected .... [W]here all things ring true at the same time.” 
(Wagamese, 2011, p. 107). 

As I sit, “keeping watch” (Thom, 2012, p. 363), reflectively circling back and reflexively 
circling forth, I can appreciate and more deeply understand the onto-epistemological meanings of 
place that connect and (in)form my journey as mathematics education researcher. Now from the 
West, it is my Chinese grandfather’s family name 譚 “Tàahm” and my surname “Thom” that 
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appears, inviting my further contemplation. Similar to 詩 or “shi”, 言 depicts a mouth which 
sounds or sings forth, echoes, and holds a lingering note. 覃 translates as “early west.” (see also 
Figure 4). (How curious it is that 譚 foretells my grandfather’s journey from Hoiping China to 
Vancouver Island, singing forth as it echoes my family’s history in the “early west” during the 
turn of the 20th century onward.) 

 
Figure 4. Chinese characters for Tàahm/Thom 

Looking again, the Chinese characters for West bare other meanings which suggest 
reflection. For example, “dusk” as the time of day when the sun disappears below the horizon 
and the season of autumn. Both resonate with Wagamese’s description of West as “a resting 
place” and “a place of vision” that affords “look[ing] within place” and “introspection” 
(Wagamese, 2011, p. 107). Perhaps more intriguing is how the idea of “early west” presents as 
“all things ring[ing] true at the same time.” (Wagamese, 2011, p. 107). That is, sunrise and 
sundown; early or soon and late, morning and evening; even beginning and end. And as well, 
while autumn signifies a time of ripening, harvest, and plenty, it is also a time of decay, death, 
and decline. 

These ‘opposites’ which could be viewed as contradictory can also been understood as 
wonderous spaces in which to “see the whole trail” (Wagamese, 2011, p. 107). Not as distinct or 
separate parts that compete with one another but in the harmonious and discordant ways they 
come together to dialectically (in)form “a space of conjoining and disrupting, indeed, a 
generative space of possibilities, a space wherein in tensioned ambiguity newness emerges.” 
(Aoki, 2004b, p. 318). So understood, dwelling within such edgy yet fecund spaces inspires my 
inquiry and occasions my learning into: how STEM and the cultural commons (Bowers, 2016) 
enable eco-centric intelligences within communities (Thom, 2019b); conceptualizing modern 
and ecological discourses in ways other than an impasse (Thom, 2021); alternative meanings and 
purposes for STEM within Indigenous and ecological perspectives (Glanfield et al, 2021); 
dynamics of mathematical ideas as individual and collective phenomena (Thom, 2012); 
mathematical drawings as act and artifact (Thom & McGarvey, 2015); mathematical perception 
and representation (Thom et al., 2021); and bodily experiences and mathematical conceptions 
(Thom, 2017, 2018; Thom et al., 2015; Thom & Hallenbeck, 2021; Thom & Pirie, 2002; Thom 
& Roth, 2011). 
Indigenous Knowledge Systems and University Teachings (Florence) 

I turn to university and to teachings of Indigenous knowledge systems in the west. After 
years of teaching I return to study a graduate degree in educational administration as I want to 
learn more about schools and how schools and school systems come to see youth as deficit. I 
imagine that I will become a school administrator that will make a change in the school system. I 
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never become a school administrator. When I finish the graduate degree I begin to work with the 
provincial ministry of education in developing and implementing provincial mathematics 
programs and developing student assessment materials. I also began to notice that who I am as 
an Indigenous person made a difference when I was working with communities across Northern 
Canada around mathematics programs. I remember being invited to sit with Indigenous 
community members in the northwestern part of the Northwest Territories, outside of the normal 
mathematics program activities, when the community learned I was Métis. At another 
community in the Northwest Territories an Elder talked with me about how the number system 
in the Dene dialect was not a base 10 system when she learned I was Métis. The Elder told me 
about how numbers were important in communities traditionally but that it was about ‘enough’ 
and not always needing ‘more.’ These were ideas that I had not previously learned. Indigenous 
community members would tell me how they were working to have Indigenous languages 
present within schools. I was asked about the languages that my family spoke and I began to 
inquire within my family about the Indigenous languages that were spoken, as I could not 
remember Indigenous languages being spoken. 

What I was learning through my living is that the predominant “if then” philosophy so 
evident in much of my formal education and the policy work was being replaced in my living 
with the “interdependent relational” philosophy of my early years. As I entered into a PhD 
program I searched for theoretical frameworks and methodologies that more closely aligned with 
an “interdependent relational” philosophy. The searching was not easy; but I had the opportunity 
to learn about narrative inquiry (Clandinin & Connelly, 2004) and an enactivist view of 
cognition (Maturana & Varela, 1992; Varela, Thompson & Rosch, 1991). These views ‘aligned’ 
with what I was learning from Indigenous knowledge holders as I was making sense of doctoral 
studies and aligned with an “interdependent relational” ontological stance. 

North 
TO BE TRULY wise is to understand that knowing and not knowing are one. Each has the 
power to transform. Wisdom is the culmination of teachings gleaned from the journey around 
the circle of life, the Medicine Wheel. Circles have no end. We are all spirit, we are all 
energy, and there is always more to gain. This is what my people say. When the story of our 
time here is completed and we return to spirit, we carry away with us all of the notes our 
song contains. The trick is to share all of that with those around us while we're here. We are 
all on the same journey, and we become more by giving away. That's the essential teaching 
each of us is here to learn. (Wagamese, 2011, p. 151). 
Our journeys traveling through Wagamese’s Medicine Wheel teachings, East (humility) to 

South (trust) to West (introspection) bring us to North (wisdom) and our questions of what this 
journey means for mathematics education. We are aware of the colonizing role mathematics and 
mathematics education has played and continues to play as “one of the most powerful weapons 
in the imposition of Western culture … [and] a secret weapon of cultural imperialism” (Bishop, 
1990, p. 51). And so, we ask: How does (re)membering place give rise to discourses and actions 
that are both resonating harmonies and critically dissonant in mathematics education? How can 
(re)membering place help challenge more dominant ways of being in relation – from 
exploitation, violence and oppression over land, animals, humans, language and cultures 
(Calderon, 2014; Seawright, 2014) to more intimate experiences of dwelling together humans 
and more-than-humans for the wellbeing of all (Abram, 2011). 
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We acknowledge calls in the literature to re-imagine mathematics education to address 
current global challenges (e.g., Adams, 2018; Barwell, 2018; Glanfield et al., 2019; Nicol et al., 
in press; Wolfmeyer et al., 2017). For instance, critiques of educating for STEM, are gaining 
attention in teacher education (Khan, 2020; Nicol et al., 2020), curriculum (Wolfmeyer et al., 
2018a; Thom, 2021) and communities (Thom, 2019b; Wiseman et al., 2020); design (Glanfield 
et al., 2020), interdisciplinarity (Yaro, Amoah & Wagner, 2020), social justice (Davis & Renert, 
2013; Wolfmeyer et al., 2018b); and mathematical formatting (Barwell, 2018; Skovsmose, 
2021). 

In addition, there are calls to address issues such as equity and the need to rehumanize 
mathematics education (Guitérrez, 2017, 2018); to teach and assess in ways that build upon the 
strengths of students from marginalized groups and communities (Aguirre & del Rosario Zavala, 
2013; Celedón-Pattichis, Musanti & Marshall, 2010); and to recognize intersectionality (Bullock, 
2017; Gholson 2016). 

Yet, with Wagamese (2011), we have traveled the four directions to offer narratives for 
mathematical ways of being that support a more holistic engagement with human and natural 
environments. Where place, and land, is teacher. 

In the Chinese language:  
wisdom is inscribed in a family of words: human, humility, humus, and humor, all 
etymologically related as they are, too, in our language. The Chinese characters of a wise 
leader read sei-jin 聖人–a person who, indwelling with others 人, stand between heaven and 
earth 土, listening 耳 to the silence, and who, upon hearing the wor[l]d, allows it to speak 口 
to others so others may follow. (Aoki, 2004c, p. 214). 
What kind of a place is this? A place where there is room for words like humor, human, 
humus, humility to live together. In such a place, to be humiliated is to be reminded that we 
are communally ecologic, that the rhythmic measures of living [with] Earth come forth 
polyphonically in humor and human and humus and humility. (Aoki, 2004a, p. 300) 
We end as we began with questions … 

1. What are the conditions that make possible ethical and rigorous engagement across 
communities in resonant harmonies and critical dissonances that can help us move 
together towards improved relationships and wiser futures, as we face unprecedented 
global and local challenges? 

2. What are some guidelines, approaches, and practices for ethical and respectful 
engagement with communities that can help us to work together in holding space for each 
other human and more-than-human in the place of mathematics education?  

3. How do we learn together, to co-construct and learn to be with each other, the land and 
our more than human kin, in ways that are compassionate, sensory, interconnected, and 
with humility, courage, wonder and trust in caring for life over the long haul? And what 
is the role of mathematics education in this? 
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The development and use of learning trajectories is a body of research that has made enormous 
contributions to the field of mathematics education, offering insight into the teaching and 
learning of topics at all levels. Simultaneously, the work of building learning trajectories can 
benefit from explicitly adopting an anti-deficit stance, incorporating ways to center student 
voices from an asset-based perspective. In this paper I propose two related constructs to support 
this work: decentering and second-order models. In decentering, researchers work to set aside 
their own knowledge to understand students’ reasoning as viable. This can support models of 
student mathematics that position student thinking as rational, powerful, and productive. I 
provide one example of the work of decentering and discuss ways to build learning trajectories 
that emphasize students’ strengths and competencies.  

Learning trajectories research has played a prominent role in the field of mathematics 
education, and it continues to exert influence on the teaching and learning of mathematics. In a 
recent plenary address to PME-NA, Steffe (2017) remarked that the construction of learning 
trajectories is “one of the most daunting but urgent problems facing mathematics education 
today” (p. 39). The influence of this sphere of research is evident in funding priorities at the NSF 
and the IES, in special journal issues (Duncan & Hmelo-Silver, 2009), in topics conferences 
(e.g., the learning trajectories panel held at the VARGA 100 Conference in 2019), and in special 
reports (Daro et al., 2011; Taguma & Barrera, 2019). For instance, the National Research 
Committee (NRC) issued a special report in 2009 identifying a set of goals for young children 
based on learning trajectories, which ultimately led to the use of learning trajectories as a 
foundation for the Common Core standards in mathematics (Clements et al., 2019). We also see 
the prominence of learning trajectories research for PME-NA as reflected in plenary paper topics 
(e.g., Battista, 2010; Confrey, 2012; Sarama, 2018; Steffe, 2017).  

Researchers have defined and theorized learning trajectories in a variety of ways. Simon 
(1995) initially coined the term “hypothetical learning trajectory” to describe “the learning goal, 
the learning activities, and the thinking and learning in which students might engage” (p. 133). 
Clements and Sarama (2012) described a learning trajectory as a depiction of students’ thinking 
and learning in a specific mathematics domain and a “related, conjectured route through a set of 
instructional tasks designed to engender those mental processes or actions hypothesized to move 
children though a developmental progression of levels of thinking” (p. 83), and Confrey and 
Maloney (2010) described a learning trajectory as a progression of cognition that represents 
ordered, expected tendencies developed through empirical research aimed at identifying the 
likely steps students follow. There is variation in the degree to which researchers characterize 
learning trajectories as being (a) connected to particular task sequences, (b) influenced by 
specific teaching actions or other contextual factors, and (c) depictions of strategies, skills, or 
performances versus concepts and operations; for a more expanded discussion of these 
differences, see Battista, 2010, or Ellis et al., 2014. For my work, I have found Steffe’s (2012) 
characterization to be particularly useful. He described a learning trajectory as a model of 
students’ initial concepts and operations, an account of the observable changes in those concepts 
and operations as a result of students’ interactive mathematical activity in the situations of 
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learning, and an account of the mathematical interactions that were involved in the changes. I 
consider task sequences to be a part of mathematical interactions, but the emphasis is on the 
interactions themselves, including particular teaching moves, students’ activity and conversation 
with one another, and students’ interactions with tools, artifacts, and representations. 

As a body of research, learning trajectories have made enormous contributions to the field. 
They have offered insight into major milestones of students’ conceptual development for a 
variety of topics, including measurement (Battista, 2010; Clements & Sarama, 2009; Sarama et 
al. 2011), composition of geometric figures (Clements et al., 2012), fractions (Maloney & 
Confrey, 2010; Steffe, 2012b; Steffe & Olive, 2010; Wright, 2014), early algebra (Blanton et al., 
2015; Hackenberg & Lee, 2015), geometry (Fitri & Prahmana, 2020), function (Ellis et al., 2016; 
Fonger et al., 2020), and probability (Rahmi et al., 2020; Wijaya & Doorman, 2021), among 
others. Learning trajectories research informs not only standards development, but also 
curriculum, pedagogical decision making, teacher noticing, and professional development 
(Clements, 2007; Confrey et al., 2014; Hackenberg & Sevinc, 2022; Liss, 2019; Meyers et al., 
2015; Suh et al., 2021; Steffe, 2004). However, this body of research has also weathered 
critiques. These critiques include concerns about an overfocus on tasks, cautions about the need 
to better attend to variation in students’ progression, scrutiny of the basis for the construction of 
learning trajectories, and calls to more explicitly address equity and inclusion. 

An overfocus on tasks can occur when learning trajectories offer only task sequences paired 
with learning goals, without attending to the teaching actions and other contextual factors that 
are important for supporting students’ development. Relatedly, learning trajectories can be 
construed as generalizable or transportable from one situation or context to the next, as if 
students, teachers, classrooms, and cultures were interchangeable. It is important to recognize 
that trajectories developed in one context may not always appropriately depict students’ learning 
in a markedly different context. Additionally, not all students will progress in the same way 
throughout any given trajectory. Learning is more individualized, context-dependent, and 
idiosyncratic than what could ever be depicted in a neat, ladder-like sequence. Certainly, many 
researchers who construct learning trajectories are aware of these constraints. For instance, 
Clements and Sarama (2012) wisely reminded the reader that their task sequences are not 
necessarily the only or even the best path for learning and teaching, but are instead merely 
hypothesized to be “one fecund route” (p. 84). Nevertheless, learning trajectories have, at times, 
been interpreted in overly broad or simplified ways.  

A more central issue that I would like to tackle in this paper is the models that constitute the 
basis of learning trajectories. In particular, it is worth considering the affordances and constraints 
of these models for developing and using learning trajectories to highlight students’ 
competencies. In order to do so, I now turn to a consideration of first-order and second-order 
models, advocating for the use of second-order models to advance an asset-based perspective. 

The Potential Pitfalls of Building Learning Trajectories from First-Order Models 
Learning trajectories that are built on the foundation of the researcher’s understanding of the 

discipline are based on what we call first-order models (Steffe & Olive, 2010). First-order 
models, or first-order knowledge, are the models that one constructs “to order, comprehend, and 
control his or her own experience” (ibid, p. xvi). There is robust evidence of reliance on 
researchers’ first-order knowledge of mathematics in learning trajectories research. For instance, 
Clements and Sarama (2012) described a hypothetical learning trajectory as one involving 
conjectures about a possible learning route that aims at significant mathematical ideas, and a 
specific means to support and organize learning along this route. Those mathematical ideas are 
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the researcher’s ideas: “The trajectory is conceived of through a thought experiment in which the 
historical development of mathematics is used as a heuristic” (p. 82). To offer a few other 
examples, Confrey and colleagues (2014) used the term learning trajectory to refer to “clusters 
and sequences of standards and their related descriptors” (p. 720), Baroody et al. (2022) depicted 
the goals of a learning trajectory to be based on “the structure of mathematics, societal needs, 
and research on children’s thinking about and learning of mathematics” (p. 195), and Andrews-
Larson et al. (2017) described their hypothetical learning trajectory as content-specific 
documentation of common milestones and learning environments supporting students’ 
progression across those milestones. Certainly, not all studies reporting on learning trajectory 
development conceive of learning trajectories in this manner. For instance, Confrey (2006) 
underscored the importance of the learner in guiding this work, emphasizing the centrality of 
students’ voices and disciplinary perspectives, and others have published learning trajectories 
that reflect this aim (e.g., Fonger et al., 2020; Steffe, 2012; Steffe & Olive, 2010). Nevertheless, 
there remains a strong emphasis on learning trajectories that are based on researchers’ own 
mathematics as starting points. 

Building learning trajectories from first-order knowledge can offer important affordances. 
Such trajectories reflect the researcher’s nuanced, in-depth understanding of the relevant content 
and key learning goals, as well as research-based knowledge of how to support student learning. 
At the same time, trajectories developed from first-order knowledge may also position students 
in terms of how they measure up against researchers’ knowledge of the discipline. Moreover, this 
framing runs the risk of depicting students in terms of falling short. Adiredja (2019) 
characterized this stance as “epistemological violence”, particularly towards minoritized students 
and students from marginalized communities, when the research we conduct positions students’ 
knowledge as inferior or problematic. Furthermore, such a stance centers the perspective of the 
expert rather than that of the student. Certainly, many thoughtful scholars are careful to consider 
these issues in both their construction and use of learning trajectories, emphasizing the potential 
of learning trajectories to be asset-based models (e.g., Clements & Sarama, 2012; Hunt et al., 
2020; Meyers et al., 2015; Suh et al., 2021). There is nothing inherent in a learning trajectory that 
requires it to be constructed as a deficit-based tool. Nevertheless, learning trajectories built from 
first-order models may fail to identify, sufficiently explore, or acknowledge the competence and 
brilliance of student thinking. In fact, as a field we run the risk of learning trajectories being used 
to bolster deficit stances towards minoritized and marginalized students, particularly when the 
trajectories over-privilege formal language, consistency in understanding, or straightforward and 
direct change in understanding (Adiredja, 2019). Adiredja pointed out that it is not that these 
mathematical goals are bad, but rather, an inflexible privileging of such goals can interact with 
deficit master-narratives to devalue the mathematical sensemaking of students, particularly 
students of color. 

Learning trajectories built from first-order knowledge can also run the risk of encouraging 
teachers and other stakeholders to use them in a manner that places students on a continuum, 
with some positioned as more advanced and others positioned as deficient. Such an emphasis is 
reminiscent of the studies focused on achievement gaps, which allow researchers to 
“unconsciously normalize, the ‘low achievement’ of Black, Latina/Latino, First Nations, English 
language learners, and working-class students without acknowledging racism in society or the 
racialization of students in schools” (Gutiérrez, 2008, p. 359). Moreover, this treatment of 
learning trajectories may miss important nuances, not only about student thinking and reasoning, 
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but also about the ways in which students may shift from one understanding to another based on 
complex, interrelated factors.   

What, then, is the alternative? Researchers can instead psychologize students’ mathematics 
by constructing second-order models, which are the hypothetical models observers construct of 
their students’ knowledge in order to explain their observations of students’ states and activities 
(Steffe & Olive, 2010). They are referenced to the researcher’s first-order mathematics, as well 
as the researcher’s conceptions and interpretations of the language and actions of students. These 
second-order models are sometimes referred to as the mathematics of students; students’ first-
order models (their own models of mathematics) are referred to as students’ mathematics (Steffe, 
2017).  

Building Learning Trajectories from Second-Order Models 
In building learning trajectories that are elaborations of second-order knowledge, we concern 

ourselves with identifying the mathematics of students and elaborating students’ mathematical 
concepts and operations. I consider these learning trajectories to be coproduced by students and 
researchers (Steffe, 2012). Although initial hypothetical learning trajectories may be informed by 
a researcher’s first-order mathematical knowledge, in combination with their knowledge of 
student thinking, these trajectories are nascent, ill-formed, and flexible. The learning trajectories 
that are consequently built out of teaching actions with students are accounts of students’ initial 
concepts and operations, an account of the observable changes in those concepts and operations 
as a result of teaching and learning actions, and an account of the teaching and learning actions 
that led to the changes. 

Building learning trajectories as second-order models encourages, or perhaps even requires, a 
different epistemology of mathematics, one that deviates from Western naïve realism traditions. 
Drawing on Piaget’s epistemological beliefs, von Glasersfeld (1982) wrote that “The cognitive 
organism is first and foremost an organizer who interprets experience and, by interpretation, 
shapes it into a structured world” (p. 612). This one sentence conveys a radical departure, as von 
Glasersfeld put it, from traditional ideas of not only knowledge, but of reality itself. Knowledge 
is not a more or less accurate representation of reality. We construct our conceptions of reality 
through perception, not directly, and we cannot maintain a belief about knowledge being a 
reflection of reality by simply acknowledging that our reflection may not always be very 
accurate. This is not to say that von Glasersfeld denied reality; rather, he considered it to emerge 
only through bumping up against constraints. From this perspective, it does not make sense to 
judge knowledge based on its accuracy; in fact, this would be impossible, because it would 
require comparing one’s knowledge to an independently existing reality and judging the 
closeness of the match. How can any human do this without direct access to that reality? Instead, 
knowledge is successful if it is viable, i.e., when it is not impeded by constraints.  

Within this framing, there is no such thing as a mathematics that resides outside of human 
experience. The very concept of the second-order model is based on an epistemology that 
considers mathematics to be a product of the functioning of human intelligence. Students’ 
mathematics is the mathematics. Certainly, we can compare our second-order model of the 
mathematics of a student to our first-order model of our own mathematics. In doing so, it is 
productive to understand that there are two mathematics, and both are legitimate. This requires a 
rejection of the Platonist knowledge traditions that frame mathematics as universal and objective. 
It also requires one to position students’ ways of knowing and thinking as rational, rather than 
inferior when compared to standard strategies, procedures, and conventions (Louie et al., 2021). 
As L. Steffe explained, “students are ‘never wrong’ even though their thinking may not appear as 
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viable with respect to certain situations or ways of thinking.  Mistakes are always an observer’s 
concept” (personal communication, October 5, 2022). Louie and colleagues argued that a failure 
to position students’ reasoning as legitimate can discourage teachers from attending closely to 
unconventional ways of thinking and seeking to understand them, much less valuing or inviting 
them. I argue that this can also be true of researchers’ treatment of students’ ideas. In contrast, if 
we understand that students’ mathematics is the mathematics, then we will be compelled to take 
students’ reasoning and competencies as the starting point for building any learning trajectory.  

One way to build second-order models is through the process of conceptual analysis, which 
is a process guided by the question, “What mental operations must be carried out to see the 
presented situation in the particular way one is seeing it?” (Steffe, 2017, p. 78). Thompson and 
Saldanha (2000) described conceptual analysis as articulating the conceptual operations that, 
“were people to have them, might result in them thinking the way they evidently do” (p. 315). 
Engaging in conceptual analysis draws on a researcher’s ability to decenter, and can support the 
development of the epistemic student. Below I discuss each of these constructs in turn.  
Decentering 

Piaget (1955) introduced the idea of decentering to characterize the actions of an observer 
attempting to understand how an individual’s perspective differs from their own (Teuscher et al., 
2016). Piaget developed this idea to describe an aspect of a child’s development: when a child 
learns to decenter, they begin to abandon egocentrism and develop the capacity to consider 
another’s perspectives, thoughts, and feelings (Piaget & Inhelder, 1967). Steffe and Thompson 
(2000) then extended Piaget’s construct to characterize a teacher’s stance towards a student, 
particularly in terms of a teacher’s ability to adjust their actions in order to understand a student’s 
thinking.  

Arcavi and Isoda (2007) described decentering as:  
the capacity to adopt the other’s perspective, to ‘wear her conceptual spectacles’ (by keeping 
away as much as possible our own perspectives), to test in iterative cycles our understanding 
of what we hear, and possibly to pursue it and apply it for a while. Such a decentering 
involves a deep intellectual effort to be learned and exercised (p. 114). 

Decentering is a stance that attends to both mathematical thinking and social interactions. It 
entails interacting with students reflectively, in a conscious attempt to set aside one’s own 
knowledge to understand a student’s reasoning as viable (Thompson, 2000). This reflective 
stance towards interactions with students is crucial for creating viable second-order models, and 
such efforts are hampered if a teacher – or a researcher – does not make concerted efforts to 
differentiate the mathematics of students from one’s own mathematics. Steffe and Ulrich (2020), 
in distinguishing between responsive / intuitive interaction and analytic interaction, described the 
latter as a process of stepping out of analyzing students’ thinking in ongoing interaction. All of 
the researcher’s attention is absorbed in trying to think like the students, and produce and 
experience mathematical realities that are intersubjective with their own first-order models.  

If researchers do not decenter, students’ thinking and reasoning may not be considered 
worthwhile models of the environment in their own right, and instead may be positioned only in 
relation to standard models (i.e., the researcher’s models) of mathematical knowledge. The 
construction of learning trajectories that are not a consequence of decentering may then position 
students as falling short, with insufficient attempt to understand or model students’ thinking as 
viable, powerful, and potentially productive, even in times when it deviates from canonical 
mathematics. In contrast, a decentering researcher “always assumes that a student has some 
viable system of meanings that contribute to her or his actions” (Teuscher et al., 2016, p. 439). 
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Teuscher and colleagues went on to point out that the ideas of correct versus incorrect become 
largely irrelevant beyond informing one’s future actions. This is not to suggest that correctness is 
unimportant. Rather, when engaged in the hard work of decentering, correctness is not a notion 
that contributes utility to building second-order models. A student does not position their own 
knowledge as incorrect, and decentering means seeing the world with the student’s mathematical 
eyes. 
The Epistemic Student 

Hackenberg (2014) defined an epistemic student as an organization of schemes of action and 
operation that undergo change over time. The epistemic student is a model, one that is composed 
of the ways of operating common to all students at the same level of development “whose 
cognitive structures derive from the most general mechanisms of co-ordination of actions” (Beth 
& Piaget, 1966, p. 308). I see the epistemic student as a useful model of characteristic 
mathematical activity that is developmental, generalized, and dynamic (Ellis, 2014). It is an 
abstraction (Piaget, 1970), meant to explain some ways of operating that we suspect may be 
common across students. 

The epistemic student is a helpful construct because students who share initial concepts and 
operations often respond in somewhat common ways to thoughtful instructional interactions. 
This does not mean that every student will respond identically, but typically there are a 
manageable number of ways of reasoning that bubble up repeatedly across participants and 
contexts. The epistemic student can be a useful model for trying to walk the tightrope between 
overgeneralization and over specificity. I acknowledge that it is not appropriate or even accurate 
to claim that my second-order models and resulting learning trajectories, which are developed 
from small numbers of students in specific contexts, would extend to all students in all contexts. 
To do so would ignore the variation in students’ experiences, backgrounds, and positionalities, as 
well as the variation in classrooms, schools, and cultures. Simultaneously, the work of building 
learning trajectories necessarily entails a belief in the value of creating scientific (rather than 
experiential) models with the potential of being useful across different students and contexts. 
Learning Trajectories Built from Second-Order Models Emphasize Anti-Deficit Stances 

The body of learning trajectories research has been critiqued for not adequately considering 
equity or addressing student diversity (e.g., Zahner & Wynn, 2021). Some may even be used in 
ways that can reinforce deficit perspectives. A deficit perspective is “a propensity to locate the 
source of academic problems in deficiencies within students, their families, their communities, or 
their membership in social categories (such as race and gender)” (Peck, 2021, p. 941). In 
contrast, an anti-deficit perspective begins with the assumption that students are capable of 
reasoning mathematically and that they bring productive resources for learning mathematics. It 
acknowledges that learning is time-consuming, and that “imperfect articulations of mathematical 
ideas and some inconsistencies in the student’s current conception are a natural part of the 
process” (Adiredja, 2019, pp. 416-417). Furthermore, adopting an anti-deficit perspective means 
locating the source of students’ academic challenges within the racist, sexist, and ableist 
institutional structures that restrict, or even actively oppose, access to high-quality educational 
opportunities. When considering student thinking, a researcher considers and identifies the assets 
and competencies that students possess, rather than what students lack. 

A goal of learning trajectory construction must be to position student thinking as rational, 
powerful, and viable, and from that position, seek to understand why students reason the way 
they do. It is our job, as researchers, to construct second-order models that reflect a value that 
student thinking is sensible and intelligent. In constructing learning trajectories, we must begin 
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with that stance, identify student concepts and operations so that we can meet students where 
they are, and then consider productive teaching interactions that can support students’ shifts from 
one way of thinking to the next. In doing so, we must also understand and acknowledge that 
these shifts may be idiosyncratic, time-consuming, and messy, as is learning itself. By starting 
from a model of the mathematics of students, we can then construct models for how teachers 
might interact with students to bring forth productive changes in their concepts and operations. 

The learning trajectories that my colleagues and I produce (e.g., Ellis et al., 2016; Fonger et 
al., 2020) emphasize students’ strengths and competencies, even when student thinking differs 
from canonical mathematics. We see an important outcome of our learning trajectory work to be 
that of highlighting those strengths and competencies with stakeholders. The goal of our work is 
to understand why students reason the way they do, and to show how students can and do think 
in ways that are thoughtful, reasonable, and nuanced, even if, at first glance, one might only see 
an incorrect answer or a puzzling strategy. Like many others (e.g., Clements & Sarama, 2012), 
our learning trajectories provide multiple viable paths and do not claim to represent the only (or 
even the best) route to learning. Centering the mathematics of students is explicit in our 
theoretical framing and constitutes the starting point for creating and refining trajectories. 

An Example of Building a Learning Trajectory from Second-Order Models 
Our learning trajectories are depictions of concepts and mental operations, in concert with 

teaching interactions and in relation to task sequences, set in specific teaching and learning 
concepts. The concepts and mental operations are the mathematics in our trajectories. As an 
example, my colleagues and I constructed a learning trajectory of students’ understanding of 
exponential growth from a covariation perspective (Ellis et al., 2016). That trajectory in its 
entirety is beyond the scope of this paper, but I will highlight here four of the operations we 
identified: (1) Explicit coordination of change in y-values for 1-unit change in x-values, (2) 
Coordination of change in y-values for multiple-unit changes in x-values: repeated multiplication 
imagery, (3) Coordination of change in y-values for multiple-unit changes in x-values: 
exponentiation imagery, and (4) Coordination of change in y-values for any unit change in x-
values, for any ∆x. Mathematically, from our perspective, these are all the same operation. For an 
exponential function y = abx, it is possible to coordinate the change of any two y-values with any 
two corresponding x-values according to the relation 𝑦𝑦2

𝑦𝑦1
= 𝑏𝑏𝑥𝑥2−𝑥𝑥1, and the value of ∆x is 

immaterial. Conceptually, however, these are not the same operation. In our work with students, 
my colleagues and I found that coordinating changes in x-values and corresponding y-values for 
unit changes in x is different from coordinating for large changes in x. Additionally, one can 
engage in coordination for large changes in x either by appealing to repeated multiplication 
imagery, or by appealing to a different set of stretching or scaling images. Furthermore, 
managing this type of coordination for cases when the change in x is less than 1 draws on a 
different set of concepts, and students can engage in operations (1) – (3) long before they can do 
operation (4).  

What students can do and how they can reason is always rational from their perspective. Not 
yet being able to engage in operation (4) is something that a researcher would describe as a 
constraint for the student. But, from the student’s perspective, there does not exist a more 
“advanced” way to coordinate exponential growth. Students are always reasoning with their 
available conceptual operations. For teachers, then, it is advantageous to understand how 
students may be operating, so that they do not impose ways of thinking on the students that run 
counter to the students’ reasoning. Curricular treatments of exponential growth, however, to the 
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extent that they might address a coordination approach at all, do not distinguish these forms of 
reasoning, because they can all be handled with the same formula. In contrast, my teaching 
interactions with students revealed that it is sensible for students to draw on different imagery 
when constructing these operations, and that transitioning from one form of reasoning to another 
can be effortful and may require specific instructional support. In short, such a transition is a 
significant intellectual achievement. Without this knowledge, teachers and textbooks will not 
distinguish them, and students may consequently experience challenges in making sense of 
expressions such as 2(1/7); after all, when the meaning of exponents presented to students in 
school is only that of repeated multiplication what does it mean to engage in such multiplication 
1/7 times? Now that we are aware that these operations are mathematically different for students, 
we can help improve the teaching and learning of exponential growth ideas. 

As an example of the decentering work that supported our understanding of the mathematics 
of students, consider a task in which students are provided with a table of height values at certain 
times for a special plant called a Jactus, which grows exponentially (Figure 1).  

 
Figure 1: Table of Week and Height Values for a Doubling Jactus  

 
If I were to solve this problem, I would take the ratio of any two consecutive height values in the 
table that were a quarter of a week apart. That ratio is approximately 1.189, and so I can divide 
the height at week 0.5 by 1.189 to find the missing height value. The question is written in an 
unusual way, because it asks students about how the plant grows in a quarter of a week, but the 
table has an empty spot for the height value at a specific time, 0.25 weeks, which is actually a 
slightly different question. This was a “serendipitous mistake” (Tasova et al., 2021), because it 
enabled us to identify a form of reasoning about which we had been unaware prior to students 
encountering the task. Our initial intention was to support the idea that the ratio of height values 
for any quarter-week gap will always be the same.  

When working with 8th-grade participants who had never before had school instruction on 
exponential growth, we initially expected that they would use a strategy like the one I described, 
because they had already used that strategy with prior tables. For instance, when encountering 
tables with uniform gaps of 1 week, 2 weeks, or 5 weeks, our students had divided height values 
to determine the plant’s growth for the corresponding amount of time. But in this case, they did 
not leverage this strategy. For instance, consider the work of one of our participants, Uditi (a 
self-chosen pseudonym). In describing herself, Uditi discussed her experiences as an immigrant 
to the midwestern United States from India. She shared that she enjoyed mathematics and 
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science, which was why she had volunteered for our research study, and she preferred expressing 
her ideas in small groups rather than with the whole class. When encountering the task in Figure 
1, Uditi wrote the expression “1 × ____0.5”. She then proceeded to use a cumbersome guess and 
check strategy to determine the missing value that would go in the blank to yield the plant’s 
height at 0.5 weeks, which she knew had to be approximately 1.414. By doing this, Uditi 
determined that the growth factor was 2, and then laughed ruefully as she saw that the task 
description had already told her that the Jactus doubled each week. She then wrote the equation, 
“Height = 1 • 2week”, and then substituted 0.25 for the exponent to determine the height at 0.25 
weeks. 

Uditi’s strategy was correct, and it was also creative. It revealed an understanding of many 
important ideas, including the idea that she could write a correspondence relation of the form y = 
1bx because the initial height at Week 0 was 1 inch. Her strategy, however, also surprised me and 
my colleagues, because it was different from what she had done before, and it was also more 
cumbersome and difficult than just dividing. Moreover, Uditi was not the only student who 
approached the problem in this surprising way. Other students across two different teaching 
experiments did as well, which suggested to us that there was an important conceptual issue with 
that task that we had not anticipated. In combination with other students’ responses to similar 
tasks, we began to realize that the value of ∆x was critical. If one week is the period of time for 
the plant to double its growth, then it became clear that asking students to determine what 
happened within a week was a conceptually different task than asking students what happened 
across a span of multiple weeks – even though, from our perspective as researchers, the two tasks 
were mathematically identical.  

Part of the job of creating second-order models is to engage with students reflectively, 
attempting to decenter in order to understand why their behavior and reasoning is sensible. Uditi 
and other students could already write expressions such as y = x0.25, therefore presumably using 
decimal and fractional exponents to determine a fixed height value. What puzzled us was that 
they could also divide two height values to determine an amount of growth for a given time span. 
Why, then, did Uditi not do so with this task? Our goal was to now try to understand Uditi’s 
reasoning that drove the unanticipated strategy. In doing so, we hypothesized that it was because 
Uditi could attribute two meanings to an equation such as height = 23, but only one meaning to 
an equation such as height = 20.25. The expression 23 in the first equation meant two things to 
Uditi: It could be a static height value, such as the plant’s height at 3 weeks, or it could be a 
measure of growth, i.e., how many times larger the plant grows in height for a time span of 3 
weeks. But the expression 20.25, we hypothesized, could be the plant’s static height value at 0.25 
weeks, but not how many times larger the plant would grow in a time span of 0.25 weeks. We 
suspected two reasons for this, both related to students’ meanings for multiplication. The first is 
that determining growth across multiple weeks entails generalizing the operation of 
multiplication to an exponential context. This is fairly easy to do, as many students hold an 
expectation that multiplication makes bigger (Greer, 1987). They can extend their meaning of 
doubling by mentally repeating the operation multiple times across multiple weeks. In contrast, 
0.25 weeks is less than a week, and there is no easy way to extend the operation of doubling to a 
fraction of a week. Furthermore, Uditi and the other students we worked with had all received 
school instruction that described exponential growth as repeated multiplication. The image of 
repeated multiplication does not easily lend itself to decimal exponents, as it is difficult to 
imagine such an operation. 

Our efforts to construct a second-order model of Uditi’s mathematics via her activity with 
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this and related tasks led us to realize that constructing exponents less than 1 as a representation 
of growth is its own separate mathematical concept. This is not something I understood prior to 
working with Uditi and other students. We learned that in order to make sense of non-natural 
exponents as representations of growth, it is useful to invite students to shift to images that do 
not entail repeated multiplication. For our participants, this meant creating an image of change in 
the plant’s height between weeks that represented an action of stretching, or scaling. For 
instance, Pei’s drawing (Figure 2) shows a Jactus stretching as it doubled from Week 1 to Week 
2 to Week 3, on the right, and then he was able to reverse his doubling operation to imagine 
halving the Jactus’s height to see how tall it would be at Week ½ on the left. Once Uditi 
developed a similar scaling image, she was then able to answer the following question: “Say a 
plant grows 3 times as tall every week. How many times taller will it grow in 1 day?”. Uditi 
wrote “3.14” and explained, “There are seven day(s) in a week. So, I divided one week into seven 
parts, which represent one day.” She could now conceive of an expression such as 3.14 to 
represent a measure of growth, not just a static height value. 
 

 
Figure 2: Pei’s Drawing of a Doubling Jactus  

 
Before my teaching interactions with Uditi, I was unaware that an expression such as y = abx 

could represent two different ideas, a static value or an expression of growth. Certainly, this is 
not a big idea, and its truth is obvious to me now. Nevertheless, the concept was not originally 
part of my own first-order knowledge, nor was I aware that the mental imagery needed to 
undergird the second idea would need to be different from the first in order to accommodate non-
natural exponents. Thus, my participants’ mathematics served as a source of novel mathematics 
for me as a researcher, as it could also do for teachers who make use of the learning trajectory.  

This approach toward the creation of learning trajectories shifts mathematical authority to the 
students. Uditi’s mathematics served as a source of new mathematics for me. As a researcher, it 
was my job to understand her mathematics, why it made sense conceptually, and then determine 
ways to support her to create the meanings and images that would be productive for fostering an 
understanding of nonnatural exponents. This work centers student thinking as the core of our 
activity. Moreover, a productive stance to aid in my own decentering is to ask the question why. 
Why did Uditi’s activity make sense? Why did she use the strategy that she did? Researchers 
must ask these questions with the assumption that there is always a sensible reason driving the 
student’s activity. We simply need to be careful enough in our own research to find it. Moreover, 
in doing that work, we as researchers can grow in our own first-order knowledge: knowledge of 
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the mathematics itself, of student thinking about mathematics, of the concepts and operations 
needed to make sense of particular ideas, and of the kinds of tasks and teaching moves that can 
support the development of those ideas. 

I would like to close this extended example by pointing out that this model of a learning 
trajectory, with the four operations I shared, differs from learning trajectories that are (a) a 
proposal of the kinds of reasoning we should expect from students based on content analysis, (b) 
a specification of target performances, (c) a set of strategies, (d) a network of constructs that one 
might encounter through curriculum and/or instruction, or (e) a set of tasks that could be 
provided as stand-alone problems. An elaboration of a learning trajectory built from second-
order models will identify student concepts and operations in relation to both tasks and teaching 
actions. I do not mean to denigrate or minimize the incredibly valuable contributions that prior 
learning trajectories have made, but rather, to articulate and clarify my vision of what a learning 
trajectory could be when it is built from second-order models.  
Learning Cannot be Separated from Activity and Context 

Helping our students develop stretching and scaling images for exponential growth turned 
out to be a productive route for their learning. Furthermore, because we saw the type of 
reasoning Uditi demonstrated in other students, our construction of the epistemic student from 
Uditi and her peers supported a model in which one may need explicit support to shift from a 
repeated multiplication image to an alternate image. Sharing second-order models in this manner 
can also help mathematically experienced adults, such as curriculum authors and teachers, 
understand and appreciate a different mathematics from the one they already know. In this 
manner, learning trajectories research can play a role not only in helping the field better 
understand how to support student learning of particular mathematics topics in the curriculum, it 
can – and should – determine what mathematics should be in the curriculum to begin with.  

Nevertheless, emphasizing stretching and scaling images may not necessarily be a 
universally productive route. The degree to which it proves to be fruitful for other students in 
other contexts is an open question. As I alluded to above, researchers have raised concerns about 
the need to attend more explicitly, and more theoretically, to the role that teaching interactions 
play in influencing student learning (Empson, 2011; Simon et al., 2010). This body of work 
challenges the assumption that features of learning are transportable, or that it is possible to study 
effective teaching and learning in a particular context and tease out some key aspects that can 
then be generalizable to other contexts. Mathematics learning occurs in interaction, not only via 
teaching actions, but also via tasks, tool use, student discourse, classroom norms, school and 
community settings, and in relation to students’ identities, histories, and positionalities (Nasir et 
al., 2008). Because mathematics learning does not occur in isolation from these sociocultural 
contexts, it is wise to avoid overly strong claims about the transportability of any particular 
finding. Learning trajectories research is a worthwhile endeavor not just for its potential to 
broadly improve the teaching and learning of particular topics (Baroody et al., 2022), but also to 
develop a set of contextualized, specific case studies of the types of reasoning that can exist and 
can be supported in particular ways. 

Build Learning Trajectories that are Engines of Equity 
I have advocated for the usefulness of the epistemic student as a construct that can help 

researchers navigate a balance between over generalizability and over specificity. In what might 
seem like an odd turn, I am now going to argue against my own argument, or, at least, consider 
an alternate stance. That stance is this: If the epistemic student is an idealized abstraction, a 
model composed of common ways of operating, this leads me to question what type of student 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

25



we imagine when evoking the epistemic student. Analyzing student reasoning without attending 
to sociocultural diversity runs the risk of reinforcing deficit narratives about minoritized students 
and students from marginalized communities (Zahner & Wynn, 2021). And yet, the construct of 
the epistemic student may encourage this form of analysis.  

Studies of cognition and equity are frequently positioned as separate areas of research in 
mathematics education (Adiredja, 2019). For instance, Adiredja has pointed out that racial and 
gender inequities are seldom considered in cognition studies, and, furthermore, engaging in 
analysis that does not include these positionalities of the students we study does not make our 
research apolitical: “Rather, it has the impact of maintaining the status quo that is the dominant 
master-narrative about White male exclusive membership in mathematics and centering 
education around their needs and concerns” (ibid, p. 426). One way to begin to address this 
limitation can be to extend the notion of the epistemic student to understand the identities and 
positionalities of our research participants who contribute to the epistemic student model. We 
can invite studies highlighting the powerful reasoning of marginalized and minoritized students, 
including being deliberate about who we include as participants in research opportunities, being 
thoughtful about the ways in which we engage our participants in research, and being explicit 
about our participants’ positionalities. 

We must build learning trajectories that are explicitly and theoretically organized from an 
asset-based perspective. Such trajectories can begin with efforts to understand our students’ 
cultural competencies, and by drawing on our students’ backgrounds and out-of-school 
knowledge and practices, rather than ignoring or even excluding them. Deliberately creating 
learning environments that leverage students’ cultural and linguistic strengths supports their 
mathematical reasoning (Abdulrahim & Orosco, 2020). This means, then, broadening our 
starting point for the construction of hypothetical learning trajectories. Rather than beginning 
only with our first-order knowledge of mathematics, combined with research and pilot studies 
about student learning, we can also incorporate (a) hypothesized second-order models, (b) 
research on students’ funds of knowledge relative to the topic at hand, and (c) information about 
our participants’ values, interests, and knowledge. In this manner, learning trajectories research 
can meaningfully center student voices, and can serve as a bridge connecting research on 
cognition and equity. 
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Learning progressions have become an important construct in educational research, in part 
because of their ability to inform the design of coherent standards, curricula, assessments, and 
instruction. In this paper, I discuss how a learning progressions approach has guided our 
development of an early algebra innovation for the elementary grades and provide examples of 
how this approach can help challenge a settled mathematics learning status quo about the kind 
of algebra students can learn, when they can learn it, and how all students can be successful. 
Empirically derived learning progressions are an important part of designing early algebra 
innovations that can open new curricular pathways for teaching and learning algebra, creating 
accessible and effective avenues of learning for all students. 

Keywords: Algebra and algebraic thinking, learning trajectories and progressions, elementary 
school education 

Using a Learning Progressions Approach to Develop an Early Algebra Innovation 
Over a decade ago, my research interests turned towards a question that I view as critically 

important in teaching and learning algebra: Does early algebra matter? Since I assume early 
algebra does matter, perhaps a better way to frame this question is to what extent does early 
algebra matter, in what ways does it matter, and how might we capture or measure this? There 
are deep implications for the answers to these questions. A truly effective integration of early 
algebra (or, algebraic thinking in the elementary grades) would entail significant costs because it 
requires “deep curriculum restructuring, changes in classroom practice and assessment, and 
changes in teacher education—each a major task” (Kaput, 2008, p. 6). Such costs highlight the 
need for carefully constructed models of early algebra instruction—models that have been 
missing from elementary grades mathematics. However, these models, as curricular roadmaps 
for developing children’s algebraic thinking across elementary grades in a deep, systemic way, 
are essential to understanding early algebra’s impact.  

To build such a model, our research team turned to a learning progressions approach. 
Learning progressions have become an important construct in educational research (Clements & 
Sarama, 2004, 2009; Confrey et al., 2014; Simon, 1995; Stevens et al., 2009), in part because of 
their ability to inform the design of coherent standards, curricula, assessments, and instruction 
(Daro et al., 2011). We focused our work on the development of several core components 
aligned with this approach (e.g., Clements & Sarama, 2004; see also Fonger et al., 2018): (1) 
empirically-derived learning goals around algebraic thinking in elementary grades; (2) grade-
level instructional sequences designed to address these learning goals; (3) validated assessments 
to measure students’ understanding of core algebraic concepts and practices as they advance 
through the instructional sequences; and (4) progressions that specify increasingly sophisticated 
levels of thinking students exhibit about algebraic concepts and practices in response to an 
instructional sequence. A learning progressions approach served two purposes in our work. It 
provided an over-arching “large-grain-size-level” framework to guide our design of a Grades K–
5 early algebra intervention from which we might measure the impact of early algebra on 
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children’s algebra readiness for middle grades. It also provided a theoretical mechanism for 
identifying “small-grain-size-level” cognitive foundations in children’s algebraic thinking that, 
along with other existing research in the field, could inform the development of our intervention.  

At a large-grain-size level, we used a learning progressions approach (e.g., Shin et al., 2009, 
Stevens et al., 2009) in the development of learning goals, grade-level instructional sequences, 
and grade-level assessments for K–5. Using Kaput’s (2008) content analysis of algebra as a set 
of key aspects (ways of thinking algebraically) and core strands (content domains where 
algebraic thinking occurs), we identified core algebraic thinking practices of generalizing, 
representing, justifying, and reasoning with mathematical structure and relationships as an 
underlying conceptual framework for the design of our goals, sequences, and assessments 
(Blanton, Brizuela et al., 2018). We viewed a conceptual framework organized around algebraic 
thinking practices as critical to avoid designing instructional sequences based simply on the use 
of ubiquitous “algebra” tasks (e.g., solving equations) and not cohesively grounded in what it 
means to think algebraically. 

To develop our learning goals, we analyzed the treatment of the core algebraic thinking 
practices in several dimensions: (1) empirical research on Grades K–8 students’ algebraic 
thinking; (2) national curricular frameworks and standards such as the Principles and Standards 
for School Mathematics (National Council of Teachers of Mathematics [NCTM], 2000) and 
Common Core State Standards (National Governors Association Center for Best Practices 
[NGA] & Council of Chief State School Officers [CCSSO], 2010); (3) Grades K–8 curricular 
materials (e.g., Everyday Mathematics, Singapore Math, Investigations); and (4) formal algebra 
content at both secondary and postsecondary levels. We then organized early algebra content to 
align with strands in Kaput’s (2008) algebra content analysis, in particular, “the study of 
structures and systems abstracted from computations and relations” (Strand 1) and the “study of 
functions, relations, and joint variation” (Strand 2) (p. 11). These strands also aligned with core 
content around which the early algebra research base had coalesced. Based on this, we structured 
our findings on early algebra content within several “Big Ideas” (e.g., Stevens et al., 2009), or 
content domains, where core algebraic thinking practices can occur: Generalized Arithmetic; 
Equivalence, Expressions, Equations, and Inequalities; and Functional Thinking. We then 
unpacked the role of algebraic thinking practices within each Big Idea by delineating core 
algebraic concepts related to the practices, claims that specify the nature of skills or 
understandings expected of students regarding a specific concept, evidence in students’ work that 
would indicate they had developed the skills or understandings specified in our claims, and 
research-based difficulties and misconceptions that students have with a concept (Shin et al., 
2009). The concepts, claims, evidence, and difficulties or misconceptions associated with the 
algebraic thinking practices within each Big Idea informed the development of grade-specific 
learning goals.  

Using our learning goals, we then constructed grade-level instructional sequences for each of 
Grades K–5 by designing specific task structures that connected the algebraic practices with 
related claims about the skills or understandings that might reasonably be expected of students. 
For example, for Generalized Arithmetic we designed sequences of tasks that created 
opportunities to generalize arithmetic relationships, to represent these relationships in different 
ways, to develop appropriate general arguments for justifying the arithmetic relationships 
students observed, and to use arithmetic generalizations students developed as objects (Sfard, 
1991) for reasoning with novel problems or properties of arithmetic that make computational 
work more efficient. Grade-level learning goals were used to guide content for these task 
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structures. For example, the types of arithmetic relationships addressed at a particular grade, the 
types of representations used to express them, or the nature of arguments students might develop 
to show relationships were valid, were guided by our learning goals. We then used design 
research (Cobb et al., 2003) to field-test and refine our proposed grade-level instructional 
sequences. Finally, we used these task structures to develop validated, grade-level assessments 
by which we could measure within-grade and across-grade (longitudinal) growth in children’s 
algebraic thinking in order to understand early algebra’s impact.  

Our effort to design a broader, multi-year (Grades K–5) approach to developing students’ 
early algebraic thinking—essentially, components (1)–(3) above—aligns with what is sometimes 
characterized as “learning progressions” (Stevens et al., 2009). At the same time, a smaller grain 
size approach was needed to fill in “gaps” in empirical research on our understanding of 
children’s algebraic thinking (essentially, component (4) above), particularly in the early 
elementary grades where the research base was less developed than that for Grades 3–5. Because 
of its narrow scale in terms of a focus on specific algebraic concepts or practices within short 
instructional timelines (e.g., weeks), this second aspect of our work might be seen as more akin 
to learning trajectories (e.g., Stevens et al., 2009). This “small-grain-size-level” research was 
critical for identifying increasingly sophisticated levels in students’ thinking about a particular 
practice or concept within a Big Idea. For example, we identified trajectories in students’ 
thinking about concepts such as a relational understanding of the equal sign (Blanton, Otalora 
Sevilla et al., 2018) and variable and variable notation (Blanton et al., 2017), as well as for 
practices such as generalizing functional relationships (Blanton, Brizuela et al., 2015; Stephens 
et al., 2017), generalizing arithmetic relationships (Ventura et al., 2021), and justifying claims 
about arithmetic relationships (Blanton et al., 2021).  

Regardless of the nomenclature used or whether focusing on “big” ideas over a broad span of 
time (e.g., multiple years) or “small” concepts in a narrow span of time (e.g., weeks), a learning 
progressions approach has provided a flexible theoretical paradigm with key features aligned 
with our core research goals: identifying increasingly sophisticated ways students come to think 
about an algebraic concept or practice in response to an instructional sequence (Duschl et al., 
2007; Simon, 1995; Smith et al., 2006); attending to specific content domains rather than general 
cognitive structures in how we design our instructional sequences to study early algebra’s impact 
(Baroody et al., 2004); organizing content within these domains to facilitate the development in 
students’ understanding of algebraic concepts and practices over time (Smith, et al., 2006); and 
relying on classroom-based empirical research, rather than just a logical analysis of the 
discipline, to understand how students’ early algebraic thinking develops (Stevens et al., 2009).  

The value of this approach extends beyond its role as a research paradigm, however. One of 
the organizing questions of the PME-NA 2022 conference—How does your work challenge a 
settled mathematics learning status quo?—is at the heart of early algebra’s goal of 
“democratizing” students’ access to algebra. By democratizing access to algebra, we mean 
opening up pathways to students for whom the traditional “arithmetic-then-algebra” approach—
teaching arithmetic in elementary grades, followed by formal algebra in secondary grades—has 
been unsuccessful (e.g., Hiebert et al., 2005) and has limited students’ access to STEM career 
and workforce opportunities (e.g., LaCampagne, 1995; NCTM, 2000). These challenges have 
been particularly felt among students from historically underserved communities (e.g., Moses & 
Cobb, 2001; Museus et al., 2011). For example, elementary grades students from lower 
socioeconomic (SES) backgrounds are two times more likely to be deficient in mathematics than 
students from higher SES backgrounds (U.S. Dept. of Education, NCES, 2007). This makes such 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

32



students especially vulnerable in later formal algebra courses, which impacts their chance for 
success in college (U.S Dept. of Education, 2008) and access to STEM-related disciplines and 
careers. The promise of early algebra, then, is to address existing inequities in school 
mathematics and broaden students’ access to STEM disciplines. In what follows, I consider a 
few examples of how our work, built around learning progressions, has helped challenge the 
status quo of settled mathematics learning around the kind of algebra students can learn, when 
they can learn it, and how all students can be successful.  
Representing Generalizations Using Variable Notation 

The traditional “arithmetic-then-algebra” approach to teaching and learning algebra has 
entailed certain views about what kind of algebra content should be taught and when. One aspect 
of algebra that has historically been largely outside the purview of elementary grades is variable 
and variable notation. Our work takes the view that variable notation is a useful tool that children 
can begin to understand and use from early elementary grades. From this perspective, we have 
sought to understand trajectories in students’ thinking about variable and the use of variable 
notation to represent arithmetic and functional relationships. While the act of symbolizing a 
generalization is central to algebraic thinking, the way in which a generalization is represented 
can vary. In elementary grades, non-conventional forms such as natural language and 
drawings—symbol systems whose meanings are already available to young children—have 
historically been prioritized as a more productive way to represent generalizations (Resnick, 
1982).  

Part of the hesitation for the use of variable notation with young children has likely been due 
to strict interpretations around Piaget’s formal stages of development, along with the concern 
that premature formalisms (Piaget, 1964) might lead to meaningless actions on symbols (Blanton 
et al., 2017). It is reasonable to assume that the well-documented challenges adolescents have 
with the concept of variable and the use of variable notation (e.g., Knuth et al., 2011; 
Küchemann, 1981) would be even more prominent among younger, elementary grades children. 
Yet, unlike younger children, adolescents are expected to build a mathematical understanding of 
literal symbols to notate variable quantities after they have deeply developed ways of thinking 
about letters in linguistic contexts (e.g., Braddon et al., 1993). This suggests that difficulties with 
variable notation may be more related to conflicts generated by students’ use of literal symbols 
in mathematical contexts that rely on the understandings they already have about literal symbols 
in non-mathematical contexts (McNeil et al., 2010).  

Research, however, increasingly supports that variable notation can be a valuable tool for 
young learners (e.g., Blanton, Stephens et al., 2015; Brizuela et al., 2015; Carpenter et al., 2003; 
Cooper & Warren, 2011; Dougherty, 2008; Fuji & Stephens, 2008). Learning progressions have 
helped us better understand why this might be the case. In a recent study (Blanton et al., 2017), 
we explored a trajectory in first graders’ understanding of variable and use of variable notation to 
represent functional relationships. The conceptual space of interest here is the level at which 
children do not yet understand the concept of variable quantity nor how to use variable notation 
to represent a variable quantity, a level we characterize as pre-variable/pre-symbolic. The close 
analysis involved in mapping out a learning trajectory helped surface a more nuanced view of 
students’ understandings about variable and variable notation. In particular, we observed that 
students’ whose thinking was “pre-variable” did not yet perceive a variable quantity in a 
mathematical situation. As such, they naturally searched for other tools and ways of 
understanding within their conceptual field to make sense of a situation involving an unknown.  

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

33



How might this manifest in students’ mathematical actions? When young learners at a pre-
variable/pre-symbolic level of thinking encounter a situation with a variable quantity, they 
typically assign a numerical value to the quantity, either randomly or based on some numerical 
feature of the situation. They might also propose (hypothetically) that the quantity be measured 
or counted to determine a specific value, even though it cannot be. This is not an unreasonable 
approach, given that students’ mathematical experiences are, typically, fully centered on 
arithmetic at this point, where quantities are known or can be counted or measured and 
represented by a numerical value. Moreover, a child whose thinking is pre-variable (that is, the 
child cannot imagine or does not “see” an unknown within a situation) would not reasonably be 
expected to look for literal symbols (or even non-conventional representations such as natural 
language) to symbolize a quantity. Instead, we would expect them to use the tools and ways of 
understanding already available to them, which are arithmetic in nature.  

As students progress in their thinking, some pick up the use of algebraic notation before they 
can perceive variable quantities. Such cases are indicated by the use of literal symbols as labels 
or to represent objects rather than quantities. That is, students recognize that a literal symbol can 
be used to recognize something, but not a variable quantity, since this is outside of their 
conceptual field. However, once variable and variable notation co-emerge in children’s thinking, 
children begin to use variable notation in meaningful ways to symbolize variable quantities 
(Blanton et al., 2017). Through our construction of a learning trajectory around variable and 
variable notation, we came to see that the challenge was not that young learners cannot 
understand (and, thus, should not be exposed to) variable notation. It is, rather, that they have 
learned to interpret mathematical situations through an arithmetic lens which leads to certain 
ways of (arithmetic) problem solving that are inadequate for situations involving variable 
quantities. Instead, if they first learn to perceive a variable quantity, this motivates the need for a 
symbol system—whether conventional or not—to represent the quantity. Once they perceive a 
variable quantity, the symbolic system—including the use of literal symbols—can be 
meaningfully used to represent unknowns.  

Our findings elsewhere support that children can learn to use variable notation in meaningful 
ways. For example, in a large-scale, randomized (CRT) study in 46 elementary schools on the 
effectiveness of our Grades 3–5 instructional sequences (i.e., early algebra intervention), we 
found significant differences in how treatment students, who were taught the intervention as part 
of their regular curriculum, were able to represent functional relationships with variable notation 
in comparison to control students, who were taught only their regular curriculum. Figure 1 
compares treatment and control students’ use of variable notation and natural language (words) 
to represent a functional relationship they observed using data they had culled from a problem 
situation. Not only were treatment students significantly better able to represent a function with 
variable notation (as well as with words) than control students, treatment students were also 
significantly better able to use variable notation than words. (Even students in control schools 
were better able to use variable notation than words, although the differences were not 
significant). 

The point here is that a learning progressions approach has enabled us to better understand 
potential challenges to young learners’ understanding of variable and variable notation and to 
design instruction that can significantly improve their understanding, both of which call into 
question the long-held view that young learners should focus on representational tools that are 
already available to them (e.g., natural language, diagrams). While we strongly support young 
learner’s use of representational systems such as natural language, we equally support the 
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introduction of variable and variable notation in appropriate ways to young learners and view 
learning progressions research as a means to help shift perceptions that variable and variable 
notation is beyond the grasp of young children.  

 

 
 

Figure 1. Comparison of treatment and control students use of variable notation to 
represent a functional relationship.  

 
Developing Mathematical Arguments 

Justifying claims about mathematical relationships is central to early algebraic thinking, yet 
the role of justifying or proving in school mathematics has historically been limited, particularly 
in elementary grades (Ball et al., 2002; Stylianides, 2016). However, studies suggest that 
deductive reasoning emerges in the elementary grades (Falmagne, 1980) and that with 
appropriate instruction, students can learn to use deductive—rather than empirical—reasoning to 
develop mathematical arguments (Stylianides & Stylianides, 2008). This challenges the long-
held view that children’s lack of ability to reason deductively is due to a developmental 
constraint and, instead, points to limited classroom opportunities as the more likely cause for 
their challenges with building good, grade-appropriate mathematical arguments (Stylianides, 
2016; see also, e.g., Ball & Bass, 2003; Carpenter et al., 2003; Lampert, 1992; Maher & Martino, 
1996). Studies suggest that the lack of argumentation in elementary grades has far-reaching 
implications in that it detaches students from sense-making (Staples et al., 2012) and can 
promote difficulties with proof and proving in high school (e.g., Coe & Ruthven, 1994; Knuth et 
al., 2002; Stylianides & Stylianides, 2008). 

Stylianides and Stylianides (2008) and Stylianides (2007) suggest that research that details 
trajectories in children’s thinking in response to instructional sequences focused on 
argumentation can help us understand how young children come to reason deductively in 
response to specific instructional conditions. Because justifying mathematical relationships is a 
core practice in our conceptual framework, we are interested in how students’ come to build 
strong mathematical arguments in response to instruction. We recently conducted a study in 
which our goal was to identify progressions in Grades K–1 children’s understanding of parity 
arguments and underlying concepts (e.g., even and odd numbers) in response to our Grade K and 
Grade 1 instructional sequences (Blanton et al., 2021). Our particular focus was on how 
children’s understanding of representation-based proofs (Schifter, 2009)—versus empirical 
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arguments—developed from the start of formal schooling, before their introduction to any parity 
concepts.  

While our sample was small due to the design nature of our work, our findings were similar 
to those of other researchers who have conducted extensive work in this area (e.g., Schifter et al., 
2009; Stylianides, 2007; Van Ness & Maher, 2019). For example, even in kindergarten, we 
found that students were able to construct informal structural parity arguments that did not rely 
on the use of specific or even generic numbers. What we found even more surprising was how 
rare empirical arguments were in these early grades, even though such arguments are a 
predominant proof strategy in secondary grades (Coe & Ruthven, 1994; Staples et al., 2012). For 
example, kindergarten students were unfamiliar with the concepts of pair and even and odd 
numbers prior to our instructional sequence in Grade K, but by Grade 1 pre-test (i.e., after the 
Grade K sequence), many students routinely used a pairs strategy (where numbers that can be 
represented as pairs of cubes are even and those that cannot be represented in this way are odd) 
to reason about the parity of numbers represented in concrete, visual, and abstract forms. More 
importantly, out of a group of 10 students interviewed, no student used an empirical argument to 
justify why the sum of an even and an odd would be odd. Six out of ten were able to correctly 
use a structural argument involving a pairs strategy (three students could not build either type of 
argument; one student was not asked this question).  

In developing trajectories in children’s thinking about particular algebraic concepts or 
practices, we have found that introducing algebraic thinking earlier—even as early as 
kindergarten—can help mitigate the development of misconceptions in students’ thinking that 
can occur within an arithmetic-focused approach to instruction. We have observed this in 
students’ understanding of variable quantity and variable notation, where engaging students in 
mathematical tasks that first help them perceive variable quantities can support their use of 
variable notation in meaningful ways. We have seen that the early introduction of representation-
based arguments can help offset entrenched forms of empirical reasoning by providing students 
with an accessible, grade appropriate process for justifying their claims. We have seen early 
attention to functional relationships between quantities mitigate an ingrained focus on recursive 
patterns in function data that makes it difficult in later elementary grades to re-focus students’ 
thinking on co-varying quantities. We have seen concrete and visual tools help students begin to 
think relationally about the equal sign even before symbols and equations are introduced, thereby 
disrupting the operational thinking that is often fostered through arithmetic work focused on 
standard forms of representations (Blanton, Otalora Sevilla et al., 2018). In this way, learning 
progressions in early algebra research has helped challenge historically settled notions (even 
some of our own) regarding what algebraic concepts should be addressed and when. But early 
algebra’s mission to democratize access to algebra is broader than “what” or “when.” It is 
ultimately about “who.” In what follows, I briefly touch on some of our evidence around this.  

Challenging Perceptions of Who Can Do Algebra 
The underlying premise of early algebra is that developing children’s informal notions about 

mathematical structure and relationships, beginning in kindergarten, will better prepare them for 
success in formal algebra in later grades. As described earlier, our work has focused on the use 
of a learning progressions approach to build the tools with which we could explore this premise, 
and we are starting to see the contours of an answer to the question of whether early algebra 
“matters.” Our recent 3-year randomized (CRT) study on the effectiveness of the Grades 3–5 
early algebra “intervention” (i.e., grade-level instructional sequences) offers some evidence of 
this. The study was conducted in 46 schools across urban, rural, and suburban settings, where the 
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intervention was taught by classroom teachers as part of their regular mathematics instruction. 
We found overall that, at each of Grades 3–5, students who received the intervention as part of 
regular instruction significantly outperformed their peers who received only regular instruction 
in both their knowledge of algebraic concepts and practices and their use of algebraic strategies 
to solve tasks (Blanton et al., 2019). Moreover, treatment students maintained a significant 
advantage over control students in middle grades, one year after the intervention ended (Stephens 
et al., 2021). 

Algebraic thinking in the elementary grades is now codified as essential to algebra education 
in frameworks such as the Common Core State Standards for Mathematics (NGA Center & 
CCSSO, 2010). Through the adoption of these standards, many states have elevated the role of 
algebra, leaving students potentially vulnerable to a persistent marginalization in school. With 
students from underserved communities already underrepresented in STEM professions (Oscos-
Sanchez et al., 2008), the long-term implications for the inequity of access to educational on-
ramps for students around early algebra are significant. As such, early algebra innovations 
should be designed to ensure that they are inclusive of learners across diverse classrooms. So, 
while our overall results are promising, it was (and continues to be) important for us to further 
unpack our findings for students in different demographics and learning conditions. One example 
of this was our comparison in the performance of a subset of participating treatment and control 
schools for which the majority of students were from underserved communities (i.e., 100% low 
SES, 94% underserved racial minorities). We found that, like our overall population, treatment 
students again significantly outperformed control students at each of Grades 3–5 on both their 
knowledge of algebraic concepts and practices and their use of algebraic strategies to solve tasks 
(Blanton et al., 2019). To visualize the significance of this finding, Figure 2 compares the 
performance of students in treatment and control schools for this subset of schools along with the 
performance of the overall control group. In addition, it also shows that, while treatment students 
from schools with underserved communities did underperform the overall control group prior to 
the intervention, by the end of Grade 3 they outperformed even the overall control group 
(although not significantly) and maintained this advantage throughout the end of the intervention 
in Grade 5.  

 

 
 

Figure 2. Comparison of performance for underserved students (US) in treatment and 
control schools with control students overall. 
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These promising results support findings from other studies that show providing students 

from historically underserved communities with more challenging learning environments in 
elementary grades can increase mathematics proficiency (Lee, 2011; Zilanawala et al., 2018). 
While it’s difficult to tease out whether the role of a learning progressions approach was 
sufficient for these results, we can say that when a learning progressions approach was used, we 
have found a significant improvement in all learners’ ability to think algebraically.  

Building on this, we are continuing to explore how to develop a more inclusive early algebra 
intervention in Grades K–2. We expanded our recent design work around instructional sequences 
and assessments in Grades K–2 to include a more intentional focus on students with learning 
differences in order to understand how these students make sense of the algebraic concepts and 
practices in our intervention and how its features (e.g., concrete and visual tools) support 
learning. We have found that tools such as balance scales helped students analyze equations and 
reconsider unfamiliar equation forms (Stephens, Sung, Strachota et al., 2022), even prior to 
developing strong computational skills. Further, we have documented how these tools mediated 
the abilities of diverse learners to generalize and represent what they notice about structure and 
relationships involving parity concepts (Strachota et al., 2021)  

While this work is ongoing, our Grades K–2 instructional sequences already show promise 
overall in developing children’s algebraic thinking. We recently conducted a small, one-year 
cross-sectional study (n = 80) in each of Grades K–2 that examined the potential of each grade-
level sequence when taught by classroom teachers. After only a one-year intervention in each 
grade, we found a marginally significant interaction between treatment condition and 
performance that showed gains favoring treatment students in their understanding of early 
algebra concepts such as the structure of evens and odds, mathematical equivalence and 
equations, properties of arithmetic, the representation of varying unknown quantities, and 
functional thinking [F (1, 58) = 3.794, p=.056] (Stephens, Sung, Blanton et al., 2022). Further, 
we found no significant three-way interaction among treatment condition, performance on the 
assessment, and grade level, suggesting that the impact of the intervention was similar across 
grade levels. With these findings for Grades K–2 and our more fully developed findings about 
the effectiveness of our Grades 3–5 intervention, we are optimistic about the innovation’s 
potential to positively impact all students’ experiences in algebra. 

Conclusion 
A learning progressions approach has been central in our efforts to develop an empirically 

grounded model for teaching and learning algebra that can increase all students’ opportunities for 
success in algebra. It has provided both a framework for developing an innovation to measure 
early algebra’s impact and a mechanism to examine fine-grained details in how children’s 
algebraic thinking develops. It has also helped us think about how to reframe learning around an 
asset-based perspective in which instruction can build on the rich ways students think about 
algebraic concepts and practices, rather than from a deficit model built around students’ 
misconceptions. Designing innovations from a perspective of what students can do (or, as Jim 
Kaput used to say, the “happy stories”) can minimize the need to design for the purpose of 
“undoing” misconceptions in students’ thinking that arise when elementary grades instruction 
does not attend to algebraic concepts and practices. Early algebra innovations based on learning 
progressions can open new curricular pathways for teachers and create effective avenues of 
learning that can democratize all students’ access to algebra. We are hopeful that such models 
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can continue to challenge the national discourse on teaching and learning algebra around the kind 
of algebra students can learn, when they can learn it, and how all students can be successful. 
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INTENTIONALITY IN USING LEARNING TRAJECTORIES TO “REFRAME” 
TEACHER NOTICINGS TOWARDS ANTI-DEFICIT AND ASSET-BASED 

INSTRUCTION 
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Learning Trajectories have the potential to be used as a tool to advance equity by explicitly 
connecting to anti-deficit framing and asset-based instruction. This plenary paper highlights 
research on three use cases for learning trajectories (LT) with an intentionality around 
promoting equity: 1) the use of LT based Lesson Study with vertical teams of teachers to position 
students as capable and teachers as knowledgeable, 2) the use of LT coupled with anti-deficit 
framing in curriculum design research to provide students with access to rigorous educational 
resources and asset based instruction, 3) the use of LT with formative assessment to develop 
preservice teachers’ equitable teaching practices to advance students understanding. The 
presenter invites the PMENA community to consider how learning trajectories can be coupled 
with powerful equity-focused research and frameworks to disrupt the status quo, broaden the 
notion of learning mathematics, eliminate labeling, and dismantle inequitable structures and 
hierarchy in the mathematics classroom. 

Keywords: Learning Trajectories and Progressions, Anti-deficit Orientation, Asset-based 
Instruction, Teacher Noticing, Professional Development, Preservice Teacher Education 

Introduction 
In this paper, I discuss how learning trajectory (LT) research should attend to equity by 

providing access to rigorous educational resources, positioning students as capable and teachers 
as knowledgeable, and questioning the curriculum and high stakes assessment practices. I do this 
work by engaging and privileging the voices of teachers and coaches as co-designers and 
researchers in Lesson Study and Curriculum Design Research with the focus on rehumanizing 
mathematics for students (Gutiérrez, 2018).  

I am a first generation Korean American mathematics education scholar, who attended my 
formative years of elementary schools in the 70s between two countries, experiencing Korean as 
a second language and also what was at the time called, English as a second language. I 
experienced first-hand differential learning experiences (NCTM, 2020; Jong et al., 2020) where 
some students were centered and others marginalized. Experiencing schooling in two countries, I 
also noticed the differential treatment of the teaching profession, one where it is a revered and 
noble profession and the other where the teacher’s professional judgment is constantly 
questioned and viewed where anyone can teach. This has motivated me to focus my work on 
elevating the voices of teachers and the teaching profession in the US and building on students’ 
mathematics strengths, particularly those who are marginalized in the mathematics classroom. 
My research is informed by a commitment to equity and culturally sustaining pedagogy in 
mathematics education. I work mostly with schools that are racially, culturally, and linguistically 
diverse and receive title 1 funding. My research has focused on LT use in Lesson Study and 
Community-based Math Modeling to connect mathematics to students' lived experiences, 
attending to both cognitive and socio-cultural perspectives. I lean on the work of Aguirre et al.’s 
(2013) centering their definition of equity where, 
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All students in light of their humanity – personal experiences, backgrounds, histories, 
languages, physical and emotional well-being–must have the opportunity and support to learn 
rich mathematics that fosters meaning-making, empowers decision-making, and critiques, 
challenges and transforms inequities/injustices. Equity demands responsive instruction that 
promotes equitable access, attainment, and advancement for all students” (p. 9). 

Given my research orientation, my plenary paper focuses on two questions-1) How do we use LT 
with teachers and coaches as a tool to deepen teacher knowledge and promote asset-based 
instruction, especially for students who have been historically marginalized? 2) How might we 
use LT to “reFrame” teacher noticings towards an anti-deficit orientation? 

Shifting from Deficit to Anti-deficit Orientation by “reFraming” Teacher Noticings 
This PMENA Plenary event in 2022 marks a significant time in our society, where we 

experienced the struggles and pain due to the Pandemic as well as systemic racism and escalation 
of racial tension leading to the Black Lives Matter movement. The pandemic unleashed hate, 
xenophobia and scapegoating leading to AAPI Hate with racist rhetoric. Labeling the "Asian" 
community as a monolith with an erasure of individual identity and the myth of the model 
minority or that “Asians are good at math” perpetuates a stereotype that is racist and 
dehumanizing (Shah, 2019), ignoring the huge diversity of linguistic, socio-economic, political 
and cultural backgrounds. It also masks the issues that different communities may need different 
supports in the school setting to succeed and excel. The Pandemic magnified the inequities that 
have long-existed in our society, education and communities. Deficit framed discourse streamed 
the media with outcries of “learning loss”, while educational organizations worked hard to fight 
against this harmful language and discourse (i.e., Where is Manuel? A rejection of ‘Learning 
Loss’ TODOS, 2020). In addition, the danger in the discourse that marks the achievement of 
marginalized students being “more behind” in their learning, again perpetuates a pernicious 
mindset of achievement gap that our community has worked tirelessly to move away from 
(Gutierrez, 2008). Our professional organizations showed solidarity in fighting against systemic 
racism and this deficit framing and advocated for the “Mo(ve)ment to Prioritize Antiracist 
Mathematics: Planning for This and Every School Year” (TODOS, 2020), and AMTE’s (2022) 
statement on “Equitable and Inclusive Mathematics Teaching and Learning” and the press 
release on systemic racism advocating for practices that draw on students’ mathematical, 
cultural, and linguistic resources/strengths, and challenge policies and practices grounded in 
deficit- based thinking. The voices from our leading mathematics educational organizations 
(NCSM, NCTM & ASSM, 2020, 2021) “In Continuing the Journey: Mathematics Learning 2021 
and Beyond”, and “In Centering Our Humanity: Addressing Social and Emotional Needs in 
Schools and Mathematics Classrooms” (TODOS, 2020) advocated for math educators and school 
leaders to keep our focus on teachers, families and students well being, during this contentious 
socio political climate and Pandemic.  

Rather than returning to the pre-pandemic status quo, Ladson-Billings (2021) argued for a 
“hard re-set” for a new “post-pandemic pedagogy” stating, 

In a re-set school environment, we will begin a school year with an accurate assessment of 
what students already know. The school year will have varied and regular formative 
assessments to determine how well students are understanding what they are taught, and an 
end of the year assessment would be keyed to what was actually taught in their classrooms. 
Assessment would no longer be a punitive tool to “catch” students but rather a diagnostic and 
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developmental tool that will tell teachers and schools how to adjust their curriculum and 
pedagogy (p. 74).  

And yet, we know the opposite is happening where teachers are again being pressured to “catch 
students up” so that they can once again administer high-stakes tests. This is problematic as we 
know as scholars like Louie et al. (2021) describe the danger when a teacher with a framing 
around “closing the racial achievement gap” implicitly frames Black, Hispanic, and Indigenous 
students as mathematically lacking and White students’ achievement as the standard by which 
they should be measured (Gutiérrez 2008; Martin 2009).   This framing makes one more likely to 
attend closely to Black, Hispanic, and Indigenous students’ errors without attending to their 
knowledge or strengths, to interpret these errors as evidence of misconceptions and failures, 
leading to deficit noticing. 

Instead, we should be focused on varied and regular formative assessments to holistically 
determine how well students are understanding what they are taught and focus on asset based 
pedagogy like Complex Instruction (Horn, 2012; Cohen et al., 1999; Eli & Wood, 2016) where 
we develop teachers skills in assigning competence in student work. Research from Cohen et 
al.’s (1999) work on Complex Instruction showed that when teachers praised low-status students 
publicly for a task-related accomplishment, those students' participation increased; their status 
differences were mitigated or eliminated; and ultimately, their achievement increased.  

When teachers better understand the learning trajectory continuum and anticipate a broader 
range of strategies, teachers can spot the strength of students along the LT continuum who may 
typically not get highlighted (Suh et al., 2018). In fact, Empson (2011) reflected on the 2010 
PMENA and noted how LT impacts teacher professional noticings, “As teachers interact with 
students and decide how to proceed, there are many types of decisions to be made – how to 
gather information about children’s thinking, how to respond to it appropriately in the moment, 
how to design tasks that extend it, and even what to pay attention to” (p. 587). 

 
Figure 1: Reflecting Multi-dimensional Noticing for Equity (van Es et al., 2022)  

 
 Developing teachers' ability to assign competencies requires specialized skills of equitable 

noticing (Jacobs et al., 2010; Jacobs & Spangler, 2017; Kalinec-Craig et al., 2021; Jilk, 2016; 
Jong, 2017; Wager 2014). More recently, van Es et al. (2022) described a framework for 
Multidimensional Noticing for Equity, a system of noticing to disrupt inequities. Their framing 
towards a more multidimensional noticing for equity include the perspective of “taking account 
for how the histories and cultures of teachers, learners, and mathematics —and the broader 
historical, cultural, and political contexts in which they exist—are at play in moment-to-moment 
classroom interactions” (van Es et al, 2022, p.115 citing Louie, 2018; Mendoza et al., 2021; Shah 
& Coles, 2020).  In their more expansive framework, the multidimensional noticing was used to 
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interpret teachers’ enactment of culturally sustaining instructional practices organized around a) 
Stretch, which captures the relation of teachers’ noticing to both their own and students’ past and 
futures, and (b) Expanse, which reflects the breadth and range of what teachers identify as 
noteworthy in moments of classroom interaction teaching and teacher noticing (see Figure 1). 

Louie et al. (2021) discuss the importance of framing as a way to challenge deficit discourses 
about marginalized students that devalue the knowledge and abilities of students of color in 
classrooms in the US. They note, 

Deficit discourses may give rise to deficit noticing, wherein teachers attend almost  
obsessively to the errors and shortcomings of students of color; interpret errors and 
shortcomings as evidence of deficiencies in students, their families, or their cultures; erase 
students’ assets; and disregard schooling practices and social structures that limit students’ 
opportunities to learn and thrive. (p. 96) 

Louie et al.’s (2021) most recent work framed anti-deficit noticing explicitly emphasizing how 
Framing is critically important in the ways teachers Attend, Interpret and decide to Respond (see 
Figure 2) 

 
Figure 2: FAIR framework for Anti-deficit Noticing (Louie et al., 2021) 

 
These two frameworks helped our research team think more broadly as we worked with our 

teachers in how we needed to frame anti-deficit orientation and asset-based instruction when 
working with learning trajectories. An important implication that we gleaned from the Multi-
dimensional Noticing for Equity (van Es et al., 2022) is that although noticing captures the 
moment-to-moment events, what teachers notice and attune to is multidimensional in that it takes 
into account historical knowledge of the student, class and context and attends to the complexity 
of the instruction at play (i.e. Culturally Sustaining Pedagogy). The FAIR framework for Anti-
deficit Noticing (Louie et al., 2021) noted the importance of being intentional and explicit when 
framing toward anti-deficit orientation to shift teachers noticing from deficit to anti-deficit 
noticing (See Figure 1). In particular, this FAIR framework’s emphasis on framing allowed our 
team to pay close attention to “how we notice” students as full human beings with many 
mathematical strengths and resources, framing math learning as a creative exploration of ideas 
and framing interaction and interpersonal relationship as integral to learning (Louie et al., 2021). 

Expanding the Notion of Math Competence using LT and Students’ Assets 
We emphasize in our LT PD work that teachers bring these multiple aspects and framing into 

view as they engage in multidimensional noticing. We focus on encouraging narrative that 
emphasizes the strengths students bring to the classroom including their mathematical thinking 
as well as their disposition and mathematics practices. LT has a long history in mathematics 
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education research (Battista, 2011; Blanton et al., 2015; Clements & Sarama, 2004, 2009;  
Confrey et al., 2009, 2011; Ellis, 2014; Hackenberg, 2013; Ebby et al., 2020; Petit et al., 2020; 
Simon, 1995; Steffe & Olive, 2010; and others cited in the synthesis by Lobato & Walters, 2017) 
and well featured in past PMENA proceedings and has many metaphors and descriptors 
including a climbing wall (Confrey et al., 2021), in a conceptual corridor (Confrey, 2006);and 
levels of sophistication plateaus (Battista, 2004), just to name a few. Confrey and Maloney 
(2010) describe learning trajectories as 

 
a researcher-conjectured, empirically-supported description of the ordered network of 
constructs a student encounters through instruction (i.e. activities, tasks, tools, forms, of 
interaction and methods of evaluation), in order to move from informal ideas, through 
successive refinements of representation, articulation, and reflection, towards increasingly 
complex concepts over time. (p. 968)  
 

Clements and Samara (2004) describe learning trajectories for early childhood mathematics for 
narrow sequences of topics as “a conjectured route through a set of instructional tasks designed 
to engender those mental processes or actions hypothesized to move children through a 
developmental progression of levels of thinking” (p. 83). 

The affordance of using LT deepens teachers' understanding of the progression of student 
learning-drawing upon their knowledge of the learning trajectories to make instructional 
decisions. More specifically, LTs have been used with teachers and researchers to better 
understand how students come to understand concepts (Battista 2004; Hackenberg & Tillema 
2009) and to use “the learning goal, the learning activities, and the thinking and learning in 
which the students might engage” (Simon 1995, p. 133) to provide direction for teachers as they 
plan learning activities and predict the potential reasoning, misconceptions, and learning of 
students. Hypothetical learning trajectories (Simon 1995) have also been used in professional 
development settings to enhance instructional practices. Wilson et al. (2015) reported on a study 
using professional development where LTs bridged “guidelines for student-centered instruction 
with domain-specific understandings of students’ thinking for teachers” (p. 227).  

According to Sztajn et al. (2012) existing research on teachers’ use of learning trajectories 
“shows that as teachers make sense of trajectories, these trajectories can support growth in 
mathematical knowledge, selection of instructional tasks, interactions with students in classroom 
contexts, and use of students’ responses to further learning” (p. 149). Research on Learning 
Trajectory based Instruction (LTBI, Sztajn et al., 2017) and the specific design decisions (Sztajn, 
2010) the team attended to revealed the importance of setting discursive norms to focus on 
student thinking and teaching from a strength-based perspective particularly “at a time when 
deficit perspectives and language of differentiated instruction (such as having “high”, “medium”, 
and “low” children) to express ideas about student learning have been normalized.” (Sztajn et al., 
2017, p. 30). With the many descriptors that include terms like “trajectory”, “progression”, 
“increasingly complex”, “levels of sophistication” (Battista, 2010), some caution that translated 
LT research can be misused as hierarchical levels that teachers use to sort students and 
dangerously place labels on students as being high or low. In fact, Myers et al. (2014) concluded 
that learning about LTs without additional support was insufficient to challenge deeply rooted 
ideas about student abilities. Even with attention to the design of PD, Myers (2014) found that 
teachers with severe deficit orientation used LTs to talk about what students could not do as 
opposed to thinking about moving students forward. Through discourse intervention, teachers 
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started to use ability as a temporary descriptor to present students’ current mathematical 
performance and used language from the LT to support these claims. The explicit attention to 
having teachers refer to the LT language instead of labels for students demonstrated the potential 
of LTs to support equitable instruction.  

Celedòn-Pattichis et al. (2018) asset-based approaches to mathematics education are a 
conscious way to move away from deficit perspectives by teaching in ways that view students’ 
language and culture as well as families’, and communities’ ways of knowing (Civil 2007; 
Bartell et al., 2017) as intellectual resources to engage with mathematics in the classroom. Asset 
based approaches offer a more humanizing view of student thinking that extends beyond school 
mathematics and recognizes that mathematics thinking and learning happens at home and in 
communities but is often unrecognized in school settings. Opening up learning trajectories to be 
able to recognize other forms of math thinking and experiences is key. Celedòn-Pattichis et al. 
(2018) also cautioned the community to recognize that not all communities and families focus on 
counting and operations in the specific way that Cognitively Guided Instruction (CGI) has 
described. Studies that combined CGI with culturally responsive instruction improved the 
mathematics performance of Native American students with learning disabilities (Hankes, et al., 
2013) and other studies with culturally and linguistically diverse students engaged in complex 
CGI problem solving where teachers drew from language and culture as intellectual resources 
showed positive outcomes (Celedón-Pattichis et al., 2010; Turner et al., 2008). 

Below I share use cases with LT PD and curriculum design research where coupling LT with 
asset-based approaches yielded anti-deficit teacher noticings. I detail how the use of vertical 
lesson study teams and other PD structures focused on learning trajectories and multidimensional 
noticing supported the development of anti-deficit professional noticings. I will refer to my 
research team as “we” in the case studies to represent the collaborative efforts of multiple 
researchers and doctoral students from the VDOE projects called TRANSITIONS and Bridging 
for Math Strength and an NSF project called IMMERSION.  
Case #1: Synthesizing Previous Research on using Learning Trajectory-based Lesson 
Study- Appreciating Students’ Robust Understanding  

For over a decade, my colleagues and I used Learning Trajectory based Lesson Study (LTLS, 
Suh et al., 2021; Suh et al., 2019a; Suh et al., 2019b; Suh et al., 2018; Suh et al., 2017; Suh & 
Seshaiyer, 2014) in a series of multi-year state funded project called TRANSITIONS, where we 
worked with vertical teams of K-8 teachers, studying, planning, implementing and reflecting on 
teaching through rich tasks. In the Study phase of the Lesson Study (Lewis, 2012) instead of 
focusing on grade level standards, we used Confrey’s (2012), five elements to unpack the LTs 
and to plan and anticipate strategies for a rich task starting with discussing: 1) the conceptual 
principles and the development of the ideas underlying a concept; 2) strategies, representations, 
and “conceptions”; 3) meaningful distinctions, definitions and multiple models; 4) recognizing 
coherent structure or pattern in the development of progressively complex mathematical ideas ; 
and 5) bridging standards or identifying the underlying concepts. 

In Suh et al.’s article (2019a) we detailed a LTLS with a group of teachers ranging from 
Kindergarten to six grade, at an elementary school near a military base with the highest mobility 
rate of 33% in the district. With this transient population, the LTLS team wanted to use LT to 
bridge coherence in their curriculum. The team chose the often used submarine sandwich sharing 
task related to equipartitioning (Confrey et al., 2021; Confrey et al. 2009) typically used in 
Grades 3 or 4.   They decided to launch the first lesson iteration in the Kindergarten classroom to 
study how very young students might approach this task. We framed the LTLS using elements 
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from the Teaching for Robust Understanding (TRU) Framework (Schoenfeld & The Teaching 
for Robust Understanding Project, 2016), particularly focusing on the dimensions of equitable 
access to content using the LT and agency, ownership, and identity described as “ the extent to 
which students are provided opportunities to contribute to conversations about disciplinary ideas, 
to build on others’ ideas and have others build on theirs—in ways that contribute to their 
development of agency (the willingness to engage), their ownership over the content, and the 
development of positive identities as thinkers and learners” (p. 9). 

 Though teachers studied the Equipartitioning LT during the Study phase of the LTLS, seeing 
how students approached equipartitioning through the Lesson Study surprised the educators and 
brought the LT to life. They noticed the strength in Kindergarten students being able to halve 
equal sized parts and share among friends, and understand the context of fair share. One group  
split the 6 sandwiches into 12 halves and made sure everyone of the 8 friends had equal sized 
parts (halves) and decided to remove 4 halves not eaten. Another group contributed the idea that 
there were some extras and wanted to use up the whole set of sandwiches and gestured cutting 
the halves into another half (fourths). Knowing how students approached this task allowed 
teachers to think about how to advance students to exhaust the whole without leaving any part of 
the sandwich unused. We used the LT “look fors” to help us better understand criteria for 
equipartitioning:  

1. Having the correct number of parts 
2. Exhausting the whole, leaving no parts unused 
3. Having equal-size parts  
(LT TurnonCC website, Confrey et al., n.d.).  

Through lesson study, this vertical team saw this same lesson enacted in second, fourth and sixth 
grade classrooms. In our debrief, instead of focusing on grade level standards, the focus of the 
conversation came from observing how the students responded to the task related to the 
equipartitioning LT ‘look fors’ as well as using language from like non-anticipatory sharing, 
additive coordination to multiplicative coordination (Empson & Levi, 2011) as shown in Figure 
3.   

 
Figure 3: Analysis of Student Thinking using Equipartitioning LT on Sharing Tasks  

 
The kindergarten teacher was proud to share the brilliance of her students and the LTLS team 
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acknowledged and appreciated the informal understandings that emerged in earlier grades as 
valuable prerequisites for building more complex ideas. 

In another vertical lesson study through an NSF project called IMMERSION (Suh et al., 
2022), a team of 3rd through 6th grade teachers wanted to celebrate the Lunar New Year by 
making mooncakes with the many Asian students who celebrated the holiday. This school with  
its culturally and linguistically diverse student population identified 71% Latinx, 14% Asian, 
11% White, 2 % Black and 3% others with 73% qualifying for free and reduced fee, embraced 
culturally sustaining pedagogy viewing students’ home and community cultural practices as 
resources “to honor, explore, and extend” (Paris, 2012, p. 94). Scaling up a recipe is a rich task, 
typically classified as a middle grade proportional reasoning task but because there was a real 
need to scale up a recipe that was set for 6 servings, the teachers chose this task and decided that 
the first iteration would be launched in a 3rd grade classroom. As teachers discussed the learning 
trajectory continuum, they identified the skills that students have already developed like skip 
counting, as well as emerging skills like repeated addition and multiplication, connecting to 
future learning goals like scaling up using a ratio table. They discussed the connection to 
students’ assets in terms of cultural funds of knowledge (Moll et al., 1992) and family practices 
in cooking and emphasized bringing in realia for measurements as well as the ingredients to 
connect to students’ multiple knowledge bases (Turner et al., 2013). They anticipated some 
students using manipulatives/realia to make sense of figuring out how many times their recipe 
might have to be scaled up based on the serving size, in addition to repeated addition, using 
multiplication facts  as well as using as manipulatives and tables. Just like the previous task with 
the sharing sandwich, students in third grade used their multiple knowledge bases (Turner et al., 
2013) to figure out how much of the ingredients they would need to make enough mooncakes. 
Teachers noted how students used manipulatives to figure out how many batches they would 
need (the scale factor) and noted how they used their fingers or notes on paper as they scaled up 
the ingredients.  This coordination through iterative skip counting is the precursor to recognizing 
the covariation nature of early proportional reasoning (Steinthorsdottir & Sriraman, 2014).  

With this in mind, teachers recognized that these emergent ways of keeping track with their 
fingers and scaling up was a brilliant way of thinking and reflected formative strategies to show 
covariation. Teachers were seeing the LTs in action as they observed student work and thinking 
(see Figure 4). 
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Figure 4: Analysis of Student Thinking using Early Proportional LT on Scaling up a 

Recipe with LT Chart from Riehl & Steinthorsdottir, 2014 
 

Through both of these LTLS, we found that, 
1. The observers as well as the host teacher acknowledged and appreciated the brilliance 

and quality of students’ fraction and proportional reasoning and positioned students' 
conceptions and multiple strategies as strengths. 

2. The coach facilitated a productive debrief with the participating teachers to verify, 
validate and sometimes dispute the hypothetical learning trajectories based on their 
observations noting that they saw some attributes of more advanced thinking with earlier 
formative strategies. 

3. Bridging the learning trajectories through a rich task across multiple grade levels allowed 
teachers to better focus on LT and talk less of grade level standards. Seeing the students 
work vertically across grades k-6 allowed teachers to appreciate informal understandings 
as valuable prerequisites for building more complex ideas. 

4. Teachers can play an active role in validating LTs with researchers and at times disrupt 
notions of traditional sequencing of mathematics prescribed by standards.  

5. Rich tasks can go beyond the realm of standards and provide a low floor and high ceiling 
where teachers can use their knowledge of LT to highlight students’ strengths and 
position students as capable along the LT.  

Lessons learned from LTLS informed our most recent work below with LT based professional 
development and curricular design activities that highlight the ideas of using LT as a tool to build 
on students’ assets and promote anti-deficit framing in our work.  
Case #2: Using LT with Formative Assessment to Build on Math Strength- Multi-
dimensional Professional Noticing focused around Anti-deficit Framing 

This case study began in 2020 at the start of the pandemic when mathematics leaders in the 
state department of education approached our team to create curriculum resources for teachers to 
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support deep conceptual learning around essential concepts. One of the problems of practice 
presented was that teachers were skillful at finding what gaps students had in their understanding 
but did not always know where to go next to advance student thinking. In reflecting on this 
problem of practice, I thought back to Shaun Harper’s (2010) paper called An Anti-Deficit 
Achievement Framework for Research on Students of Color in STEM, where he states that the 
kinds of questions we ask can focus on failure and not successes. For example, we can reframe 
the question- “Why do so few pursue STEM majors?” (Deficit-Oriented Questions) to “What 
stimulates and sustains students' interest in attaining degrees in STEM fields?” (Anti-deficit 
reframing). He notes that it is both important to unearth systemic inequities and barriers as well 
as identify structures and strategies that support students of color to thrive. In this same vein, we 
wanted to reorient this problem of practice from, “How do we work with students once we know 
the gaps in their understanding?” to “How do we spot students’ strengths and use that to advance 
their learning in mathematics?” 

In our design research, we invited teachers and coaches as our co-designers, tapping into the 
geniuses in our schools (Wiseman et al., 2013) to build an LT based curricular resource site for 
educators. The key design components for our design institute included asset-based instruction, 
knowledge and integration of learning trajectories as our teacher designers created formative 
assessment with bridging activities. Bridging for Math Strength design work engaged teachers to 
unpack LT, use formative assessment to articulate the ‘look-fors’ for building on math strength 
and purposeful questions to advance student learning through a designed set of learning activities 
along that continuum. The participants in our Math Strength Design team included twenty-seven 
K-8 teachers and coaches working as teacher designers in teams of three. The summer design 
institute took place in June of 2020 with Implementation Cycles in Fall 2021 and Spring 2022. 
We used a rapid prototyping method with iterative design and refinement through 
implementation cycles.  

Using a variety of research-based strength building strategies in our Design Institute, we 
equipped our teachers with the knowledge and research on Learning Trajectories and concrete 
strategies to support asset-based thinking. This included:  

1) Locating relevant usable LT research translated for practitioners –
(https://www.learningtrajectories.org/, http://www.ogapmath.com/, 
https://www.sudds.co/ Blanton, 2008;  Empson & Levi, 2011;  Ebby et al., 2020; 
Hackenberg, 2013; Petit, st al., 2020;  Steffe & Olive, 2010) 

2) Broadening the notion of math competence and smartness with Complex Instruction 
(Kobett, & Karp, 2020; NCTM, 2020; Jilk, 2016; Kalinec-Craig, et al., 2021; Horn, 2012;  
Lotan, 2003; Cohen et al., 1999; Featherstone et al, 2011) 

3) Anti-deficit  & Multi-dimensional Noticing frameworks (Louie et al., 2021; van Es et al., 
2022) 

4) Lesson Study to collectively learn about students’ brilliance in thinking and strategies 
competence (Lewis, 2022; Suh & Seshaiyer, 2014) 

5) Evaluating and sequencing learning activities to advance students’ thinking  
We used the data sources including the designed module, implementation narrated through 
Flipgrid, a recording platform, debrief webinars about the implementation cycles and interviews 
with teacher designers. 

Our research questions focused on 1) How can we use LT with teachers and coaches as a tool 
to deepen teacher knowledge and promote asset-based instruction for students? 2) How might we 
use LT to “reFrame” teacher noticings towards anti-deficit orientation? 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

52

https://www.learningtrajectories.org/
http://www.ogapmath.com/
https://www.sudds.co/


Each of the fall follow- up sessions with teacher designers included debriefs around 
implementing the modules and analyzing student work. Using Flipgrid, the teacher-designers 
narrated their implementation so other teachers could follow their process. They started by 
sharing the formative assessment they chose, and then outlined the sequence of activities picked 
based on the student work on the formative assessments. Knowledge of LT helped them 
sequence learning activities for students. These voices centered teachers and coaches in the LT 
and focused the lesson implementation to elevate the strengths of students. 

Below Kelly shares her implementation of the LT based curricular resource with some of her 
students. The excerpt brings to life how a coach might use LT as a tool to build on students’ 
strengths. In her noticings (see Figure 5), she honored this student’s funds of knowledge when he 
shared with her, “Well I like 7s because I watch a lot of football so I’m good at counting by 7s”. 
She interprets his strengths then decides that she would respond by asking questions to see how 
he might recognize patterns and apply reasoning strategies. She planned for questions such as, 
“What do you notice about the relationship of 7x2, 7x4, and 7x8? You mentioned you felt 
comfortable with 7s. What other numbers feel friendly to you? How could you use them to solve 
more challenging facts?” In deciding on rich educational learning experiences to strengthen his 
reasoning, she proposed a center activity called Strive to Derive which is a game that shows 
arrays that students can break apart to rehearse the strategy of using known derived facts or 
distributive property. In addition, she proposed visual number strings to build on patterns and 
relationships for multiplication.  

 

Figure 5: Providing question prompts to support asset based/anti-deficit noticings 
 
In our analysis we found that using formative assessment and LT based bridging activities as a 
curricular resource during the pandemic revealed the power of removing high stakes testing and 
letting teachers use formative data in meaningful and humanizing ways.  One of the teachers 
shared, “It was liberating because I didn’t think so much about grade level standards and the 
state assessment. Instead, I focused on the LT and where students showed strength and built on 
their strength through routines, rich tasks and games.” The LT-based curricular structure 
supported teachers and coaches in reframing how they view student learning beyond grade 
levels- moving away from language like “below grade level” and “at risk”.  Sienna, an 
instructional coach, found that the LT structure helped teachers see their students’ learning as a 
progression and consider next steps rather than visualizing a gap between students’ current 
understanding and the “final goal of the standard”. Kara had a similar epiphany in her second 
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grade classroom. She found that the LT structure allowed her to focus on conceptual 
understanding in her second grade students’ work rather than simply quantifying the number of 
incorrect answers, stating “When you go to grade something or check it over, I’m not necessarily 
looking at ‘Oh, they got 15 out of 20. They’re missing a bunch.’ ...I’m really zoning and honing 
in on what patterns I can find. I feel like that’s what this cycle has taught me is that there are 
patterns in student work.” Kara’s attention to patterns in her students’ work allowed her to 
identify their position on the LT and plan targeted instruction to support their learning as well as 
identify strengths and growth areas.  
Case #3:PST Teachers Use of LT to Assess Student Thinking and Design Sequence of 
Activities 

This next case illustrates ways LTs can be used with preservice teachers to prepare them as 
competent mathematics teachers. The term “learning trajector(ies)” appears at least sixty-three 
times in the document for the Standards for Preparing Teachers of Mathematics (SPTM) 
published by the Association of Mathematics Teacher (AMTE, 2017). For example, Standard 
EC3 and EC7 emphasizes the importance of LT in curricular knowledge as well as for 
assessment. 

EC.3. Mathematics Learning Trajectories: Paths for Excellence and Equity: Well-prepared 
beginning teachers of mathematics at the early childhood level understand learning 
trajectories for key mathematical topics, including how these learning trajectories connect 
to foundational knowledge, curriculum, and assessment frameworks. [Elaboration of 
C.1.4]  

EC.7. Seeing Mathematics Through Children’s Eyes: Well-prepared beginning teachers of 
mathematics at the early childhood level are conversant in the developmental 
progressions that are the core components of learning trajectories and strive to see 
mathematical situations through children’s eyes. [Elaboration of C.3.1]  

Supporting PSTs on how to use LT and formative assessment to strengthen student thinking 
is a priority in a mathematics methods course. Focusing on these two standards, I designed 
an assignment called Learning Trajectory-based Formative Assessment & Sequenced Digital 
Math Activities. In this assignment, PSTs planned and enacted asset-based solutions that included 
digital tools as learning activities. The goal of the tasks was to re-engage students in mathematics 
as the students worked to develop their sense of agency, identity, and ownership in their 
mathematical learning. This case focuses on how PSTs used learning trajectory research to 
analyze formative assessment data and then sequenced bridging activities using digital 
technologies to enrich mathematics instruction for individual and collective learning. PSTs also 
learned to use digital technology teacher dashboards, which allowed them to be responsive by 
providing ease of analysis of student proficiency, facilitating immediate feedback, and providing 
information to form targeted small groups to support student learning. The Learning Trajectory-
based Formative Assessment and Digital Math Activities (Suh et al., 2022) assignment was 
designed using two important frameworks, Learning Trajectory Based Instruction (LTBI, Sztajn 
et al., 2012) and Technological Pedagogical Content Knowledge (TPACK, Mishra, P., & 
Koehler, M. J., 2006)) 

Sara mapped out her learning trajectory concept map with the core idea of ‘unitizing’ 
(Lamon 1994, Steffe 1992, 1994)  as “operating with singleton units to coordinating composite 
units” (Singh 2000, p. 273) highlighting the array as part of the development of spatial and 
numeric composite (Battista, 2012) necessary for multiplicative reasoning. 
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Figure 6: Sample Formative Assessment that Puzzled the Preservice Teacher 

 
Sara, had been working with a student named Selena who could draw rows and columns 
with dots to model multiplication, and use repeated addition (see Figure 6), but oftentimes she 
would be off by 1 or 2 with her final answer. Sara was curious how to support Selena. She 
watched her during a formative assessment and noticed that for every problem, she would count 
every dot. Knowing that she wanted to move the student from counting all to seeing “many as 
one” as a composite unit, she found a technology tool called Bunny Times (see Figure 7) that 
worked with an array model with an added feature. Her analysis of the tool highlighted the 
affordance of the “fog feature” actually helped Selena advance to other strategies that were more 
efficient like skip counting or adding on from a known fact. She liked this applet because the 
visual helps students make connections between rows and columns. The game can be scaled in 
the size of math facts. Additionally, ‘fog’ can settle over the field obscuring some of the answers 
disallowing counting. Facts can be differentiated when starting the game. 
 

  
Figure 7: Learning activity that supports unitizing and skip counting 

 
Sara stated in her assessment report,  

For my target student, I plan to use Bunny Times math after working with her on skip 
counting.  Bunny Times allows for multiplication facts to be scaled to learner 
readiness.  Additionally, it can be played with all rows and columns visible or with some 
hidden under a layer of fog.  For my student, with practice on unitizing, skip counting, and 
counting on, I hope that she will be able to complete problems using the “fog” feature.  

Through the assignment, Sara learned that she could lean on her clinical faculty, a math coach in 
the school as well as her course instructor to assess where her student was in the multiplicative 
learning trajectory. She reflected on this practice-based assignment stating,  

I think this assessment will prove to be one the most important things which happened to this 
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student in 3rd grade.  Because of her fabulous math disposition and other areas of 
proficiency, it is likely that her struggles with unitizing and counting would have been 
masked and not observed.  This project allowed for data collection, meeting with a math 
specialist, testing, and ultimately transferring that into specific intervention. -Sara, the PST 

This PST noticed many strengths in this child's mathematical understanding related to 
multiplication and the intervention built on those strengths to stretch the student to be a stronger 
mathematician.  

Implications for Mathematics Teacher Educators and Researchers  
In reflecting on PMENA 2022’s Theme on Dissonance and Harmony, I share some 

concluding thoughts and implications for mathematics teacher educators and researchers. First, 
we need to take the notion of a “hard reset” (Ladson-Billings, 2021) seriously to dismantle 
inequitable structures and practices that exist in mathematics teaching and learning and challenge 
the status quo. We found in our LTLS research how teachers can play an active role in validating 
researcher-conjectured LTs and at times challenge the traditional sequencing of mathematics 
prescribed by standards. We have viewed LT as a tool to help reframe teachers thinking about 
what students are capable of doing and finding a strength based asset orientation to instruction 
(Bartell et al., 2017). Building on the work of LTBI and our previous work around LTLS (Suh et 
al., 2018), the project that began during the pandemic called “Bridging for Math Strength” with 
the professional development and design research study continues to go through iterations of 
refinement with our model and products to support teachers teaching and student learning. With 
this work, we focused on changing the narrative and mindset of teachers, moving away from 
looking at gaps and solely focusing on error patterns (deficit-approach) to finding strengths in 
student thinking and using the LT to advance student thinking based on strengths and growth 
areas. Working on explicitly noticing and assigning competence (Gresfali et al., 2009) to shift 
classroom status and using LT has helped look for the strengths and where to move students 
forward in their learning. Too often data-talk focuses on looking at gaps using white 
performance as a standard to show how marginalized students are performing. Bridging the 
learning trajectories through a rich task across multiple grade levels allowed teachers to better 
focus on LT and talk less of grade level standards as the final arbiter of learning.  

In order to create more socially just contexts for learning and teaching mathematics, we 
propose a paradigm shift in learning more deeply about the LT so that we can assess student 
strength and make a path of learning activities through rich tasks, place more emphasis on 
formative assessment and move away from gap gazing that continues to persist with state 
assessment (Gutierrez, 2008). Catalyzing Change Early Childhood (NCTM, 2020) - shows that 
students often marginalized are not given rich tasks instead given more rote learning. We 
advocate moving away from a “my students can’t” narrative and the opportunity gaps that exist 
from students engaging in rigorous tasks. Continuing with data meetings with state assessments 
to “close the achievement gap” and catch students up will perpetuate deficit discourses, deficit 
noticing, obsession over errors and shortcomings of students of color blaming deficiencies in 
students, their families, or their cultures (Louie et al., 2017). Instead, Celedon-Pattichis et al., 
(2018) urges researchers and mathematics teachers to embrace asset-based approaches to 
mathematics education and to consciously move away from deficit perspectives that view 
students, parents, and communities as lacking in different aspects that enable them to be ready 
for schooling (Coleman et al., 2016). They encourage the mathematics education community to 
appreciate the math knowledge/experiences that students bring from home and communities and 
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by doing so students bring ways of thinking that broaden mathematics beyond what is written in 
standards or embodied in curriculum. 

To impact society more broadly, beyond individual mathematics classrooms and school 
districts our work must improve learning conditions for each and every mathematics learner. 
With a hard reset and a focus on asset-based instruction and anti-deficit noting with the 
intentional use of learning trajectory (LT) with equity focused PD, our work revealed that 
teachers felt liberated and empowered to open up varied and expansive ways to discuss students’ 
mathematics competencies, name students’ strength and position students as capable. LTLS 
allowed teachers to be researchers and share their expertise and validated research-conjectured 
LT with real classroom data. This positioned them as knowledgeable and elevated their status as 
learning scientists. With the Bridging for Math Strength project, the use of LT coupled with anti-
deficit framing in curriculum design research provided teachers with a tool and the language to 
analyze student thinking and plan rigorous educational resources and asset-based instruction for 
their students. 

Lastly, the use of LT with formative assessment in the practice-based assignment for 
preservice teachers provided a scaffolded learning experience in the field with multiple educators 
supporting them with LT research and equitable teaching strategies to advance students' 
understanding. As I close this paper, I invite the PMENA community to consider how learning 
trajectories can be coupled with powerful equity focused research (Gutierrez, 2007; Celedon-
Pattichis et al., 2018; Hand, 2012; Wager, 2014) and frameworks (Aguirre & Zavala, 2013; 
Bartell et al., 2020; Yeh et al., 2020) to disrupt the status quo, broaden the purposes of learning 
mathematics (NCTM, 2020), eliminate labeling, and dismantle inequitable structures and 
hierarchy in the mathematics classroom. In continuing this work, I invite mathematics 
researchers and math teacher educators to consider border crossing (Silver & Lunsford, 2017) as 
boundary spanners (AACTE, 2018) to not only translate but engage teachers and researchers in 
the viewing the relationship between research and practice in education as bidirectional rather 
than unidirectional so that “research could/should influence/inform practice, but also that 
practice could/ should influence/inform research” (Silver & Lunsford, 2017, p. 36) while 
centering the voices of students who are at the margins and attending to the socio-political lens 
with their LT research.  
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LEARNING TRAJECTORIES RESEARCH NEEDS A HARD RE-SET: USING PCTM 
TO CENTER COGNITION, CONTEXT, AND CULTURE 

Marrielle Myers 
Kennesaw State University 
mmyers22@kennesaw.edu  

Research on LTs remains a central topic in mathematics education. In this plenary paper, I 
argue that LT-based research needs a hard re-set if it is to play a role in creating more equitable 
and anti-oppressive experiences for historically marginalized students. I begin with an overview 
of LT-based research presented during PME-NA plenary sessions, which I examine through a 
lens of cognition, context, and culture. I assert that a continued focus on cognition reproduces 
the status quo and causes dissonance for many learners. I then discuss equity in LT research and 
how it has evolved throughout the years. Next, I offer Political Conocimiento in Teaching 
Mathematics (PCTM) as a framework that can support us in asking the complex sociopolitical 
questions needed to create liberatory spaces in mathematics teaching and learning. I end by 
inviting the field to commit to centering equity in their LT-based research as a political act. 

Keywords: Equity, Inclusion, and Diversity; Social Justice; Teacher Educators; Learning 
Trajectories and Progressions 

Introduction 
For many of us, the past two years have been challenging mentally, emotionally, physically, 

and spiritually. There are multiple pandemics affecting our students. And while news of a 
looming recession and midterm elections may be dominating media outlets, the pandemics of 
racism, cisheteropatriarchy, redlining, xenophobia, ableism, wealth inequality, food insecurity, 
and climate change are still alive and well. Right-leaning states, politicians, and media are 
openly attacking supports aimed at remedying these pandemics. Capitalism continues to thrive at 
the expense of the very Black and Brown people whose ancestors built this country. Wars and 
threats of wars are happening around us. And while the United States stands ready to send 
money overseas to maintain its interests, it fails to protect its own citizens from police brutality 
or ensure clean drinking water as a human right. 

Teachers and schools are also facing some of the greatest attacks we have seen in decades. 
Texas, Georgia, and Florida continue to compete in a “race for the bottom” as they seek to define 
and ban “divisive topics,” create anti-woke laws, ban books, whitewash this nation’s history, and 
further marginalize students who identify as LGBTQIA+ by developing policies intended to 
destroy their safety. Teachers are left exhausted by the pandemics, ongoing attacks, and fears of 
being sued or otherwise humiliated in any attempt to support students specifically harmed by 
these pandemics. Education remains a political pawn. Schools are underfunded. And politicians 
would rather spend tax dollars enforcing racist laws instead of paying teachers what they 
deserve. These conditions further exacerbate teacher burnout leading many school districts to 
start the year with an unprecedented number of vacancies. 

Instead of critical mathematics education scholars being consistently asked to defend the 
relevance of their work as if the context of concurrent pandemics doesn’t impact the teaching 
and learning of mathematics, we need to shift the conversation to examining how each of these 
cells of mathematics education research serves to maintain or liberate us from the multiple 
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pandemics plaguing our nation.  As we meet on these stolen lands, I implore our community to 
take up Aguirre et al.’s (2017) call for engaging in equity-oriented mathematics education 
research as a political act as well as what Ladson-Billings (2021) termed a “hard re-set.” Ladson-
Billings (2021) used the term hard re-set as a mantra and called for us to center students and 
culture in an effort to build a more humane future. Specifically, she stated: 

We must re-think the purposes of education in a society that is straining from the problems of 
anti-Black racism, police brutality, mass incarceration, and economic inequality. The point of 
the hard re-set is to reconsider what kind of human beings/citizens we are seeking to produce. 
(Ladson-Billings, 2021, p. 72) 
LT-based research needs a hard re-set that can only be achieved if our community adopts a 

critical stance that centers equity. Doing so requires holding cognition, culture, and context 
together while using a critical lens. To date, LT research has privileged cognition at the expense 
of culture and context, and that disregard has led to inequitable uses. To make this point, I first 
discuss the history of LTs in plenary sessions at PME-NA in relation to cognition, culture, and 
context. Next, I establish my positionality and history with LT-based research. I then discuss the 
current state of equity-based approaches in LT research, and offer Political Conocimiento in 
Teaching Mathematics (PCTM) as a framework for our field to consider in order to enact the 
hard re-set needed (Gutiérrez, 2017). I end with questions and implications for the field.  

Learning Trajectories at PME-NA 
The North American Chapter of the Psychology of Mathematics Education (PME-NA) has a 

detailed history of centering LTs in its conference. In his 2010 plenary session and paper, Mike 
Battista spoke about the similarities and differences between Learning Progressions (LPs) and 
LTs, and what it meant for students to move through LPs/LTs (e.g., milestones, levels of 
sophistication). After highlighting differences in theoretical framings, the nature of levels, and 
the inclusion of instruction as a way to differentiate LTs and LPs, Battista turned to his work 
with Cognitive Based Assessments (CBAs). He noted that a CBA LP outlines students’ 
conceptions, obstacles, plateaus, and mental processes needed to advance for a given topic 
(2010, p. 66). While Battista notes that movement through progressions is not unilateral because 
“students' learning backgrounds and mental processing differ[s],” there was no specific mention 
or acknowledgment of the sociocultural and political environment this instruction, assessment, 
and research validation occurred in. We are also left to wonder how Battista defines learning 
backgrounds and to what extent, if any, that definition captures the rich knowledge students 
bring from their homes and communities. Battista ended his paper by calling on researchers to 
exercise caution when using quantitative techniques to develop and validate LPs so as to not 
misapply such techniques or ignore how this thread of work interacts with research on learning 
(Battista, 2010, p. 69). It is noteworthy that Battista’s caution to the field centered cognition and 
upholding principles of research methodology while tangentially addressing context and ignoring 
culture. 

Susan Empson (2010) questioned the novelty and usefulness of LTs in Battista's plenary in 
an invited critique and reaction. After offering a summary of LTs and drawing on Simon’s 
(1995) discussion of a hypothetical learning trajectory, Empson pondered LTs’ place in teaching 
and research. In addition to posing questions for consideration, Empson acknowledged the 
importance of context when she cautioned the field not to underestimate the role of tasks, 
teachers, and teaching in LT research. She also reminded us to acknowledge disciplinary 
practices in the same way we focus on content, which is critical since LTs are tools used for 
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teaching and ultimately derive meaning from classroom contexts. Finally, this paper noted that 
LTs ultimately need to be useful for teachers and that the creation and use of LTs must be an 
interactive process that involves careful study of how teachers use them. Empson’s paper 
reminded us of the importance of context in cognition-based research. This paper did not 
explicitly address culture. 

In 2012, Confrey offered a plenary paper summarizing how LTs were used in the 
development of the Common Core State Standards for Mathematics (CCSM). A major premise 
of this work was to support state leaders in distilling elements of the new standards into smaller 
pieces of information supported by research on student learning over time. Another key element 
of her paper was presenting components of LTs in ways that were useful for teachers, resulting 
in the creation of a hexagon map of K-8 mathematics standards. As Confrey described the 
hexagon map, she provided a rationale for its design, noting how different big ideas were 
connected (e.g., counting, addition, and subtraction), how some content supported the learning of 
other ideas (e.g., equipartitioning supporting the development of division and multiplication), 
and why some topics were visually clustered between others (e.g., length area and volume are 
nestled between equipartitioning on one side and shapes/angles on the other). This plenary 
offered a detailed analysis of a multiplication and division LT coupled with figures, strategies, 
and multiple representations. Confrey and team unpacked each trajectory by articulating 
conceptual principles, strategies, representations, misconceptions, meaningful distinctions in 
language, coherent structure, and bridging standards, which centered cognition.  

Confrey explicitly stated that the hexagon map did not address the standards for 
mathematical practice (which could have inserted relevant connections to culture and context) 
but noted that students would surely use various practices as they progressed through the 
trajectory (2012, p. 8). She then posited that when LTs are properly unpacked and coordinated 
with standards, teachers can be better supported to connect underlying mathematical principles. 
She ended this paper by inviting the field to consider the usefulness of the hexagon maps as one 
example of what coherence across standards could look like, with the ultimate goal of supporting 
teachers as they transitioned to using the CCSS (Confrey, 2012). While the hexagon maps and 
associated unpacking offered valuable information related to cognition, a sociopolitical lens was 
not evident. As such culture was not discussed and context was not addressed. Given the social 
and political nature of teaching and how the CCSS were created, such connections would have 
been valuable as they could have contextualized this national movement and addressed teachers' 
concerns around new mandated curricula and tests that accompanied these standards. 

The next plenary talk on LTs featured Julie Sarama in 2018. In a response to the conference 
theme, Looking back, looking ahead: Celebrating 40 years, Sarama discussed how mathematical 
knowledge developed in young children and shared brief highlights from her work. Her 
definition of LTs, which she noted is rooted in constructivism, acknowledged the importance of 
instruction and mathematical tasks. As Sarama unpacked the tenets of Hierarchic 
Interactionalism, she noted several points that were central to young childrens’ innate skills and 
environment. She ended this chapter by offering an example of a student named Justin 
progressing through the LT-based Building Blocks curriculum. Sarama highlighted this student’s 
growth in counting, addition, and subtraction as one example of how student thinking across 
multiple LTs is interactive and can grow concurrently (Sarama, 2018). Again, this plenary paper, 
and the original paper from which the example was drawn, centered cognition (and cognitive 
science) and did not provide insight on the context of Justin’s “growth,” his culture, who the 
teacher was, and the broader sociopolitical context this study occurred in. 
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In reflecting on these plenaries, Battista’s took a cognitive approach. Empson pushed back 
and acknowledged context but left much unsaid about culture. Using a constructivist paradigm, 
Confrey and Sarama attend to context in limited ways (e.g., standards, curriculum) but did not 
include culture or other sociopolitical factors. My goal in providing this brief historical overview 
through a lens of cognition, context, and culture was not to freeze any of these scholars in time as 
working toward equity is a journey and not a destination. Rather, I sought to highlight how each 
of the plenary papers privileged cognition (when written) at the expense of context and culture, 
thus casting equity to the sidelines. While these scholars moved the field forward in monumental 
ways by disrupting understandings of how mathematical content is organized and reframing 
students as capable of rich mathematical thinking, they did not go far enough to disrupt other 
problematic strongholds in mathematics teaching and learning (e.g., tracking, low expectations). 
This review of previous LT-focused plenaries at PME-NA highlights the timeliness and necessity 
of the current conference theme, as scholars were specifically invited to consider their work 
through a sociopolitical lens. I hope this paper and resulting discussion contribute to a collective 
examination of why a hard re-set is needed in LT-based research if it is to play any role in 
leading toward a more “antioppressive and equitable human experience” in mathematics 
teaching and learning (Aguirre et al., 2017, p. 127). 

Positionality 
Before moving forward, it is important that I provide context on who I am and how I came to 

this work. I am not an outsider to LT-based research. In fact, I have an intimate history with LTs, 
and most of my time as a graduate research assistant for my master’s and doctoral programs was 
spent on large-scale, NSF-funded, LT-focused grants. Earlier in my program, I worked on a 
research team to develop LTs for equipartitioning and rational numbers. As a graduate assistant, 
I conducted numerous clinical interviews and worked with my teammates to construct and 
validate LTs. Our team regularly met and engaged with other LT experts in the field, many of 
whom I cite in this paper, and worked to support the development of our state's mathematics 
standards. During that time, several concerns began to arise in the field around the construction 
and validation of LTs. Many of these questions were aimed at the diversity, or lack thereof, of 
the student population upon whom LTs were constructed and validated. Our team considered that 
feedback and began to intentionally recruit research participants in various settings to diversify 
our student sample. I recall being curious about this critique and wondering if students from 
different racial, cultural, and linguistic backgrounds would demonstrate different pathways 
through our sets of tasks. At that time, my equity lens was not sophisticated enough to recognize 
that engaging diverse students in a fairly “rigid” set of tasks was unlikely to produce different 
outcomes. In fact, as I reflect on this approach to diversifying the student sample in our research, 
I now see that we worked to accumulate more in the sample, rather than pause and 
fundamentally reorganize the research design. I was also only beginning to understand the 
impact of context and interlocking systems of oppression. And as such, I was not yet able to a) 
question the rationale for centering cognition, b) form arguments about how the clinical 
interview structure excluded context, c) understand how students intersectional identities 
influenced their work on our tasks, or d) understand how the social and political context of 
standards, funding, and other external forces impacted our research work. 

After transitioning to another project, my focus shifted from developing and validating LTs 
in rational numbers to designing LT-based professional development. While on this project, our 
team worked on translating and coordinating early grades LTs focused on number, counting, 
addition, and subtraction, into useful tools for teachers across grades K-5. This research project, 
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titled Learning Trajectories Based Instruction (LTBI), served as the basis for my dissertation. As 
we sought to understand and develop a model for how teachers learned to use LTs, I, along with 
other team members, became interested in how teachers’ implementation of LTBI looked 
different across various subsets of their student population. I had grown as a person and a scholar 
and was much more aware of equity, justice, and how the systemic nature of marginalization in 
schools maintained opportunity gaps and systematically excluded minoritized learners.  

After ending my high school teaching career to complete my doctorate full-time, I was much 
more attentive to culture and context. I had also grown increasingly frustrated with the ways 
“new trends” and “innovative curricular materials” in mathematics teaching and learning yielded 
the same results year after year (e.g., opportunity gaps, tracking). Because of the national 
attention LTs were receiving at the time, and how they were being used to develop curriculum 
and assessment, I wanted to be proactive in considering how they could be used equitably. 
Therefore, I worked with my team to articulate a theory of Equitable Learning Trajectory Based 
Instruction (E-LTBI), which I then investigated in a case study of four teachers for my 
dissertation (Myers, 2014). This E-LTBI framework resulted from simultaneously considering 
Gutiérrez’s (2007) four dimensions of equity and our existing LTBI framework (Myers et al., 
2015). I share more about this work in my review of LTs and equity after providing a brief 
overview of LTs/LPs and critiques. 

Learning Trajectories 
Several definitions of LTs have been offered in the field. Clements and Sarama (2004) define 

LTs as 
descriptions of children’s thinking and learning in a specific mathematical domain and a 
related, conjectured route through a set of instructional tasks designed to engender those 
mental processes or actions hypothesized to move children through a developmental 
progression of levels of thinking, created with the intent of supporting children’s 
achievement of specific goals in that mathematical domain. (p. 83) 
Confrey and Maloney’s (2010) definition of LTs features similar language but notes that 

trajectories a) are empirically supported, b) include activities, tools, and assessments in addition 
to tasks, and c) highlight the iterative nature movement, reflection, and refinement as students 
move from informal understandings to formal ideas (p. 2). Research around LTs exists in three 
primary areas: development and validation (constructing LTs in different domains and content 
strands) (Battista, 2004; Blanton et al., 2015; Confrey et al., 2009; Maloney & Confrey, 2010; 
Gravemeijer et al., 2003; Fonger et al., 2020), informing instructional tools (e.g., standards, 
curriculum, and assessment) (Clements, 2002; Clements & Sarama, 1998; Confrey, 2012; Daro, 
Mosher, & Corcoran, 2011; Mosher, 2011), and, more recently, professional learning for teachers 
(Bargagliotti & Anderson, 2017; Clements & Sarama, 2009; Edgington, 2012; Sarama et al., 
2016; Suh & Seshaiyer, 2015; Sztajn et al., 2012; Wickstrom, 2014; Wilson et al., 2013; Wilson 
et al., 2015; Wilson et al., 2017). Lobato and Walters (2017) conducted a detailed review of 
research on LTs and LPs in mathematics and science education. They produced a taxonomy of 
approaches to learning trajectories and progressions, which they refer to as LT/Ps. At each level, 
they described the approach, offered an example, highlighted the features, outlined the methods 
used, and discussed the purpose, benefits, and tradeoffs. I invite readers to study the full paper to 
learn more about the breadth and depth of research around developing and validating various 
LT/Ps. 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

66



It is important to note that I do not seek to offer a distinction between LTs and LPs nor 
advocate for one over the other. I encourage readers interested in the LT vs. LP discussion to 
read Battista (2010) and Ellis, Weber, & Lockwood (2014), as both papers offer a detailed 
account. The relevant similarity from my perspective is that while LTs and LPs center cognition 
and narrowly reference context (in noting the importance of carefully selected tasks and 
pedagogical moves), neither body of research explicitly addresses the social, cultural, or political 
context in which the research, validation, creation, and intended uses occurred. Moreover, I 
argue that both LTs and LPs offer a narrow definition of what mathematics is, whose 
mathematics is privileged, and why we engage with it, thus missing an opportunity to expand the 
view of what counts as mathematics (Aguirre et al., 2017).  
Critiques of LTs (and LPs) 

Critiques of LTs and LPs in mathematics and science education are not new. In the National 
Research Council (NRC) report Taking Science to School, the authors provide an overview of 
teaching and learning science in grades K-8. In their chapter on learning progressions, much of 
which aligns with LTs mathematics education, the committee highlighted how LPs can be used 
to map students' understandings and unify science topics that have previously been disconnected. 
The committee ended this chapter by discussing the design challenges of LPs and stated, 

No single learning progression will be ideal for all children, since they have different 
instructional histories, bring different personal and cultural resources to the process of 
learning science, and learn in different social and material environments. The best learning 
progressions are those that make effective use of the resources available to different children 
and in different environments. This is the challenge that we are farthest from responding to 
effectively with the current research base. (NRC, 2007, p. 222) 
The committee later noted that although they recognized inequities in science education and 

the dire need to address them, they were unsure about what recommendations to make related to 
modifying instruction for diverse learners. Their suggested agenda for future action included 
focusing on the effectiveness of different instructional strategies, the unpacking of systemic 
inequities across schools, and the need for specific research that examined the complexity of 
culture, language, and socioeconomic status (NRC, 2007). This report summarized the cognitive 
aspects of LPs in science and pointedly expressed the absence of context, culture, and other 
sociopolitical constructs. 

In a 2011 paper, an expansion of her 2010 plenary response, Empson questioned what LTs 
afforded, foregrounded, and obscured, which parallels the current conference theme of 
dissonance and harmony. I appreciated that this more detailed analysis considered both promises 
and pitfalls of LTs by making the case that learning is as much contextual and social as it is 
cognitive. Empson went on and acknowledged that teaching was a relational act that “depends 
fundamentally on interpersonal relationships of trust and respect.” (Empson, 2011, p. 587). What 
was underdeveloped in this paper was the explicit unpacking of the word contextual and the 
historical and political nature of those contexts. Additionally, when children’s differences were 
alluded to in the text, the words race, gender, culture, language, sexual orientation, or ability 
were not explicitly mentioned. When we do not intentionally name the different elements of 
students’ intersectional identities we can inadvertently reify some scholars' beliefs that LTs only 
need to focus on “cognitive differences.” I argue that while this critique pushed for the inclusion 
of context (and culture to some degree) in LT research, a sociopolitical could have strengthened 
this critique. Just as Empson argued that learning cannot be separated from teaching, I argue that 
teaching cannot be separated from the teacher. Since teachers hold a range of beliefs and biases 
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about who can do mathematics and who should be afforded opportunities for “rigorous” 
mathematics, neglecting to use a sociopolitical lens secures an oppressive, anti-black, anti-
immigrant, anti-poor, anti-LGBTQ, ableist system. We must explicitly engage teachers’ beliefs 
as we center context and culture in conversations about LTs. 

In their examination of equity in LT/LP research, Delgado and Morton (2012) analyzed 
existing research using a cognitive constructivist framework. They noted that this framework 
was aligned with their definition of equity. These authors pushed against “equity for all” (or 
dominant framing of equity) and embraced a postmodern definition of equity that “acknowledges 
existing inequities in society [and] proposes responsive, individualized attention to students in 
order to compensate for past lack of opportunities and to promote social justice” (Delgado & 
Morton, 2012, p. 205). As they examined LT/LP research that explicitly considered “issues of 
equity,” the authors found that student populations lacked diversity (or didn’t report any 
demographic information), only focused on common themes amongst students’ mathematical 
ideas instead of capturing all students’ ideas, and failed to consider how students’ family and 
community knowledge shaped their engagement in tasks and resulting movement through a 
trajectory. The authors concluded their paper and stated,  

Research groups developing LPs and LTs should ideally include advocates for certain groups 
of students, for example, an expert on special education and team members that are deeply 
knowledgeable about the culture of minority students. Developing learning progressions and 
learning trajectories that do not address inequity in educational opportunities in math and 
science for students will only exacerbate the current problem. As the learning sciences, 
science education, and mathematics education fields continue to negotiate and define the 
nature of LPs and LTs, an expansion to include equity concerns at the forefront can greatly 
benefit groups that have been traditionally underserved. (Delgado & Morton, 2012, p. 209) 

LTs and Equity 
In this section, I present three ways “equity” has been addressed in LT-based research. First, 

I highlight Sarama & Clements’ body of work as an example of a dominant framing of equity as 
it primarily focuses on access and achievement (Gutiérrez, 2007). I also discuss how their 
attention to equity has shifted over time to include some critical framings of equity.  Next, I 
discuss equitable uses of LTs by highlighting two cases: LTBI and Suh et al. (2022). After 
showing how Clements and Sarama’s work influenced my dissertation study and led to the 
development of the E-LTBI framework, I transition to the work of Suh and colleagues who built 
from our LTBI findings and intentionally embedded equity in their LT-based PD model. I 
conclude by highlighting the work of Zahner and Wynn (2021), who centered equity in an 
attempt to address gaps in representation in LT development.  

Dominant Framing. One area of LT & equity research focuses on how LTs can offer access 
and support achievement for minoritized students.  The body of work of Clements and Sarama 
represents decades of research and tens of millions of dollars of grant funding from large-scale 
funders (e.g., The National Science Foundation and Institution of Education Sciences), which led 
the development of curriculum (Clements & Sarama, 1998; Sarama & Clements, 2019), 
conferences, and the creation of research centers. Because these scholars' definition of LTs and 
the resulting body of work has been so influential in LT-based research, I draw on it as one 
example of a dominant framing of equity. Consider the large-scale randomized trial that was 
conducted and published in several venues (Clements et al., 2013; Sarama et al., 2012). The 
authors noted that they chose their research site because “children from low-resource 
communities and who are members of ethnic and linguistic minority groups demonstrate 
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significantly lower levels of mathematics achievement than children from higher-resource, 
nonminority communities” (Clements et al., 2012, p. 2). The authors went on to note that their 
LT-based PD model, “include[d] guidelines for promoting equity through the use of curriculum 
and instructional strategies that have demonstrated success with underrepresented populations” 
(Clements et al, 2012, p. 4). Findings from this and similar studies indicated that African-
American students in their experimental groups scored significantly higher than their 
counterparts in control groups. One conclusion of this study was that “centering instruction 
around LTs may focus teachers’ attention on students’ thinking and learning in mathematics 
rather than their memberships in ethnic groups and thus avoids perceptions that negatively affect 
teaching and learning” (Clements, Sarama, Wolfe & Spitler, 2012, p. 26). In their 2014 book 
chapter, Clements and Sarama stated, “several "gold standard" randomized control trial studies 
have shown that curricula and professional development based on learning trajectories increase 
children's achievement more than those that do not.” (p. 7). They went on to say, “learning math 
at an early age is critically important for young children, especially those from disadvantaged 
communities” (Clements & Sarama, 2014, p. 8).  

Clements and Sarama’s attention to and expression of equity continued to grow and expand 
throughout the years. They sharpened their perspective by explicitly addressing six myths about 
LTs, three of which are germane to this analysis (Clements & Sarama, 2017/2019). First, they 
argued that LTs are asset-based because they help teachers recognize and build upon students’ 
thinking. Next, they defended critics' notions of LTs being narrowly focused by noting that LTs 
are “deeply constructivist” and address broad ranges of ideas.  Finally, they stated, “Learning 
trajectories are expressly built to be adaptable to different cultures, groups, and individuals. One 
important adaptation is for different cultures. Learning trajectories take funds of knowledge from 
all communities seriously and encourage using such funds” (Clements & Sarama, 2017/2019, p. 
2).  

More recently, Clements et al. (2020) suggested that teachers who know how to use the three 
components of an LT are better suited to understand the complexity of early mathematics content 
and offer instruction that is more closely aligned with students’ current conceptions, thus 
providing more robust mathematics experiences for all children. They stated that such 
environments are necessary for “vulnerable children who live in poverty, are members of 
linguistic and ethnic minority groups, or…children with disabilities” (Clements et al., 2020, p. 
1). They suggested that early-childhood teachers could benefit from sustained PD focused on 
learning trajectories that also included direct support for engaging children with learning 
disabilities. The authors ended this paper by announcing their STEM Innovation for Inclusion in 
Early Education Center, which they noted is a critical step in ensuring equity and excellence in 
early STEM experiences. Ongoing work from this team continues to suggest that LT-based PD 
positively impacts students from “low-resource communities” (Sarama, Clements & Guss, 
2021). 

 As I followed this and other bodies of LT-based research over the years, I observed how the 
discussions of context and culture have both evolved by expanding the attention given to equity 
and, in some cases, remained stagnant by only considering equity in relation to student 
achievement. I have paid particular attention to how students were described and positioned in 
these and other studies. I would encourage Clements and Sarama to consider how the language 
they used to dispel myths in their 2017/2019 resource document may be at odds with how often 
students and their communities are referred to as low resource, vulnerable, and minority. 
Although those phrases were often used as demographic descriptions, doing so without a 
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sociopolitical lens may serve to reify the deficit orientations Clements & Sarama seek to disrupt. 
It is also important to note how context was included (e.g., as a description or as a mediating 
variable in a statistical model, etc.) and whether or not the context of the study was situated in 
the historical context of schools and schooling in the United States (e.g., critical explanations of 
sociopolitical factors that intentionally created disadvantaged or low-resource communities). 
Finally, I invite the reader to carefully consider how this dominant view of equity and its 
evolution was inextricably tied to cognition, which overwhelmingly excluded critical discussions 
of context and culture. 

Equitable Usage of LTs. A second area of equity and LT research focuses on the ways LTs 
are used in instruction. The Learning Trajectories Based Instruction (LTBI) research project (for 
which I was a graduate research assistant) is one such example (Sztajn et al., 2012). This study 
used Clements and Sarama’s early number, counting, addition, and subtraction LTs in a multi-
year research project with K-2 teachers. In our 2015 paper From implicit to explicit: Articulating 
equitable learning trajectories based instruction, my colleagues and I argued that although we 
initially considered our LT-based research with teachers to attend to issues of equity, what we 
learned in our work caused us to reconsider some of those assumptions (Myers et al., 2015). 
Similar to other cognition-focused teacher learning models, our project centered students’ 
thinking, disrupted notions about the “traditional sequencing of mathematics,” and created space 
for students' individual thinking to emerge and be positioned as valuable along various 
trajectories. Teachers in our study deepened their knowledge of K-2 mathematics content, 
appreciated the language the trajectory afforded them, and began to recognize and value a range 
of students’ mathematical contributions (Edgington, 2012; Myers, 2014; Wilson et al., 2015). In 
this sense, one assumption of our work built on Clements et al. (2012) suggestion that by using 
LTBI, teachers would see that all children were capable of mathematics, potentially reducing 
their focus on other demographic factors.  

Unfortunately, the suggestion that focusing on cognition could reduce attention to other 
factors did not hold true in our work, highlighting how good intentions and race-evasive 
approaches are not enough to effect radical change across diverse groups (Rodriguez, 2003). As 
a result, we saw LT language taken up and used oppressively such as when teachers replaced the 
language of “low students” and “high students” with LT-based vocabulary (e.g., the low students 
being renamed the direct counters). Results from my dissertation highlighted that most LT-based 
work aligned with a dominant approach to equity (Myers, 2014) and that the elements that 
connected to Gutiérrez’s (2007) critical axis were shallow or maintained dominant framing. 
Moreover, in my paper titled, The unintended consequences of a learning trajectories approach, 
I reported on a teacher, Elizabeth, who possessed several deficit orientations about her students. 
This teacher also shared that she wasn’t confident in her own mathematics knowledge and 
therefore taught science instead of mathematics to her kindergarten students. Although this 
teacher made “gains” in her content knowledge and began offering LT-based instruction in her 
classroom, several issues emerged. A primary concern was that this teacher’s deficit orientations 
about students overshadowed what she learned about LT-based instruction. This teacher 
ultimately used knowledge gained in the PD to justify retaining kindergarten students from 
minoritized groups, and the LT-based language she acquired in our sessions provided 
“credibility” to her decisions as a teacher (Myers, 2015).  

It is important to note that my dissertation study sought to examine what equity may look like 
as a by-product of participating in LT-based PD, as equity was not explicitly centered in the PD 
design. Building upon findings from LTBI-based research, Suh and colleagues considered that 
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LT-based PD was not enough to disrupt teachers’ beliefs about minoritized students. Therefore, 
she and her team intentionally embedded equity in their LT-based teacher learning study design, 
simultaneously centering cognition, context, and culture. They engaged teachers in professional 
development focused on LTs, asset-based instruction, and cognitive demand (Suh et al., 2022). 
They hypothesized that pairing LTs with equity-oriented and anti-deficit frameworks for noticing 
(Louie et al., 2021; van Es et al., 2022) would help teachers recognize students' multiple 
knowledge bases. They suggested that this framework would support teachers to assign 
mathematical competence to their students. The authors noted that teachers in their study moved 
beyond discussing “gaps” in students' understanding to using what they referred to as “strength-
based language” (Suh et al., 2022). It is unclear from these findings if the shift from “gap-based 
language” to “strength-based language” reflected a change in teachers’ beliefs or if teachers were 
merely using the “new language” that had become normalized in the professional learning space, 
potentially as a proxy for previously held viewpoints (Myers et al., 2013; Wilson et al., 2017). 
The field can benefit from continued research that examines how similar findings (e.g., strength-
based language) relate to broader conceptions of socially just and anti-oppressive learning 
environments. 

Representation in LT Development. A final area of equity and LT research focuses on who is 
used in constructing LTs. In noting the absence of diversity in the student population of much 
LT-based work, Zahner & Wynn (2021) conducted clinical interviews with 23 multilingual 
students using LT-based tasks focused on proportional reasoning and linear functions. This study 
of twenty-five ninth-grade students (primarily Latinx, Asian, and African American), ten of 
which were multilingual, provided valuable insights into how the linguistic complexity in 
mathematics tasks impacted how students approached tasks and explained their reasoning, 
thereby influencing their potential “ranking” or placement on a content-focused LT. Their 
findings call into question the role of language in previous large-scale work conducted to create, 
norm, and validate LTs. Given that many initial LT-based studies did not consider language or 
the linguistic complexity of tasks in the study design, we are left to wonder how students 
interpreted tasks. Even when scholars acknowledged demographics (e.g., language status) in 
large-scale studies they typically neglected to present analysis around how language mediated 
performance on standardized tests. Zahner and Wynn’s research is an example that culture and 
context can be centered while simultaneously investigating cognition. 
Summary 

For organizational purposes, I presented these two sections (critiques of LTs and equity in 
LT-based research) separately. Readers should note that some of this work occurred concurrently 
and that some of the shifts in how equity was presented in LT-based research were in direct 
response to the ongoing critiques of equity in LT research (e.g.,  Empson, 2010, NRC, 2007, 
Sztajn and Wilson, 2019), LT-based conferences and working groups, and other conversations 
that have continued in the field. Despite a small shift in how scholars have attended to equity in 
their LT work, cognition is still the focus, and I argue that we have not yet met the call of 
centering equity in LT research as both a political act and a collective responsibility. I also note 
that in order for an LT-based re-set to happen in ways that honor Aguirre et al.’s (2017) call, we 
must pause to unpack a) how discussions of “equity” have (or have not) evolved in LT-based 
work, b) whether we have been intentional about acquiring the knowledge necessary to make the 
shifts in genuine ways, c) if our work focuses on the full humanity of students’ experiences and 
moves beyond acknowledging their test scores, and d) how we have chosen to foster and 
cultivate critical collaborations that value the expertise of a range of scholars, colleagues, and 
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families. In what follows, I describe PCTM and suggest that this framework can help us ask the 
complex, sociopolitical questions needed (Gutiérrez, 2013) for us to examine LT-based as we 
consider how cognition, context, and culture are necessarily entangled. 

Using PCTM to Critically Consider Cognition, Culture, and Context 
In honoring the conference theme and Aguirre et al.’s (2017) call to be intentional about 

discussing interlocking systems of oppression with colleagues, I suggest that Political 
Conocimiento in Teaching Mathematics (PCTM) can provide the field with a lens to examine 
LT-based research and ask complex questions. Because PCTM explicitly engages content, 
pedagogy, social context, and politics, it is suitable for examining LT-based research across its 
three primary domains (e.g., development and validation, informing instructional tools, and 
professional learning with teachers). For too long, large-scale research projects (e.g., LTs and 
Cognitively Guided Instruction) have been conducted in mathematics education and taken up by 
the mainstream without engaging a sociopolitical lens during conception. Equity-oriented 
scholars have then dedicated their careers to proving how the initial work was not grounded in 
equity while also considering how to “re-mix” the research and curricula to meet their justice-
oriented agendas (Maldonado et al., 2022). My goal in offering this framework is to call for an 
end to this two-phased approach that centers cognition first and then leaves equity-oriented 
scholars to consider culture and context. After describing PCTM, I unpack questions posed in the 
conference theme to illuminate the power of this theoretical framework. 
Political Conocimiento in Teaching Mathematics 

PCTM is a theoretical framework that highlights the unique ways that mathematical 
knowledge for teaching (MKT), pedagogical content knowledge (PCK), knowledge of students, 
and political knowledge are entangled (see Figure 1) to produce a unique way of knowing that 
teachers (and researchers) need to consider as they teach and conduct research, especially with 
historically marginalized students. Here, I list two elements of this framework that make it useful 
to critically analyze LT-based teaching and learning. First, PCTM explicitly links content, 
pedagogy, knowledge with students and communities, and political knowledge (e.g., power 
dynamics) and situates the entanglement of each of these in a social and historical context 
(Gutiérrez, 2012). This linkage does two things. One, it dispels the “false dichotomy” between 
mathematics and equity that some scholars assert (Aguirre et al., 2017), making it inconceivable 
to conduct research on cognition and teaching without attending to context and culture. Two, this 
linkage asserts that political knowledge is not merely added to the other dimensions. On the 
contrary, engaging a political lens causes us to re-examine the other components (Gutiérrez, 
2012). As such, one would not consider developments related to content and pedagogy (e.g., 
develop a LT-based curriculum) and then question how to use it with diverse learners. Instead, 
this framework embraces the tensions that exist when these individual pieces are entangled, 
thereby allowing us to ask richer questions and reflect on decisions we make to foreground or 
background different dimensions (Myers, Gutiérrez & Kokka, in press). Using such a framework 
at the onset of LT-based research would have eliminated many of the critiques that came later 
since culture, race, language, communication patterns, task design, teacher and researcher 
identity, etc., would have all been considered in the development and validation phases. 
Embracing this tension allows us to see that dissonance and harmony can coexist while we also 
question who experiences dissonance and who experiences harmony (Gutiérrez, 2009a).  
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Figure 1. Political Conocimiento in Teaching Mathematics (Gutiérrez, 2012) 

Second, the word conocimiento is drawn from the Spanish verb conocer. The Spanish word 
saber represents a “fixed” kind of knowing (e.g., to know facts, how to follow steps, to know a 
piece of information). The verb conocer, however, represents a fluid type of knowing that is 
contextual (e.g., to know a person, to know of a place). This distinction is critical as conocer 
asserts that context and conditions are essential to framing how we know (Gutiérrez, 2017). This 
kind of knowledge prevents us from objectively knowing “low-income students,” “minority 
students,” or “English language learners” in a fixed or homogenous way and, as such, applying a 
“best practice” to that population with the hopes of minimizing an achievement gap. A teacher or 
researcher using PCTM as a lens would first question how a “best practice” was developed. That 
person would ask, “best for whom? Best under which conditions? Best to what end? Best for 
what outcome?” Using this type of framework also problematizes the treatment of groups of 
students as static objects of our research and suggests that knowledge must be co-constructed 
with learners, families, and community partners. Reframing knowing as relational also reminds 
us that how we know is always changing because our environments and sociopolitical contexts 
are ever-changing. Moreover, as scholars, our knowing about LTs is also fluid as we continue to 
re-negotiate our work in light of new understandings about our intersectional identities, new 
scholarship, etc. PCTM is undoubtedly a powerful theoretical framework that the field can use to 
consider complex questions similar to those posed in this year’s conference theme. In the next 
few paragraphs, I consider two of the thematic questions through the lens of PCTM. 
How does LT-based teaching challenge a settled mathematics learning status quo? 

 Using PCTM allows us to answer this question in two ways. First, it is important to 
acknowledge the historical and political contexts that afforded the “mathematics learning status 
quo” to be created and maintained for so many years, leading to dissonance. Our field can benefit 
from engaging in discussions around how mathematics has been socially constructed in a way to 
maintain systems of oppression (Gutiérrez, Myers & Kokka, 2022, in review). Using PCTM 
forces us to unpack the political nature of the status quo, understand who is negatively affected 
by it, and develop a comprehensive approach to address the problem instead of accepting it as 
the norm or rushing to a “quick fix.” 

Second, PCTM allows us to consider how questioning mathematical content (thereby 
questioning mathematical content knowledge) can lead us to work toward harmony. Given that 
the four elements of the PCTM framework are entangled and that the resulting knowledge is 
relational, pulling one thread in an attempt to disrupt a status quo necessarily challenges our 
ways of knowing, allowing us to consider the other dimensions and reimagine mathematics 
learning more broadly. For example, several studies demonstrated that LT-based professional 
development supported teachers in understanding the complexity of mathematics content, how 
underlying ideas were connected, that mastery was not a prerequisite for more sophisticated 
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ideas, and that informal understandings were valuable prerequisites for building more complex 
ideas. This work is important. What was missing from those conversations is specific research on 
how changes in teachers' MCK interacts with the other elements of PCTM, to potentially disrupt 
other status quos in mathematics teaching and learning. For example, does the “asset-based” lens 
teachers acquired during LT-based PD support them in reframing their understanding of the 
mathematical practices (e.g., centering a range of communication and argumentation styles, 
debunking traditional notions of precision) through a sociopolitical lens? Moreover, even when 
teachers develop an “asset-based” lens as a result of LTs and constructed counternarratives about 
students’ thinking, what did this mean for how teachers recognized and valued students’ 
humanity? Did “disrupting inequity” in mathematics thinking lead teachers to advocate for 
greater change? And did changes in beliefs, if any, persist over time? If LT-based teaching 
continues to treat mathematics as disconnected from students, families, communities, and 
contexts, how can we expect to truly eradicate inequity in mathematics teaching and learning? 
How does LT-based teaching have an impact on society more broadly, beyond individual 
mathematics classrooms and school districts?  

This question naturally engages each element of the PCTM framework as we consider how 
LT-based teaching and learning (content and pedagogical knowledge) might impact society 
(students, communities, politics) more broadly (our/theirstories). I argue that, to date, much of 
what we have seen in LT-based teaching supports long-standing notions that mathematics is a 
neutral and culture-free domain. As we examine mainstream curricula and approaches to 
teaching mathematics, we see that there is still a focus on drill and memorization, even though 
worksheets have been traded for digital tools. PCTM helps us see that school-based mathematics 
is still privileged at the expense of home, community, and place-based mathematical knowledge. 
We have not considered how to use our collective power to disrupt standardized testing and its 
oppressive effects. Instead, much LT-based work has been advertised in support of helping our 
students perform better on tests. PCTM can support scholars in thinking about using LT-based 
research to “play the game” and “change the game” (Gutiérrez, 2009b). This question reminds us 
that because teaching happens in classrooms, which are housed in schools, which are located in 
communities, which are a part of society, any classroom level teaching and research ultimately 
has an impact on these other spaces. Whether that impact upholds the status quo or redistributes 
power is a question scholars delve into while remembering our moral obligations (Stephan et al., 
2015) and embracing a “productively self-critical” disposition (Kilpatrick, 2013, p. 73 as cited in 
Larnell et al., 2016). 

Conclusion 
Before I close, I return to the case of Elizabeth, who used what she learned in LT-based PD 

to justify retaining historically marginalized students in kindergarten. As I mentioned, this 
teacher showed growth in her content knowledge. She also used what she learned to attend to 
students’ thinking and plan next steps aligned with the trajectory. But when her “content-focused 
reform efforts” didn’t produce the results she expected to see on students’ quarterly benchmark 
tests, deficit narratives entered the conversation (e.g., if they weren’t eating free breakfast in the 
morning we could do extra practice, their parents don’t spend enough time with them at home). 
What was missing? How did Elizabeth need to be supported to question the usefulness of an LT-
based approach across all students? What tools did Elizabeth need to support her so that she 
could ask questions about the nature of standardized testing instead of asking questions about 
her students and their families? Was Elizabeth ever providing “equitable and high-quality 
instruction” if these comments were indicative of her beliefs about students? And what does it 
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mean that Elizabeth chose to retain students instead of advocating for them? Frameworks like 
PCTM help us ask these questions about Elizabeth’s case. Part of our moral obligation as 
scholars is to ensure that we consider how cognition, context, and culture are entangled and the 
type of professional learning experiences teachers need to understand the political nature of their 
work, not just the cognitive aspects. LT-based PD alone is insufficient for ensuring equity and 
justice.  

Mathematics teaching, learning, and research are political acts (Aguirre et al., 2017; Larnell 
et al., 2016). And as such, we must use care in conducting our work and consider what’s at stake 
when we don’t approach our research critically. In this paper, I built the case for using PCTM as 
a theoretical framework to examine LT-based research to support the hard re-set needed if LTs 
are ever going to be relevant in creating a more humane and just mathematics experience for 
historically marginalized students. I also submit that it is necessary to pause, reflect, and engage 
in the self-work and education needed to prepare for this re-set. This paper contributes to that 
pause by adding to critical discussions about LT-based research and suggesting a theoretical 
framework that can support our collective efforts. Despite increasing explicit attention to equity 
in LT research, a sociopolitical lens is still needed as we grapple with considering LTs at the 
intersection of cognition, context, and culture. We need to continue to unpack the various 
definitions of equity that guide our work and engage in conversations across research paradigms 
to build critical LT-based research models. And while we cannot change the LT research that has 
come before us, we can strengthen our commitment to equity and justice by asking more 
complex questions that critically hold cognition, context, and culture together.  
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UNDERGRADUATE LATIN* QUEER STUDENTS’ INTERSECTIONALITY OF 
MATHEMATICS EXPERIENCES: A BORDERLANDS PERSPECTIVE 
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The cisheteropatriarchal climate of STEM education shapes oppressive experiences for queer 
and trans* (QT) students majoring in the sciences. Intersectionality of STEM experiences for QT 
students of color is missing in the literature. Thus, it has been unexplored how undergraduate 
STEM as a racialized space shapes variation in experiences among QT students. Such 
intersectional analyses are especially necessary in mathematics -- a discipline socially 
constructed as ‘neutral’ despite being a gatekeeper to STEM degrees for historically 
marginalized groups. To address this area of needed research, this paper presents findings from 
an analysis of undergraduate Latin* QT students’ intersectionality of mathematics experiences 
as STEM majors with a focus on peer relationships. I conclude with implications for research 
and practice to disrupt mathematics education as white, cisheteropatriarchal space.   

Keywords: gender, intersectionality, Latin*, sexuality 

Introduction 
Ximena (they/them), a Mexican agender1 pansexual person in their senior year of college 

studying mechanical engineering, considered dropping the major due to invisibility of their 
identity that made them question their ability. They saw mathematics education as valuable for 
increasing historically marginalized populations’ access to engineering and other STEM careers.  

A lot of it [dropping engineering] had to do with imposter syndrome. And I think a big 
influence within that was lack of visibility. I really felt like I didn’t fit in because everyone in 
my class is a male or white… When I was going to drop out, I was going to switch to math 
teaching… Even when I become an engineer, I want to help students understand math 
because I feel math can be a way to gatekeep these really good jobs… Math should be 
accessible, so that’s why I was like, ‘I’ll just pursue that’… I want to inspire people of color 
and people in the Latinx community and queer folks to go into these STEM jobs… I want to 
stop it from being all just straight white men. 

This perspective reflecting Ximena’s use of their role as a mathematics educator to diversify 
scientific professions was shared during their individual interview as a participant in my research 
study about the experiences of queer and trans*2 (QT) students of color in STEM majors. The 
narratives of undergraduate QT students of color in STEM like Ximena are central to the study’s 
analysis to understand their experiences of intersectionality (Crenshaw, 1991), which refers to 

1 Agender is a gender identity of being genderless. 
2 Queer refers to all marginalized sexual and nonnormative gender identities. Trans* describes individuals who 
depart from their assigned gender at birth and move across socially-constructed boundaries in normative views of 
gender, including those who do and do not pursue medical gender-affirming treatment as well as those who identify 
with binary and nonbinary genders (Nicolazzo, 2017). The term’s asterisk, much like in computer searches, ensures 
broad inclusion of gender identities and expressions (e.g., transgender, transfeminine, trans man, transsexual). To 
avoid reinforcing trans* erasure, I use the phrase queer and trans* and the corresponding acronym QT.  
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multiply-marginalized people’s unique forms of oppression and agency at the juncture of racism 
and other overlapping systems of power. Ximena’s quote conveys agency to use mathematics 
education in addressing the systemic issue of limited diversity in STEM, which transpired into a 
distinctly intersectional experience of invisibility as a Mexican queer engineering student. 

Prior research has importantly shown how cisheteropatriarchy (i.e., a system of oppression 
that marginalizes QT people and cisgender women by reinforcing heterosexual and cisgender 
identities as normative and upholding misogyny) shapes undergraduate STEM as oppressive for 
QT students (Cech & Waidzunas, 2011; Miller et al., 2020). However, QT students of color were 
underrepresented in study samples, and the lack of intersectional analyses left implicit how 
racism figured into QT students’ experiences of cisheteropatriarchy in STEM. The present 
analysis addresses these limitations in extant research by exploring variation in experiences of 
oppression and agency among undergraduate Latin*3 queer STEM majors like Ximena. This 
analysis comes from a larger study that exclusively sampled Black, Latin*, and Asian QT 
students in STEM to examine variation in intersectionality specific to race, gender, and sexuality.  

 My analysis pays particular attention to the influence of mathematical contexts on Latin* QT 
students’ experiences while pursuing STEM majors. As raised in Ximena’s opening quote, 
mathematics has played a long-standing role in higher education as a gatekeeper to STEM 
degrees and careers for historically marginalized groups. For example, research has shown that 
Latin* students’ racialized experiences in undergraduate mathematics have a major influence on 
perceptions of their academic ability and decisions to continue coursework required for STEM 
majors (e.g., Leyva, 2016; Oppland-Cordell, 2014). Epistemologies of neutrality and objectivity 
in mathematics, which are rooted in ideologies of antiBlack racism (e.g., colorblindness) and 
cisheteropatriarchy (e.g., gender neutrality), insidiously reinforce the discipline’s oppressive 
nature through educational opportunities that frame social identities and experiences as irrelevant 
(Gutiérrez, 2017; Leyva, McNeill & Duran, 2022; Martin, 2009). Constructions of mathematics 
as ‘neutral,’ therefore, also marginalize QT learners who may internalize that their queerness is 
distracting or unwelcome due to pervasive silence about their identities (Kersey & Voigt, 2020; 
Yeh & Rubel, 2020), which may negatively impact their STEM persistence (Leyva, McNeill, 
Balmer, et al., 2022). Mathematics education must be interrogated to inform instructional and 
support practices that affirm historically marginalized identities in STEM. An intersectional lens 
of analysis allows for complex insights that are essential to developing such practices, which are 
less readily attainable when attending to only a single axis of social oppression. The present 
study advances such inquiry in undergraduate mathematics research where QT students’ 
racialized experiences went unaddressed (e.g., Voigt, 2022) and intersectionality among Latin* 
students specific to QT learners was an unexplored area of study (e.g., Oppland-Cordell, 2014).   

The PME-NA 44 conference theme, “Critical Dissonance and Resonant Harmony,” addresses 
how experiences of dissonance are “necessary for change and liberation” in struggles for justice 
across educational and societal contexts. Harmonious justice is characterized as resonance in 
multiple stakeholders amplifying each other’s voices in disrupting oppressive forces tied to 
racism and overlapping systems of power. Applying the PME-NA 44 theme as a lens to interpret 
Ximena’s opening quote, the invisibility of Latin* and queer students in engineering and STEM 
more broadly shaped dissonance between their intersectional identity and mathematical contexts 

3 The asterisk in Latin* considers fluidity in gender identities across the Latin American diaspora (Salinas, 2020). 
The term Latin* responds to (mis)use of Latinx, a term reserved for gender nonconforming peoples of Latin 
American origin and descent (Salinas & Lozano, 2019).When describing student participants in the present analysis 
who did not identify as trans*, I use the phrase Latin* queer. Otherwise, I used the broader descriptor Latin* QT. 
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that produced feelings of imposter syndrome. Ximena’s agency through their motivation to teach 
mathematics depicts an effort to seek justice by dismantling gatekeeping to STEM careers. Such 
effort fosters resonance for future generations of Latin* QT students between their identities and 
STEM pursuits. The following research questions for the present study are framed to examine 
dissonance and agency across Latin* QT students’ intersectionality of mathematics experiences: 

1. What oppressive contexts of mathematics education contribute to Latin* QT students’
experiences of dissonance as STEM majors?

2. What agency do Latin* QT students exhibit to manage intersectional oppression from
dissonant experiences in mathematics and protect their identities while pursuing STEM?

In what follows, I present the study’s guiding theoretical perspective and methods to address the 
research questions. This paper presents findings specific to peer relationships in mathematics that 
shaped Latin* QT students’ intersectionality of experiences. I conclude by discussing the study’s 
scholarly significance and implications for educational research and practice. 

Theoretical Perspective 
The theory of borderlands (Anzaldúa, 1987/2007) from Chicana feminist thought served as 

the guiding theoretical perspective for the study. As a theory of the flesh (Moraga & Anzaldúa, 
1981/2021), Gloria Anzaldúa drew on her lived experience to develop borderlands as a lens for 
theorizing intersectional oppression and agency. Borderlands theory captures how an individual 
at the juncture of multiple, contradictory systems of power (e.g., racism, misogyny, homophobia) 
can experience an oppressive sense of liminality and ambivalence that can also be a site for 
transformative resistance. Anzaldúa, a sixth-generation Chicana lesbian born in Texas near the 
U.S.-Mexico border, described this push-pull dynamic between racialized constructions of
nation-state and cisheteropatriarchy at the juncture of these two power systems:

As a mestiza, I have no country, my homeland cast me out; yet all countries are mine because 
I am every woman’s sister or potential lover. (As a lesbian, I have no race, my own people 
disclaim me; but I am all races because there is the queer of me in all races). (p. 102) 

This experience of liminality for Anzaldúa and other multiply-marginalized individuals is 
theorized to be existing at the borderlands, wherein la frontera (the border) is a “metaphor for all 
types of crossings – between geopolitical boundaries, sexual transgressions, and the crossings 
necessary to exist in multiple linguistic and cultural contexts” (Cantú & Hurtado, 2012, p. 6). 
Borderlands theory “seek[s] enlightenment of the ambiguity and contradiction of all social 
experience” (Cantú & Hurtado, 2012, p. 5) to generate complex insights into multiply-
marginalized individuals’ intersectionality of experiences. 

There are three key constructs from borderlands theory that provided a foundation for the 
present study. First, Nepantla (liminality) refers to the space of being neither here nor there and 
the multiplicity of realities, as depicted in Anzaldúa’s quote above, where new knowledge is 
produced. This space is characterized by la mezcla (the hybridity) at the borderlands of 
competing sources of power, which generates new understandings of the world that inform 
multiply-marginalized individuals’ ability to engage in border-crossings. Second, mestiza 
consciousness refers to individuals’ outsider-within knowledge at the borderlands. This critical 
awareness of not being fully accepted on either side of the border is an empowering source of 
knowledge for challenging oppressive dualities and coming into one’s full, intersectional 
identity. Anzaldúa (1987/2007) argues that mestiza consciousness provides individuals with a 
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sense of conocimiento (familiarity with) that allows for an interconnected understanding of 
others’ experiences at the borderlands. This knowledge production is a foundation for building 
coalitions and advancing collective action against intersectional injustices. Finally, la facultad 
(ability) refers to individual agency in leveraging knowledge produced through a sense of 
liminality at the borderlands to engage in border-crossings and resist oppressive systems.  

Borderlands is a foundational theoretical perspective in scholarship advancing justice for QT 
people of color (Brockenbrough, 2015; Ferguson, 2004; Kumashiro, 2001), including work 
specific to Latin* QT communities (Aguilar-Hernández & Cruz, 2020; Hames-García & 
Martínez, 2011; Hernández et al., 2021; Rodríguez, 2003). To illustrate, the concept of mestiza 
consciousness provided an orientation for the development of gay Latino male studies from a 
space of solidarity with Chicana and Latina lesbian scholarship (Hames-García & Martínez, 
2011). Latin* trans and nonbinary scholars have extended borderlands theory by disrupting its 
binary conceptualization of gender and sexual oppression to make visible the intersectional 
realities of border-crossing among Latin* gender nonconforming people (Cuevas, 2018; 
Hernández et al., 2021). Thus, borderlands theory offers a promising foundation for the present 
study of Latin* QT students’ intersectionality of mathematics experiences as STEM majors. 

Methods 
The analysis presented in this paper comes from a larger study exploring intersectionality of 

experiences among undergraduate queer and trans* (QT) students of color pursuing STEM 
majors. A total of 39 students who identify as Black, Latin*, and Asian, including mixed-race, 
are included in the sample. The larger study examines students’ narratives of oppression and 
agency to elucidate features of STEM classroom instruction and co-curricular support spaces 
experienced as affirming or marginalizing of their intersectional identities. For the present paper, 
I focus on an analysis specific to Latin* QT participants’ mathematics experiences.  
Study Context and Participants 

Participants in the larger study were recruited across four U.S. universities in 2019-2021. The 
study began in 2019 at Lorde University– a large, research-intensive, elite, and private 
historically white institution (HWI; see Leyva, McNeill, Balmer, et al., 2022). The research team 
expanded the study in 2020 to include three large, research-intensive, and public HWI contexts – 
Ferguson University, Moraga University, and Rivera University. The three public HWIs were 
purposefully selected for their strong records of success with enrolling and granting bachelor’s 
degrees to Black and Latin* students according to recent higher education policy reports 
(Excelencia in Education, 2018; Harper & Simmons, 2019). Rivera University received the 
federal designation as a Hispanic-Serving Institution (HSI). In addition, Moraga University and 
Rivera University were selected as institutions recognized for their efforts in promoting positive 
campus life experiences for QT students (Campus Pride, 2020). Ferguson University was also 
selected for its institutional legacy of preparing undergraduate students from racially minoritized 
backgrounds to pursue STEM graduate degrees and professional careers.  

The purposeful selection of university sites made space for variation in how different 
institutional contexts and student support offerings shaped intersectionality of STEM experiences 
among QT students of color. For example, the multi-institutional study design allowed our team 
to look across student experiences in private and public HWIs across different U.S. regions. 
Inclusion of the three public universities with strong records of racial equity, including Moraga 
University as a HSI and Ferguson University with its history of addressing racial inequities for 
STEM access, served to explore the extent to which culturally-affirming institutional missions 
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and efforts provided intersectional support in STEM for queer of color identities. Our selection 
of Moraga University and Rivera University allowed us to consider how nationally-recognized 
support for minoritized gender and sexual identities impacted QT students of color in STEM. 

For participant recruitment, the research team asked staff and student leaders for university 
offices and organizations to share information about the study with undergraduate networks. 
These offices and organizations had missions relevant to the scope of the study, including those 
of social affinity (e.g., queer student alliances), STEM (e.g., American Society of Civil 
Engineers chapters), and intersections of social affinity and STEM (e.g., Society for the 
Advancement of Chicanos/Hispanics and Native Americans chapters). See Leyva, McNeill, 
Balmer, et al. (2022) for details about recruitment across the four universities. The analytical 
sample for the present paper includes all 16 Latin* QT students from the study. This sample 
reflected variation in ethnoracial identity (e.g., Colombian, Mexican, Puerto Rican), queer sexual 
identity (e.g., bisexual, gay, pansexual) and STEM major (e.g., computer science, mathematics, 
mechanical engineering). Six Latin* participants held gender-expansive identities, such as 
agender, female/questioning, genderfluid, nonbinary, and transmasculine. Four students attended 
Lorde University, three attended Ferguson, four attended Moraga, and five attended Rivera.    
Data Collection 

The research team used five data sources for rich, multidimensional portraitures of Latin* QT 
students’ intersectionality of STEM experiences. First, participants completed a demographic 
survey to collect information about their identities (race, gender, and sexuality), year of study, 
STEM major, course enrollment, and campus involvement. For participants recruited in 2020-
2021 during the COVID-19 pandemic and the transition to remote learning in higher education, 
the survey asked participants to indicate any preferred accommodations of the study design to 
ensure comfort with their participation (e.g., addressing privacy concerns about discussing their 
gender and sexuality via Zoom from home). Second, each participant submitted a STEM 
autobiography. The autobiographies were written reflections about being QT students of color in 
STEM, including responses to prompts about memorably positive and negative experiences, 
socially-affirming academic and co-curricular spaces, and influential people. One autobiography 
prompt asked participants to reflect on the role that mathematics played in their STEM 
trajectories as QT students of color and vivid memories from their experiences. The third data 
source was event journaling (Leyva, Quea, et al., 2021; Leyva, McNeill, Balmer, et al., 2022). 
Throughout the study, participants kept an ongoing record of events across STEM spaces (e.g., 
classrooms, study groups) experienced as supportive/encouraging or unsupportive/discouraging 
of their identities (see Leyva, McNeill, Balmer, et al., 2022 for more details about journaling). 

The two final data sources were an individual interview (60-90 minutes) and group interview 
(90-120 minutes). Participants completed the survey and autobiography prior to the individual 
interview (Interview 1). Interviews with Lorde University participants were completed in person 
and before the start of the COVID-19 pandemic. Interviews with participants enrolled in other 
universities were scheduled after the start of the pandemic in 2021 and completed on Zoom. All 
interviews were semi-structured, audiotaped, and transcribed. Two research team members 
conducted each interview. To the extent possible, we matched participants and interviewers with 
similar racial, gender, and sexual identities. Such matching was an effort to increase comfort in 
discussions about racism, misogyny, cissexism, and heteronormativity in STEM.  

Interview 1 explored participants’ perspectives on being QT students of color in and out of 
STEM, major influences on their STEM pursuits, coping strategies for STEM persistence, and 
recommendations for queer of color inclusion in STEM. The protocol revisited excerpts from 
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participants’ STEM autobiographies and event journaling related to these themes. For 
participants interviewed during the pandemic, we also explored participants’ views on the 
influence of COVID-19 on their STEM experiences. In particular, participants were asked about 
standout moments in online/hybrid classrooms that positively or negatively impacted their 
identities, nature of their campus involvement, and relationships with peers and family members. 

After Interview 1, participants completed a group interview (Interview 2). I adopted my 
group interview methodology of presenting 3-4 prompts for stimulated-responses to explore 
variation in participants’ intersectionality of STEM experiences (see Leyva, 2021 and Leyva, 
McNeill, Balmer, et al., 2022 for more details about the interview methodology). The prompts in 
Interview 2 featured excerpts from research about QT students’ STEM experiences (e.g., Cech & 
Waidzunas, 2011; Kersey & Voigt, 2020) and intersectionality of campus experiences among QT 
students of color (e.g., Nicolazzo, 2016; Vega, 2016). The excerpts provided concrete starting 
points to stimulate group dialogue about emergent themes from preliminary data analysis, 
including cisheteronormativity in STEM instruction and perceptions of STEM ability linked to 
race and gender. To explore variation in opportunities for intersectional support across different 
universities in our study, one prompt included excerpts that featured reflections from QT 
students of color in prior research about their experiences of campus climate and identity-related 
support offerings at their institutions. We followed the presentation of these excerpts with 
statements about the advancement of diversity and equity at participants’ home institutions. 
These statements were used to probe the extent to which participants perceived opportunities for 
identity support in their broader campus contexts influencing their STEM pursuits. After 
participants were presented with each interview prompt, we asked them about their general 
interpretations, degree of perceived relevance to their experiences, and recommendations for 
increasing queer of color inclusion in relevant practices of STEM education.  

To the best of our ability, each participant who completed Interview 2 was paired with at 
least one other participant of a similar race-gender identity. Such identity-matching across the 
group interviews was an attempt to avoid participants feeling their perspectives were tokenized 
and create space for variation in responses to interview prompts among students with a similar 
intersectional identity. When we conducted Interview 2 via Zoom with participants after the 
onset of the COVID-19 pandemic, we also tried to have representation of participants enrolled in 
different universities for each interview to allow for discussion of similarities and differences in 
their STEM experiences across institutional contexts. We completed three group interviews with 
Latin* QT participants who attended different universities but shared a similar race-gender 
identity (namely, Latina cisgender women, mixed-race Hispanic and Latina cisgender women, 
and Latine gender-expansive people). For example, the group interview for mixed-race Hispanic 
and Latina participants included Erica (mixed, cisgender, bisexual Latina of Brazilian descent4 in 
Rivera University), Laura (Mexican and Chinese pansexual female at Ferguson University) and 
Tamara (mixed-race Hispanic, Peruvian/white masculine woman lesbian at Moraga University). 
Data Analysis 

The research team used the framework of STEM Education as a White, Cisheteropatriarchal 
Space (WCHPS, Figure 1; Leyva, 2021; Leyva, McNeill, Balmer, et al., 2022) to guide data 
analysis. The WCHPS framework provides a lens for examining how interplay between racism 
and cisheteropatriarchy in STEM educational contexts shapes intersectional experiences of 
oppression and agency for multiply-marginalized individuals, including QT students of color. 

4 I use wording from participants in describing their identities. 
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Each framework dimension (ideological, institutional, and relational) attends to a level of 
influence in STEM education at which white cisheteropatriarchy (the juncture of white 
supremacy and cisheteropatriarchy) impacts multiply-marginalized individuals’ experiences. The 
ideological dimension addresses beliefs, norms, and values that organize STEM educational 
practices. The institutional dimension explores structural inequities that constrain opportunities 
for achievement and participation in STEM, in addition to forms of individual agency in 
navigating such oppressive structures. The relational dimension addresses interactional forms of 
oppression and agency in STEM education. These dimensions are interconnected, thus allowing 
the WCHPS framework to examine how white cisheteropatriarchy shapes intersectionality of 
STEM experiences in complex ways. Elsewhere (Leyva, McNeill, Balmer, et al., 2022), I 
provide more details about developing the WCHPS framework. 
 

 
Figure 1: Framework of STEM Education as a White, Cisheteropatriarchal Space 

 
Data analysis was completed in four stages. First, the research team inductively coded 

participants’ data to flag aspects of their mathematics experiences corresponding to each 
WCHPS dimension. We coded for instances of oppression, supportive forms of structural 
disruption, and agency across ideological, institutional, and relational levels of Latin* QT 
students’ experiences. (See Leyva, Balmer, et al., 2021 and Leyva, McNeill, Balmer, et al., 2022 
for more details about coding.) The second stage of analysis was constructing an analytical 
narrative for each participant of navigating white cisheteropatriarchy in mathematical spaces as 
Latin* QT students majoring in STEM. These narratives were developed by following the 
critical race methodology of counter-storytelling (Solórzano & Yosso, 2022), which centers 
racially minoritized people's experiences of oppression for theorizing resistance to racism and 
other interlocking systems of power. Each participant’s counter-story was structured around 
oppression, structural disruptions, and agency across WCHPS dimensions identified in coding. 

The third stage of analysis was identifying themes across the 16 Latin* QT participants’ 
counter-stories that address our two research questions. To address the first research question, we 
identified themes about oppression through experiences of dissonance between participants’ 
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identities and mathematical contexts. We addressed the second research question by identifying 
themes of agency specific to participants’ behaviors and motivations for navigating dissonance to 
protect their Latin* QT identities and success as STEM majors. The fourth and final stage of data 
analysis was interpreting the themes through the lens of borderlands theory (Anzaldúa, 
1987/2007) and its uptake in Latin* queer studies with an expansive theorizing of gender (e.g., 
Cuevas, 2018). In particular, the borderlands concept of Nepantla served to elucidate how 
dissonance in Latin* QT participants’ mathematics experiences reflected liminality at the 
juncture of power systems that limited full affirmation of their intersectional identities. Mestiza 
consciousness supplied a lens to account for participants’ critical awareness of how white 
cisheteropatriarchy operated in mathematical contexts, including how it was reinforced through 
dissonant educational practices. The construct of la facultad elucidated Latin* QT students’ 
agency to manage dissonance in mathematics as a white, cisheteropatriarchal space. Overall, our 
analysis captured how white cisheteropatriarchy in STEM educational contexts shaped the 
borderlands of Latin* QT students’ intersectionality of mathematics experiences. 

To sharpen our data analysis, the research team conducted member-check interviews with 
available participants after data collection was complete. Eleven of the 16 Latin* QT students in 
the study sample completed a member check. We structured member-check interviews in three 
parts corresponding to each of the framework dimensions. During each interview part, the 
interviewers read a section from the participant’s counter-story to convey our understanding of 
oppression, disruptions, and agency at each level of the WCHPS framework. Participants, who 
were positioned as experts of their lived experiences during the interviews, were prompted to 
suggest edits and add content to ensure an accurate analysis in their counter-stories. The 
interviewers also asked participants a series of questions to clarify and further elaborate on 
important ideas raised in each counter-story section read to them.  
Positionality 

Our research team (one faculty member, three doctoral students, eight master’s students, and 
two undergraduate students) are members of the Power, Resistance and Identity in STEM 
Education (PRISM) Lab at Vanderbilt University. The team has robust social diversity across 
intersections of race (African American, Black, Latin*, biracial, white), gender (cisgender, 
nonbinary, transmasculine), and sexuality (demipansexual, gay, lesbian, pansexual, queer, 
heterosexual, unsure). Most of the team collected and analyzed data from Latin* QT participants. 
Milner’s (2017) framework on positionality in educational research guided the team’s self- 
reflections to avoid dangers of approaching our study without consciousness for the influence of 
our identities and experiences. These reflections avoided the seen danger of not interrogating our 
respective areas of privilege and oppression. The team adopted an asset-based research approach 
by making space for understanding Latin* QT participants’ agency and resistance in 
mathematical contexts, thus avoiding the unforeseen danger of readers perceiving QT students of 
color as powerless victims of oppressive educational systems. To mitigate the unseen danger of 
misinterpreting participants’ sensemaking about intersectionality of their experiences, we 
completed interviews and coding in pairs to have multiple researcher perspectives present in data 
collection and analysis procedures. We also completed member checks described earlier to 
strengthen the trustworthiness of our findings. Team members bracketed their lived experiences 
from those of participants to avoid the unseen danger of distorting participants’ realities, all 
while remaining critical of oppressive STEM structures and systems through use of the counter-
storytelling methodology. I avoided the unseen danger of flattening variation in oppression and 
agency that Latin* QT students experienced by infusing voices from multiple participants in the 
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findings, including a cross-case analysis of counter-stories for two participants with different 
ethnoracial, gender, and sexual identities. Although this is a solo-authored piece, I solicited 
feedback from team members who analyzed Latin* QT participants’ data to ensure the final draft 
of our analysis accurately reflects our collective work.       

 
Findings 

Themes across the 16 Latin* QT participants’ counter-stories reflected how two 
mathematical contexts shaped experiences of dissonance and agency: (i) curricula and instruction 
and (ii) peer relationships. To respect space limitations, I present themes about peer relationships 
in this paper. I develop themes for curricula and instruction elsewhere (Leyva, 2022, 2023).  

Half of the participants (Daniela, Erica, Koyotl, Laura, Ros, Steven, Teresa, Ximena) 
reflected on how peer relationships produced dissonance with their Latin QT identities across 
mathematical contexts. One theme was the lack of social diversity in STEM majors and 
mathematics classrooms, which brought forth feelings of isolation and imposter syndrome as 
well as struggles to build identity-affirming networks of support. Koyotl (he/him; Indigenous 
American, gay, transmasculine person of Mexican descent; third-year computer science major in 
Rivera University), for example, shared how the main impact of mathematics on his experience 
as a computer science major was making him feel “lonely as a LGBTQ+ student in STEM” 
(Autobiography). Being in mathematics classrooms, where he was the only queer student to his 
knowledge and often felt “alone in a room full of white students” (Autobiography), brought him 
to feel academically inferior to students from majority groups. Similarly, Erica (she/her; mixed, 
cisgender bisexual Latina of Brazilian descent; third-year computer science major in Rivera 
University) managed a sense of imposter syndrome due to a lack of peer diversity, which was not 
the case at the community college from where she transferred and “actively [saw] older students 
or more students of color” (Interview 1). She reflected on building a strong connection at the 
community college with an older student who identifies as a lesbian in her pre-calculus course, 
“We were able to connect over the fact that she was also around my age and came from an arts 
[background]… That was a really great way of [feeling like] ‘Okay, well, clearly I’m not the 
only older student or I’m not the only queer one’” (Interview 1). Opportunities to build diverse 
networks of peer support in STEM were limited, which shaped dissonance in Erica’s experience.        

The second theme specific to peer relationships was marginalization through interactions 
during collaborations with peers in mathematical contexts, including microaggressions of ability 
as well as instances of cisgender women being fetishized or hypersexualized. To develop this 
theme, we look across counter-stories from two Latin* queer STEM participants (Ros and 
Daniela). The counter-stories are structured in three parts. I open each counter-story with a short 
biographical sketch of Ros and Daniela. To address the study’s first research question about 
experiences of dissonance, the second part of each counter-story depicts peer relationships that 
limited affirmation and support for Latin* queer participants’ identities as mathematics learners. 
The final part of each counter-story answers the second research question about agency. In this 
portion of the counter-stories, I account for participants’ behaviors and motivations for managing 
and resisting dissonance through peer relationships to protect their identities and STEM success. 
I conclude the findings section by applying borderlands theory and the WCHPS framework in a 
cross-case analysis of Ros’s and Daniela’s counter-stories. 
Ros’s Counter-Story 

Ros (they/she/he) is a Mexican, bisexual, and genderfluid person majoring in mechanical 
engineering as a senior in Rivera University. They saw themself as being female-presenting and 
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recognized their privilege of passing as white. Family played a central role in Ros’s motivation 
to succeed as a future engineer. They perceived their academic accomplishments as giving back 
to their parents for their sacrifices, including how their mother was unable to use her computer 
engineering degree from Mexico after immigrating to the U.S. Success in mathematics allowed 
Ros to serve as a role model for younger cousins aspiring to become engineers, “The only 
introduction my cousins and I had to it [calculus] was through media, and now it’s nice to be one 
of the family members they can come to for help” (Autobiography). Ros felt a strong sense of 
acceptance as a queer person from his family, which he described as different from “traditional 
Latino ones” (Interview 1) where homophobia and transphobia rooted in religious beliefs 
resulted in some of her Latin* friends being disowned or having their queerness disregarded.  

In addition to family, peer relationships that affirmed Ros’s full identity as a Mexican queer 
engineering student were important for Ros’s persistence in navigating the cisheteropatriarchal 
culture of STEM. His most positive STEM educational experience was having a peer network of 
support in high school engineering classes, which he described as “all Latinx and a few were 
LGBTQ+ as well so [he] always felt like [they] were all on the same plane” (Autobiography). 
Establishing such peer connections was more difficult as an engineering major with students 
largely coming from white, wealthy backgrounds and where the space felt “very cishet male-
dominated… [and] very masculine” (Interview 1). As further developed in the remainder of 
Ros’s counter-story, the exclusionary space of undergraduate STEM contributed to Ros’s sense 
of vulnerability when meeting and working with unfamiliar peers in different contexts (e.g., 
study groups, engineering organization meetings). The constant threat of facing homophobic and 
transphobic microaggressions about their academic ability and queer identity in peer interactions 
shaped dissonance for Ros in mathematical spaces. To navigate such dissonance as a Latin* 
queer student, Ros carefully studied unfamiliar STEM peers’ interactions to assess if they would 
be accepting of their queerness before sharing their pronouns and discussing their identities.   

Dissonant influences. Dissonance in Ros’s mathematics experience as a mechanical 
engineering major arose from navigating cisheteronormativity in peer interactions. Ros described 
how their queerness was often overlooked or stigmatized and how they felt underestimated in 
terms of their academic ability. Ros described facing peers’ microaggressions about her 
mathematical ability couched in humor, “I have heard some jokes along the lines of people 
finding it interesting that I am skilled in math when ‘Queer people are bad at math’ is apparently 
a stereotype” (Autobiography). He expressed uncertainty if such peer humor was coming from a 
space of homophobia and transphobia or whether it served as a coping mechanism for fellow 
queer students in STEM, “If you’re saying that weird gay joke, does that mean that you’re going 
to be against my identity? Or is it one of those things where… you’re also queer and you’re just 
joking about it to cope?” (Interview 1). The ambiguity of humor that invoked microaggressions 
of mathematical ability produced dissonance in Ros’s experience as a queer engineer.    

Queer oppression in peer humor was one aspect of a broader culture of cisheteronormativity 
that Ros experienced in mathematical and scientific spaces. This oppressive culture made Ros 
feel vulnerable to facing homophobia and transphobia when joining new STEM study groups 
with unfamiliar peers. To illustrate, Ros recounted their most negative experience as a Latin* 
queer student in STEM as being when they were misgendered and assumed to be straight during 
a small study group session for an introductory calculus or physics course.  

I went out of my comfort zone to sit at a group with people I didn’t know… all of which 
seemed like cis men minus one woman. As we were getting along, the woman turned to me 
and said something along the lines of ‘It’s nice to see another regular girl at these things, it’s 
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always all guys or the girls who come are lesbians.’ It was really jarring to me because I 
neither identify as a woman nor am I straight so as she said this to me I had to sit with the 
knowledge that my identity was something she was bothered by. And because I wasn’t 
familiar with this group, I just chuckled awkwardly and switched the topic. (Autobiography)  

The groupmate’s assumption that Ros was a cisgender, heterosexual woman suggests a feeling of 
relief from patriarchal, male-dominated STEM spaces. At the same time, this assumption points 
to the cisheteronormative culture of STEM that erases queer people as well as produces undue 
labor for queer students like Ros about disclosing or concealing their gender and sexuality. 
Building peer networks in STEM was a taxing endeavor for Ros in terms of constantly preparing 
themself for students “making assumptions based on what you look like… [and] mak[ing] 
comments that are probably going to be hurtful and homophobic and transphobic” (Interview 1).     

The dissonance that Ros experienced as a queer person navigating cisheteronormativity in 
STEM peer relationships also took form in campus meetings for identity-based engineering 
organizations and programs. Although Ros felt a reprieve from the hypermasculinity of their 
major in events for women in engineering, the focus on cisgender women produced tensions 
about sharing their genderfluid identity and made them feel like an imposter, “When I do go to 
events that are specifically for women, I’m kind of like, ‘Do I say that I don’t identify as a 
woman? Does that make me not belong in this space even though I appear female?’” (Interview 
1). Ros also felt conflict with her queer identity in the university’s chapter for the Society of 
Hispanic Professional Engineers (SHPE). He described how SHPE’s strong focus on racial 
affinity, in addition to traditional, culturally-mediated views on gender and sexuality among 
student members, made expression of his queer identity inaccessible in this Latin* affinity space.  

With SHPE, I didn’t so much expand on my gender and sexual identity because… everybody 
in those spaces bonds over the fact that they identify as Hispanic or Latino, so it’s not as 
prioritized. They are a little bit better about having pronouns available and all of that at some 
of their meetings, but most of them, it’s just traditional. And there’s also this stigma... with 
people who are more traditionally Hispanic… especially first-generation immigrants aren’t 
always onboard and as progressive when it comes to gender and sexuality. (Interview 1)  

SHPE, as a single-identity affinity space that left cisheteronormative beliefs of gender and 
sexuality in Latin* culture uninterrogated, limited opportunities for Ros to find community with 
Latin* peers that embraced her full identity. With Ros having received the “biggest backlash… 
from people with Latino backgrounds against [his] sexuality” (Interview 1), including family 
members in Mexico, he chose not to engage his queerness with SHPE peers. Dissonance between 
Ros’s Latin* queer identity and STEM peer groups, including study groups and spaces for 
identity affinity in engineering, limited peer support that affirmed their intersectional identity.  

Agency. One strategy that Ros adopted to navigate cisheteronormativity in peer relationships 
when working in study groups was not disclosing their queerness right away to protect themself 
from homophobia and transphobia, “If I do go into these spaces, I’m not really like, ‘Hey, these 
are my pronouns. Please respect them. Please respect me.’ I’ll let you assume whatever you want 
to assume” (Interview 1). Ros described entering new spaces of STEM peer collaboration as 
“learning how to read the room and learning… what’s going to be acceptable and what’s not 
going to be acceptable” (Interview 1) in terms of identity expression. Although Ros also 
experienced transphobia during groupwork in high school, the presence of Latin* QT peers in 
her engineering classes who “reaffirmed what [she] was feeling and helped [her] work through 
that whole gender identity thing” (Interview 1) mitigated oppression in collaborations. With the 
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challenge of building diverse networks of peers who would provide similar forms of support in 
the engineering major, Ros readily concealed his queerness, much like he did when misgendered 
in the study group, to cope with the dissonance experienced in STEM peer relationships.      

Another behavioral strategy that reflected Ros’s agency in managing dissonance as a Latin* 
queer engineering student was entering new spaces with unfamiliar individuals alongside peers 
with whom they feel comfort and trust. Ros reflected on the significance of such peer 
connections as a STEM major, “Making connections has been the biggest thing in finding 
support with people that you feel comfortable with. It is one of the most essential things I’ve 
found to try to get through college with my identities” (Interview 1). To illustrate, Ros developed 
a close relationship with a queer classmate and SHPE leader whose openness about her identity 
increased her comfort with attending SHPE meetings. This strategy of “mak[ing] a connection 
first with the person before going into a space” (Interview 1) depicts Ros’s agency in protecting 
himself from cisheteronormativity at intersections of STEM and Latin* cultures to overcome 
dissonance that limited access to peer support networks across mathematical spaces. 
Daniela’s Counter-Story 

Daniela (she/her) is a bisexual, mixed-race Latina (Colombian/Cuban and white) in her third-
year as a computer science major at Lorde University. Being a mixed-race queer woman meant 
that “the thing that impacts a lot of [her] experiences is a lack of identity” (Interview 1), 
especially as someone who sees herself as “be[ing] a part of two cultures and then a part of 
neither culture at the same time” (Interview 1). This sense of liminality in Daniela’s experience 
made it initially difficult for her to find community on campus as a STEM student. At the same 
time, Daniela faced peers’ racialized and gendered assumptions that her accomplishments were 
not based on merit but rather affirmative action. This “recipe for imposter syndrome” (Journal) 
as a mixed-race Latina in STEM made her feel constantly devalued and defeated. 

In managing identity-specific challenges and academic struggle in computer science as a 
difficult major, Daniela built a supportive community of diverse, like-minded peers in and 
beyond the engineering school. She reflected on how such community supported her STEM 
persistence as a mixed-race queer Latina, “If there are people that are like you, you can ask them 
for help and form a community… If I didn’t have an engineering community, I don’t know what 
I would do. I’d probably fail” (Interview 1). She identified three sources of peer community: (i) 
the university’s SHPE chapter; (ii) a professional engineering fraternity; and (iii) a group of 
women of color who met at a conference for gender equity in technology. Representation of 
queer people and opportunities to exchange stories of identity-based struggles created space for 
Daniela to comfortably engage her bisexuality in these STEM collectives, which contrasted her 
STEM classroom experiences where “you leave yourself at the door” (Interview 1). SHPE was 
also a space where she could be open about the “feeling of not fully being able to own up to 
[being] Latinx” (Interview 1) and could learn more about Latin* culture, which she felt was 
taken from her as a child raised to believe that being white was more socially acceptable. The 
collective of women of color in technology fields, which included another queer student, was a 
space for openly sharing and processing personal histories of misogyny in STEM. Daniela 
described how this community of healing and empowerment in STEM conveyed how “from the 
struggle you can form really good bonds with people” (Interview 1), which they sustained 
through regular check-ins and sharing professional development resources.  

I now highlight how peer relationships in mathematical contexts (namely, fetishizing and 
sexualizing behaviors from male peers) contributed to Daniela’s experiences of dissonance as a 
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mixed-race bisexual Latina in STEM, which exemplifies the gendered struggles she processed in 
the women of color collective. Next, I address Daniela’s agency in coping with such dissonance. 

Dissonant influences. Daniela reflected on how the overrepresentation of white male 
students in her mathematics classes made her hyperconscious of being fetishized and 
hypersexualized when interacting with them. Such hypersexualization felt racialized to Daniela 
as a mixed-race Latina, “In terms of my sexuality… I’ve had to be very conscious of people 
fetishizing. So, it’s very common for guys to be, ‘Oh, I think Latinas are really hot, and I want 
their mom to make me tacos,’ which I find super offensive and creepy” (Interview 1). Daniela 
described the risk of being hypersexualized when seeking male peers’ support with mathematics, 
“I typically have to [ask] a man, who always makes a sexual advance on me… These advances 
make it really hard to focus and feel comfortable in math classes. This is especially annoying 
because math classes are incredibly difficult” (Autobiography). The discomfort Daniela felt from 
being hypersexualized added to the challenge of understanding content in mathematics courses. 

As a computer science major, Daniela was often one of the only women in collaborative 
groups, which made her feel vulnerable to being hypersexualized, “If I’m working on an 
assignment with a group of people, that group of people is going to be predominantly male, and 
they’re all going to be making advances, typically. And that’s something that’s pretty 
obnoxious” (Interview 1). To depict how “mathematics has always been an awkward 
experience” (Autobiography) navigating male peers’ fetishization and hypersexualization, she 
recalled being the only woman in a study group where one male placed his foot on hers to keep 
her from moving away, another invited her to study in his room, and another asked for her phone 
number. Male peers’ behaviors capture how Daniela was perceived as a sexual object before she 
was seen as a mathematics classmate. Despite this discomfort, she reflected on the “pressure to 
not turn guys down” (Interview 1) in her study groups and classes because rejecting their sexual 
advances jeopardized access to peer support in mathematics. In the following section addressing 
Daniela’s agency, I highlight how she strategically used her bisexuality to keep male peers 
interested in helping her with mathematics despite their oppressive advances. The white, 
heterosexual male gaze in mathematics, thus, shaped Daniela’s experience of dissonance as a 
bisexual Latina navigating racialized fetishization and hypersexualization in peer relationships.   

Agency. Agency in Daniela’s experience to protect her academic success in the masculinized 
spaces of mathematics courses is reflected in strategic expressions of her sexual identity. She 
shared how although claiming to be a lesbian could stop male peers from hypersexualizing her, 
presenting as bisexual ensured that they would remain interested in her and continue to help her.  

Maybe it would be easier if I just told them that I was a hundred percent lesbian, not 
interested in them, and they wouldn’t make advances at all. But then I also consider, maybe 
then they wouldn’t help me study, you know? And then they wouldn’t be interested in 
assisting me anymore, or interacting with me anymore. (Interview 1)  

Daniela used her bisexuality strategically by playing into male classmates’ fetishization and 
hypersexualization as a way of maintaining access to peer support in mathematics. Such agency, 
while protective of Daniela’s academic success, reinforced dissonance in her STEM experience. 

Another way that Daniela exhibited agency in managing unwanted sexual attention was 
toning down feminine self-expression through dress, particularly in STEM classrooms where she 
was underrepresented as a femme Latina. Daniela described preferring to wear crop tops and 
artsy, quirky clothing that departed from what she described as the “engineering uniform” 
(Interview 1), a hoodie and T-shirt. However, she worried that her preferred dress would make 
her hypersexualized and subjected to negative judgment from STEM peers and faculty as “some 
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dumb girl that is dressed inappropriately for class” (Interview 1) who put more attention into her 
appearance than academics. As a result, Daniela saw sacrificing her femininity through dress as 
protecting her not only from being hypersexualized, but also having her intellect undermined.  

One thing I leave of myself behind is… I don’t wear the clothes I wanted to wear to school a 
lot because… I don’t want other students to think I look dumb… If you look like you took 
care of yourself [as an engineering student], people say you’re not smart… I also don’t want 
to be wearing anything that could possibly be sexualized by people. (Interview 1)  

Making intentional choices of dress was a strategy that Daniela adopted to protect herself from 
the dissonance between her intersectional identity and masculinized environments of STEM 
classrooms. By “going for as asexual as possible in classes” (Interview 1), Daniela’s dress 
captured a self-preserving form of agency in response to how femininity was disassociated from 
STEM ability as well as male peers’ racialized hypersexualization in mathematical contexts. 
Although Daniela’s selectivity in dress alleviated dissonance rooted in the white, heterosexual 
male gaze in classrooms, she had to sacrifice aspects of her identity for such self-preservation. 
Cross-Case Analysis 

Looking across Ros’s and Daniela’s counter-stories through the lens of borderlands, their 
experiences of dissonance in peer relationships demonstrate Nepantla through a sense of 
liminality about bringing their full Latin* queer identities into mathematical contexts, especially 
collaborative settings like study groups. Ros’s and Daniela’s experiences at the juncture of 
racism and cisheteropatriarchy (e.g., navigating culturally-mediated tensions of disclosing 
queerness in SHPE, managing racialized fetishization from male peers) made them feel a sense 
of being “neither here nor there.” The counter-stories also depict mestiza consciousness through  
critical awareness of the white, cisheteropatriarchal gaze in peer interactions that shaped 
dissonance across the intersectionality of their experiences. This awareness also informed agency 
or la facultad in using their motivations and strategic forms of self-expression to protect their 
Latin* queer identities and ensure academic success. In what follows, I develop two conclusions 
from a cross-case analysis of Ros’s and Daniela’s counter-stories through the lens of borderlands 
and the WCHPS framework. These conclusions address how Latin* queer students’ experiences 
of dissonance and agency exemplify navigating the borderlands of mathematics education as a 
white, cisheteropatriarchal space across ideological, institutional, and relational levels. 

First, the counter-stories show how dominant constructions of mathematics and STEM as 
neutral can leave racialized, cisheteropatriarchal climates of educational contexts unchallenged. 
Daniela’s perception of STEM classrooms as disconnected from identities and social 
experiences, for instance, left her grappling with the liminality of being a mixed-race queer 
Latina struggling to find socially-affirming community as a computer science major. She 
ultimately found relational support in STEM co-curricular contexts, including SHPE and a 
conference for gender equity in technology fields, that made space to process her experiences of 
Nepantla and coming into her intersectional identity. These spaces, thus, disrupted ideological 
notions of STEM as neutral to offer Daniela opportunities to heal from the dissonance of being a 
mixed-race queer Latina in computer science. Unfortunately, such ideological disruptions were 
absent in formal institutional contexts, including peer collaboration in mathematics courses, that 
subjected Daniela to being fetishized and hypersexualized as a queer woman of color working 
with predominantly white, heterosexual male peers. Daniela’s awareness of the white, 
cisheteropatriarchal gaze across classrooms and groupwork in mathematics illustrates mestiza 
consciousness that guided her agency (la facultad) through strategic self-expression in dress and 
disclosure of her queer sexuality. Ros’s counter-story similarly depicts such awareness of facing 
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intersectional marginalization as a Mexican genderfluid, bisexual person in STEM peer 
interactions where homophobic and transphobic perspectives went unchecked (e.g., jokes about 
queer people lacking mathematics ability, having their queer identity overlooked in SHPE 
meetings). Both counter-stories capture how ideological assumptions of neutrality in 
mathematical spaces can perpetuate Latin* queer oppression in exclusionary climates of peer 
relationships linked to a lack of social diversity (institutional influence) and toxic interactions 
involving microaggressions of ability and sexual harassment (relational influences). Therefore, 
being at the borderlands for Daniela and Ros as Latin* queer STEM majors meant managing 
oppressive peer relationships reinforced through assumptions of mathematics as a neutral space. 

Second, both Latin* queer students’ counter-stories portray the undue cognitive labor placed 
upon them to adopt strategies for protecting their identities and success across oppressive 
contexts of peer relationships in mathematics. To illustrate, Ros’s keen awareness of how 
homophobic and transphobic ideologies influenced peer interactions, such as their most negative 
STEM experience of being misgendered and assumed to be straight in a study group, taxed them 
with the burden of concealing their queerness until peers said or did something that signaled 
being accepting of their genderfluid and bisexual identities. Ros exhibited similar awareness of 
the cisheteropatriarchal culture in the SHPE organization that informed her decision to attend 
meetings when accompanied by a peer with whom she can confide her queer identity. Critical 
awareness of study groups and SHPE meetings as potentially oppressive spaces depicts Ros’s 
mestiza consciousness that led to investing cognitive energy in determining how to present 
himself with unfamiliar peers and ensuring the presence of queer-affirming peers for his safety. 
While these behavioral strategies depict agency or la facultad from Ros in managing queer 
marginalization through peer relationships, such self-protection came at a cost with Ros only 
being able to embrace certain aspects of their identity as a Latin* queer student in STEM. 
Daniela faced a similar reality in terms of sacrificing her gender expression through feminine 
dress to protect herself from hypersexualization in mathematics classrooms. Furthermore, Ros’s 
counter-story conveys how institutional spaces of identity support for STEM majors often failed 
to account for experiences of queerness and intersectionality. The cisnormative framing of 
gender support in programs for women in engineering left Ros with a sense of liminality as a 
genderfluid person who presents as female and the labor of concealing their queerness to avoid 
being deemed as not belonging. She described how tensions of being a queer SHPE participant 
were due to traditional views of gender and sexuality in Latin* culture that also shaped dismissal 
of her sexuality from family, specifically cousins living in Mexico who were also sources of 
motivation for excelling in mathematics. Ros’s liminality in SHPE and programs for women 
engineers captures his experiences of Nepantla in terms of being “neither here nor there” as a 
beneficiary of institutional support. The affirmation that Ros felt for their full identity from 
immediate family and in high school engineering with Latin* queer peers was missing. Ros, 
thus, was taxed with the same cognitive labor of protecting their queerness in peer collaborations 
for mathematics coursework even in institutional spaces like SHPE designed to resist oppression 
in formal STEM contexts. The labor imposed on Ros and Daniela to cope with intersectional 
oppression across peer relationships in groupwork and co-curricular programs reflects realities at 
the borderlands with needed disruptions of white cisheteropatriarchy in mathematical contexts.    

Discussion 
The present study’s scholarly significance is twofold. First, the focus on Latin* queer 

students contributes insights about intersectionality that went unexamined in research about 
Latin* students and QT students in undergraduate STEM (e.g., Convertino et al., 2022; Hughes, 
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2017 McGee, 2016). Findings uncovered intersectional forms of dissonance that Ros and Daniela 
managed between their Latin* queer identities and peer relationships in mathematical spaces. For 
example, Daniela’s counter-story depicts her strategic ways of sharing her queer sexuality and 
expressing her gender through dress to navigate the white, cisheteropatriarchal gaze in 
mathematics courses, which subjected her to unwanted sexual attention from male peers who 
were also sources of academic support. Second, representation of Latin* gender nonconforming 
students in the study extends understandings of gender equity in mathematics education. Over 
the years, equity-oriented research in mathematics education has framed gender as a binary and 
disconnected from other dimensions of social experience, including race and sexuality (Leyva, 
2017; Leyva & Mahtab, in press). By centering intersectionality of mathematics experiences for 
Latin* students with queer gender identities, this study disrupts the long-standing erasure of 
trans* and nonbinary students of color in mathematics education for more complex insights on 
how racialized forms of trans* oppression impact gender equity. To illustrate, Ros’s counter-
story conveys struggle in finding peer support across study groups and pre-professional 
engineering societies that affirmed their genderfluid identity. Along with feeling like an imposter 
in programs for women in engineering that mainly catered to cisgender women, Ros felt tensions 
about participating in SHPE where cisheteronormative ideologies of gender and sexuality in 
Latin* culture influenced their perceptions of peers’ acceptance of their queer identity. 

Findings from the present study raise implications for research to generate more nuanced 
insights into Latin* QT students’ intersectionality of mathematics experiences. One implication 
is exploring how differences in ethnoracial backgrounds, immigration history, and ability to pass 
as white, cisgender, and/or heterosexual shape variation in intersectional oppression and agency. 
Although Ros and Daniela both identified as members of the Latin* community, their racialized 
experiences differed. Social norms of gender and sexuality in Mexico shaped Ros’s concerns 
about facing homophobia and transphobia from cousins living there, which can be likened to the 
vulnerability he felt about engaging his queerness with Latin* engineering peers. Daniela’s 
upbringing in a mixed-race household with Colombian-Cuban and white parents, who she felt 
distanced her from Latin* culture, produced conflict in identifying as Latina. Peer relationships 
in SHPE helped her come into her intersectional identity and overcome struggles in finding 
community as a mixed-race, queer woman in STEM. Future research that continues unpacking 
within-group differences in participants’ racial backgrounds, including mixed-race experiences, 
disrupts monolithic representations of Latin* QT students in mathematics and contributes robust 
understandings of intersectionality for this population. A second implication for research is 
further exploring variation in Latin* QT students’ intersectionality of mathematics and STEM 
experiences across different types of higher education institutions, including HSIs. Although Ros 
attended a HSI with a mission for providing culturally-affirming opportunities to Latin* students, 
the cisheteropatriarchal culture of STEM environments, even in spaces of racial affinity like 
SHPE, limited their access to networks of peer support like they had in high school engineering, 
This finding illustrates the importance of future research that continues to explore how structures 
and practices at HSIs and other institutions with missions for serving minoritized populations 
(e.g., women’s colleges) disrupt intersectional marginalization in mathematics classrooms and 
other STEM contexts for Latin* QT students. Such research in HSIs responds to calls for insights 
about queer-affirming institutional support that serve Latin* QT students (Vega et al., 2022). 

The study’s findings also raise implications for educational practice. Both counter-stories 
addressed peer collaboration for mathematics coursework as a context where participants 
experienced dissonance with their Latin* queer identities. This finding points to the importance 
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of instructors co-constructing norms of collaboration with their class that resist influences of 
white cisheteropatriarchy and expand Latin* QT students’ comfort with groupwork. Examples of 
norms include students reflecting on how much space they have occupied, checking in on 
students who have not shared ideas, using peers’ chosen names and pronouns, and avoiding 
assumptions of peers’ gender, sexual, and other identities. These norms foster accountability to 
ensure that group members, including Latin* QT students, feel safe and comfortable to 
participate. This accountability alleviates the vulnerability that Ros and Daniela reported about 
navigating racialized-gendered judgments of ability, possibilities of being hypersexualized, and 
uncertainties of homophobia and transphobia that negatively impacted their experiences in peer 
collaboration. Instructors can ensure students engage in alignment with co-constructed norms by 
re-visiting them as a class when they observe groups departing from them, modeling norms 
through behavior and discourse during instruction, and encouraging adoption of these norms to 
structure collaboration in peer study groups and other contexts outside of the classroom. 

Another practice implication is adopting an expansive approach to identity-based support in 
affinity spaces for STEM majors from historically marginalized groups. Findings captured 
limitations to peer support that participants experienced in spaces like SHPE and programs for 
women in engineering, where they were unable to bring their full intersectional identities as 
Latin* queer individuals. Leaders for STEM affinity spaces must interrogate how they frame 
gender inclusion to avoid reinforcing cisnormative exclusion like Ros had experienced. In 
addition, the design of STEM affinity spaces for Latin* students (e.g., SHPE) and QT students 
(e.g., Out in STEM) must give explicit attention to experiences of intersectionality to ensure a 
robust sense of inclusion and support for Latin* QT students. Daniela’s ability to process 
complexities of being a mixed-race queer Latina in SHPE exemplifies how such intersectional 
support was available to her in a space for racial affinity.     

Conclusion 
This study portrays undergraduate Latin* QT students’ experiences at the borderlands as 

aspiring STEM majors navigating white cisheteropatriarchy in mathematical contexts. Ros’s and 
Daniela’s counter-stories shed light on dissonance between their intersectional identities and 
exclusionary peer relationships, in addition to their individual agency for coping with such 
dissonance to protect their identities and success in STEM. With participants’ accounts of agency 
involving the sacrifice of their queer identities, disruptions of mathematics education as a white, 
cisheteropatriarchal space are needed to advance intersectional justice for Latin* QT students. 
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“MIRROR LOGIC”: A PRESERVICE MATHEMATICS TEACHER’S THINKING 
ABOUT RADIAN IN THE CONTEXT OF LIGHT REFLECTION 
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Integrated science, technology, engineering, and mathematics (iSTEM) education allow learners 
to utilize multiple disciplinary perspectives. However, the discipline of mathematics remains 
underrepresented in iSTEM curriculum. To explore the nature of mathematical thinking with an 
iSTEM curricular approach that emphasizes mathematics, we investigated the thinking of a 
preservice mathematics teacher, Alex (pseudonym), who engaged in a task-based digital activity 
involving radian angle measure in the context of light reflection. Findings suggest that Alex’s 
ways of thinking comprise mathematical terminology, concepts, and processes, including 
mathematical ways of thinking about light reflection. The findings in this report suggest that 
emphasizing mathematics in this iSTEM context provided an opportunity for new ways of 
thinking about radian angle measure, and about how angle measure relates to light reflection. 

Keywords: curriculum, geometry and spatial thinking, integrated STEM  

Despite more than a decade of science, technology, engineering, and mathematics (STEM) 
reform initiatives toward integrated STEM (iSTEM) approaches (National Academy of 
Engineering [NAE] and National Research Council [NRC], 2014; National Council of 
Supervisors of Mathematics [NCSM] and National Council of Teachers of Mathematics 
[NCTM], 2018; NRC, 2013), the underrepresentation of mathematics in iSTEM education 
curriculum remains (English, 2016; Fitzallen, 2015). Given the need to develop iSTEM 
curriculum where mathematics holds equal importance as other disciplines (Baker & Galanti, 
2017), it is incumbent upon educators to find ways of foregrounding mathematics within iSTEM 
experiences to better develop learners’ understanding not only of core mathematics content and 
practices but also about how core mathematics content and practices meaningfully relate to other 
disciplines. English (2016) and Fitzallen (2015) called for approaches that address how 
mathematical concepts and practices contribute to the learning and understanding of other STEM 
disciplines in iSTEM instructional contexts. Additionally, Li et al. (2019) called for research that 
attends to how thinking in content-based approaches relates to thinking in other disciplines. We 
take up these calls (English, 2016; Fitzallen, 2015; Li et al., 2019) with purposeful attention to 
situating mathematics as pivotal in the iSTEM experience. We argue that iSTEM experiences 
that foreground mathematics can contribute to mathematical thinking, and we consider how 
mathematical thinking relates to other STEM disciplines. We specifically explore a preservice 
mathematics teacher’s [PMT’s] thinking about the mathematical concept of radian angle measure 
in the context of light reflection. The research question guiding this report is “What ways of 
thinking does a PMT demonstrate upon interacting with a digital task that involves radian angle 
measure and light reflection?” 

Theoretical Framing 
To answer the research question, we took a constructivist perspective (Schunk, 2012) on the 

construct of thinking, and spatial thinking in particular, which we describe in the following 
sections. Additionally, we clarify our perspective and definition of iSTEM curricular approaches. 
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iSTEM Curriculum 
Curricular approaches that involve iSTEM have been defined in various ways in the literature 

(Navy et al., 2021), with teachers, administrators, and policy makers having different views on 
iSTEM education (Breiner et al., 2012; Holmlund et al., 2018). In this report, our perspective of 
iSTEM curriculum involves instructional activities with learning goals of content and/or 
practices from one or more of the STEM disciplines, as anchors, along with engineering and/or 
engineering design practices, as integrators. Additionally, iSTEM curriculum activities involve 
opportunities to emphasize twenty-first century skills in a real-world, authentic context, to be 
solved through collaboration, communication, and teamwork (Bryan & Guzey, 2020). 

There are many challenges when it comes to implementing iSTEM curricular approaches 
(English, 2016; Fitzallen, 2015). One of these involves distinctions in the knowledge base 
between disciplines (Williams et al., 2016). For example, discipline-specific words have explicit 
definitions and are used in unique ways in that discipline (Morgan & Sfard, 2016) despite use 
and overlap of such words in other disciplines. For example, the light reflection principle (Figure 
1) is understood as the equality of the angle of incidence and the angle of reflection relative to a 
perpendicular to the mirror known as the normal (α = β). The light reflection principle can also 
be understood as the equality of the angles of incidence and reflection relative to the mirror (γ = 
δ). In this context, the term normal line refers to perpendicularity in relation to the scientific 
phenomenon of light reflection. A person with a mathematical perspective might refer to the 
normal line in the context of light reflection, using its mathematical property of perpendicularity, 
rather than using the term itself. 

 
Figure 1. Demonstration of the principle of light reflection 

Despite the challenges, research and reviews have reported the effectiveness of iSTEM 
education approaches on learners’ engagement, motivation, interest in STEM, and increased 
mathematical achievement (Honey et al., 2014; Stohlmann, 2018; Zhong & Xia, 2020). 
However, little is known about learners’ mathematical thinking as they engage in iSTEM 
instruction (Li et al., 2019). Hence, this study focuses on the ways of thinking that are involved 
in an iSTEM task that involves radian angle measure and light reflection.  
Ways of Thinking 

Our definition of ways of thinking builds on Harel’s (2008) description of thinking as a 
learner’s established cognitive characteristics, and Thompson et al.’s (2014) extension of Harel’s 
(2008) definition, where thinking is the consistency in a learner’s reasoning about mathematical 
situations. Building on these descriptions, we interpret ways of thinking as the thought patterns a 
learner demonstrates when reasoning about a particular concept given a specific situation that 
evokes such reasoning. For example, researchers demonstrated that PMTs think of radian angle 
measure as angles expressed in terms of π (Akkoc, 2008; Fi, 2003). Additionally, Moore et al. 
(2016) reported that PMTs’ thinking about radian angle measure incorporates a unit circle 
diagram (Figure 2) to perform calculations. These studies suggest that through their prior 
coursework and experiences, PMTs may have developed a thought pattern to reason about radian 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

100



angle measure. Such reasoning makes the use of special angles expressed in terms of π, and/or 
using calculational strategies an established way of thinking about radian angle measure.  

 
Figure 2. A typical diagram of the unit circle 

Spatial Thinking 
We characterize ways of thinking with particular attention to spatial ways of thinking.  

Commonly known as spatial reasoning, we use the term spatial ways of thinking to refer to 
thought patterns that include “the ability to recognize and (mentally) manipulate the spatial 
properties of objects and the spatial relations among objects” (Bruce et al., 2017, p. 146), through 
“a collection of cognitive skills comprised of knowing concepts of space, using tools of 
representation, and reasoning processes” (NRC, 2006, 12). Spatial thinking is associated with 
various disciplines and is correlated with achievements in both mathematics (e.g., Clements & 
Sarama, 2009; Mix, 2019; Mulligan et al., 2018), and other STEM disciplines (e.g., Newcombe, 
2010, 2013; Newcombe & Shipley, 2015; Pruden et al., 2011). However, there are few 
opportunities for students to engage in spatial thinking in school (Clements & Sarama, 2011; 
Sinclair & Bruce, 2015; Whiteley et al., 2015). Because spatial thinking is associated with 
achievements in mathematics in addition to achievements in other disciplines (Bruce et al., 
2017), it is appropriate to investigate the ways of thinking involved in an iSTEM curricular 
approach with attention to spatial ways of thinking. 

While spatial thinking is usually associated with visualization, Whiteley et al. (2015) 
suggested addressing and legitimizing broader spatial ways of thinking, including symmetrizing, 
comparing, decomposing-recomposing, situating, orienting, and scaling. We describe these 
spatial ways of thinking in the methods section (Table 1), however, we note that the spatial ways 
of thinking we mentioned do not represent all spatial ways of thinking, nor do they exist in 
isolation of each other and/or other ways of mathematical thinking (Davis et al., 2015). For 
example, Munier and Merle (2009) built on NCTM’s (2000) recommendation to interrelate 
geometry and spatial thinking to provide 3-5 graders the opportunity to explore angle measure 
through physics-based teaching sequences, one of which included light reflection. Through an 
iterative process of spatial experimentation and geometric knowledge development, the 3-5 
graders were able to discover light reflection principle, by attending to the symmetry between the 
angle of incidence and the angle of reflection relative to the mirror (γ = δ in Figure 1). This 
illustrates students’ use of symmetrizing as a form of spatial thinking in conjunction with the 
notion of angle as a form of mathematical thinking to discover light reflection principle. 
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Methods 
Research Design 

We employed a qualitative case study design (Flyvbjerg, 2011) to examine a PMTs 
mathematical thinking during a lesson that was part of an iSTEM unit embedding the design of a 
periscope (Alyami, in-press). The lesson entailed a digital task that involved radian angle 
measure in the context of a light reflection scenario (described further in the following section).  
Participant and Task 

The PMT participating in this study was Alex (pseudonym), who was enrolled in a 
mathematics teacher preparation program at a large Midwestern university. Alex volunteered and 
was compensated for his time after the first author briefly presented the opportunity in his 
secondary mathematics methods course. While Alex likely encountered the concepts of radian 
angle measure and light reflection during his K-16 schooling, he was not offered a formal 
learning session about radian or light reflection prior to participating in this study.  

A Desmos activity (i.e., Radian Lasers) comprised the task in this report, where Alex typed 
values of angle measure (in radian) to adjust a laser and one or two mirrors so the laser beam 
would successfully pass through three stationary targets at once (Figure 1). The angles of the 
laser and the mirror are relative to the horizontal and in standard position, where positive angle 
values are counterclockwise and negative angle values are clockwise. The task consisted of two 
warm-up activities to familiarize Alex with the functionality of the digital interface, followed by 
six challenges. A benefit of the Radian Laser task is that the angles needed to situate the mirror 
were not limited to the common special angle (e.g., π/6, π/3, π/2). For example, one way of 
solving Challenge 1 is by positioning the laser upwards at an angle that is 5π/6 radian, with the 
mirror angled at a 5π/12 radian, which is not a common special angle (Figure 4).  

  
Figure 3. A challenge from the Radian Lasers activity 

 
Figure 4. Challenge 1, where the angle of the mirror is not a common special angle 

Following principles of structured, task-based interviews (Goldin, 2000), Alex engaged with 
the Radian Lasers task in a semi-structured, think-aloud interview setting, where he could use his 
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own language to make sense of the task (van Someren et al., 1994). The semi-structured setting 
provided an opportunity to ask for elaborations (e.g., How do you know that? How would you 

represent your thinking?), which were informed by the responses Alex provided throughout the 
interview to encourage him to clarify his thinking.  
Data and Analysis 

The think-aloud, semi-structured interviews, led by the first author, took place virtually, were 
video recorded, and lasted approximately one hour. The interview video and time-stamped 
transcript comprise the data for this study. To analyze the data, the first author used a whole-to-
part inductive approach for coding (Erickson, 2006), beginning with playing and watching the 
whole video without coding, stopping, or pausing. Then, NVivo software was used to code the 
media file, as described by Wainwright and Russell (2010). At this stage, the unit of analysis 
consisted of one or more sentences that formed coherent statements in which Alex described his 
thinking about how to reposition the angle of the laser and/or the mirror. To further analyze these 
statements, we used thematic analysis, which is a coding strategy that involves identifying 
themes in the data that are informed by the research questions, theoretical framework, and 
literature review (Saldaña, 2013). Specifically, we coded Alex’s statements with attention to 
spatial ways of thinking described in Whiteley et al. (2015). As part of thematic analysis, we 
were open to the development of new categories that emerged from the data. Table 1 contains the 
codes that were evident in the data. 

Table 1: Coding Scheme of All Spatial Ways of Thinking Utilized by Alex 
Code Description 
Locating Thinking about where objects are situated and/or positioned. 
Orienting Thinking of how objects are situated and/or positioned in relation to each other. 
Comparing Thinking about angle size in relation to itself or another angle (bigger, smaller, etc.) 
Decomposing- 
Recomposing 

Thinking of a whole as spatially broken into a specific number of parts, and/or  
spatially adding up parts to form a specific whole.  

Symmetrizing Thinking and applying properties such as congruence and symmetry with similar 
parts spatially facing each other around an axis.  

Visualizing Thinking visually of geometric objects and managing their characteristics. 
Includes: Managing both visible and imagined visual information. 

Diagramming Thinking of and managing geometric objects and patterns through drawing  
Includes: Gestures depicting semantic content (e.g., tracing angles as if to represent 
the angles on a typical unit-circle diagram) (Sinclair et al., 2018). 

After coding all the transcript, the first author reviewed statements that were coded with 
multiple codes to provide a meaningful interpretation of the coded data “so that more can be 
gleaned from the data than would be available from merely reading, viewing, or listening 
carefully to the data multiple times” (Simon, 2019, p. 112). To answer the research question and 
provide evidence for our argument, the interpretation of the data focused on Alex’s ways of 
thinking in relation to radian angle measure, and in relation to light reflection.  

Findings 
We describe in this section the mathematical and spatial ways of thinking Alex demonstrated 

upon engagement with the digital task, Radian Lasers. To argue that this iSTEM experience, 
which foregrounds mathematics, contributes to mathematical thinking and brings mathematics in 
relation to other STEM disciplines, we organize the two sections of the findings to start with 
Alex’s ways of thinking in relation to radian angle measure. We then describe his ways of 
thinking in relation to making sense of light reflection.  
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Ways of Thinking about Radian Angle Measure Beyond the Special Angles 
Since the angles needed in Radian Lasers are not limited to common special angle (e.g., π/6, 

π/3, π/2), Alex needed to think beyond the special angles commonly represented on a typical 
diagram of the unit circle (Figure 2). When a challenge required a noncommon angle, Alex 
estimated the measure of angle based on spatial comparisons and estimating the angles in 
between. For example, to reason about Challenge 1 (Figure 4), Alex initially situated the mirror 
at π/3 radian (left side of Figure 5), and noted that “the laser is hitting the mirror at a 
perpendicular angle … and that tells me that this angle needs to be slightly bigger.” The previous 
statement suggests that Alex is observing the result of situating the mirror at π/3 radian angle, 
and then comparing the size of the resulting angle in relation to the angle that would lead the 
laser to hit the third target. Alex then entered π/2 for the mirror (right side of Figure 5), as he 
stated that “maybe π/2 would increase the angle,” which caused the laser to reflect beyond where 
the third target is located. Upon missing the third target, Alex said “Okay, so I know it’s between 
π/3 and π/2.” 

 
Figure 5. Alex’s trials of π/3 & π/2, sending the laser respectively below & above the target 

However, Alex was not familiar with a special angle that is between π/2 and π/3, and asked 
the first author if he could try an input such as 2.5π/6 for the angle. When he entered 2.5π/6, he 
observed the laser hit the third target. The interviewer asked Alex to explain why he questioned 
his ability to use the fraction, 2.5π/6. Alex explained: 

The 2.5π/6 was not like an option in my head because that’s not, like one of the things that 
are usually mentioned or like associated with like radians. The reason why I got there is 
because I knew it was in between π/2 and π/3 but with the list of all, like the radians that I 
know, π/2 and π/3 are, like right next to each other, and there's, like no whole number π over 
anything in between those two numbers. 
Alex’s explanation is in reference to a typical diagram of a unit circle (Figure 2), where π/3 

and π/2 are represented without depicting other angles between them. Alex recognized the need 
for an angle between π/3 and π/2, which led him to try the value between 2π/6 and 3π/6. He 
concluded that the angle would be 2.5π/6. 
Mathematical Ways of Thinking about Light Reflection 

In this section, we provide an analysis of Alex’s ways of thinking as he makes sense of the 
scientific phenomenon of light reflection. We describe Challenge 3 of the Radian Lasers which 
could be solved by positioning the laser downward at an angle that is -π/6 radian, with the mirror 
being angled at a 5π/12 radian, to reflect the laser beam to the third target at the bottom (Figure 
6). 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

104



 
Figure 6. A possible solution for Challenge 3 from the Radian Lasers task 

Alex used diagramming to represent his visualization of the challenge as alternate interior 
angles, then extended his diagramming with a focus on the mirror (Figure 7). Alex explained that 
“this entire thing [points to the mirror in Figure 7] is π, and so then I tried to find out what these 
two [the angles of incidence and reflection relative to the mirror] would be remaining, and I got 
… 5π/12 because there’s two of them so I have to split the angle in half, because these two 
angles are equal.” Alex’s explanation of the mirror as a straight angle where its measure 
represents the “entire thing is π,” suggests his thinking about the straight angle as a whole. Alex 
then decomposed the straight angle into π/6, which he concluded from the alternate interior angle 
theorem, and two angles that “would be remaining.” Alex’s elaboration demonstrates his 
attention to symmetry as he has “to split the angle in half because these two angles are equal.” 

 
Figure 7. Alex’s diagramming of Challenge 3 of the Radian Lasers 

This example illustrates Alex’s mathematical ways of thinking to make sense of the angle at 
which to situate the mirror. Alex’s ways of thinking involved mathematical concepts (i.e., 
alternate interior angles), as well as various spatial ways of thinking (i.e., diagramming, 
decomposing, and symmetrizing). Alex went further to describe the light reflection principle 
from a mathematics perspective. Specifically, when Alex described his diagramming for 
Challenge 3 (Figure 7), he pointed at the angle the laser makes with the mirror upon reflection 
and stated, “this whole entire angle is π/6. I know the bisector, it, each angle would be like π/12. 
Then I know that this angle bisector is perpendicular with, you know, the mirror.” Alex’s 
description of the bisector of π/6 as “perpendicular” to the mirror illustrates his mathematical 
thinking about the science of light reflection, which he referred to as “adjust[ing] for mirror 
logic.” The significance of the angle’s bisector is because the angle the laser makes upon 
reflecting from the mirror (i.e., π/6) is the sum of the angles of incidence and reflection relative 
to the normal (γ = δ in Figure 1). However, Alex described the mathematical property of the 
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normal line as perpendicular to the mirror, instead of using the science terminology. Alex’s 
explicit description of the science of light reflection through his mathematical perspectives was 
not elicited by the interviewer. Alex utilized his mathematical ways of thinking to make sense of 
the principle of light reflection. While Alex did not explicitly use the terminology, “angle of 
incidence” or “angle of reflection,” he was meaningfully incorporating mathematical thinking to 
make sense of the science of light reflection. 

Discussion 
To date, there are few iSTEM curriculum materials that emphasize mathematical concepts as 

the anchor discipline (English, 2016; Fitzallen, 2015), despite evidence of the benefits of iSTEM 
curricular approaches on mathematical achievement and development of mathematical 
understanding (Stohlmann, 2018). Additionally, there are few opportunities to engage in spatial 
thinking in schools (Clements & Sarama, 2011; Sinclair & Bruce, 2015; Whiteley et al., 2015), 
despite the role of spatial thinking in understanding both mathematics (e.g., Mix, 2019) and other 
disciplines (e.g., Newcombe & Shipley, 2015; Pruden et al., 2011). Our report illustrates a 
purposeful integration approach with a focus on mathematics in the context of science within an 
iSTEM unit. We argue that iSTEM experiences that foreground mathematics can meaningfully 
contribute to mathematical thinking, in addition to enhancing how mathematics relates to other 
STEM disciplines. The Radian Lasers as an iSTEM approach that emphasized mathematics 
provided Alex, a PMT, the opportunity to utilize mathematical and spatial ways of thinking 
about radian angle measure (e.g., alternate interior angle, perpendicular lines, angle bisector, 
visualization, diagramming, comparing), and to relate angle measure to light reflection principle.  

Previous studies suggest that PMTs’ thinking about radian angle measure is limited to special 
angles expressed in terms of π (Akkoc, 2006; Fi, 2003) and calculational strategies using the unit 
circle (Moore et al., 2016). Similarly, Alex initially referred to some of the special angles on the 
unit circle. However, the Radian Lasers task constrained these established ways of thinking as 
Alex was not able to only depend on few special angles. Alex used spatial comparison to think 
beyond the special angles that are associated with the unit circle. This suggests that the Radian 
Lasers as an iSTEM activity that focused on radian angle measure in a science context provided 
an opportunity for Alex to reason about radian angle measure beyond the special angles. Alex’s 
use of multiple spatial ways of thinking reflects Davis et al.’s (2015) discussion that the spatial 
ways of thinking do not exist in isolation of each other and/or in isolation of other mathematical 
ways of thinking. Specifically, to reason about the functionality of the mirror, Alex used 
diagramming as a spatial way of thinking in relation to a mathematical concept (i.e., alternate 
interior angle theorem), and in relation to other spatial ways of thinking (i.e., Symmetry and 
Decomposing-Recomposing).  

Alex’s mathematical ways of thinking assisted him in not only applying mathematical 
content and processes (e.g., alternate interior angles, spatial thinking), but also in making sense 
of light reflection. The iSTEM activity in which Alex engaged brought mathematics to bear in a 
situation that represents a scientific phenomenon, which allowed for the construction of a 
relationship between a scientific phenomenon and a mathematical concept. Our findings align 
with English (2016) and Fitzallen’s (2015) call for educators and curriculum developers to 
capitalize on iSTEM approaches that emphasize mathematics, as well as Li et al.’s (2019) call 
for research that explores thinking in iSTEM contexts. The report illustrates how iSTEM 
approaches that foreground mathematics have the potential to support learners’ thinking of not 
only mathematical content, but also meaningful mathematical applications and connections to 
other STEM disciplines.  
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This paper explores how a professional learning community (PLC) redesigns high school 
mathematics lessons towards a shared commitment. We describe the nature of a PLC’s collective 
curricular vision to illuminate how teachers can come to new understandings as a group in 
order to shift the ways students experience mathematics. Using the curricular noticing 
framework (attending, interpreting, and responding), we analyzed the meetings of a PLC with six 
teachers as they individually presented lessons to be redesigned with a focus on the group’s 
shared commitment. Findings indicate three ways ideas were introduced that led to expansive 
responses, which suggests this analytic approach could identify ways in which a PLC can work 
towards new curricular decisions. 

Keywords: Curriculum, Teacher Noticing, Teacher Beliefs 

A central part of mathematics teaching is the design of lessons within a system of constraints 
(Brown, 2009). After teaching a lesson, teachers may reconsider specific design decisions based 
on their individual interpretations of the enacted lesson (what we refer to as redesign). 
Recognizing new curricular opportunities, however, is then limited to what prior experiences this 
individual teacher has had and what personal frameworks they use to make sense of their 
curriculum (what we refer to as curricular vision) (Darling-Hammond et al., 2005; Drake & 
Sherin, 2009). Teachers work under the demands of larger systemic constraints (e.g., policy, 
social messages of learning loss) as well as local constraints (e.g., administrative agendas with 
standardized testing, co-planning opportunities, curriculum access). Teachers, therefore, are 
limited within their redesign decisions — not by choice, but by pressure.  

We are concerned that these constraints on curricular decision-making may prevent teachers 
from making ambitious changes to their teaching, thus maintaining the status quo for their 
students’ experience and learning. Redesigning a lesson with other teachers that reimagines a 
given individual’s curricular vision by challenging the given constraints can enable different 
types of experiences to inform teacher curricular decisions. When teachers are members of a 
professional learning community (“PLC”) committed to a shared curricular vision, individuals 
then have new things to consider, negotiate, and think about in their own redesign choices. 
Therefore, we are interested in understanding the nature of collective redesign to illuminate how 
PLCs can come to new understandings as a group with a shared commitment in order to shift the 
ways students experience mathematics.  

In this paper, we begin to answer the questions: (1) What is the nature of curricular decision 
making for teachers with a shared design commitment in a PLC? and (2) What enables an 
expansive curricular decision? We will illustrate how a group of teachers collectively arrived at 
and engaged with decision decisions that expanded potential opportunities for students. With 
better understanding of the potential ways groups of teachers can collectively redesign lessons, 
we hope to inform how PLCs with a shared commitment can potentially catalyze broader 
opportunities for students in mathematics classrooms.  
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Theoretical Framework 
We use the curricular noticing framework (attending, interpreting, and responding) as a way 

to trace and describe the nature of lesson redesign in the PLC individually and across a group. 
Curricular Noticing 

Any decision that a teacher makes as part of the profession is shaped by the lenses 
(interpretation) with which they engage. Additionally, teachers’ designs are also influenced by 
the phenomena (e.g., student work, textbook tasks, assessment data) to which they pay attention 
(attending). Together, these contribute to a teacher’s professional decisions to act (responding). 
Teacher’s shifting lenses can contribute to teachers attending to, interpreting, and making 
pedagogical responses consistent with a particular goal when reflecting on a lesson enactment 
(Baldinger, 2017; Louie, 2018; Louie et al., 2021; van Es et al., 2014). Curricular noticing builds 
on the teacher noticing framework to describe how the phases of noticing (attending, 
interpreting, and responding) take place when teachers are designing or adopting any form of 
curricular materials (e.g., textbooks, enacted videos of lessons) (author, year). Although teachers 
may pass through a sequence of attending-interpreting-responding (“A-I-R”), the phases are not 
strictly sequential so that, for example, an interpretation may cause a teacher to redirect their 
attention. In addition, not all may lead to curricular decisions. For example, a teacher’s 
interpretation that follows their attention may lead them to decide to not move forward with a 
particular action (i.e., response). 

Increasingly, the noticing framework has begun to provide insight into how teachers identify 
patterns towards challenging systemic inequities in mathematics classrooms. Research in teacher 
noticing has begun to explore how individual teaching stances, such as deficit perspectives 
(Louie, 2018; Louie et al., 2021) or particular goals (Hand, 2012) can influence the extent to 
which teachers’ interpretations lead to disrupting or perpetuating inequitable practices via 
responses. However, curricular noticing has not yet explored how a teacher’s frameworks (i.e., 
curricular vision) can impact possible curricular responses. We argue that curricular noticing can 
support our understanding of how teachers challenge and disrupt systematic patterns of thinking 
due to the structural systems of schooling and testing, particularly within mathematics education. 
Curricular Vision as a Commitment within PLCs 

An individual’s curricular vision, when interacting with others' own curricular vision, can 
create disruptive responses within group lesson design. Because curricular noticing happens 
from the standpoint of an individual’s curricular vision (Dietiker et al., 2018), a group of 
individuals working together in a PLC means there are multiple curricular visions (potentially 
overlapping or shared in some cases). These curricular visions are positioned to interact and 
influence what responses are possible from individuals within the PLC and the PLC as a 
collective. When a group of teachers choose to align their own curricular visions towards new 
possibilities (which we will call collective curricular vision), their collaboration can support 
curricular responses related to students’ potential mathematical learning experiences in new 
ways. 

We conceptualize this shared stance for a collective curricular vision as a form of 
commitment. Evidence of a member’s commitment to the collective curricular vision, therefore, 
is the explicit intention of aligning to a shared stance based not only on personal frameworks but 
also shared frameworks. The connection between a groups’ shared commitment and the 
alignment to that commitment can either make space for new types of curricular responses (what 
we will call expansive responses) or prevent curricular responses from taking form during a 
group conversation (what we will call restrictive responses).  
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Methods 
This study is a qualitative analysis of a lesson redesign meeting with a group of teachers with 

a shared commitment for how their interactions led to potential expansive opportunities for 
students. Pairs of teachers from three high schools (one urban comprehensive public school, one 
suburban comprehensive public school, and one urban private charter) in the Northeast were 
selected to participate. The 6 teachers, along with 2 researchers, participated in the redesign 
meeting. At this meeting, teachers took turns sharing video clips and data from a lesson they had 
taught the previous year and which they wanted to redesign. The data used here is based on audio 
recordings of workshops between the teacher who shared the lesson (the “lead teacher”) and 
other teachers in the professional learning community. This design group was part of a larger 
project aimed at creating aesthetic opportunities for their students. Using video of enacted 
lessons as a form of curricular materials allows for curricular noticing to take in embodied, 
emotional, and verbal expressions of mathematics engagement. 
Case Selection Process 

Of the six redesign meetings, two were selected to be analyzed. To select, we looked for 
three qualities: (1) the participation of multiple members of the group; (2) conversation that 
specifically attended to the shape of content (i.e., curricular); and (3) conversation that included 
reference to the shared commitment: improving students’ aesthetic opportunities.  

In one session, Ms. Elm presents a lesson she previously designed and taught about the 
Rational Root Theorem (RRT). In another, Ms. Willow, presented an introduction to inverses 
lesson that she designed, taught, and wanted to redesign. Both of these audio recordings met the 
above three criteria, and had 5-minute segments that included all three pieces of criteria. These 
5-minute segments were chosen for in-detailed analysis because of clear evidence of individual’s
members noticing and the noticing across members of the PLC. Therefore, the described
segments show examples of exchanges towards expansive or restrictive responses.
Analytical Methods

The audio recordings were transcribed and analyzed for their curricular noticing (Dietiker et 
al., 2018). To identify instances of curricular attending, we analyzed the discourse for evidence 
of teachers “taking in” (ibid, p. 525) what was under discussion (e.g., presented by the lead 
teacher or introduced by another member of the PLC). To identify instances of curricular 
interpreting, we analyzed the discourse for evidence that a teacher made sense of what was 
attended to using their knowledge base in relation to their goals (e.g., evaluating a suggestion for 
its benefits). Finally, we identified instances of curricular responding by looking at decisions of 
action, both proposed and accepted (i.e., selecting a polynomial). 

For each coded utterance, we analyzed how it related to the prior coded utterances. For 
example, when analyzing a coded utterance, we asked “was there a prior moment of attending, 
interpreting, or responding to another utterance that supported this utterance?” After compiling 
these threads of connected utterances, we identified the types of threads that emerged most 
frequently and connected to the groups’ expansive responses.  

Findings 
With a collective curricular vision in a PLC, we found that the curricular noticing of the 

group of teachers were collectively shaped as follows: 1) prior responses were pulled back into 
the discourse as something to attend to, 2) prior interpretations were pulled back into the 
discourse as something to attend to with new interpretation, and 3) prior responses were 
impacted by the shifts in collective attending and interpreting. These characteristics, in turn, 
enabled this group to generate expansive responses. To show this, we present two exchanges 
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from different parts of the design meeting to illustrate each of these characteristics, and describe 
how those either led to restrictive or expansive responses. In the first, based on a lesson on the 
RRT, all three characteristics were present and described. In the second, focused on redesigning 
a lesson that is an introduction to inverse functions, two of the three characteristics were present 
and described. In the first, based on a lesson on the RRT, all three characteristics were present 
and described. In the second, focused on redesigning a lesson that is an introduction to inverses, 
two of the three characteristics were present and described.  
The Collective Redesign of Ms. Elm’s Lesson on the Rational Root Theorem 

Summary of Design Meeting. [1] At the start, the group watched an abbreviated video of 
key moments of the lesson enacted the prior year, selected by Ms. Elm. In this lesson, Ms. Elm 
had students use guess and check to test potential roots of given polynomials (cubic functions 
and quartic functions) in order to conjecture the RRT. Within this context, Ms. Elm presented the 
guess and check process as identifying “suspects” towards solving the mystery of the 
corresponding polynomial roots. She grappled with a tension; how could the lesson have students 
eliminate roots in such a way that they have time to understand the concept behind the RRT 
while keeping the aesthetic potential of mystery intact.  

[2] After viewing the video, Ms. Spruce says: 
I loved the four guesses part…that was where you could definitely see like the kids 
[snapping], getting excited. What I wondered was... could you implement that earlier? To 
like generate more excitement…as you go up in degree and complexity, start taking away the 
number of guesses, because I think that would also generate the sense of…excitement, but in 
between there do some stuff to facilitate…better guesses 
[3] Immediately after this comment, Mr. Palm points out that there was no evidence of 

students’ verbally articulating what the learning objective is, and raises a question about the 
curricular goal of the lesson (ex: “do you want them, by the end of this…?”), offering multiple 
potential learning objective goals. [4] Ms. Elm replies: 

I mean ideally, I would love them to do all the things you said…that’s really a tall order for 
one period...the key piece…sometimes there are so many potential factors that [the RRT] 
doesn’t seem very efficient, but as the polynomial becomes more depressed, like that process 
is super-efficient when you’re looking at your new p and q… If there’s any way... um... but 
like I don’t know if we ever got to that idea, so, um...I just don’t know. 

[5] As the conversation progresses, Ms. Spruce continues thinking aloud about the polynomial's 
leading coefficient (p) and its constant (q), suggesting that students, although not yet 
understanding the relationship between the roots and the polynomials, might get a sense of what 
could be a root. Ms. Willow and Ms. Elm continue to discuss how students’ intuitive sense of 
numbers can lead them to making connections. [6] Ms. Willow suggests changing the 
polynomials to encourage students to focus on the coefficients. [7] Ms. Elm builds on this by 
saying that the new choice of coefficients should not visually mislead students (such as having  
p=1 and q=5 when the roots are not 1 and 5. [8] Ms. Spruce jumps in and describes this option as 
“kinda interesting,” which [9] is echoed by Mr. Ash as a potential moment of “beauty.” 

Characteristic 1: Attending to a Prior Response. In [2], Ms. Spruce drew attention to the 
students’ embodied reaction to the prior design choice of guesses. This focus on students’ 
emotional and aesthetic reaction is connected to the larger groups’ commitment toward 
captivating lessons. Then in [5], Ms. Spruce attended to her prior response, interpreting it as a 
way to connect to students' intuitive sense around numbers (i.e., connecting roots with the 
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coefficients). Others continue attending to students’ aesthetic reactions via numerical attunement 
[6, 7] and embodied excitement [9]. Collectively, these responses change the direction of the 
redesign; the focus on the original lesson in terms of students’ articulating learning objectives 
shifted toward how the problems can make space for an increased aesthetic experience in a way 
that also contributes to students’ learning. 

Alternatively, this characteristic can limit curricular responding, such as in the case of Ms. 
Elm [4] attending to Mr. Palm’s response [3]. The expansiveness of future responses began to 
close — her use of “I don’t know” signifies that Mr. Palm’s utterance overwhelmed her from 
responding at all. Unlike the previous example, here an A-I-R chain begun in [2] was interrupted. 

Characteristic 2: New Attending and Interpretation of a Prior Response. Ms. Willow’s 
prior response in [6] suggests that coefficients should be selected in such a way that students are 
learning through their intuitive sense. However, Ms. Elm in [7] attends to and interprets 
numerical attunement as misleading and unsupportive of sensemaking. This leads to a new 
response of a lesson design that does not have the potential to mislead students. Although this 
example can be read as one that restricts responses, the fact that the utterance [7] named a design 
challenge actually positioned the group to consider responding in two ways one, to either resolve 
that problem through a design-related response, or two, to shift what was attended to how it was 
interpreted that allows for a new expansive response. Therefore, the act of attending and 
interpreting a prior response enabled the group to name a problem, creating an opportunity to 
think more deeply about lesson redesign towards the shared commitment of student aesthetic 
experience [8-9]. 

Characteristic 3: Attending to Prior Interpretation. When Ms. Elm’s interpretation in [7] 
was then attended to by Ms. Spruce [8], a new opportunity for students’ aesthetic responses was 
created (i.e., the tension could potentially lead to a moment of excitement when students are able 
to find a pattern). This made space to consider aesthetic opportunities within the redesign. So, 
although the interpretation of the problem set in relation to students’ numerical intuition was 
named as a potential issue [7], that interpretation was expansive because it was considering 
aesthetic characteristics within a lesson redesign. So, not only did that initial interpretation 
encourage continued noticing around aesthetic, but also made space for the reframing of the 
interpretation as an opportunity [8], which, in turn, acts as an example of enabling a subsequent 
expansive response. 
The Collective Redesign of Ms. Willow’s Lesson on Introduction to Inverses  

Summary of Design Meeting. [1] In the beginning of this episode, the PLC is discussing 
how to adapt the opening task from the original lesson. [2] Ms. Dogwood proposes prompting 
students to compose  𝑥2 + 3 and √𝑥 − 3. [3] Ms. Spruce follows by saying, “Do you want them 
to have that in their minds when they go to [Problem] three?”, which asks students to match 
functions that are inverses from a list of linear functions. Ms. Willow share this concern, saying: 

[4] Ms. Willow: Oh, I see, because then I might be giving them stuff that has squaring… 
[5] Ms. Spruce: Which isn’t necessarily the end of the world, if you allow yourself to have 

awareness… 
[6] Mr. Ash: You could just ask for linear(s). Like on [Problem] 3…you could restrict [the 

given types of functions]. 
Following this moment, the group discusses the difficulty students might have with 

simplifying the composed functions. This includes [7] Ms. Dogwood wondering if students 
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would know to “square out” a radical, [8] Ms. Willow naming that doing so would be “really 
hard,” and [9] Ms. Dogwood describes this process as “ugly.” 

[10] Ms. Willow then suggests creating a problem within the set that requires three 
operations to simplify the composed functions. She continues [11] by saying the three steps 
could more clearly illustrate the “doing and undoing” that is key to inverse functions, compared 
to prior suggestions that potentially resulted in the composition not “coming out nice.” [12] Ms. 
Dogwood, in turn, articulates how inputs could influence whether the composition is “nice” and 
responds by suggesting that the group thinks of problems that would have a “nice” composition 
with the original problem’s “yucky” elements (such as fractions). Ms. Willow continues:  

[13] Ms. Willow: I’m worried though, because if they try composing these…it would be 
three halves times two-thirds x plus one minus one… they’re gonna be like, ‘Oh, okay, so 
that’s like x plus one minus one, it cancels out… 

[14] Mr. Ash: But that would be a nice opportunity for you to…because that’s a common 
mistake that you saw happening later on…[say] maybe ‘here’s an opportunity, don’t 
forget to distribute.’ 

[15] Ms. Dogwood: But I think Ms. Willow’s wondering…how can [the students] trouble 
that’s not right? Then your question begs, like, ‘how come? We have to distribute.” 

[16] Ms. Willow: I don’t know how that will make them feel when we do all the 
canceling…like, if they just tried to cancel and it didn’t work, then suddenly all this 
canceling does work, does that feel better or worse? 

[17] Ms. Cherry: Well maybe they understand why it’s so special, like woah, you know? 
Because everything cancels out. 

Characteristic 1: Attending to a Prior Response. When considering Mr. Ash’s [6] use of 
the prior response [3], we see how he encouraged the PLC to design in such a way that considers 
students’ intuitive number sense to understand why the functions are inverses. When bringing 
Ms. Spruce’s [3] response back into as something to attend to, Mr. Ash [6] opens the community 
to consider how clarifying what students have in their minds could be influenced by a restriction 
to the types of problems being presented. So, Mr. Ash responds by suggesting that restricting the 
problem set to linear equations (as opposed to incorporating quadratics and square root functions 
as inverse pairs) could serve as a better way to focus students’ attention. 

In another moment, we see a sequence of utterances where what is attended to stems from a 
prior utterance’s response. An example of this starts when Ms. Willow [13] attends to Ms. 
Dogwood’s response in [12] to create a pair of functions that, when composed, is “nice,” 
although the coefficients may be “yucky.” Ms. Willow responds [13] by naming that students' 
intuitive sense of what cancels could also be an issue towards their understanding of inverses and 
what actually cancels. Then Ms. Willow’s response [13] was then attended to by Mr. Ash in 
[14], where this could be leveraged to support their conceptual understanding of the need to 
distribute [16]. This illustrates how prior responses that are pulled back into the discourse can 
result in expansive responses when the process is compounded by happening multiple times in a 
row.  

In another example, the PLC attends to prior responses of multiple members of the group at 
the same time. Ms. Dogwood [15] draws attention to both Ms. Willow’s [13] and Mr. Ash’s [14] 
prior responses about students’ intuitive sense by interpreting students’ need to challenge their 
intuitive sense of canceling (as opposed to just refocusing the attention). This happens again 
when Ms. Cherry [17] attends to the same two responses that Ms. Dogwood just attended to. 
Here, Ms. Cherry interprets those responses by naming the importance of students understanding 
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why the expressions cancel in order to have a positive aesthetic experience while canceling. This 
interpretation results in a new response where Ms. Cherry suggests that some of the tensions 
named in the prior responses could potentially be a moment where students “understand why 
[composing inverses] is so special.” 

Characteristic 2: New Attending and Interpretation of a Prior Response. Ms. Spruce, in 
[3], responded when she suggested clarifying what the lead teacher (Ms. Willow) wanted 
students to have in their minds while solving the subsequent problems. Ms. Willow [4] attended 
to Ms. Dogwood’s original attending in [2], but interprets it using Ms. Spruce’s [3] 
interpretation of how prior problems in the set could influence their approach to new problems. 
Ms. Willow’s response [4], in turn, becomes the same response that Ms. Spruce previously had 
— that is, that the lead teacher (here, being Ms. Willow herself) needs to clarify what she wants 
students to have in their mind. So, although it could be said that Ms. Willow did not contribute 
anything novel to the conversation, she was able to elevate the prior response in a way where 
members of the PLC could recognize the design challenge as Ms. Willow was interpreting it in 
relation to the commitment. 

Another instance where prior responses are reimagined with new attending and interpreting 
is when Ms. Willow [16] refines the response of students' intuitive sense of what cancels as an 
issue. Here, she highlights the need to design problems that do not confuse students by attending 
to students’ embodied feelings of when canceling “works” or “doesn’t” work. So, Ms. Willow 
brings in the interpretation that students can feel better or worse when there are “inconsistent” 
responses with canceling. This new attending and interpreting of prior responses now brings in 
students’ affective reactions when considering their intuitive sense of numbers and the 
relationship to the problem set. So, instead of only focusing on how students can mislead 
themselves or on the “ah-ha!” moments that students might have due to their intuition, Ms. 
Willow draws attention to the tensions that might arise during the lesson. This reimagining 
oriented teachers to the broader affective experience that students may have when engaging with 
this topic through new expansive responses. Students’ opportunities to have positive aesthetic 
experiences, on the other hand, may have been restricted if the PLC had not considered the 
broader affective experience as presented within the redesign. 

Discussion 
By highlighting the role of collective curricular vision, this paper argues how teachers who 

collectively redesign lessons with a shared commitment can shift their attention and 
interpretation of what other teachers offer towards more expansive views of mathematics 
learning. When a PLC’s collective curricular noticing is guided by a commitment that 
intentionally disrupts constraints within the design process, such as attending to students’ 
emotional reaction to a mathematical concept over attending to standardized testing scores, the 
way in which noticing functions within the collective can lead to expansive responses. In 
addition, when a PLC's curricular noticing, despite being guided by a shared commitment, tends 
to stray away from the collective beliefs in any capacity (such as reinforcing design habits that 
are traditionally inequitable, redirecting the group from an expansive response), restrictive 
responses can emerge. In terms of the curricular noticing framework, we can see an alignment to 
the collective curricular vision’s commitment through (a) what an individual decides to attend, 
interpret, or respond to with during PLC conversations, and (b) the expansiveness or 
restrictiveness of resulting responses. This, in turn, informs curricular responses toward 
reimagined ways for students to think about, engage with, and experience mathematics. 
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Analyzing curricular noticing as a collective practice within the curricular noticing 
framework sheds light on the way in which teachers are listening to each other, considering 
different ideas, and hearing other teachers’ own attending, interpreting, and responding to the 
same noticing within the same discussion. Being able to trace the way in which members of a 
PLC build upon each other’s contributions shows that a response helps move the group towards 
deeply understanding what they care about in terms of the shared commitment; we are now able 
to see how this is done by tracing the process of fine-tuning the question they are really vexed 
with to ensure the PLC’s commitment is salient in how decisions are made within the redesign. 
Although individuals in a PLC bring in their own interpretations through their experiences, they 
are being exposed to and building off of the noticing that is happening within the collective. 

This analysis illustrates that, through the product of years of teaching, collective sensemaking 
around aesthetic, and co-design work as part of a PLC, expansive curricular responses are 
possible through emergent discourse. Identifying this contributes to the mathematics education 
field by shedding light on the nature of collective curricular noticing and how expansive 
curricular responding develops in response to a shared commitment and a space to design lessons 
aligned to that commitment. Knowing this, there is a call for PLCs to develop a curricular vision 
around a shared commitment, such as increasing aesthetic opportunities for students. With this in 
place, we can begin to think about the emergence of expansive curricular noticing across 
redesign sessions between educators. This focus opens up potential opportunities for students —
when a teachers’ curricular noticing is including and expanding beyond content goals, a students’ 
learning experience can begin to include a wider range of experiences is equally if not more 
important towards shaping an enjoyable, expansive, and engaging learning experience for young 
people in a space that typically marginalizes them. A shared attunement to an expansive ideology 
(be it aesthetic, or another touchstone towards a more equitable learning space), and the resulting 
curricular responses, has the potential to become expansive when rooted in a professional 
learning community. 
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Validity and validation is central to conducting high quality quantitative mathematics education 
scholarship. This presentation aims to support scholars engaged in quantitative research by 
providing information about the degrees to which validity evidence related to their instrument 
use or interpretation, were found in mathematics education scholarship. Findings have potential 
to steer future quantitatively focused scholarship and support equity aims.  

Keywords: assessment, research methods 

The inferences and interpretations drawn from quantitative assessments are largely grounded 
in the validity evidence and their associated claims (AERA et al., 2014; Carney et al., in press; 
Kane, 2016). Mathematics education scholarship using quantitative assessments has not 
consistently adhered to strong validity and validation practices as seen by the limited presence of 
validity evidence related to many instruments used with K-12 students and teachers (Bostic et al., 
2019, Bostic et al., 2021; Krupa et al., 2019). A purpose for the present study is to serve as an 
educative piece for mathematics educators who intend to develop or use quantitative assessments 
in their research. We offer results about the degree to which validity has been taken up in 
mathematics education scholarship that uses quantitative instruments.  

Related Literature  
The Standards for Educational and Psychological Testing ([Standards] AERA et al., 

2014) describe five sources for validity: test content, response process, relations to other 
variables, internal structure, and consequences from testing. Reliability is a related but not 
sufficient condition of validity (AERA et al., 2014; Kane, 2012). While the Standards describe 
some approaches for each source, those descriptions are not intended to be exhaustive. A special 
issue of Psicotherma (2014, 26(1)) includes articles related to each of those sources. Here again, 
the authors of those articles indicate that their description of each validity source is to introduce 
readers to that source and are not intended to be comprehensive. Thus, there is a need for a more 
comprehensive list of data collection approaches related to each validity source.   

Mathematics education scholarship has started to address validity within the context of 
quantitative research across K-20 students, as well as preservice and inservice teacher settings 
(e.g., Bostic & Sondergeld, 2015; Carney et al., 2017; Gleason et al., 2019; Hill & Shih, 2009; 
Melhuish & Hicks, 2019; Walkowiak et al., 2014; Wilhelm & Berebitsky, 2019). These authors 
provide discussions about how they explored validity evidence and serve as potential roadmaps 
for others doing validation work. There are some common approaches to gathering validity 
evidence. The present study intends to summarize literature about approaches to gathering 
validity evidence so that quantitative assessment developers, users, and reviewers have a more 
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comprehensive understanding of what has been done previously, and what approaches are viable. 
Our research question was: In what ways is validity evidence and arguments present in 
mathematics education scholarship that uses quantitative instruments between 2000-2020?  

Methods 
Context for study 

In 2019, 39 mathematics education scholars convened at a 2-day conference led by the 
authors. Scholars included mathematics educators, psychometricians, special educators, and 
policy experts who had previously conducted quantitative mathematics or statistics education 
assessment work. Conference leaders asked attendees to form small groups and brainstorm 
viable data collection approaches that might generate validity evidence for that source. After 
sharing ideas, groups rotated to each approach and left feedback, followed by whole-group 
discussions. The product was an extensive list with at least five unique approaches to gathering 
validity evidence for each validity source. There were still questions about whether there were 
other approaches and how to define some of these approaches for a broad audience (e.g., factor 
analysis). To that end, the authors of this submission reviewed literature and sought definitions to 
create an Evidence Types Guidebook. The definitions were sent to conference attendees for 
feedback and revised as needed. Independent of that work, conference attendees have been 
conducting syntheses of literature across a variety of contexts including teacher education, 
elementary and secondary students, and statistics education.  

An Evidence Types Guidebook served to facilitate the identification of approaches typically 
utilized within a validity evidence type. For each of the evidence types (i.e., test content, 
response processes, internal structure, relation to other variables, and consequences of testing) 
within the Guidebook, a general definition of the type was given, followed by a list of methods 
commonly used to support a validity claim within the respective category. For example, the 
internal structure section included approaches such as factor analysis, item response theory, 
latent class analysis, and other approaches commonly used to assess and support claims of 
validity related to the internal structure of a quantitative instrument. Each of these methods also 
contained definitions and citations for further exploration and information. The Guidebook 
content was aligned with the validity evidence repository framework and served to support 
participants, in general, throughout the framework application process. 
Data Sources and Analysis 

Our data collection and analysis process is summarized here; more details are provided in 
Bostic et al. (2022). The PRISMA statement guided the literature search (Rethlefsen et al., 
2021). The top 24 mathematics education journals (Williams & Latham, 2017) were searched for 
studies using quantitative instruments. Articles that included quantitative instruments were culled 
to create a list of instruments. Next, validity evidence was sought for each instrument through a 
literature search using google scholar. Instrument names and keywords were used to generate an 
appropriate sample space. As an example from teacher education, over 3,000 articles were 
examined, which led to over 300 instruments Evidence was coded as being connected to a 
validity source or reliability. Validity claims in support of arguments were also coded. We share 
results from those syntheses as a means to illuminate the frequencies of various approaches as 
well as opportunities for use of new approaches.  

Findings 
Overall, synthesis groups searched for validity evidence of 190 instruments and found 278 

articles with descriptions of validity evidence (see Table 1). The majority of articles (83%) did 
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not contain an interpretation statement or a use statement. In addition, 73% of the articles that 
contained validity evidence did not specify any claims. An example of a use statement comes 
from the Statistics Education synthesis group: “The availability of an instrument such as the 
Attitudes Toward Research (ATR) scale which has been designed for students, may provide 
information concerning motivational aspects associated with learning research, and might also 
have potential for identifying distinctive attitude profiles of students who find research 
problematic. Overall however, this study’s results validate the utility of the ATR scale in 
measuring student attitudes toward research” (Papanastasiou, 2005, p. 23).  

 
Table 1. Instrument and Article Overview 

    

Elementary 
(K - 6) Tests 

& Instruments 

Secondary  
(7 - 12) Tests 
& Instruments 

Statistics  
(K - 20) Tests 
& Instruments 

Teacher 
Education 

Instruments 
Combined 

Number of 
instruments 59 27 16 88 190 

Number of articles 92 36 52 98 278 

 
Articles with an 
interpretation 
statement 

17 4 19 7 47 

 
18.48% 11.11% 36.54% 7.14% 16.91% 

 Articles with a 
use statement 

18 2 20 2 42 

 19.57% 5.56% 38.46% 2.04% 15.11% 

 Articles with a 
claim 

37 6 15 15 73 
  40.22% 16.67% 28.85% 15.31% 26.26% 

 
Considering the distribution of the five types of validity as well as reliability: Internal structure, 
reliability, and test content were the most frequently located. Table 2 shows the frequency of 
each evidence type across different areas. The most frequently used method for each evidence 
type is displayed in Table 3. Some frequencies are quite high (e.g., alignment with frameworks) 
whereas the mode for other validity sources was quite low (e.g., quantitative DIF analysis).  

 
Table 2. Evidence Type Frequency 

  

Elementary 
(K - 6) Tests 

& Instruments 

Secondary 
(7 - 12) Tests 
& Instruments 

Statistics  
(K - 20) Tests 
& Instruments 

Teacher 
Education 

Instruments 
Combined 

Consequences of 
Testing 

4 0 5 1 10 
1.73% 0.00% 2.81% 0.69% 1.71% 

Internal Structure 
48 7 34 29 118 

20.78% 21.88% 19.10% 20.14% 20.17% 
Relations to Other 
Variables 

33 1 27 19 80 
14.29% 3.13% 15.17% 13.19% 13.68% 

Reliability 68 9 29 53 159 
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29.44% 28.13% 16.29% 36.81% 27.18% 

Response Process 
27 3 13 6 49 

11.69% 9.38% 7.30% 4.17% 8.38% 

Test Content 
51 12 70 36 169 

22.08% 37.50% 39.33% 25.00% 28.89% 
Total Number of 
Evidence Types 231 32 178 144 585 

 
Table 3. Mode of approach for each validity source and reliability 

Validity Source or Reliability Most common type of approach (count, %) 

Test content Alignment with frameworks n = 45, 26% 

Response Process Student written work n = 19, 38% 

Relations to Other Variables Correlation analysis n = 41, 51% 

Internal Structure Confirmatory factor analysis n = 41, 34% 

Consequences of Testing  Item functioning such as DIF n = 3, 30% 

Reliability Internal consistency, alpha n = 19, 38% 

Discussion 
It is clear from analyzing the validity evidence from this sample of instruments that 

modern notions of validity and validation arguments (AERA et al., 2014; Author, in press; Kane, 
2016), have not necessarily been taken up by the field. We do not blame authors for this 
omission. It may be that validity evidence is removed during the editing process. Authors may 
not be prepared to conduct validation work. It has also been shown that 75% of mathematics 
education graduates take two or less quantitative research courses, where validity and validation 
might be discussed (Shih et al., 2019). Few instruments presented in existing scholarship are 
accompanied with an explicit statement describing the intended interpretation and use of test 
scores. Further, we found little validity evidence based on consequences of testing and response 
processes. Given current equity issues in mathematics education, it is a concern that there is not 
more evidence of consequences from testing and bias, especially to ensure fair use of the score 
interpretations from the tests.  

Validity is naturally an equity issue (AERA et al., 2014; Cronbach, 1988). Otherwise, 
tests may have bias and test scores may be used unfairly. Cronbach (1988) proclaimed, “Tests 
that impinge on the rights and life chances of individuals are inherently disputable” (p. 6). 
Furthermore, the inferences drawn from tests that lack a validity argument may not be accurate 
(Carney et al., in press). To yield accurate inferences about student learning or teacher practice, it 
is critical for scholars to have tests and instruments with strong validity evidence and robust 
validity arguments. 
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Over the past decade, teachers have increasingly turned online to supplement their mathematics 
curriculum and some research regarding where and how teachers search has been completed. 
However, there are many open questions regarding this rising phenomenon, one of which is 
learning more about what teachers do after finding a mathematics activity online. We report on 
a subset of a survey of elementary school teachers across the United States about their use of 
elementary mathematics activities found via virtual resource pools; for this manuscript, we share 
results on two questions related to teachers’ adaptation of elementary mathematics activities 
they obtained.  

Keywords: Curriculum; Elementary School Education; Instructional Activities and Practices 

Prior to the rise of the internet, most schools adopted elementary school mathematics 
textbooks and provided teachers with associated teaching materials with the understanding that 
this was “all” teachers needed to have at their disposal to teach mathematics successfully 
(Browne & Haylock, 2004; Remillard, 2005). However, over the last decade, many teachers have 
turned online to various virtual resource pools to supplement their elementary mathematics 
curriculum. Teachers may search for activities on online teacher marketplaces such as Amazon 
Inspire, Pinterest or TeachersPayTeachers, or they may search on more vetted sites such as 
professional organizations like the National Council of Teachers of Mathematics. Recent 
research shows ever-increasing popularity of teachers’ curriculum supplementation via virtual 
resource pools (Hu & Torphy, 2020) but overall, this supplementation is not well-understood by 
the mathematics education research community. According to Silver who completed a literature 
review on online resource supplementation, most research “tends to center phenomena closely 
related to supplementation (e.g. virtual resource use, teacher social media use) rather than 
supplementation itself” (2021, p. 2). This paper seeks to study the act of supplementation, 
specifically that of adaptation of supplemental mathematics activities found online by elementary 
teachers.  

Literature Review 
To situate this work, we share literature related to lesson supplementation with resources 

found on virtual resource pools and lesson adaption more generally. We then share the focus of 
this study. 
Lesson Supplementation from Virtual Resource Pools 

Teacher supplementation can be described as any change teachers make to curriculum 
resources provided by officials at their schools or districts (Silver, 2021). Teachers have always 
supplemented their classroom resources but Hodge et al. (2019) discusses the increase of teacher 
supplementation as a recent phenomenon due to increasing internet use and the implementation 
of the Common Core Standards. With the rise of the internet came a variety of virtual resource 
pools which Silver (2021) defines as “websites that host curriculum resources for download by 
teachers to use either alongside or instead of their school-adopted textbooks” (p. 1). Thus, VRPs 
include websites hosted by textbook companies, professional organizations, open educational 
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resources, online teacher marketplaces and more general sharing sites like Pinterest that teachers 
use to search for supplementary curriculum resources.  

One finding of a recent review of research is that “teachers curriculum supplementation is 
massive in scope” (Silver, 2021, p. 6). Surveys of teachers looking at their VRP supplemental 
usage has shown this increase with Davis et al. (2013) reporting 60% of teachers reporting 
supplementing their curriculum to more recent studies reporting over 80% (e.g. Sawyer et al., 
2019a; Carpenter & Shelton, 2021; Tosh et al., 2020). Research shows that teachers often also 
turn to social media sites such as Instagram and Twitter as spaces to search for materials on 
various VPRs (e.g. Carpenter & Kruka, 2014: Carpenter et al., 2020) which is further 
complicated by the number of teacherpreneurs who promote their self-created resources on these 
and other social media sites (e.g. Hu & Torphy, 2020; Shelton & Archambault, 2019). 

One question researchers have studied is teachers’ reasons for supplementing their classroom 
curriculum. From his synthesis of research Silver (2021) describes teachers’ reported motivations 
are largely to fill holes they perceive with their provided curriculum, to assist their students or 
make teaching better for themselves. Sawyer et al. (2019a) found that teachers reported 
alignment to standards and student engagement to be the most important factors for teacher 
supplementation via VPRs. In contrast, Schroeder et al. (2019) found “idea gathering” as the 
main purpose for teacher supplementation with other reasons related to improving the classroom 
environment and increasing student engagement (p. 171). Specific to the TeachersPayTeachers 
VRP, teachers cited the following reasons for supplementation: to fill gaps in existing curriculum 
related to concepts or skills, to make learning fun, to provide additional practice for students and 
for inspiration when they were not sure how to approach a particular lesson (Carpenter and 
Shelton, 2021). Taking together, these results point to teachers’ carefully searching for and 
choosing supplementary resources that meet their curricular needs and the needs of their 
students. For this study, we are interested in what happens after teachers choose a supplemental 
curricular resource. Specifically, do they use the supplement as they found it or do they adapt it 
in some way. 
Lesson Adaptation 

For the purpose of our study, we utilize Davis et al.’s (2011) description of adaptation, 
“Adaptations can include insertions, deletions, or substitutions, for example, and may be based 
on aspects of the teachers’ contexts, their students’ needs and strengths, and their learning goals, 
knowledge, beliefs, identities, and orientations” (p. 797). Studies researching adaptation have 
focused on teachers’ reasoning (e.g. Choppin, 2011; Drake & Sherin, 2006; Carpenter & Shelton, 
2021) with results showing reasons for adaptation falling into two main categories: improving 
instruction for students and making teaching better for teachers.  

Methods of adaptation vary across elementary school subjects; researchers have investigated 
methods of adaptation in reading (e.g. Parsons, 2012), science (e.g. Forbes, 2011), as well as the 
subject studied for this paper, mathematics (e.g. Choppin, 2011; Remillard, 1999; Sherin & 
Drake, 2009). Sherin & Drake (2009) found that mathematics teachers typically adapt their 
activities in a three-step cycle: omit, replace, and create. They explain that teachers first remove 
items from a mathematics activity and then replace it with something that they find useful and 
that they believe will better support their students’ learning. If this is not deemed sufficient, 
mathematics teachers create new curricular elements to support student learning in their 
classroom (Sherin & Drake, 2009). In a more recent study, elementary preservice and inservice 
teachers reported adapting resources they found on Pinterest often with the top reported reason 
for adapting given as “meeting student needs and attending to grade-level standards.” (Schroeder 
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et al., 2019, p. 173). Because Schroeder et al.’s (2019) study was not subject specific and was 
specific to teachers searching for supplemental resources on one particular VRP, Pinterest, the 
current study both broadens and narrows the question of adaptation by looking at elementary 
teachers’ supplemental mathematics activities found on any VPR. Specifically, this study seeks 
to answer the following two research questions: 

1. How often do US elementary teachers report adapting mathematics activities they find on
VPRs?

2. How do US elementary teachers describe how they adapt mathematics activities they find
on VPRs to fit the needs of their students?

Conceptual Framework 
For this study, we adopt the Teacher Curriculum Supplementation Framework (Silver, 2021) 

that includes four dimensions surrounding teacher supplementation as a tool to guide research: 
the teacher’s reasons for supplementation, the supplement’s source, the teacher’s supplemental 
use pattern and features of the supplement itself. In the literature review, we discussed what is 
currently known about teacher’s reasons for supplementation, the fact that teachers’ use of 
supplemental resources is massive and have indicated that for this study, we are not considering 
specific VRP sources from which supplements are sought. We are, however, interested in the 
supplement itself, specifically how often and how teachers choose to adapt a supplemental 
elementary mathematics activity. 

When considering the supplement itself, researchers may study features like the visual 
appeal, educational quality and how these affect student learning. Silver (2021) notes that most 
research in this area is researcher determined meaning researchers use their expertise to study the 
curricular supplements. Research in these areas regarding elementary mathematics supplemental 
activities have shown supplements tend to be low in quality (e.g. Hertel & Wessman-Enzinger, 
2017; Sawyer et al., 2019b; Shapiro et al., 2021), but that does not mean teachers use the 
supplement as they find it. Because of this, Silver (2021) suggests that more work is needed 
looking at “a teacher’s supplementation process from start to finish” (p. 24). While this study 
does not follow teachers’ full process, it does begin to consider what happens to a supplement 
after it is chosen which meets the call by Hu and Torphy (2020) to focus more on the 
compilation, distribution and diffusion of supplements into the classroom. 

Methodology 
This study reports on a subset of a survey conducted in June 2018 that asked teachers 23 

questions about their elementary mathematics VPRs search practices including how often, where 
they searched, what they were looking for when they searched, and how often and how they 
adapted resources they found. Results on how often, where and what teachers reported looking 
for when searching for supplemental activities was reported in Sawyer et al. (2019a). 
Data Collection 

To distribute the survey, we emailed the presidents of all 50 state affiliates for both the 
National Council of Teachers of Mathematics and the Association of Math Teacher Educators, 
thus obtaining our participants through a snowball sampling technique (Weiss, 1994). We also 
posted the survey link on multiple social media sites including Twitter, Facebook, and Instagram 
using #elemmathchat, #edchat, #mathchat, #elemchat, #mtbos, #iteach, #iteachmath, and 
#numbersenseroutines. After the emails and social media posts were sent, the survey was open 
for seven weeks. 601 teachers responded; they hailed from 48 states, excluding Delaware and 
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South Dakota, as well as three US territories. They were currently teaching kindergarten through 
sixth grade and had between zero and 36+ years of teaching experience.  

There were two survey questions specifically focused on teacher adaptation. The survey 
questions that we report on in this paper include: 

1.  How often do you adapt mathematics activities you find online? 
2.  How do you adapt activities you find online to fit the needs of your students? 

For responding to frequency of adaptation, teachers choose one of the following five scaled 
responses, “Always; Most of the time; About half the time; Sometimes; Never”. For responding 
to how they adapt, we purposefully did not define what we meant by what constitutes “how” to 
not limit our study to a specific definition of the term. However, we did focus the question on 
how teachers adapted to fit student needs which is in line with Schroeder et al. (2019)’s finding 
that the majority of adaptions focused on student needs. We were interested in how adaptations 
were made to elementary mathematics supplements for students, not for teachers. 

Of the 601 elementary teachers who responded to the survey, 496 answered the question 
about how often they adapted online elementary mathematics activities but only 290 teachers 
provided a descriptive narrative about their adaptation process. We therefore answer research 
question 1 using the 496 teacher responses, but answer research question 2 with the 290 teacher 
responses. 
Data Analysis 

This mixed methods study used both quantitative and qualitative data analysis. We 
implemented descriptive statistics when describing how often teachers reported adapting 
elementary mathematics activities. We applied the constant comparative method through 
grounded theory to analyze qualitative data provided by the teachers in their descriptive 
narratives explaining how they approach adapting to meet the needs of their students (Glaser & 
Strauss, 1968; Miles, Huberman, & Saldaña, 2013). For the qualitative analysis, we used 
Qualtrics’s coding tool. First, we ran a keyword analysis of the open-ended responses. We then 
used the most common terms along with the constant comparative method through grounded 
theory to allow for additional terms to emerge (Glaser & Strauss, 1968; Miles, Huberman, & 
Saldanã, 2013). One researcher did this initial work. Once data saturation was reached, an 
additional researcher worked with the coder to collapse keywords and identify overarching 
themes. At this point, keywords were collapsed into larger categories. Teachers whose responses 
did not include common keywords were individually coded into the four overarching categories 
by the two researchers. Questions about responses or instances where the two researchers could 
not agree were brought to a third researcher for consultation.  

Findings 
Research Question One: How Often 

Less than 1% of the teachers (n=4) said that they never adapt a supplemental math activity. 
The majority of the teachers reported that they adapt sometimes (21.6%, n=107), about half of 
the time (21.6%, n=107) or most of the time (40.9%, n=203). 15% (n=75) of the teachers 
reported adapting their supplemental mathematics activities all of the time. Taken together, these 
results show adaptation to be a common practice with 78% of the teachers indicating that they 
adapt elementary mathematics activities found on VRPs at least half of the time.  
Research Question Two: Teacher’s Reported Reasons for Adapting 

While the teachers were asked how they adapt supplemental activities to fit the needs of their 
students, the four overarching categories regarding teacher responses did not all relate 
specifically to student needs. The four categories were 1) Adapted for different learning needs; 
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2) Adapted for classroom implementation; 3) Adapted for mathematics content; 4) Adapted for 
visual appeal. Keywords and definitions for each of these categories are provided in Table 1. 
 

Table 1: Teacher’s Collapsed Adaptation Categories with Keywords and Definition 
Category 
(count, %) 

Keywords Definition 

Adapted for Different Learners 
  

English Language Learners 
Needs** 
Special Education 
Level of Difficulty** 
  Easy/Hard/Difficult/Levels/ 
  Rigor/Advance/Struggle 
Differentiation** 
Scaffold  

The teachers adapted the 
activities to meet 
different learner needs. 

Adapted for Classroom 
Implementation 
  
  
  
  
  
  
  
 
Adapted for Mathematics Content 
  
   
  
  
 
 
Adapted for 
Visual Appeal 

Manipulatives 
Directions* 
Time 
Structure** 
   Independent/Group/Partner    
   /One-on-One/Centers 
Technology 
   Video/PowerPoint/iPad/ 
 Smart 
Board/Computer/Tech 
Standards 
   Common Core/ 
   District/State 
Numbers* 
Content 
Alignment 
Curriculum 
Format 
Font 
Design 
Size 
Picture/Image 
Visual 

The teachers adapted the 
activities by adding 
elements or taking 
elements away by 
altering the 
implementation of the 
activity in their 
classroom. 
  
 
The teachers adapted the 
activities by adding 
elements or taking 
elements away to by 
altering the 
mathematical content. 
 
The teachers adapted the 
visual aesthetics of the 
activity. 

*The keyword was coded in 10% or more of responses. **15% or more 
 

Adapted for different learning needs. We found 64% (n=191) of the teachers reported 
adapting elementary mathematics to meet the needs of different types of learners. This category 
included teacher descriptions about adapting the online activity through differentiation or 
through making accommodations for students with special needs, often involving discussions of 
levels of difficulty. For example, a teacher stated that they adapted online mathematics activities 
by “Change[ing] level as necessary, add[ing] scaffolding and modeling” which we coded as 
adapting for different learning needs. Multiple teachers reported focusing adaptations on 
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“increasing the rigor,” and others reported adapting “to differentiate.” Other teachers discussed 
adaptation for specific student groups (e.g. English-language learners (ELLs)) or based on 
cultural needs as seen in the following response, “I rewrite to provide access for English learners. 
I remove unnecessary language to assure that I am measuring math, not language. I also rewrite 
lame attempts at ‘multiculturalness,’”. Responses such as these highlight the main finding that 
these teachers are sensitive to their different learners’ needs both mathematical and outside of the 
mathematics itself and place these needs at the forefront of their minds when they consider how 
to adapt elementary mathematics activities they find on VPRs. 

Adapted for classroom implementation. While not necessarily specific to student needs, 
we found that 45% (n=134) of the teachers reported adapting supplemental activities to adjust to 
the teachers’ facilitation or more specifically, how they would implement the activity in their 
classroom. Responses in this category included reported adaptations such as adding 
manipulatives, changing directions, modifying suggested timing, or changing the activity from 
individual to a group game. These examples show implementation changes that directly affect 
student engagement with the activity. For example, a teacher stated they adapted by, “adding 
follow up activities, or changing the directions.” Others teachers described changing methods of 
implementation to meet their teaching style or classroom structure such as the following teacher 
who described, “If it is a PDF, I may turn it into a Smart Notebook that I can utilize for whole 
group instruction,” or another teacher who reported adapting to “tie it [the activity] to a lesson or 
activity from our current math standard and another subject we might be studying, such as 
science, social studies, health, etc.” While there were additional responses similar to the previous 
two, the majority in the classroom implementation category related to changing implementation 
structure regarding directions such as “cross out questions” or “extending time” … and “print 
them on task cards for a game.” These examples show minor adaptations allowing the teacher to 
change a task to make it structurally work in their classrooms but also point to structural changes 
that they deem necessary to assist student learning and engagement. 

Adapted for mathematics content. We found that 26.5% (n=79) of teachers reported 
adapting their supplemental materials specifically for the mathematics content. These teachers 
indicated they changed the specific mathematical ideas represented in the online activities. For 
example, one teacher stated that they, “Use larger or smaller numbers in place of what’s 
provided [or] use fractions or decimals instead of whole numbers.” These adaptations allow for 
the structure of the activity to be used across mathematical topics. Another teacher reported that 
they “change numbers to fit a more appropriate range for students” thus altering the mathematics 
specifically. Yet others reported changing the mathematics to make activities easier or more 
difficult depending on their students’ needs. 

Teachers also identified changing content to address specific standards. A teacher stated that 
they adapted the activities for different standards, “to ensure alignment.” Teachers also indicated 
adapting activities by changing the style of questions that were presented. For example, one 
teacher stated, “I reformat questions so they align with the style of questions students will see on 
State tests.” Another teacher reported,  

The advertised grade level items I find online tend to be too easy for my grade level. If I go 
up a grade level those tend to not totally align with my state standards. Usually I can only use 
about 70% of what is provided [from VRPs].  

These show teachers adapting the level of the mathematics content and the way questions are 
posed to students because of state or district requirements. 
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Adapted for visual appeal. The least common thematic category was adaptation for visual 
appearance accounting for only 22 teacher responses (7.4%). Responses in this category included 
teachers who described their adaptations regarding superficial aspects of the activities not related 
to content or implementation. For example, a teacher described changing “color to black and 
white” and another referred to making activities “more durable by laminating,” and yet another, 
“Sometimes I retype it to make it in a format I like.” One teacher provided reasoning for visual 
changes related to student needs; they explained that they adapted by adding “larger spacing, 
fonts and pictures. I made it easier for my students to see it and fill it in.” Most of the responses 
in this category were accompanied by descriptions that fell into the other three categories as well, 
such as this one that explicates visual appeal along with adapting for different learners. 
Importantly, only two teachers, including the first one presented in this paragraph, only discussed 
adaptations based on visual appeal. 

Overall. Many teachers provided short, simplistic responses when describing how they adapt 
their supplemental elementary math activities for their students’ needs, but despite their brevity, 
the responses indicated an overlap between the four identified thematic categories of adaptation 
for many teachers. For example, one teacher described their adaptation process as, “Increase the 
rigor and retype it”. Other teachers provided additional details, such as the following teacher who 
explained, 

I may make the activity whole group so everyone can benefit. I also will sometimes change 
or clear-up the directions. I find that I need to often increase the rigor. I use TpT 
[TeachersPayTeachers] a lot and there tends to be a 3-5 band that is often too basic.  

This response was unique, not because of the overlap of various ways they adapt, but because the 
response provides rationale for the need to adapt the rigor.  

Discussion 
These results indicated that 99% of teachers identified some form of adaptation of their 

classroom activities. When asked how they adapt these activities to meet student needs, 64% of 
the teachers who responded indicated adapting elementary mathematics activities found on VPRs 
to meet the needs of specific learners, such as English-language learners or special education 
students. This is a promising result because research has shown online supplements can cause 
harm to certain students, with Polikoff and Dean (2019) specifically discussing this issue for 
ELLs and Harris et al. (2020) discussing supplements that embody racist ideas. These studies 
were for history and English supplements, but we find it encouraging that some elementary 
teachers report adapting for these specific learners for mathematics.  

Many teachers discussed changing the implementation structure of supplemental activities 
which mirrors an often-cited reasons teachers provide for searching for supplemental activities 
(e.g. Sawyer et al., 2019a; Carpenter and Shelton, 2021) regarding searching to increase student 
engagement. Teachers also reported adapting the mathematics content. Given that the quality of 
elementary mathematics supplements themselves tends to be low (Sawyer et al., 2019b; Shapiro, 
2021), it is good to learn that teachers are adapting the mathematics content. These results also 
mirror the finding that teachers (Schroeder et al., 2019) and preservice teachers (Schroeder & 
Curcio, 2022) often adapt supplemental resources to align with state or district standards. The 
findings seem to indicate that teachers are not finding what they want when searching for 
elementary mathematics activities on VRPs. We find it interesting and encouraging that teachers 
appear to be taking a critical stance when evaluating and selecting supplemental elementary 
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mathematics activities and that they expect to adapt what they find to better meet the needs of 
their students.  

Through this study, we have gained further insight into what teachers do with elementary 
mathematics curricular supplements they find on VRPs and the answer is that they tend to adapt 
these supplements prior to classroom implementation. We agree with Silver (2021) that “it is 
essential that we understand teachers’ supplementation decisions in order to develop teachers 
who supplement skillfully and responsibly” (p. 17). We believe the teachers would benefit from 
training regarding mathematics supplementation that goes beyond how to search and includes 
information on the adaptation process, but also moves further and follows teachers to the 
implementation process of these supplemental activities.  

Limitations 
This research does come with limitations. For example, it must be noted that a teacher’s 

perception of what an activity is suggesting to do in a classroom could be incongruent with the 
creators’ intent for the activity. Because we did not have access to either the supplemental 
activities that the teachers originally found or to teachers’ adapted supplemental activities, we are 
unable to compare. The research field could learn from a comparative study to learn whether or 
not teachers are, for example, successful at increasing the rigor of a supplemental activity or if an 
adaptation for a specific learner actual increases the student’s learning. Finally, this investigation 
was conducted prior to the pandemic; it is possible that teachers’ adaptation of supplemental 
activities has changed how they adapt elementary mathematics activities in their in-person 
classrooms. More research is needed in this area. 

Conclusion 
Teachers have become their own curators of supplemental curricular resources and part of 

this curation process involves adaptation. Our research suggests that, in general, teachers adapt 
the supplemental elementary mathematics activities they find on VPRs. They adapt for various 
reasons related to student support but the most reported reasons relate to different learners and 
classroom implementation. Given the wide variance of student needs and structural parameters 
within each classroom, adaptation seems perhaps inevitable for effective teaching, but more 
remains to be learned about how adaptations are enacted and the effects on student learning. We 
believe it would benefit teachers to be explicit about their adaptation processes and discuss it 
with fellow teachers as a way to provide more information to the overall VPR supplementation 
process. 
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Given the importance of students’ interactions to their opportunities to learn mathematics, I 
investigate the interactive dynamics that are encouraged in two U.S. high school task-based 
written curricular materials and the purposes for interaction that they communicate. I conduct a 
thematic analysis to organize the functions of dynamics that encourage students to interact with 
peers’ ideas (e.g., through dialogue) and with their own ideas (e.g., through reflection). Peer-
interactive dynamics in this sample focused on sense-making, negotiation, and comparison. Self-
interactive dynamics focused on developing awareness of thinking, formalization of new 
algebraic ideas, exploration, and precise language. I discuss how patterns among these themes, 
across who interaction is designed for and across curricular materials, could generate future 
lines of inquiry connecting the design of curriculum to student learning. 

Keywords: Curriculum, Instructional Activities and Practices, Metacognition 

Written curricular materials can organize the landmarks of subject matter together with a 
plan for learners’ thinking and development (e.g., Remillard & Heck, 2014); in other words, they 
can communicate intended opportunities to learn for students (Brown et al., 2009). The 
actualization of opportunities to learn mathematics, however, is strongly linked with the quality 
of students’ interactions with mathematical ideas in the classroom (Cohen et al., 2003; Gresalfi, 
2009; Haertel et al., 2008; Hiebert & Grouws, 2007). Because of the strong influence of written 
curricular materials on teachers’ enactment and students’ experiences (Choppin et al., 2018; 
Remillard & Heck, 2014), we could better understand how curriculum connects to learning by 
examining the interactions curricular materials encourage. 

In the following paper, I present findings from an analysis of the types of student interactions 
recommended in two U.S. high school mathematics curricula (i.e., interactive dynamics). I chose 
to examine task-based curricula as their approach depends upon students’ activity as a primary 
instructional method. I was guided by the following research question: What functions can be 
ascribed to the interactive dynamics in teachers’ guides of task-based curricula? I begin with a 
review of what is known about the relationship between interactions and mathematics teaching 
learning and follow with a description of my method and results. I use these findings to 
exemplify some of the current purposes of interaction in task-based curricula, discussing some of 
the patterns in results and connecting with literature to recommend areas for future exploration. 

Interactions in Mathematics Teaching and Learning 
Hiebert and Grouws (2007) argue that opportunities to learn mathematics are generated 

through interacting and grappling with key conceptual ideas. In classrooms that center student 
discourse and activity, students may grapple as they engage their peers’ contributions. Webb et 
al. (2014) found that students’ engagement with one another’s thinking (beyond giving 
explanations) was significantly related to student achievement. Moreover, they found that 
teachers’ actions (namely, their follow-up questioning strategies) were influential in establishing 
a classroom where such engagement could develop. Research has shown, however, that even in 
classrooms with consistent discourse among students, not all students experience the same 
potential for interactions with peers’ ideas (Gresalfi, 2009; Reinholz & Shah, 2018). These 
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findings suggest open questions about how curricular materials could support and structure 
teachers to facilitate all students’ high-level engagement with their peers’ contributions. 

Interaction that promotes learning in the classroom may not be limited to students engaging 
others’ ideas; research has also shown the importance of students interacting with their own 
thinking around mathematics content (e.g., Cohen et al., 2003). Piaget’s theory of reflective 
abstraction (2001), for example, suggests that a learner must engage with their own thinking after 
accommodating a new idea to encourage stable meanings. Furthermore, Jansen (2020) suggests 
that teachers play an active role in designing instructional structures that encourage consideration 
of how one’s own ideas have changed over time and through experiences with revision and 
reflection. Although these interactions are considered to be central to teaching practice, studies 
have yet to explore how curricular materials might support or communicate particular strategies. 

Method 
To respond to my research question, I conducted a qualitative content analysis (Mayring, 

2015) and accompanying thematic analysis (Terry et al., 2017) of the interactive dynamics 
constructed in teachers’ guides of one unit each in two task-based curricular materials: 
Illustrative Mathematics (IM) and the Interactive Mathematics Program (IMP). I selected these 
texts as they each satisfied my conditions for a task-based curriculum: 1) the student-facing 
materials took the form of bounded activity with an established instructional goal (i.e., a task), 
and 2) the teacher’s guide encouraged facilitation of student activity and dialogue as the primary 
mechanism of instruction (i.e., learning was framed as task-based). Moreover, the two curricula 
selected each contained an instructional unit focused on the same content. Specifically, I 
examined an instructional unit from each set of curriculum materials that encouraged students’ 
work with standard form linear equations, systems, and inequalities (“Unit 2: Linear Equations, 
Inequalities, and Systems” in IM Algebra 1 and “Cookies” in IMP Year 2). This choice allowed 
me to account for variation in teacher’s guide recommendations due to mathematical topic. 

I analyzed the teacher’s guide text surrounding a task. In IM, I considered each numbered 
activity within a lesson (except the cool-down) a task. In IMP, I considered each titled activity 
listed in the table of contents to be a task. I focused on the text for each task that was marked as 
an expected component of teacher’s facilitation (e.g., “Activity Synthesis” or “Doing the 
Activity” sections). I omitted sections that were described as additional supports. 

To begin my analysis, I first coded sentence-by-sentence within a task for interactive 
dynamics. I assigned this code if the teacher’s text described enactment in a way that would 
explicitly encourage a student (or students) to respond to a contribution related to the algebraic 
content of the mathematical task. For example, a request for a student to share a content-related 
response to a peer’s mathematical contribution would constitute an interactive dynamic; a 
request for a student to simply share an idea with the class would not (e.g., Webb et al., 2014). 

After that, I assigned additional codes to sentences describing interactive dynamics. First, if 
the text expected a teacher to encourage their students to respond to their peers’ ideas (e.g., a 
dialogue), I coded it as a peer-interactive dynamic. A response to students’ own ideas (e.g., a 
reflection) would constitute a self-interactive dynamic. I also coded if an interactive dynamic 
encouraged teachers to engage all of their students or some of their students. If such engagement 
was not specified (e.g., the teacher asks a question to “students”), it was classified as intended for 
some students, as no structure was described that would ensure reaching all. 

Once interactive dynamics had been catalogued in both curricula, I constructed themes from 
the data to identify patterns and relationships across and within codes (Terry et al., 2017). 
Through my themes, I sought to explore structures that were common and unique to each task-
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based curriculum and considered what they expressed about learning mathematics. In the results 
that follow, I describe and exemplify these themes. I note that these findings are preliminary. 

Results 
In my results, I characterize themes in the functions of peer-interactive and self-interactive 

dynamics in the sampled texts. Peer-interactive dynamics in this sample focused on sense-
making, negotiation, and comparison. Self-interactive dynamics focused on developing 
awareness of thinking, formalization of new algebraic ideas, exploration, and precise language. 
Peer-Interactive Dynamics: Sense-Making, Negotiation, and Comparison 

In the teachers’ guides of these task-based curricula, I found that peer-interactive dynamics 
directed toward all students emphasized understanding each other’s ideas. Teachers’ guide 
prompts in both IM and IMP encouraged teachers to facilitate making sense of one another’s 
solutions (e.g., “Have students discuss their solutions in groups and try to understand one 
another’s work,” IMP, 2010, p. 25). In IM specifically, this sense-making process was always 
accompanied by a request for reaching consensus around solutions. For example, the “Launch” 
of one lesson gave teachers the following instruction: 

Tell students that when one student explains, the partner’s job is to listen and make sure that 
they agree and that the explanation makes sense. If they don’t agree, the partners discuss 
until they come to an agreement. (IM, 2019, p. 140) 
As this quote shows, this peer-interactive dynamic centered a negotiation-based process (i.e., 

“discuss until they come to an agreement”) and engaged all students with partners in the process. 
Peer-interactive dynamics reaching some students, however, occurred frequently in full-class 
discussions facilitated by the teacher and less commonly encouraged consensus-building. Rather, 
I identified one central theme in such peer-interactive dynamics: looking for similarities and 
differences. This theme was common across both curricula. 

Examples of peer-interactive dynamics encouraging some students to look for similarities 
and differences ranged from short, general requests to more specific, task-focused requests. For 
instance, a prompt in IM encouraged the teacher, “After each student presents, ask if others 
solved it in the same way” (IM, 2019, p. 244). I note how this prompt, aimed to engage student 
volunteers, could be applicable across a variety of tasks. Other prompts, however, encouraged 
student volunteers in full-class discussions to center on “the variations among the graphs for each 
inequality” (IMP, 2010, p. 26) or “whether these equations all represent the same relationship” 
(IM, 2019, p. 53). In contrast, none of the peer-interactive dynamics described for all students (as 
shown above) were task-specific requests. 
Self-Interactive Dynamics: Awareness, Formalization, Exploration, and Definition 

Self-interactive dynamics reaching all students differed between IM and IMP texts. In the IM 
sample, self-interactive dynamics promoted metacognitive awareness for all individuals during 
full-class Math Talk routines. Math Talk routines encouraged students to engage a short series of 
mental math exercises to launch a central idea of the lesson. All Math Talks included the 
following instruction: “Give students quiet think time for each problem and ask them to give a 
signal when they have an answer and a strategy” (IM, 2019, p. 49). In this way, despite the full-
class setting of the activity, IM encouraged all students to reflect on their own ideas and included 
a structure to support this behavior. 

IMP, on the other hand, employed self-interactive dynamics of developing new algebraic 
structures for all students, which was strongly connected to the structure of the curriculum 
around a unit problem. In IMP, students begin the “Cookies” unit working an open problem and 
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recording their progress; they then re-engage that problem at checkpoint moments during the unit 
as they build related mathematical ideas through other tasks. For example, students’ first 
engagement with the “Cookies” unit problem asks teachers to “have groups use the inequalities 
to check that the combinations discussed earlier really do satisfy the constraints” (IMP, 2010, p. 
4). This self-interactive dynamic for all students (through groups) could support students to 
transition from open strategies to the application of an algebraic structure (i.e., inequality 
statements), supporting their progress in the unit problem task. 

I identified self-interactive dynamics reaching some students primarily in the form of 
questions the teacher could pose to individuals or the full-class during group work or 
discussions. Such questions were most often highly task-specific. Moreover, many of the themes 
for self-interactive dynamics reaching some students reflected the same themes reaching all 
students, falling again along curricular lines. IM continued to include prompts that encouraged 
metacognitive awareness (e.g., “How do you know that the expression gives us the liters of water 
in Tank A after m minutes?” IM, 2019, p. 165). IMP continued to include prompts directed 
toward developing new algebraic structures (e.g., “Encourage students to keep plotting 
points…until they realize that the boundary between satisfying the inequality is the line 
corresponding to the equation P + I =140,” IMP, 2010, p. 19). 

However, I also interpreted new themes in the samples of self-interactive dynamics reaching 
some students: namely, exploring current algebraic structures and defining terminology and 
concepts. Exploring current algebraic structures could be found in both curricula, encouraging 
students to investigate, apply, or interpret the situations and structures of the problem (e.g., “Ask 
whether there is any way to adjust the statement 4(-2) > 3(-2) to make it true,” IMP, 2010, p. 9). 
Defining terminology and concepts, on the other hand, was most salient in IM: “If students refer 
to edges and vertices as ‘lines’ and ‘points,’ ask if they remember the ‘math names’ for these 
things” (IM, 2019, p. 51). As the example illustrates, these self-interactive dynamics in IM 
pressed students who used these terms to interact with ideas to develop precise language skills. 

Discussion 
My findings highlight how two task-based curricular materials communicate the functions of 

students’ interactions in the classroom, both with students’ peers’ ideas and their own. 
Collectively, these findings illustrate what interactive dynamics can be designed to achieve with 
students; they also generate new questions about how interactions can be structured to support all 
students’ opportunities to learn. I described that, although peer-interactive dynamics for all 
students encouraged general understanding and negotiation, dynamics for some students 
encouraged comparison in task-specific scenarios. Given that opportunities to learn may be 
experienced differentially across classrooms (e.g., Gresalfi, 2009), this finding suggests a factor 
of influence and leverage. Future research could investigate how peer-interactive dynamics in 
curricula could support goals of both sense-making and comparison through structures that 
support all students to engage with specific mathematical ideas. 

Self-interactive dynamics, on the other hand, differed by curriculum, suggesting that 
interactive dynamics may also support curricular priorities. IM emphasized building students’ 
metacognitive awareness and precision of mathematical language. IMP strived to leverage 
students’ own ideas to build new algebraic structures. Future study could examine the 
relationship between these interactive goals and teachers’ enactment (e.g., Brown et al., 2009) 
and students’ ultimate experiences of opportunities to learn in the classroom. By examining the 
intentions for interactive dynamics in written curriculum, we can better understand how to design 
support for the interactions that occur during student learning.  
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By highlighting the curriculum modifications that lead to maintaining, or enhancing, the 
mathematical quality of an algebra lesson introducing the substitution method for solving 
systems of equations from an algebra textbook, we present an analysis of how a teacher and her 
students impact how the mathematical ideas unfold across the lesson and how they are 
experienced. Using a narrative-based analytical approach to write the stories of the written and 
enacted lessons, we found key similarities and differences in the lessons. In comparing the 
mathematical plots, we found evidence of how the teacher and students alter the unfolding story 
with the incorporation of more jamming than seen in the text and more questions developed 
based on the students’ needs and their responses. 

Keywords: Curriculum; Teaching Practice; Algebra and Algebraic Thinking 

Research has demonstrated that teachers combine pedagogical practice, contextual factors, 
and the curriculum when teaching a lesson (e.g., Remillard & Heck, 2014). Teachers make 
pedagogical and contextual decisions (e.g., restricting calculators) based on the needs of their 
students, the context of learning, and their own prior experiences. While the text offers resources 
for the lesson and can certainly impact the teacher’s instruction and students’ learning (Remillard 
et al., 2014), what happens in the classroom often appears quite different than what the textbook 
authors intended since the actions of both teachers and students are influenced by a variety of 
prior experiences, goals, and perspectives. Ben-Peretz (1990) refers to the set of intended and 
unintended curricular uses of written curriculum materials as curriculum potential and describes 
the subset of these that are viewed favorably by its authors in the curriculum envelope. This 
theoretical framing implies there are a range of appropriate and beneficial interpretations and 
uses of all written curriculum materials.  

However, there is little understanding of the ways in which lessons can vary within the 
curriculum envelope. Therefore, in this study, we illustrate how complex interactions between 
teachers and students in an enacted lesson shifts how the lesson unfolds while still drawing from 
the elements of the textbook lesson and maintaining its overall intentions. We present the case of 
one enacted algebra lesson implemented to a group of students from a set of written materials 
that were explicitly designed to increase the mathematical quality of courses by providing 
students access to rich, conceptually connected mathematical ideas. In this case, the enacted 
lesson maintained (or even enhanced) the mathematical quality of the lesson as written and thus 
is within the curriculum envelope. By highlighting the curriculum modifications that lead to 
maintaining, or enhancing, the mathematical quality of the written materials (e.g., its aesthetic 
opportunities, rigor), we begin to address the research question: In an enacted lesson that is 
within the curriculum envelope, in what ways can the teacher and students impact how the 
mathematical ideas unfold across the lesson and how they are experienced? We present a new 
methodology to comparing enacted and written curriculum that focuses not only on content, but 
also on how the content unfolds across the lesson. This comparison allows us to see how enacted 
lessons can maintain or even enhance the mathematical quality of the lesson for students and 
could reveal potential strategies for taking advantage of the design of the curriculum.    
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Theoretical Framework 
To compare mathematics lessons how mathematical ideas unfold, we interpret the lessons as 

a form of narrative. Similar to how literary stories can captivate a reader by the withholding and 
revelation of information (Nodelman and Reimer, 2003), mathematics lessons can similarly 
structure how information emerges, enabling curiosity and encouraging a reader to build interest 
in learning more (Dietiker, 2015). A mathematical story is a metaphorical interpretation of how 
the mathematical ideas unfold across a lesson, connecting the beginning with the end. Note, 
however, that mathematical stories are not limited to contextualized word problems, but rather 
describe the twists and turns of the mathematical revelations throughout a lesson. As with 
literary stories, mathematical stories have characters (i.e., mathematical objects, such as 
algebraic expressions) that are manipulated and changed through action (i.e., mathematical 
transformations, such as substituting an expression to make an equivalent equation). In addition, 
these mathematical characters and actions play out in one or more mathematical settings (i.e., the 
representational space, such as symbols on paper or manipulatives) (Dietiker, 2015).   

In a literary story, the text communicates via a narrator, and its interpretation focuses on how 
the text communicates to a reader in ways that are both logical (i.e., what makes sense) and 
aesthetic (i.e., what it makes a reader feel) (Bal, 2009). Mathematical stories in written 
curriculum materials operate similarly; the text narrates the story, and it can be read for how it 
communicates to potential readers––who in this case are teachers and students. Reading a written 
mathematical story for how it communicates requires identifying how the mathematical ideas, 
which are assumed to be unknown from the start, emerge and change as the story proceeds. For 
example, if a new definition or a theorem is presented that has not yet entered the story, it is 
interpreted as a new revelation even if it is already familiar to the researcher.  

Enacted mathematical stories (i.e., those that unfold within classroom) also have narrators 
and can be interpreted by how the mathematical ideas emerge and change across a lesson. 
However, in this case, the narration occurs both by the written curriculum (e.g., when a task is 
read from a worksheet) or by a human (e.g., when a teacher introduces a topic or when a student 
describes how they solved a problem). Thus, enacted mathematical stories are more like guerilla 
theater, where the teachers and students are both actors and audience members contributing to 
and experiencing the story (Dietiker et al., in progress). The teachers in enacted mathematical 
stories can also have a role in storytelling, as they may have specific intentions for how the 
mathematical story will progress, which impacts their decisions in the moment. For example, 
when a student raises a new mathematical idea that alters what is known at that point in a story, 
the teacher can choose what to do with that information (e.g., suppress, elaborate) based on how 
they want the mathematical story to progress. 

The way a mathematical story unfolds has a potential aesthetic impact on its readers, what we 
refer to as its mathematical plot. A mathematical plot “describes the aesthetic response of a 
reader as he or she experiences a mathematical story, perceives its structure, and anticipates what 
is ahead” (Dietiker, 2015, p. 298). The way in which the mathematical ideas play out over time 
can spur curiosity in a reader, leading them to pose new questions (e.g., asking how can that be?) 
and seek information (e.g., recognizing that two equations are equivalent) that answer them. As 
new facts are revealed, a reader has an opportunity to make progress on what is known about the 
questions they have adopted at that point in the story. According to literary theory, stories that 
offer numerous sustained questions simultaneously are more compelling (Barthes, 1974). The 
transition of what is known about a question, from when it opens to how it is answered is 
referred to as a story arc. A story arc can be short-lived when a question is answered quickly 
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after being asked, or can be longer when a question remains unanswered and is still in 
consideration throughout portions of the lesson. Since some questions may never be resolved, 
some story arcs may remain open at the end of the story. Others may be abandoned when it is 
clear to a reader that the story has moved on. With multiple story arcs open, a student may sense 
a growing mystery, while a decrease may cause a reader to sense relief (Dietiker, 2015).  

Methods 
This study is part of a larger exploratory study that initially examined the different ways 

experienced (i.e., more than five years of experience) Algebra I teachers enacted the same 
textbook lessons. Using the mathematical story framework, this study compares one teacher’s 
enacted lesson juxtaposed with the written lesson through a narrative-based analytical approach. 
In this section, we describe the context of the written and enacted lessons and describe how we 
interpreted and compared their mathematical plots. Note that we share our interpretations and 
they may vary from other groups completing this same process. Therefore, a key to this analysis 
is that both the written and enacted stories were analyzed using a consistent process. Our 
interpretation of these mathematical stories represents a consensus of a diverse mixture of 
mathematics education researchers, practicing teachers, mathematicians, and graduate students, 
and thus were informed by a mixture of perspectives regarding curriculum, mathematics, and 
teaching. Our interpretations represent a potential interpretation of a novice learner, as we took 
into consideration the story’s previous revelations while setting aside our prior knowledge. 
Sources of Data 

The written lesson in this study, Lesson 4.2.1 from the CPM Core Connections Algebra 
textbook (Dietiker et al., 2006), introduces the substitution method for solving a system of linear 
equations. All elements of the lesson as provided in the teacher’s edition were analyzed, which 
includes the student-facing materials (i.e., tasks, explanations) and suggestions to the teacher. 

The enacted lesson, which was based on lesson 4.2.1 from the CPM Core Connections 
Algebra textbook (Dietiker et al., 2006), was observed in Ms. Turner’s (all names are 
pseudonyms) Southern United States high school Algebra I course for special education students 
during the Fall of 2015. Ms. Turner’s classroom consisted of six students, all of whom were 
Black, seated in small groups. The lesson was videotaped using three cameras: one facing the 
front board and two facing the students. In addition, audio recorders were placed on student 
desks about the room. The main video recording facing the front board, along with the audio 
recorders, was used to build the lesson transcript. 

Ms. Turner, who is White, was in her 19th year of teaching and was selected to be observed 
for this study based on her expertise. For six years prior to this study, Ms. Turner led 
professional development for mathematics teachers in addition to coaching fellow teachers in her 
district for the previous seven years. Prior to the observation of this lesson, Ms. Turner was 
interviewed for information on her school demographics, her goals for the lesson, and her 
anticipated challenges during the lesson. According to Ms. Turner, from the pre-interview, the 
learning goal for this lesson was for students to rewrite the two equations with two variables as a 
single equation in a single variable by using a suitable substitution expression. After the 
observation, she was interviewed again about her reflections and was asked to discuss her 
curricular decisions that were made throughout the lesson.  
The Written Mathematical Story  

The lesson begins with the students solving the system 𝑦 = −𝑥 − 7 and 5𝑦 + 3𝑥 = −13 
using a method that was introduced in a prior lesson, namely, the equal values method (i.e., a 
process that involves solving each of two equations for the same variable and then setting the 
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two resulting expressions equal to each other). After providing the students a few minutes to 
solve the system of equations, the teacher is encouraged to stop the students and launch a 
discussion about whether it would be useful to have an easier method. A task then introduces the 
substitution method for the same system of equations, and the teacher is encouraged to use strips 
of paper with parts of the expressions to build the equations to aid in a discussion of the logic of 
the new method. Four more systems of equations are then given for students to solve using this 
new method. One of these results in a new situation (i.e., no solution). The lesson concludes with 
the task prompting students to figure out a way to know if the solution of a fictional student is 
correct or not.  
The Enacted Mathematical Story 

Ms. Turner started the lesson by reviewing the equal values method. She then prompted 
students to solve a system of equations (i.e., 𝑦 = −𝑥 − 7 and 5𝑦 + 3𝑥 = −13) with this method. 
After the students struggled to solve the problem for a few minutes, Ms. Turner stopped the 
students and offered a new method to the students with a reasoning of why this new method was 
beneficial (i.e., you can avoid ugly numbers). Using the paper switching method described in the 
teacher’s guide, Ms. Turner introduced the students to the substitution method. Figure 1 shows 
the paper switching process with (a) the original system of equations formed by cards and 
symbols, (b) the system after switching the cards in the top equation, (c) the same systems with 
the y cards switched in the top and bottom equations, and (d) the same system after switching the 
bottom y card with the −𝑥 − 7 card in the top. Before Ms. Turner even started through the 
process one student indicated insight, but she quickly quieted the student. She continued to guide 
the students through the substitution method with the paper switching visual. After “showing her 
(Ms. Turner’s) magic” (i.e., the substitution method), the students practiced solving two more 
systems of equations using their new method.   
 

       
(a)       (b)                          (c)                                 (d) 

Figure 1: Paper switching process. 

Interpreting the Mathematical Story and Plot  
In order to analyze and compare the mathematical plots of the written and enacted lessons, 

the researchers analyzed each portion of both stories for opportunities for new understanding. To 
interpret the stories, we analyzed the text of the story; the text of the written lesson included the 
suggested components of the lesson in the teacher’s guide including all tasks and statements, 
while the text of the enacted lesson was the transcript from the classroom.  

Analyzing the mathematical plots required three passes through each text. Each pass was first 
performed individually and then the group of researchers met to resolve differences. First, the 
researchers divided the text into agreed upon acts, where each act represented a portion of the 
story during which the mathematical story advanced and different acts were marked by changes 
in the mathematical characters, actions, or settings. Second, the researchers identified all the 
questions raised, either explicitly or implicitly, by the curriculum, teacher, or students in the text. 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

140



Third, we used Barthes’ (1974) codes to describe the transition from question to answer and any 
suspense or surprise in between: question formulation, promise of an answer, snare (misleading 
information), jamming (unanswerable question), suspension (delayed answers), partial answer 
(progress), and disclosure of the answer (endorsing the answer).  

With both the written and enacted mathematics lessons coded for their mathematical plots, 
the researchers analyzed how the mathematical plots of the written and enacted stories were 
similar and different. 

Findings 
The mathematical plots, which reveal how the stories unfolded in the lessons, are provided in 

Figure 2 (as written) and Figure 3 (as enacted). The acts (in columns) are presented in order from 
left to right, while the mathematical questions are listed in the order they emerged in the left 
column. The shaded cells, representing the story arcs, contain letters for Barthes’ (1974) plot 
codes, where a: Question by Teacher or Environment, b: Question by Student, c: Promise, 
d: Progress by Teacher or Environment, e: Progress by Student; f: Snare, g: Jamming, 
h: Suspension, and i: Disclosure.  
 

 
Figure 2: Mathematical plot of the Core Connections Algebra textbook Lesson 4.2.1. 
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Figure 3: The Mathematical Plot of the Enacted Lesson. 

In comparing the mathematical plots, we found evidence of how the teacher and students 
alter an unfolding story within the curriculum envelope for the benefit of student experiences. 
Specifically, we discuss three shifts in the enacted mathematical story: (a) additional jamming by 
Ms. Turner’s added questions and interactions with her students, (b) Ms. Turner’s students’ 
increased engagement through her verbal declaration of knowing what mistake her student was 
about to make and evidence of her understanding of her students and the rapport she has built 
with them, and (c) added questions asked by the teacher in response to her students’ needs while 
addressing the algebraic processes of solving the systems of equations.  
Added Jamming in the Enacted Story   

In the enacted lesson, specifically in Act 5, Ms. Turner’s actions of posing the problem to 
solve a system of equations (i.e., 𝑦 = −𝑥 − 7 and 5𝑦 + 3𝑥 = −13) using the equal values 
method created multiple instances of jamming, or an experience where you think you are going 
to get an answer and then the story threatens and drops hints that you may not get the answer. 
Both the written lesson Question 5 and the enacted lesson Question 4 (What is the solution to the 
system of equations 𝑦 = −𝑥 − 7 and 5𝑦 + 3𝑥 = −13?) created a similar instance of jamming as 
the posed problem became too messy to solve. However, Ms. Turner added additional questions 
around this problem which added more jamming to the enacted story:  

3 
 

How do you solve a system of equations with the equal values method? 
8 
 

How do we isolate y in the equation 5𝑦 + 3𝑥 = −13? 
 10 

 
How do we use algebra tiles to help us solve equations? 
 12 

 
What does that student mean by “you put it in the place of the y”? 
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That is, these additional questions (i.e., Question 3, Question 8, Question 10) offered support for 
her students as they tried to solve the given system of equations using the equal values method. 
Then, when Ms. Turner stopped the class as the problem became too messy, abandoning the 
equal values method to solve the given system of equations, this simultaneously disrupted 
Question 3, Question 4, and Question 8. As Ms. Turner moved on to introduce the substitution 
method, Question 12 was introduced by a student, but this question was quickly jammed in order 
for Ms. Turner to walk through the entire process of the substitution method step-by-step with 
the paper switching method.  

During the paper switching demonstration, beginning in Act 5, another element of jamming 
occurred as one student quickly picked up on what to do. Ms. Turner stopped the student from 
sharing his complete thought, to continue explaining the process and to ensure the other students 
followed the substitution method. Ms. Turner enabled this aesthetic moment in her classroom by 
deciding in the moment to quiet her students' aha moment, as the other students in the class 
would benefit from a guided introduction to substitution. After Ms. Turner explained a little 
more, she returned to the student who was eager to share and quickly saw how the substitution 
method worked when doing the paper switching visual provided by the curriculum. These added 
elements of jamming and Ms. Turner’s deviations enhanced the lesson for her students while 
providing her students access to rich, conceptually connected mathematical ideas as the author(s) 
intended in the written lesson. 
Predicting a Student’s Error in the Enacted Story  

In Act 11, Ms. Turner’s response, “I guarantee you’ve made a mistake and I’ll eat my words 
if you didn’t,” while the students are solving for y to finish solving the system of equations after 
as a class they found the value for x created question 23. Question 23, What mistake is she 
predicting? is not in the written lesson, but enhanced the lesson as Ms. Turner knew what her 
student was going to do. This student had mixed up the double negative in the problem, and this 
student action led to the formulation of Question 26, What is -x when x is negative? These two 
questions were added to the enacted story based on the teacher’s predictions and the student’s 
mistake. Again, these questions were created in the moment and based on the context of the 
lesson and Ms. Turner’s students, something not seen in the written story.  
Additional Questions to Solve the System in the Enacted Story 

In the enacted story, Ms. Turner also added questions not found in the written story. These 
added questions supported the students as they worked to understand the substitution method and 
solve systems of equations, as the students needed reminders and guidance in solving the 
equation for one variable once they made the substitution (e.g., reviewing the distributive 
property). These additional questions demonstrate how Ms. Turner’s pedagogical practice and 
contextual factors impacted the enacted lesson. The first occurrence of added questions is at the 
very beginning as Ms. Turner guided the students in recalling the equal values method from the 
previous lesson. Ms. Turner added the following questions:  

6 
 

Can I set these two equations equal to each other and start solving? 
 7 

 
What do we need to do to one of these equations to solve with equal values? 
 8 

 
How do we isolate y in the equation 5y + 3x = -13? 
 9 

 
What should I do with -13 and -3x, and why? 
 10 

 
How do we use algebra tiles to help us solve equations? 
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These additional questions helped students to start solving the system of equations. These 
questions were not raised when the written substitution lesson was analyzed, since both the equal 
values method and how to solve an equation for one variable were presumed prior knowledge. 
Seeing Ms. Turner's introduction of these questions indicates the need for the students’ prior 
knowledge to be recalled as a class. This also demonstrates how Ms. Turner knew her students 
and the context of the lesson and made adjustments to meet them where they were in supporting 
their development of the substitution method.  

This is not the only time Ms. Turner added additional questions to the enacted lesson. The 
next occurrence was seen when guiding the students through the substitution method. Ms. Turner 
added additional questions (i.e., Questions 18 - 21) to assist the students in solving the system of 
equations using substitution. Ms. Turner even referred back to a visual representation, algebra 
tiles, and also discussed the distributive property while solving the equation for x after 
substituting in the expression for y. These added questions made the lesson fit the students and 
allowed the students to engage in the rich mathematical task.  

18 
 

How do we solve this new one variable equation? 
 19 

 
Why do we have to use the distributive property? 
 20 

 
How do I multiply 5 by -x? 
 21 

 
How do I solve -2x=22? 
 

Discussion 
Our findings reveal how, in the enacted lesson, the teacher’s questioning and the questions 

and responses of the students altered the story of the written lesson while still maintaining its 
overall intentions. The students’ needs were known by the teacher and the students’ responses 
and actions (i.e., “I already know what y is”, forgetting a negative) enhanced the lesson. Ms. 
Turner’s use of the introductory problem, the paper switching visual, and the practice problems 
showed her use of the curriculum when teaching the lesson, while the added jamming, prediction 
of a students’ error, and added questioning demonstrated Ms. Turner’s use of pedagogical 
practice and contextual factors when teaching the lesson. These experiences enhanced the lesson 
for these students and allowed these students to complete the mathematical task and learning 
goal envisioned by the authors. Ms. Turner’s crafting and improvisation of the lesson in the 
moment supported the written lesson.  

Through our narrative-analytical approach, we illustrated how complex interactions between 
a teacher and students in an enacted lesson shifted how the lesson unfolded while the lesson still 
drew from the elements of the textbook lesson. We demonstrated how one enacted lesson 
maintained, and even enhanced, the lesson for the students. Additional research is needed to 
highlight other enacted lessons also maintaining, and possibly even enhancing, the written 
lesson. Additionally, further research is needed to explore how to support teachers in recognizing 
the potential strategies of implementation that take advantage of the design of the curriculum 
materials so that more enacted lessons maintain or enhance the mathematical quality for students. 
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We report the results of the second of two pilot studies from an intervention designed and 
developed based on a validated trajectory of students’ fraction concepts.  Results suggest that 
designing and developing interventions that draw upon practices based in mathematics 
education and theory (e.g., utilizing students’ own problem-solving actions, basing activities on 
learning trajectories, and supporting students to notice and discuss their problem-solving 
strategies) was an effective means of bolstering conceptual understanding and performance for 
the students we learned from in this work. 

Keywords: students with disabilities; curriculum, equity, inclusion, and diversity.  

Designing fraction instruction to meet the needs of diverse learners is a challenge facing 
educators today. One need often outlined in the literature is designing and testing curricular 
materials that build conceptual understanding, especially for students with learning difficulty 
(MD) and learning disability (LD). Observed performance differences that students with MD 
experience are concerning because conceptual knowledge mediates differences in overall 
performance in fraction skills between students with and without MD (Vukovic, 2012). Yet, we 
contend that the inadequate progress is likely the result of an opportunity gap caused not by a 
lack of knowledge or sub-optimal cognitive ability but instruction that does not provide these 
students access to their conceptual capacities or advance their understanding.   

One innovative approach to bolstering access and advancement of conceptual knowledge of 
fractions is the use of learning trajectories as a grounding for intervention design and innovation. 
Learning trajectories include a goal, developmental stages of thinking, and activities designed to 
explicitly promote the stages of thinking to bolster concepts of fractions (Clements et al., 2020). 
Unfortunately, although basing instruction on learning trajectories is often recommended, “there 
is little direct evidence to support this approach” (p. 3).  

We report the results of the second of two pilot studies (see Hunt et al., 2020) from an 
intervention designed and developed based on a validated trajectory of students’ unit fraction, 
partitive fraction (i.e., non-unit fractions less than one), and iterative fraction (i.e., non-unit 
fractions greater than one) concepts. The research questions for this study are: (a) To what extent 
does a supplemental fraction intervention implemented in a school intervention setting and based 
on trajectories of students’ fraction learning demonstrate evidence of increased student 
outcomes, defined as conceptual advance evidenced by units coordination, for students with LD 
and MD? And (b) Is there a statistically significant increase in score on a standardized measure 
of fractional concepts and operations after participating in a supplemental fraction intervention 
implemented in a school intervention setting for students with LD and MD?  

Conceptual Framework 
The learning trajectory utilized in the current study addresses the concepts of fractions as a 

coordination of units. Units coordination is defined as the number of units children can bring into 
fraction problems to think and reason with (Hackenberg et al., 2016) and involves the processes 
of partitioning, iterating, and the eventual combination of partitioning and iterating into a single 
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process (Hackenberg, 2007; Norton & Wilkins, 2010; Wilkins et al., 2013). Partitioning is the 
mental or enacted action of dividing a unit into equal-sized parts. As students become more fluid 
with partitioning, they can mentally pull out a created fractional unit from the whole and 
understand it in relation to the whole without destroying the whole. They begin to iterate, or 
repeat, the fractional unit to make larger units (e.g., use 1

3
 to make 2

3
).  

At first, students make sense of larger fractional units within the bounds of the whole (two-
level units coordination). Over time, students will learn to combine partitioning and iterating into 
a single process called splitting. Splitting involves anticipating the results of partitioning a whole 
concurrently with iterating a fractional unit (Hackenberg, 2007; Norton et al., 2018). When 
students can split, they can understand larger fractional units outside of the bounds of a whole 
(three-level units coordination). Students will often combine the two processes sequentially 
before combining them into a single operation. We hypothesized students with LD could utilize 
similar processes to build a concept of fractions toward the learning goal, “Fractions are numbers 
that have magnitude determined by the coordination of the numerator with the denominator.” 

Methods 
Participants and Data Sources 

The pilot study took place in one suburban elementary school located in the Southeastern 
United States. The school enrolled approximately 1,050 students: of these students, 5.1% 
received special education services and 75.8% were from underrepresented groups. Students 
were selected based upon five criteria: (a) currently in fourth or fifth grade, (b) previously 
identified as requiring at least Tier II intervention in mathematics in response to sustained low 
performance and poor progress on grade-level curriculum, (c) have a weakness is fraction 
concepts and applications as identified by the classroom teacher, (d) performance of less than 
30% on a screener of fraction concepts from the state’s end-of-grade test, and (e) provide 
information parental consent and student assent. When students who met the criteria were 
identified, the school selected participants.  

The process yielded a total of 10 students – two of whom received Special Education 
services (LD) and four who received 504 or Tier 3 services for math difficulty (MD) - 
participated in the study. These 10 students comprised two intervention groups, with five 
students in Group 1 and five students in Group 2. Of the 10 students, three were females, seven 
were males, nine were People of Color, and one was White. Students were between nine and 11 
years of age. Intervention attendance for the nine out of the 10 students was high (100%). 

Our intervention was designed to support the fraction learning of students with LD. Yet, 
schools often include both students with LD and MD in supplemental mathematics instruction. 
We included students with LD and MD to match school norms and procedures.  

Data sources for conceptual advance included video data, accompanying student work, and 
researcher field notes for each session.  For performance change, 16 items pulled from the 2018-
2019 North Carolina Department of Public Instruction (DPI) released third, fourth, and fifth 
grade End-of-Grade (EOG) Exams were used as a distal measure of performance because they 
measured the Number and Operations Fraction Standards students were assessed upon across 
elementary school. The measure was also group-administered and included six items measuring 
third grade standards, two items measuring fourth grade standards, and eight items measuring 
fifth grade standards. Internal consistency ranged from 0.90 to 0.94.  
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Study Design & Data Analysis 
A one phase, mixed methods quasi-experimental approach drove this research (Creswell & 

Plano Clark, 2018). Qualitative data were considered primary in the design, consistent with the 
study emphasis on changing students’ conception and appropriate with small sample sizes.   

Data analysis to detect conceptual change was done on several levels. First, constant 
comparison methods (Leech  & Onwuegbuzie, 2007) and classical content analysis (Grbich, 
2007) were used to document and quantify students’ partitioning and iterating processes within 
each problem for each student. Researchers examined each student’s (a) partitioning and 
iterating actions used to solve each problem (b) the student’s utterances as they solved problems 
along with how they named, or quantified, their solution, (c) whether the student appeared to 
have a plan/strategy before having to act, and (d) any observable evidence related to the student’s 
units coordinating. We used peer debriefing and collaboration to search for evidence that 
confirmed or refuted claims made across the data to build reliability and validity in the coding 
process. We had 86% interrater reliability for individual analyses of codes across the entire set. 
Researchers then quantified the number of occurrences for each code (e.g., how many times 
partitioning was observed) by dividing the totals by the total number of all codes.  

Second, researchers used emergent coding to document how students’ observable processes 
across the tasks and after the second, fourth, sixth, and tenth instructional sessions were or were 
not consistent with the stages of units coordinating learning trajectory confirmed in previous 
years of the project. Generally, researchers looked for evidence of the stages of units students 
could either (a) describe before activity in the problems or (b) used with activity in the problems. 
The analysis was iterative and included multiple perspectives to make confirmatory claims about 
patterns in the data consistent with conceptual advance. We established 100% interrater 
reliability after peer debriefing and collaborative work.  Finally, to detect initial differences in 
performance on fraction state standards as a result of the instructional trajectory (i.e., before and 
after the intervention within the same group of students), a one-tailed paired sample t-test was 
used to evaluate statistically significant differences on the distal measure. The IV was time; the 
DV was score. The level of significance was set at 0.05. 

Results 
Three nuances in partitioning consistent with our learning trajectory were coded across the 

intervention sessions: (a) In action halving (i.e., students engaging in halving strategies in the 
midst of problem-solving), (b) In action linked (i.e., students engaging in partitioning linked the 
number of sharers in the midst of solving problems), and (c) Before action linked partitioning 
(i.e., students describing a partitioning plan that was linked to the number of sharers before 
solving the problem). After session two of the intervention, 56% of students used in action 
halving-based partitioning, and 23% and 21%, respectively, used in action planned or before 
action linked partitioning. After Session Four, 11% of students continued to use in action 
halving-based partitioning, 34% of students used in action linked partitioning; before action 
linked partitioning (55% of students) became the dominant method. After the eighth session, 
only 23% of students were in action partitioning. The final session showed a slight uptake in 
students’ use of in action (33%) versus before action (67%) partitioning. The two students with 
LD both started the intervention using in-action halving partitioning. After session two, one 
continued to use in-action halving while the other progressed to in action linked partitioning. 
After session six, both progressed to and consistently used before action linked partitioning. 
Increased use of sophisticated partitioning alongside decreases in rudimentary partitioning 
showcases growth. 
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The forms of iteration uncovered and coded in the analysis were (a) in action trial and error 
(i.e., students created an equal share and did not correctly adjust it longer or shorter), (b) in 
action adjustment (i.e., students created an equal share and corrected adjusted its magnitude) and 
(c) planned (i.e., students accurately created an equal share and used iterating to confirm the part 
as 1

𝑛
). After Session Two, 45% of students used in action trial and error iteration, 55% used in 

action adjustment, and 0% used planned iteration. After Session Four, the percentage of students 
using in action adjustment for iteration increased to 34%, and students using planned iteration 
increased to 22%, and the use of in action trial and error iteration was relatively unchanged 
(44%). After the eighth session, trial and error iteration was used by only one student (11%), 
while in action adjustment and (44%) planned (45%) iterating was dominant. Both students with 
LD began the sessions iterating in action trial and error. After session four, one student 
progressed to a stable use of planned iterating for the remaining sessions. The other student  
evidenced planned iteration in the tenth session.  

Advances in units coordination emerged in the data that were consistent with students’ 
advances in conceptual processes. After Session 4, most (89%) of students coordinated two 
levels of units in action (i.e., had to act within a problem to think about fractions as coordinated 
in magnitude with a whole), while one student (11%) came into the problems coordinating one 
level of units. After Session 8, students who bring in two levels of units into problem activity 
increased to 33%; students coordinating two levels of units in action fell to 56%.  In the final 
session, 67% of students (inclusive of both students with LD) brought two levels of units into the 
problems. Process advances and units coordination mark students’ conceptual advances.  

A paired-samples t-test was conducted to compare performance score on a distal measure of 
students’ fraction knowledge before and after participating in the instructional trajectory. A 
histogram confirmed the normality of the data. There was a statistically significant difference in 
group scores from pre-test (𝑚 = 4.56, 𝑠𝑑 = 2.07) to post-test (𝑚 = 6.78, 𝑠𝑑 = 3.87), 𝑡 = 2.23, 
𝑝 = 0.03. Our results suggest that engaging in our fractions intervention positively impacted 
students’ performance. When examining the performance of the students with LD on an 
individual basis, there was a statistically significant difference in scores from pre-test to post-
test, 𝑡 = 2.24, 𝑝 = 0.03 and 𝑡 = 7.85, 𝑝 < 0.0001, respectively, for both students. Our results 
suggest that our intervention also positively impacted the performance of students with LD.  

Discussion 
Very few studies in mathematics education or special education evaluate the effectiveness of 

student-centered interventions based on mathematics education instructional practices and theory 
on improving student outcomes (see Hwang et al., 2019; Shin & Bryant, 2015). We provide 
evidence regarding an intervention designed and developed based on a validated trajectory of 
students’ unit fraction, partitive fraction, and iterative fraction concepts (Hunt et al.., 2020). 
Designing and developing interventions that draw upon practices based in mathematics 
education and theory (e.g., utilizing students’ own problem-solving actions, basing activities on 
learning trajectories, and supporting students to notice and discuss their problem-solving 
strategies) was an effective means of bolstering conceptual understanding and performance for 
the students that we worked with in this study.  More work is needed to substantiate our findings.   
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Traditionally, mathematics is taught without a connection to the real world which makes it 
abstract and difficult for students to understand, thereby resulting in low mathematics 
achievement. This study investigated the learning experiences of Grade 8 students as they 
participated in project-based learning (PBL) as part of an interdisciplinary mathematics 
education (IdME) unit of study. Qualitative data were collected in the form of student self-
reflections and interviews. Findings suggest that students were able to improve their 
mathematics knowledge and understanding by implementing mathematics concepts in real-world 
contexts. We argue that students not only understand mathematics better but also realize its 
importance as a discipline when it is taught through real-world projects. 

Keywords: Instructional Activities and Practices, Middle School Education, High School 
Education, Integrated STEM / STEAM  

Mathematics knowledge and processes are used in everyday life. Furthermore, skills 
developed through engaging with mathematics, such as logical thinking and problem solving, are 
critical in tackling complex global problems of the 21st century. Despite the importance of 
mathematics in our society, Canadian secondary students’ mathematics achievement is declining 
(Allison & Geloso, 2021). A majority of the students find mathematics education vague, abstract, 
and detached from reality and real-life situations (Mosvold, 2008). Indeed, in secondary schools, 
mathematics has traditionally been taught without any connection to other subjects (Chi, 2021) 
despite curricula calling for interdisciplinary approaches to teaching and learning (e.g., Ontario 
Ministry of Education, 2016; Québec Education Program, 2001). Moreover, there is a dearth of 
literature that provides concrete examples and evidence of mathematics being taught in 
connection to other subjects, especially in the context of Canada. This paper presents a case of 
interdisciplinary mathematics education (IdME) being implemented in a Grade 8 mathematics 
course at a small, independent school in the province of Québec. Specifically, our study is guided 
by the following research question: How does IdME contribute to students’ learning experiences 
with mathematics?  

Perspectives 
An interdisciplinary approach to teaching and learning involves curriculum organized around 

common learning across various disciplines where students learn concepts and skills that are 
common to two or more than two disciplines (Costley, 2015; Helmane & Briška, 2017). 
Specifically, in IdME, mathematics is taught in an interdisciplinary way (Chao-Fernández et al., 
2019). IdME presents mathematics in a wider context (Chi, 2021), combined with one or more 
disciplines and everyday knowledge to encourage problem solving and inquiry (Williams et al., 
2016). In IdME, mathematics can be combined with a wide range of disciplines including 
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science, arts, or languages (Brante & Brunosson, 2014; Lovemore et al., 2021; Serrano Corkin et 
al., 2020). Studies indicate that IdME increases students’ engagement (Madkins & Morton, 2021; 
Satterthwait, 2019; Serrano Corkin et al., 2020) and improves students’ mathematics knowledge 
and understanding (Altin et al., 2021; Brante & Brunosson, 2014); both serving as crucial 
predictors of students’ mathematical achievement.  

A common approach for IdME is project-based learning (PBL)(Chi, 2021). PBL is an 
instructional method that allows students to engage with the content at a deeper level and bridge 
theory and practice (Condliffe, 2017). In PBL, students engage in complex tasks based on 
challenging questions or problems in authentic contexts (Bell, 2010; Laur, 2013). Students 
design, problem-solve, make decisions, and investigate topics of personal interest (Aydın-
Günbatar, 2020; Lin et al., 2015). PBL helps students in “establishing conceptual associations 
between the learnt knowledge” (Demı̇Rel, 2010, p. 48) and hence, improves their academic 
achievement in mathematics (Gürgı̇l & Çetı̇n, 2018). Indeed, a study by Holmes and Hwang 
(2016) found that students who initially had little belief in their mathematics skills “expressed 
mastery or learning goals” as result of engaging with PBL (p. 459). PBL has also shown to 
increase students’ understanding of mathematics concepts by making students capable of 
applying mathematics knowledge to real-life situations (Boaler, 1997; Fain et al., 2015; Holmes 
& Hwang, 2016).  

Research Context and Methods 
The study took place within a context of a research-practice partnership with a small, 

independent girls’ school in Québec. The Grade 8 mathematics teacher, Stephanie (all names are 
pseudonyms), was keen to integrate IdME into her teaching practice, and more specifically, used 
PBL as a means to achieving this goal. As such, she developed the “Lifestyles Project”, 
comprised of three tasks: the Hobby, Careers and, Bedroom Design tasks. Tasks were 
purposefully interdisciplinary and designed in collaboration with teachers from other subject 
areas (science, English language arts, and visual arts, respectively). In the first task, students 
chose a hobby of personal interest and identified and explored science and mathematics concepts 
associated to the hobby. The second task required students to select a future career, find a job in 
this career, and calculate the salary that they would receive (given required tax deductions). In 
the final task, students designed a 3D, scaled model of the bedroom of their dream apartment 
considering mathematical constrains like size and surface area. Tasks were interspersed 
throughout the academic year, each spanning 2-3 weeks in length. Study participants were all of 
the students in Stephanie’s Grade 8 mathematics course (n=16).  

A qualitative case study method (Denzin & Lincoln, 2011; Stake, 2006), was used to explore 
the Grade 8 students’ experiences with the Lifestyles Project. There were two sources of data for 
this study: 1) student self-reflections, and 2) student interviews. Students completed written self-
reflection after most PBL classes to capture their experiences during the Lifestyles Project. Semi-
structured interviews (Gubrium & Holstein, 2002) were conducted at the end of the year in 

which students were asked about their thoughts and feedback about the Lifestyles Project and 

IdME more generally. Interviews were audio-recorded and transcribed verbatim. Interview 

transcripts and student self-reflections were coded in a series of coding cycles using an inductive 

thematic analysis approach (Guest et al., 2011). Qualitative data analysis software NVivo was 

used to efficiently organize and code the data using a code book developed by the research team. 
We then selected codes specific to students’ learning experiences in mathematics through an 
iterative process and categorized this data by seeking out emerging patterns and themes.  
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Findings 
The aim of this study was to explore how IdME, as enacted through the Lifestyles Project, 

supported Grade 8 students’ learning experiences with mathematics. In this section, we present 
two major themes that emerged from the data: 1) how the Lifestyles Project allowed students to 
connect mathematics to the real world, and 2) how real-world contexts supported the students’ 
mathematics learning. 
Connecting Mathematics to the Real World 

Through the Lifestyles Project, students applied mathematics to realistic contexts. Students 
reflected on how the Lifestyles Project allowed them to see how mathematics could be used in 
the real world. For example, Raza shared,  

I learned that interior designing has math in it, because interior designers need to know how 
much the total surface area is of something. And they can’t just pick up like, go buy a couch 
or something, and hope it fits. They really need to measure it, so it fits.  

Or as another example, Cymbi described how the Careers task allowed her to learn about taxes. 
She said, “I loved learning new things like what QPIP (Québec Parental Insurance Plan) taxes 
were and why were they used. Because I never knew about these things, it was all so new!” 
Students recognized and discovered that many mathematics concepts are immediately applicable 
and helpful in problems and tasks that they may encounter in their daily lives.  
Real-World Contexts to Support Students’ Mathematics Learning 

In addition to allowing students to see the usefulness of mathematics, real-world applications 
helped the students deepen their mathematics knowledge. Students’ mathematical understanding 
was strengthened when they could connect mathematics with real-world applications relevant to 
their own lives. For example, in reflecting on the Bedroom Design task, Junan said, 

I think [the task] was also really good for understanding total surface areas a lot. On a paper, 
I don’t count the backside (of furniture)…we can’t see it. But, like actually seeing it (in 3D) 
because now if I were to look at my closet or something, I could say like, oh, I wouldn’t 
count this because I can’t see it is touching the wall.  

Here, Junan described how calculating the surface area of a real 3D model instead of a 2D 
drawing on a paper allowed her to better understand the concept of surface area. Similarly, 
Cymbi described how designing her bedroom reinforced the importance of mathematics 
knowledge. She said, “Measurements really are important and proportions because like, I found 
myself making a table that was like, shorter than the bed and then I was like, oh my god, that 
doesn’t make any sense.” Here, Cymbi shared how measurement errors would result in major 
problems in this real-world context. Indeed, through the Lifestyles Project, students realized the 
value and importance of both mathematics and mathematics knowledge in broader, non-
academic contexts.  

Students also shared that the Lifestyles Project provided them an opportunity to develop a 
stronger understanding of mathematics concepts that they had previously learned in the course. 
For example, Junan said, “I was okay at [surface area] before, but especially now, like when I 
was looking at the actual shape, I was like, 'Oh, wait, I don’t count this, I don’t count that.” A 
similar response was given by Aura who felt that the Bedroom Design task “helped with like, 
what we were learning in class was like, lateral area and total surface area.”  

Although the majority of students enjoyed the Lifestyles Project, some felt that the real-world 
contexts were a hinderance to their mathematics learning. As Rose said, “I wouldn’t want [class] 
always to be these projects, because I would want to learn some math and stuff...I would prefer 
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the majority of the year to be math”. This response indicates that some students drew a clear 
boundary between ‘mathematics’ and these ‘(Lifestyle) projects’. These students did not see the 
Lifestyles Project as incorporating mathematics, whether it be the mathematics concepts or 
processes that they previously learned, or the students’ conceptions of what mathematics is and 
how to do it. Kobu explained, “We’re learning about stuff [in a way] that we wouldn’t like, 
conventionally learn about in math class.” Indeed, for some students, learning mathematics in a 
way that they were not accustomed to was challenging. 

Discussion and Conclusion 
The focus of this study was to explore how interdisciplinary mathematics education (IdME), 

implemented through project-based learning (PBL), contributed to the students’ learning 
experiences with mathematics. In the “Lifestyles Project”, Grade 8 students participated in a 
variety of tasks that involved integration of mathematics with other disciplines (i.e., science, 
English language arts, visual arts). Findings suggest that the students were able to make sense of 
mathematics concepts by applying them to real-world contexts, which provided them with an 
opportunity to enhance their mathematics learning and improve their mathematical 
understanding.  

The relevant and authentic contexts of the Lifestyles Project allowed students to realize how 
mathematics can be implemented in the real world (Brante & Brunosson, 2014). Furthermore, 
these contexts underscored the importance of mathematics as a discipline that is inherently 
present and correlated to all disciplines. When engaging in IdME through the Lifestyles Project, 
the students recognized the need to apply integrated mathematics knowledge to engage in real-
world design and problem solving tasks. Indeed, the students seemed to “understand how 
mathematics inter-relates with other school subjects and with the real life” (Chi, 2021, p. 667). 
We argue that IdME encouraged students to learn by “demonstrating the real-world relevance of 
their education” (Newell, 2010, p. 11). In connecting mathematics to real-world contexts, the 
students seemed to be better able to understand mathematics concepts that were initially 
perceived to be complex and abstract. This strengthened understanding of new and previously 
learned mathematics concepts, in turn, improves students’ academic achievement, both in 
mathematics and more generally across disciplines (Applebee et al., 2007). Despite its positive 
impact on students’ mathematics learning, some students found IdME to challenge their 
perception of mathematics education. Indeed, some students had preconceived notions that 
mathematics should be taught in isolation and not connected to real-world contexts. This is in 
contrast to research indicating that students are generally more positively inclined towards an 
interdisciplinary learning approach as compared to traditional approaches to teaching and 
learning (Ghisla et al., 2010; Zhan et al., 2017).  

While these findings may not be generalizable to wider contexts, our study provides further 
evidence of the positive potential of IdME as a means to enhancing students’ learning 
experiences with mathematics. We encourage researchers and educators alike to further consider 
the ways that IdME can be used to transform mathematics instruction and allow students to 
thrive.  
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Utilizing an innovative and theoretically-grounded approach, we extend the work of cognitive 
scientists and mathematics educators who have previously documented the impact of comparison 
on students’ learning in algebra with the goal of transforming the learning that occurs in eighth-
grade geometry classrooms. The purpose of this paper is to examine the types of comparisons 
participants made during think aloud interviews when engaging with curricular materials that 
have them examine multiple solution strategies. This research seeks to extend the work of using 
comparisons in algebra to determine if using comparisons in geometry will help improve 
students’ mathematical understanding. 

Keywords: Curriculum, Geometry and Spatial Reasoning, Middle School Education 

Introduction 
Dissonance is defined, in part, as “an instance of such inconsistency or disagreement” 

(Merriam-Webster, 2022). There is much to be learned through these inconsistencies, especially 
in regards to learning mathematics, for it is through this dissonance that students work to make 
sense of the inconsistencies and develop stronger mathematical arguments. By simply comparing 
different solution strategies to a mathematics problem, students can draw out inconsistencies to 
deepen their mathematical thinking.  

Utilizing an innovative and theoretically grounded approach, we extend the work of 
cognitive scientists and mathematics educators who have previously documented the impact of 
comparison on students’ learning in algebra (Star, Pollack, et al., 2015), with the goal of 
transforming the learning that occurs in middle grade geometry classrooms. Comparing and 
contrasting objects is a powerful learning tool with deep roots in cognitive science literature.  
Goldstone, Day, and Son (2010) stated, “research has demonstrated that the simple act of 
comparing two things can produce important changes in our knowledge” (p. 103). There is 
empirical support from cognitive scientist literature for the use of comparing contrasting 
examples for learning about business negotiations (Gentner et al., 2003), heat flow in science 
(Kurtz et al., 2001), children’s learning (Loewenstein & Gentner, 2001; Namy & Gentner, 2002), 
and in studies of infants 4 to 6-months old (Oakes & Ribar, 2005). In mathematics education, 
research on comparing has proven effective in learning: estimation (Star & Rittle-Johnson, 2008, 
March, 2009), the concept of an altitude for a triangle (Guo & Pang, 2011), and equation solving 
(Rittle-Johnson & Star, 2007, 2009; Rittle‐Johnson, Star, & Durkin, 2012). 

Theoretical Framework 
Comparisons are a powerful way to improve learning across disciplines; having students 

compare and contrast different strategies has produced gains in students’ knowledge of algebra 
(Lynch & Star, 2014; Star, Newton, et al., 2015; Star, Pollack, et al., 2015). Furthermore, 
comparison of multiple strategies also plays a prominent role in policy documents. In particular, 
one of the five recommendations for improving mathematical problem solving for middle grade 
students noted in the released Practice Guide from the U.S. Department of Education 
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(Woodward et al., 2012) was to have students examine multiple problem solving strategies. 
Similarly, one of the Common Core State Standards for Mathematics (NGA, 2010) mathematical 
practice standards is for students to be able to construct viable arguments and critique the 
reasoning of others, specifically that, “Mathematically proficient students are also able to 
compare the effectiveness of two plausible arguments” (p. 10).  When students share their ideas 
and evaluate the thinking of others in class discussions, they develop the ability to construct 
mathematical arguments; the practice of critiquing peers is thought to enhance mathematical 
understanding (Lampert, 1990; Silver, Ghousseini, Gosen, Charalambous, & Strawhun, 2005).  

Researchers have developed contrasting case materials to address typical Algebra I content 
that students struggle with or that elicit student misconceptions (see Star, Pollack, et al., 2015; 
Star, Rittle-Johnson, & Durkin, 2016). Star and colleagues’ Algebra I curriculum is focused 
around worked example pairs (WEPs), where each WEP shows two fictitious students solving 
one or more algebra problems. The intent of each WEP is for students to directly compare and 
contrast, line-by-line, the methods that the two fictitious students use in solving each problem.  
Star and colleagues (2015) have demonstrated that teachers’ implementation of the contrasting 
cases materials, including whole class and small group discussions around the WEPs, can lead to 
increased procedural knowledge, procedural flexibility, and conceptual knowledge of Algebra I 
topics.   

The research in this proposal seeks to extend this work to geometry content and to further 
enhance the effectiveness of this approach for geometry by creating digital materials with 
animations. Because a major goal of the project is to establish a scientific foundation for 
animated contrasting cases as a basis for the learning of geometry, this paper seeks to answer an 
initial question: What types of comparisons between mathematical strategies do students make? 

Design of Materials 
Our digital curricular materials center two fictitious students’ voices at the center of 

mathematics learning, and each lesson includes five unique features: a page for the first fictitious 
student’s solution strategy on a given geometry task, a page for the second fictitious student’s 
solution to a geometry task (which could be the same or different task shown on first student’s 
page), a page with both students’ strategies side-by-side, a discussion sheet with four questions 
for the students to answer, and a thought bubble page summarizing the key mathematical 
concepts in the problem. The discussion sheet and thought bubble page are designed to make the 
instructional goal of each WEP more explicit and for students to summarize their work from the 
WEPs (Star, Pollack, et al., 2015). 

There are four units, each containing either five or six WEPs, that cover the geometry content 
in the 8th grade CCSSM (NGA, 2010). Each unit introduces two new characters; for this paper 
we will refer to the characters as Jaxon and Maxine. As we created the materials, we considered 
several design features: animations and colors to draw student’s attention to the geometric 
content in meaningful ways, characters’ methods purposefully selected to spark comparisons, 
geometric thinking of the WEP characters, and diversity of characters throughout the units. 

Methods 
After fully developing the 8th grade geometry materials, and due to shifts in classroom-based 

research due to COVID, we conducted 56 hour-long open-ended semi-structured clinical 
interviews (Piaget, 1976; Opper, 1977), in the form of think alouds, with individual participants 
(𝑛 = 42). Our goal was to elicit student thinking as participants engaged with the materials and 
discussion questions, not to get them to a “correct” response (Opper, 1977). Consistent with 
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Opper’s description of the clinical method, we used the students’ language, paced the interview 
to each student’s speed, and encouraged students to elaborate on their thinking. In order to 
engage participants in each phase of the WEP during the interviews, we followed a detailed 
protocol: examine Jaxon’s method, examine Maxine’s method, horizontally compare Jaxon and 
Maxine’s methods, solve the problems on the discussion page, and read the thought bubble at the 
end. If needed, we had questions for each phase of the protocol to probe student thinking. At the 
end, we asked if they had any questions for us or any final thoughts on the materials.  

We transcribed each interview and began a priori (Saldaña, 2013) coding based on our key 
design features (Animations, Colors, Comparison Between Characters, Diversity of Characters, 
Geometric-Thinking of WEP Characters). We then added emergent (Saldaña, 2013) Level 1 
codes for the students’ geometric thinking and curricular form and Level 2, 3, and 4 codes as 
appropriate. We met to develop the codebook and then each coded several interviews 
individually. We then met to discuss any discrepancies and came to agreement on all codes. 
Once we had finalized our codebook, two coders independently coded each transcript and the 
third researcher resolved all disagreements. The average initial agreement between the pairs of 
coders was: 88.92% for Level 1 codes, 82.76 for Level 2, 81.04% for Level 3, and 88.09% for 
Level 4. This paper specifically analyzes the Level 1 Comparison Between Characters codes to 
determine what types of comparisons the participants made regarding Jaxon and Maxine’s 
solutions strategies. Below, we report on the types of comparisons they made and give examples 
of each type.        

Findings 
Comparisons Between Characters 

We observed 756 (23.27% of all Level 1 codes) instances where students were making 
comparisons between the WEP characters (Table 1). Most often they were discussing differences 
between the characters (𝑛 = 484), but they also noted similarities (𝑛 = 267) and used both WEP 
characters’ strategies to verify a mathematical idea (𝑛 = 5). Looking at the Level 3 codes, 
regardless if students were pointing out a similarity or difference in Jaxon and Maxine’s 
strategies, participants often referred directly to the method they were using to solve a problem. 

Specifically, when pointing out differences, students most often described differences in the 
methods the characters used to solve a problem (𝑛 = 380). For example, when analyzing 
strategies related to translating a figure, one student stated, “Jackson is more plotting it out, while 
Maxine is subtracting the values to go left or down. They both had it in the same spot, which is 
good; I think that's the idea.” This student realized Jackson is using a visual geometric method, 
while Maxine is using an algebraic approach, yet they arrive at the same answer. This student 
was attending to the visual/algebraic aspects of Jaxon and Maxine’s approaches. Students noted 
differences in the students’ methods regarding WEP specific content. For example, in a WEP 
designed to have students understand why the interior angle sum in a triangle is 180 degrees, one 
student said, “Alex like ripped his triangle apart and… what did Morgan do? And Morgan, just 
drew the line and just used like the parallel cut by transversal stuff to figure everything out. To 
figure out that it was 180 degrees.” Here the student is attending to specific mathematics content 
in the WEP.  

Students noted similarities based on the method students were utilizing in the WEP. In a 
WEP focused on verifying similarity using transformations, one student noted, “they both show 
that the triangle is similar, I guess. They both did show that the side lengths are proportional. As 
you can see.”  Another student, working in a WEP focused on reflections, stated, “They're both, 
they're both flipped to the other side, depending on if it's the x or y axis, they're both being 
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flipped.” Here the student noticed that Jaxon reflected his triangle over the x-axis, whereas 
Maxine reflected hers over the y-axis. This student was later able to make a generalization about 
what happens to the coordinates of a figure when it is reflected over the x-axis and y-axis. These 
comparisons helped students analyze benefits and drawbacks of the WEP characters’ methods 
and make informed decisions about their preferred strategy for solving similar problems. 

 
Table 1: Number Codes at Each Level 

Level 1 n Level 2 n Level 3 n Level 4 n 

Comparison 
Between 

Characters 
756 

Similarities 267 
Answer 55   
Method 162   
Problem 50   

Differences 484 

Answer 69   

Method 380 

Liked Better 37 
Same Result 20 
Way I Would Do It 33 
Easier 55 
Unsure 3 
Visual/Algebraic 26 
WEP Content Specific 206 

Problem 35   

Led to 
Understanding 5     

Conclusions and Implications for Future Work 
We have begun to document the types of comparisons students made during think aloud 

interviews regarding fictitious student methods to mathematics problems. This research shows a 
viable scientific basis for using comparisons to explore multiple solution strategies of students, 
as students were able to note similarities and differences in the strategies. Given critiquing 
reasoning is important to deepening mathematical understanding (Lampert, 1990; Silver, 
Ghousseini, Gosen, Charalambous, & Strawhun, 2005), these findings are a step towards 
documenting the ways in which contrasting cases can be used in geometry. Future research will 
analyze if these comparisons of the fictitious students’ solution strategies advance students’ 
knowledge of geometry content, provide them with more flexible solution strategies, and equip 
them to better critique the reasoning of their peers.  
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Teaching teachers how to notice student mathematical thinking has received growing attention 
over the years. While descriptions of preservice teachers’ experiences while learning to notice 
have been documented, there are still questions about how the curriculum can afford preservice 
teachers the best opportunities to develop their skill to professionally notice. In this paper, we 
examine a curriculum designed to teach preservice teachers how to professionally notice 
through the lens of Variation Theory of Learning. We posit Variation Theory of Learning 
provides insight into critical elements preservice teachers should be exposed when learning to 
professionally notice. 

Keywords: Preservice Teacher Education; Content Courses; Professional Noticing; Variation 
Theory of Learning  

Research on prospective teacher noticing has grown considerably over the past decade 
(Amador et al., 2021; Dindyal et al., 2021). Like practicing teachers, prospective teachers are 
required to understand children’s mathematical thinking, interpret what their thinking implies for 
their current understanding, and decide where children need to go next in order to advance their 
learning (Jacobs et al., 2010; Leatham et al., 2015; Van Zoest & Stockero, 2012). The skill of 
attending to, interpreting, and responding to children’s mathematical thinking is known as 
professional noticing (Jacobs et al., 2010). Intentionally developing the aforementioned skills in 
content courses for preservice teachers has shown mixed results (Superfine et al., 2015), and 
there are still questions regarding what experiences preservice teachers should have in content 
courses in order to grow their capacity to professionally notice students’ mathematical thinking.  

In this paper, we examine an experimental curriculum designed to start preservice elementary 
teachers on their journey to learning how to professionally notice. To investigate the potential 
learning opportunities afforded by the designed curriculum, we adopt Variation Theory of 
Learning (Marton, 2015). We argue Variation Theory of Learning (VTL) provides a useful lens 
for analyzing curriculum in order to determine what could be made possible to learn about 
professionally noticing. 

The Context and Curriculum 
Development of preservice teachers’ capacity to professionally notice typically occurs within 

methods courses (e.g. McDuffie et al., 2014; Schack et al., 2013); however, the intricate 
relationship between what teachers notice and their content knowledge for teaching (Dick, 2017; 
Jong et al., 2021) suggests preservice teachers may benefit from intentional experiences to 
develop noticing skills simultaneously with content knowledge. As the integration into content 
courses is relatively new, designing instruction with professionally noticing in mind needs 
careful thought and consideration. 

The noticing curriculum discussed in this paper is experimental and contains multiple content 
modules. Each module has four phases designed to weave the learning of content and the 
learning of noticing together. The focus of this paper is on the potential learning of professional 
noticing provided by the structure of the various modules within the four phases of module 1 as 
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examined through the lens of VTL. We discuss the potential learning within the context of the 
first content module: counting strategies related to addition and subtraction as used with word 
problems.  

Within Phase 1, the preservice teachers are prompted to solve a task (Figure 1) in as many 
ways as possible. The various solution strategies will then be shared and discussed as a class, and 
together they will hypothesize other ways students might solve the task. The goal of this phase is 
for preservice teachers to see and understand multiple counting strategies related to a single task 
their future students might use.  

 

 
Figure 1: Task from Counting Strategies Module 

 
In Phase 2, the preservice teachers watch a video case of a teacher implementing the same 

task with her elementary students in Phase 2. The preservice teachers read a description of the 
elementary classroom context and are encouraged watch the video twice: first without a specific 
purpose and again to answer reflecting questions. The goal of this phase is to support the 
preservice teachers in noticing children’s mathematical thinking, attending to the various 
solution strategies and making interpretations about them, and in providing evidence to support 
their claims. Phase 3 has preservice teachers analyze student work samples for a task with the 
same context but new numbers. The work samples came from the same students in the video 
case. The purpose of this phase is to have preservice teachers recognize there are multiple 
representations within which they can notice and attend to student mathematical thinking. 
Finally, in Phase 4, the preservice teachers review student work samples from the same students 
of a new task with a different context, but accessible using similar counting strategies. The intent 
of this phase is to extend preservice teachers’ noticing of student work related to counting 
strategies with respect to other problem contexts. 

The Variation Theory of Learning 
A theory developed from empirical research in the classroom, the Variation Theory of 

Learning (VTL) (Marton, 2015) is uniquely suited to the investigation of learning opportunities 
in a postsecondary classroom for prospective teachers. VTL has two main tenants: humans 
discern elements of our world by attending to difference against a background of sameness; and 
one cannot learn unless there is something to be learned, which is called the object of learning 
(OL). VTL examines learning through the lens of variation that occurs with respect to the OL 
(Runesson, 2005). To discern the OL, one must see the OLs necessary dimensions of variation 
and their features. Dimensions of variation (DoVs) are important components to understand in 
order to make sense of the OL, while features are characteristics of the DoVs (Figure 2).  

 

 
Figure 2: Structure of VTL Terminology 
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Marton (2015) describes four types of variation: 1) contrast, 2) generalization, 3) fusion, and 
4) repetition. The type of variation depends on which dimension is in focus for the learner (Table 
1). In order to discern the OL, one must first separate the necessary DoVs from each other. To 
separate a dimension from the others, the learner must experience a contrast followed by a 
generalization in relation to that DoV. The progression from contrast to generalization separates 
the focus DoV from the others, which is best done one dimension at a time (Pang & Marton, 
2013). The learner must then bring the dimensions back together again with a fusion. 

 
Table 1: Types of Variation 

Type of Variation Dimension in Focus Other Dimensions 
Contrast Variant Invariant 
Generalization Invariant Variant 
Fusion Variant Variant 
Repetition Invariant Invariant 

 
Beyond articulating the relationships between the object of learning, dimensions, features, 

and types of variation, Marton (2015) describes the various perspectives from which one can see 
these elements. An OL can be identified or determined from three different perspectives: the 
intended object of learning, the enacted object of learning, and the lived object of learning. The 
distinctions between these three elements are akin to recognizing what the teacher or curriculum 
designer intends to be learned (intended OL) is potentially different from what is made possible 
to learn during instruction (enacted OL) and from what the individual students actually learn 
(lived OL). In this paper, we analyze the curriculum from the perspective of the intended OL. 

Seeing the Curriculum through the Lens of Variation Theory of Learning 
In this section, we analyze the elements of the curriculum from the lens of VTL in order to 

articulate what the curriculum could afford the preservice teachers to learn about professional 
noticing. To that end, we establish the intended OL as: professionally noticing student thinking 
related to counting strategies and consider how the variation within the curriculum addresses that 
intended OL. 

For the aforementioned intended OL, we envision two necessary dimensions (Figure 3). The 
first dimension relates to a teacher’s understanding of counting strategies (DoV1), while the 
second dimension is the act of noticing student mathematical thinking (DoV2). Whether or not 
prospective teachers have opportunities to learn the OL depends on the careful structuring of 
variation which make the dimensions and OL visible to learners in the curriculum. 

 

 
Figure 3: Learning to Notice VTL Structure 
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To uncover what the curriculum affords preservice teachers to learn about professional 
noticing, we examined the phases through the lens of VTL. Specifically, we considered the 
variation that could arise both within and across DoV1 and DoV2 as the preservice teachers 
progress through the four phases (Table 2). We hypothesize preservice teachers will have ample 
opportunity to discern elements surrounding DoV1. In particular, experiences within and from 
Phase 1 and Phase 2 surface a contrast and a generalization related to the idea that the strategies 
elementary students might employ to solve problems differ from how the preservice teachers 
themselves would solve the problem. Furthermore, the preservice teachers have opportunities to 
grapple with and understand the multiple counting strategies students might employ. 

On the other hand, the curriculum does not explicitly provide the preservice teachers an 
opportunity to separate DoV2, noticing student thinking, from other dimensions through a 
contrast. To provide a contrast and open DoV2, one could encourage preservice teachers to see 
the authentic classroom instruction through various lenses such as classroom management, or 
how the students are grouped, or who is given authority to talk, in order to discern what it means 
to notice a specific element of instruction. The curriculum does afford the preservice teachers an 
opportunity to experience the dimension in Phase 3 through an induction, which is the same type 
of variation as a generalization without a contrast happening first. Finally, the curriculum 
provides an opportunity for preservice teachers to bring the dimensions together through a fusion 
in Phase 4. 

 
Table 2: Variation across Phases 

Variation Type DoV1: Counting Strategies DoV2: Noticing of Student Thinking 

Contrast Phase 1 – preservice teachers see 
different solution strategies for the 
same task. The solutions are from 
their classmates. 

Does not occur 

Generalization Phase 2 - When watching the 
classroom video, the focus is still 
on the different solution strategies, 
however actual elementary students 
are now surfacing those strategies.  

Phase 3 – Moving from Phase 2 to 
Phase 3, solution strategies and 
students remain invariant, but 
representations of student thinking 
(verbal/written) changes.  
***Technically an induction.  

Fusion Phase 4 – A new task context is provided that allows for the solution 
strategies and what the preservice teachers notice to vary.  

Conclusion and Discussion 
In this brief, we show how VTL as a lens to examine curriculum explicitly identifies and 
illuminates what the preservice teachers could have the opportunity to learn about professional 
noticing through engaging with the phases in the curriculum. Furthermore, the theory provides 
insight into elements that may be missing from the curriculum, such as providing an opportunity 
for students to learn what it means to notice a particular element emerging during instruction, 
like student thinking. In this, we offer insights into how VTL may support researchers and 
teacher educators in their development of preservice teachers’ professional noticing of children’s 
mathematical thinking. 
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In this paper, we report findings from an analysis of four triangle congruency lessons from a 
grade 8 mathematics textbook from China, using the Mathematics Curriculum as A Story 
framework developed by Dietiker (2015). We found that the Chinese textbook organized the four 
lessons under a four-level-plot structure to answer only one overarching explorative question: 
“Can we guarantee triangle congruence using a sub-set of conditions?” which connects triangle 
congruence criteria well for easier sense making. We also found that the textbook provides 
students with varied reasoning and proof opportunities by embodying rich actions and real-life 
context in the tasks. The findings of this study demonstrate the illuminating power of the 
Curriculum as a Story framework to fill the gap of current textbook analysis research.   

Keywords: Curriculum, Geometry and Spatial Reasoning, Middle School Education 

Objectives 
Mathematics textbooks have long been regarded as a bridge between the intended 

curriculum, such as national curriculum standards, and the implemented curriculum, i.e., the 
actual teaching in the classroom (Valverde et al., 2002). They determine, to a high degree, what 
teachers teach and what students learn (Stein et al., 2007). Fan et al. (2013) proposed a 
framework for classifying the literature on mathematics textbook research studies that includes 
four main categories: role of textbooks, textbook analysis and comparison, textbook use, and 
other areas. The primary goal of all these analyses is to provide a proxy measure for the potential 
learning opportunities afforded by each textbook.  

Using approaches described above, research on mathematics textbooks have made significant 
contributions to identify and report features that can be used as the basis for comparisons.  
However, these findings collectively, still fail to provide a sense of the changes and flows of the 
mathematical content throughout a textbook nor are they able to account for the aesthetic of 
sequencing and presenting ideas in one way verse another way. As an old Chinese fable says, it 
would not be possible for a group of blind people to get an idea of what an elephant looks like by 
just sharing their individual experience obtained from touching parts of the real elephant.  
Recognizing this limitation of the current research on mathematics textbook analysis, Dietiker 
(2015) proposed a conceptualization of mathematics textbook as a story that provides a holistic 
view of curriculum to examine the connections as well as sequences between mathematical 
ideas. Thus, applying Dietiker's (2015) narrative framework, our current investigation is guided 
by a general question, "how does a textbook tell a story of triangle congruency?" Specifically, we 
focus on understanding how an eighth-grade mathematics textbook published by People’s 
Education Press (PEP, 2013) in China tell the story of triangle congruency.  

We chose the concept of congruency as the content focus for this study for two main reasons.  
First, it is an important and common topic in geometry curriculum worldwide (Jones & Fujita, 
2013). The idea that a partial set of all angle and side length measures can guarantee congruency 
between two given polygons is a unique property of triangles, which provides a rich setting for 
developing students’ geometric intuition and ability to perform deductive proof (Wang et al., 
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2018). Second, previous studies found triangle congruence a challenging topic for students 
worldwide (e.g., Wang et al., 2018). A recent review comparing the introduction of triangle of 
congruency in a Chinese and a U.S textbook found that while both textbooks introduced the 
same set of congruent triangle conditions to their students, the sequence of how these criteria 
were introduced were quite different (Lo, Zhou & Liu, 2021). The findings of the present study 
on Chinese lessons will lay the beginning of the groundwork for the future investigation on the 
effect of different approaches mathematics textbooks use to present triangle congruence 
theorems on students’ learning.  

Theoretical Perspectives 
According to Dietiker (2015), a mathematics story contains four main elements: 

mathematical characters, mathematical actions, mathematical setting, and mathematical plot. 
Mathematical characters are “figures” that were brought into existence by descriptive naming 
that could be in a variety of forms such as words, graphs, tables, or symbolic forms. In a story, 
mathematical characters can take on multiple forms via the process of mathematical character 
development which could be the main focus of the story. In addition, a story can also be about 
the relationships among multiple mathematical characters. Mathematical actions are 
manipulations taken on a mathematical character that results in a mathematical change. Other 
than moving a mathematical story forward, mathematical actions can create a new mathematical 
character for a story. Dietiker (2015) gave an example of a story of counting to find the quantity 
of the number of remaining objects after removing one at a time. This sequence of action will 
result in a surprising result of naming a quantity when nothing is left to be counted.   

Dietiker (2015) defines mathematical setting as the space in which the mathematical 
character emerged and developed via mathematical actions. One way to conceptualize a 
mathematical setting is the mathematical representation in which mathematical characters move 
about which can affect both the richness and the interpretations of the story. For example, a 
“function” character that lives in a mathematical setting of multiple representations afford richer 
learning opportunities for students to know this character.   

A mathematical plot is the “potential temporal dynamics of the story that encourages (or 
discourages) a reader to continue to advance through the mathematical story” (Dietiker, 2015, p. 
299). Dietiker and Richman (2017) identify two main features of a mathematical plot: the 
sequence of the events unfolded within the story, and both the known and unknown felt by the 
reader as they were propelled to read on by the moment-to-moment tension. Dietiker (2015) 
suggested that a careful analysis of a mathematics curriculum via mathematical characters, 
actions, settings, and plots would help teachers and curriculum developers identify the potential 
challenging spots for the students which could then guide the future curriculum improvement.    

Methodology  
The design of the study was informed by the theoretical perspectives and framing outline 

above and the analysis was conducted by the constant comparative analysis (Stake, 2000).   
Setting: 

The Chinese education system is highly centralized. There is only one set of national 
mathematics curriculum standards: Compulsory Education Mathematics Curriculum Standards 
(CMCS) (Ministry of Education, 2012) which have to be followed strictly by all textbook series.  
In CMCS, the content of triangle congruence is considered as a part of a larger topic,          
Triangles. Under the topic of Triangle, CMCS has six expectations: 1) understand special lines in 
triangles, 2) explore and prove triangle sum theorem and its deduction, 3) master triangle 
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congruence, 4) explore and prove the properties of angle bisector line and perpendicular bisector, 
5) explore isosceles triangle and right triangle, and 6) explore the Pythagorean theorem and its 
converse theorem.  In this study, the lessons we focused on belong to third expectation: master 
triangle congruence.  
Data Set  

An eighth-grade math textbook published by People’s Education Press (PEP, 2013) was 
selected for this analysis. Among Chinese textbook publishers, People’s Education Press has the 
longest history in developing K-12 curriculum in all subjects, and their mathematics textbooks 
were most widely analyzed (e.g., Cai & Jiang, 2017; Fan & Zhu, 2007). The primary data set for 
this study is the section 12.2 of the eight-grade mathematics textbook. PEP Math devoted four 
lessons to the five congruent triangle criteria: side-side-side (SSS; Lesson 1), side-angle-side 
( SAS; Lesson 2), angle-side-angle and angle-angle-side (ASA & AAS; Lesson 3), and 
hypotenuse-Leg (HL; Lesson 4). There was also additional investigation of the criteria that did 
not work such as side-side-angle (SSA) in Lesson 2 and in angle-angle-angle (AAA; Lesson 3).   
Data Analysis  

The analyses of the congruent triangle units were carried out jointly by the three authors 
based on the narrative framework developed by Dietiker (2012, 2015). Each of the authors first 
read the textbook unit independently following the reading practices discussed in Dietiker (2012) 
as discussed below. We each wrote a story summary based on our notes taken during this first-
read with an eye toward prompts, questions and anticipations, as well as character development. 
We shared and discussed our interpretations multiple times to meet a consensus. Constant 
comparisons (Stake, 2000) were used throughout the process to look for emerging themes and 
evidence that either support or inconsistent with our ongoing narrative. Then we met on-line to 
develop the first joint story summary by combining all the distinct details as well as resolving 
any differences in our own reading of the story. The same process was repeated to fine-tuning 
each story by focusing on the other constructs of the framework, like actions and settings.  

The mathematical story of triangle congruency we will be sharing with you is influenced by 
our own unique prior experiences with textbooks, mathematics, and education systems and 
cultures. All of us received K-16 education in Chinese education systems and came to the United 
States for our graduate degrees in mathematics education. Crossing cultural learning and 
teaching provided us a comparative perspective on mathematics curriculum which motivates us 
as mathematics teacher educators to conduct curriculum analysis and provide suggestions for 
developing effective curriculum. when we developed our knowledge and skills of mathematics 
curriculum analysis.       

Findings  
Because of the space limitation, we will limit our findings on the plots and actions of the 

stories. We will first describe the four-level plots of the congruent triangle story. Then, we will 
take a closer look at  the plots around the introduction and development of the first explored 
condition: SSS. Finally, we identify several different types of actions employed by the students 
when investigating various mathematical characters: triangles with various types of properties.   
Plots 

PEP Math introduces the congruent triangles as a special case of congruent figures that have 
the same sizes and shapes. Therefore, when two triangles are congruent (△ABC ≅△A'B'C'), 
their three corresponding sides and angles are congruent.  That is, the following six conditions 
exist: AB=A'B', BC=B'C', CA=C'A'; ∠A=∠A', ∠B=∠B', ∠C=∠C'. Our read of the story 
uncovered four levels of plots as seen from Figure 1. 
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Note: L1_E1 means Lesson 1 Exploration 1; 2S1A means two pairs of congruent sides and one 
pair of congruent angles; A tick off means could guarantee triangle congruency; Cross means 
could not guarantee triangle congruency. 

Figure 1: Four level mathematical plots of the congruent triangle story 

First-level plot. The students were invited to explore the first-level, the overarching, plot via 
the following question: “Is it possible to identify various subsets of these six conditions that will 
also make two triangles congruent?”   

Second level plots. In order to answer the questions posted in the first-level plot, students 
need to identify the potential subsets of these six conditions. Using a listing strategy, students 
may know the possible subsets including only one set, two sets, three sets, four sets, and five sets 
of congruent sides or angle conditions may guarantee triangle congruency. Therefore, to support 
the development of the first-level plot, there are five potential second level plots: will one, two, 
three, four, or five sets of congruent sides or angle conditions guarantee triangle congruency. The 
textbook first invited the students to ponder the following question “Will one or two sets of 
congruent sides or angle conditions guarantee triangle congruency?” by a series of drawings: 
“Start with an arbitrary triangle △ABC. Then draw a triangle △A'B'C' with just 1 criteria (one 
pair of congruent sides or one pair of congruent angles) or 2 criteria (two pairs of congruent 
angles, two pairs of congruent sides or one pair of congruent angles and one pair of congruent 
sides) of △ABC. Is △A'B'C' guaranteed to △ABC? (p. 35). The students were expected to 
provide counterexamples to reach the conclusion “no”.  

Third-level plots. The story then asked students to explore the question: “Will three sets of 
congruent conditions guarantee triangle congruency?” Answering this question led to an 
exploration of the third-level of plots. There are four kinds of combinations of three subsets of 
these six congruent conditions could be three pairs of congruent sides (3S0A), two pairs of 
congruent sides and one pair of congruent angles (2S1A), two pairs of congruent angles and one 
pair of congruent sides(1S2A), three pairs of congruent angles (0S3A). For each kind of 
combination, different order of congruent conditions leads to different arrangements, which leads 
to the fourth-level of plots.  
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Fourth-level plots. As Figure 1 shows, we identified eight different arrangements, including 
SSS; SSA, SAS, ASS; SAA, ASA, AAS; and AAA, all these can be considered different 
characters of the story. However, because a triangle is a closed figure with three sides and three 
angles, SSA can be understood as ASS, SAA can be understood as AAS. Therefore, we shaded 
ASS and AAS in grey, which are not explored by the textbook. After exploring all the six 
general arrangements, the textbook explored hypodense-leg (HL) which was a special case of 
SSA that was rejected earlier. Specifically, PEP confirmed five triangle congruency criteria in 
the following sequence: SSS, SAS, ASA, AAS, and HL It also rejected two criteria: SSA along 
with SAS, and AAA right after AAS.  

The story ends with an exploration of a special case of right triangles (HL), a new character.  
The text invited students with the following question “With a pair of right triangles that already 
shared a pair of congruent right angles, what other conditions would be needed to establish their 
congruency?” The story then pointed to the students that based on the triangle congruent 
theorems already learned, two right triangles will be congruent if either 1) the pairs of two sides 
of the right angles were congruent or 2) there is a pair of congruent sides and a pair of congruent 
acute angles. Notice that the first condition will lead to SAS with the right angles be the 
congruent angles, and the second condition will lead either to ASA or AAS. However, the 
textbook did not provide these reasoning directly. Those two conditions were left for the students 
to explore. After those two conditions were confirmed, there was only one case left: What if the 
two right triangles shared a pair of congruent hypotheses and another pair of side.  Note that this 
is the condition of SSA which was rejected as a valid congruency condition in the earlier lesson, 
so the students were likely to be intrigued.  
A Closer Look at the Plots of The First Lesson on SSS 

The story asks students to conduct the following exploration: Draw an arbitrary triangle.  
Then draw another triangle such that their three side measures are equal. Cut the triangle out and 
place it on top of the original triangle. Are they congruent? While the narrative initially leaves it 
open to the various approach students may use to answer this question, the story soon provides 
detailed step-by-step straight-edge & compass constructions to create a new triangle that has 
three sides congruent to those of the original triangle. Then students are asked if their steps are as 
same as the narrative and what conclusion they can reach from this exploration. The story then 
affirms the SSS condition. Further, the students are reminded of a previous experiment of 
creating a triangle with three wooden sticks. Once the triangle is created, both the shape and size 
of the triangle is determined. 

The story then provides two worked-out examples to help students apply the newly learned 
SSS condition. The first example can be seen in Figure 2.   

 
In 𝛥𝐴𝐵𝐶, 𝐴𝐵 = 𝐴𝐶, 
S𝑒𝑔𝑚𝑒𝑛𝑡 𝐴𝐷 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑠 𝐴 𝑎𝑛𝑑 𝐷, 
𝑤ℎ𝑒𝑟𝑒 𝐷 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝐵𝐶.  
 𝑃𝑟𝑜𝑣𝑒 𝑡ℎ𝑎𝑡 𝛥𝐴𝐵𝐷 ≅ 𝛥𝐴𝐶𝐷 

 
 

Figure 2. The first worked-out example after SSS is introduced (p. 36, PEP, 2013) 

Before showing students the complete proof, the story first provides a pre-analysis, asking 
students to identify SSS conditions in the given problem. One pair of congruent sides, AB=AC, 
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was already given. Segment AD, as a shared side, provides the second pair of congruent sides, 
AD=AD. The condition that D is the midpoint of side BC provides the third pair of congruent 
sides, BD=CD. The second worked-out example shows students how to construct a congruent 
angle with the straightedge & compass -using the SSS condition as follows (Figure 3).  

 

  
 

1) As in the figure, use O as the center of the circle, 
arbitrary length as the radius, draw an arc that 
intersects OA and OB at points C and D.   

2) Draw a ray 𝑂′𝐴′. Use 𝑂′ as the center, the length 
of OC as the radius, draw an arc intersects 𝑂′𝐴′ at 
point 𝐶′. 

3) Use 𝐶′ as the center, the length CD as the radius, 
intersects the arc drawn in Step 2 at point D.  

4) From D’, draw a ray 𝑂′𝐵′. Then∠𝐴′𝑂′𝐵′ =
∠𝐴𝑂𝐵. 

Figure 3. The second worked-out example after SSS is introduced (p. 37, PEP, 2013)  

The story of the SSS ends with two exercises that could be completed by students. The first 
exercise is another deductive proof similar to the worked-out example in Figure 2. The second 
exercise is a construction of an angle bisector of a given angle in the context of a construction 
trade as seen in Figure 4.   

 

 
 

Construction workers often use a carpenter square to 
bisect an arbitrary angle.  They used the following 
method as shown in the diagram: ∠𝐴𝑂𝐵 is an arbitrary 
angle. On the segments OA and OB, pick OM=ON. 
Move the carpenter square so that the same distance 
markers on the two legs of the carpenter square will 
coincide with M and N. Then the ray formed by the 
vertex of the carpenter angle, C, and point O will be the 
angle bisector of ∠𝐴𝑂𝐵. Why does this method work? 

Figure 4. The second exercise at the end of SSS story (p. 37, PEP, 2013) 

Actions 
The story of congruent triangles in PEP Math engaged students in several different types of 

actions when exploring conjectures, establishing congruent criteria, constructing deductive 
proofs or to solving problems embedded in the real-life context that require the use of triangle 
congruent criteria they have just learned. Table 1 includes the frequency of each action type 
needed for the 20 tasks analyzed in this units.  All tasks require multiple actions to complete.   

 
Table 1. Frequency of each action within the story    

Action 
Type 

Drawing 
and direct 
comparison  

Straight-edge 
& compass 
construction  

Translating Applying Corres-
ponding  

Joining & 
separating 

Frequency  9 6 28 18 11 2 
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The first action is “drawing and direct comparing”. When a conjecture was first posted, the 
students were advised to draw a triangle with the given condition to see if different ones could be 
created. If so, the original condition was rejected. If no different triangle could be drawn, the 
story then guided students to the second action, “the straight-edge & compass construction.” This 
action was used to prove SSS, SAS, ASA and HL. The third action is “translating”, for example, 
when students read the statement “…D which is the midpoint of AB” in Figure 2, they need to 
translate that statement into the existence of two congruent line segments, AD and BD. And 
when they see the diagram in Figure 2, they need to translate the image of a “shared side” of two 
triangles into the existence of a congruent side relationship in these two triangles.  

The fourth action is “applying”. This includes both applying various congruent conditions to 
perform conductive deductive proofs as well as solve word problems embedded in real-life 
context.  It also includes applying previous learned properties such as vertical angles are 
congruent and sum of the three interior angle measures of any triangle is 180° were used to 
identify pairs of congruent angles. The vertical angle property was first used in a worked-out 
example in Lesson One and then in an exercise in Lesson Three. And the property that the sum 
of the three interior angle measures of any triangle is 180° was used in a worked-out example in 
Lesson Three when applying ASA condition to prove AAS. 

The fifth action is “corresponding”, students need to mentally manipulating the figures in the 
problem in order to establish the corresponding sides and angles correctly. The sixth action is 
“joining or separating”, for example, a pair of congruent sides of two triangles could be 
constructed from two congruent sub-segments and a shared segment via either the addition or 
subtraction property. Example in Figure 5 requires both the fifth and the sixth actions. The 
problem statement already contains a pair of congruent sides, AB=DC, and one pair of congruent 
angles, ∠𝐵 = ∠𝐶. It is likely that students would think of using the SAS condition. They needed 
to mentally orient those two triangles given in the figure based on the locations of the 
corresponding angles and sides to identify the pair of two triangles, ∆𝐴𝐵𝐹 𝑎𝑛𝑑 ∆𝐷𝐶𝐸,  that are 
likely to be congruent. To establish the congruency between these two triangles, they would need 
an additional pair of congruent sides: BF and CE. Here is where they need to use the constant 
addition property BE=CF on a shared line segment EF so that BE+EF=CF+FE. Thus, BF = CE.  

 
The points E and F are on the segment BC, 
BE=CF, AB=DC, ∠B=∠C. Prove ∠A=∠D 
 

 
Figure 5.  An example of an exercise requires two different actions p. 39, PEP, 2013) 

Conclusion and Implications  
In this paper, we tell a story of how a Chinese textbook, PEP Math, helps their students to 

develop their concepts of triangle congruency based on the “Mathematics curriculum as a 
mathematical story” framework outlined by Dietiker (2012, 2015). The main plot started with 
SSS, a condition with three congruent sides, and proceeded systematically through the conditions 
with two sides and an angle, one sides and two angles, and three angles. Both the valid and 
invalid conditions were investigated under a specific case. The entire story ended with an 
investigation on right triangles which is a special case as one congruent condition was 
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guaranteed. A variety of mathematical actions were used both in real life context and deductive 
proofs to provide students with rich opportunities to make conjectures, conduct systematic 
investigation, and apply what they have learned in new explorations.  

These findings have two significances. First, it shows that using the curriculum as a story 
framework, especially the plot component, brought new affordance for examining curriculum 
coherence in a structural perspective that went beyond tasks analysis. Second, it shows the 
possibility of organizing the exploration of different triangle congruence criteria as an inquiry 
that could be systematically examined. All the lessons we analyzed are designed and organized 
to answer only one overarching explorative question: can we guarantee triangle congruence 
using a sub-set of conditions? Doing so, the criteria are well connected which is easier to make 
sense of. 

This story is told from the perspectives of three mathematics education researchers who grew 
up with Chinese education systems. We acknowledge the influence of this background. The 
mathematics story framework provided us a holistic lens to investigate the topic of congruency. 
Even though we are familiar with the content, the story framework not only allow us to view 
mathematics content through a literary lens but also help us to capture nuance information that 
were hidden from us before this investigation. For example, PEP follows the similar lesson 
structure and provide multiple opportunities for students to use the same sets of mathematical 
actions while investigating conjectures and solving problems that are embedded in a variety of 
different settings. Using straightedge & compass construction as the only action to establish the 
congruent condition makes it necessary to start the story with SSS condition. These approaches 
reflect a distinct philosophy of the curriculum design including how the content is organized to 
follow the logical sequence and how the topic connects with other previous mathematical ideas 
and prepare for the future learning. They also open a variety of research questions that worth 
investigation. For example, how might our read of the congruent triangle story similar or 
different from the reads by teachers and students? Do stories on other important mathematics 
topics such as quadratic functions told by PEP math share the same design features such as 
arranging content based on logical sequence and high intensity of repeatedly utilizing the same 
mathematical actions? Similar investigation on the stories told by other mathematics textbooks 
may uncovered more curriculum design features that can be used to create appealing and have 
the high potential to help students. particularly those who are on the margins of these 
communities, to reach the learning goals as called by the 2022 PMENA Conference Theme.   

Future studies could use these kinds of rich textbook analyses to develop assessment 
items that are more sensitive to the variations in the story told by different mathematics 
textbook that might contribute to the difference in student performances. For example, 
Common Core State Standards defines congruent figures via rigid transformations, which 
is different from the straightedge & compass construction typically used by the Chinese 
textbooks. Fan et al. (2017) found no significant difference in students’ ability to solve 
general proof questions from their quasi-experimental study with two groups of eighth-
grade Chinese students. The control group received regular instruction based on straight-
edge & compass constructions, while the transformation instruction was integrated into 
their regular lessons on writing proof in the experimental group. However, the 
experimental group performed much better than the control group on challenging 
problems involving constructing auxiliary lines. More stories of the introduction and 
development of other important mathematics topics would make it possible to deepen the 
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investigation on the link between textbook and student learning, suggested by Fan et al. 
(2013) as a critical research area that needs more work. 
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Over the past few decades, researchers have adopted forms of abstraction introduced by Piaget 
to build explanatory models of student and teacher knowledge. Although Piaget’s forms of 
abstraction have proved productive for developing models of knowledge, their broader 
applicability to mathematics education remains an open question. In this brief report, we extend 
these forms of abstraction in order to analyze hypothetical outcomes of teachers’ enactment of 
instructional materials.   

Keywords: Cognition, Learning Theory, Curriculum 

Piaget’s (1970, 2001) genetic epistemology has played a critical role in mathematics 
education via researchers adopting his theory to develop models of students’ mathematics, 
models of teachers’ mathematics, and models of student-teacher interactions. Researchers 
carrying out this work have provided important insights into those meanings that prove 
productive for students’ mathematical development, as well as those meanings that constrain 
students’ mathematical development (Steffe & Olive, 2010; Thompson, 2013). Furthermore, 
these researchers have provided useful ways to characterize teaching in terms of teacher 
knowledge necessary to build upon students’ ways of thinking (Liang, 2021; Tallman, 2015). 

An important construct spanning these contributions is that of abstraction. Stated generally, 
abstraction is the process by which an individual develops stable, generalized knowledge 
structures. To Piaget, abstraction provided a vehicle to developing precise accounts of 
knowledge development while also articulating generalized differentiated characteristics of 
knowledge structures. Piaget proposed several forms of abstraction including empirical, pseudo-
empirical, reflecting, and reflected abstraction (Montangero & Maurice-Naville, 1997; Piaget, 
2001). Mathematics educators have adopted these forms to provide differentiated accounts of 
student and teacher knowledge in numerous contexts (Ellis et al., in preparation; Tallman & 
O’Bryan, in preparation; Thompson, 1994). 

Given the usefulness of Piaget’s forms of abstraction for developing accounts of student and 
teacher knowledge, it is plausible that the forms of abstraction are productive for analyzing other 
aspects contributing to the teaching and learning of mathematics. In this brief report, we extend 
Piaget’s forms of abstraction in order to analyze instructional materials. Specifically, we analyze 
two secondary teachers’ instructional materials for teaching quadratic growth in order to develop 
hypotheses of the knowledge students may abstract from engaging in those materials. Because 
this is a brief report, we close with potential implications of this work and future directions 
building on this preliminary analysis.  

Background 
Ellis et al. (in preparation) and Tallman and O’Bryan (in preparation) synthesized Piaget’s 

forms of abstraction and described how mathematics education researchers have adapted these 
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forms of abstraction to be viable in their areas of research. Empirical abstractions primarily 
concern observables and foreground sensory-motor experience, and reflected abstractions rest on 
a subject’s consciousness of their ways of operating. These two forms of abstraction are critical 
aspects of knowledge development, but they are less relevant to the analysis of secondary 
mathematics instructional materials when compared to the two forms of reflective abstraction 
that are pseudo-empirical abstraction and reflecting abstraction.  

Speaking on pseudo-empirical abstraction, Piaget (1977) explained, “When the object has 
been modified by the subject’s actions and enriched by the properties drawn from their 
coordinations…the abstraction bearing upon these properties is called ‘pseudo- empirical’ 
because…the facts it reveals concern, in reality, the products of the coordination of the subject’s 
actions…” (p. 303). To Piaget, a critical aspect of pseudo-empirical abstraction is that such an 
abstraction requires the presence of perceptual material or observables and foregrounds actions 
on that available material. Drawing on the work of Moore (2014), Ellis et al. (in preparation) 
argued for extending Piaget’s construct of pseudo-empirical abstraction so that “perceptual 
material” or “observables” includes the products of activity, even if these products of activity are 
purely cognitive. As they illustrated, such an extension of pseudo-empirical abstraction is 
productive for developing viable models of students’ mathematics at numerous levels. 

Piaget’s distinction between pseudo-empirical abstraction and reflecting abstraction rested on 
the extent perceptual material or observables are required. Ellis et al. (in preparation) noted that 
the broader interpretation of pseudo-empirical abstraction provided above requires a more 
restrictive framing of reflecting abstraction. A primary difference between these two forms of 
abstraction is that while the source material for pseudo-empirical abstractions is perceptual 
material or the result of actions, the source material for reflecting abstractions is the coordination 
of a subject’s actions themselves. Reflecting abstractions thus involve differentiating an action 
from the effect of an action so that the actions themselves can be projected to a level of 
representation and taken as objects of thought (Ellis et al., in preparation; Tallman & O’Bryan, in 
preparation; Thompson, 1994). As we illustrate with our task analysis, these differences in the 
source material for a subject’s abstractions have important implications for their learning.  

Project Setting and Methods 
The current work is situated in a multi-year project investigating students’ generalizing 

including the ways in which teachers support generalizing in their teaching (Ellis et al., in press; 
Ellis et al., 2017). Our approach to generalization is cognitive, drawing on an actor-oriented 
perspective as detailed by Ellis et al. (in press). The project’s guiding research questions are: 
What are the opportunities for generalizing in classroom settings? Specifically, what types of 
instructional moves, student engagement, and enacted tasks support classroom generalizing? The 
current paper addresses these questions by investigating the abstractions potentially supported 
during the implementation of instructional materials. 

The project involves two high school teachers and two middle school teachers. We 
concentrate this paper on the two high school teachers’ instructional materials in order to restrict 
our focus to one content area. We analyzed the instructional materials using conceptual analysis 
(Thompson, 2008) with a guiding framework of the forms of abstraction identified above. At its 
most general level, conceptual analysis involves answering the question, “What mental 
operations must be carried out to see the presented situation in the particular way one is seeing 
it?” (von Glasersfeld, 1995, p. 78). With respect to analyzing curricular materials, conceptual 
analysis involves developing hypothetical accounts of realized curriculum (Kilpatrick, 2011) or 
conveyed meanings (Tallman & Frank, 2020). This is accomplished via generating and 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

177



interpreting “typical” solutions to the instructional materials using the lens of abstraction in 
combination with ways of reasoning held by secondary mathematics students as suggested by 
research (Ellis, 2011; Ellis & Grinstead, 2008; Fonger et al., 2020; Moore et al., 2019).  

Tasks and Task Analysis 
The two secondary teachers’ instructional activity focused on quadratic growth. The 

instructional activity explored a sequence of discretely growing shapes (see one example in 
Figure 1) with the intention that students identify patterns in quantities’ values including their 
first- and second-differences. The primary goal and generalization of the activity was to identify 
that for successive equal increases in Q_A of a situation (e.g., sail size), Q_B (e.g., sail area) 
increases by constantly increasing amounts, and that such a covariational relationship is modeled 
by a quadratic relationship. We discuss hypothetical pseudo-empirical and reflecting abstractions 
against the backdrop of the aforementioned goal. Underscoring that the forms of abstraction are 
cognitive constructs, we discuss each form of abstraction using a typical solution that involves a 
student generating a table of values, first-differences, second-differences, and a formula.   

 
Figure 1: Example Activity (left) and a “Typical” Student Solution (right) 

 
Pseudo-Empirical Abstraction 

After working a series of activities like that presented in Figure 1, a student might observe 
that each time they obtain constant second-differences in a quantity, a quadratic formula models 
the situation. Recall that pseudo-empirical abstractions are those abstractions that foreground 
“perceptual material” or “observables” including the products of activity. In the case of the 
example activity (Figure 1), the products of activity include a table of values and a quadratic 
formula. Thus, the observation of the student would be a pseudo-empirical abstraction if their 
association is strictly based on noticing that constant second-differences were accompanied by a 
quadratic formula. The abstraction consists of an indexical association between constant-second 
differences and a quadratic formula with no logico-mathematical operations forming the basis for 
that association. The actions that produced the table of values and formula are inconsequential to 
the abstraction except in that they yielded an outcome or product to act as source material for the 
student’s abstraction. We contrast this with a reflecting abstraction in the next section.  
Reflecting Abstraction  

A limitation of pseudo-empirical abstractions stems from the abstraction foregrounding the 
products of actions rather than the actions themselves. For instance, and based on our 
experiences with students, the abstraction described in the previous section often results in the 
student associating a quadratic formula with constant second-differences regardless of how the 
other quantity’s values are ordered in a table (e.g., non-constant first-differences in Q_A that 
produce constant second-differences in Q_B). In the case of the example activity and solution in 
Figure 1, a reflecting abstraction that foregrounds the coordination of actions and their results 
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would involve a student reflecting upon both the quantitative referents of their tabular activity, as 
well as how their relationship necessitates a quadratic formula. 

With respect to the tabular activity, this would involve the student conceiving first-
differences as the amount by which a quantity increases (or decreases) and second-differences as 
the amount by which a quantity’s increase increases (or decreases) as shown in Figure 2. 
Furthermore, because a reflecting abstraction foregrounds the coordination of actions as opposed 
to the products of actions, the student’s abstraction would include awareness that the constant 
“+1” increases in size are intrinsic to the constantly increasing increase in area. With respect to a 
quadratic formula model, a reflecting abstraction involves understanding how the 
aforementioned quantitative relationship necessitates a second-degree polynomial. Although the 
connection between the two is not trivial, researchers (Ellis, 2011; Ellis & Grinstead, 2008; 
Fonger et al., 2020) have illustrated its feasibility for students including those in middle grades. 

 

 
Figure 2: Conceiving first- and second-differences quantitatively 

Discussion and Future Work 
Although we are not aware of studies that have used the aforementioned forms of abstraction 

to develop hypothetical accounts of student activity in the context of teachers’ instructional 
materials, mathematics education researchers and teachers have been sensitive to the role of 
abstraction in instructional design. For example, it is impossible to read the collective works of 
Steffe or Thompson and not sense the forms of abstraction directly informing their work even 
when not explicitly mentioned. As another example, Oehrtman (2008) provided a more general 
description of how Piaget’s notion of abstraction can inform a layered sequence of activities so 
that students have the opportunity to reflect upon and identify common structures in their actions 
across a variety of contexts. In each of these cases, researchers leveraged abstraction in the 
context of their own research-based work and design. We find it important to include a 
complementary focus on teachers’ extant instructional materials, as those materials play a 
significant role in students’ educational experiences. 

We illustrated that an abstraction framing provides a way to analyze instructional materials 
and produce differentiated accounts of knowledge development. Moving forward, we envision 
several productive avenues to continue investigating the viability of this framing. First, the 
current report is limited to one content area. Future work should look to extend the framing to 
other content areas including those not within secondary mathematics. Second, our analysis of 
the instructional materials consists of hypotheses. A more holistic account should include a focus 
on students’ realized abstractions, as well as the role of teacher knowledge and instructional 
moves in students’ construction of those abstractions. Third, we envision that an abstraction 
framing can provide a cognitive-focused approach to modifying instructional materials and their 
implementation. For instance, based on analysis like that provided here and then investigations 
into students’ realized abstractions and aspects of instruction contributing to the construction of 
those abstraction, researchers and teachers can look to modify instructional materials to better 
support students’ reflecting (and reflective) abstraction of productive meanings.   

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

179



Acknowledgments 
The research reported was supported by the National Science Foundation No. 1920538.   

References 
Ellis, A., Lockwood, E., Tillema, E., & Moore, K. C. (in press). Generalization across multiple mathematical 

domains: Relating, forming, and extending. Cognition and Instruction.  
Ellis, A., Paoletti, T., & Lockwood, E. (in preparation). Empirical and reflective abstraction. In P. C. Dawkins, A. J. 

Hackenberg, & A. Norton (Eds.), Piaget’s genetic epistemology in and for ongoing mathematics education 
research.  

Ellis, A. B. (2011). Generalizing-promoting actions: How classroom collaborations can support students' 
mathematical generalizations. Journal for Research in Mathematics Education, 42(4), 308-345. 
http://www.eric.ed.gov/ERICWebPortal/detail?accno=EJ932248  

Ellis, A. B., & Grinstead, P. (2008). Hidden lessons: How a focus on slope-like properties of quadratic functions 
encouraged unexpected generalizations. The Journal of Mathematical Behavior, 27(4), 277-296. 
https://doi.org/https://doi.org/10.1016/j.jmathb.2008.11.002  

Ellis, A. B., Tillema, E., Lockwood, E., & Moore, K. C. (2017). Generalization across domains: The relating-
forming-extending framework. In E. Galindo & J. Newton (Eds.), Proceedings of the 39th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 677-
684). Hoosier Association of Mathematics Teacher Educators.  

Fonger, N. L., Ellis, A. B., & Dogan, M. F. (2020). A quadratic growth learning trajectory. The Journal of 
Mathematical Behavior, 59, 100795. https://doi.org/https://doi.org/10.1016/j.jmathb.2020.100795  

Kilpatrick, J. (2011). Slouching toward a national curriculum. Journal of Mathematics Education at Teachers 
College, 2(1).  

Liang, B. (2021). Learning about and learning from students: Two teachers’ constructions of students’ mathematical 
meanings through student-teacher interactions [Ph.D. Dissertation].  

Montangero, J., & Maurice-Naville, D. (1997). Piaget, or, the advance of knowledge. In. Mahwah, N.J.: L. Erlbaum 
Associates. 

Moore, K. C. (2014). Signals, symbols, and representational activity. In L. P. Steffe, K. C. Moore, L. L. Hatfield, & 
S. Belbase (Eds.), Epistemic algebraic students: Emerging models of students' algebraic knowing (pp. 211-235). 
University of Wyoming.  

Moore, K. C., Stevens, I. E., Paoletti, T., Hobson, N. L. F., & Liang, B. (2019). Pre-service teachers’ figurative and 
operative graphing actions. The Journal of Mathematical Behavior, 56. 
https://doi.org/10.1016/j.jmathb.2019.01.008  

Oehrtman, M. (2008). Layers of abstraction: Theory and design for the instruction of limit concepts. In M. P. 
Carlson & C. L. Rasmussen (Eds.), Making the connection: Research and teaching in undergraduate 
mathematics education (pp. 65-80). Mathematical Association of America.  

Piaget, J. (1970). Genetic Epistemology. W. W.  Norton & Company, Inc.  
Piaget, J. (1977). Recherches sur l'abstraction réfléchissante (Vol. I & II). Presses univ. de France.  
Piaget, J. (2001). Studies in reflecting abstraction. Psychology Press Ltd.  
Steffe, L. P., & Olive, J. (2010). Children's Fractional Knowledge. Springer.  
Tallman, M. A. (2015). An examination of the effect of a secondary teacher’s image of instructional constraints on 

his enacted subject matter knowledge [Unpublished Ph.D. dissertation].  
Tallman, M. A., & Frank, K. M. (2020). Angle measure, quantitative reasoning, and instructional coherence: an 

examination of the role of mathematical ways of thinking as a component of teachers’ knowledge base. Journal 
of Mathematics Teacher Education, 23, 69-95.  

Tallman, M. A., & O’Bryan, A. E. (in preparation). Reflected abstraction. In P. C. Dawkins, A. J. Hackenberg, & A. 
Norton (Eds.), Piaget’s genetic epistemology in and for ongoing mathematics education research.  

Thompson, P. W. (1994). The development of the concept of speed and its relationship to concepts of rate. In G. 
Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics. SUNY 
Press.  

Thompson, P. W. (2008). Conceptual analysis of mathematical ideas: Some spadework at the foundations of 
mathematics education. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano, & A. Sépulveda (Eds.), 
Proceedings of the Annual Meeting of the International Group for the Psychology of Mathematics Education 
(Vol. 1, pp. 31-49). PME.  

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

180

http://www.eric.ed.gov/ERICWebPortal/detail?accno=EJ932248
https://doi.org/https:/doi.org/10.1016/j.jmathb.2008.11.002
https://doi.org/https:/doi.org/10.1016/j.jmathb.2020.100795
https://doi.org/10.1016/j.jmathb.2019.01.008


Thompson, P. W. (2013). In the absence of meaning. In K. Leatham (Ed.), Vital directions for research in 
mathematics education (pp. 57-93). Springer. https://doi.org/10.1007/978-1-4614-6977-3_4  

von Glasersfeld, E. (1995). Radical constructivism: A way of knowing and learning. Falmer Press. 
https://doi.org/10.4324/9780203454220  

 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

181

https://doi.org/10.1007/978-1-4614-6977-3_4
https://doi.org/10.4324/9780203454220


DESIGNING INSTRUCTIONAL SEQUENCES FOR ETHICAL, CRITICAL AND 
MATHEMATICAL REASONING 

Luke T. Reinke 
UNC Charlotte 

LReinke@uncc.edu 

Jordan T. Register 
UNC Charlotte 

jtrombly@uncc.edu 

Michelle Stephan 
UNC Charlotte 

Michelle.Stephan@uncc.edu 

   

Designers of critical mathematics instruction have documented difficulties in simultaneously 
fostering the development of critical consciousness while supporting students in developing 
understandings of new mathematics. However, confining justice-oriented tasks to applications of 
previously learned mathematics limits the degree to which these tasks will be taken up by 
teachers. We describe our attempt to employ heuristics from the instructional design theory of 
realistic mathematics education [RME] to create a sequence aimed at developing students’ 
critical and ethical reasoning while also developing new mathematical understandings of ratio, 
proportion and percents.  We propose emergent adaptations to two of the realistic mathematics 
education design principles then propose an additional ethical principle to guide the 
development of future RME sequences. 

Keywords: Curriculum; Learning Trajectories and Progressions; Rational Numbers & 
Proportional Reasoning; Social Justice 

Ernest’s work in the philosophy of mathematics education has set the stage for the argument 
of ethics as its first philosophy (Ernest, 2013). For Ernest (1998) “ethics arises from the ways in 
which persons live together and treat each other” (p. 9) including what is deemed right or wrong 
when making decisions and how we generate knowledge. He proposes that ethics should serve as 
the foundation for mathematizing and philosophizing and calls for “an ethics of mathematics” 
that acknowledges its social responsibility as well as its implications for freedom, justice, and 
cooperation (Ernest, 1998, 2013). “Ethics in mathematics education supports, and lays the 
foundation for, concerns about social justice” in that issues of social justice are concerned with 
the social activity of groups and the fair enjoyment of social benefits, while issues of ethics are 
concerned with interactions between people more generally (Atweh & Brady, 2009, p. 268). 
From this perspective, ethical considerations are based upon people’s moral responsibility to one 
another, establishing “social justice concerns as a moral obligation, rather than charity, good will 
or convenient politics” (Atweh & Brady, 2009, p. 268). Accordingly, we view ethical reasoning 
as notions of what is right or wrong in social contexts, with considerations of social justice as 
one of its key components.  

A primary goal of an ethical mathematics education is fostering students’ epistemological 
empowerment through mathematics (Ernest, 2002). In other words, developing both 
mathematical and social empowerment in which the learner establishes a sense of self-efficacy in 
“the language, skills and practices of using and applying mathematics” in school settings, and 
their ability to use mathematics to “participate more fully in society through critical 
mathematical citizenship” (Ernest, 2002, p. 1). Such an education concerns the individuals’ 
growth of confidence in using mathematics, creating knowledge, validating it, and transforming 
the world through mathematics (Ernest, 2002). Educators have attempted to develop students’ 
awareness of the power that mathematics holds to both help and harm society through the 
teaching of critical mathematics, which aims to develop students’ critical consciousness, or 
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awareness of social, political, and economic oppression (Frankenstein, 1983; Freire, 1970; 
Gutstein, 2006). If ethical reasoning is primarily concerned with notions of what is right or 
wrong, we see critical consciousness as the component of ethical reasoning concerned with 
identifying oppressive systems. While critical mathematics focuses on responding to these 
systems, ethical mathematics also includes the responsible creation of mathematical products. 
Many efforts at implementing critical mathematics have done so with students who experience 
intersecting oppressions; this is understandable, given that developing critical consciousness is a 
pillar of culturally relevant teaching (Ladson-Billings, 1995). Some scholars, though, have 
argued for the importance of developing critical consciousness of students from communities of 
privilege, proposing that without such consciousness, students from these communities may, 
wittingly or unwittingly, abuse the disproportionate power they wield, which continues the 
dehumanizing effects of oppression on both the powerful and those with less power (Kokka, 
2020; Stephan et al., 2021). These scholars propose that critical mathematics, like any critical 
pedagogy, works toward liberating the oppressed and oppressors (Freire, 1970). 

Tensions in Designing for Ethical and Mathematical Reasoning 
Reports on efforts to design and implement critical mathematics lessons aimed at developing 

students’ mathematical power and critical consciousness highlight the difficulty of the work. One 
primary tension, raised by numerous scholars, involves balancing the goals of developing 
students’ mathematical power so that they can succeed in dominant mathematics while also 
developing their critical consciousness (Gutiérrez, 2002). Gutstein (2006) proposes that 
productively navigating this tension is possible but admits that he relied primarily on a reform-
based but non-critical textbook series, Mathematics in Context, to develop students’ 
mathematical power. Brantlinger (2013) also grappled with the tension between the two goals. 
After finding himself unable to navigate the tension by simultaneously addressing social justice 
and mathematical concepts, he then tried separating them hoping for later syntheses. Brantlinger 
ultimately concluded that he was unable to resolve the tension between the two goals, at least in 
the secondary mathematical setting of geometry which the project addressed. Other scholars 
document teachers’ (rather than their own) efforts to implement social justice themed 
mathematical lessons and their attempts to navigate the tension by separating social justice 
contexts and the development of mathematical ideas (Turner et al., 2009; Bartell, 2013) or 
simply focusing primarily on either the mathematical goals or social justice goals, leaving the 
other goal as more of a background possibility if the opportunity arises (Bartell, 2013).  

In our reading of the literature on critical mathematics and teaching math for social justice, 
we noticed that studies of implementation were well grounded in the literature on critical 
mathematics and tenets of teaching math for social justice, but these studies tend not to cite 
instructional design theories for developing mathematical ideas. In other words, while the social 
justice aspect of these lessons was grounded in theory, the mathematical aspect relied on the 
intuition of the teachers or instructional designers rather than an established instructional design 
theory. We hypothesized that this theoretical imbalance may contribute to the difficulty in 
designing for new mathematical concept development simultaneous with critical consciousness. 
In our attempt to address the goals of developing new mathematical ideas through ethical and 
critical contexts, we relied heavily on an instructional design theory that uses realistic contexts to 
ground the development of mathematical ideas. 
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Instructional Design Principles 
To reconcile the aforementioned tensions, we anchored our study to critical mathematics 

frameworks (Frankenstein, 1983; Gutstein, 2006; Skovsmose, 1994) as well as the Dutch 
instructional theory of realistic mathematics education [RME] (Gravemeijer, 1994), which 
provides a robust set of design principles for developing sequences that develop students’ 
mathematical understanding. Van den Heuvel-Panhuizen and Drijvers (2014) present six core 
teaching principles which correspond to instructional design heuristics: activity, reality, level, 
intertwinement, interactivity, and guidance. Rather than elaborate all six, we focus on the reality 
and level principles to illustrate how we foregrounded these particular heuristics in our design 
activity when confronted with critical and ethical challenges.  

The reality principle advises that instructional sequences begin in experientially real 
scenarios. The term experientially real does not mean that problem contexts need to be authentic, 
or real-world, but rather the problem context needs to be imaginable, so that students can act on 
the problem elements in sensible ways. An earlier interview study of similarly aged students 
(Stephan et al., 2021) inspired an initial conjecture of how this principle might be adapted for 
critical mathematics instruction: we hypothesized that problem contexts in which students felt 
like they themselves were targets of oppressions could be a more experientially real starting 
point for students than situations where others were targeted.  

The leveling principle describes the notion that students’ understanding passes through 
various stages. Their early conceptions often involve concrete, context-bound solutions to initial 
problems. As their understanding develops, their models of these situations become more abstract 
and less attached to these problem situations, and become models for use in other, 
mathematically isomorphic situations (Gravemeijer, 1999). Our earlier work provided a 
hypothesis of how this principle might be adapted for the development of critical mathematics 
instructional sequences as well; we conjectured that students’ initial understandings of how they 
themselves were targeted might lead to an empathy for other vulnerable populations.  

Given our experience in designing RME sequences, we were hopeful that we could develop 
an instructional sequence that simultaneously developed students’ understanding of new 
mathematical concepts (namely proportional reasoning and percent change) while also 
developing their critical and ethical reasoning. The following questions guided our study:  

Research Question 
When designing a mathematics instructional sequence for developing ethical and critical 

reasoning,  

1. What adaptations to the existing RME design heuristics emerged and why?  
2. What additions to the existing RME design heuristics emerged and why? 

Method 
Setting 

In identifying a suitable context for our study, we drew on Kokka’s (2020) conceptualization 
of privilege as the “set of advantages one group has over others, granted because of membership 
or perceived membership in social categories'' (Kokka, 2020, p.3). This conceptualization 
considers race, socioeconomic status, and educational privilege, as well as other intersectional 
identity traits including, but not limited to, sexual orientation, gender, and ability status, that are 
both interrelated and influence students’ experiences of privilege and marginalization (Kokka, 
2020, p.3). As such, the instructional sequence was designed with partners who work at a school 
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we refer to as Lakeview Charter Middle School (LCMS). The student population at LCMS is 
approximately 68% White, 13% Black, 8% Asian or Pacific Islander, 6% multiracial, 6% 
Hispanic and less than 1% Native American. Families are responsible for providing 
transportation for their students to and from school. There is no possibility for students to have 
free or reduced lunch due to the requirement that students bring their lunch from home. Due to 
these requirements, the student population generally draws students from economically 
advantaged families. The Design Team consisted of the three co-authors (two white females and 
a white male in comfortable socioeconomic positions) as well as two LCMS teachers (one male 
and one female) and their principal (female), all three being people of color. The team met four 
times over the summer to brainstorm contexts and develop an outline of the unit, then the three 
co-authors worked and met intermittently over two months to develop the unit.  
Data Analysis 

Data for this paper consisted of field notes that captured design decisions as well as 13 
different iterations of the instructional sequence, which aimed to develop students’ understanding 
of ratio, proportion, and percent change within a context of nicotine vaping. To analyze our 
design decisions related to ethical and critical challenges, two co-authors independently coded 
the documents by marking each instance in which an ethical or critical challenge was raised. We 
then compiled the results and resolved any inconsistencies. For instance, both coders identified 
tensions related to a task asking students to analyze a graph showing the correlation between the 
amount of nicotine users ingest per day and the proportion of those users who meet the 
established criteria for addiction; students were asked “how many mg of Nicotine would you say 
leads to addiction in most people?” One author coded this as an ethical challenge, recalling the 
team’s discussion of whether the idea of a threshold might encourage students who are interested 
in vaping to try to vape ‘just under the amount’ they think would get them addicted. The other 
author noted a critical tension with this same task recalling that the 5 mg threshold proposed by 
epidemiologists seemed somewhat arbitrary to the design team, who did not want the students to 
accept this threshold uncritically. Upon discussion, both codes were deemed appropriate.   

Findings 
Our analysis suggests some extensions to the RME reality and leveling design principles as 

well as the inclusion of an additional principle. We first discuss some new perspectives on the 
reality and leveling principles and then introduce the ethics principle. 
Navigating the Reality Principle in Choosing Critical Contexts 

When searching for an experientially real context to serve as the semantic grounding for the 
instructional sequence, we found ourselves rejecting many of the contexts that would have been 
rich for critical investigation because they were not didactically rich, in the mathematical sense. 
For example, the mathematics involved in water contamination, lead poisoning, and air pollution 
were too complex to support our ratio and percent learning goals. At other times, the context may 
have been didactically rich, and from the designers’ point of view, critically rich, but when 
considering it from the students’ points of view, they would not be engaging or may produce 
anxiety in students. Exploring critical issues around SAT [a college entrance exam] scores was 
one such context that the teachers rejected for two reasons. First, at this middle school, the SAT 
is introduced very early to students and is a topic that students are confronted with frequently. 
The teachers felt that students hear about it so often that they may not be interested in it. 
Furthermore, they felt their students are overly pressured to perform well on the SAT and this 
might produce anxiety. 
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After two brainstorming sessions, we decided on developing a unit related to the context of 
vaping, because we deemed the context to be both didactically rich and critically rich from the 
students’ perspective. Because researchers had documented efforts to target teenagers with candy 
and fruit vaping flavors as well as sensational advertising (e.g., Center for Disease Control, 
2016), the context also fit our initial hypotheses about how an experientially real situation, where 
students themselves were targeted, could provide initial access to critical perspectives. Tobacco 
companies’ targeting of African American communities with advertisements and promotions for 
highly addictive menthol cigarettes (Henriksen et al., 2012) and their efforts to attract Native 
American customers with ethically questionable promotions (Lempert & Glantz, 2019) provided 
potential opportunities for students to practice empathy and critical intuition about situations 
where other populations are targeted.  
Navigating the Leveling Principle in Choosing an Entry Point 

Once we settled on the vaping contexts, we grappled with the joint goals of staying authentic 
to the context, while also following the RME modeling principle of beginning with more 
informal models and progressively introducing more formal models. In our attempt to find an 
accessible starting point for the unit, we initially looked for authentic ratios related to vaping that 
students could visualize using contextual imagery. We learned that nicotine channels require two 
molecules of nicotine to open the receptor, but quickly realized that that particular 2:1 ratio was 
likely too simple to prompt students to develop creative informal solutions; furthermore, the ratio 
does not change, so that particular relationship did not support an instructional sequence. Aware 
of the frequent use of varying concentrations of lemonade or other beverages at the beginning of 
ratio instructional sequences, we also attempted to begin the sequence by investigating the 
concentration of nicotine in e-cigarette cartridges, but we could not find a way to avoid the use of 
fractions or decimals because of the small concentration of nicotine relative to the other 
ingredients, so the authentic situation proved too complex.  

Ultimately, we decided that the ratio of puffs per hour presented an accessible and rich 
possibility. Students could draw pictures of puffs of smoke and either hourglasses or small clock 
faces to represent hours, so that they could visualize and iterate the ratio. Once we had identified 
an accessible entry point, we attempted to identify realistic problems that involve this 
relationship. 

 
● Given the data for an individual, can we determine if they are puffing more than they 

were? In other words, is the individual possibly becoming addicted? 
● Who puffs more, one individual or another? 
● How long would one cartridge last, given a set puff rate? 

Navigating both Reality and Leveling Principles in Developing the Sequence 
Given our desire to use the puff per hour ratio and a dearth of authentic data for individual 

vapers, we decided that for the outset of the instructional unit, we would not use actual data. 
Rather we would create fictional data within the vaping context, to provide maximum flexibility 
to meet our needs in developing the mathematical concept. Leaning on the RME principle of 
experientially real or imaginable scenarios, we created a fictional story of a teen named Sara, 
who tracked her puffing using a smartphone app. This fictional story allowed us the flexibility to 
start with appropriately accessible ratio (3 puffs:1 hour), ask a variety of questions (How many 
puffs would she take in 8, 24 hours?) and adjust that ratio as needed to increase complexity (5 
puffs:2 hours) Although we incorporated real-world data (one cartridge contains enough vape 
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liquid for approximately 200 puffs), much of the data was hypothetical, yet positioned students 
as friends, wondering if Sara should worry about increases in her puffing.  

Once we had progressed from informal (pictorial) to preformal (long ratio tables) to formal 
(short ratio tables analogous to formal proportional notation using equations) representations of 
ratios, we then made a design decision to transition to an authentic and not hypothetical scenario: 
determining a reasonable puff rate threshold for different concentrations of vaping liquid that 
would correlate to a scientifically-backed definition of addiction. 

An emergent design heuristic. The tensions between authenticity and the desire to attend 
to the leveling principle and our decisions in navigating the tension illustrate an emergent design 
heuristic that represents our efforts to adapt the reality and leveling principles to a critical 
mathematical instructional sequence. When the authentic data and mathematical relationships 
proved more complex to provide an accessible and didactically rich starting point, we employed 
the use of relevant, believable, fictional stories in early stages of the progression to provide 
access to informal strategies and more accessible number choices. Then, once students were able 
to use more formal representations that could be used for other situations, we transitioned to 
more authentic, non-fictional inquiry.  

Our efforts to design with and for ethical reasoning resulted in a number of situations for 
which existing RME principles provided little guidance. In response, we propose an additional 
principle.  
The ethics principle: A seventh principle 

In designing mathematics instruction for ethical and critical reasoning, we found ourselves 
facing design challenges that were not addressed in the six principles. The analysis of our design 
field notes indicated that we were attending not only to the nature of the problems we chose to 
provoke students’ ethical awareness, but also calling into question the ethics of our choices as 
designers. Thus, we humbly introduce the ethics principle that has emerged from our work. The 
ethics principle refers to the fact that mathematics is done by human beings and thus has the 
potential for bias, at best, and oppression, at worst. Conversely, doing mathematics can be 
liberatory and students must learn to recognize the impact that their mathematical solutions may 
have on the world. This principle can be viewed in two ways. First, designers must intentionally 
build ethical problem solving into instruction to provide opportunities for ethical decision 
making to arise. Second, designers themselves must problematize the ethical dimensions of their 
design activity and products. The ethics principle manifested itself in two ways during our design 
work: attending to ethics in the grounding context and attending to ethics when writing 
problems. 

Attending to ethics in the grounding context. Using the context of vaping presented our 
first ethical challenge. We wondered if it was ethical to have discussions about vaping with 
teenagers, and worried in particular about introducing a potentially harmful practice to students 
who may not have been aware of the practice before our instruction. We considered whether we 
should use the names of actual companies, such as JUUL, in our materials, as that might promote 
the company’s product to students. Another ethical consideration that emerged was that some 
students might be vaping and become anxious when they learn of the potential negative health 
consequences. 

Potential design solution. We resolved these ethical dilemmas by consulting outside 
stakeholders such as the school’s principal, teachers, and teenagers. As a member of the design 
team herself, the principal agreed that vaping might be a controversial topic for some parents, but 
revealed that the health teacher teaches about nicotine, and many students will already know 
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about it. The teachers on the design team talked with other teachers, one of whom had a child in 
the class. The teacher-parents indicated that they did not think the vaping context would be 
harmful to their children. Finally, we talked with some teenagers who indicated that most teens 
know about vaping, adding that many middle schoolers they know are actually engaging in the 
practice. This feedback from stakeholders at the school led us to settle on the vaping context. 

Attending to ethics in the problems. Once we committed to vaping as the context, there 
were ethical issues that arose as we wrote specific problems. We considered launching the 
instructional sequence with a video from the Truth Initiative (Shank, n.d.) that shows teens 
glorifying vaping, participating in vape challenges, and getting a buzz from the nicotine. Our 
intention was to acknowledge upfront that teens are vaping and to invite them into a serious 
conversation. From an ethics perspective however, we worried that the content of the video 
might inadvertently encourage teens to vape because it looks cool and fun.  

A second time we were confronted with an ethical dilemma as designers occurred when we 
were considering introducing the idea of a “nicotine threshold” amount. A nicotine threshold 
refers to the minimum amount of nicotine an individual could ingest without becoming addicted. 
We worried that students who want to vape might think that, as long as they stay under this 
threshold, they can vape without getting addicted. 

A third ethical issue arose as we were writing problems that might help students see 
themselves as the target of vaping companies. We created an instructional task that showed 
actual advertising photos by vaping companies. These advertisements contained pictures of 
candy flavored vape juice products, the Sesame Street Muppet Elmo encouraging vaping, young 
people partying with vape products, and famous entertainers holding vape pods. Our intent was 
to have students analyze the advertisements to see that vape companies were intentionally 
promoting their product to youth, but we worried the ads would attract students to the product. 
They might be inclined to think that vaping looks cool; or if my favorite stars do it, it must be ok. 

 Potential design solution. One way we attended to these ethical dilemmas involved creating 
what we refer to as a contextual storyline. We intentionally introduced a fictional character 
named Sara who became increasingly aware that she might be vaping enough to become 
addicted to nicotine. The mathematical problems we introduced not only supported our 
conjectured mathematical learning trajectory, but were couched in an ongoing narrative of Sara 
thinking about her vaping habit. We weaved the mathematical and contextual trajectories 
together so that students would develop proportional reasoning as they helped Sara and other 
fictional teen characters think about addiction. As the mathematical learning goals shifted to 
percent, the storyline changed to using a fictional app called the iVapeless meter so students 
could analyze how close Sara was to her self-imposed vaping limit. In this way, we used Sara’s 
storyline to both develop students’ mathematical understanding of ratio and percent while also 
learning about how vaping, even in small amounts, might lead to nicotine addiction. We also 
elicited students’ knowledge from health class about the potential health consequences of 
nicotine throughout the storyline. In this way, we hoped the storyline we created would, at 
minimum, de-glorify vaping and maximally, deter students from using nicotine.  

Discussion and Implications 
In this study, we attempted to address an identified tension from previous studies of critical 

mathematical lessons: the difficulty in simultaneously teaching new mathematical concepts as 
well as ethical/critical reasoning. Unable to find critical mathematics studies that utilize 
established mathematics instructional design theories, we attempted to use tenets of realistic 
mathematics education to support our design toward the mathematical goals, while also attending 
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to critical mathematics frameworks. One notable difference that emerged between the lessons we 
developed and lessons present in the existing literature is that we designed a sequence of lessons, 
built on researched learning trajectories for ratio and proportion (Civak, 2020; Stephan, 
2021) and critical contexts. Our instructional sequence also began with contexts that positioned 
the students we worked with as targets of oppressive acts, and then proceeded to inquiries into 
how tobacco companies targeted populations with marginalized identities that many of our 
students did not possess. Prior reports and published resources tend to represent individual 
lessons, rather than carefully sequenced tasks built upon learning trajectories.  

Through our work, we found that the RME design heuristics were helpful for supporting our 
design efforts, yet we needed to adapt two of the existing principles (the leveling and realistic 
principles) and add a new principle. First, our adaptation to the reality principle led us to a better 
understanding of the demands of selecting an appropriate anchoring, experientially-real context. 
Others have identified the step of determining justice-oriented contexts for a given student 
population and determining the mathematical topics that are relevant to that context. In addition 
to this, we also needed to determine whether contexts were didactically rich, meaning that 
problems inherent to the context lent themselves to develop a variety of models, from informal, 
context-bound models to more formal models. Furthermore, we needed to identify contexts that 
presented a variety of critical and mathematical questions; vaping for instance, had many 
different considerations including how to determine whether someone is vaping more, data 
related to teens’ vaping practices, and the targeting of various groups with advertising.  

Our second adaptation involved the leveling principle. Once we had determined a 
didactically rich, critical context, we found ourselves oscillating between posing problems with 
complete fidelity to the context and fictionalizing certain aspects of the situations. For example, 
we attempted to use real stories and actual data from social media and research articles for 
problem contexts, but sometimes the numbers and procedures in the reports were too complex to 
support students at that particular point in the mathematical learning trajectory. Thus, in order to 
develop a sequence that adhered to the leveling principle, we needed to fictionalize aspects of 
that context at times.  

Finally, in addition to adapting the leveling and reality principles to design instruction with 
authentic critical contexts, we found the need for an additional RME heuristic. Ernest (2013) 
argues that the ethical considerations of problem contexts must be considered and should be the 
foundation for mathematization, yet none of the current RME principles provide much guidance 
to designers who create instructional sequences with attention to ethics and social justice. We 
illuminated the ways in which ethical considerations emerged for us during the design process 
and presented several instances when the design team encountered ethical dilemmas and the 
ways we resolved them. Consequently, we suggest the addition of an ethics design principle to 
RME and argue that, not only should instructional materials support students’ development of 
ethical reasoning but that designers themselves must also be alert to and problematize the ethical 
dimensions of their designs for students.  

In our description of these adaptations and additions to the RME heuristics, we must also 
clarify that these are proposals at an early stage of the design research project. We have 
developed and piloted an initial version of the instructional sequence, but we have yet to analyze 
the data on implementation. Thus, we are careful not to propose that the adaptations to the RME 
principles are final, rather they are emergent and likely to need further revision. As our work 
progresses, it will be important to apply and continue to revise these principles in other settings 
with other students, mathematical topics, and justice-oriented contexts.  
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As standards documents have been introduced over the past 20 years, many states have seen an 
evolution in both the standards and related high stakes exams. For many teachers across the 
U.S., the rollout of standards and exams has not been an experience that builds trust in state 
education leaders. In this study, we consider three major changes in the first-year high school 
math exams in New York State since 2002, looking at consistency in item types, topics addressed, 
and student performance. Shifts in all were noted, but the changes in topics, especially when not 
obvious by the names given to standards, are suggested as the mostly likely to misinform or 
misguide teachers. We consider how state educational leaders are working to build trust for the 
next iteration of standards. While this study is particular to one state, the methods and findings 
should be of interest to others who study curriculum and testing in high schools. 

Keywords: Algebra and Algebraic Thinking; Assessment; High School Education; Standards 

The National Council of Teachers of Mathematics (NCTM, 1989) introduced its first 
standards document just over 20 years ago. This launched an evolution of mathematics 
curriculum standards and related assessments. NCTM (2000) published a subsequent set of 
standards in just over 10 years, and the Common Core Standards were published 10 years later 
(National Governors Association Center for Best Practices & Council of Chief State School 
Officers, 2010). While having a national organization, such as NCTM, put forth standards helped 
bring more coherence to mathematics instruction across the United States, this led to significant 
disruptions at the state level. State education leaders subsequently made changes in their 
standards and state assessments that were rolled out to teachers, while legislation (e.g., No Child 
Left Behind, 2002) put in place mandates that implemented state assessment accountability.  

Researchers report that state assessments have been associated with intense stress for 
teachers, and teachers report feeling that the high-stakes state exams often undermine meaningful 
learning and instruction (Barksdale-Ladd & Thomas, 2000). This feeling of pressure is regardless 
of the state in which teachers work (von der Embse, Pendergast, Segool, Saeki & Ryan, 2016), 
and studies have reported on state assessment accountability and its impact on teacher stress and 
teachers’ intentions to leave the teaching profession (e.g., Ryan et al., 2017).  

A reconstitution of the mathematics curriculum based on standards has brought about 
research that compares states’ curricula and adoption (Senk & Thompson, 2020) as well as 
research that considers states’ suggested coverage and placement of key topics in the curricula 
(e.g., Nagle & Moore-Russo, 2014; Stanton & Moore-Russo, 2012). However, little has been 
published about the high-stakes state exams themselves. How much did changing standards 
impact state assessments, particularly those that were being administered for the first year of 
high school mathematics? In order to consider this question in light of a new set of state 
mathematics standards that will soon impact state assessments, the overarching research goal of 
this study is to look at changes in first-year high school mathematics state exams in New York 
State (NYS) over the past 20 years. The three specific research questions include:  
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1. How consistent have state exams been over the past 20 years, in terms of the topics 
covered, types of items included, and student performance on the exams? 

2. How do previous exam topics compare to current first year mathematics state standards? 
3. How are state education leaders preparing teachers for the upcoming changes in standards 

and state exams? 

Theoretical Framework 
Social capital theory can focus on notions ranging from power (Fine, 2001) to economic 
transactions (Hardin, 1999) to mechanisms that build common values (McNiell, 2007). In all of 
these, there is interconnectivity that involves some level of trust. Trust is the belief that an entity 
(be it an institution or an individual) will act in ways that are consistent with one’s expectations 
of positive behavior (Algan, 2018). It is an expectation that arises that is based on shared norms 
(Fukuyama, 1996). Trust helps reduce uncertainty (Luhmann, 1979) and helps deliver optimal 
outcomes by strengthening relationships and preventing defection (Six, van Zimmeren, Popa & 
Frison, 2015). Hardin (2002) suggests that norms produce trust, which he describes in the first 
person as the perception that you have “an interest to take my interests in the relevant matter 
seriously…you value the continuation of our relationship” (p. 2).  

In organizations, subordinates’ trust in those over them has been found to be related to 
employee commitment and job satisfaction (Colquitt, Scott, & LePine, 2007; Dirks & Ferrin, 
2002). Burke, Sims, Lazzara, and Salas (2007) suggest that this trust is based on aspects such as 
accountability, transparency, and consistency (Kim & Lee, 2018). Consider the mathematics 
education community in a state as an organized entity with teachers in roles that might be 
considered subordinate to those who create high-stakes exams. The state’s educational leaders 
show trust in teachers with their administration and marking of the exams. However, if one has 
listened to teacher lounge grumblings or has read media reports (Domanico, 2021; Strauss, 2012; 
Taylor, 2016), it calls to question how much this trust has been reciprocated. To begin to 
understand teacher trust in state education leaders and mandated state testing, there are many 
aspects that could be studied. A logical initial investigation is to study how consistent state 
exams have been looking at different measures of consistency. For that reason, this study 
considers looks the three iterations of the NYS exams for first-year high school math in terms of 
consistency and using the current math standards as a lens. It also considers how NYS education 
leaders are preparing teachers for future revisions to the standards and related exams. 

Current Study 
Since this study focuses on a particular state, we first detail the sequential shifts that have 
occurred in first-year high school mathematics in NYS. Next, we situate ourselves and 
experiences as researchers for this study.  
Context.  

From 2002 to 2020, there were three changes in standards that affected the first-year math 
exams in NYS: the old standards (Math A) from 2002-2009, the recent standards (Integrated 
Algebra) from 2008-2015, and the current standards from 2014-2020. Each exam administration 
occurred in January, June, and August. Each exam consisted of multiple choice and constructed 
response items corresponding to the relevant standards. In some years, two versions of the exam 
were available during transitional periods between standards. There were a total of 2287 items 
that were graded and publicly available on the NYS Regents’ website (NYS Office of State 
Assessment, 2021): 764 old items (2002-2009), 857 recent items (2008-2015), and 666 current 
items (2014-2020). 
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Research team.  
The research team consists of two members who have firsthand experience with the changes 

in NYS standards and assessments in high school mathematics. The lead researcher is a former 
NYS secondary mathematics teacher who experienced: the old exams as a student, the recent 
exams as a pre-service teacher, and the current exams as an in-service teacher. As part of her 
dissertation work (Schaefer, 2020), Schaefer did an in-depth study of NYS state assessments 
focusing on readability. While focusing on readability, other changes across the years became 
obvious. The second researcher worked in a Department of Learning and Instruction in a 
university located in NYS; she taught the secondary mathematics education classes for pre-
service teachers from 2004 to 2014, a period that overlapped the old, recent and current 
standards. 

Data Collection and Standard Classification 
All items from first-year old (n=764), recent (n=857), and current (n=666) NYS exams were 
used as data. A sample of 10% of current exam items were classified using the current standards 
to obtain interrater reliability with NYS standard classification (Schaefer, 2020). Cohen’s κ was 
calculated to determine agreement (κ = 0.903, p < 0.05). Discrepancies were then analyzed, and 
the NYS classification was accepted in each area of discrepancy. All old and recent items were 
then coded by the first using the current standards. Both authors discussed any items that were 
difficult to code until consensus was reached. 

Findings 
In this section we present findings in the order of the research questions. The findings are then 
followed by relevant discussion.  
Exam Consistency 
We first consider how consistent the first-year mathematics exams have been in NYS. We look 
at the topics covered by the exams in light of the standards that applied at the time of the exams. 
We then consider the types of items on the exams. Finally, we investigate any changes in student 
performance.  
Item Topics. The old, recent, and current exams had a wide variety of topics based on their 
individual standard systems. Table 1 notes the different topic areas for each of the exams in 
terms of the distributions by the relevant standards at the time. The recent standards show the 
emphasis on an integrated curriculum, with the inclusion of a Geometry standard, that was not 
present in either the old or current standards. The old exams had the greatest difference in topic 
names as compared to recent and current exams. Consider the current standard of Number and 
Quantity. On old exams, the Number and Numeration standard was the focus for 8% of exam 
items, and the Operations standard was the focus for 19% of exam items. On recent exams, 
Number Sense and Operations was the focus of 8% of exam items. On current exams, Number 
and Quantity was the focus of 5% of exam items. Measurement decreased from being the focus 
on 19% of items on the old exam to 6% on recent exams, and it was not considered a high school 
mathematics standard and was therefore not the focus of any items on the current exam. The 
emphasis on functions shifted from accounting for 18% of the items on old exams, under the 
Patterns/Functions standard, to being melded in with Algebra in recent exams. Functions is a 
standard by itself and represented the focus of 37% of the items on current exams.   
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Table 1: Topic Areas and Relative Distributions of Exams. 
Old Exam     Recent Exam  Current Exam 

Standard Dist. Standard Dist. Standard Dist. 

Math Reasoning 7% Algebra 54% Algebra 50% 

Operations 19% Geometry 16% Functions 37% 

Number & Numeration 8% Number Sense & Ops 8% Number & Quant 5% 

Model/Multiple Reps 20% Stats & Probability 16% Stats & Probability 9% 

Measurement 19% Measurement 6%   

Uncertainty 8%   
  

Patterns/Functions 18%     

 
Item Types. Exams since 2004 but prior to current exams seemed to be more heavily weighted 
toward multiple-choice items. When the old exams were initially administered, the relative 
weighting (in terms of point distribution) of multiple-choice items was 47%. Then, the old exam 
was revised so that the relative weighting of multiple-choice items was 71% of exam points. 
Recent exams had a similar 69% relative weighting of multiple-choice items. The current exams 
relative weighting decreased to 56% of the total points. Most notably, there was also a six-point 
constructed response item added to current exams, replacing the three-point items that were on 
previous exams. Table 2 outlines the differences in item type distributions with the relative 
weighting for each item type in relation to the overall total exam point value.  
 
Table 2: Item Type Distributions and Relative Weighting to Total Point Values for Exams 

Item Type & Value 

Old Exam 
 Jun02-Jun03 

Old Exam 
 Jan04-Jun09 

Recent Exam 
Jun08-Jun15 

Current Exam 
Jun14-Jan20  

n Rel Wt* n  Rel Wt  n  Rel Wt  n  Rel Wt 

Multiple-Choice (MC Items) 
 

2-point 20 47% 30 71% 30 69% 24 56% 

Constructed Response (CR) Items 
 

2-point 5 12% 5 12% 3 7% 8 19% 

3-point 5 18% 2 7% 3 10% 0 0% 

4-point 5 24% 2 10% 3 14% 4 19% 

6-point 0 0% 0 0% 0 0% 1 7% 
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Student Performance. In order to consider exam consistency, we now look at student 
performance on the exams. For the NYS Regents, passing an exam is equivalent to receiving at 
least 65% of the total points on an exam. However, some students with disabilities are given a 
55% passing rate, depending on their Individualized Education Programs (IEPs). A score at or 
above 85% is considered passing with distinction. For this reason, Table 3 displays the passing 
rates at or above 65% and 85% for all students taking the first-year math exams in NYS as well 
as the passing rates at or above 55%, 65%, and 85% for students with documented disabilities 
who took these exams (NYS Education Department, 2022). 

Note the passing rate of scores that are 65% or higher on exams has decreased for all students 
going from 73% on old exams to 72% on recent exams to 70% on current exams. The passing 
with distinction rates (i.e., scores of 85% or higher) have decreased more markedly for all 
students going from 25% on old exams to 16% on recent exams to 13% on current exams. Now 
consider only the population of NYS students with disabilities and their performance on the old, 
recent, and current exams. Students with disabilities’ passing rates of 55% or higher have 
increased from 64% to 66% to 67%, respectively, while passing their passing rates of 65% have 
decreased from 45% to 42% to 39%, respectively. There has also been a decline in student with 
disabilities who pass with distinction (i.e., with scores of 85% or higher) from 6% to 2% to 1% 
respectively. 
 

Table 3: Relative Passing Rates on Exams for All Students and Students with Disabilities 

Item Type & Value 
Old Exam 

n = 1,552,177 
Recent Exam 
n = 1,933,213 

Current Exam 
n = 1,324,731 

>55% >65% >85% >55% >65% >85% >55% >65% >85% 

All Students 
n = 4,980,809 - 73% 25% - 72% 16% - 70% 13% 

Students with 
Disabilities 
n = 700,048 

64% 45% 6% 66% 42% 2% 67% 39% 1% 

 
Comparison to Current Standards 
We now use the current standards as a lens to consider shifts in the topics covered on exams for 
the past 20 years. When considering the items on old, recent, and current exams (as displayed in 
Table 4), it is obvious that there have been shifts in the topics that are covered. This is most 
notable when looking that the number of items that were on the old exams (73%) and recent 
exams (57%) that do not apply to the current standards. For example, measurement and 
geometry are no longer part of the first-year mathematics curriculum in NYS. For the Algebra 
standard, there has been a respective shift from 22% to 29% to 50% respectively on old, recent, 
and current exams, with the items on the current exams primarily focusing on this standard. For 
the Functions standard, there has also been a notable increase from 1% to 4% to 37% 
respectively on old, recent, and current exams. This is due to introducing the concept of function 
as well as an emphasis on introducing and using functional notation (rather than only considering 
equations, such as y = 2x + 3). There have been less dramatic shifts in the percentages of items 
that address the Number and Quantity and the Statistics and Probability standards. There have 
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also been some shifts within individual topics as to which subtopics are emphasized. However, 
most of these shifts are based on the large increases in all the subtopics under the Algebra and 
Function standards.  
 

Table 4: Counts of Items on Exams by Current Standards’ Topics/Subtopics 
  Old Recent Current 

Topic and Subtopic Areas n % n % n % 

Algebra 166 22% 248 29% 331 50% 

Arith w/ Polynomials & Ratl Expressions 19 2% 21 2% 34 5% 

Creating Equations 22 3% 38 4% 82 12% 

Reasoning w/ Equations & Inequalities 109 14% 139 16% 144 22% 

Seeing Structure in Expressions 16 2% 50 6% 71 11% 

Functions 7  1% 34 4% 244 37% 

Building Functions - -  1 < 1% 37 6% 

Interpreting Functions 7 1%  25 3% 153 23% 

Linear, Quadratic, & Exponential Models - - 8 1% 54 8% 

Number and Quantity 19 2% 27 3% 33 5% 

The Real Number System 2 < 1% - - 18 3% 

Quantities 17 2% 27 3% 15 2% 

Statistics and Probability 13 2% 58 7% 58 9% 

Interpreting Categorical & Quantitative Data 13 2% 58 7% 58 9% 

None Applicable 559 73% 490 57% - - 
  
Preparations for Upcoming Changes in Standards 

Another change in NYS is coming, with the Next Generation Math Standards (NYS 
Education Department, 2017a). When the old curriculum evolved to the recent curriculum, there 
was a significant shift in topic areas covered in the standards. In the shift from the recent to the 
current curriculum, similar topic areas were used; yet standards were condensed and there was a 
move away from an integrated curriculum. Now, from the current to the future Next Generation 
Math Standards, NYS educational leaders have created resources (i.e., a snapshot document and 
a crosswalk) to better explain how standards have been added, modified, or removed.  

In the Snapshot document (NYS Education Department, 2019a), there were three categories 
that highlighted the major changes from current to future standards. These categories including 
mapping the future standards to the future curriculum, outlining which standards moved to 
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another level of the mathematics curriculum, and additional clarification on current standards 
pertinent to the future curriculum. The Crosswalk document (NYS Education Department, 
2019b) included detail clarifying the standards based on input from conference calls hosted by 
the NYS Education Department. These comments included notes that clarified more information 
about the standards. For instance, there was specific information regarding fluency expectations 
and how the first-year standards differed from those for the third-year math course, Algebra II. 

The NYS Education Department created two committees that included both educators and 
parents for the future standards. There were also opportunities for public commentary on the 
draft document with over 750,000 comments from more than 10,500 people on the AIMHighNY 
2016 survey (NYS Education Department, 2017b). This information was first used to create an 
initial version of the future standards in 2017 that has since been revised and disseminated in 
June 2019.  

Probably most importantly, there has also been a longer roll-out period for the future 
standards than existed in past years when transitioning between standards. Initial information on 
the future standards was provided to teachers in 2017. The NYS Department of Education has 
also considered the impact of the pandemic and are taking its impact into account regarding the 
implementation of the future standards, which are not slated to be implemented and used for 
Algebra 1 exams until September 2023 (NYS Education Department, 2021). 

Discussion 
In conclusion, there have been some shifts in first-year high school math exams in NYS over the 
past 20 years. This is noted both in the item types and their weightings. It is also noted in student 
performance on the exams, especially in students passing with distinction. However, the areas 
where the revisions have been the most dramatic, especially in the impact on teachers, are in the 
topics that are covered on these exams.  

Much of the discontent with the roll out of standards in the past is likely due to the lack of 
communication and a disruption in the continuity of topics that were included in the standards 
and on the exams. Change, by its very nature, disrupts consistency. However, there are 
mechanisms that can make change easier. There are also practices that can downplay change so 
that it is less evident initially, but this has consequences when it is realized that the change was 
more dramatic than initially believed. Having standards with similar topic names helped teachers 
transition from recent to current standards. However, what counted as Algebra for the recent 
exams was not the same as what counted as Algebra in the current exams. While 54% of the 
recent exam items were classified as addressing Algebra topics under the recent standards; only 
29% of the recent exam items were classified as Algebra topics under the current standards. For 
example, ratios and proportions (including the three basic right triangle trigonometric ratios) 
were considered part of the subtopics covered in the recent Algebra standards, but they are not 
part of the current Algebra standards. Using the same topic name for a standard that represents 
different subtopics misinforms and can misguide teachers. When Algebra means one thing for a 
few years and then something else, it could have felt like a breach of trust for many teachers.  

It is heartening that the NYS Department of Education has been more transparent and open to 
suggestions from teachers (and others) in the transition to future math standards that will be 
adopted soon. One way that this is noted in the inclusion of accessible documents that carefully 
map out the continuity across and evolution in topics. Optimistically, the research team is 
hopeful that the rollout of the future standards will be smoother than it was for past transitions of 
standards in NYS. 
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The input of teachers (as well as of other constituents in the learning process) is key to 
building trust. But bi-directional communication between teachers and state education leaders is 
not all that is needed to help teachers transition between curricular standards. There needs to be a 
logical, coherent evolution that builds on, rather than totally replaces, existing standards. 
Moreover, this evolution needs to be clearly communicated to all, but especially to teachers. 
Consistent transparency as to the coming changes and how they are line up with, build on, and 
improve the current standards would be of benefit and would help develop more trust between 
teachers and state education leaders. 

Limitations, Future Study 
While an obvious limitation is that this study only looks at NYS, the methods used and the 
underlying message are pertinent to those who study high school mathematics in other states, 
especially those interested in curricular standards and state exams. Other studies that investigate 
how different states have handled curricular shifts in standards and state assessment exams 
would be of great value. It would be interesting to see how future work could springboard from 
studies such as this to delve into more qualitative work on how trust is built or breached between 
teachers and state education leaders, especially in light of high stakes testing. 
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HOW DO MULTI-DIGIT MULTIPLICATION PROBLEMS PROMOTE 
PROCEDURAL FLEXIBILITY? AN ANALYSIS OF TWO FOURTH GRADE 
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Procedural flexibility promotes efficient problem solving in mathematics. However, it is unclear 
whether and how elementary-grades textbooks promote this skill. The current study investigated 
lessons within two fourth grade math textbooks to determine how math tasks promote procedural 
flexibility within the domain of multi-digit multiplication. I developed and applied two 
frameworks to analyze the multiplication strategies and instructional strategies that might 
promote procedural flexibility that were presented in textbooks The textbooks differed in the 
number and types of multiplication strategies included. Neither textbook showed much 
variability in terms of instructional strategies, and there was little alignment between 
multiplication and instructional strategies. Future research could investigate additional textbook 
features such as teachers’ guides study additional avenues for promoting procedural flexibility.  

Keywords: Elementary School Education, Curriculum, Number Concepts and Operations, 
Standards 

Historically, students in the United States have underperformed in mathematics (see the 
National Center for Educational Statistics, 2021). This lack of proficiency in math leaves many 
students unprepared for more advanced math courses such as Algebra. To remediate this, math 
researchers and educators have been targeting strands of mathematical thinking that may help 
students develop deeper understanding of mathematical concepts as well as more effective 
problem-solving skills (National Research Council, 2001).  

One such strand of math learning is procedural flexibility. Procedural flexibility refers to 
students’ abilities to think flexibly and adaptively about strategies for problem solving, thereby 
facilitating students’ abilities to discern between multiple strategies and apply the most efficient 
strategy (Digital Promise Global, 2021; National Research Council, 2001; Star, 2005; 
Verschaffel et al., 2007). Procedural flexibility is a crucial skill for later math subjects such as 
Algebra (Rittle-Johnson et al., 2020; Star, 2005). Recent research has also emphasized the 
importance of procedural flexibility in its relation to both procedural and conceptual knowledge 
of problem solving (see Newton et al., 2020; Schneider et al., 2011). Having the procedural 
knowledge to accurately and fluently solve problems allows students to discern efficient 
problem-solving strategies and thus evoke procedural flexibility when selecting which strategy to 
use (Star, 2005). Similarly, conceptual knowledge of a topic can help students reason flexibly 
about problems (Durkin et al., 2017; Schneider et al., 2011). For example, a student who does 
not understand the standard algorithm for multi-digit multiplication but who has conceptual 
understanding of multiplication might be able to think flexibly and develop their own strategy for 
solving the problem. Improvements in procedural flexibility is also associated with increases in 
conceptual understanding (DeCaro, 2016; Durkin et al., 2017, 2021; Newton et al., 2020). Thus, 
procedural flexibility is an important aspect of mathematical thinking. 

Procedural flexibility is also embedded in the Common Core State Standards for 
Mathematics (CCSS-M; 2016) and is emphasized across grade levels, with standards stating that 
students should have “skill in carrying out procedures flexibly, accurately, effectively, and 
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appropriately” (CCSS-M, 2016). Its prominence both in the CCSS-M and in research suggests 
procedural flexibility may be a crucial skill to emphasize in mathematics instruction.  

Conceptual Framework 
While procedural flexibility is integral to math learning, it is unclear whether and how 

students learn procedural flexibility in the classroom. A central artifact to a math classroom is the 
textbook, which provide curricular materials that guide teachers’ instruction (Lloyd et al., 2017). 
Therefore, this analysis will examine textbooks to explore in what ways textbooks promote the 
use of multiple strategies and procedural flexibility in problem solving.  
Procedural Flexibility and Multiple Strategies  

The ability to use and apply multiple strategies while problem solving is intricately tied to 
procedural flexibility. The CCSS-M (2016) emphasize the use of multiple strategies in problem 
solving. For example, the standard 4.NBT.B.5 mentions five different multiplication strategies 
students should be able to apply when solving problems. Other standards similarly include 
multiple strategies, implicitly emphasizing the importance of procedural flexibility. Equally 
important is the ability to apply strategies effectively. DeCaro (2016) found that students who 
were primed to use a specific strategy solved later problems less efficiently than those who were 
not primed, suggesting that this mental constraint affected students’ abilities to efficiently apply 
strategies to solve problems. Promoting flexibility in thinking, then, may help students apply 
strategies more efficiently when problem solving.  
Instruction of Procedural Flexibility  

Researchers and educators have developed ways for procedural flexibility to be taught  
through instruction. One method is through comparing multiple strategies (Durkin et al., 2021; 
Rittle-Johnson et al., 2020), often through comparing two worked examples that show the same 
problem solved in two different ways. In one study, Durkin et al. (2021) tested curricular 
materials designed to foster comparison between multiple strategies for solving linear equations. 
They provided teachers supplemental worked example pairs (WEPs) that presented multiple 
strategies for solving the same problem as well as questions that prompted students to compare 
and analyze each strategy. Students whose teachers used multiple strategies in instruction and 
asked students to compare multiple strategies performed better on the posttest, particularly in the 
domains of procedural flexibility, than students whose teachers did not engage in these practices.  

Other instructional strategies could be associated with increased procedural flexibility as 
well. A method often used in textbooks is to require students to solve a problem using a specific 
strategy, allowing students to engage with a multitude of strategies while problem solving (see 
Great Minds, 2016; MacMillian-McGraw Hill, 2009 for examples). Other techniques include 
encouraging students to reflect on strategies used during problem solving (Star et al., 2015; 
Woodward et al., 2012) and asking students to choose between strategies when problem solving. 
Multi-Digit Multiplication  

The current study of multiple strategy use and procedural flexibility is situated in the domain 
of multi-digit multiplication. Prior work on procedural flexibility has been done at the pre-
Algebra or Algebra level (e.g., Durkin et al., 2021; Rittle-Johnson et al., 2020; Star, 2005), and 
less work has been done at the elementary level. Yet there is reason to believe that procedural 
flexibility is important for early grades, as well. As mentioned above, the CCSS-M standards 
(particularly for fourth and fifth grade) emphasize procedural flexibility through prompting 
students to perform operations fluently (CCSS-M, 2016). In particular, standards for multi-digit 
multiplication include multiple problem-solving strategies, suggesting this may be a fruitful 
domain to introduce strategy choice. Additionally, developing procedural flexibility when 
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solving multiplication problems can help students solve problems more accurately and quickly 
(Digital Promise Global, 2021), which can help students solve more complex problems in later 
subjects. Finally, the role of procedural flexibility in developing conceptual knowledge (Rittle-
Johnson et al., 2015; Schneider et al., 2011), as well as the prominence of flexible thinking in 
more advanced problem-solvers (Star & Newton, 2009) makes it a crucial skill for students to 
learn early on. Thus, it is important to explore in what ways procedural flexibility is taught in 
elementary mathematics classes and how curricular materials such as textbooks might promote 
this skill.  

Research Questions 
The current study examines the viability of two novel frameworks, consisting of multi-digit 

multiplication strategies and instructional strategies promoting procedural flexibility, through 
applying them to two fourth grade mathematics textbooks. My specific research questions are:  

1. What strategies do fourth grade mathematics textbooks specify for students to use when 
multiplying multi-digit numbers?  

2. In what ways do problems in fourth grade mathematics textbooks promote procedural 
flexibility of multiplication strategies?  

3. How aligned are strategies used for solving multi-digit multiplication problems and 
practices promoting procedural flexibility?  

Methods 
Data Sources 

Two textbooks were analyzed for this study: Math Connects (MacMillian-McGraw Hill, 
2009) and Eureka Math (Great Minds, 2016). These textbooks were selected because of their 
accessibility to classrooms; Math Connects is written by a major U.S. textbook manufacturer, 
and Eureka Math is available for free online. Lessons within each textbook that focused 
specifically on multi-digit multiplication were selected for analysis. Within those lessons, I 
coded all independent practice problems for whether they contained multi-digit multiplication. 
These problems, hereby called math tasks, included both arithmetic problems that students had to 
solve and worked examples that asked questions about a worked-out problem. 
Analytic Framework 

To analyze what multiplication strategies and instructional techniques promoting procedural 
flexibility were promoted in fourth grade mathematics textbooks, I developed two frameworks 
with which to code math tasks. Math tasks were coded holistically, meaning that both the 
instructions and the task itself were included in the codes and analysis. Additionally, codes were 
additive, and a math task could have more than one code from each framework. Codes within the 
two frameworks were both research-based and data-based (DeCuir-Gunby et al., 2011). An 
initial list of codes was developed from prior literature. Additional codes that emerged through 
patterns in the data were then added to the frameworks, and previously coded problems were 
recoded to align with the updated framework. These frameworks are detailed below.   

Strategies for Multi-Digit Multiplication. Math tasks were coded as prompting a specific 
multi-digit multiplication strategy if the strategy was explicitly included in the instruction (e.g., 
“Solve this problem using the standard algorithm”) or prompted via a visual scaffold (e.g., 
inclusion of an area model). Codes generated from prior literature included codes based on 
memorization (Lampert, 1986) and mental math (Rathgeb-Schnierer & Green, 2018), the use of 
physical objects when solving problems (Lampert, 1986), the use of area models (Kwon & Son, 
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2019), and the use of conceptual strategies such as the distributive property and other 
multiplication properties (e.g., the commutative property, decomposition; Ambrose et al., 2003; 
Lampert, 1998), and additional abstract strategies (Baek, 2006). Emergent codes included 
multiplication strategies such as the standard algorithm, using partial products, using a place 
value chart, or using drawings to solve the problem, all of which were common in the data 
sources (e.g., Great Minds, 2016; MacMillian-McGraw Hill, 2009) but were not represented in 
the literature. Finally, repeated addition was added based on the author’s prior knowledge of 
multiplication strategies.  

Instruction Promoting Procedural Flexibility. Math tasks coded as including instructions 
promoting procedural flexibility if there were specific instructions (e.g., “Choose a strategy to 
solve the problem below”) instructing students to how to apply multiplication strategies to solve 
the problem. Initial codes emerging from the literature included asking students to compare 
strategies (Durkin et al., 2021) and reflect on strategy use (Star et al., 2015; Woodward et al., 
2012). Later codes that emerged from the data sources included specifying a strategy for use 
while solving a problem and choosing between multiple strategies (Great Minds, 2016; 
MacMillian-McGraw Hill, 2009). 

Connection Between Strategies and Procedural Flexibility. To address the third research 
question, the multiplication strategy framework and the instructional strategy framework were 
aligned to determine if there were patterns in co-occurrences of multiplication strategies and 
instructional strategies. It is plausible that some multiplication strategies may align better with 
certain instructional techniques to promote procedural flexibility. For example, more advanced 
strategies may be paired with promoting strategy choice because students have a greater 
repertoire of strategies from which to choose. Likewise, strategies that employ visual scaffolds 
often promote student reflection on the strategy used to help students align the scaffold with the 
numerical representation.  

Results 
Lessons in Math Connects ranged from having 21 to 47 multi-digit multiplication tasks, 

while lessons in Eureka Math ranged from having 4 to 19 multi-digit multiplication tasks. There 
were 302 math tasks in the specified Math Connects lessons, compared with 142 tasks in the 
specified Eureka Math lessons. Of those, multi-digit multiplication was included in 266 tasks in 
Math Connects (266 problems, no worked examples) and 140 tasks in Eureka Math (138 
problems, two worked examples). These were the math tasks used in the analyses that follow.  
Research Question 1: Fourth Grade Multiplication Strategies 

First, I examined whether the strategies included in the framework appeared in the textbooks. 
The number of math tasks that explicitly included a multiplication strategy differed between the 
two textbooks. Overall, 14.3% (n = 38) of multi-digit multiplication tasks in Math Connects 
included multiplication strategies, while 74.3% (n = 104) tasks in Eureka Math contained at least 
one multiplication strategy for student use. Table 1 shows the number and proportion of 
multiplication strategies that appear in each textbook. Twelve out of the 14 strategies included in 
the framework were found in at least one of the textbooks. Two strategies, repeated addition and 
physical objects, were not found explicitly in the tasks in either textbook.  

The amount and distribution of multiplication strategies differed between the two textbooks. 
Within the nine coded lessons in Math Connects, four different strategies were explicitly stated, 
with only two (Memorization and Mental Math) stated more than once. In contrast, among the 14 
Eureka Math lessons coded, ten different strategies were evident, and all were present multiple 
times. The types of strategies varied between the two textbooks, as well. Math Connects 
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contained a high number of math tasks that prompted students to use memorization (n = 27) or 
mental math skills (n = 9), strategies that were not stated in Eureka Math. The most prevalent 
strategies in Eureka Math were related to decomposition and visual aids, including partial 
products (n = 45), use of a place value chart (n = 28), and use of an area model (n = 24). These 
strategies were largely absent from Math Connects. Eureka Math also suggested that students use 
the standard algorithm (n = 23), often in conjunction with other strategies, such as using a place 
value chart. This strategy was similarly absent from Math Connects. Finally, the number of math 
tasks that included multiple strategies differed between the two textbooks, as well. Half of the 
104 math tasks in in Eureka Math (n = 52) included multiple strategies. This included asking 
students to choose between strategies, including multiple strategies to solve the problem, or 
specifying multiple strategies to solve the problem. No math tasks in Math Connects included 
more than one strategy.  

 
Table 1: Number and Percentage of Math Tasks that Suggest Specific Strategies  

 Textbook 
Strategy Code Math Connects 

 (n = 38 tasks) 
Eureka Math  
(n = 104 tasks) 

Memorization 27 (71.1%) - 
Mental Math 9 (23.7%) - 
Standard Algorithm - 23 (22.1%) 
Physical Objects - - 
Area Model - 24 (23.1%) 
Place Value Chart - 28 (27.0%) 
Other Drawings/Symbols - 9 (8.7%) 
Partial Products 1 (2.6%) 45 (43.3%) 
Repeated Addition - - 
Distributive Property - 9 (8.7%) 
Relational Comparison - 10 (9.6%) 
Decomposition 1 (2.6%) 8 (7.7%) 
Additional Abstract  
Strategies 

- 
 

7 (6.7%) 

Other Strategies - 6 (5.8%) 

     Note. Percentage add up to more than 100 because some tasks prompted students to use more 
than one strategy. 

Creating overall categories of strategies. As strategies were coded, patterns emerged 
between the categories. Some categories required memorization, some included visual scaffolds, 
some required the use of underlying conceptual knowledge, and some simply required use of a 
rote procedure. To facilitate comparison, I created four overarching categories within which 
strategies were sorted. Strategies were sorted by similarities in knowledge needed by students to 
apply the strategies. The four categories of Memorization, Procedures, Visual Scaffold, and 
Conceptual Understanding can be seen in Table 2.  

 
Table 2: Multiplication Strategies Categorized by Knowledge Needed   

Category Explanations Strategies/Original Codes 
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Memorization Relies on memorized facts or prior 
knowledge 

Memorization, Mental Math 

Procedure Using a rote procedure to solve problem Standard Algorithm 
Visual Scaffold Requires use of a visual scaffold (either 

physical object or symbolic) 
Area Model, Place Value, 
Physical Object, Other 
Drawings/Symbols 

Conceptual 
Knowledge 

Incorporates conceptual knowledge or 
understanding of multiplication 

Repeated Addition, Partial 
Products, Distributive 
Property, Decomposition, 
Additional Abstract Strategies 

Other Strategies Strategies that do not fit into one of the 
four above strategies 

Relational Comparison, Other 

 
The overall strategy categories presented in Table 2 were then graphed to display the number 

of problems within each category presented in Math Connects and Eureka Math, depicted in 
Figure 1. The Math Connects column shows primarily Memorization strategies; indeed, these 
strategies make up 94.7% of coded strategies in the textbook (n = 36). In contrast, the 
Memorization category does not appear explicitly in Eureka Math. Instead, most problems coded 
involve conceptual understanding (n = 69, 66.9%) or present visual scaffolds (n = 54, 51.9%).  

 

 

Figure 1: Percentage of Multiplication Strategies within Overall Categories  
Note. The number of strategies in Eureka Math totaled to more than 104 because some math 

tasks prompted the use of multiple strategies. 
 

Research Question 2: Instructional Strategies that Promote Procedural Flexibility  
I next looked at whether the math tasks incorporated instructional strategies that promoted 

procedural flexibility. Figure 2 shows the percentage of tasks in each textbook that included 
problems that might promote procedural flexibility. All instructional techniques included in the 
framework were seen in the two textbooks; however, the percentages of instructional strategies 
differed. Within Math Connects, 28.3% (n = 47) of tasks employed instructional strategies that 
may promote procedural flexibility, compared with 69.0% (n = 98) of tasks in Eureka Math. In 
both textbooks, the most frequently used instructional component was to specify a strategy for 
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students to practice (e.g., use the standard algorithm to solve this problem). The distribution of 
the other types of instructional techniques between the two textbooks was similar, with little 
variability between the techniques.  

 

 
Figure 2: Number of Instructional Techniques that Promote Procedural Flexibility  

 
Research Question 3: Alignment of Multiplication Strategies and Procedural Flexibility 

Finally, I looked at whether there were relationships between instructional strategies 
multiplication strategies. Table 3 shows the alignment between these two axes in both textbooks. 
Overall, there was not a certain strategy that was paired a certain instructional strategy. However, 
the two strategies that were paired with reflecting on strategy (partial products and 
decomposition) in Math Connects were categorized as Conceptual Strategies. Interestingly, three 
tasks in Eureka Math promoted students to choose between four different strategies (standard 
algorithm, partial products, student-created area model, and distributive property). 

 
Table 3: Alignment Between Instructional Strategies and Multiplication Strategies 

 
Instructional Strategy Math Connects 

Multiplication Strategies 
Eureka Math Multiplication 

Strategies 
Specify Strategy Memorization (n = 36) Conceptual Strategies (n = 61) 

Visual Scaffold (n = 56) 
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Other (n = 12) 

Choice - Conceptual Strategies (n = 6) 
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Comparison No Strategy (n = 1) - 

Reflection No Strategy (n = 6) 
Conceptual Strategies (n = 2) 
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Discussion 
The current study explored what multiplication strategies and instructional strategies 

promoting procedural flexibility are presented in fourth grade mathematics textbooks and 
whether the presentation of multiplication strategies and instructional strategies were related. 
Using novel frameworks developed through prior literature and patterns in the data, I found that 
most multiplication and instructional strategies included in the frameworks were found in at least 
one of the two textbooks. Some multiplication strategies included in the framework, such as 
repeated addition and using physical objects, were not explicitly included in either textbook. 
Additionally, there was not much variability in the instructional techniques, nor was there overall 
alignment between multiplication strategies and included and instructional techniques to promote 
procedural flexibility. These results illustrate what can be learned from applying these 
frameworks to examine curriculum materials. 

The frameworks illuminated great differences between the two textbooks coded. The 
majority of math tasks coded in Eureka Math prompted students to use at least one multiplication 
strategy when solving problems, yet over 85% of math tasks coded in Math Connects did not 
specify a strategy, instead often asking students simply to “Multiply.” Additionally, although 
both textbooks overwhelmingly used the “Specify Strategy” instructional technique, the other 
instructional strategies promoted in the two textbooks differed, with tasks in Eureka Math 
prompting student strategy choice and tasks in Math prompting reflection and comparison. 
Interestingly, neither textbook showed a strong alignment between multiplication strategies and 
instructional techniques for procedural flexibility. This was likely because there was not much 
variety in instructional techniques, as both textbooks primarily promoted the “Specify Strategy” 
technique and did not have many tasks that promoted other techniques. Although presenting 
multiple strategies for solving multiplication problems might inadvertently promote procedural 
flexibility, pairing this with instructional strategies that explicitly promote procedural flexibility 
might lead to greater gains in this skill. Future research might investigate whether this alignment 
is present in other parts of the textbook or within parts of the enacted lesson.  
Limitations and Future Directions 
A limitation of this study is that only two textbooks were used to demonstrate the viability of the 
constructed frameworks. Using a broader variety of textbooks as well as including more recent 
textbooks as data sources for the developed frameworks would give a more complete picture of 
what multiplication and instructional strategies are presented in fourth grade mathematics 
textbooks. Additionally, only independent practice problems were considered in the described 
analyses. Multi-digit multiplication problems also appeared in other parts of the lessons, such as 
parts developed for whole-class instruction. Future studies should consider analyzing these 
textbook features, as well as prompts included in teachers’ guides, to analyze how procedural 
flexibility is promoted through curriculum enactment.  

Conclusion 
Procedural flexibility is an important, yet often underemphasized, facet of mathematics learning. 
This skill can be emphasized explicitly in textbooks, and teachers may be able to further 
emphasize it through instruction. Small changes in the multiplication and instructional strategies 
seen in textbooks would likely be beneficial to students in helping them think flexibly and 
adaptively about problem solving. In learning flexible thinking at an early age, students may be 
better able to think flexibly about problem solving throughout their mathematics careers.  
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The purpose of this study is to examine how proportional reasoning is introduced and developed 
in two widely used U.S. and Korean mathematics textbooks for grades 6-7. Seven research-based 
frameworks that identify student learning opportunities for understanding of proportional 
reasoning were used to analyze the textbooks. The results showed that American textbooks 
include more problems that require explanations and make use of more effective contextual and 
number structure of problems than Korean textbooks. In contrast, Korean textbooks make a shift 
from providing highly contextualized problems to presenting abstract and purely computational 
problems, which aligns with the process of concreteness fading. In addition, Korean textbooks 
contain more unique types of topics and representations.  

Keywords: Proportional reasoning, textbook analysis, cognitive demands of math tasks 

Proportional reasoning has been recognized as a key concept in mathematics for middle 
grades students to develop (Common Core State Standards Initiative, 2011). However, research 
indicates that students have considerable difficulties understanding proportional reasoning 
because they tend to apply additive or subtractive thinking processes rather than multiplicative 
processes (Karplus, Pulos, & Stage, 1983). Students’ difficulties with proportional reasoning 
may be largely attributed to the quality of their learning environments, such as textbooks that 
influence what is to be taught and what students learn (Alajmi, 2009; Stigler, Fuson, Ham, & 
Kim, 1986; Weiss, Pasley, Smith, Sanilower, & Heck, 2003). Given the important role of 
textbook in mathematics teaching and learning, this study, focusing on the case of proportional 
reasoning, examines learning opportunities presented in representative American and Korean 
textbooks. The study aims to compare various aspects of the structure and sequence of the 
lessons on proportional reasoning, and the characteristics of the problems presented in the 
lessons in American and Korean textbooks. Specifically, the study addressed the following 
questions: (1) When and how are ratios, rates, and proportional reasoning introduced and 
developed in American and Korean textbooks?; (2) What similarities and differences are 
observed in the content of ratios, rates, and proportional reasoning in American and Korean 
textbooks?  

 

Theoretical perspectives 
Student difficulties and recommended strategies for proportional reasoning  

Proportional reasoning has been seen as a cornerstone of secondary mathematics curricula 
because it is important for understanding of percentages, gradient, trigonometry, and algebra 
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(NCTM, 2006). Accordingly, students’ concepts of proportion have long been a focus of 
mathematics education research and have been explored about students’ errors and difficulties in 
relation to proportional reasoning tasks (Lo & Watanabe, 1997). One of the roots of difficulties 
with proportional reasoning is that students have a weak understanding of the part/whole 
relationships described in fraction notation. Students often struggle with solving some 
proportional reasoning problems that involve the use of fraction notations (Norton, 2006).  

Research has consistently emphasized students’ difficulties with proportion and proportion-
related tasks and applications and explored pedagogical ways to improve students’ development 
of proportional reasoning (Behr, Harel, Post & Lesh, 1992; Lo & Watanabe, 1997). First, 
research has recommended to contextualize problems in real-life situations, as it can activate 
students’ familiar experiences and informal knowledge for sense-making (Resnick & Omanson, 
1987). Representing proportion concepts by using various models rather than numbers and 
symbols may increase students’ conceptual understanding. Thus, concreteness fading, which 
refers to the process of beginning with concrete representations and then fading into more 
abstract ones, is found to be effective in developing students’ conceptual understanding 
(Goldstone & Son, 2005). In addition, providing problems with high levels of cognitive demand 
gives students more opportunities to think and reason in given mathematical tasks. Research 
indicates that using high-level and cognitively complex tasks is important to develop the capacity 
to think, reason, and solve problems (Stein & Lane, 1996). Furthermore, it is also recommended 
to provide proportion tasks in a wide range of contextual (e.g., part-part-whole, scaling, well-
chunked) and number (e.g., integer or non-integer answers) structures so that students can apply 
multiplicative thinking into various types of situations (Lamon, 1999). We use these research-
based instructional strategies to identify student learning opportunities for understanding of 
proportional reasoning.   
Textbook comparison 

Analyses of mathematics textbooks have examined textbooks across countries and have 
brought many alternatives and insights to the field for improving instruction on challenging 
mathematical ideas. Prior international comparative studies have shown that curricula in Asian 
countries contain more tasks that are framed in concrete and real-life situations and provide more 
cognitively difficult problems, compared to the U.S. For example, Murata (2008) examined the 
presentation of addition and subtraction in the U.S. and Japanese textbooks and found that 
Japanese textbooks included more contextualized problems than the US textbooks, which mainly 
utilized computation problems. Similarly, Ding and Li (2010) compared Chinese textbook series 
with the two U.S. series on the topic of distributive property and found that the main problem 
context was computation problems in the U.S. textbooks, whereas it was word problems in the 
Chinese textbooks. Son and Senk (2010) also compared Korean and American textbooks with 
standards-based and traditional American textbooks and found that Korean textbooks include 
more problems that required students to explain than American textbooks. However, some 
studies have shown inconsistent results [see Fan and Zhu (2007), Li (2000), Hong and Choi 
(2014), Son and Senk (2010)]. While some studies revealed that American textbooks contained 
more problems with higher level cognitive demand, problems that required students to provide 
explanation, and multiple representation than either Chinese or Korean textbooks, other studies 
reported different findings. Examining whether these findings are consistent with the results of 
the previous international comparative textbook studies in the present study will enhance the 
current understanding of what students learn in the U.S. and Korea.     
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Methods 
Representative and widely used American and Korean textbooks were chosen for this 

international comparative analysis. For American textbooks, Eureka Math or Engage NY 
modules (EM) (www.engageny.org) were chosen for its popularity (Opfer, Kaufman, & 
Thompson, 2016). There is only one set of textbook series developed on the national Korean 
curriculum standards by the Ministry of Education (KM).  

The textbook analysis in this study focused on two aspects of textbooks: (1) the structure of 
the lessons and topics, and (2) the nature of the problems. For the analysis of the textbooks’ 
structure of the lessons and topics, the introduction and development of the concepts of ratio, 
rate, and proportional reasoning as well as topics arrangement were examined. The analytical 
framework shown in Table 1 was utilized to analyze the nature of the problems in depth. The 
analytical framework consists of the following seven categories: concrete fading (Ding & Li, 
2010), cognitive demand (Stein, Smith, Henningsen & Silver, 2000), perspectives (Beckmann & 
Izsak, 2015; Shield & Dole, 2012; Thompson, 1994), task types (Cramer, Post, & Currier, 1993), 
contextual and number structure (Lamon, 1993), response types (Charalambous et al., 2010; 
Mayer et al., 1995), and problem solving difficulty (Hsu & Silver, 2014). 

 
Table 1. Categories and subcategories of analytical framework 

Analytical framework Subcategories 

1. Concreteness Fading Word Problem 
Visual Representation 
Word Problem with Visual Representation  
Abstract 

2. Cognitive Complexity Memorization  
Procedures without Connections 
Procedures with Connections  
Doing Mathematics 

3. Perspectives Multiple Batches 
Variable Parts 

4-a. Contextual Structure Well-chunked 
Part-part-whole 
Associated Sets 
Stretcher/Shrinker 
Symbolic 

4-b. Number Structure  I-I-I 
I-W-I 
I-B-I 
I-B-N 
N-B-N 
N-N-I 
N-N-N 
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4-c. Response Type  Numerical Answers Only 
Algebraic Expressions Required 
Explanation Required 

5. Problem-solving 
Difficulty 

Easy 
Medium 
Hard 

 
Problems are coded as instances, according to the definitions of each analytical framework. 

After coding, we counted the frequency of all the problems in each subcategory of the analytical 
frameworks. A Microsoft Excel spreadsheet was used to record the frequency and percentage. 
The number and percentage of problems that were demonstrated in each subcategory were 
recorded in the spreadsheet. The counts and percentages of problems were summed, and are 
reported in the Findings section.  

Summary of findings 
The nature of problems with ratio, rate, and proportional reasoning  

Table 2 presents the total number of problems in both textbooks counted. In total, there are 
679 problems and 236 problems in EM and KM, respectively. Further, when the frequency and 
percentage distribution of total problems were categorized per concept, EM present percent 
problems most frequently and ratio problems least frequently. In contrast, KM include 
proportional reasoning problems most frequently and percent problems least frequently.  

 
Table 2. Total frequency of problems in Korean and EM  

EM (n=679) KM (n=236) 

Gr
ade 

(Modu
le)  

Rati
o 
(%) 

R
ate  

(
%) 

Perc
ent 

(%) 

Proporti
onal 

reasoning 
(%) 

Total 
 

Grad
e (Vol.) 

Ra
tio 

(%
) 

R
ate  

(
%) 

Perc
ent 

(%) 

Propor
tional 

reasoning 
(%) 

 
Tota
l 

6 
(1) 

80  
(34) 

10
9 (47) 

45  
(19) 

0  
(0) 

234 
(100%) 6 (1) 

48  
(53

) 

2
5  

(2
8) 

17  
(19) 

0  
(0) 

90 
(100%) 

7 
(1) 

15  
(9) 

28 
(16) 

0  
(0) 

133  
(75) 

176 
(100%) 6 (2) 

5  
(6) 

0  
(0

) 
0  

(0) 
80  

(94) 
85 

(100%) 

7 
(4) 

0 
 (0) 

0  
(0

) 
269 

(100) 
0  

(0) 
269 

(100%) 6 (2) 
0  

(0) 

0  
(0

) 
0  

(0) 
61  

(100) 
61 

(100%) 

 
95  

(14) 
13

7 (20) 
314  
(46) 

133  
(20) 

679 
(100%)  

53  
(22

) 

2
5  

(1
1) 

17  
(7) 

141  
(60) 

236 
(100%) 

 
Concreteness fading and visual representation types 

Table 3 shows the frequency and percentage of concrete and abstract problems in EM and 
KM. The results showed that both textbooks provide most problems in concrete contexts (e.g., 
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EM: 93% and KM: 81%). For abstract problems, only 7 % of the total problems in EM were 
situated in purely mathematical contexts, while 19 % in KM were framed in abstract contexts. It 
may seem that EM used more concrete problems than KM. However, it should be noted that the 
majority of problems in KM was word problems with visual representation, whereas the greater 
part of problems in EM was word problems. In KM, there were 45 % word problems with visual 
representation, 33% word problems, and 3% visual representation problems. In EM, 50 % word 
problems, 28% word problems with visual representation, and 15 % visual representation 
problems. This may indicate that KM situate the majority of their problems in concrete situations 
by using visual representation, while EM contextualize their problems through word problems.   

In addition, the process of concreteness fading is not obvious in EM. Although concrete 
representations outnumbered abstract ones in EM, word problems were used most frequently 
(50%) followed by word problems with visual representation (28%) and visual representation 
problems (15%). This trend indicates that the frequency of concrete representation types used 
may not necessarily indicate the transfer from concreteness to abstractness. In contrast, the 
frequency of concrete representation types used in KM decreases in the following order: word 
problem with visual representation (45%) - word problem (33%) - visual representation problem 
(3%). This may show that there is a concreteness fading process within the concrete problems in 
KM. Moreover, given that KM contained 45% word problems with visual representation, 33 % 
word problems, and 19% abstract problems, there was a gradual fading process from concrete to 
abstract representations across problem types. Research shows that although providing learning 
opportunities in more concrete representations may activate students’ familiar experiences for 
sense-making (Resnick & Omanson, 1987), making connections between concrete and abstract 
representations than just using concrete representations is found to be more effective in 
developing students’ conceptual understanding (Goldstone & Son, 2005). This may imply that 
KM may be more advantageous in facilitating students’ conceptual development on such abstract 
concept as proportional reasoning.  

 
Table 3. The frequency and percentage of concrete and abstract problems  

 Concrete   
Abstract 

 (%) 
 

 
 

 
Word problem 

(%) 
 

Visual 
representation  

(%) 

Word problem 
with visual 

representation (%)  

Total  
(%) 

 
EM 

Grade 6 M1 98 (42%)  37 (16%) 70 (30%)  29 (12%) 234 (100%) 

Grade 7 M1 65 (37%) 28 (21%)  72 (41%)  2 (1%) 176 (100%) 

Grade 7 M4 177 (65%) 28 (10%) 51 (19%)  16 (6%)  269 (100%) 

Total 340 (50%) 103 (15%) 193 (28%)  47 (7%) 679 (100%) 
KM 

Grade 6 
Vol.1 38 (42%) 5 (6%) 37 (41%)  10 (11%) 90 (100%) 

Grade 6 Vol. 
2 25 (29%) 1 (1%) 21 (25%)  38 (45%) 85 (100%) 

Grade 6 Vol. 
2 15 (25%) 1 (1%) 45 (74%)  0 (0%) 61 (100%) 
Total 73 (33%) 7 (3%) 98 (45%)  47 (19%) 236 (100%) 
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Cognitive demand and problem-solving difficulty 

The majority of the tasks is procedures without connections and procedures with connections 
in both textbooks. Problems with the highest level cognitive demand, doing mathematics, are 
little represented in both textbooks. EM have a higher percentage of low cognitive demand tasks 
(54%) than that in KM (42%). This result does not align with the finding from Hong and Choi 
(2013) reporting that the majority of problems in American and KM require lower level 
cognitive demand and more than 80% of problems only require simple algorithms or formulas.  

Note that EM have more “procedures without connections” (43%) than “procedures with 
connections” (37%), while KM have more “procedures with connections” (39%) than 
“procedures without connections” (36%). This may show that KM contain more cognitively 
challenging problems that require students to use their understanding of concepts and underlying 
principles and procedures. However, it also should be noted that the problems in KM are 
generally either a problem with a series of easy subproblems. For example, the subproblems 
require students to follow at least four steps to complete the problem in EM, while the 
subproblems in KM ask for one step to complete the problem. Also, based on the analysis of 
problems in terms of problem solving difficulty, the majority of problems in KM (88%) are easy-
level, which requires only one step to complete the problem, whereas EM contain four times 
more problems that are at least medium-level (49%), which consisted of two or four steps, than 
KM (12%). This indicates that EM are expected to complete tasks with more steps than Korean 
students.  

 
Figure 1. The distribution of cognitive demand tasks in both textbooks 

  
 

Perspectives: Multiple Batches vs Variable Parts 
Table 4 illustrates the percentage distribution of problems based on the perspective of 

multiple batches and variable parts drawn from Beckman and Izsak (2015). A higher percentage 
of problems that utilized the multiple batches perspective than the variable parts perspective in 
both textbooks. EM included a higher percentage of problems with the multiple batches 
perspective (61%) than KM (24%). By contrast, KM included a higher percentage of problems 
that utilized both the multiple batches and variable parts perspective (36%) than EM (5%). This 
may show that EM focus on the development of the multiple batches perspective, while KM 
intend to develop both perspectives. Different from Beckman, the results of our study show that 
KM, as the curriculum of one of the mathematically high-performing countries, not only utilized 
the multiple batch perspective, but also the variable parts perspective in developing students’ 
proportional reasoning ability through providing the problems that utilized both perspectives. 
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Table 4. Frequency and percentage of multiple batches and variable parts perspectives 

EM 

Grade  Multiple 
Batches  Variable Parts Both Neither Total 

6 (1) 95 (41%) 13 (6%) 
29 

(12%) 97 (41%) 
234 

(100%) 

7 (1) 93 (53%) 0 (0%) 0 (0%) 83 (47%) 
176 

(100%) 

7 (4) 229 (85%) 7 (3%) 3 (1%) 30 (11%) 
269 

(100%) 

Total 417 (61%) 20 (3%) 32 (5%) 210 (31%) 
679 

(100%) 

KM 

6 (1) 25 (28%) 0 (0%) 
35 

(39%) 30 (33%) 
90 

(100%) 

6 (2) 3(4%) 6 (7%) 
49 

(57%) 27 (32%) 
85 

(100%) 

6 (2) 52 (85%) 0 (0%) 2 (3%) 7 (12%) 61(100%) 

Total 80 (24%) 6 (3%) 
86 

(36%) 64 (27%) 
236 

(100%) 
 

Contextual and number structure 
We further explored contextual and number structure in missing value problems to explore 

the learning opportunities for proportional reasoning concepts. We found that the main 
contextual structure of missing value problems in EM is the stretcher/shrinker problems (47%), 
whereas the symbolic problems (1%) were minimally represented. In KM, the majority of 
problems are well-chucked (32%) and part-part-whole (30%) problems, while the least 
frequently represented problems were associated sets (9%). In EM, all four semantic types were 
evenly utilized in grade 6. The well-chunked and stretcher/shrinker type were most frequently 
utilized in grade 7. This may suggest that EM began with a balance of all four semantic types 
and then moved to the stretcher/shrinker problem type in missing value problems. In contrast, 
KM initially used the stretcher/shrinker problem type, and then heavily relied on using the part-
part-whole and the well-chunked problem type. This finding may show that that EM utilized 
more appropriate contextual structures of their missing value problems than KM, as their 
students develop conceptual understanding of proportional reasoning, based on the level of 
difficulty.  

 
Table 5. Percentage of contextual structure of missing value problems in both textbooks 

EM (n=192) 
Grade 

(Module) 
Well 

Chunked 
(%) 

Part-Part-
Whole (%) 

Associate
d Sets (%) 

Stretcher 
/Shrinker (%) 

Symboli
c 
(%) 

Total 
(%) 

6 (1)  28 (32) 18 (21) 18 (21) 20 (23) 3 (3) 87 (100) 
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8 

7 (1) 29 (60) 5 (11) 1 (2) 13 (27) 0 (0) 48 (100) 
7 (4) 0 (0) 0 (0) 0 (0) 57 (100) 0 (0) 57 (100) 

Total 57 (30) 23 (12) 19 (10) 90 (47) 3 (1) 192 (100) 
KM (n=90) 

Grade 
(Vol) 

Well 
Chunked 

 (%) 
Part-Part-

Whole (%) 
Associate

d Sets (%) 
Stretcher 

/Shrinker (%) 

Symboli
c  
(%) 

Total 
(%) 

6 (1) 1 (5) 7 (31) 1 (5) 13 (59) 0 (0) 22 (100) 

6 (2) 6 (14) 20 (45) 6 (14) 3 (7) 9 (20) 44 (100) 

6 (2) 22 (92) 0 (0) 1 (4) 1 (4) 0 (0) 24 (100) 

Total 29 (32) 27 (30) 8 (9) 17 (19) 9 (10)  90 (100) 

Discussion and Implications 
This study showed notable similarities but also striking differences between EM and KM. 

The goal of cross-cultural comparison is to know in what measure the learning opportunities 
provided by textbooks get enacted in classroom practice and student learning. Our findings 
indicated that how this comparative study of textbooks may contribute insights to improve the 
learning environments of proportional reasoning. Korean textbooks’ emphasis on the process of 
concreteness fading and skillful use of high level cognitive demanding problems are consistent 
with prior findings that Asian students are involved in more meaningful and desirable material to 
learn mathematics. Korean approaches in developing students’ explicit understanding, such as 
the unique construction of lessons, may be helpful for textbook designers in America and other 
countries. Our study also showed that EM provide more opportunities for students to solve 
mathematics problems with complex number structures, but also to explain and reason about the 
problems than KM. EM encourage their students to be independent in solving mathematics 
problems by asking them to create visual representations to justify their reasoning. These 
findings seem to conflict with the findings that Asian textbooks present more problems requiring 
explanation and problems with multiple visual representations than American textbooks. 
Developers of KM can benefit from EM’ approaches in using various strategies, such as a wider 
range of number structures and visual representations, and stressing more critical thinking.   
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The process of assessing students is a fundamental part of teaching and learning 
mathematics. The assessment practices a teacher chooses are shaped by their values while also 
being shaped by the context of the school, district, state, and country where the teaching takes 
place. This can result in gaps between teachers’ values and practices. In this study, we use 
student work sample interviews with five secondary mathematics teachers to illustrate their 
values around assessment, the factors that influence their assessment practices, and how their 
agency influences their assessment decisions. We focus on the important role contextual factors 
can play in shaping teachers’ agency and assessment choices. These findings have implications 
for teacher education and further research around how assessments are used. 

Keywords: Assessment, teacher beliefs  

The process of assessing students is a fundamental part of teaching and learning 
mathematics. The assessment practices a teacher chooses are shaped by their values while also 
being shaped by the context of the school, district, state, and country where the teaching takes 
place. Enacting high-quality assessment practices has been identified as a key factor in preparing 
future mathematics teachers (Association of Mathematics Teacher Educators, 2017). Prior 
research has highlighted teachers’ assessment practices and their values related to assessment 
within and outside of mathematics education (e.g., Barnes et al., 2014; Beswick, 2011; Brown, 
2004; Davis & Neitzel, 2011; Remesal, 2007). Just as there may be gaps between mathematics 
teachers’ values and instructional practices more generally (Beswick, 2011), such gaps may 
extend to assessment practices in particular. Despite this, teachers’ assessment practices are used 
as factors in measuring teaching effectiveness (e.g., Sato, 2014; Sato et al., 2008). 

Given these conditions, researchers in the Network for Excellence in Teaching (NExT) 
sought to investigate multiple measures of teaching effectiveness (NExT Teacher Effectiveness 
Work Group, 2018). One such measure built on D’Souza’s (2012) Teacher Assessment/Pupil 
Learning Protocol (TAPL) which was used to examine assessment practices and how they evolve 
with early career high school English teachers over a period of five years. Using D’Souza’s 
TAPL, NExT created a student work sample interview protocol to measure teacher effectiveness 
across disciplines. As part of our participation in NExT, we implemented the student work 
sample interview with recent graduates of the secondary mathematics licensure program in a 
Midwest University.  

In a student work sample interview, teachers select student work from a recent assessment 
they implemented and then discuss the pieces of student work with an interviewer. Through 
piloting this interview protocol, we gathered important data for the NExT consortium and the 
teacher preparation program. Beyond programmatic evaluation, we also noticed interesting 
patterns related to teachers’ values and assessment practices. We therefore engaged in a process 
of open coding, drawing on the principles of grounded theory (Charmaz, 2006). We arrived at 
two research questions: (1) What factors influence how secondary mathematics teachers enact 
assessment practices? (2) How does their enactment align with their values about assessment? 
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Literature Review 
In this section, we highlight relevant literature related to assessment and teacher agency. 

These two constructs are key to understanding the themes that emerged from our interviews.  
Assessments Serve Multiple Purposes for Multiple Audiences 

Assessments generate artifacts that serve multiple purposes for multiple audiences (Davis & 
Neitzel, 2011; Remesal, 2007). In addition to students and teachers, audiences for assessment 
artifacts include parents, caregivers and what Davis and Neitzel (2011) call the “higher-ups”—
people such as school administrators, district leaders, and policy makers. With multiple and 
potentially conflicting audiences come multiple conceptions of the purposes of assessment. 
Teachers’ conceptions exist along a continuum from a focus on the pedagogical purposes of 
assessment to a focus on the accountability purposes of assessment (Barnes et al., 2014). 

At the pedagogy end of the continuum, students and teachers are the primary audiences for 
assessments. Pedagogical purposes of assessment include informing instruction, facilitating 
learning, and providing evidence of student understanding. For students, assessments align with 
the content in the curriculum (Davis & Neitzel, 2011), demonstrate their progress toward 
learning goals (Karp & Woods, 2008), and offer an opportunity to receive feedback. On the 
alternative extreme of the continuum, the “higher-ups” are the driving audience. Here, 
assessments are used as measures for teacher and school accountability (Brown, 2004). As an 
example, teachers may choose to use classroom assessments as intentional preparation for high 
stakes, standardized assessments to adhere to expectations from the “higher-ups” audience and 
their focus on accountability (Davis & Neitzel, 2011). In this example, the audience of the 
“higher-ups” and their beliefs about the purpose of assessment influence classroom assessment 
practices. The accounting role of assessment is punctuated in mathematics education because 
most students in the United States take a high stakes mathematics assessment at the end of every 
school year starting in third or fourth grade.   
Enacting Assessment Values 

Teacher values around assessment, including where such conceptions might fall along the 
continuum, influence classroom decisions (Biesta et al., 2015). However, a teacher may hold 
competing goals and values for their approach to assessment (Thomas & Yoon, 2014). For 
instance, a mathematics teacher may value teaching practices that support a deep conceptual 
understanding of essential learning goals. They may also value preparing their students for 
success on high stakes assessments. The first value may require teachers to allocate extended 
instructional time to a single learning goal. The second value may require teachers to follow a 
particular curriculum or set of standards within a specific time frame. These two values may 
come into conflict when students need more time to master a particular learning goal but also 
need to move on to the next learning goal to complete the curriculum before the high stakes 
assessment. How a teacher decides which value to prioritize depends on teacher agency. Teacher 
agency is the degree to which teachers can enact their values in classroom practices within the 
culture and context of the school (Biesta et al., 2015). 

Teacher agency is situated by context and a complex relationship between educational 
theory, practice, and environment (Biesta et al., 2015). Thomas and Yoon (2014) found that 
teachers prioritized their pedagogical values when making instructional decisions until one of 
three conflicting values came into play: (1) requirements about time, curriculum, or assessment; 
(2) potential success for future learning; and (3) respect for students’ cultures. For instance, a 
secondary mathematics teacher who was committed to student-centered learning might not enact 
that value when it came in conflict with preparing students for assessments by completing the 
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national curriculum in the available time. In this case, the teacher switched to teacher-led 
instruction and limited the time allocated for a specific learning goal, despite their personal 
feelings that the concept was important, because it was not part of the required curriculum.  

When there is tension between conflicting assessment values, particularly between 
pedagogical and accountability purposes, teachers may feel less agency around the accountability 
purposes of assessment. As a result, teachers may prioritize accountability purposes even to the 
detriment of their pedagogical values. Teachers’ choices related to navigating conflicting values 
are influenced by the amount of agency they perceive in decision making. In this study we 
connect the research by Barnes et al. (2014), Thomas and Yoon (2014) and Biesta et al (2015) to 
discuss agency and how it relates to assessment values and practices with early career teachers in 
mathematics.  

Methods 
This study emerged as a result of piloting the student work sample interview protocol from 

the NExT digital handbook (NExT Teacher Effectiveness Work Group, 2018). The interview 
protocol was based on D’Souza’s (2012) case study of early career teachers’ assessment 
practices. D’Souza found that a student work sample interview protocol encouraged reflective 
practices with early career teachers that supported growth and development around assessment 
practices. Those findings motivated our choice to pilot this interview protocol, in particular 
because we were interested in how a protocol designed to work across disciplines might be used 
in the context of early career mathematics teachers. Unlike D’Souza, who implemented the 
TAPL with participating teachers routinely over five years, we piloted the NExT student work 
sample interview protocol once with each of our participating mathematics teachers. 
Data Collection 

Participants for this study were drawn from the approximately 40 secondary mathematics 
teachers who were in their first three years of teaching and had graduated from the secondary 
mathematics teacher licensure program at a Midwest university. All 40 teachers were invited to 
participate in the study and five teachers elected to participate. Four teachers taught at middle or 
high schools in the same Midwest state as the licensure program; the fifth taught in a school in 
the southeast United States.  

Each teacher selected a recent assessment they had used in their mathematics courses and 
submitted a set of student work samples to the researchers prior to an individual interview. The 
only parameters for the teachers in this study was to select an assessment that had enough student 
work to drive a conversation about the learning that was present. The selected assessments 
ranged from two questions on a single skill to a summative unit test or project. The student work 
samples were graded and represented a range of student mastery.  

The semi-structured interview included five main sections: (1) context questions focused on 
understanding the school setting, (2) description of the assessment, (3) discussion of student 
work samples, (4) implications for advancing student learning, and (5) a final reflection. The 
context questions asked teachers to share anything they felt was important for the researchers to 
know about their students and school. In the second section, teachers described the assessment 
and the learning activities that led to or followed the assessment. The majority of the interview 
time was dedicated to the third section, reviewing and analyzing the student work samples. 
During this portion of the interview, teachers were asked to organize the student work into three 
categories: demonstrated mastery, approaching mastery, and still needs support. The teachers 
then described what they noticed in each sample and explained why they categorized the student 
work as they did. Teachers were then asked about the next steps they wanted to take to further 
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student learning. Finally, each interview concluded with an opportunity to reflect on the 
experience of participating in a student work sample interview, as well as any reflections about 
the licensure program. Each interview lasted approximately 60-90 minutes. All interviews were 
video recorded and transcribed for analysis.  
Data Analysis 

To analyze the interviews, we used two distinct but complementary approaches. The first 
approach followed the NExT digital handbook (NExT Teacher Effectiveness Work Group, 2018) 
which suggests using rubrics provided to measure the effectiveness of teachers’ assessment 
practices. These rubrics were adapted from edTPA. They evaluated (1) assessment planning, (2) 
analysis of student learning, (3) feedback on student learning, and (4) analysis of student learning 
to inform teaching. Using these rubrics for the initial purpose of piloting the materials from the 
handbook, we began to notice additional patterns in the data. 

These initial observations led us to engage in a more systematic, open analytic process. Our 
second approach applied grounded theory to code and analyze the interviews. Grounded theory 
starts with a general area of research interests and uses the coding of qualitative data to identify 
patterns (Charmaz, 2006). Those initial patterns inform subsequent research questions and 
coding to arrive at a theory from the data. We concluded by looking at the results from these two 
analytic approaches to identify any further patterns evident in the data. 

Results 
Our analysis resulted in three key findings. First, we found that the mathematics teachers 

demonstrated high-level indicators of effectiveness relative to the pre-existing rubrics. In 
particular, they demonstrated values related to assessment that align with high-quality 
instructional practices. Second, through our use of open coding, we identified a wide variety of 
factors that influence how teachers enact their assessment values. Finally, we describe how 
teachers revealed tension between their assessment values and their perceived agency to enact 
those values. 
Teachers’ Assessment Views 

We found evidence that all five teachers in the study demonstrated assessment practices and 
values that aligned with high-level indicators described in the NExT handbook. Teachers 
demonstrated that they (1) believe all their students can do well on mathematics assessments, (2) 
can differentiate feedback and analysis based on knowledge of individual students, (3) view 
assessment as ongoing, and (4) can design and implement assessments that provide students with 
opportunities for deep mathematical learning.  

Mastery and ongoing assessments. A high-level performance indicator states that teachers 
use an “assets-focused approach to describing student progress towards learning goals”. We 
found that all five teachers demonstrated this indicator in how they responded to interview 
prompts to discuss the student work samples. The interview protocol asked teachers to categorize 
their work samples based on student mastery. Despite this prompt, all five teachers resisted 
grouping the samples and instead discussed each piece of student work individually. The 
teachers consistently tailored their discussion and ideas for further instruction based on their 
knowledge of each individual student. They described the student understanding they saw 
demonstrated in the work and discussed how that aligned with the individual’s progress towards 
their overall mathematics goals. We found their collective decision to discuss students 
individually rather than as a group to be evidence that the teachers were focused on each 
students’ mastery level on the assessment and their progress toward the learning goals. The 
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teachers discussed student work in a way that consistently indicated that they believed all 
students would master the learning goal eventually.    

Tied to the concept that all students would eventually master the learning goal, we also found 
that teachers approached assessment as ongoing. Teacher A, for example, said, “I like giving at 
least two chances on each test.” This teacher went on to describe how additional opportunities 
for students to take assessments combined with standards-based grading provides Teacher A 
with a more comprehensive understanding of student mastery. Like Teacher A, all participants 
discussed intentionally providing ongoing assessment opportunities that enable students to 
demonstrate mastery of the learning goals beyond the first assessment. 

Assessments as opportunities for deep mathematical learning. Another indicator of 
productive assessment practices from the student impact rubrics was opportunities for deep 
learning. To demonstrate valuing deep mathematical learning through assessment practices, 
teachers might require students to communicate mathematical arguments through their work 
and/or develop mathematical ideas. Teachers in our study demonstrated this in multiple ways. 
Teachers C and D analyzed student learning based on the ability to communicate valid 
arguments to support their work. Teacher B designed assessments that encouraged students to 
construct new mathematical ideas alongside checks for understanding.  

To Teacher D, having the correct steps in a geometric proof was only part of demonstrating 
learning mastery. They also felt students must be able to create and communicate a valid 
argument through their work in a way that others can understand. Teacher D explained that they 
were not only looking for an accurate answer. “I also want them to understand that this is 
communication and it should be written to be read. I'm looking to motivate the idea that we're 
doing math as both a deductive and social activity.” To assess that, Teacher D designed an open-
ended project with student choice that allowed students to prove geometric theorems using 
paragraphs, annotated diagrams, or a two-column format. Teacher B’s assessment design also 
encouraged students to think critically and advance conceptual understanding. Their assessment 
included questions that asked how a data summary would change if a new value was added to the 
data table. Students were also asked to make predictions about outliers, which served as a pre-
assessment to the next lesson. These examples demonstrate that these early career teachers were 
prepared to design assessments with opportunities for deep learning by developing mathematical 
ideas and communicating mathematical arguments rather than focusing assessments solely on 
procedural fluency.  
Factors that Influence Enactment of Assessment Values 

The teachers indicated that there are a variety of factors that influenced how they enact their 
assessment values in practice. These factors included influence from administration, influence 
from their teacher preparation program, and their perceived agency in classroom decisions.  

Influence from the teacher preparation program. All five teachers discussed assessment 
practices and values that were influenced by their teacher preparation program. These influences 
include practical elements of teaching and learning of mathematics, such as implementing 
multiple forms of assessments, incorporating unit plans they designed during their university 
coursework, and considering specific examples of student misconceptions in assessment design. 
They also demonstrated theoretical understanding of assessment practices by citing specific 
readings they had studied and the socioemotional needs of students.  

For example, Teacher C reflected on their assessment and discussed designing assessments 
that were accurate measures of student understanding, which requires questions that can tease out 
misconceptions. The assessment selected by Teacher C was part of a routine created by the 
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mathematics team at their school to improve student skills on selected standards. In this 
assessment, students solved two questions using the distance formula. Both questions involved 
finding the distance of a horizontal line segment from the origin to another point. Teacher C 
critiqued their assessment, referencing a specific task from their teacher preparation program 
which revealed that students can develop misconceptions about triangles when the base is always 
horizontal to the x-axis. They applied that experience to this assessment and explained that future 
versions of this assessment should include questions that solve for the distance of both horizontal 
and diagonal lines. This example highlights the high-level indicators of designing and 
implementing assessments that are accurate measures of student understanding and using 
evidence in student work to measure nuanced growth towards the learning goal.  

Teacher C explained, however, that adjusting assessment questions created a new set of 
challenges for department collaboration and measuring student growth. Their assessment was 
designed as an intervention strategy with multiple opportunities for reassessment. As such, one 
of the goals was consistency both in assessments/reassessments and across classrooms. Teacher 
C described the complexity of wanting to design assessments collaboratively and implement 
assessments that were consistent enough to support student growth through reassessments, while 
also varying the questions to be a true measure of what the students know. Teacher C’s 
commitment to each of these values were influenced by their program, but the reality of 
navigating those values while collaborating with a department sometimes created tension.  

Influence from school administrators. The interview data revealed that the teachers’ 
assessment practices were strongly influenced by their school administrators’ view of assessment 
in mathematics teaching and learning. The teachers expressed feeling tension between their 
assessment values and the assessment practices encouraged or enforced by their school 
administrators. The teachers described a complex and contextualized reality that influenced their 
ability to implement high level assessment practices.  

Multiple teachers described tension between the values developed during their program and 
their administrator’s views on assessment. For example, Teacher E discussed how their district’s 
“data driven” assessment plan felt at odds with the values learned during their program. “We 
were taught about all the awesome ways that you could do things. Which is great...But I don't 
know if that effectively prepared me for walking into a school where that's the exact opposite of 
what they do”. Teacher E felt that pressure from the district to maximize student performance on 
standardized tests influenced instructional and assessment decisions that went against the 
practices learned as a pre-service teacher. 

Similarly, Teacher C shared that their school leadership viewed mathematics learning 
through a procedural lens.  

The program prepared me wonderfully for actually teaching mathematics, but navigating 
[my] district’s and administration's attitude towards mathematics is more difficult...the 
decision makers in our administration conceptualize mathematics as all procedural. [...] How 
to navigate that while pushing towards the ultimate goal of making mathematics education 
about understanding is a thing that I feel like I don't know.  

Through their work in the teacher preparation program, Teacher C learned to value 
understanding in mathematics teaching and learning, yet their administration viewed 
mathematics as “all procedural”. Both Teachers C and E described feeling frustrated about how 
the “higher ups” views of assessment purposes influenced their ability to enact practices that 
align with their personal assessment values. They offset those tensions by creating ongoing 
assessment opportunities that provided students with additional chances. The teachers explained 
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that in their respective departments, the mathematics teachers chose to integrate reassessments 
and test corrections to better align their values with the required assessment expectations. 

Finite learning time. Limited learning time also appeared to be a significant factor for how 
teachers enacted their assessment values. We define learning time as available time for 
instruction and intervention based on scope and sequence constraints. All five teachers talked 
about learning time. The teachers described immense pressure to maintain scope-and-sequence 
pacing for the year. This is particularly notable since our interview questions focused strictly on 
assessment without any reference to instructional time. Teacher B reflected on this from their 
position as the sole mathematics teacher at their school, saying, “I feel kind of blessed almost to 
be the only teacher because I get to work on my own schedule...and really use data from 
assessments to help guide my teaching.” This contrasts with teachers who felt bound by their 
pacing guides. These teachers described feeling pressure to “push through the content” faster 
than the students could handle and having to “hustle to convince” students to get extra help 
during lunch or after-school. These time barriers also affected how much time teachers felt they 
had to provide feedback and modify their instruction based on assessment data.  

These influences from the teacher preparation program, school administrators, and learning 
time all contributed to situations where teachers found themselves with competing goals relating 
to assessment. In the next section, we turn to the construct of agency to help us understand how 
teachers navigated these competing values. 
Complex and Contextualized Teacher Agency About Assessment 

Despite our finding that these five teachers demonstrated high-level indicators with respect to 
their assessment values, how they were able to enact those values was contextualized through the 
complex realities of their schools. Our data highlights complexities around administrators’ view 
of assessment purposes in mathematics and the relationship between learning time and 
instructional decisions. Teachers navigated these contexts based on their perception of agency 
over teaching practices. In some circumstances teachers felt agency to align their assessment 
values with practices, such as using assessment data to inform classroom decisions and designing 
assessments with opportunities for deep mathematical learning. At the same time, all of the 
teachers described situations where they felt pressure to enact assessment practices that went 
against their values. One area where teachers demonstrated agency was in designing year-long 
assessment plans with ongoing assessments. All of the teachers were required to meet assessment 
expectations set by the “higher ups”. This included weekly department-wide skill assessments, a 
minimum of two summative assessments every four weeks, or administering assessments that 
were closely tied to high stakes standardized assessments. However, all five teachers also 
incorporated ongoing assessment practices or assessments designed to allow solutions in 
multiple representations within their school’s larger assessment plan. Teachers were able to find 
space within those expectations to enact their assessment values based on the degree of agency.  

Discussion 
Our study had three findings. First, all five teachers demonstrated high-level performance 

indicators for assessment values. Second, factors influenced how teachers enacted their values - 
including tension created by the “higher ups” views and expectations about assessments in 
mathematics. Third, teachers navigated this tension by agency that was contextual. A key finding 
from this study showed that mathematics teachers recognized a misalignment between their 
assessment values and their agency to enact those values.  

We argue that the degree of teacher agency to enact assessment values depends on where the 
conflicting values lie on the continuum of purposes of assessment (Barnes et al., 2014). When 
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the purpose of assessment was at the pedagogical end of the continuum, teachers were doing the 
assessing and had agency to align their values with classroom practices. In our study, we saw this 
when teachers used multiple forms of assessment, created ongoing assessment practices, and 
individualized feedback. However, when the conflicting values were between accountability 
purposes from the “higher ups” and pedagogical purposes, teachers yielded their values to 
conform to expectations. At this end of the continuum, teachers were being assessed while they 
were assessing student understanding. The “higher ups” use assessment as a form of control and 
accountability to evaluate teacher effectiveness (Barnes et al., 2014). When there is tension 
between the teachers’ assessment values and higher ups views of mathematics assessments, 
teachers are put in a position where they must choose between their evaluation of teacher 
effectiveness or pedagogical practices that align with their values.  

One of the most striking themes from our data was the influence learning time had on 
teachers’ assessment practices. All of the teachers in our study cited the pressures of learning 
time as a driving factor for instructional decisions that misalign with their values. Thomas and 
Yoon (2014) found that time was one of three factors that influenced a teacher to abandon their 
pedagogical values in order to conform to accountability purposes of assessment. In that study, 
time was grouped with curriculum and assessment. Echoing Thomas and Yoon, we posit that 
required curriculum and high stakes assessments, as well as learning time, are factors that 
influence teachers’ agency to enact their assessment values. Furthermore, we argue that teachers 
felt pressured to disregard their values because time, curriculum, and high stakes assessments are 
at the accountability end of the continuum of assessment purposes. 

“Higher ups” make decisions and set policies that they believe will help students learn 
mathematics, such as scope-and-sequencing and departmental teaching strategies. However, their 
lens of understanding these practices is often driven by standardized assessments, which means 
that it is still largely procedural. Mathematics teachers, through their licensure programs, have a 
complex and nuanced understanding of teaching mathematics for conceptual understanding that 
align more strongly with pedagogical purposes of assessment. Our findings support research that 
continues to think about ways to use available learning time for deep learning rather than 
focusing solely on procedural skills. Our data shows that less pressure around maintaining a 
scope-and-sequence may enable teachers to better enact their assessment values.  

Our study piloted a teacher interview protocol that was adapted from D’Souza’s (2012) 
TAPL with early career mathematics teachers. Similar to D’Souza, we found that this protocol 
was an effective tool in understanding teachers’ practices and values around assessment. We 
found that when implemented with secondary mathematics teachers, the student work protocol 
revealed both indictors of high-level assessment practices and contextual factors that might 
prevent teachers from enacting those practices. We posit that teacher agency is a key component 
to enacting assessment values and is tied to the continuum of purposes of assessment (Barnes et 
al., 2014). Since accountability purposes influence teachers’ agency, evaluations of teacher 
effectiveness should include opportunities for teachers to identify when they felt pressured to act 
against their values. The NExT student work sample protocol is one alternative to evaluate 
teachers’ assessment values and practices.     
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We report the findings from our efforts to co-design statewide instructional frameworks to 
support elementary and middle school mathematics teachers’ and leaders’ implementation of 
state standards in ways that align with visions of high quality mathematics instruction. In this 
paper, we explore whether districts as well as individual teachers took up the instructional 
frameworks, their reasons for doing so, and the ways they used them to support instruction. Our 
findings indicate that the instructional frameworks were widely adopted across the state, 
supported teachers’ pacing and sequencing efforts, and provided opportunities for professional 
learning. However, school/district leaders and classroom teachers had different views on why 
their district decided to take the frameworks up, indicating a communications divide that needs 
to be addressed in future co-design efforts. 

Keywords: Systemic Change, Curriculum, Design Experiments 

The notion of vision has long been researched as an important part of a teacher’s ability to 
enact thoughtfully adaptive teaching (Duffy, 1998). Additionally, a shared vision of high-quality 
instruction among administrators, teachers, and other stakeholders, is essential for professional 
development and collaborations to be effective in schools (Birkeland & Feiman-Nemser, 2012; 
Fulton, et al., 2010) and for the implementation of new programs or policies (Gamoran, et al., 
2003). The importance of common vision of mathematics instruction is reflected in Cobb and 
Jackson’s (2011) theory of action for large scale instructional improvement in mathematics, 
which includes vision of high quality mathematics instruction (VHQMI) underlying a coherent 
instructional system as one of five key elements. What counts as “high quality” in mathematics 
education is debatable, but a large body of research suggests that HQMI involves listening to 
students and building on their representations and strategies to encourage sense making. 
Teachers who aspire to this vision are often constrained by district policies (e.g., scripted 
curricula, strict pacing and sequencing) and state mandates (e.g., assessments, standards). 
Although these conditions have constrained mathematics teachers across the country, we 
describe a research-practice partnership (RPP; Coburn, et al., 2013) that aims to co-design 
infrastructures and resources that support North Carolina mathematics teachers to develop and 
enact common visions of high-quality mathematics instruction (VHQMI). In this paper, we 
report the findings from our efforts to co-design statewide instructional frameworks to support 
elementary and middle school mathematics teachers’ and leaders’ implementation of state 
standards in ways that align with VHQMI. Specifically, we explore whether districts as well as 
individual teachers took up the frameworks and why. 

Co-designing for Shared VHQMI Through Instructional Frameworks 
Research suggests that pacing guides are often viewed as a constraint to enacting visions of 

practice (Duggan, et al., 2018). They undermine teachers’ flexibility to meet individual student 
needs as district expectations of strict adherence to weekly or daily schedules contribute to the 
need to “cover everything,” often by dropping conceptual-based, student-led activities in favor of 
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teacher-directed activities (Bauml, 2015). In North Carolina [NC], school districts had each 
created their own pacing guides to sequence instruction based on statewide standards. Differing 
levels of capital and expertise among districts resulted in widely varied pacing guides, some co-
created by district-wide teams of elementary math specialists and, in other districts, created by 
K-12 district curriculum leaders with no particular expertise in mathematics education. North 
Carolina teachers and leaders identified this as a problem of practice that could be leveraged to 
build towards a more coherent vision across the state. Thus, we convened teams including 
teachers, instructional coaches, administrators, and curriculum leaders from 19 diverse and 
representative school districts, higher education faculty from eight universities and state leaders 
from the NC Department of Public Instruction [NC DPI] to co-design an elementary and a 
middle school pacing guide that would be grounded in research on learning progressions 
(Common Core Standards Writing Team, 2013) and could be adapted statewide. The co-design 
teams decided to address their concerns about common VHQMI, and the productive vs. non-
productive uses of pacing guides by envisioning a pacing document that goes beyond “what to 
teach when.” Focused on the idea that curriculum materials can themselves can be educative 
(Drake, et al., 2014; Davis & Krajcik, 2005) the co-design teams set a goal of promoting a shared 
instructional vision by developing suggested state-wide, grade-level pacing guides, re-named 
instructional frameworks (IFs) to denote their role beyond traditional pacing documents that: 
1) Emphasize curriculum guidance, not prescriptive pacing, 2) Focus on central ideas with links 
to exemplary curriculum materials, lessons, and instructional strategies, 3) Allow for flexibility 
and unpredictability based on differences in teachers, students, and contexts, 4) Address 
development of student reasoning and how to build upon it (i.e., learning progressions), and 5) 
Are adjusted frequently based on feedback from teachers. The co-design teams completed first 
drafts of the IFs in fall 2017, sought feedback through a statewide survey from stakeholders, 
made revisions and rolled the IFs out in spring 2018. Importantly, the NC DPI adjusted the 
content of their free, optional interim assessments [Check-Ins] to align with the IFs sequencing 
and pacing. Like the Check-Ins, districts had the option to use the IFs to guide implementation of 
the mathematics standards for the 2018-2019 school year. At this time, the elementary and 
middle school IFs have been available and adapted statewide for three years. In this paper, we 
share findings related to three research questions: 

RQ1: For districts that adapted the IFs, what did participants think was the reason for uptake? 
RQ2: What aspects of the frameworks did individual teachers report were their favorite? 
RQ3: How did teachers report using the frameworks? 

Research Methods 
This work is part of an ongoing Design-based Implementation Research (DBIR) state-wide 

project that is in its seventh year, having partnered with hundreds of NC mathematics educators. 
In 2019, a survey was distributed through the state agency’s listservs to approximately 20,000 
mathematics teachers, school administrators, and district mathematics leaders. Of the 813 
educators that responded to the survey, we analyzed only the responses of participants who 
worked with grades that would potentially use the IFs. These 538 responses represented 74% of 
the NC school districts. Of the respondents, 60 were School-based Coaches/Curriculum 
Facilitators, 38 District Curriculum Personnel, 4 Principals/Asst. Principals, and 436 Classroom 
Teachers. The respondents worked in elementary (320), middle (181), elem/middle (11), 
middle/high (16), and elem/middle/high school (10) settings. In this report, we analyzed the 
answers to a block of questions/prompts related to implementation of the IFs:  
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1. Question 1: Did your district use the instructional frameworks? 
2. Prompt 1: If you know what influenced your district’s decision to use the IFs, rank and 

order the reasons below: match/align to the state quarterly assessments, match the 
textbook or math program used in my district, align to State resources, match our current 
sequencing and pacing of instruction, address the development of student reasoning and 
how to build upon it based upon research, were co-designed by a large number of people, 
were created with feedback from teachers and leaders, and I do not know.  

3. Question 2: What are your favorite aspects of the instructional frameworks? (Pick up to 3 
choices): [same choices as Prompt 1]. 

4. Question 3: How did you use the IFs (Select all that apply): as a resource among a 
variety of resources, a resource to supplement a textbook or math program, to determine 
pacing and/or to sequence instruction, to gain a better understanding of what the 
standards mean, to gain a better understanding of the mathematics, to understand vertical 
alignment. 

Findings 
Of the 75 district leaders, school coaches, and principals/asst. principals who answered 

question 1, 85% (n=64) reported that their district was using the IFs, 13% (n=10) said they were 
not using the IFs, and 2% (n=1) said that they did not know. These 75 mathematics leaders 
represented 53 of 115 districts or roughly 46%. We used responses from district and school 
leaders only because we believe they have the most accurate knowledge of the district’s 
decisions, whereas a teacher does not always have direct knowledge of their district’s intentions. 
Interestingly, of the 227 classroom teachers who answered this question, 78% of respondents say 
that their district uses the IFs, 8% say that they do not, and 14% do not know. This suggests 
some coherency between teachers’ and leaders’ knowledge of whether the IFs are being used 
within their districts. The fact that 14% report that they do not know whether their district 
adapted the IFs or not suggests there may be a communication challenge between districts and 
teachers. Overall, we are encouraged by the high number of districts that report using the IFs. 
Why Did Districts Take Up the Instructional Frameworks? 

We separated responses to survey prompt 1, if you know why your district decided to use the 
IFs, by education role. According to district leaders, school coaches and principals/asst. 
principals, the top three ranked reasons that districts chose to use the IFs were that they matched 
the state quarterly assessments, matched the district’s textbook/curriculum and incorporated 
feedback from teachers and leaders. In contrast, classroom teachers reported that their district 
chose to use the IFs because they matched the textbook/curriculum, matched their district’s 
current pacing guide, and aligned to the State’s resources. In this case, teachers and teacher 
leaders only agree that the district used the IFs because they match the textbook/curriculum of 
their district. Otherwise, there is little agreement. It is significant to notice that educators who are 
closer to their district’s decision making process, report that assessments were an important part 
of their decision while classroom teachers ranked assessments in the bottom three reasons they 
thought their district used the IFs. This finding indicates that there is miscommunication between 
districts and teachers and suggests infrastructuring as a potential problem to address in working 
towards shared VHQMI. 
What Were Individuals’ Favorite Aspects of the IFs? 

Of the 302 respondents to Question 2, approximately 50% chose matched the state quarterly 
assessments as one of their top three favorite aspects of the IFs. Not far behind was the fact that 
the IFs address the development of student reasoning and how to build upon it based on research 
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(40%) and that they match their district’s current pacing guide (36%). Disaggregating the 
responses by role group (teachers and leaders), there is no difference which suggests regardless 
of role responsibilities, participants valued the same aspects of the IFs. In particular, the IFs seem 
to be valued for their intended purpose: suggested pacing of standards. Second, the IFs are 
valued for aligning standards with the assessments. Surprisingly, the second most valued 
characteristics of the IFs involved the fact that they are based upon the development of student 
reasoning and research. Taken together, these findings suggest that educators value the resources 
for addressing their practical challenges, assessments and pacing, and must be attended to in 
resource design. Further, grounding resources in research was a characteristic that was valued by 
those who took it up. 
How did individuals use the IFs? 

Question 3 asked participants to select among a variety of ways that they used the IFs in their 
classroom instruction or professional work (if leaders). From the 226 responses, the three most 
prevalent uses of the frameworks were to gain a better understanding of what the standards mean 
(51%), as a resource among a variety of resources (51%), and to determine pacing and/or to 
sequence instruction (47%). Less common responses included using the frameworks to gain a 
better understanding of the mathematics (36%), to understand vertical alignment (31%), and as a 
resource to supplement a textbook or math program (14%).   

Discussion 
The goal of this DBIR project was to work towards statewide shared VHQMI by co-

designing instructional frameworks to address the shared problem of practice of non-productive 
uses of pacing guides and the many disparate, district-created pacing guides across the state.  The 
IFs were taken up widely and served their purpose as a guide for sequencing and pacing and also 
as a tool to promote professional learning.  Findings about why and how districts used the IFs 
and what was most valued about the tool have implications for future co-design. First, 
perceptions about why districts took up the IFs differed between leaders and teachers, indicating 
a lack of communication. Continued co-design to promote shared VHQMI needs to support 
communication across role groups. Second, respondents valued that the IFs addressed the 
development of student reasoning and how to build upon it based on research, and yet this 
component was not among the top reasons respondents perceived as a reason districts chose to 
use the frameworks.  In other words, respondents valued that the tool was research-based and 
focused on student reasoning, but it was not a determiner of uptake in the way that alignment to 
state assessments was. Thus, the co-design process needs to include negotiating the existing 
structures within the communities for which tools are being created.  Finally, intentionally 
seeking feedback from all role groups in the system is essential in co-design. In the case of the 
IFs, getting feedback at multiple levels allowed for attention to the differing needs that were 
expressed, resulting in high uptake and buy-in, opportunities for learning, and movement toward 
shared VHQMI.  As one respondent noted: 

The instructional frameworks could be the beginning of a powerful movement in North 
Carolina towards Student Centered Mathematics Instruction. The frameworks are so detailed 
regarding rationale for clusters that it serves to support teacher professional learning. I think 
that we need so many more professional learning opportunities where teachers from all over 
the state can come and collaborate and learn from each other. 
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This research report describes a Learning Trajectory-based Curricular Design project that 
engaged teachers and coaches in the design and implementation process. As the project team, we 
focused on deepening teacher designers’ understanding of the learning trajectory (LT) while 
situating student learning along a continuum to advance student thinking. Analysis of the design 
and implementation cycle demonstrated that teacher designers used their professional judgment 
and knowledge of LTs to assess the quality and appropriateness of curricular resources as they 
made instructional decisions to meet the needs of diverse learners. School-based coaches used 
these teaching resources as a type of professional development for identifying student strengths 
and “packaged” the resources for teachers who were overwhelmed from teaching during the 
pandemic. We discuss the importance of applying LT research for asset-based instruction.   

Keywords: Learning Trajectories and Progressions, Teacher Knowledge, Instructional Activities 
and Practices, Standards (Strand: Curriculum, Assessment, and Related Topics; Mathematical 
Knowledge for Teaching) 

COVID-19 interrupted teaching and learning in unprecedented ways and presented 
multifaceted challenges for students and teachers. As educators worked hard to support student 
learning in mathematics, the field looked for innovative ways to mitigate the challenges. In the 
spirit of PMENA 44’s theme, Critical Dissonance and Resonant Harmony, we share how 
researchers and teacher designers worked collaboratively in design-based research to move 
beyond the “dissonance” created by COVID to build a curricular resource framed by learning 
trajectories (LT) and asset-based instruction to bring “harmony” to educators striving to meet the 
needs of every student. 

The Need to Translate Learning Trajectory Research to Practitioners 
We situate our work in uncertain times, as Ladson-Billings (2021) calls in a “re-set school 

environment”, where she asks educators to use an accurate assessment of what students already 
know with varied and regular formative assessments to determine how well students are 
understanding what they are taught. In this way, assessment is not a “punitive tool to ‘catch’ 
students but rather a diagnostic and developmental tool that will tell teachers and schools how to 
adjust their curriculum and pedagogy”(Ladson-Billings, 2021, p.75). This re-set requires teachers 
to be deeply knowledgeable about the learning trajectory (LT).  It is critically important to 
introduce LT research to practitioners due to the scale of disruption and overwhelm of teachers 
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in the post COVID-19 learning environment. Teaching that incorporates an understanding of LTs 
has the potential to make instruction more efficient and supportive of learning mathematics for 
understanding (Suh et al., 2014; 2021). Clements & Sarama state that a LT describes:  

Children’s thinking and learning in a specific mathematical domain, and a related, 
conjectured route through a set of instructional tasks designed to engender those mental 
processes or actions hypothesized to move children through a developmental progression of 
levels of thinking, created with the intent of supporting children’s achievement of specific 
goals in that mathematical domain. (Clements & Sarama, 2004, p. 83)  
In many academic and practitioner resources, the terms LTs and learning progressions are 

used interchangeably with the emphasis on the developmental progression of levels of thinking 
within a conceptual domain. Confrey’s notion of LT/progression is described as:  

A researcher‐conjectured, empirically‐supported description of the ordered network of 
constructs a student encounters through instruction (i.e. activities, tasks, tools, forms of 
interaction and methods of evaluation), in order to move from informal ideas, through 
successive refinements of representation, articulation, and reflection, towards 
increasingly complex concepts over time. (Confrey & Maloney, 2010, p. 1) 

According to Confrey (2012), there are five elements of LTs that teachers need to 
understand: 1) the conceptual principles and the development of the ideas underlying a concept; 
2) strategies, representations, and “conceptions”; 3) meaningful distinctions, definitions and 
multiple models; 4) recognizing coherent structure or pattern in the development of progressively 
complex mathematical ideas; and 5) bridging standards or identifying the underlying concepts 
that “bridge the gap” between standards. Focusing on the five elements of LTs can improve 
instructional planning as teachers anticipate student strategies, representations, and conceptions 
that can be attributed to students’ strengths and resources for building on their understanding. 
The potential of Learning Trajectory-Based Instruction (LTBI) in professional development (PD) 
settings has also been explored by the collective work of Sztajn et al. (2012), Wilson et al. 
(2015), and Myers et al. (2015), who examined how teachers’ discursive patterns about students 
as mathematics learners changed as the teachers engaged with the LT in PD. In particular, they 
noted that teachers initially voiced expectations about students’ mathematical ability related to 
student age or grade level. But as teachers’ understandings of LT developed, their voiced 
expectations began to acknowledge that students’ prior experiences influenced students’ 
performance.  

Asset-based instruction and the use of rigorous mathematics were central to the framing of 
our project and aligns with one of the key recommendations in Catalyzing Change in Early 
Childhood and Elementary School (NCTM, 2020) to develop “deep mathematical 
understanding” and build students “as confident and capable learners” (p. 11). Using Asset-based 
approaches to planning instruction is a conscious way to move away from deficit perspectives 
(Celedón-Pattichis et al., 2018). Teachers’ explicit attention to focusing on strength in students’ 
thinking and what children are capable of doing helps teachers in avoiding biases that impair 
teaching and learning.  According to Gresalfi et al. (2009), what counts as “competent” gets 
constructed through an interaction between the opportunities that a student has to participate in a 
particular mathematics classroom and the student’s uptake of those opportunities, meaning that 
structures that promote equitable participation and interaction are key. Positive and discourse-
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rich classrooms (NCTM, 2000; Stein & Smith, 2011) allow each student to have feelings of 
success and pride (NCTM, 2020). The instructional decision to formatively assess and highlight 
student thinking during discussions has important implications for assigning competence, as it 
suggests what students are accountable for and to whom they are responsible for sharing their 
thinking with (Gresalfi et al., 2009). We believe that by finding strength in students’ multiple 
knowledge bases (Turner et al., 2016; Kobett & Karp, 2020), teachers are better able to assign 
competence in student thinking, while broadening the notion of what competence means and 
building student agency and a positive sense of identity (Civil, 2007; Gonzalez, Moll, & Amanti, 
2005; Aguirre et al., 2013; Lotan 2003; Cohen et al., 1999; Gresalfi et al., 2009). 

 

 
 

Figure 1: Mathematics Learning Trajectory-based Curricular Design Framework 

Context for our Math Learning Trajectory-based Curricular Design for Practitioners 
The professional development design institute used a LT-based Curricular Design framework 

(Figure 1) which incorporated LT research, asset-based instruction, and rigorous instructional 
resources with high levels of cognitive demand. The team of teacher designers curated 
curriculum modules aligned to state-selected bridging standards. Bridging standards connect 
content across units within grade levels and articulate prerequisite knowledge for standards in 
future grades. The modules designed for each bridging standard consisted of five components: a) 
a zoomed-in LT bridge that illustrated the connection between students’ strengths, bridging 
concepts, and the targeted learning standard; b) “big ideas” about the principles and development 
of each LT; c) important assessment “look-fors” that included strategies, representations, and 
“conceptions” to use for formative assessment; d) purposeful questions to assess, clarify, and 
advance students’ mathematical ideas; and e) cognitively-demanding bridging activities, 
specifically routines, rich tasks, and games.  

The LT research embedded in the modules provided direction for teachers to predict their 
students’ potential reasoning, misconceptions, and learning. The modules were designed to 
support teachers in examining student thinking according to levels of cognitive proficiency rather 
than age or grade level. The curricular focus on asset-based instruction was intended to challenge 
and expand what teachers value and consider to be mathematical competence. Based on 
formative assessment of students’ strengths, the modules guide teachers to select targeted 
activities in response to students’ understandings and to support further learning.  

Methods 
Context and Participants 

Using design-based implementation research, this qualitative case study (Stake, 1995) 
followed six early elementary mathematics educators from a professional development program 
to understand how these teacher designers applied a LT framework and asset-based lens while 
designing and testing curricular materials through two implementation cycles.  After each 
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implementation cycle, teacher designers attended an implementation debrief meeting to share 
their experiences and change recommendations.  

The teacher designers were purposefully recruited for the professional development based on 
their leadership and teaching experiences. The design process began in the midst of the 
Pandemic in the summer of 2021 with a 30 hour-one week Design Institute.  Teacher designers 
then implemented the design modules in their classrooms during the fall of 2021 with iterative 
cycles of refinements. We met three sessions online to debrief each cycle of implementation. In 
the spring of 2022, we interviewed a core group of our teacher designers to learn about how they 
continued to use the LT based instructional modules to support diverse learners.  This case study 
followed six total participants: three math coaches, Jana,  who taught 11 years in the classroom 
and 7 years as an instructional coach; Mia, who taught 14 years as a classroom teacher and 14 as 
a coach; and Sienna, who taught 9 years as a classroom teacher and 18 years as a coach; a first 
grade teacher, Rebecca, who has taught 3 years, and two second grade teachers, Kara, who has 
taught 9 years, and Naomi, who has taught for 8 years.    
Data Collection and Analysis  

Three data sources were analyzed for this case study: video clips from implementation 
debrief meetings that served as focus group meetings, student work, and teacher reflection forms.  
The implementation debriefs were conducted in focus groups with smaller groups of the entire 
teacher designers which allowed us to invite individual comments while also situating those 
comments in context of the group that worked together during the design process (Morgan, 
2011). Based on the data analysis from this focus group debriefs, we selected six teacher 
designers to conduct one on one interviews. The research team used open coding first 
individually, keeping analytical memos which provided preliminary analysis allowing “processes 
of discovery in the material” (Morgan, 2011, p.14). Next, the research team employed Knodel’s 
(1993) grid analysis to ensure researcher fidelity to the transcripts during subsequent analysis. 
Grid analysis allowed the research team to review transcript segments associated with each 
subtopic and calibrate the codes and categories to ultimately identify recurring themes.    
Overarching Research Questions  

Our design based implementation research questions included: 
RQ1)  How do teacher designers use the Mathematics LT-based Curricular Modules during 

their implementation cycles?  
RQ2a) How does involvement in this design project influence teacher designers’ future 

work? b) In what ways did teacher designers’ deep dive into LTs translate into their use of LTBI 
in coaching or leading school districts? c) How does the focus on strengths-based instruction 
influence teacher designers’ approach to their instruction or work with teachers? 

Results  
In addressing the first research question, how do teachers use the Mathematics LT 

Framework/LT-based Curricular modules during their implementation cycles, our findings 
revealed two themes. First, teacher designers used their professional judgment and knowledge of 
LTs to assess the quality and appropriateness of curricular resources for supporting students in 
meeting specified learning goals. Secondly, curricular materials designed using the LT 
framework supported teacher designers’ understanding of students’ learning and informed their 
instructional decision making.  
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Teacher designers’ demonstrated their professional judgment by assessing the quality and 
appropriateness of the curricular materials. Teacher designers implemented formative 
assessments and bridging activities to assess the quality and requirement criteria of each teaching 
resource. For example, through implementation and assessment of a teaching resource, Kara 
determined that it did not meet the requirement criteria of a rich task and recommended it be 
used instead as a formative assessment. Kara stated that “a lot of those tasks, they feel like 
worksheets. It was basically just a list of questions. …That feels like a quick check. No richer. It 
didn’t feel like anything too different than a quiz-like question.” Kara questioned the “richness” 
of the teaching resource and determined that it would not be appropriate as a “rich task” but 
instead could be useful in other ways. Kara’s assessment was affirmed by another teacher 
designer.  

Teacher designers also used their knowledge of their students to assess the value of teaching 
resources. Rebecca found it difficult to implement a computer-based game with her first grade 
class due to the technological expertise needed to play it. Although the mathematical concepts of 
the game were well-aligned to her students’ needs, they struggled with the website. Rebecca 
adapted the game to a paper-based format which was more accessible to her students. Mia used 
her knowledge of her students in a slightly different way. The substantial changes she witnessed 
in her students’ mathematical confidence helped her realize the “richness” of the teaching 
resource. She reflected on how the high-quality teaching resources changed the ways students 
engaged in their mathematics learning, stating that  “it was a huge difference just within a week’s 
time. They felt more confident. That was the biggest thing I took away, the kids were not afraid 
of being wrong anymore, and they were very comfortable with being able to manipulate and do 
the work.”  

Additionally, the teacher designers critiqued teaching resources according to their alignment 
along the LT. After playing  the game “Race to 100” with her second grade class, Kara 
determined that the game was a strong teaching resource for moving her students along the place 
value LT. Other teacher designers noted that while some games did not align well to a bridging 
standard, other games could be used for several bridging standards.  

Teacher designers’ reflections on their students’ learning in response to the LT-based 
curricular modules revealed a second theme and provided a lens for teacher designers to notice 
their students’ understanding and make instructional decisions. Jana, an instructional coach, 
discussed how the resources helped teachers in her school identify and address unfinished 
learning from previous grades. Because the curricular design used bridging standards, Kara was 
able to look for resources aligned to prior grades to support the prerequisite skills and knowledge 
her students needed for their current grade stating, “If you want to reteach anything, let’s say I’m 
teaching second grade this year, so I’m going to reteach this first grade skill before I teach the 
second grade skill.” Bridging standards were an important element of LTs for both Jana and 
Kara. This focus on underlying mathematical concepts allowed them to see a progression of 
complexity and shift along the trajectory as needed to find the appropriate teaching resources for 
their students. 

The LT-based curricular structure supported the teacher leaders in reframing how they view 
student learning. Sienna, an instructional coach, found that the LT structure helped teachers see 
their students’ learning as a progression and consider next steps rather than visualizing a gap 
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between students’ current understanding and the “final goal of the standard”. Kara had a similar 
epiphany in her second grade classroom. She found that the LT structure allowed her to focus on 
conceptual understanding in her second grade students’ work rather than simply quantifying the 
number of incorrect answers, stating “When you go to grade something or check it over, I’m not 
necessarily looking at ‘Oh, they got 15 out of 20. They’re missing a bunch.’ …I’m really zoning 
and honing in on what patterns I can find. I feel like that’s what this cycle has taught me is that 
there are patterns in student work.” Kara’s attention to patterns in her students’ work allowed her 
to identify their position on the LT and plan targeted instruction to support their learning. Kara 
pinpointed her students’ understanding of double-digit addition and made appropriate 
instructional decisions, stating “We just started teaching double digit addition. I know they know 
their facts, but they aren’t getting regrouping. Okay, well then that’s what they need. We don’t 
need to work on the basics. It’s not that they can’t add… They can add single digit numbers, so 
how can I break that down when we go to add something more complicated than that.” Likewise, 
Rebecca suggested that the LT approach helps lessons to be more effective because they focus 
on where students are and their precise needs. The teaching resources were cognitively 
demanding and grounded in LT research, thus equipping Kara to look beyond the number of 
incorrect responses, focusing instead on student understanding and instructional decisions.  

Naomi found the open-ended formative assessment questions to be valuable for revealing 
students’ prior knowledge. On a formative assessment question asking for a number less and 
greater than 153, Naomi observed, “that open-ended part of those two questions shows their 
thinking. Like who’s thinking one more or one less. For what’s greater than 153, one of my kids 
wrote 582… That gave them a way to show other numbers they know, not just one more, one 
less.” From the formative assessment, Naomi realized that her students needed more experience 
with numbers beyond the typical hundreds chart and chose the Mystery Number routine to 
broaden their exposure. In addition, she appreciated how an open-ended task allowed her to see 
the edges of student thinking with students naming different magnitudes of numbers that fit the 
criteria for the Mystery Number. 

In addressing research question 2a) “How does involvement in this design project influence 
teacher designers’ future work?”, we found that teachers noted the ease of usability as a “grab 
and go resource”. Teachers reported an advantage that all the materials were conveniently 
organized on a website, saying, “It is truly a one stop shop it really, really is” and “since we were 
already going to teach this anyways, it’s easy and convenient, it is a one stop shop.”  However, 
this also led to a disconnect between the original project goal of sourcing pedagogically rich 
resources and instant implementation of those resources.  In several instances, teacher designers 
initially liked the material, but struggled with implementation. Sienna said, “I really struggled 
with [the task], to the point where I actually had to create my own little recording sheet.” She 
described a conceptual hands on lesson using base ten blocks, which required monitoring and 
listening to students working in the moment. The recording sheet helped her keep track and 
assess various student strategies. While teacher designers attributed successful implementation to 
the convenience of the materials, that convenience led to a perception that a “one stop shop” did 
not require the same amount of lesson planning. 

With the disrupted instruction due to COVID-19, Jana noticed “gaps” in students’ 
understanding, but found these resources useful for understanding and redefining the specific 
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nature of the “gaps” using strength-based language. For example, Jana states, “third graders who 
have first grade gaps and second grade gaps, this LT has been really important for [teachers] and 
really useful.”  Similarly Mia transitioned from “gaps” to strength-based language by noticing 
that teachers were more focused on student work rather than “just number correct.”  Mia also 
reported increased student confidence saying, “It was a huge difference just within a week's time 
and [the students] felt more confident. The kids were not afraid of being wrong anymore, and 
they were very comfortable with being able to manipulate and do the work.” Mia also reported 
teacher confidence saying, “The teachers were like blown away that our kids can actually do 
this.” This transition from “gaps” to strength-based language was particularly important as 
teachers implemented previous and current grade standards.  Jana explained that “A lot of our 
teachers are trying to become experts in [prior grade] areas that they're not used to being an 
expert and having the LT and activities at their fingertips has been super helpful so far” because 
it helps teachers to “think more about the next steps that the students need.”  

In addressing research question 2b) “In what ways did teacher designers’ deep dive into LTs 
translate into their use of LTBI in coaching or leading school districts?”, we found that 
mathematics specialists and school-based coaches used these resources as a type of professional 
development to look at LTs using student strengths. Sienna described this as, “looking at more 
about what is the next step, the thing that [students] need, what is it that our students do know 
and because of that we're thinking more about the progression of the students, rather than the 
end.” Mia explained that these resources were especially beneficial after the disrupted learning 
due to COVID-19 because they “gave me a tool, because I kind of felt as lost as they did. [sic] 
we've never done this before, we've never faced it… I feel like anybody I've told about it, I feel 
like it makes so much sense, the fact that it's [strength-based] like this is, this is what they need 
to come in with versus where they're going.”  However, the way the coaches implemented the 
resources varied.  Mia created classroom-ready Google Slides for a routine. “I just kind of 
developed these little snippets of little activities of Google slides that I would use with the 
students and the teachers.” Mia also explained the need for creating supplemental  resources 
because “my teachers [sic] are stressed, they are worn out” and by “packaging” the resources, 
she can share them with teachers and the many long term substitute teachers in her school. 
Further, these resources have been accepted and distributed at multiple leadership levels from 
teachers, principals, and even division levels. Leaders at Jana’s school and district were also 
eager to distribute the modules. She stated, “Our curriculum supervisor at the division level is the 
one who's really pushing it out for our division [sic] and in our curriculum unit guides that we 
have for each of our units k-5 with the PDFs from the bridging site have been dropped in so 
teachers have access to the site. They know about it, they've had to go through video training on 
it.”   

In addressing research question 2c) “How does the focus on strengths-based instruction 
influence teacher designers’ approach to their instruction?”, we found that teacher designers 
began to have a more holistic view of student knowledge and they were less overwhelmed. 
Making the connection to growth mindset, Sienna noted that the teachers she works with were 
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“thinking more about the next steps that the students need rather than ‘they can't get to the 
standard’ or ‘they're not doing the standard.’ It's more about ‘this is where they're at, this is the 
next step they need to know.’” For example, Mia shifted focus from percentage correct to 
patterns evident in student work, reporting, “there are patterns in student work, and you can often 
find that they're doing one thing correctly and then they're just misinterpreting whatever next 
step.” This perspective of highlighting strengths reduced teacher stress, because “it just kind of 
helps it not seem as overwhelming because you can see progress in a student, even though 
they're not achieving the standard, if you're looking at their strengths and what they do know.” 

Implication of our Study 
This design-based research suggests several practical applications for teachers, coaches, and 

curriculum developers. Firstly, this research showed that teacher designers’ knowledge of LTs 
supported their instructional decision making. The teacher designers who participated in the 
professional development program were recruited for their level of experience and recognized 
mathematics education leadership. And yet, after participating, they felt more equipped to 
identify and implement rich strength-based lessons. Specifically, teacher designers knew more 
about LTs and how to interpret student work in order to identify their strengths on the LT.  

Secondly, this research showed that teacher designers who were coaches or leaders 
distributed their understanding about strength-based LTBI on both a small scale, such as coach to 
teacher, and large scale, such as school or district settings. While the structure of the modules 
provided support for teachers’ understanding of the LT, coaches needed to constantly refer back 
to the resources until teachers used consistency when implementing them. All leaders reported 
that the materials were organized, accessible, easy to modify, and invoked discussions about 
student strengths and differentiated lessons. 

Finally, this design research gives insight on the important aspects to consider when 
designing curricula and resources.  The resources in this project were sourced by a recruited 
group of teacher designers.  Through multiple cycles, the teacher designers vetted and 
implemented the resources, gathered student work, and discussed the implementation to validate 
the choice of activities.  This cycle allowed teacher designers to propose, explore, discuss, and 
finally edit those resources in order to make them more user-friendly and applicable to the 
standards. This research demonstrated significant ways that practitioners can engage with 
learning trajectory research to transform “post pandemic pedagogy” (Ladson-Billing, 2021), 
reframing the predominant conversation from “educational gaps” to student progress along the 
LT continuum.  
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This inquiry explores elementary mathematics teachers’ curriculum work as they integrated a 
new component, Number Talks, into their existing curriculum assemblages. Number Talks are 
short 5-15 minute whole group discussions with specific procedures focusing on students’ 
strategies for mental computations. Assemblage theory was used to frame how participants 
modified Number Talks when incorporating them into their classrooms. Participants described 
how they integrated Number Talks into their existing curriculum assemblages, collaborated with 
colleagues creating overlapping assemblages, and deterritorializing Number Talks to change 
their functionality. We discuss the implications of participants changes to Number Talks and the 
adjustments participants made to their existing curriculum assemblages.  

Keywords: Curriculum, Elementary Education.  

Number Talks began in the 1990’s and have increased in popularity informing professional 
development, books, and educational blogs (https://www.mec-math.org/number-talks/). The 
effects of Number Talks, however, are largely under investigated (Matney et al., 2020). Number 
Talks are teacher facilitated discussions centered on students’ mathematical strategies for solving 
computational tasks (Parrish & Dominick, 2016). These conversations typically last between five 
and 15 minutes. Number Talks follow specific procedures in which students solve a task 
mentally, share solutions, and describe their strategies in a whole group discussion. Due to the 
focus on students’ ideas and strategies, Number Talks alter the role of the teacher moving from a 
traditional teacher-directed mathematics classroom to a more student directed classroom (Brown, 
Stein, & Forman, 1996) requiring significant changes to practice for most mathematics teachers 
(Cobb & Jackson, 2011). As teachers’ professional knowledge expands and new curriculum 
resources are introduced teachers’, curriculum work also changes (Gueudet & Trouche, 2009). 
This study aims to examine teachers’ curriculum work as they integrated Number Talks into their 
mathematics classroom. The following research question guided the inquiry: how do elementary 
mathematics teachers assemble Number Talks?  

Theoretical Perspective 
Linear or mechanistic frameworks of curriculum are restrictive and reductive and have 

dominated the conceptualization of curriculum in mathematics education (Fleener, 2002). 
Moreover, curriculum defined as a bounded series of learning goals isolated from the learning 
environment is static (Doll, 1993; Grumet, 1988). While researchers (e.g., Remillard, 2005; 
McDuffie et al., 2018) acknowledge teachers implement curricula materials in unique ways and 
Cai’s (2014) leveled framework considers what occurs in the classroom (i.e., intended 
curriculum) findings have done little to influence how curriculum is conceptualized. This study 
embraces the temporality, connectivity, and in process conceptualization of curriculum 
advocated by Grumet (1988).  

Deleuze and Guattari’s (1987) theorization of assemblages provided a space for teachers’ 
curriculum work to be considered in process. Deleuze and Guattari described an assemblage as a 
collection of heterogenous components organized to perform some function. Assemblages are 
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temporary and transform quantitatively and qualitatively as components are added or removed. 
For example, a teacher enacting a Number Talk may use Number Talks procedures, allow 
students to select the numbers for the mathematical task, and add a checking your solution 
component to conclude the discussion in which students use sticky notes on the board to verify 
their answer. The additions and modifications to Number Talks changes the functionality of this 
curriculum. Each component works together for a moment in time creating an assemblage. 
Moreover, an assemblage is not simply a product, but rather the coming into existence or the 
need to organize, reorganize, and/or construct. As the assemblage shifts or sharpens boundaries 
map out an assemblage’s territory (i.e., territorialization). Conversely, as changes occur, or new 
components are introduced an assemblage blurs or fragments and deterritorializes.  

Methods 
Part of a larger Convergent Mixed Methods study (Creswell & Plano-Clark, 2011), this paper 

explains results from a qualitative analysis of teacher participant interviews, examining ways 
teachers planned, adapted, and assembled Number Talk curriculum with their already enacted 
district-driven curriculum.  
Participants, Setting, Procedures, and Instruments 

Seventeen elementary teachers—teaching 4th, 5th, and 6th grade mathematics—from Duval 
County School District in the Western United States participated in the interview stage of the 
study during the fall of 2021. Four of the participants were enacting Number Talks for the 
second year, while 13 introduced Number Talks into their classrooms for the first time. Each 
participant engaged in one 15-minute semi-structured interview via Zoom. Interviews focused on 
teachers’ planning process and how Number Talks were being implemented in their classrooms. 
The interview included questions, such as: (1) what role do Number Talks play in your 
mathematics classroom?; (2) how do you select number talks?; (3) what adjustments if any, did 
you make to incorporate Number Talks into your classroom? The researchers created memos in 
the form of written notes during and following the interviews.  
Analysis 

An open-coding scheme was used to analyze the memos. Codes were condensed into 
categories (e.g., integration of Number Talks and curriculum, number sense, and Number Talks 
procedures). While this process offered a level of analysis, it left the data segregated. A different 
method of analysis was needed to create opportunities for entanglement. Taking a writing 
approach to analysis Markham’s (2012) bricolage-style of writing (i.e., layered text) or the 
bringing together of various writing piece was taken up. We initially engaged in analytic memo 
writing, summarizing the interviews as a collection. Then layered writing was used to bring 
together interview memos from each participant to create a composite piece (see Figure 1). The 
layered writing approach created a grass like structure as new concepts and ideas sprouted 
between previous text.  
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Figure 1: Layered writing excerpt 

Preliminary Findings 
Through the leveled writing analysis tracings or patterns emerged. Participants described the 

integration of Number Talks into their existing curriculum assemblages, collaborating with 
colleagues creating overlapping assemblages, and deterritorializing Number Talks to change 
their functionality. The subsequent section explores these tracings.  
Integrating Number Talks into Existing Curriculum Assemblages 

Introducing a new component, Number Talks, into participants existing curriculum 
assemblages detteritorialized, or disrupted, their assemblages. The boundaries of their curriculum 
assemblages and daily schedules blurred as participants made adjustments. Participants stated 
one of the biggest challenges was finding time for the Number Talks. Taylor described this 
challenge, “I had to find time. Where was I going to find the time where it would be effective for 
students?” Some participants eliminated components of their existing curriculum assemblage. 
Madison replaced a component, a warm-up worksheet, with Number Talks, “I used to do a 
warm-up worksheet. I have gotten rid of the worksheets and my spiral review. This is really 
strange because I used to give 10 problems and now just give one problem.” Other participants 
modified their curriculum assemblages. Amanda addressed the issue of time by changing her 
morning routine using the Number Talk as bell work. Lana on the other hand moved her math 
lesson to a different part of the day to allow for an extended math lesson. To accommodate time 
constraints, participants used Number Talks at varying frequencies (e.g., Jessica used Number 
Talks every day, Rachael tries to do them two or three times a week).  

Participants’ conceptualization of how Number Talks fit into their curriculum assemblages 
ranged from siloed events to integrated components. Participants who conceptualized Number 
Talks as siloed events either separated Number Talks from the mathematics lesson enacting them 
at a different point in the day or used Number Talks before the mathematics lessons but saw 
them as independent events. Stephanie took up a siloed approach, “I do it [Number Talks] first 
thing in the morning when the students come in. It does not tie into the math lesson.” Lana also 
held a siloed conceptualization. Although Number Talks were taught at the same time as the 
mathematics lesson—immediately prior to the lesson—they were unconnected events. Kenny on 
the other hand conceptualized Number Talks as integral components of the mathematics lesson. 
Kenny used Number Talks to start class and help students get into a mathematical mindset—he 
described Number talks as a safe place for students to share ideas and lead into the mathematical 
content of the day. Some participants conceptualized Number Talks as an integrated part of the 
curriculum but were not yet able to match their conceptualization to their teaching practice. 
Integrating new components is a process and Dana said she is currently doing Number Talks 
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unrelated to the lesson; however, she wants to eventually tie them into class.  
Overlapping Assemblages 

Participants’ curriculum assemblages overlapped as they collaborated with colleagues and 
students. Many of the participants planned Number Talks with their team or other colleagues in 
their building. Participants noted working with colleagues when struggling to get students to try 
a specific strategy. For example, Alexa was unable to get her students to use a regrouping 
strategy. She worked with her team to change mathematical tasks like 68-13 to 63-18 to promote 
the use of a regrouping strategy. Participants’ curriculum assemblages also overlapped when 
they brought student strategies from a colleague’s class and used it in their own number talk to 
demonstrate a specific strategy.  

In addition to working with colleagues to develop Number Talks, participants both explicitly 
and implicitly built Number Talks with their students. Participants (e.g., Marissa and Taylor) 
implicitly worked with students to adjust pacing based on students’ responses to previous 
Number Talks. Amanda planed with students providing them opportunities to select the numbers 
for the Number Talk.  
Teachers Deterritorialization of Number Talks 

As participants integrated Number Talks into their classrooms, they made modifications in 
order for the Number Talks to function in their classroom. Participants interpreted Number Talk 
procedures in their own way and adjusted to match their teaching style. Some participants tried 
to follow the Number Talk procedures as intended. Jessica used dot talks when introducing her 
class to the Number Talk procedures of hand signals, giving solutions, and sharing strategies. 
Alexa altered students’ physical space moving students to the floor to decrease distractions and 
ensure students were working the task in their heads instead of writing out their process. Other 
participants modified Number Talk procedures. Carolyn provided students with sticky notes to 
record their ideas. COVID-19 also presented challenges participants needed to address and 
pushed on participants’ Number Talk assemblages. For example, Alexa created “calling bodies” 
or remote students assigned to in person student who communicate via phone call or zoom 
discussions.  

Discussion and Conclusion 
Findings elicit questions about how Number Talks are integrated into existing curriculum 

assemblages. Framing teachers’ work with Number Talks using assemblage theory provided 
opportunities to examine participants’ work as temporal and changing with their integration, 
overlapping components, and modifications. In efforts to accommodate a new component, 
Number Talks, into their existing curriculum assemblage participants added and removed 
elements from both their pre-existing curriculum and to Number Talks. Continued research is 
needed to understand teachers’ curriculum work with Number Talks over time. Additionally, 
future research could consider how teachers’ curriculum work with Number Talks impacts 
students’ agency and number sense development.  
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Background 
The instructional materials that mathematics teachers use impact student learning (Remillard 

et al., 2014; Lloyd et al., 2017). However, purchasing instructional materials are expensive, 
hence districts are turning to open source materials such as Illustrative Mathematics (IM). Unlike 
many other free online resources for instructional materials (e.g. Pinterest (Shapiro et al., 2019)), 
IM is a comprehensive curriculum with a scope and sequence and is aligned with Common Core 
content and practice standards (Ed Reports, 2022). The high school IM curriculum became 
available in 2019 and the elementary curriculum in 2021, so little research has been done on 
teacher perceptions of the curriculum. This poster aims to address this by sharing teacher 
perceptions of the IM curriculum using data from teacher interviews from year 1 and year 3 of 
their implementation of IM.  

Methods 
All Algebra 1 teachers throughout an urban district began using IM in 2019-2020 (year 1) 

and it continued to be the primary instructional resource provided by the district in 2021-2022 
(year 3). We interviewed 22 Algebra 1 teachers in year 1 and 13 in year 3 about their perceptions 
of the IM curriculum using an interview protocol. The protocol ranged from open-ended 
questions, such as “What do you think about the Illustrative Mathematics curriculum?” to more 
specific, e.g. “How does IM support your ELL students?” The interview transcripts were read to 
uncover themes that emerged, common themes were grouped when appropriate, and then the 
interviews were reread to code for the emergent themes. Finally, we recorded how many teachers 
expressed an idea represented by each emergent theme.  

Findings 
Some themes stayed the same from year 1 to year 3. For example, over 50% of the teachers 

in both years noted the benefit of IM’s use of real-world contexts for Algebra 1 topics. Over 50% 
both years also noted a challenge in not enough time for teaching everything. Other themes 
changed over time. In year 1, teachers appreciated having ready-to-use materials (in previous 
years they had to create their own teaching resources), however, in year 3, teachers were more 
likely say the appreciated the design of the curriculum, for example, how it spiraled the content.   

Conclusion 
As the districts move to open-source instructional materials such as IM it is important to 

understand how teachers are perceiving the curriculum so that curriculum designers, researchers, 
and district decision makers can use the information to better support teachers.  
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The University Entrance Exam (UEE), a comprehensive 4-5 hours multiple-choice exam 
known as Konkour, is a centralized nationwide test for high school graduates to gain admission 
to higher education in Iran. These UEEs have been the sole criterion for students’ admission to 
universities for more than four decades (Salehi & Yunus, 2012). As students' performance in the 
UEE is a critical factor influencing their future careers, it is essential that UEEs, as assessment 
tools, be aligned with school curriculums. 

This study was part of a larger study that compared the type of the mathematics questions in 
two series of high school mathematics textbooks, old-series (2016-2018) and new-series (2019 -
2021), with the type of mathematics questions used in the UEEs in the aforementioned periods. 
The underlying rationale for focusing on the textbooks used in these two periods was that these 
textbooks are used nationwide and reflect a good picture of the nature of tasks implemented by 
teachers to prepare students for UEEs. In this study, the result of the study about geometry 
questions will be discussed.   

This study draws from a framework developed by Smith and Stein (1998) about the Levels of 
Cognitive Demands (LCD) of tasks. This framework categorizes mathematical tasks according to 
the level of cognitive demands in two categories: a) low-level, including Memorization (LM) and 
Procedures Without Connections (LP), and b) high-level, including Procedures With 
Connections (HP) and Doing Mathematics (HDM). Questions related to topics in ratio and 
proportion, angle relationships in circles, Thales theorem, similarities and its applications, 
polygons, and area from 10th and 11th-grade textbooks (305 tasks), and also questions related to 
the same topics in UEEs (34 questions) were coded based on this framework. To ensure the 
validity of the study, I asked a colleague (Creswell & Miller, 2000) to do coding independently 
for random questions from UEEs and two textbooks series, then we compared assigned codes. 

The findings of the study indicate that the levels of the tasks related to geometry concepts in 
the old textbook series were predominantly at HP and LP levels (respectively 38% and 36%). 
The majority of tasks in the new textbook series were at the HP level (49%). There were more 
HDM tasks in the new textbook series (31 % in comparison to 18% in the old book series). There 
were not any questions at the LM level in UEEs in both periods. The percentage of questions in 
UEEs in HP level was much higher in comparison to the two textbook series (53% in 2016 - 
2018 UEEs and 66% in 2019- 2021 UEEs). The percentages of questions at the HDM level were 
21% in 2016 - 2018 UEEs and 17% in 2019 - 2021 UEEs (tables including more detailed 
information will be presented in the poster). 

Research showed that throughout the classroom sessions LCD of tasks stay the same or 
decline (Stein, Grover, & Henningsen, 2001). Thus, considering the findings of the study that 
shows on average the LCD in UEEs are higher than the LCD of tasks provided in both textbook 
series, it seems that including more tasks in higher LCD is required in the school's curriculum. 
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Using a test for a purpose it was not intended for can promote misleading results and 
interpretations, potentially leading to negative consequences from testing (AERA et al., 2014). 
For example, a mathematics test designed for use with grade 7 students is likely inappropriate for 
use with grade 3 students. There may be cases when a test can be used with a population related 
to the intended one; however, validity evidence and claims must be examined. We explored the 
use of student measures with preservice teachers (PSTs) in a teacher-education context. The 
present study intends to spark a discussion about using some student measures with teachers. The 
Problem-solving Measures (PSMs) were developed for use with grades 3-8 students. They 
measure students’ problem-solving performance within the context of the Common Core State 
Standards for Mathematics (CCSSI, 2010; see Bostic & Sondergeld, 2015; Bostic et al., 2017; 
Bostic et al., 2021). After their construction, the developers wondered: If students were expected 
to engage successfully on the PSMs, then might future grades 3-8 teachers also demonstrate 
proficiency?  

Methods  
Data came from three sources: (a) an expert panel content review, (b) Rasch (1980) 

modeling of PSM scores, and (c) consequences from testing data from PSTs and PSM 
administrators. 178 PSTs from a Midwest university completed the PSMs. They came from two 
teacher education programs: grades K-5 or grades 4-9. PSMs 3-8 were completed in their 
program’s first-year and again in the fourth-year. The intended use for the PSMs was formative 
and for program evaluation. They were informed that results did not impact course grades. 
Content and consequences data were gathered from mathematics content and mathematics 
education instructors. Qualitative data were analyzed using thematic analysis (Miles et al., 2016). 
Quantitative data were analyzed with WINSTEPS© (Linacre, 2019).  

Findings & Discussion 
Content experts felt items were appropriate for use with PSTs and connected with content 

from their classes. PSMs 3-8 fit the Rasch model indicating good psychometric quality. Finally, 
thematic analysis of consequences data indicated that the PSMs felt no different than a unit test 
and offered formative data to adapt instruction. Collectively, these findings help to inform the 
potential uses of the PSMs, a student measure, for use with a related population, PSTs.  
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Introduction and the Purpose of the Study 
The COVID-19 pandemic led to a global lockdown and compelled the institutions to shift to 

emergency remote teaching. This transition and the lack of knowledge of using technology 
affected teaching practices, including assessment. Confronted with new contexts for assessment 
and threats to validity caused by ineffective proctoring, many instructors had to rethink how to 
evaluate student progress. This study investigates the common characteristics of college algebra 
assessment in six dimensions and determines any changes during emergency remote teaching. In 
addition, the analysis compares the college algebra instructors’ views about the purpose of 
evaluation. Finally, the study tested the efficacy of a new tool that instructors can use to analyze 
their assessments.   
Research Questions  

What are the characteristics of the exams given by college algebra professors? What are 
the college algebra teachers’ beliefs about the purpose of assessment? How did these 
characteristics change during ERT, and what changes persisted after returning to normal 
teaching? What factors determined which changes faculty chose to retain?  
Study Framework  
 The study framework consists of six dimensions. Cognitive demand, first introduced by 
Bloom (1956) and revised by Tallman et al. (2016), contains seven hierarchal levels starting at 
remember at the base and create at the top. Three additional dimensions, item format, task 
representation, and solicited solution, were adapted from Tallman et al. (2016). Additionally, the 
framework contains two new dimensions developed for study: computational demand and verbal 
demand.  

 

Methodology and Results 
Data Collection 

Participants of this study are 30-40 college algebra instructors from two- and four-years 
institutions in Texas that have taught college algebra before, during, and after the COVID-19 
pandemic. The study uses three data sources: mid-term and final tests to determine the 
characteristics of college algebra tests, online surveys to determine the instructors’ beliefs about 
the purpose of assessment and focus-group meetings on Zoom with a subset of instructors. 
 
Results 

The preliminary results of twenty tests showed a low level of cognitive demand where 65% 
of the items were level 2 (recall and apply procedures). On the other hand, a focus group meeting 
showed that the instructors emphasized higher levels of cognitive demand. Furthermore, 65% of 
the items are multiple-choice, and 80% are symbolic.  

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

253



References 
Bloom, B. S. (1956). Taxonomy of educational objectives. Vol. 1: Cognitive domain. New York: McKay, 20, 24.  
Bloom, B. S. (1984). Taxonomy of educational objectives (1956). The classification of educational goals, Handbook 

I Cognitive Domain.   
Tallman, M. A., Carlson, M. P., Bressoud, D. M., & Pearson, M. (2016). A characterization of calculus I final exams 

in US colleges and universities. International Journal of Research in Undergraduate Mathematics Education, 
2(1), 105-133.   

 
 
. 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

254



EXPLORING DISSONANCE AND HARMONY IN  
ELEMENTARY MATHEMATICS TEACHERS’ CURRICULAR  
USE, AUTONOMY, DECISION-MAKING, AND COHERENCE 

  
Kristin Doherty 

Michigan State University 
kdoherty@msu.edu 

Mona Baniahmadi 
Duquesne University 

baniahmadim@duq.edu 

Bima Sapkota 
Purdue University 

bsapkota@purdue.edu 

Emmanuel K. Adjei 
Purdue University 
eadjei@purdue.edu 

Jon Brown 
University of Arizona 

jebrown@email.arizona.edu 

Jill A. Newton 
Purdue University 

janewton@purdue.edu 

Marcy B. Wood 
University of Arizona 
mbwood@arizona.edu 

Amy M. Olson 
Duquesne University 

olsona@duq.edu 

Corey Drake 
Michigan University 

cdrake@msu.edu 
 

We surveyed 524 elementary teachers from 46 states about their mathematics curricular 
decision-making during the COVID-19 pandemic (Giorgio-Doherty et al., 2021). Building on 
findings from this study, we designed protocols for individual and focus group interviews with 
teachers from the same school to further explore the complexity of teachers’ curricular use 
revealed in the survey. Here, we report findings from these interviews. The research questions 
guiding our study were: (1) How do teachers create coherence across their curricular resources? 
(2) How and why do teachers select or evaluate and adapt curricular materials to teach 
mathematics? and (3) How do teachers perceive their curricular autonomy? We found most 
teachers were using multiple curricular materials (some mandated and some not, ranging up to 
11 different sources of materials) to plan and teach mathematics. We found teachers frequently 
focused on content (e.g., connections to key concepts, standards, or lesson objectives) as the key 
focus of creating coherence between materials for students and for lesson planning. Content 
coherence also seemed to drive differentiation. Most teachers reported differentiating more than 
usual to address larger learning gaps across students in their classes due to the pandemic. 
Teachers stated a preference for curricular materials (like IXL) which allowed them to find tasks 
on particular content and assign students practice problems related to that content at grade level 
and above/below. Teachers varied in how they responded to different solution strategies 
presented by different materials. Some teachers provided coherence by directing students to 
rewrite directions so they use the same solution strategy as in prior lessons from other materials; 
other teachers felt students experienced better connections to content as they made sense of 
different solution strategies from different materials. Several teachers used TeachersPayTeachers 
(TPT), with some reporting materials on TPT engage students better than materials from their 
primary curriculum, do not need modifications, or better meet their instructional preferences. We 
found teachers who reported high levels of enjoyment and confidence in teaching mathematics 
made the most adaptations to curricular materials and most often designed their own. Many 
teachers reported adapting curriculum to be more engaging to students. This included adding 
visuals or enlarging text size and creating opportunities for problem-based and hands-on 
learning. Some reported adapting or creating materials to make connections to the world or be 
more culturally relevant. Overall, teachers reported high levels of curricular autonomy for all 
curricular materials, including mandated materials (median score of 7 out of 10) and non-
mandated or suggested materials (all scoring 10 out of 10).  
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Literature Review 
Teachers' refined thinking about how students learn mathematics is visible in their 

curriculum decisions when planning. They make decisions influenced by many factors: the 
design of the materials, teachers’ knowledge, skills, beliefs, goals, and context (Remillard et al., 
2009). In addition to these factors, I argue that mathematical care influences teachers’ decisions. 
The mathematical care component is conceptualized in this research as a driven factor for 
attending to students’ cognitive processes of learning mathematics and continuously adapting the 
mathematical activities based on students’ specific needs. These two actions align with the first 
two phases that characterize the notion of a caring relationship largely discussed by Noddings 
(2013): engrossment (receptive to the learners’ needs), and motivational displacement (respond 
with help to the identified needs). Responding to every student's mathematical needs means 
making modifications, adaptations, and accommodations to the curriculum (Remillard et al., 
2014; Stein et al., 2007). For example, adaptations of the mathematical activities in relation to 
students' mathematical needs could be in the form of incremental challenges for the students who 
gave up learning mathematics (cultivating a growth mindset set (Dweck, (2008)) or higher 
cognitive demanding tasks for students with an increased interest in mathematics (Benbow, et al. 
1992), warm-up activities to supply motivation (Williams, 1984) or providing a visual context 
for English learners (Slavit & Ernst-Slavit, 2007). According to Noddings (2013), students’ 
responses to these actions represent the third component that completes a caring relationship: 
recognition. When teachers “act with special regard for the particular person in a concrete 
situation" (Noddings, 2013, p. 24) they demonstrate care for students. Students who enter into a 
mathematical caring relation "have a sense of being seen by the teacher" (Hackenberg, 2005, 
p.47), and that is a feeling of being listened to, with ideas valued, and, perhaps, understood.  

Methodology 
The paper's contribution lies in exploring teachers' rationale when making decisions 

regarding the mathematical activities they select and the changes they make. For example, 
designing tasks in relation to students' ways of operating mathematically (Hackenberg, 2005) or 
accommodations for the students with learning disabilities that do not reduce the level of 
engagement (Barr et al., 2021) represent dimensions of care related to the students' cognition. 
Providing recreational problems to show the fun side of mathematics (Cooney, 1985) represents 
a dimension of care for getting students excited when doing mathematics. Selecting tasks that 
give students opportunities to show their intelligence in various ways while the teacher is 
positioning students as competent by coding a variety of skills, mathematical and non-
mathematical, disrupting the hierarchy of intellect and giving voice to all students (Louie, 2017), 
represents a dimension of care for equity. Thus, this research constructs dimensions of care by 
analyzing episodes from literature that link needs, decisions, and feelings. 
Research Question 

The research question is how mathematical care can be conceptualized as a factor that 
influences teachers' curricular decisions? 
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There is growing agreement that effective mathematics instruction starts from teachers’ 
careful and purposeful planning (NCTM, 2014). However, teachers’ planning often only includes 
teachers’ decision making before instruction or it only consists of selecting tasks and organizing 
the ways they will enact the tasks with students (Kilpatrick et al., 2001). Because planning 
individual lessons typically comes after teachers have already established a larger sequence of 
lessons, it is important to examine how teachers plan at the larger curriculum level. Despite the 
existence of different curriculum level planning, little attention has been given to teacher 
planning on larger curriculum levels (e.g., unit planning, course planning). To this end, the 
purpose of this study was to answer the question: How are the processes of experienced Algebra 
I teachers’ unit planning similar with and/or different from one another?  

As part of a larger dissertation study on experienced algebra teachers’ unit planning, I 
analyzed the processes (e.g., practices, sequences) of 5 experienced Algebra I teachers from 
school districts of varying sizes across the nation, who actively designing curriculum units came. 
By adapting Roche et al.’s (2014) teacher planning framework, I identified the teaching practices 
that the teachers enacted in unit planning. I then created diagrams of the teachers’ unit planning 
processes (e.g., unit planning timings and sequences) using logic models (Yin, 2014).  

The experienced teachers engaged with a set of seven unit planning practices and the 
sequencing of these practices followed a general sequence across the teachers—a) checking and 
examining curriculum documents, b) setting learning goals, c) mapping out lessons and 
assessments, d) planning lessons, e) planning assessments, f) modifying lessons and assessments, 
and g) evaluating implemented unit plans. To plan units, the teachers engaged with the practices 
not only before units but also during and even after units. Although they enacted the majority of 
the unit planning practices before unit, they continued their unit planning during unit as they 
modified the unit pacing or assessments based on what they actually taught and students’ 
progress towards the unit-end goals. After every unit, the teachers evaluated their implemented 
unit plans through self-reflection or student feedback regarding the unit pacing and difficulty. 
Thus, the experienced teachers’ unit planning consisted of the teaching practices for planning, 
implementing, and reflecting unit plans. 

The present study expanded the traditional conception of teacher’s unit planning to that 
including not only planning but also enacting and reflecting. This expanded conception aligns 
with Sherin and Drake’s (2009) conception of teachers’ curriculum use before, during, and after 
instruction. Thus, this finding noted teachers’ continuous engagement with planning and the 
reflective aspects of planning, which two were often missing from the body of literature on 
teacher planning. The findings shed light on experienced algebra teachers’ planning processes of 
larger curriculum units. In addition, it provides a better understanding of the nature of teachers’ 
unit planning and a snapshot of how teachers aim to help students learn outside of the classroom 
environment, which potentially inform us of supports that we may offer teachers to promote 
alternative approaches to or sequences of the unit planning practices. 
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The instructional materials available to teachers relate to the types of learning opportunities 
afforded to students (Hiebert & Grouws, 2007). As school districts undergo ambitious 
mathematics reform, various stakeholders are brought together to make key decisions related to 
the instructional materials provided and endorsed by the district. The various stakeholders that 
constitute a district’s curriculum committee likely bring various perspectives about the form and 
function of features of instructional materials they consider high-quality (e.g., Saxe et al., 1999). 
Further, stakeholders likely also hold varying views about for whom those high-quality forms are 
“appropriate” (e.g., Jackson et al., 2017). The purpose of this project was to gain insight about 
the features of instructional materials committee members viewed as “high-quality,” specifically 
(1) the degree to which there was coherence in the form and function of those features across 
committee members and (2) committee members’ views about students’ mathematical 
capabilities in relation to those features. 

This work was conducted across a year-long research-practice partnership between a group 
of special education researchers and one school district. The district was undergoing ambitious 
mathematics reform in light of persistent course failure at the high school, thus prompting district 
leaders to make strides toward vertical alignment. A mathematics curriculum committee (N = 25) 
was formed and consisted of district-level coordinators, building-level administrators, 
instructional coaches, general education teachers, special education teachers, early childhood 
teachers, dual-language program teachers, all of whom served students across early childhood 
and through Grade 12. All committee members were invited to participate in two interviews 
about their experiences being on the committee and their views about what constituted high-
quality instructional materials. Thirteen (52%) of the committee members consented to 
participate in the first round of interviews, which were conducted in November and December 
2021. The majority of interviews were conducted via Zoom (n =10), although a few committee 
members preferred to meet in person. We used a semi-structured interview protocol, and all 
interviews were audio recorded and later transcribed. 

To address the second articulated purpose, preliminary findings suggest members of the 
curriculum committee viewed some features as appropriate for all students (e.g., “[enrichment 
activities] can work for everyone.”), some features as specifically not appropriate for some 
students (e.g., “[materials that allow for multiple ways of solving] can be difficult and 
challenging [for] students who, maybe their brains process in a different way, or they process at a 
different rate.”), and some features that were both appropriate and not appropriate for particular 
groups. A second round of interviews will be conducted in April and May 2022. Practically, 
results from this study could be used to inform the ongoing work of this committee as the district 
moves into the piloting phase of their reform effort. Beyond this school district, findings from 
this work could reveal critical, but perhaps overlooked, components of ambitious reform, 
including the need to uncover committee members’ views about students’ capabilities and 
consider the relation of such views to decisions about instructional materials. 
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Over the past two decades, increasing demand for quality education has been the focus of 
many educators in the United States who have introduced the standards-based education 
movement (Ravitch, 1995). Countries worldwide present standards as national curricula 
(Schmidt et al., 1997). Regardless of their title, such curriculum or standards define the vision for 
what is important for the nation’s children to learn in their schooling. Research shows that there 
is a connection between mathematics standards and the mathematics performance of the students 
(Akkoc, 2008). Furthermore, research on students’ achievement in mathematics attributes 
achievement disparities to the curriculum and argues that different curriculum standards may 
produce different results (Cai, 2004). This comparative standards analysis of mathematics 
standards addresses one secondary mathematics topic, trigonometry of four countries as we 
investigated similarities and differences in learning expectations for students from Ghana, South 
Africa, the United States’ proxy Common Core State Standards for Mathematics (CCSSM), and 
Zambia. Stigler and Perry (2014) emphasized that better understanding of one’s own culture 
gained through comparative studies leads researchers and educators to a more explicit 
understanding of their own implicit theories about how children learn mathematics. Without 
comparison, we tend not to question our own traditional teaching practices, and we may not even 
be aware of the choices we have made in constructing the educational process. We employed 
Webb's (2007) Depth of Knowledge (DOK) to analyze cognitive expectations to draw 
similarities and differences. Analyzing curriculum standards offers insight into the recommended 
level at which trigonometry should be taught.  

Preliminary findings show the CCSSM has more strands compared to Ghana, South Africa, 
and Zambia. Findings suggest that all the four countries’ standards have similar trigonometric 
concepts although the standards vary across DOK levels. For example, all four countries have 
standards related to drawing trigonometric functions. However, as seen in Table 2, Ghana and 
Zambia’s standards contain a lower-level verb (e.g., to draw) while the CCSSM’s and South 
Africa’s standards emphasize a higher-level verb (e.g., to model). We noted that the CCSSM and 
South Africa did not have any standards at level 1 (e.g., recall and reproduction) while Zambia 
had 3 and Ghana had 1. Likewise, compared with Ghana and Zambia, the CCSSM was more 
likely to emphasize higher-order thinking skills at level 3 and level 4 with 11 standards out of 14, 
while South Africa had 9 standards at higher levels (i.e., level 3, level 4) out of 14. Ghana had 2 
standards at levels 3 and 4 out of 8 total standards, while Zambia had 5 standards at levels 3 and 
4 out of 14 total standards. Our qualitative analysis showed that all four countries study 
trigonometric ratios in right-angled triangles and use right-angled triangles to solve problems. 
The CCSSM were not written to a particular order of grade while the South Africa, Ghana, and 
Zambia syllabuses are tailored to grade levels, for example, the South African syllabus has 
trigonometry run throughout the senior secondary level from grade 10 through to grade 12 while 
the Zambian syllabus has trigonometry taught only in grade 11. Future studies could extend this 
study by analyzing additional curriculum resources such as textbooks. 
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Introduction 
Numerous organizations have provided recommendations for what mathematics K-12 

students should learn  (National Council of Teachers of Mathematics, National Governors 
Association Center for Best Practices & Council of Chief State School Officers) and for what 
preservice mathematics teachers and current mathematics majors should learn (AMTE, 2017; 
CBMS, 2012; Saxe & Braddy, 2015). There are also recommendations for what the mathematics 
students should study prior to calculus (Cohen, 1995). Cohen (1995) made recommendations for 
what mathematics content students should study prior to calculus, which included number sense, 
symbolism and algebra, geometry, function, discrete mathematics, probability, and statistics, as 
well as mathematical proof.  In a more recent publication, Saxe & Braddy (2015) recommend 
updating curricula to also address real world connections and affective dimensions of students’ 
learning of mathematics. The purpose of the current study is to examine the content included in 
college mathematics courses taken prior to calculus in order to better understand how 
universities are implementing the recommendations about which content to include. Examples of 
such courses include college algebra, trigonometry, and quantitative reasoning.  

Data for this study were 76 course syllabi from 50 public research-intensive universities in 
the southeastern United States. Each syllabus was analyzed to note the topics covered. These 
topics were then grouped into categories and tallied using a frequency table. The number of 
unique courses that contain content related to a specific topic are shown in Table 1. 
 

Table 1. Frequencies of mathematical topics in course syllabi 
Financial 

Mathematics  
40 Logic 26 Set Theory 19 

Probability 39 Statistics 34 Math in the Real World 40 
Graph Theory 18 Voting Theory 15 Combinatorics 16 

Algebra 25 Operations Research 24 Game Theory 10 
Number Theory 14 Geometry/Topology 16 Linear Algebra 10 

 
The topics with the most occurrences were Financial Mathematics (40), Math in the Real 

World (40), Probability (39), and Statistics (34). Conversely, the subjects with the fewest 
occurrences were Number Theory (14), Game Theory (10), and Linear Algebra (10). The 
average number of unique topics was approximately 4.645 topics per class. Several classes 
contained only one topic while others contained up to eleven unique topics. The topics that 
occurred most frequently seem to have real-world connections, as recommended by Saxe & 
Braddy (2015) and Cohen (1995). Additional data need to be collected to better understand 
affective dimensions related to learning mathematics and how these courses prepare students to 
appreciate the beauty of mathematics, use technology efficiently, and communicate effectively.  
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Purpose and Theoretical Framework 
 This study examines whether a focus on diagramming and language can facilitate 

mathematical problem solving for multilingual learners (MLs)—i.e., those identified as English 
learners. To meet MLs’ strengths and needs in mathematics, we posit that three interdependent 
focus areas must be integrated: an asset-based approach towards MLs (e.g., NASEM, 2018; de 
Araujo et al., 2018; Moschkovich, 2002); student engagement with rigorous mathematics (e.g., 
Moschkovich, 2013) facilitated by the use of mathematical diagrams (e.g., Stylianou & Silver, 
2004; Woodward et al., 2012; Driscoll et al., 2012); and language-focused instructional strategies 
(Celedón-Pattichis & Ramirez, 2012; Lee et al., 2013; Driscoll et al., 2016; Baker et al., 2014).   

Methods 
We designed and studied a grade 6 fraction division unit with supports for MLs such as  

language strategies (e.g., the 3 Reads, structured pairs work, sentence starters) and student use of 
diagrams (e.g., number lines, area models). We conducted a cluster randomized trial; this poster 
focuses on: How did participation in these lessons impact students’ diagramming in their 
fraction division problem solving? Teachers were randomly assigned to use “business-as-usual” 
fraction division units (control) or our fraction division unit (treatment). Students completed a 
pre/post fraction division assessment, which was scored for Diagramming based on their 
representations of quantities and relationships for each item. The analytic sample included data 
from 246 treatment students (12 teachers) and 229 control students (11 teachers). We estimated 
the treatment effect of our unit on students’ Diagramming scores and modeled the relationship 
between treatment and the Diagramming outcome through a series of multilevel regression 
models with students nested within teachers.  

Results and Implications 
When analyzing Diagramming scores, the best fitting model, controlling for prior 

diagramming ability and fraction understanding, ML status, and attendance, indicated a 
statistically significant adjusted mean difference, representing a medium-to-large effect (b = 
.571, p < .01). Evidence of a positive treatment effect, and no statistically significant interaction 
between ML status and condition, suggests that MLs made similar growth as their monolingual 
peers. By providing empirical evidence about lessons that foster MLs’ use of diagrams in 
problem solving, this study responds to the lack of empirical research with attention to MLs’ 
strengths (de Araujo et al., 2018) and has implications for instruction. This was an initial phase 
of a larger project; continued work will investigate MLs’ perspectives on lesson components. 
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Children develop early spatial reasoning skills, including geometry and measurement, 
through play from a young age (Huinker et al., 2020), yet early childhood and lower elementary 
math curricula and teaching aim primarily at numeracy (Bruce et al., 2012). While spatial 
reasoning supports learning in other mathematical domains (Drefs & D’Amour, 2014; Farmer et 
al., 2013), early childhood teachers are more prepared to teach numeracy and generally dedicate 
little instructional time to spatial reasoning (Clements & Sarama, 2011; Moss et al., 2015). Davis 
and colleagues (2015) called for the radical spatialization of mathematics curricula as a potential 
solution, with spatial reasoning explicitly taught to support better mathematical reasoning. 

The development and malleability of children’s spatial reasoning skills are well researched 
(Sarama & Clements, 2009; Uttal et al., 2013), but few studies investigate what can support 
teachers of young children enacting spatial reasoning instruction in the classroom (Moss et al., 
2015; Woolcott et al., 2020). This study aims to answer the following research question: How 
can curriculum and related professional development support early childhood teachers to enact 
spatial reasoning instructional practices?  

Drawing on situated learning theory (Lave & Wenger, 1991) and a sociocultural approach to 
mathematics teacher learning (Horn & Garner, 2022), I respond to Davis and colleagues’ (2015) 
call through a more incremental spatialization of the curriculum (National Research Council, 
2006) at a research-practice partnership school. 
Methods 

This in-progress design research study (Cobb et al., 2003) occurs within a neighborhood 
STEM school at which the pre-k through 1st grades will open initially in fall 2022. By working 
with kindergarten and 1st grade teachers, I aim to illustrate the iterative design of a spatialization 
framework and innovative instructional practices. The school’s inquiry learning framework and 
open-source curriculum use present an opportunity to develop standards-aligned spatializations 
with incoming teachers. The initial framework to spatialize instructional routines will be 
reviewed based on teachers' feedback, as elicited through ongoing professional development and 
observed teaching enactments. These processes support the iterative design of principles to 
support early childhood teachers’ incorporation of spatial reasoning into their teaching practices. 
Data collected will include researcher-generated artifacts, observation records, and curriculum 
documents. Data collection and analysis will occur concurrently, with multiple data sources used 
to triangulate findings for enhanced trustworthiness (Merriam, 1998) and transferability (Lincoln 
& Guba, 1985) of emergent principles. 
Results and Implications 

Results of this design research will include information about the tools developed, their 
curricular alignment, and the iterative steps to articulating a framework to support early 
childhood teachers in enacting spatial reasoning teaching. This study serves as the first step 
toward a radical spatialization (Davis et al., 2015) of mathematics curricula by illustrating ways 
to integrate spatial reasoning instruction in early childhood classrooms. 
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For teachers to successfully enact responsive teaching (Richards & Robertson, 2016) and 
incorporate students’ thinking into their instructional choices, they must first attend to and 
interpret students’ mathematical thinking in their classrooms (Jacobs, Lamb, & Pilipp, 2010). 
This set of skills, referred to as noticing students’ mathematical thinking, is particularly 
challenging for novice teachers (Star, Lynch, & Perova, 2011). While research has highlighted 
the importance of noticing students’ mathematical thinking in math instruction, the discussion 
often fails to contextualize their noticing in light of equity and power in the classroom. It is 
necessary to consider that teachers’ instructional choices are not solely based on the mathematics 
that a teacher notices in students’ thinking, but also how teachers view students’ thinking as valid 
(Louie, 2018). This can be particularly problematic since teachers, especially novice teachers, 
have difficulty valuing students’ thinking that differs from their approach or solution to a 
problem and commonly only assign competence to students’ strategies that match their own 
(Bannister et al., 2018). Jilk (2016) argues that the culture of education often trains teachers to 
notice students’ thinking in light of whether their solution is correct or incorrect. This often 
results in a deficit view of students’ thinking where teachers are continually noticing how 
students’ thinking is “wrong.” While identifying errors is not necessarily problematic in and of 
itself and is indeed a necessary component of noticing students’ thinking, when a teacher can 
only see a student’s mistakes, the teacher can easily miss valid mathematical thinking.  

In this poster, I present my findings to the question, what mathematical strengths do 
elementary preservice teachers notice in students’ written work and verbal explanations? I chose 
to focus on verbal and written work because students’ mathematical understanding is most often 
assessed in these modes. Sixty-two elementary preservice teachers responded to ten activities of 
students’ thinking in a mathematics content course. Five of the activities showcased students’ 
written work and the remaining five activities were videos of students verbally explaining their 
mathematical thinking. Participants were asked to name what they thought was smart in each 
student’s work and why. I coded participants’ responses to questions referencing students’ 
mathematical strengths according to the depth of their analysis and their justification of the 
strength. Findings demonstrated that overall, preservice teachers were able to name strengths in 
students’ mathematical thinking more frequently in the video verbal explanations, and that those 
strengths were of deeper substance than analyses of students’ written work. Furthermore, in the 
activities, all of the students with written work arrived at the correct solutions, but the preservice 
teachers were frequently unable to recognize the novel strategy as correct. These findings 
highlight the challenge of classroom assessments that are based entirely on students’ written 
work, as preservice and novice teachers may not be able to move beyond “correct” or “incorrect” 
views of assessment, might not notice correct strategies that deviate from their own thinking, or 
be able to recognize strengths in all students’ mathematical work.  
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Early Algebra, Algebraic Thinking, and Function  
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Elementary In-service teachers participated in professional development related to algebraic 
thinking. A pre and posttest was administered. The analysis of how teachers conceptualized and 
solved a problem involved functional thinking shifted from the pre and posttest. Initially teachers 
solved the problem using additive thinking involving arithmetic. After professional development, 
teachers shifted to using functional thinking to solve the same problem. Implications for teacher 
knowledge and professional development are described. 

Keywords: Algebraic Thinking, Professional Development, Teacher Knowledge  

Students learn algebraic thinking starting in elementary school where they learn to recognize 
patterns, understand that the equal sign represents a relationship and express their mathematical 
ideas through representations. As students reach middle grades, they transition to learning about 
expressions, and functional thinking. This means that early elementary teachers lay the foundation 
for later development of understanding of formal algebra (Hohesee, 2017). Most researchers have 
extensively studied how students think algebraically and what teachers should focus on when 
teaching algebraic thinking (Jacobs et al., 2007). However, research is lacking on teachers’ 
conceptions of  algebraic concepts (Demonty et al., 2017; Warren et al, 2016). Warren et al. (2016) 
highlights the importance of research related to teacher knowledge since it has a direct influence 
on teachers’ ability to make decisions to support their student learning. This study documents 
shifts in teachers’ conceptions of algebraic thinking as they participated in teacher professional 
development on algebraic thinking.  Specifically we investigated: How did professional 
development shift K-8 teachers’ thinking involving algebraic relationships?  

Theoretical Framework 
There are three strands of algebra: building generalizations of arithmetic, generalizing toward 

the idea of a function, and modeling (Kaput et al., 2017).  The transition from arithmetic to 
algebraic thinking involves the ability to notice patterns and relationships among operations as 
opposed to simply calculating the answer. This process involves engaging in reasoning and sense 
making as it relates to noticing patterns and relationships (Blanton & Kaput, 2005; Swafford & 
Langrall, 2000). In middle school students are formally introduced to expressions, equations, and 
functions. Therefore, they start using variables to represent unknown quantities, changing 
quantities in expressions and exploring functional thinking (CCSSM, 2012). In addition, they start 
comparing equivalent expressions based on properties (Kieran, 2004).  

Input-output relationships are key in functional thinking, exploring the  relationships between 
variables and their patterns (Scharfenberger & Frazee, 2020) that model quantitative situations 
algebraically which can be generalized (Driscoll, 2001; Obara, 2019). An input-output table is a 
tool to represent the relationship by isolating pertinent information in a problem (Store, 2018). 
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Common misconceptions involve generalizing too quickly, pattern-spotting can remain trivial, and 
students can generalize about the wrong properties (Driscoll, 1999). Russell et al. (2011), state that 
to support generalization, teachers should develop routines of noticing, articulating, and 
investigation. In order to support functional thinking, teachers should engage in physical or 
conceptual activities that involve relationships between one or two of the variables, keep a record 
of the quantities, identify the pattern, and coordinate representations of the identified pattern 
relationship (Russel et al., 2017; Smith, 2017).   

Schulman’s (1986) work on pedagogical content knowledge (PCK) has paved the way for 
various branches of mathematics (Ball et al., 2008), yet PCK research is comparatively scarce with 
algebraic thinking (Store, 2018). There is an interdependence between professional development 
(PD), teachers’ content knowledge and PCK which can ultimately change classroom discourse and 
practices around algebraic thinking (Nathan & Koellner, 2007). Therefore, this study explored 
teachers’ conception of algebraic and functional thinking in a pre and posttest question on 
algebraic and functional thinking. 

Methods 
A PD focusing on algebraic thinking was offered to K-8 elementary teachers as part of a week-

long summer institute. The teachers were from a rural school district in a western state. The 
summer institute focused on having teachers’ model and solve similar kinds of problems, and 
focused on having teachers explore functional relationships and writing expressions.  A pre-test 
(N=20) and post (N=27) was administered, with the analysis of this paper focusing on a single 
questions, specifically part b) of the questions that required the participants to create an expression.  

 
Tables for a wedding are being set up outside. The seat 8 people as shown below: 
 

 
Figure 1 

a) How many people will 2 tables seat if the shorter end is placed together? 
 

 
Figure 2 

 
b) Create an expression for how many people n tables will seat. 

 
The PD focused on teacher noticing. The teachers explored a similar problem to the one they 

solved on the pre-test. Teachers were asked to describe what they noticed. The teachers then 
expanded on their original table problem to investigate what would change if the tables were 
pushed together vertically as opposed to horizontally. Figure 3 shows one group of teachers’ 
recorded strategies to generalize the patterns they noticed. 
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Figure 3 

The PD Leader additionally probed the teachers to make sense between the differences 
between the 6t and 2t  between the two problems. She asks the teachers to identify what is 
changing and how it is changing, and how that would be represented in a table and how it be 
represented graphically.  She then redirected the teachers to explain how that relates back to the 
table model, and what is staying the same. A posttest with a similar problem was administered at 
the end of the week. 

Data Analysis. An inductive coding scheme (Saldaña & Omasta, 2018) was created as follows 
(see Figure 4). We defined variation as the change between the number of seats for each table(s) 
added. 

Interrater Reliability: Analysis coding of the pre and posttest was conducted blindly between 
two coders and achieved an initial intercoder reliability of 93.6% using percentage agreement 
outlined by Syed & Nelson (2015).  However, these initial differences were discussed and resolved 
to achieve full agreement.  

 
Code Example from Pre-Tests Description  

Noticing Variation & Constant 
 

Subject was able noticed both constants 
and variation to generalize 

Noticing Only Variation  6𝑛 Subject  only noticed variation  to 
generalize 

Generalized Too Quickly for 
Variation or  

Subject created a variation generalization 
that applied to only singular term 

Difficulty in Identifying 
Independent Dependent Variables 

 

Subject was unable to generalize due to an 
incomplete understanding of 

independent/dependent variables 

Other 

 

Other generalizations  

Figure 4 
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Results 
The pre-test demonstrates high variability in the difficulties displayed by the participants (see 

Figure 5). Only 40% accurately noticed both the variation and the constant, and provided a correct 
expression. This increases drastically in the post-test, with approximately 85% of participants 
noticing the variation and the constant and providing a correct expression. Additionally 7% of the 
post-test participants noticed only the variation, showing that there was a dramatic increase in 
noticing variation overall between the pre and posttests. There were no participants during the 
post-test that generalized too quickly with an incorrect change, dropping to 0% from 40% on the 
pre-test. There was one participant in both the pre-test and the post-test that had difficulty 
identifying independent and dependent variables. 

 
Figure 5 

Discussion 
The most significant change made to teachers’ algebraic thinking was building in the 

categories of noticing both variation and the constant. This shows a shift away from arithmetic 
thinking to functional thinking. During the professional development teachers made connections to 
patterns they noticed, tabular representations, to the algebraic expressions. These connections 
strengthened the teachers’ understanding in identifying variation and constants in their patterns and 
expressions. However, this illustrates that teachers, just like students, can initially fall into 
common generalizability pitfalls when analyzing patterns. Teachers can generalize too quickly, 
generalize about the wrong properties, or have difficulty in understanding the independent and 
dependent variables as it relates to functional relationships. PD’s need to provide opportunities to 
identify teachers’ misconceptions as well as the opportunity to practice noticing, globalizing, and 
extending their own algebraic generalizations. If teachers are given the opportunity to develop and 
refine their own algebraic habits, it will reinforce their PCK (Nathan & Koellner, 2007; Shulman, 
1986) which then influences their classroom discourse which will encourage them to model and 
support students' thinking as they develop their own algebraic sense-making.  
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This classroom design study sought to support multilingual, middle-school students learning 
mathematical argument with writing practices (leveraging audience, revising, and 
conferencing). The study was set in a rural, Northern California, dual-immersion school with 
over 96% Latinx students and over 80% low-income. We used a proof schemes (Harel & 
Sowder, 1998) framework to examine revisions that students made during mathematical 
conferences. Findings show that some students used conferencing as an opportunity to revise (or 
generate arguments) while other students used conferencing as an opportunity to revise 
procedures or their use of formal terms. Findings support the notion that language should not 
serve as a gatekeeper that prevents multilingual students from accessing rigorous mathematics.  

Keywords: Reasoning and Proof, Culturally Relevant Pedagogy, Middle School Education  

Mathematical arguments and proof are difficult for students of mathematics to learn (Healy 
& Hoyles, 2000).  Part of the difficulty is found in the need for students to learn a new basis of 
belief that is neither “natural” (ECEMS, 2011) nor appropriate in settings outside of 
mathematical activity. Hence, most students arrive to the mathematics classroom and approach 
mathematical argument with little more than a few examples as “proof” of mathematical claims 
(Knuth, Choppin, & Bieda, 2009; Harel & Sowder, 1998).  

This research presents preliminary findings from a larger dissertation study that sought to 
support multilingual students’ development of mathematical arguments by conferencing on their 
written responses when asked to justify mathematical claims. This brief research report 
elaborates findings from the use of mathematical conferences to support students to revise their 
arguments and was guided by the following question: How did the practice of conferencing 
support students to revise mathematical arguments?  

Conceptual Framework 
This research is framed by several overarching concepts. First, we used a sociocultural view 

of mathematics learning and mathematical writing (Moschkovich 2002). We assumed these 
activities to be discursive and framed by knowledge and practices where meaning is situated and 
negotiated (Moschkovich, 2015). We focused on the practice of justifying, which involves 
students using informal mathematical arguments to construct mathematical certainty about 
generalizations (Smith, 2008; Stephens et al., 2017). We used the proof schemes framework 
(Harel & Sowder, 1998) to analyze arguments created by students. In this framework, students 
could make use of three classes of proof schemes: external conviction, empirical, and analytical. 
External conviction proof schemes rely on ritual, authoritarian, or symbolic arguments to 
determine what is true. Empirical proof schemes rely on facts or the senses to construct certainty. 
Analytic proof schemes seek to settle a claim in general and rely on the structure of mathematical 
knowledge and logic to convince. 
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Methods 
This research represents a part of a larger classroom design study that used audience and 

conferencing to support students learning mathematical argument. The study was set in 
“Esperanza Elementary School” (pseudonym); a rural, Northern California, dual immersion 
school with 96% Latinx students (over 80% of which are low-income). The study involved a unit 
of instruction on mathematical argument with three lessons that featured a Convince Form and 
two rounds of conferences. The Convince Form was designed to leverage audience as it 
supported the process of justifying by prompting students to ‘convince themselves’, ‘convince a 
friend’, and then ‘convince a skeptic’ of their mathematical claim. This research brief focuses on 
two tasks: 1) the Happy Numbers task (Dietiker, Baldinger, Kassarjian, & Shreve, 2013), and 2) 
the Consecutive Sums task (MARS, 2015). ‘Happy’ numbers are found by separating the digits 
of a number, squaring each digit, and then adding the resulting products. If the resulting sum is 
‘1’, then the number is ‘Happy’. If the sum is not ‘1’, then the process repeats until it results in a 
sum of ‘1’ or a sum repeats (in which case, the number is ‘not Happy’). See Figure 1 for prompts 
related to Task 1. Task 2 involved the Consecutive Sums task.  Students were prompted to 
qualify each of six mathematical conjectures as “Always”, “Sometimes”, or “Never” true and 
then justify their choice (see Figure 2). Each task was modified to accommodate remote data 
collection during the ongoing COVID-19 pandemic. We used case studies of a few 
representative students to illustrate patterns in the data. Author 1 (Huitzilopochtli) conducted the 
interviews. 

 

 
Figure 1: Task 1—Happy Numbers (Dietiker, et al., 2013) 
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Figure 2: Task 2—Consecutive Sums (MARS, 2015) 

Results 
Some students used conferencing as an opportunity to revise (or generate) arguments while 

other students also used conferencing as an opportunity to revise procedures and formal terms. 
Revising Arguments 

 Eight of the 12 conferences involved students revising arguments: three fifths of the students 
on Task 1 and five sevenths of the students on Task 2. We review the case of “Nina” to illustrate 
revisions made for Tasks 1.  

Prior to the conference, Nina submitted a list of examples in response to Task 1, Part A. Nina 
did not respond to Parts B or C. During the conference, I prompted Nina to look for patterns in 
her list of examples. She noticed that some of the ‘happy’ numbers had the same digits (e.g., 68 
and 86). When I asked how that worked, Nina replied, “Because you’re… square the individual 
numbers and… yeah… so, you’re gonna get the same, like, sequence for the… yeah.” 
(Transcript turn 19 – 22). Afterwards, I asked Nina to use her idea to find three-digit ‘happy’ 
numbers (Part B). Nina said that “you can get the same digits but put a zero in between or at the 
end” (Transcript turn 28). I asked her why it works, and Nina said, “Because when you square 
zero, you ‘re gonna get zero, so it doesn’t make any change in the final answer” (Transcript turn 
34).  At that point, I asked Nina to use her ideas to find which numbers must be happy numbers if 
478 is a ‘happy’ number (Part C).  Nina correctly determined 4,780, 4,078, and 8,740 were all 
‘happy’ without the need for calculation (Transcript turns 40 – 42).  This example shows how 
Nina used examples to develop the claim that you can use a zero digit to generate novel ‘happy’ 
numbers. While her use of the identity property of addition (i.e., a + 0 = a) is implicit, Nina is 
poised to make a general claim and justify it with data (in the form of examples) and warrants (in 
the form of mathematical properties). Nina began the interview with a list of examples but no 
claim about how to generate more ‘happy’ numbers. Then, she engaged in some inductive 
reasoning as she generated an empirical argument that a zero digit can be used to make novel 
‘happy’ numbers.  
Revising Procedures and Formal Terms 

Six of the twelve conferences involved students revising either procedures or formal terms; 
four students revised procedures and five clarified formal terms (three of which revised both). 
We will review the case of “Yolanda” who revised both. 

In response to Task 2, Yolanda qualified all of the claims by placing cards but did not justify 
any of the choices. During the conference, Yolanda chose to discuss how she qualified the claim 
that “To find the sum of consecutive whole numbers, find the middle number and then multiply 
it by how many numbers there are” (Conjecture C; see Figure 3). Yolanda benefitted from 
support with the procedures for testing the conjecture using examples and using the term 
“consecutive” with the intended meaning.  
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Figure 3: Yolanda’s claim is Conjecture C is sometimes true. 
 

I then asked her if she can test the claim, to which she responded, “I don’t know” (Transcript 
turn 42).  I picked an example for her to test, 3 + 4 + 5, and she responded by simply adding 
them to get 12 (Transcript turn 44). I supported her to test the conjecture by walking her through 
the steps to determine whether multiplying the middle number by the number of addends equals 
the sum (turns 49 – 58). Then I asked her to come up with her own example to test and she 
suggested “2 + 4 + 6” (turn 64).  Yolanda refined her working definition of what “consecutive” 
means.  Her initial suggestion to test “2 + 4 + 6” (turn 64) used consecutive even numbers (i.e., 
not consecutive whole numbers).  My clarification supported her work on the task, and Yolanda 
later used the intended meaning for ‘consecutive’ on her own. I asked Yolanda to test her own 
example and she suggested ‘9 + 10 + 11 + 12’. Then, she made the following observation: 

Because it’s four and if you—you could put four in a group so then it would be two and two. 
But then, there wouldn’t be a middle number. Or, at least, there can’t be. And the middle 
numbers could be 10 and 11, but it would have to be one. (Transcript turn 138) 

Yolanda suggested that there is no whole number in the “middle” of a set of four numbers. 
Before the end of the conference, I invited Yolanda to “say more” about when the conjecture 
does and does not work. Yolanda responded, “Because if you do 4, I don’t think it’ll be able to 
work but if you do more, it could possibly work.  Or if you do less” (turn 160). I asked if “3 + 4” 
worked and Yolanda said, “That can’t work” (turn 162) because “it’s only two and there would 
at least have to be three” (turn 164).  To conclude, we reviewed what we had done, and I asked 
her to summarize when she thought the conjecture worked.  In the chat, she responded, “it works 
when there is [sic] 3 and 5+ numbers but it won’t work if it’s 4 or 2 numbers” (chat file 
12/7/2020). With support, Yolanda revised the procedures to test whether an example satisfied 
the conjecture and her use of the word “consecutive”. She began the conference without a 
justifying scheme and with support is reasoning empirically. Moreover, Yolanda is positioned to 
further define cases when Conjecture C is true and when it is not. 

Discussion and Conclusion 
The purpose of this study was to use writing-related practices (leveraging audience, revising, 

and conferencing) to support multilingual middle school students learning mathematical 
argument. We found that students used the conferences to revise (or generate) arguments, 
procedures, and their use of formal terms (such as “consecutive”). These findings suggest that 
conferencing has potential as a practice to support all students learning mathematical argument, 
but especially multilingual students to ensure that they understand feedback and receive support 
to revise their arguments and use of formal terms. An implication of this study is that an iterative 
approach to justifying might support students to generate more general arguments. The 
implications of this study extend more broadly because formal terms, such as those common in 
‘academic language’, are often seen as a gatekeeper for multilingual students (NASEM, 2018) 
and can function as a ‘symbolic border’ (Faltis & Valdés, 2016). Conferencing might support 
access to more rigorous mathematics for multilingual students. 

Acknowledgments 
We would like to acknowledge the students of Esperanza Elementary School and “Ms. 

Garcia” for their participation. We would also like to thank [funding source] for their support.  

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

282



References 
Dietiker, L., Baldinger, E., Kassarjian, M. and Shreve, B. (2013).  Core Connections 3. V(5).  Elk Grove, CA: CPM 

Educational Program. 
Education Committee of the European Mathematical Society—ECEMS (2011). Do theorems admit exceptions? 

Solid findings in mathematics education on empirical proof schemes. EMS Newsletter, 82, 50–53. 
Faltis, C. J., & Valdés, G. (2016). Preparing teachers for teaching in and advocating for linguistically diverse 

classrooms: A vade mecum for teacher educators. Handbook of research on teaching, 549-592. 
Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. American Mathematical 

Society, 7, 234-283. 
Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for research in mathematics 

education, 396-428. 
Knuth, E., Choppin, J., & Bieda, K. (2009). Middle school students' production of mathematical justifications.  In 

D.A. Stylianou, M.L. Blanton, & E.J. Knuth’s (Eds.). Teaching and learning proof across the grades: A K-16 
perspective. New York, NY: National Council of Teachers of Mathematics/ Routledge. 

Mathematics Assessment Resource Service (2015) Evaluating Statements: Consecutive Sums.  Mathematics 
Assessment Project Classroom Challenges: A formative assessment lesson.  Available at: 
http://map.mathshell.org  

Moschkovich, J. (2002). A situated and sociocultural perspective on bilingual mathematics learners. Mathematical 
thinking and learning, 4(2-3), 189-212. 

Moschkovich, J. N. (2015). Academic literacy in mathematics for English Learners. The Journal of Mathematical 
Behavior, 40, 43-62. 

National Academies of Sciences, Engineering, and Medicine (2018) English Learners in STEM Subjects: 
Transforming Classrooms, Schools, and Lives. Washington, DC: The National Academies Press. 
https://doi.org/10.17226/25182. 

Smith, E. (2008). Representational thinking as a framework for introducing functions in the elementary curriculum 
(133-160). In J.J. Kaput, D.W. Carraher, & M.L. Blanton's (Eds.) Algebra in the early grades. New York, NY: 
Routledge. 

Stephens, A. C., Ellis, A. B., Blanton, M., & Brizuela, B. M. (2017). Algebraic thinking in the elementary and 
middle grades. Compendium for research in mathematics education. National Council of Teachers of 
Mathematics: Reston. 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

283

https://doi.org/10.17226/25182


QUANTITATIVE REASONING, DEDUCTIVE REASONING, AND OPERATING 
WITH ALGEBRAIC SYMBOLS: A NOVEL FRAMEWORK 

Teo Paoletti 
University of Delaware 

teop@udel.edu 

Charles Hohensee 
University of Delaware 

hohensee@udel.edu 

Allison Gantt 
University of Delaware 

agantt@udel.edu 

In algebra, operating with symbols meaningfully depends upon a student’s quantitative and 
deductive reasoning. Students can engage in these types of reasoning in different combinations, 
which has not yet been well conceptualized by mathematics education research. In this report, 
we present a framework that describes different combinations of how students use quantitative 
reasoning, deductive reasoning, and/or operating with algebraic symbols. We describe and 
illustrate each combination using examples from extant literature. 

Keywords: Algebra and Algebraic Thinking, Quantitative Reasoning, Deductive Reasoning 

Although the subject of algebra involves a wide array of reasoning and skills, one common 
feature (and source of difficulty) involves operation with algebraic symbols (i.e., variables, 
expressions, equations, and inequalities) to solve problems (Kaput, 2008; Kieran, 2004; Steffe & 
Izsák, 2002; Stephens et al., 2017). Previous research has found that even when students can 
operate with algebraic symbols efficiently, they may not maintain meanings that support them in 
deductively understanding why they can manipulate algebraic symbols or how symbols are 
applicable to quantitative situations (e.g., Blanco & Garrote, 2007; Didiş et al., 2011; Hohensee, 
2017). We present a framework to support researchers to make sense of students’ activity on 
tasks that may involve intersections of their quantitative reasoning, deductive reasoning, and 
operating with symbols. Our framework characterizes ways students may employ quantitative 
and/or deductive reasoning with or without operating with algebraic symbols. We use examples 
from the extant literature to describe each type of reasoning.  

Quantitative Reasoning and Deductive Reasoning 
Smith and Thompson (2008) define quantitative reasoning as when individuals conceive of 

and reason about the relationships between quantities. Quantitative and algebraic reasoning are 
closely intertwined. For example, Steffe and Izsák (2002) contended that algebraic reasoning 
entails “quantitative reasoning about constant and varying unknowns” (p. 1164). Similarly, 
Smith and Thompson (2008) argued that “quantitative reasoning provides conceptual content for 
powerful forms of representation and manipulation in algebra” (p. 100). However, they also note 
that, for many students, algebra is reduced “to a set of rituals involving strings of symbols and 
rules for rewriting them” (ibid, p. 96). Researchers (e.g., Thompson & Thompson, 1995) have 
conjectured that such an understanding of algebra may stem from a lack of opportunities to 
construct and reason about relationships between quantities. 

By comparing several definitions of deductive reasoning (e.g., Ayalon & Even, 2008; Morris, 
1995; Rivera & Becker, 2007; Stylianides & Stylianides, 2008), we synthesized features of 
deductive reasoning. First, such reasoning starts with given information students must presume is 
true. Then, students must use this information to reach conclusions they understand are logically 
true (e.g., do not require empirical verification). Addressing the relationship between deductive 
reasoning and algebra, Morris (1995) characterized algebraic deductive reasoning as applying 
“rules of transformation [which] include . . . operations specific to algebraic reasoning such as 
the ability to manipulate algebraic symbols” (p. 9). For our purposes, algebraic deductive 
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reasoning entails manipulating symbols and applying rules in ways the reasoner understands lead 
to “logically necessary” conclusions (Stylianides & Stylianides, 2008, p. 865).  

A Framework to Characterize Students’ Quantitative and Deductive Reasoning in Algebra 
In Figure 1, we present six regions representing different ways students may leverage 

quantitative and/or deductive reasoning with or without operating with symbols in algebra. 
Because our focus is the domain of algebra, we did not include a region entailing deductive 
reasoning that is absent of quantitative reasoning and operating with symbols.   

We do not intend for our framework to categorize students but rather, students’ reasoning on 
particular tasks around specific mathematical content. Further, depending on the context, a 
student may not need to reason in certain ways. Hence, when we say a student does not provide 
evidence of certain reasoning in a particular context, we are not implying the student cannot 
reason in those ways. We acknowledge the student may just not have perceived a need to engage 
in such reasoning. Relatedly, our goal was for the framework to characterize reasoning, not 
correctness.  

 

 
Figure 1: A framework characterizing students’ reasoning.  

Region 1: Reasoning Quantitatively without Reasoning Deductively or with Symbols 
Region 1 reasoning consists of reasoning quantitatively in ways that do not entail reasoning 

deductively or algebra symbols. In fact, when students first make sense of a novel situation, their 
initial reasoning may be solely quantitative. For example, Ellis et al. (accepted) described how a 
4-year-old student, Mario, addressed the Faucet Task. The task prompted students to engage with 
two quantities: the amount and the temperature of water coming out of a faucet. Mario was also 
encouraged to consider how these two quantities varied as the cold and hot knobs were turned on 
or off. With both knobs halfway on, Mario predicted that if the cold knob was turned all the way 
on, there would be “less water and colder.” He then tested his prediction to determine that 
although the water was colder, there was more water. As he engaged in several scenarios, he 
began to coordinate changes in water temperature and amount of water as each knob was turned. 
Critically for our purposes, Mario reasoned about the relationship between turning knobs and the 
amounts of the quantities without the use of symbols to represent his thinking. Further, his 
reasoning was inductive, relying on testing conjectures, rather than deductive. Therefore, we 
interpret his reasoning as in Region 1 (i.e., quantitative reasoning only).  
Region 2: Reasoning Quantitatively with Symbols without Reasoning Deductively 

Region 2 reasoning entails reasoning quantitatively and representing quantitative 
relationships with algebraic symbols but without reasoning deductively. There are numerous 
examples of such reasoning in the extant literature (e.g., Dougherty, 2008; Izsák, 2003; Stevens, 
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2020, in press). For example, Paoletti et al. (2021) described how middle school students used 
algebraic inequality and equality statements to represent when one quantity was greater than, less 
than, or equal to a second quantity (e.g., by writing P < T, P > T, and P = T to represent a moving 
car’s distance from Philadelphia as being less than, greater than, or equal to its distance from 
Trenton). The students reasoned quantitatively to represent the relationships with algebraic 
symbols but relied on empirical verification throughout by observing locations in the situation, 
thereby providing no evidence of deductive reasoning. For this reason, we interpret this as an 
example of reasoning in Region 2 (i.e., quantitative and with symbols, but not deductive). 
Region 3: Reasoning Deductively and Quantitatively but without Algebra Symbols 

Region 3 reasoning entails reasoning deductively and quantitatively but without employing 
algebraic symbols. Hackenberg (2010) exemplifies such reasoning. In this paper, a student, 
Deborah, reasons about the following problem: “The Lizards’ car travels 1/2 of a meter. That’s 
3/4 the distance the Cobras’ car went. Can you make how far the Cobras’ car went [in the digital 
environment] and tell how far it went?” Describing Deborah’s activity, Hackenberg stated: 

Deborah immediately copied the unit meter she had made, partitioned it into two equal parts, 
and partitioned the first part into three equal parts. She pulled out one of those parts and 
repeated it to make a 4-part bar, which she called four-sixths of a meter. (p. 417) 

We note that, Deborah was reasoning quantitatively about the situation as she represented and 
related the various distances. Further, Deborah relied on the diagram to reason deductively about 
the relationships involved in the situation. Specifically, her activity suggested she assumed the 
givens (i.e., that Lizards’ car travels 1/2 m and that this is 3/4ths the distance Cobras’ car 
travels); she reasoned that 3/4ths the distance Cobras’ car travels is 3/6 m; and she came to the 
logical conclusion that the total distance Cobras’ car travels was 4/6 m. Finally, notice that 
Deborah did not use algebraic symbols. Thus, we categorize such reasoning as in Region 3. 
Regions 4 and 5: Operating with Symbols Non-Quantitatively with or without Reasoning 
Deductively 

Regions 4 and 5 both entail operating with symbols without explicit focus on measurable 
attributes of objects (i.e., non-quantitative). The difference between Regions 4 and 5 is whether 
the reasoning is deductive or not. Because students’ normatively correct algebraic work could 
reflect reasoning in either region, using non-normative examples can help differentiate between 
students’ reasoning in the two regions. To highlight this, we describe Regions 4 and 5 in tandem.  

Didiş et al. (2011) explored students’ reasoning about quadratic equations in ways that 
highlight the distinction between Regions 4 and 5. Although most students could provide 
solutions to equations of the form (x – a)(x – b) = 0, their evaluations of hypothetical student 
work suggested that only some were engaging in what we identify as deductive reasoning. The 
hypothetical work showed a quadratic equation (i.e. x2 – 14x + 24 = 3 where both the quadratic 
expression and constant had been factored (i.e. x2 – 14x + 24 = (x – 12)(x – 2) and 3 = 3·1). The 
hypothetical work arrived at a solution by setting one factor of each expression equal to a factor 
of the other (i.e., x – 12 = 3 and x – 2 = 1). Students who argued that the solution was correct 
may not have maintained meanings for their process based on the zero-product property, which 
provides the logical underpinnings of this solution (i.e., Region 4). In contrast, we conjecture a 
student who argued the hypothetical solution is incorrect had assessed that the hypothetical 
solution did not lead to “logically necessary” conclusions (i.e., Region 5).  

As the students made no references to quantities (which is unsurprising given the prompt’s 
abstract context) and they were operating with algebraic symbols, we infer the reasoning is 
indicative of Regions 4 and 5. These examples highlight how it can often be unclear if a 
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student’s procedures entail deductive reasoning when examining normatively correct solutions 
(e.g., correct solutions to (x – a)(x – b) = 0). By responding to unconventional hypothetical 
student work, we are able to observe potential differences in students’ processes as entailing 
deductive reasoning (Region 5) or not entailing deductive reasoning (Region 4) 
Region 6: Reasoning Quantitatively and Deductively while Operating with Symbols 

Region 6 reasoning requires both deductive and quantitative reasoning while operating with 
algebraic symbols. Hall et al. (1989) provided an example of a student engaging in such 
reasoning on the following problem: “George rode out of town on the bus at an average speed of 
24 miles per hour and walked back at an average speed of 3 miles per hour. How far did he go if 
he was gone for six hours?” (p. 249). Reflective of reasoning quantitatively, the student created 
several equations which had an explicit focus on measurable attributes (e.g., “walking distance = 
(3 miles/hr)(6 – x hours)”) and relationships between measurable attributes (e.g., “bus distance = 
walking distance”). Further, the student used equations to relate two equivalent distances (e.g., 
24x = 18 – 3x), then reasoned deductively to determine the time, in hours, the bus traveled (“bus 
distance = 16 miles”). The student then used this value to eventually determine a solution to the 
problem. Therefore, we classified this reasoning as in Region 6. 

Discussion 
Our goal in this paper is to present a novel framework that allows researchers to engage in a 

nuanced analysis of the intersections between students’ quantitative reasoning, deductive 
reasoning, and their operating with algebraic symbols in a particular task or context. Specifically, 
we theorize that students’ reasoning can fit within (at least) six regions when reasoning 
quantitative and/or deductively while operating or not operating with algebra symbols. The fact 
that we located examples in the literature of reasoning that align with each region highlights the 
potential efficacy of this framework to characterize students’ reasoning.  

Based on our personal experiences and extant research (e.g., Hohensee, 2017), we conjecture 
most students leave K-12 with ways to operate with symbols but with insufficient understanding 
about how deductive logic justifies their operations on symbols or how their procedures connect 
to quantities (Regions 4 and 5). Also, when students are encouraged to reason about quantities, 
we conjecture quantities are often only considered when setting up equations (Region 2) but then 
their work with the equations largely ignores the quantities under consideration (moving to 
Regions 4 or 5) as in the example in Figure 4.  

Hence, there is a need to design and research instructional activities that support students in 
developing meanings that enable them to reason in ways that would fit within Region 6. There 
are indications that connecting pictorial and algebraic representations can be particularly 
productive for students (e.g., Bartel et al., 2021; Chu et al., 2017). Research exploring these 
activities has the potential to address the need to better understand and improve students’ 
algebraic thinking and learning. 
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We explore early algebra moments, that is, the opportunities that arise during the course of 
classroom instruction that a teacher could potentially capitalize upon to address important early 
algebra ideas or practices. We categorize early algebra moments as anticipated (based on the 
intended lesson) or spontaneous (not anticipated and arise “in the moment”). In this paper, we 
report on the analysis of sixteen video-taped observations of Grade 5 teachers’ implementation 
of the same early algebra lesson and illustrate the results with contrasting exemplars of the two 
types of moments. In addition, we also highlight an episode of a spontaneous moment that 
capitalizes on collective argumentation. Finally, we discuss implications for future research, 
professional development, and student learning associated with the early algebra moments. 

Keywords: Algebra and algebraic thinking, elementary school education, teacher noticing, 
classroom discourse 

Blanton and Kaput (2003) described elementary teachers’ algebra “eyes and ears” in terms of 
their ability “to spot opportunities for algebraic thinking” (p. 76). In this paper, we expand on 
this idea and explore what we call early algebra moments, that is, the opportunities that arise 
during the course of classroom instruction that a teacher could potentially capitalize upon to 
address important early algebra ideas or practices. We categorize early algebra moments as 
anticipated or spontaneous moments; in the former case, these are moments that are reasonable 
to expect based on the intended lesson (and that are also further delineated as taken up or as not 
taken up by the teacher), and in the latter case, these are moments that were not anticipated and 
that arise “in the moment.” 

Background of work 
The larger project, from which this study draws, examined the impact of an early algebra 

intervention for Grades 3-5. The intervention consisted of 18 one-hour lessons for each grade 
level, and was developed using a learning progressions approach (Authors, 2018). The lessons 
were taught over the course of the school year for each grade level. The aim of the lessons was to 
develop students’ abilities to generalize, represent, justify, and reason with mathematical 
structure and relationships across a variety of mathematical contexts. The lessons focused on 
several big ideas of early algebra: (a) mathematical equivalence; (b) generalized arithmetic; (c) 
functional thinking; and (d) variable (Kaput, 2008). This study draws from and expands upon a 
series of studies that examined the impact of this intervention in Grades 3-5 (Author, 2015) 
comparing the performance of students who participated in the intervention with the performance 
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of students who received their district’s regularly-planned curriculum (Author et al., 2015; 
Author et al., 2017; Author et al., 2018).  

Conceptualizing Early Algebra Moments and Their Enactment 
We value teachers as co-producers of knowledge, experts, and informants to research 

(Bromme, 2014; Kieran, Krainer, & Shaughnessy, 2012; Sowder et al., 2005). The relationship 
between research and practice is bidirectional; research and practice communities have much to 
contribute to each other's work (Arbaugh, et al., 2010). The professional knowledge of teachers 
can be characterized as a complex cognitive set of skills honed through formal training and years 
of practical experiences. This expertise shapes the ability to notice, interpret, and respond to 
students often within a series of complex classroom events requiring immediate, improvisational 
teacher reactions (Borko & Livingston, 1989; Shulman, 1987). We ask, “What are examples of 
teachers’ improvisational implementation of early algebra lessons?” Through our examination of 
teachers’ implementation of early algebra lessons, we seek to learn not only about the ways in 
which they engage (or not) with anticipated early algebra moments, but also the ways in which 
spontaneous (or unanticipated) moments arise during their enactment of these lessons. This latter 
case, in particular, serves to highlight the unexpected and often creative ways in which teachers 
implemented the lessons, and as such, also serves to inform and refine research and professional 
development in early algebra—a domain of importance to students’ future mathematics learning 
as well as a domain that presents instructional challenges for elementary school teachers 
(Hohensee, 2015). 

Researchers have documented critical moments within a mathematics lesson that afford 
teachers an opportunity to notice and act in order to further student reasoning and understanding 
(e.g., Fennema et al., 1996; Leatham et al., 2015; Stockero & Van Zoest, 2013). The specific 
language used to describe these moments during instruction varies among researchers: 
“teachable moments”, “mathematically significant pedagogical opportunities”, “crucial 
mathematic hinge moments”, and “pivotal teaching moments”. A commonality of such moments 
is that they are largely unplanned or unanticipated and thus require teachers to notice them in the 
moment. Specifically, within early algebra, teachers can capitalize on such moments to draw 
connections to algebraic thinking and foster practices that promote algebraic thinking (Blanton & 
Kaput, 2003). Blanton and Kaput argued that these moments are incorporated into classroom 
teaching on a regular basis and often spontaneously. To illustrate the categories of early algebra 
moments, consider the following task presented to Grade 3 students: Is the number sentence, 
34+10=44+9, true or false? In this case, we expected anticipated moments associated with an 
operational view of the equal sign (i.e., the number sentence is true since 34+10=44) and a 
computational view (i.e., find the sum of both sides and compare). We also identified a 
spontaneous moment when the teacher drew, and then referred to, separate rectangles around the 
expressions on each side of the number sentence as a means to visually highlight a relational 
view of the equal sign (i.e., an equivalence relation between two quantities). 

While moments in which teachers note “interesting student algebraic thinking” in video-
taped observations of secondary algebra classrooms have been studied (Walkoe, 2015), there is a 
dearth of such work for the domain of early algebra. We hope to add to the body of early algebra 
research by detailing these critical moments that afford opportunities to foster students’ algebraic 
thinking. Furthermore, there is a lack of empirical analysis of observations of multiple teachers 
teaching the same early algebra lesson. Our corpus of data provides a unique opportunity to 
document and analyze the ways in which teachers capitalized, or did not capitalize, on 
opportunities to engage students in algebraic thinking. 
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Methods 
In the following section we first describe the data used in the study and the data analysis 

process. In particular, we describe our coding method and illustrate the coding with 
representative algebra moments from the focus lesson. 
Setting and Participants 
This study involved 16 Grade 5 teachers in three school districts located in a southeastern US 
state. The teachers varied in their years of teaching experience from relatively new teachers to 
veteran teachers. The districts were diverse in terms of race and socioeconomic status, as well as 
location (rural, suburban, and urban).  
Lesson 

Students were taught the early algebra intervention by their classroom teachers as part of 
regular mathematics instruction. This study focuses on one of the lessons, roughly one hour in 
duration, implemented by each of the sixteen Grade 5 teachers. There were three parts to the 
lesson: a warm-up, a main activity, and a concluding discussion that focused on reviewing the 
main activity’s key concepts. For the warm-up of this lesson, students were asked to construct a 
graph to model the relationship of selling twice as many strawberry ice cream bars as chocolate 
ice cream bars. The main activity of the lesson focused on the distributive property, and students 
expressed the shaded, white, and total areas of the rectangular figure (see Figure 1) using 
variables with expressions, equations, and inequalities. The goal of the main  

 

 
 

Figure 1: A rectangular model of the distributive property. 
 

activity was to build students’ experiences with the distributive property through writing 
expressions, equations, and inequalities. Students were asked to consider the various rectangular 
areas to write an inequality that relates the grey rectangular area to the white rectangular area. 
They were then tasked to write an expression for the total area (i.e., 10(h+2) or 10h + 20). Lastly, 
students were asked to solve for h if the total area of the composite figure was 100 square units. 
The concluding activity for the lesson centered on the students determining the difference in area 
for a rectangle that is 7h square units and a rectangle that is 3h square units, as well as on the 
different roles variables play in equations and expressions. 
Data Analysis 

In order to identify and characterize algebra moments in the observations of the lesson, our 
coding had two phases. First, prior to viewing the video observations, the research team 
reviewed the intended lesson, both student and teacher facing materials, and identified a set of 13 
anticipated moments for the lesson. An anticipated moment is defined as an expected response 
based on the intended lesson that supports students’ understanding of an algebraic concept or 
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fosters an algebraic practice. To illustrate an example of an anticipated moment, the first part of 
the main lesson prompts students to represent the areas of a rectangle partitioned into two parts, 
both with length 10 units and widths h and 2 units (see Figure 1). The anticipated moment for 
this part of the lesson is “variable expressions are written and shared such as 10h”. 

Through the course of our viewing of the video observations, in contrast to anticipated 
moments, we identified spontaneous moments. We define spontaneous moments as moments that 
were not anticipated based on the intended lesson, and that arise “in the moment” to support 
students’ understanding of an algebraic concept or foster an algebraic practice. To illustrate an 
example of a spontaneous moment, in response to the aforementioned prompt to represent the 
areas of a partitioned rectangle into two parts (see Figure 1), a spontaneous moment was coded 
as such when a student objected to the lesson prompt stating “We can’t represent the area of the 
grey rectangle since we don’t know what that variable (h) is equal to.” A teacher’s response to 
the student was “Do we have to know what the answer is? What h is? …Or can I just leave it as 
h?” While the printed lesson material for teachers addresses common student misconceptions and 
details potential student responses, the student’s discomfort or resistance to the lack of closure 
with the variable expression (10h) of the area (cf. Arcavi, 2005) was not an intended (or 
anticipated) part of the lesson. 

We further delineated each moment as either taken up or as not taken up by the teacher. A 
moment taken up requires the teacher to notice and capitalize on the opportunity in a way that 
supports students’ understanding of an algebraic concept or fosters an algebraic practice. In 
contrast, a moment not taken up is when a teacher does not address an algebra moment (whether 
intentionally or not). Note that an opportunity not taken up could also occur for algebra moments 
that, if taken up, would have been coded as spontaneous. In this case, such not taken up 
spontaneous moments were identified by the research team when observing an unanticipated 
opportunity that arose in the course of instruction but was not addressed by the teacher. For 
example, in response to writing an expression for the area of the rectangle, a student claims that 
h must be equal to 8 since h is the eighth letter of the alphabet. The teacher acknowledges “that 
works out, huh?” but does not address this variable misconception.  

The coding process began with the coding of four observations by our team of six coders. 
After successively meeting after each coded observation to refine our anticipated moments and 
what constitutes spontaneous moments, we then coded the remaining twelve observations as two 
teams of three coders. We coded individually and then met to compare and discussed our codes. 
The intercoder reliability was high for both anticipated moments (approximately 95%) and 

spontaneous moments (approximately 92%). 

Results 
The lesson had 13 opportunities for anticipated early algebra moments, and across the 16 

teachers’ enactment of the lesson, there were 208 total opportunities. Of those, there were 145 
instances (70%) in which anticipated moments were taken up, and 63 instances (30%) in which 
anticipated moments were not taken up. In the former case, we are not making distinctions here 
with regard to the “quality” with which a teacher took up a particular moment (we illustrate such 
distinctions below), only that they attended to the algebra moment. In this latter case, the 
moments that were not taken up most often were a result of teachers not addressing those parts of 
the lesson (for example, a teacher pressed for time may have skipped parts of the lesson). For 
spontaneous moments, there were 56 moments identified with 43 of those moments (77%) taken 
up and 13 of those moments (23%) not taken up. See Figure 2 for a summary of algebra 
moments counts across the 16 teachers. Of the thirteen possible anticipated moments for each 
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lesson, the average number of anticipated moments taken by each teacher is about 9 while the 
average number of anticipated moments not taken up is about 4. There was an average of 2.7 
spontaneous moments taken by each teacher, and an average of 0.8 spontaneous moments were 
not taken up by teachers. 

 
 

 
Figure 2: Counts of Anticipated and Spontaneous Moments, Missed and Taken, Across 16 

teachers  
 

Taking a closer look at the early algebra moments, we now present several excerpts to 
illustrate the variety of ways in which the teachers engaged with anticipated and spontaneous 
moments. The excerpts also serve to highlight qualitative differences in the nature of teachers’ 
enactment around these algebra moments. The following excerpt is representative of teachers’ 
enactment of the anticipated moment associated with describing an inequality that relates the 
grey rectangular area to the white rectangular area in Figure 1 (i.e., 10h > 20).  

Episode 1: Anticipated Moment, Taken Up, Teacher 11 

A student stands at the front of the classroom after writing “10 ∙ ℎ > 10 ∙ 2” on the white board. 
Teacher: Alright, tell us what you wrote. 
Student: Ten times h is greater than 10 times 2. 
Teacher: (to the class) Does everybody see how that is correct? If you look on your picture, 

you see that the area of the grey rectangle is larger than the white one. Does that 
make sense? 

Of the 16 observed classrooms, every teacher addressed this anticipated moment. However, 
we also identified a number of spontaneous moments that arose as students engaged with this 
task. The following spontaneous moment example occurred when a teacher took up her students’ 
claims that h could represent different values, which would then result in different inequalities. 
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Although one might expect this to be part of the lesson, the lesson as intended did not suggest 
that teachers address this point.  

Episode 2: Spontaneous Moment, Taken Up, Teacher 2 

Teacher I hear some people…some really good conversations. Leah, can you finish 
what you were saying about the areas of the white and the grey? 

Leah So, we said that the white part represents the 10 2 …equals 20. And we think 
that one is greater because …Well, you don’t know what h represents. 

Teacher Absolutely. Can I get some agreement, disagreement? Maybe someone who 
agrees that the white (area) is greater? Someone who disagrees, okay? What do 
you say Aliyah and Sydney? 

Aliyah We agree because 10 times 2 is 20, and 10 times h is…um, unknown.  

Other 
students 

Wait!…(inaudible classroom discussion) 

Teacher All right so 20 is greater than… we don’t know (teacher writes “20 > 10 h” 
on the board). Charlene? 

Charlene I kinda agree but I kinda disagree because we don’t know what 10  h is …we 
don’t know what h is— maybe it’s a 100, but maybe it’s 15, so it could go both 
ways. We don’t really know which one is bigger. 

Eric h can be any number. It’s a variable.  

Unknown 
student 

But you don’t have h right now! 

Teacher Okay. Vincent, what are you thinking? 

Vincent Because in the graph (picture, Figure 1) the h is more bigger than the 2.  

Teacher In this specific picture? The h is bigger than the 2? (gesturing to a projected 
Figure 1) …Based on the picture, we could make an assumption…so then 20 < 
10h?  

Unknown 
student 

Well, you didn’t say that— you didn’t say “based on the picture”. 

Teacher Right, right… Well, what number could h be that would make it smaller than 
20? 

Students (overlapping talk) One… Zero! 

Teacher So, if it’s zero, it (gesturing to 10  h in “20 > 10 h”) would be zero. 

Unknown 
student 

Also, one. 

Teacher Yep, I heard a couple of people say “one”. If it’s one, then it would be 10. 

Leah So, which is right? 
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Unknown 
student 

We don’t know yet. 

Teacher I think it’s really cool— it depends on your argument.  

 
In this excerpt, the teacher skillfully takes up a student’s claim that relies on the meaning of a 
variable as an unspecified quantity. The teacher revoiced the claim to the whole class and 
solicited the reasoning of others. A lively class-wide discussion ensues with students engaged 
collaboratively as they made and justified other claims using algebraic reasoning about the cases 
of the variable. The teacher noticed and made productive improvisational decisions to elicit 
student thinking about an important algebraic idea (i.e., that value of the variable, in this case h, 
is unknown).  

A commonly taken up spontaneous moment that surfaced across the observations during the 
main activity as well as during the concluding summary activity of the lesson involved the use of 
substitution to evaluate the equality between two expressions (not suggested as potential student 
approach in the teacher-facing lesson materials). In the former case, students suggested 
substituting h = 8 into 10(h + 2) and 10h + 20 to determine if the two ways to express the area of 
the larger rectangle were equivalent. While in the latter case, students’ explanations regarding 
the difference in the areas between two rectangles, one with area 7h and the other with area 4h, 
involved substituting a numerical value into the equation 7h – 3h = 4h to evaluate the truth value 
of the equation. In both cases, the teachers took up students’ suggestions by either performing 
the substitution on the board or having a student perform and evaluate the substitution.  

There were also a significant proportion (23%) of spontaneous early algebra moments (as 
identified by the research team) that were not taken up by teachers. For example, several teachers 
did not take up opportunities to engage students in discussion about their desire to assign a 
specific value to the variable h before an expression for the total area of the two rectangular areas 
could be determined. In one teacher’s classroom, several students expressed a need to physically 
measure with a ruler or an improvised ruler (e.g., repeated measurement with the width of their 
finger, tick marks on a paper) to determine a numeric value for h. One student, using a pencil as 
a ruler, insisted that the length of h was half of 10 (based on the figure itself) and thus thought 
that h = 5. The teacher’s response was “okay, then plug that in for your h”. Here the teacher did 
not address the meaning associated with using a variable in the area expression, and the lesson 
materials did not anticipate that students might express the need to assign a specific value to h in 
order to write an expression for the areas of the rectangles. 

Discussion 
Algebra moments that surface in the implementation of early algebra lessons that the 

research team anticipated, indeed occurred, and were addressed by the majority of teachers (not a 
surprising result if teachers simply followed the lesson). Similarly, those spontaneous algebra 
moments that the research team did not anticipate, were also addressed by the majority of 
teachers. These latter findings are both somewhat surprising given often negative 
characterizations of elementary school teachers’ mathematics knowledge, and promising with 
respect to teachers’ abilities to engage their students with early algebra ideas and practices. In 
short, at least for these sixteen teachers, their early algebra “eyes and ears” were relatively well 
developed. Yet, for those early algebra moments not taken up—both anticipated and 
spontaneous—the current study offers little insight into why these moments were not taken up or 
missed. In some cases, there may certainly be reasonable professional explanations supporting a 
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teacher’s decision to not take up a moment including practical limitations such as time and 
classroom interruptions. In other cases, it may be that the moment was indeed missed, that is, a 
teacher did not notice the opportunity as it arose during the course of instruction—cases that 
speak to the need for professional development if teachers are expected to meaningfully engage 
their students in early algebra. 

There are also important characteristics of algebraic moments that, although not reported on 
here, are a part of our ongoing study, namely, the quality of teachers’ instructional practice 
around early algebra moments. It is clear as we view the lesson observations that not every 
algebra moment is addressed in exactly the same way, and that there are differences in the ways 
in which teachers address these moments as well as in what students may learn as a result. For 
example, the warm up for this lesson prompted students to create a coordinate graph to represent 
the relationship between two co-varying quantities—one which was increasing at a rate twice 
that of the other quantity. One teacher facilitated a classroom discussion with her students in 
which they first predicted what such a graphical representation would look like prior to students 
generating graphs themselves, and then shared and compared the student-generated graphs. In 
contrast, another teacher led a teacher-centered episode in which she generated a table of the two 
co-varying quantities for students to copy, and subsequently led the creation of the coordinate 
graphical representation of the relationship with little to no student input. 

Conclusion 
In this paper we introduced the idea of early algebra moments, both those moments that arise as 
anticipated from an examination of a lesson and those moments that arise spontaneously in the 
course of instruction. By examining the same lesson implemented by sixteen teachers, we are 
able to see the variety of ways in which teachers engage with these moments (or, in some cases, 
do not engage), highlighting not only the diversity of approaches, but also the quality of 
instruction around these moments. Given the space constraints, we primarily focused on 
illustrating several examples of anticipated and spontaneous moments, These results offer 
promise with respect to teachers’ implementation of early algebra in the elementary classroom as 
well as highlight the need to support teachers’ efforts to develop their early algebra eyes and 
ears. Moreover, the results offer insights for understanding how the early algebra curricular 
materials support teachers in anticipating students’ algebraic thinking and how teachers’ 
spontaneous responses to moments can further students algebraic thinking. By studying and 
spotlighting teachers’ facilitation of these moments we hope to amplify high quality teaching of 
early algebra. Additionally, understanding algebraic moments that were not taken up in 
classrooms could serve to hone professional development around noticing and attending to 
students’ algebraic thinking. 
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Understanding how young learners come to construct viable mathematical arguments about 
general claims is a critical objective in early algebra research. The study reported here 
characterizes empirically developed progressions in Grades K–1 students’ thinking about 
arguments concerning sums of evens and odds. Data are drawn from classroom lessons of an 
early algebra instructional sequence and interviews conducted at four timepoints during the 
implementation of the sequence. Overall, students transitioned from unfamiliarity with the 
concepts of even or odd prior to instruction in Kindergarten to making valid parity arguments at 
the conclusion of instruction in Grade 1. Results of this study align with other research that 
shows young learners can develop viable arguments to justify mathematical generalizations. 

Keywords: Reasoning and proof; algebra and algebraic thinking; learning trajectories and 
progressions; early childhood education 

Purpose of the Study 
Research increasingly supports that engaging in proving in developmentally appropriate 

ways in the elementary grades can deepen students’ conceptual understanding of mathematics as 
a sense-making activity (Carpenter et al., 2003; Stylianides & Ball, 2008; Van Ness & Maher, 
2019). Moreover, when elementary students are supported through instruction, they can learn to 
use deductive—rather than empirical—reasoning to build mathematical arguments (Stylianides 
& Stylianides, 2008). However, intervention studies are needed to develop a “fine-grained 
conceptualization” (Stylianides, 2007b, p. 18) of appropriate forms of proving in early grades 
and to understand how curriculum can support students’ construction of viable arguments.  

The study reported here responds to this call by identifying learning progressions (Clements 
& Sarama, 2004) in how children construct mathematical arguments as they are taught an early 
algebra instructional sequence in Kindergarten (hereafter, Grade K) and Grade 1. The study 
focuses on the following question: What levels of thinking do Grades K–1 students exhibit in 
their understanding of arguments about sums of evens and odds as they advance through an 
early algebra instructional sequence?  

Perspective 
The study reported here is part of a suite of projects in which we use a learning progressions 

approach (Clements & Sarama, 2004) to build an effective early algebra intervention across 
Grades K–5 and to identify progressions in students’ thinking as they advance through the 
instructional sequence that forms the intervention. We organize early algebra around the 
practices of generalizing, representing, justifying, and reasoning with mathematical structure and 
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relationships (Blanton et al., 2018). The focus on children’s mathematical arguments here is a 
natural part of our early algebra research. In particular, in this study we are interested in 
justifying as a practice of building arguments for claims about general relationships, which can 
elevate the role of argumentation in the elementary grades. 

Methods 
Our research design involved the use of classroom teaching experiments (CTEs) with 

individual interviews (Cobb & Steffe, 1983) to identify progressions in children’s thinking. 
Because CTEs incorporate instructional design with the ongoing analysis of classroom data, they 
serve as an important mechanism for developing empirically based conjectures about 
progressions in thinking as students advance through an instructional sequence (Clements et al., 
2007; Lesh & Lehrer, 2000).  

The K–1 early algebra instructional sequence in the study reported here consisted of eighteen 
30-minute lessons for each grade. A subset of lessons within the instructional sequence (3 in 
Grade K, 2 in Grade 1) addressed the development of parity arguments. Lessons initially focused 
on preliminary concepts such as “pair,” “even number,” and “odd number,” then transitioned to 
the development of representation-based arguments (Schifter, 2009) about the parity of the sum 
of two even numbers, two odd numbers, and then an even and an odd number. Additional lessons 
(8 in Grade K, 3 in Grade 1) reviewed parity concepts in lesson warm-ups. 
Participants 

Two Grade K classrooms (Year 1) and two Grade 1 classrooms (Year 2) in one school in the 
Northeastern US participated in the study. Effort was made to keep the initial Grade K cohort 
intact in Grade 1. Table 1 shows the number of participants by grade level. The school district’s 
demographics consisted of 10% students of color and 16% students categorized as low SES.   

 
Table 1. Participants by Grade Level  

Grade Total No. of 
Participants 

Participated in 
Grade K only 

Participated in 
Grade 1 only 

Participated in 
Grades K–1 

K 48 22  26 
1 48  22 26 

 
Data Collection 

Grade-level early algebra lessons were taught approximately once per week during each 
school year by a member of the research team. All lessons were videotaped, and lessons or 
portions of lessons (e.g., lesson warm-ups) related to even and odd concepts were identified for 
analysis. A subset of students was selected at each grade for semi-structured, 30-minute, 
individual pre/post interviews. Classroom teachers helped identify students who fit a diverse 
academic range. An early math diagnostic assessment (EMDATM) was administered to students at 
the beginning of Grade K to further ensure academic diversity. In all, 17 students in Grades K–1 
participated in video-taped interviews about parity concepts. Twenty-four full or partial 
classroom lessons and 40 interviews were analyzed.  
Data Analysis 

We used a grounded theory approach (Strauss & Corbin, 1990) that focused on the 
identification of progressions in students’ thinking around the concepts of pair, parity of 
numbers, and arguments about parity of sums. Interview data were analyzed independently by 
three team members to identify preliminary codes (levels of thinking) for our core concepts. 
Theoretical memos (Glaser, 1998) were constructed to provide supporting evidence for the 
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codes, or levels. Agreement among coders was determined by comparing coding decisions and 
negotiating any discrepancies around early codes/levels. New codes were identified as warranted 
and data were re-analyzed until subsequent coding did not change our emerging models. Video 
of classroom data were then analyzed for confirming or disconfirming evidence of emerging 
codes (levels). The levels-as-coding schemes were then organized based on our empirical 
findings vis-à-vis canonical understandings of the mathematics attempted (Battista, 2004). 

Results 
In Table 2, we report our findings on levels in students’ thinking about the most complex 

interview task—parity arguments about the sum of arbitrary even and/or odd numbers. We then 
share some observations from our study. 
 

Table 2. Parity Arguments for the Sum of Two Arbitrary Even/Odd Numbers 
Non-Structural Reasoning 

Level 1 
Empirical 

Students suggest a strategy 
that uses or implies the use 
of testing cases to determine 
parity for an arbitrary sum. 

Student provides an argument based on empirical 
experience (counting): “If you add even and odd it’s 
usually even because every time I count that, it’s 
usually even. One time it wasn’t.” 

Structural Reasoning 
Level 2 
Generic 
Number 

Students use a pairs strategy 
applied to generic numbers 
to reason about parity of the 
sum. A pairs strategy 
involved finding if a number 
represented through cubes 
(for example) could be 
separated into pairs without 
a cube left over.  

When asked if the sum of “a really big odd number” 
and a “really big even number” is even or odd, a 
student gave the following response: 
 
“Odd, because let’s say you did it with [12 and 15]. 
Fifteen has a leftover and 12 doesn’t have a leftover, 
so it can’t combine.” He indicates that by “can’t 
combine” he means there would still be a leftover. 

Level 3 
Arbitrary 
Number 
 

Without referencing any 
numbers, students use a 
pairs strategy to reason 
about parity of the sum. 

When asked to explain why any even plus any odd is 
odd, a student argues, “Because an odd number has a 
leftover and an even number doesn’t have a leftover 
and if you combine an odd number with an even 
number, it equals an odd number,” confirming that 
there would still be a leftover. 

 
There are important similarities between the levels of thinking students exhibited and 

taxonomies reported elsewhere. Empirical reasoning (Level 1), by which students examined 
randomly chosen cases to establish a conjecture’s truth, reflects naïve empiricism (Balacheff, 
1988) or an empirical (inductive) proof scheme (Harel & Sowder, 2007). In the example 
provided, the student reflects on prior experiences in “counting” (adding) particular even and odd 
numbers as the basis of her argument. Schifter (2009) similarly characterizes this type of 
argument as inference from instances in her analysis of Grade 3 students’ parity arguments. We 
see Level 2 as consistent with the notion of generic example (Balacheff, 1988) or deductive 
(transformational) proof scheme (Harel & Sowder, 1998) because of the use of a specific 
number as a generic placeholder for a general number in students’ arguments. Schifter (2009) 
refers to this form of argument as reasoning from representation or story context. Finally, Level 
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3 reflects the construct of thought experiment (Balacheff, 1988), where actions are dissociated 
from specific examples. With young children, these actions are based on “the language of the 
everyday (Balacheff, 1988, p. 228)” and not the transformation of formal symbolic expressions. 
Level 3 thinking seems to also reflect the emergence of structure in thought (Harel & Soto, 
2017) in that students were able to present a sequence of arguments without the need to 
manipulate physical, visual, or symbolic representations. Our work extends that reported 
elsewhere in that our focus is on the genesis of these ideas at the start of formal schooling 
(Grades K–1). Identifying similarities in students’ thinking across K–16 grade domains can help 
us better understand how to structure curriculum that connects and builds ideas over time. 

We found students’ ability to develop representation-based parity arguments (rather than 
empirical arguments) to be surprisingly robust. For example, at pre-interview Grade K students 
were unfamiliar with the concepts of pair and even and odd numbers, but by Grade K post-
interview all students were able to define even and odd using a pairs strategy and many students 
routinely used a pairs strategy to reason about the parity of numbers represented in concrete, 
visual, and abstract forms. Moreover, although Grade K students were not asked to build 
representation-based parity arguments at pre-interview (given that they were unfamiliar with the 
concepts “even” and “odd”), by Grade 1 pre-interview no students used an empirical argument to 
justify why the sum of an even and an odd would be odd. Six out of 10 students were able to 
correctly use a structural argument involving a pairs strategy (three students could not build 
either type of argument; one student was not asked this question).  

Although these students were capable of producing structural arguments (Levels 2–3), we do 
not claim that they yet appreciated the power of the generality of their arguments, nor did they 
yet understand the logical proof structure underlying their arguments. In truth, older students 
struggle with this as well (Stylianou et al., 2015). At this early, pre-symbolic point in their 
understanding, students’ thinking was more intuitive than anticipatory or intentional. However, a 
goal of early algebra is to help students build on these intuitive ways of thinking so that their 
understanding can deepen over time. For young children to engage in Level 3 thinking, even in 
informal, non-symbolic ways, is a critical starting point.   

Conclusion 
The Common Core State Standards (NGA Center & CCSSO, 2010) maintains that 

elementary students should be able to “construct viable arguments and critique the reasoning of 
others.” There is a vital need, however, for research-based, curricular pathways by which this 
goal can be met (Bieda et al., 2014), as well as studies that detail how young learners’ 
argumentation progresses as they advance through such pathways (Stylianides, 2007a). The 
study reported here is intended to help address this by characterizing the emergence of students’ 
understanding of viable parity arguments from an early algebra instructional sequence 
Understanding how young leaners develop robust ways of thinking and arguing mathematically 
can not only help avoid situations where students develop “a conception of proof in the 
elementary school that has to be undone or unlearned in high school (p. 4, Stylianides, 2007b),” 
but can also help realize the ambitious learning standards advocated in current reforms. 
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In this paper we explore how college students across different courses appeared to interpret the 
meaning of parentheses or brackets in the context of algebraic syntax. This work was influenced 
by theories of computational vs structural thinking, and also considered the extent to which 
students’ definitions, computational work, and explanations appeared to be consistent with 
specific normative definitions of parentheses. In analyzing student work, several categories of 
students’ conceptions emerged, which may be helpful in diagnosing which conceptions may be 
more productive or problematic as students progress through algebra. For students who appear 
to conceptualize parentheses as a cue to non-normative procedures, several categories of 
procedures were found, which could have implications for instruction. 

Keywords: algebra and algebraic thinking; cognition 

Parentheses, or brackets, play a critical role in symbolic mathematics. However, how 
students think about parentheses in various mathematical contexts is significantly understudied. 
While some studies examine how parentheses may or may not cue the correct order of operations 
during arithmetic tasks in primary school or whether adding extra parentheses helps students to 
better “see” algebraic structure (e.g., Gunnarsson et al., 2016), there appears to be no systematic 
research which explores which kinds of meanings students have for brackets or parentheses, 
particularly in a wider array of content domains which include substantial symbolic algebra. In 
this paper we aim to address this gap. Though extensive data collection with college students in a 
wide range of classes, we explore students’ meanings for parentheses and generate several 
common categories of conceptions which students may hold. 

Literature Review 
Research into student’s use of parentheses in algebra has been limited, and what does exist 

has focused primarily on what students do with parentheses when calculating rather than how 
students conceptualize parentheses. In the context of structure sense, Hoch and Dreyfus (2004) 
found that secondary students tend to use structural approaches to solve algebraic equations more 
when an equation uses more parentheses than when less parentheses are present. In interviews, 
students’ use of parentheses were mixed, where some students approached problems by first 
‘opening’ parentheses, while others preferred maintaining parentheses, finding the symbol 
helpful and saying “with parentheses, it’s easier to see” (p.3-54). Similar findings have been 
reported with middle school students as well (e.g., Linchevski & Livneh, 1999), where some 
students at times operated on parentheses within expressions as if they are not present 
(Gunnarsson et al., 2016), while others operated in markedly different ways when working with 
expressions within parentheses (Banerjee & Subramaniam, 2005). Given that the presence of 
parentheses may change one’s view of a mathematical expression, we think it is worthwhile to 
explore students’ meanings of parentheses. 
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Theoretical Framework 
Tall and Vinner (1981) describe an individual’s understanding of a concept in terms of their 

concept image, or the “total cognitive structure that is associated with the concept, which 
includes all the mental pictures and associated properties and processes” (p. 152). Within this 
structure, they describe one’s personal concept definition as the “form of words that a learner 
uses for [their] own explanation of [their] (evoked) concept image” (p. 152). One’s personal 
concept definition is idiosyncratic to the learner, and is contrasted with the formal concept 
definition, which is “a concept definition which is accepted by the mathematical community at 
large” (p.152). In the examples that follow, when we refer to a student’s definition, we are 
referring to their personal concept definition, although our model is a second order model, as we 
do not have direct access to student’s personal concept images or definitions.  

In the context of this paper, we consider the role that parentheses play in the syntax of 
algebraic expressions and equations in which the symbols are used to indicate an operation 
which is prioritized over other adjacent operations; we call this the grouping role of parentheses. 
This role of parentheses is pervasive throughout symbolic representations across domains, but 
we focus on algebra examples in this paper. We note that this grouping role is distinct from other 
roles which parentheses may play, such as denoting intervals, ordered pairs, sets, etc.  

Students may conceptualize parentheses from either a computational or a structural view, just 
as they may conceptualize algebraic syntax more generally as computational1 or structural 
(Sfard, 1995). In a computational view, students conceptualize parentheses as cuing a particular 
calculation or procedure, which may be normative or non-normative. In a structural view, 
students conceptualize parentheses as demarcating a particular unified sub-expression which can 
be treated as an object in and of itself. For example, a student with a computational view may 
normatively “see” the expression 2(5 + 3) as indicating that one should first add 5 + 3 and then 
multiply 2 by the result. A student with a structural view is able to “see” this also as 2 times 
whatever the result of 5 + 3 might be, without actually performing the addition of 5 + 3 and 
replacing it with the single number 8 first; instead the substring (5 + 3) can be seen as an object 
itself. In an arithmetic example such as this one, the structural view appears less important, but in 
an algebraic expression like 2(𝑥 + 3), the affordances of a structural view suddenly becomes 
more apparent and, at times, necessary, for example, for many cases of u-substitution in upper 
level classes where one must have a structural view of certain substrings as objects.  

Edwards and Ward (2004) distinguished between two sorts of definitions: those that are 
created through experiences with the term (an extracted definition), and those that are expressed 
in an explicit well-defined way (a stipulated definition). When students have a computational 
view of parentheses, this may be stipulated and normative or non-normative (which may have 
been extracted from their experiences with common types of tasks in which parentheses occur, 
rather than taken from stipulated normative definitions). For some students, parentheses may 
only cue the normative set of procedures stipulated by the order of operations, while for others, 
parentheses may cue a particular procedure, regardless of whether that procedure is appropriate 
(e.g., taking whatever is outside the parentheses and multiplying it by each “thing” inside the 
parentheses, even when the structure of the algebraic expression with which they are working is 
not in line with the distributive property). We summarize this in the Figure 1, where we see 
learners’ conceptions varying along a continuum, where conceptions to the right are more 
generalizable and transferable to a wider range of problems than those to the left. We note that an 
individual’s conceptions of parentheses are not fixed and can further vary back and forth along 

                                                 
1 Sfard (1995) refers to ‘operational’ views, but we use the term computational here. 
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this continuum, even within a single problem. 

 
Figure 1: Types of Conceptions of Parentheses  

Methods 
Data for this study includes students’ written responses to open-ended questions and 

transcripts from stimulated recall interviews about similar multiple-choice questions. Open-
ended responses were collected from 124 students at an urban community college in 18 different 
courses, from developmental elementary algebra (similar to Algebra I in high school) to linear 
algebra. Open-ended questions were about what parentheses means to the students (both in and 
out of context), as well as algebra problems where students were asked to simplify expressions 
that included parentheses. Students’ open-ended responses were analyzed using thematic 
analysis (Braun & Clarke, 2006). This analysis was influenced by an initial theoretical stance 
which was particularly attuned to noticing similarities in patterns of students’ responses with 
theory on extracted and stipulated definitions (Edwards & Ward, 2004) and computational and 
structural (Sfard, 1995) conceptions. Analysis of students’ work led to a more nuanced emergent 
coding scheme of students’ responses for definitions of parentheses. We select students’ work to 
illustrate the resulting coding scheme in this work and draw on interview transcripts to further 
expound on these patterns. 

Results 
In this section we present several vignettes to illustrate the different ways in which students 

appeared to be conceptualizing parentheses in the context of algebra expressions and equations. 
We note that categorizations of student work here are second order models: we cannot actually 
know what a student is thinking—we only categorize what they conveyed through their work.  
Different non-normative computational conceptions of parentheses 

It was common for parentheses to cue various non-normative procedures, though they tended 
to fall mostly into one of three categories: “Multiplication”, “do first”, and “ease of reading”.  

“Multiplication” conception of parentheses. The most common response among students 
at all levels when asked what parentheses mean in mathematics was “multiplication”. We note 
that technically parentheses do not indicate multiplication; they simply co-occur often with 
concatenation, which actually indicates multiplication. However, during data collection in both 
interviews and open-ended questions, we found that students rarely recognized this distinction. 
This may be an extracted definition taken from their many experiences with tasks in which 
parentheses and multiplication co-occur, or it may even sometimes be inaccurately stipulated by 
instructors (we have observed instructors in classrooms using phrases like “parentheses mean to 
multiply”). So while not technically mathematically normative, this view can be a very rational 
reaction to existing instructional practices. However, this conception may lead to incorrect 

Extracted computational 
view: Learners conceptualize 
brackets as a cue to a procedure, 
but that procedure is not 
consistent in all contexts with 
the stipulated order of 
operations and other symbolic 
conventions (e.g., to multiply 
regardless of actual operations).  

 

Stipulated normative 
computational view: 
Learners are able to 
conceptualize brackets as 
a cue to follow the 
stipulated order of 
operations (i.e., simplify 
what is inside the 
innermost brackets first).   

Structural view: Learners are 
able to conceptualize brackets as 
demarcating a unified sub-
expression within a larger 
expression or equation, which can 
be thought of as an object in and of 
itself. This may be the reification 
of the process of the stipulated 
order of operations.  
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computational results when the operation next to the parentheses is not multiplication, as well as 
a fundamental misunderstanding of the role that parentheses are intended to play in algebraic 
expressions and equations. Consider, for example, the work from Alpha (see Figure 2) who was 
enrolled in an elementary algebra course (a non-credit course similar in content to Algebra I).  

 

 
Figure 2. Alpha’s Parentheses Definition and Evoked Interpretation in Computation 

 
Alpha’s definition of parentheses (Figure 2, left) shows two meanings. Firstly, they tell us 

that parentheses tell us to multiply; but they also say that parentheses tell us that we have to add 
the numbers inside the parentheses, which we understand to be a kind of “do first” interpretation 
of parentheses (see next section). Alpha further provides an example of how the interpretation of 
parentheses as multiplication can be problematic during computation on the right in Figure 2, 
where they multiply even though addition is the operation between 𝑥 and (2𝑥 + 1).  

“Do first” conception of parentheses. The second meaning Alpha’s definition (Figure 2, 
left) may be referring to is a potentially normative definition of parentheses-- it is not completely 
clear from their wording, but they may be referring to the precedence of parentheses in the order 
of operations. We describe this thinking more in the next section, but focus now on some ways in 
which students applied this definition non-normatively. We begin by considering the work of a 
student whom we will call Gamma, who was enrolled in a course for students training to be 
elementary school teachers (prerequisites for this course include elementary and intermediate 
algebra, but not precalculus). In this excerpt, Gamma is attempting to simplify 3 − 2 ⋅ (8 − 32). 

So, I try in my head, so they break it down, PEMDAS, so parentheses first, so I did like eight 
minus three is five and I know that's going to leave me with five squared. So, I just left that 
as it is and looked over here and seen what has five to the second exponent. And realized, 
you know, okay that's the same because that would be my next step is to solve the 
parentheses…. Because PEMDAS I solved what's in the parentheses first and then looked at 
the exponents and then that's pretty much how I saw it. 

Gamma appears to be thinking of the parentheses as something which cues work inside them to 
be done first, and because exponents come after parentheses, they do 8 − 3 first. We classify this 
as an extracted view, because their notion of “doing the parentheses first” is cuing an incorrect 
extracted definition of the order of operations, in which things inside the parentheses are 
combined together in order to “get rid of” the parentheses before doing the exponent that is 
inside the parentheses itself. Here Gamma appears to be interpreting the parentheses as a cue to a 
particular (incorrect) computational action.  

In other work, Gamma is able to use this conception of parentheses to simplify an algebraic 
expression correctly, although they still use a computational approach. In the next excerpt, they 
were asked about what was being multiplied by 2 in the expression 2 ⋅ (3𝑥 − 5). We note that 
even though the question was intended to prompt an object approach (by thinking of (3𝑥 − 5) as 
the object being multiplied by 2), Gamma still gives a computational explanation focused on 
“solving”, even though that is not what has been asked.  
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When I think of parentheses it's something that has to be done first. In this particular 
problem, I feel like you have to distribute because you have 𝑥 there. So, it's like you can't 
solve 3𝑥 minus five. I don't think you could just like get an answer from that. You have to 
solve what's inside of the parentheses. So, what's in the parentheses is 3𝑥 minus five. So, in 
order for me to solve that I must distribute the two that's outside into that equation. I just 
think of PEMDAS, you have got to do parentheses first, and then exponents, and down the 
line. So, I just look at a question, I know I have to do something with the parentheses first. 

Gamma’s notion of parentheses here appears to be a “do first” conception—they appear to be 
correctly connecting their notion of the meaning of the parentheses to the stipulated order of 
operations. However, it is not completely clear whether this “do first” notion is fully well-
defined and in line with stipulated definitions. Would Gamma distribute in other problems 
inappropriately, for example if the two were an exponent of the parentheses instead of a 
coefficient? We cannot be sure since Gamma was not interviewed about such questions. During 
data collection, we saw many students who seemed to convey a “do first” definition of 
brackets/parentheses, but who performed computational work that violated the order of 
operations in some cases and not in others. This suggests that we may want to be more attentive 
to how students interpret the “do first” conceptualization of parentheses as they move from 
arithmetic expressions (in which what is inside the parentheses can be simplified) to algebra 
(where what is inside the parentheses may not be able to be simplified).  

“Ease of reading” conception of parentheses. Now we consider some examples in which 
students appear to have interpreted parentheses as unnecessary symbols which can be removed; 
sometimes they justify this by explaining that parentheses are just there to make expressions or 
equations “easier to read”. We note that this is related to the “bracket ignoring” procedure 
identified by Gunnarsson, et al. (2016) with middle school students. First we consider work from 
an elementary algebra student whom we call Tau (Figure 3).  

 

 
 

Figure 3. Tau’s Definition of Parentheses and Computational work 
 

Tau appears to conceptualize parentheses as something that makes it “easier for the equation 
to be solved” or “allows the equation to make sense”. It is not entirely clear what they mean in 
this case—for example, in the arithmetic example that they give in Figure 3, their calculations 
appear to be correct. They “remove” the parentheses in that case by simplifying what is inside 
them first. However, this seems not to generalize in the same way to algebra cases. When we 
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look at how they dealt with parentheses in practice when solving standard algebra tasks, we see 
that their first step was often to remove the parentheses before proceeding (see right of Figure 3), 
similarly to erasing the parenthetical symbols. Tau even justify their work by writing “Remove 
the bracket. This helps with easier solution” and “Remove bracket…It is the meaning of 
parentheses.” We suspect that Tau has extracted from their prior mathematical experiences that it 
is desirable to find valid mathematical ways to “get rid of the bracket”, this process involves 
simply removing the bracket, and parentheses are superfluous. 

This may also be related to the “do first” conception of parentheses, as students may feel that 
they must remove the parentheses in order to do any computation with what is inside. Some 
students may remove the parentheses using a valid transformation (e.g., the distributive property, 
or expanding multiplication of two polynomials) and other students may remove the parentheses 
using an invalid transformation, like Tau. This approach was not limited only to elementary 
algebra students. In Figure 4, we see similar work from a Calculus I student, Zeta.  

 

 
Figure 4. Zeta’s Work in which They Remove Parentheses Arbitrarily 

 
Combinations of different extracted and stipulated computational views.  

So far we have seen some examples of different types of non-normative extracted 
conceptions of parentheses, but there were also students who showed a mix of normative and 
non-normative meanings for parentheses. One such example comes from a student, Epsilon, 
enrolled in the second semester of a one-year math course for future elementary school teachers 
(the prerequisites for the first semester of the course were elementary and intermediate algebra, 
but not precalculus). In an interview, Epsilon was asked which part was being subtracted, or 
taken away, in the expression 3𝑥2 − 2(𝑥2 + 1): 

Interviewer:  What do the parentheses mean here in this expression? 
Epsilon:   Multiplication. 
Interviewer:  Do you know what the order of operations is? 
Epsilon:   PEMDAS. 
Interviewer:  How does the order of operations help you to understand what is being 

subtracted in this expression? 
Epsilon:  So first, you have to deal with the parentheses. So, then that means that 

everything with the parentheses is like together in a box.  
Epsilon, like many students, thinks of multiplication first when they are asked what 

parentheses mean. When asked directly about how the order of operations relates to what they 
are doing in the problem, they exhibit the “do first” notion of parentheses (we can’t tell from this 
context whether it is normative or not), pointing out that “first, you have to deal with the 
parentheses”. But they immediately follow that up with a structural grouping interpretation of 
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parentheses, saying “that everything with the parentheses is like together in a box”. It is unclear 
to us how Epsilon is interpreting parentheses to mean multiplication here, but when they cite a 
“do first” conception of parentheses they immediately link it to a grouping conception, where the 
“do first” conception is a justification (“then that means”) for the grouping conception. While we 
cannot be certain, we suspect that Epsilon has reified the order-of-operations process into the 
grouping object, which would explain how their “do first” and grouping conceptions are linked.  

Some students may use the language “parentheses mean multiplication”, but then go on to 
only describe a correct alternative meaning, at least in the context of Algebra I course content; 
this may be a case in which they are incorrectly describing the meaning of the parentheses 
symbol, but are correctly performing computation with parentheses, so while logically incorrect, 
this imprecision of language may be less problematic in this case. For example, consider the next 
excerpt from Epsilon, in which they discuss their meanings of parentheses when asked whether 
√(3𝑥𝑦)2 and (√3𝑥𝑦)

2
 represent the same operations on the same things in the same order: 

[Parentheses] don't really mean like multiplication per say in this instance. So, in the first one 
the parentheses is the expression of 3𝑥𝑦 to the second power. So, it's distributing the- Well, 
in both instance it's distributing the second power, but it's just where it's placed. I'm sorry, I 
don't know if I'm making any sense, but because of where the parentheses are placed it just 
changes the meaning.  
So, here [pointing to first expression] you have to deal with the parentheses first. So, in the 
first equation, you have to distribute the second power to the 3𝑥𝑦 and then take the square 
root. And then in the second equation, you have to take the square root first of 3𝑥𝑦 and then 
square it and those would result in different answers probably. 

In this explanation, Epsilon says that parentheses mean multiplication, but then they say that this 
is not necessarily the correct interpretation in this case. Here instead they treat the parentheses as 
a cue to distribute the exponent. Their work is correct, but it is unclear if this notion of 
parentheses cuing distributing might lead them to distribute the exponent inappropriately in other 
cases (e.g., if instead of 3𝑥𝑦 in the parentheses, there were a multi-term expression). As with 
Gamma, we had no questions on the set of questions on which Epsilon was interviewed which 
would allow us to see if Epsilon might distribute incorrectly in other cases. So while Epsilon’s 
work here appears to be based on stipulated definitions, and on the surface appears to be less 
extracted and less problematic than Alpha’s multiplication conception in terms of how it may 
impact their computational work, we cannot be sure whether it is actually completely grounded 
in standard stipulated definitions or whether their approach here might prove more problematic 
on other questions. Compared to Alpha, Epsilon at least recognizes that parentheses do not 
always “mean” multiplication, and therefore Epsilon may be more receptive to rethinking their 
initial statement that parentheses themselves “mean” multiplication. However, more detailed 
analysis of Epsilon’s thinking is necessary if we are to understand whether it aligns with 
normative meanings for parentheses and is just being expressed in an ill-defined way, or if it 
actually conflicts with normative meanings.  

We note also that Epsilon’s explanations in this excerpt are entirely computational: e.g., they 
describe the process of “distributing” the square to 3𝑥𝑦. This is a common pattern where 
students appear to rely on the notion of distributing rather than thinking of the whole 3𝑥𝑦 as a 
single object being squared. There is not necessarily anything wrong with the way that Epsilon 
has explained this; however, being able to conceptualize (3𝑥𝑦) as an object itself might be 
essential in other contexts, so it might be important to further assess the extent to which Epsilon 
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is able to do this when needed. For example, we note that Epsilon struggles to explain their 
thinking here; it is possible that if they were able to describe this using a structural view (e.g., “in 
the first expression only 3𝑥𝑦 is being squared, but in the second expression √3𝑥𝑦 is being 
squared”), it might be easier for them to provide a justification for their thinking.  
Grouping view of parentheses  

We now consider one more example in which a student appears to be conceptualizing 
parentheses structurally as a grouping mechanism. The following excerpt is a Calculus I student 
Theta’s response after being asked what the result would be of substituting 2𝑦 in for 𝑥 into the 
expression 2𝑥2 − 7𝑥 + 3.  

If you’re putting something in for something else, I always usually keep parentheses around 
it to make sure that I maintain whatever structure the original function had... especially in this 
one [the first term] because 𝑥 is being multiplied, and squared, the parentheses really make a 
difference because if we don’t have them, we could get a different, the wrong answer…. you 
don’t need [the parentheses in −7(2𝑦)] as long as you make sure you multiply the −7 by 2. 

Theta mentions structure explicitly and explains how removing the parentheses gives the 
expression a different syntactic meaning, which in the case of 2(2𝑦)2 will result in a “different 
result” but in the case of 7(2𝑦) will not yield a different result, seemingly because of the order of 
operations (although they do not use the word “order of operations” explicitly). Theta’s 
explanation shows how they appear to have linked their structural view of the parentheses to 
their conception of the order of operations, suggesting that it is a reification of this process. 

Implications and Conclusion 
This paper is an initial exploration of how students may conceptualize brackets and 

parentheses and adds to the literature by providing hypothetical models of what students may 
attribute to parentheses or brackets. We make no recommendations about how students should be 
taught about parentheses, however we think that these students’ responses do suggest that they 
extract many non-normative meanings of parentheses in algebraic syntax and this may impact 
students’ computational work. This suggests that it may be important for instructors and 
curricula writers to think carefully about whether their language or examples may be 
encouraging students to think of parentheses as “meaning multiplication”, as an instruction to 
“do something” (where what should be done and why may be ill-defined or non-normative), or 
as something that is always superfluous. We suspect that simple phrases like “do the parentheses 
first” are being interpreted by students in a number of ways and may need to be articulated more 
clearly to students. It may be helpful to provide a variety of examples where parentheses are and 
are not extraneous to support students in coming to more normative understanding of the role 
that parentheses are intended to play in algebraic expressions and equations. In addition, it may 
be important for future research to explore in more detail how a learner comes to reify the 
normative “do first” view of parentheses into a grouping conception of parentheses, in which 
they are able to “see” the substring inside the parentheses as a unified subexpression. Thus, 
further research which explores the prevalence of these various views among different student 
groups as well as its relationship to computational work could help to improve instruction. 
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Research suggests that students’ difficulties in studying algebraic topics in middle school can be 
remedied at least in part by teaching students to use a relational meaning for the equal sign to 
reason about equations. However, little empirical research has been done to investigate what 
meanings for the equal sign and equation types are common in middle school mathematics. This 
study examines two series of 7th and 8th grade mathematics textbooks to identify what equal sign 
meanings and equation types are being used in middle school mathematics. Three meanings for 
the equal sign were used in all four textbooks, and each equation type was typically associated 
with only one meaning of the equal sign. The results imply that students need to develop three 
different meanings for the equal sign to succeed in middle school mathematics, and that 
recognizing equation types can help indicate which meaning of the equal sign is being used. 

Keywords: Algebra and Algebraic Thinking, Middle School Education  

One of the challenges that students face as they transition from elementary to middle school 
and begin studying topics in algebra is that they must learn to interpret the equal sign differently 
from its typical use in arithmetic. From an early age, children’s predominant meaning for the 
equal sign is operational—they see the equal sign as an indicator that they should “do 
something” (Blanton et al., 2018; Kieran, 1981). Blanton et al. (2018) found that kindergarten 
students typically have this operational meaning for the equal sign even before they have 
received formal mathematics instruction. Furthermore, the kindergarteners in their study 
continued to use the operational meaning even after eight weeks of instruction designed to help 
them develop the relational meaning of the equal sign, namely that the equal sign indicates 
equivalence. Researchers have shown that the operational meaning for the equal sign persists 
through elementary school and is still prevalent among middle school students (Knuth et al., 
2008; Knuth et al., 2005). Because the operational meaning leads to errors in reasoning about 
equations and other middle school topics (Kieran, 1981; Knuth et al., 2005; Matz, 1982), 
students’ success in learning middle school mathematics is dependent upon them developing the 
relational meaning of the equal sign.  

While the literature clearly demonstrates the importance of a relational meaning for the equal 
sign, research has been less clear concerning what constitutes a complete or expert understanding 
of the equal sign. Research on K-12 students’ understanding of the equal sign suggests that 
students need to replace the operational meaning with the relational meaning (Blanton et al., 
2018; Carpenter et al., 2003; Knuth et al., 2008), inadvertently implying that the relational 
meaning of the equal sign is sufficient by itself. In contrast, scholars who have studied or 
discussed advanced understandings of the equal sign do not treat the operational meaning 
pejoratively; rather, the operational and relational meanings are considered to be but two of the 
multiple, legitimate ways to interpret the equal sign (Jones & Pratt, 2011; Prediger, 2010). Seo 
and Ginsburg (2003) go as far as to note that when children read an equation in the form of 
a + b =  using an operational meaning, their interpretation is correct. Little empirical research 
exists regarding which of the multiple meanings of the equal sign are commonly used in middle 
school mathematics, where students begin to study algebraic topics in depth. Also, scholars have 
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yet to examine how students know when to use which meanings. The purpose of this research 
study is to examine the meanings of the equal sign that are used in 7th and 8th grade mathematics 
textbooks to understand which meanings are commonly used and to examine the contexts in 
which they are used for characteristics that indicate which meaning of the equal sign is 
appropriate. 

Background 
Meanings for the Equal Sign 

The research literature suggests that there are three unique meanings for the equal sign: 
operational, relational, and assignment. The operational meaning (Carpenter et al., 2003; Kieran, 
1981; Prediger, 2010) is used to signify that an operation has been performed on one side of the 
equal sign (typically the left) and that the other side contains the result of that operation. For 
example, when the equal sign is given the operational meaning, the equation 2 + 4 = 6 means 
that 4 was added to 2 and that 6 is the result of this addition. The relational meaning (Carpenter 
et al., 2003; Kieran, 1981; Prediger, 2010) indicates a claim that the expressions on either side of 
the equal sign are equivalent. For example, when the equal sign is given the relational meaning, 
the equation 2 + 4 = 6 means that 2 + 4 and 6 are equivalent, i.e., have the same numeric value. 
The assignment meaning (referred to as specification by Prediger, 2010) is used to assign a 
number or algebraic expression as the value or rule for a symbol or function. For example, when 
the equal sign is given the assignment meaning, the equation r = 5 is interpreted as indicating 
that r is assigned the value of 5 in equations or expressions containing r, such as the equation P = 
2πr. Similarly, the equal sign in the equation f(x) = x + 2 is interpretated as f being assigned the 
rule, “add 2 to the input.” Jones and Pratt (2011) have suggested a fourth meaning for the equal 
sign, namely substitution, which they define as indicating that the expression on one side of an 
equation can be replaced by the expression on the other side in other equations that contain the 
first expression. However, we interpret substitution as an equation operator, not a new meaning 
of the equal sign, and believe that both the relational and assignment meanings can indicate that 
substitution is a valid equation operation. 

Research that has studied students’ understanding of the equal sign has largely focused on the 
operational and relational meanings, often with the intent to explore how students can change 
their operational conception of the equal sign to a relational conceptualization (Blanton et al., 
2018; Carpenter et al., 2003; Knuth et al., 2005). While we acknowledge the importance of 
helping students develop a relational meaning, we believe this research focus has caused scholars 
to overlook the crucial role that all three meanings play in secondary school mathematics. In 
particular, research is needed to understand how the three different meanings for the equal sign 
are used in middle school mathematics, where students are first required to regularly switch 
between meanings as they engage in algebraic activity. Equally important is research that 
identifies contextual clues that students can use to decipher which meanings of the equal sign are 
appropriate in different contexts.   
Equation Types 

Given that it is likely that multiple meanings of the equal sign are used in middle school 
mathematics, then it is important to understand the conditions under which each meaning should 
be used. These conditions likely involve the type of equation that is being used. Past researchers 
have sorted algebraic equations based on the quantities for which they are true and to what 
purposes the equations serve. Drawing across the literature, equations can be separated into three 
classes: tautologies, constraint equations, and specifications (Kieran, 1981; Matz, 1982; Prediger, 
2010). Tautologies are equations that are true for large sets of numbers. They include 
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transformations that show algebraic or arithmetic manipulations (e.g., 2(3x – 1) = 6x – 2) and 
identities that illustrate properties of real numbers (e.g., a + b = b + a). Constraint equations are 
equations for which the expressions on each side of the equal sign are not equal for all numbers, 
such as 6x = 4x + 2. Specifications are equations that are used to define the value of a variable or 
the rule for a function, such as x = 3 and f(x) = -x + 7.  

The research on equation types is limited. Most of the research has focused on constraint 
equations, and researchers have found that many students erroneously use an operational 
meaning for the equal sign when first exposed to constraint equations (Knuth et al., 2008; 
Stephens et al., 2013). Students’ understanding of tautologies and specifications have received 
little attention, and no empirical studies have examined which meanings of the equal sign are 
used when making sense of the various equation types. Research is also missing regarding which 
equation types are common in middle school mathematics.  

To address the lack of empirical research on equal sign meanings and equation types in 
middle school mathematics, we conducted an analysis of two 7th and 8th grade mathematics 
textbook series to answer the following research questions:  

1. Which meanings for the equal sign and equation types are used in middle grades 
mathematics textbooks? 

2. Which meanings of the equal sign are used for each equation type in middle grades 
mathematics textbooks? 

Method 
Textbooks 

Two curricula were chosen for this study: Connected Mathematics 3 (CMP3, Lappan et al., 
2014) and Eureka Math (2015). CMP3 is the most recent edition of a middle school mathematics 
curriculum created by mathematics education faculty at Michigan State University and funded by 
NSF. Eureka Math is a K-12 mathematics curriculum developed through collaboration between 
teachers and mathematics experts and is available for free through EngageNY.org. According to 
a recent Rand report (Opfer et al., 2016), both curricula are widely used; of teachers surveyed in 
states that have adopted the Common Core State Standards for Mathematics (CCSSM, NGA & 
CCSSO, 2010), 34% of the teachers reported using CMP3 and 34% reported using Eureka Math. 
Of the curricula surveyed in the report, Eureka Math was judged to be most closely aligned with 
the CCSSM, and CMP3 was judged to be the second most closely aligned. Both curricula take an 
integrated approach to mathematics topics and use a task-based instructional approach.  

To sample the two different curricula, both teacher and student editions of grade 7 and 8 
mathematics were considered. The student editions of these textbooks included only the in-class 
tasks for the instruction, brief summary sections about the mathematics targeted by the tasks, and 
problem sets for homework. In contrast, the teacher editions contained more detailed 
explanations of the mathematics being taught and solutions to the tasks, as well as all of the 
content included in the student edition. In order to explore a wide range of uses of the equal sign, 
we chose to analyze the sections in the grade 7 textbooks that were aligned with the CCSSM 
standards clusters ratios and proportions (7.RP), expressions and equations (7.EE), and 
geometry (7.G), and the sections in the grade 8 textbooks that were aligned with the standards 
clusters expressions and equations (8.EE), functions (8.F), and geometry (8.G). Homework 
problems were not considered in the analysis, as we anticipated that the types of uses of the equal 
sign that would appear in the homework problem sets would likely be well represented in the 
instructional parts of each topic section. 
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Analysis 
We began our analysis by creating descriptions for a list of equation types and subtypes that 

we encountered in the literature. We then individually coded a few sections from both curricula, 
compared our coding, identified and resolved differences, and updated our codes and 
descriptions, sometimes adding new codes to our list or combining multiple codes into a single 
code. Each time we coded, we would first go through the materials and identify all the equations, 
and then go back and code each equation for meaning of the equal sign and equation type. We 
repeated this process of coding a small set of new material and comparing our codes multiple 
times, each time returning to previously coded data and updating our coding to reflect the most 
recent changes in our codes and descriptions. After 4 iterations, we reached a level of 93% 
interrater reliability with the Eureka curriculum. It took us 5 iterations to reach an 88% interrater 
reliability for the CMP3 curriculum. After achieving these high levels of interrater reliability, we 
continued to code separately and compare coding, analyzing approximately 90% of the data this 
way. The remaining 10% of the data was coded by the second author only. 

We depended on our extensive experience in mathematics and our experiences using 
textbooks as students and teachers to make decisions about which meanings for the equal sign 
were being used. Some equations could be read with multiple meanings, but we coded only the 
meaning that best fit the context. For example, the equation 2(3x + 2) = 6x + 4 that appeared in a 
problem solution (Eureka Math 8, Module 4, p. 45) could potentially be interpreted from both an 
operational and relational meaning. However, because the purpose of the equation was to find 
the result of distributing the 2 across the 3x and 2, and not to justify that 2(3x + 2) was equivalent 
to 6x + 4, we coded this equation as operational. We found that each equation from the data 
could be coded as a single equation type and involving a single meaning of the equal sign, and 
that this coding maintained the integrity of the data.  

After coding all of the data, we looked across our coded data for patterns between meanings 
for the equal sign and equation types. We also looked for variations in the equations coded for 
each equation type to create even clearer, more robust descriptions. We present our results next. 

Results 
In our analysis of equal sign meanings, we coded 11,149 equations. Overall, the relational, 

operational, and assignments meanings were used in 79.3%, 14.0%, and 6.7% of the equations, 
respectively. The frequencies for the three meanings of the equal sign separated by curriculum, 
year, and edition are reported in Table 1. The most common meaning for the equal sign was the 
relational meaning, which was used for over 80% of the equations in CMP3 7 and 8 and in 
Eureka Math 8. The only textbook data for which the relational meaning was not the most 
common was the Eureka Math 7 Student Edition; because of the heavy use of specification 
equations in the geometry unit, the assignment meaning was the most common meaning for the 
equal sign in the data from this textbook. The second most used meaning varied across 
curriculum, year, and edition. Teacher editions tended to use the operational meaning more than 
student editions. This was largely due to task solutions being included in teacher editions but not 
student editions. While there were large variations in the frequencies for the three meanings 
across textbooks, all three meanings appeared in each textbook. While we looked for additional 
meanings for the equal sign beside the three meanings described in the literature, no other 
meanings for the equal sign were encountered in the data.  

Although we found all three meanings for the equal sign in every textbook, we did not find 
an explicit discussion in either curriculum concerning the multiple meanings for the equal sign. 
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Rather, changes in the meaning of the equal sign across problems, tasks, lessons, and units were 
not explicitly acknowledged nor identified as being a potential source of difficulty for students. 

 
Table 1: Frequencies of Equal Sign Meanings 

Meaning of the 
Equal Sign 

Eureka 
Math 7 

Combined 

Eureka 
Math 7 
Teacher 

Eureka 
Math 7 
Student 

CMP3-7 
Combined 

CMP3-7 
Teacher 

CMP3-7 
Student 

Relational 
Operational 
Assignment 

65.7% 
26.8% 
7.5% 

68.2% 
28.9% 
2.9% 

40.3% 
5.2% 
54.5% 

83.2% 
8.2% 
8.6% 

81.1% 
9.6% 
9.3% 

92.7% 
2.0% 
5.3% 

       
Meaning of the 

Equal Sign 
Eureka 
Math 8 

Combined 

Eureka 
Math 8 
Teacher 

Eureka 
Math 8 
Student 

CMP3-8 
Combined 
 

CMP3-8 
Teacher 

CMP3-8 
Student 

Relational 
Operational 
Assignment 

83.8% 
11.2% 
5.0% 

83.6% 
12.3% 
4.1% 

85.3% 
2.5% 
12.2% 

82.5% 
8.4% 
9.1% 

80.6% 
9.1% 
10.3% 

90.5% 
5.6% 
3.9% 

 
In our analysis of the relationship between meanings for the equal sign and equation types, 

we found clear patterns in our data. See Table 2 for the equation types we found in the data and 
their associated meanings for the equal sign. Except for the equation type transformation, each 
equation type was exclusively associated with a single meaning of the equal sign. Recall that 
transformations are equations that show a numeric or algebraic manipulation has been 
performed. Transformations were used two ways in the textbooks: to record a series of 
operations and their results, and to justify the equivalence of two expressions. These two 
purposes are associated with the operational and relational meanings, respectively. While the 
transformation equations themselves did not provide cues as to which meaning of the equal sign 
was to be used, the contexts in which the transformation equations were used did; in particular, 
the textbook authors used words like “because” or “since” to mark transformation equations that 
were meant to be read with the relational meaning of the equal sign and serve as evidence in 
support of an argument. 

Our analysis of equations led to the creation of subclasses of equations that seem to be 
missing from the literature. An important distinction made during our analysis was to separate 
constraint equations into three subclasses: constraint equations with parameters (CEP), used to 
describe the general form of a family of functions or relations (e.g., y = kx, Eureka Math 7, 
Module 1, p. 81); constraint equations with variables (CEV), used to represent functions or 
relations between covarying quantities (e.g., 2x + 3y = 9, Eureka Math 8, Module 4, p. 308); and 
constraint equations with an unknown (CEU), used to find or test solutions for an unknown value 
(e.g., x + 5 + 7x + 5 = 98, Eureka Math 7, Module 3, p. 135). The distinction between constraint 
equation subtypes is helpful not only because each subtype serves different purposes, but also 
because subtypes were frequently transformed into other subtypes during mathematical activity. 
For example, we noted that the authors often converted CEPs to CEVs by replacing parameters 
with numeric values, converted CEVs into CEUs by substituting in a value for one of the 
covarying quantities, and converted CEUs into numeric identities and non-identities (i.e., 
numeric equations that are either correct or incorrect, respectively) by substituting values for the 
unknowns to test if those values were solutions. For students to follow the ongoing mathematical 
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activity, they must perceive that the change from one equation subtype to the another retains 
some of the key characteristics of the original equation, and thus preserves some form of 
equivalence between the two equations. 

 
Table 2: Equation Types Arranged According to Associated Meaning of the Equal Sign 
Meaning of 
Equal Sign 

Equation Types Purpose 

Operational  Transformation 
Equations 

to perform an operation and record the result 

Assignment  Specification 
Equations 

to assign a value or expression to a variable with 
intent to substitute 

  Restriction 
Specification 
Equations 

to restrict the values that can be assigned to a 
variable 

Relational  Constraint Equations 
with Parameters 

to provide a template for a family of functions or 
relations 

  Constraint Equations 
with Variables 

to specify the relationship between two covarying 
quantities so that specific, paired values for the 
two quantities can be found 

  Constraint Equations 
with One Unknown 

to specify constraints that determine which values 
an unknown can have  

  Formal Identity to express a general mathematical property or 
principle 

  Contextual Identity to specify the relationship between quantities in a 
specific context 

  Numeric Identity to justify that a result is correct 
  Numeric Non-

identity 
to justify that a number was in fact not a solution 

  Transformation 
Equations 

to justify the equivalence of two expressions 

  Unit Identity to specify the relationship between two units  
  Result Equations to declare a resulting value or solution that has 

been found by completing a computation or 
measurement 

 
Another subclass of equations encountered in our analysis was the result equation. A result 

equation has the form variable = numeric value, with the purpose of presenting the result of 
computation or measurement performed somewhere else in the lesson. For example, “p = 90” 
was used to report the result of having added up the lengths of the sides of a rectangle to find the 
perimeter, and “𝐴𝐵 = 4” was used to report the result of having counted the squares on a grid to 
measure the length of 𝐴𝐵. Because result equations report the result of a computation or 
measurement, they involve a relational meaning rather than an assignment meaning for the equal 
sign. Thus, result equations differ from specification equations in that the value of the variable in 
a result equation is derived from mathematical activity, while the value of the variable in a 
specification equation is an assigned value that is to be used for substitution later in the problem.     
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Discussion 
Our study confirms that the three meanings for the equal sign documented in the literature 

appear in middle school mathematics curricula. This result is important because it suggests that 
for students to be successful in middle school mathematics, they must develop fluency with 
multiple meanings of the equal sign. Rather than helping students replace their operational 
meaning for the equal sign with a relational meaning, teachers instead need to help students 
develop an understanding of all three meanings and the contexts in which they should be used. 
Based on the curricula we analyzed, an explicit discussion of the different meanings of the equal 
sign may largely be missing from middle school mathematics textbooks. By explicitly teaching 
the three meanings of the equal sign and modeling expert reasoning with the equal sign, teachers 
can help students recognize crucial ways of reasoning in middle school mathematics.   

We anticipate that some researchers might object to legitimizing the use of the operational 
meaning, since a reliance solely on the operational meaning has been linked with errors in 
solving equations of the form a + b = __ + d (Carpenter et al., 2003) and algebraic constraint 
equations (Knuth et al., 2006). After all, any equation that is interpreted with an operational 
meaning can be meaningfully reinterpreted with a relational meaning. However, we noticed that 
while reading equations in our study that we did in fact read some of them using only an 
operational meaning, and while we could reinterpret those equations using a relational meaning, 
it required extra cognitive work. We anticipate that the use of the operational meaning in algebra 
not only makes clearer the purpose of some equations, but also allows readers to reduce 
cognitive load as they construct meanings for those equations. For example, if someone writes 
2(3x + 2) = 6x + 4 to show that she performed the distributive property, reading the equation 
operationally to identify which operation has been formed and whether it was performed 
correctly matches the intent of the author. To also require the reader to add a relational meaning, 
interpreting the equal sign to indicate that “2(3x + 2) and 6x + 4 will yield the same value for all 
values of x,” requires extra cognitive work. For experienced readers, identifying the operation 
that was performed and checking that it was performed correctly is sufficient, because this 
correctness implies a relational meaning. Such an implications does not mean that the reader 
must stop to construct the relational meaning; rather, the reader knows that a relational meaning 
could be constructed because a legitimate operation was performed correctly. This allows the 
reader to interpret the equation meaningfully while engaging in less cognitive work.  

In addition to explicit instruction on the three meanings of the equal sign, we also think that 
students can benefit from the explicit teaching of equation types. An important result of the study 
is that equation types are largely associated with a single meaning of the equal sign. This close 
association between meanings and equation types suggests that recognizing equation types can 
help students determine when a particular meaning for the equal sign should be used. However, 
students will likely have to learn to attend to additional cues from the contexts in which 
equations are used, particularly when reasoning about transformation equations, because 
transformation equations can be read using either an operational or relational meaning for the 
equal sign. 

Because all three meanings for the equal sign are present in middle school mathematics, 
research on students’ understanding of the equal sign may benefit from adopting a new 
perspective. Currently, students’ difficulties with the equal sign are often attributed to the need 
for students to replace their arithmetic, operational meaning of the equal sign with an algebraic, 
relational meaning (Carpenter et al., 2003; Kieran, 1981; Knuth et al., 2008). However, a more 
accurate formulation of the problem may be that students’ difficulties are caused by their need to 
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acquire new meanings for the equal sign and relate those meanings to their existing operational 
understanding. This reformulation of the problem suggests new directions for research, such as 
how students learn to reason with the assignment meaning or extend their operational meaning 
from numeric to algebraic equations. Research efforts that focus on understanding how students 
develop multiple meanings for the equal sign and coordinate those meanings when reasoning 
with equations is essential if the field is to make progress in helping students develop a rich, 
flexible understanding of the equal sign. 
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This research reports on the teacher language and gesture that contributed to shifts in thinking 
about the equal sign and equations observed in twenty kindergarteners who took part in an early 
algebra intervention. Our analysis revealed ways in which the teacher used language and 
gesture to support students in moving from describing and working with the equal sign 
operationally (i.e., as a signal to compute) to describing the symbol as indicating the 
equivalence of two amounts and successfully working with equations of various forms. We detail 
four kinds of language and two kinds of gesture specifically related to mathematical equivalence 
that we believe contributed to students’ growth. 

Keywords: early algebraic thinking; mathematical content early years (Grades K-2); teaching 
and classroom practice 

Understanding the equivalence relationship denoted by the equal sign is foundational to 
algebraic thinking (e.g., Baroody & Ginsburg, 1983; Carpenter et al., 2003; Kieran, 1981; 
NCTM, 2000; National Governors Association Center for Best Practices & Council of Chief 
State School Officers [NGA & CCSSO], 2010). Unfortunately, many students struggle to 
understand the equal sign as a relational symbol indicating the “sameness” or interchangeability 
of the two sides of an equation. Such students often hold instead an operational view of the equal 
sign as a stimulus to compute. This operational view manifests itself in students’ struggles to 
make sense of equations in forms other than a + b = c. This view is problematic, as students with 
an operational view of the equal sign experience more difficulty solving equations when they 
reach middle school than those with a relational view (Knuth et al., 2006). 

In Sung et al. (2021), we reported shifts in equal sign understanding observed in 20 
kindergarten students who participated in an early algebra intervention focused in part on 
developing students’ understanding of equivalence. For example, we found that students grew in 
their ability to provide a relational definition of the equal sign (from one student prior to the 
intervention to nine students post-intervention). We also observed growth in the kinds of 
equations that students accepted as valid. For example, prior to the intervention, only nine 
students accepted 5 = 2 + 3 as a valid equation, only three accepted 2 = 2, and only six accepted 
4 + 2 = 3 + 3. At the conclusion of the intervention, these numbers grew to 20, 17, and 13, 
respectively. For more detail about the measures used and results from the study of student 
growth in understanding, see Sung et al. (2021). 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

321



Future studies will be needed to tease apart the influence of the particular tasks with which 
students were asked to engage and other aspects of their classroom experiences on their growth 
in understanding. In this paper, we focus on features of the teacher’s practice–in particular, her 
use of language and gesture around mathematical equivalence–that we believe may have 
contributed to the shifts we observed in students’ understanding of the equal sign. We first 
review literature on teaching practices—particularly, concerning language and gesture—that 
have been shown to support students’ learning about mathematical equivalence and that 
informed our analysis of classroom observations. We next describe our research methods 
including the intervention in which students participated. Finally, we describe the teacher 
language and gesture observed in the intervention classroom that we believe contributed to 
students’ growth. 

Teacher Moves that Support Student Understanding of Mathematical Equivalence 
While the selection of appropriate tasks and tools is critical to developing students’ 

mathematical understandings and has been the focus of much of our prior work (e.g., Stephens et 
al., 2013; Stephens et al., 2020), the ways in which teachers implement instruction is equally 
critical. For example, teachers should establish a classroom culture in which students’ strategies 
(rather than merely correct answers) are valued (e.g., Carpenter et al., 2015; Hiebert et al., 1997), 
engage students in meaningful classroom discussion (e.g., Ghousseini, 2015), and ensure that 
every student is a valued and contributing member of the classroom community (e.g., Skinner et 
al., 2019). There are many possible foci when observing the practice of a mathematics teacher. 
We focus here on practices that might be particularly significant in developing students’ 
understandings of mathematical equivalence. Specifically, we analyze classroom data using 
language and gesture as our conceptual frames, investigating how teachers’ precise use of 
language and gesture can support students’ understanding of equivalence. 
Language 

The quantity and quality of the mathematics language to which students are exposed during 
instruction has implications for their mathematics learning as early as preschool (Klibanoff et al., 
2006). The Common Core’s Standards for Mathematical Practice (NGA & CCSSO, 2010) state 
that mathematically proficient students “use clear definitions in discussion with others and in 
their own reasoning. They state the meaning of the symbols they choose, including using the 
equal sign consistently and appropriately.” Also important are the ways in which this symbol is 
used and described by teachers. 

Hill et al. (2008) identified teachers’ use of language as a critical factor in the quality of 
mathematics instruction. They focused in particular on “the density of accurate mathematical 
language in instruction, the use of language to clearly convey mathematical ideas, [and] any 
explicit discussion of the use of mathematical language” (Hill et al., 2008, p. 437). Included in 
this focus on mathematical language in Hill et al.’s coding of classroom instruction is the use of 
“general language including analogies, metaphors, and stories used to convey mathematical 
concepts” (p. 510) and teachers’ explicit attention to defining terms, showing how to use them, 
and pointing out specific labels or names. 
Gesture 

It has been shown across multiple disciplines and age groups that students learn better when 
spoken instruction is accompanied by gesture (Goldin-Meadow & Singer, 2003; Macedonia et 
al., 2011; Ping & Goldin-Meadow, 2008; Singer & Goldin-Meadow, 2005; Valenzeno et al., 
2003). Alibali and Nathan (2007) identified three broad categories of gesture that they found 
supported sixth-grade students’ learning about modeling with algebraic equations. Pointing 
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gestures were defined as gestures used to indicate objects, locations, inscriptions, or students, 
most often produced with fingers or hands. Representational gestures were those involving a 
handshape or motion of the hand or arm representing an object, action, concept or relation. 
Finally, writing gestures were defined as writing that the teacher produced while speaking. For 
example, a writing gesture might occur when a teacher underlines a mathematical inscription on 
the board while describing it with speech. Alibali and Nathan describe gestures as “essential to 
teachers’ ability to conduct their practice” (p. 362). 

Congdon et al. (2017) argue for the importance of students experiencing language and 
gesture at the same time when learning mathematical concepts. The third-grade students in their 
study were more successful learning to solve mathematical equivalence problems such as 7 + 8 + 
5 = ___ + 5 when they experienced lessons involving simultaneous as opposed to sequential 
language and gesture. Congdon et al. (2017) argue that “gesture capitalizes on its synchrony with 
speech to promote learning that lasts and can be generalized” (p. 65). Wakefield et al. (2018) 
argue that the benefits of gesture go beyond directing attention to include its ability to add 
content to speech. In the case of algebraic equations, this can include using gestures to foster 
students’ ability to see underlying structure in equations (Goldin-Meadow et al., 2009). 

While acknowledging that the use of particular tasks and tools coupled with “good teaching” 
assisted students in making the shifts in equal sign understanding we observed in Sung et al. 
(2021), here we specifically investigate the teacher’s use of language and gesture related to 
mathematical equivalence to consider how these practices may have contributed to the growth 
we observed. Our research question is: How does the teacher use language and gesture to 
emphasize the relational meaning of the equal sign and encourage acceptance of various 
equation forms? 

Method 
Participants 

This study included two classrooms of kindergarten students in the Northeastern U.S. (n = 
45) who took part in an early algebra intervention. 
The Intervention 

The early algebra intervention consisted of 18 lessons of approximately 30 minutes each. 
This intervention built on a previously implemented early algebra intervention that was found to 
be effective for developing students’ algebraic thinking in Grades 3–5 (Blanton et al., 2019). Of 
the eighteen lessons, seven focused specifically on developing students’ understandings of 
mathematical equivalence and fluency with equations (Lessons 7, 8, 9, 10, 11, 13, and 14; see 
Table 1). These lessons engaged students in tasks that have been found to be supportive of 
developing a relational view of the equal sign (e.g., true/false and missing value equations). 
Many of these lessons also included activities with balance scales and Unifix® cubes, which 
provide critical links between concrete and abstract representations of equations and have been 
found to mediate students’ relational understandings of the equal sign (e.g., Alibali, 1999; Araya 
et al., 2010; Fyfe et al., 2015; Linchevski & Herscovics, 1996; Stephens et al., 2020).  

We began this series of seven lessons by having students compare quantities of objects on a 
pan balance to develop the meaning of balance, introducing the equal sign, and modeling the 
state of the concrete scales with equations of the form a = a (Lesson 7). Number balances were 
introduced to students in Lesson 8 and were used to represent equations with no operations (for 
example, 4 = 4), then equations with operations only to the right of the equal sign (for example, 7 
= 3 + 4). These activities were designed to encourage students to work with equations in a 
variety of forms. In subsequent lessons, students explored decompositions of numbers and ways 
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to represent these with equations (Lesson 9 and 10; as in Blanton et al., 2018) as well as true-
false and missing value equations of the forms a = a and c = a + b (Lessons 11, 13, and 14). See 
Table 1 for a summary of the seven lessons. 

 
Table 1: Summary of Seven Lessons Focused on Mathematical Equivalence 

7. Is it Balanced? (Part 1) 
• Use a pan balance to explore equivalence and inequality 
• Write inequality statements of the form a < b and equations of the form a = a to represent 

the relationship shown on a pan balance 
• Generalize based on experiences with the pan balance (e.g., “To balance the scale, you 

have to have the same number of cubes on both sides.”) 

8. Is it Balanced? (Part 2) 
• Use a number balance to explore equivalence 
• Write equations of the form a = a and c = a + b to represent the relationship shown on a 

number balance 

9. Decomposing Numbers 
• Decompose a set of cubes into two groups in multiple ways and represent with pictures 

(e.g., show 8 as two groups of 4; 5 and 3; 6 and 2; 7 and 1; 8 and 0)  

10. Modeling Decomposition with Equations 
• Represent the decompositions from Lesson 9 with equations of the form c = a + b (e.g., 

express “8 is the same as 3 and 5” as “8 = 3 + 5”) 

11. Is this True? 
• Evaluate equations of the form a = a and c = a + b as true or false  

13. What’s the Missing Number? 
• Solve missing value equations of the forms a + b = c, a = a, and c = a + b  

14. Adding Zero 
• Write an equation to represent a situation exemplifying the Additive Identity 
• Identify as true or false and find the missing value in equations exemplifying the Additive 

Identity (e.g., 2 = 2 + 0, 3 + __ = 3) 
• Express the Additive Identity in words and with a variable equation 

 
Data Collection and Analysis 

Classroom video data were collected during all lessons. We focused our analysis on one of 
the two classrooms and within this classroom on the seven lessons that addressed mathematical 
equivalence. These seven lessons were transcribed. Three team members individually watched 
one lesson per week while highlighting and annotating the transcript with anything they felt was 
worthy of further discussion. Weekly meetings initially involved the sharing of different 
perspectives as we worked toward the goal of more specific questions to guide our viewings of 
the classroom video and eventually a stable coding scheme. We ultimately settled on a coding 
scheme that focused on the teacher’s use of language around equations and the meaning of the 
equal sign during whole-group discussion. Repeated viewings led us to notice the use of gesture 
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around two important aspects of equations—the idea of balance, and the notion of the sides of an 
equation—that were also integrated into our initial coding scheme.  

Once an initial coding scheme was in place, three team members individually coded one 
classroom video and then compared results, discussed challenges, and refined the scheme for 
content and clarity. The project team continued this process with subsequent lesson videos, using 
an approach consistent with Syed and Nelson’s (2015) recommendations for establishing 
reliability in qualitative research in ways that emphasize rigorous iterative and collaborative 
coding scheme development and group consensus. The final coding scheme, describing the 
language and gesture used by the teacher to refer to features of equations or the meaning of the 
equal sign during whole-class discussion, is shown in Figure 1.  

 

Language Codes 

ISA (“Is the same as”): Teacher verbally links “=” with “is the same as.” Often happens 
when writing or speaking an equation and replacing “=” with “is the same as” or “is the same 
amount as” or “is the same number as” (e.g., “5 is the same as 2 + 3” while writing 5 = 2 + 3).  
DEF (Definition): Teacher explicitly states or uses the definition of the equal sign, often 
stating that the equal sign means the two sides of the equation are the same number or the 
same amount (e.g., “This equation is true because the equal sign means the two sides are the 
same amount”; “We can use an equal sign because the amounts are the same”; “We can’t use 
the equal sign because we don’t have the same amount on both sides”).  
BAL (Balance): Teacher speaks of equations as being “balanced” or not balanced or links the 
idea of a balanced (or not balanced) scale to an equation (e.g., “This equation is true because 
the equation is balanced”; “What number will balance this equation?”).  
FORM (Equation form): Teacher explicitly addresses the form of an equation (e.g., “Is it ok 
to write equations like this?”; “This equation is not backwards”; “Equations don’t need a plus 
sign”).  

Gesture codes 

GBAL (Balance gesture): Teacher uses hands or arms to make a balance gesture when 
discussing the equal sign or a particular equation (e.g., holding arms out and saying “it 
balances” when discussing why an equation is true). Often gets coded along with BAL.  
GSIDES (Equation sides gesture): Teacher emphasizes the sides of equations by pointing to 
the sides, waving her hand over the sides, or writing “V” underneath the side(s) to indicate 
grouping while talking about “sides.” Can apply even when only two numbers/expressions are 
written and not (yet) the equal sign. Can also apply if “sides” are mentioned while the teacher 
is writing one or more equation sides on the board.  

Figure 1: Teacher Language and Gesture Concerning Mathematical Equivalence 

Results 
Table 2 shows the frequency of the teacher’s use of language and gesture related to 

mathematical equivalence across the seven lessons focused in this area. In what follows, we 
discuss each of the lessons and provide an overview of the language and gesture we observed in 
that lesson. We also provide examples of each language and gesture code. 
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Table 2: Frequency of the Teacher’s Use of Language and Gesture Related to 
Mathematical Equivalence by Lesson 

Lessons 7 8 9 10 11 13 14 Total 

Language Codes 

ISA (“Is the same as”) 0 15 0 11 2 0 0 28 

DEF (Definition) 1 6 0 4 4 2 0 17 

BAL (Balance) 0 1 0 0 6 8 11 26 

FORM (Equation form) 0 1 0 3 2 0 0 6 

Gesture Codes 

GBAL (Balance gesture) 0 0 0 2 4 4 1 11 

GSIDES (Equation sides gesture) 0 13 0 9 6 3 7 38 

 
Recall that in Lesson 7, students chose among the symbols <, >, and = to describe 

relationships shown on a balance scale. It was in this context that the teacher first stated, “The 
equal sign means [the two numbers are] the same” (DEF). In Lesson 8, as students spent more 
time writing equations to represent relationships shown on balance scales, the use of the equal 
sign increased, as did language around its meaning. In fact, the number of times the teacher 
explicitly stated or used the definition of the equal sign (DEF), replaced the “=” with “is the 
same as” (ISA), and explicitly gestured to the sides of an equation (GSIDES) were greatest in 
this lesson. For example, as she wrote “11 + 3 = 14” on the board, the teacher said, “11 plus 3 is 
the same as 14.” Another time, when the teacher pointed to each side of the equation 3 = 3 on the 
board, she said, “I have 3 on this side [pointing to left “3”], I have 3 on that side [pointing to 
right “3”].” Lesson 8 also provided the teacher an opportunity to address with students the 
various forms an equation can take (FORM). At the conclusion of the lesson, she stated: 

Check out all the different equations we wrote today. We wrote… 3 + 1 = 1 + 3, with two 
digits on both sides [pointing to the equation as a whole]. We wrote 7 = 7, one digit on both 
sides [pointing to the equation as a whole]. We wrote 7 = 5 + 2, one digit on one side 
[pointing to the left side of the equation], two digits on the other [pointing to the right side of 
the equation] .... We can write equations in all sorts of different ways. All sorts of forms.  
In Lesson 9, students used Unifix® cubes to represent different ways to decompose the 

number 8 but did not work with equations or the equal sign. Lesson 10 started with the teacher 
asking students for examples of equations. Multiple students offered examples in the form a + b 
= c. In an effort to emphasize the meaning of the equal sign and eventually encourage students to 
rely on this meaning to propose other equation forms, the teacher returned to the “is the same as” 
language used frequently in Lesson 8 to replace “=” as well as gesture to emphasize the distinct 
sides of equations written on the board. This use of “is the same as” language and gesturing to 
sides of equations again often happened together. At one point, the teacher discussed the student-
proposed equation 5 + 5 = 10 written on the board as follows:   
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So, let’s check this out. 5 plus 5 is the same as 10 [pointing to each element of equation while 
reading and replacing “=” with “is the same as”] because I have 10 on this side [using “^” 
notation and writing “10” above “5 + 5” on left side] and I have 10 on this side [pointing to 
“10” on right side].  
The teacher later proposed the equation 5 = 4 + 1 for discussion. A student expressed some 

discomfort with this equation, saying she would rather it look more like the previously discussed 
5 + 5 = 10. The teacher responded by addressing the class:  

I think it [pointing to 5 = 4 + 1 on the board] fits all the rules of the equation. Let’s check it 
out. It has an equal sign, right? So, that is good [makes a thumbs up gesture]. We have five 
on this side [pointing to “5” on the right side], right? Do we have five on this side [pointing 
to “4 + 1” on the right side and drawing “v” shape and “5” below “4 + 1”]? 
The teacher explicitly discussed the forms an equation can take, with the goal of expanding 

the range of equations students would accept as valid by emphasizing the meaning of the equal 
sign. 

Lessons 11, 13, and 14 engaged students in evaluating equations as true or false and solving 
equations. Throughout these lessons, the teacher referred to equations as “balanced” or not 
balanced. Sometimes she linked the idea of a balanced (or not balanced) scale to an equation 
(BAL). She also used representational gestures (Alibali & Nathan, 2007) to represent the idea of 
balance (GBAL). For example, in Lesson 11 the teacher referred to the equation 3 = 1 + 2 as 
balanced while simultaneously holding her hands out and gesturing like a balance.  

The focus of each lesson seemed to influence the type of language or gesture that was 
implemented. For example, early lessons focused on introducing the meaning of the equal sign 
included frequent use of “is the same as” (ISA) and explicit definitions (DEF). As the focus of 
the lessons shifted towards using these concepts to evaluate and solve equations, we saw an 
increase in the teacher’s discussion of equations as “balanced” (BAL) and her use of a balance 
gesture when discussing equations (GBAL). Across the seven lessons that addressed 
mathematical equivalence, we observed 26 instances of the BAL code, 17 instances of the DEF 
code, 6 instances of the FORM code, 28 instances of the ISA code, 11 instances of the GBAL 
code and 38 instances of the GSIDES code (see Table 2).  

Discussion 
Our teacher-researcher used language and gesture to focus students’ attention on the meaning 

of the equal sign and, relatedly, to encourage them to expand the range of equation forms they 
would accept. As we reflect on our findings, three points come to the fore. 

First, when we consider the teacher’s use of language related to the equal sign, we find that 
this language is varied and serves varied purposes. Early in the series of lessons (in particular, 
Lesson 8, when students were writing equations to represent balanced scales), the teacher 
frequently defined the equal sign (DEF) and reiterated its meaning by replacing “=” with “is the 
same as” (ISA) in speech. This very precise use of language reflected the teacher’s explicit 
attention to pointing out critical meanings for students and clearly conveying mathematical ideas 
(Hill et al., 2008). This “is the same as” language resurfaced in Lesson 10, when students were 
again writing equations, this time to model decompositions, and the teacher spoke these 
equations aloud. In later lessons (in particular, Lessons 11, 13, and 14), when students were 
evaluating equations as true or false and solving missing value equations, the teacher spoke of 
equations as being “balanced” (BAL) to help students develop a relational view of equivalence. 
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This use of “balance” reflects Hill et al.’s (2008) attention to the use of analogies and metaphors 
to help students construct mathematical meaning. Finally, while it occurred less frequently than 
the other language codes, the teacher at times explicitly referred to the forms of equations 
(FORM), highlighting that those equations do not have to follow the familiar a + b = c form. 

Second, we found two main gestures used by the teacher that promoted students’ 
understanding of mathematical equivalence. The first was a representational gesture (Alibali & 
Nathan, 2007) in which the teacher extended her hands or her entire arms to mimic a balancing 
scale (GBAL). This occurred most frequently in lessons 11 and 13, when students were 
evaluating or solving equations. The teacher’s balance gestures served to remind students of the 
link between a balancing scale and a balancing equation. The second gesture we observed very 
often was a pointing gesture (Alibali & Nathan, 2007) indicating the sides of an equation 
(GSIDES). Indeed, this was the most prevalent language or gesture code, occurring 38 times 
across the seven lessons. It might be assumed that it is obvious what the “sides” of an equation 
are. However, Rittle-Johnson and Alibali (1999) found that fewer than one third of the fourth- 
and fifth-grade students in their study of procedural and conceptual knowledge correctly 
identified the “sides” of a given equation, suggesting that gestural emphasis is in fact needed. It 
may be that emphasizing “sides” of equations helps students see the equal sign as the “center” or 
balance point of the equation.  

Third, we found a particular language-gesture combination—ISA + GSIDES—occurred 
rather frequently in Lessons 8 and 10. Recall that these were lessons in which students wrote 
equations to represent balanced scales (Lesson 8) or decompositions of numbers (Lesson 10). 
This combination occurred when the teacher “talked through” an equation by pointing to and 
speaking of the equation’s sides while replacing “=” with “is the same as.” This simultaneous use 
of speech and gesture supports Congdon et al.’s (2017) assertion regarding the power of 
synchronizing these two modalities in instruction. The teacher used this language-gesture 
combination when discussing equations of the form a + b = c, a = a, and c = a + b. This 
combination of language and gesture explicitly emphasized the relational meaning of the equal 
sign and the fact that, because the equal sign indicates sameness, multiple equation forms are 
possible. 

Conclusion 
Early algebra is crucial to bridging students’ informal intuitions about structure and 

relationships to more formal ways of reasoning and representing mathematical ideas. Our 
findings shed light on teacher language and gestures that may support students in developing a 
relational understanding of the equal sign, a crucial aspect of algebraic thinking. Our work also 
strengthens the argument that the synchronous use of speech and gesture can promote learning. 
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DEVELOPING MEANINGS FOR GRAPHS FROM NUMBER LINES: THE CASE OF 
MIKE 
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In this study, I report on developmental shifts of a middle school student’s (Mike) graphing 
activity as I implement an instructional sequence that emphasizes quantitative and covariational 
reasoning. The results suggest that representing quantities’ magnitudes as varying length of 
directed bars on two parallel lines, forming a new space by making those lines orthogonal, and 
generating a point by joining those bars were an integral part of Mike developing productive 
meanings for graphing quantities in a Cartesian plane. 

Keywords: Algebra and Algebraic Thinking, Cognition, Mathematical Representations  

Constructing and interpreting graphs is a middle school mathematics topic that provides an 
opportunity to foster powerful learning (Leinhardt et al., 1990). Students, however, experience a 
number of challenges (e.g., conceiving graphs as picture of situation, event phenomena, or the 
literal motion of an object; see Johnson et al., 2020, for a summary of challenges) in interpreting 
and making sense of graphs that ultimately affect their learning of many topics in algebra and 
calculus (e.g., Clement, 1989; Hattikudur et al., 2012; Moore & Thompson, 2015). In particular, 
middle school students encounter many challenges when transitioning from discrete graphs to 
continuous graphs as they are influenced by their past experience with bar graphs and line plots 
introduced in K–5 education (Boote & Boote, 2017). A promising way to support students in 
developing productive meanings for graphs is to emphasize a graph as an emergent trace of how 
two quantities vary simultaneously (i.e., emergent shape thinking; Moore, 2021). Numerous 
researchers have investigated students’ ability of graphing coordinates (e.g., Ponte, 1984; Shaw 
et al., 1983), formulas (e.g., Hattikudur et al., 2012), and motion (e.g., Botzer & Yerushalmy, 
2008; Radford et al., 2009; Nemirovsky et al., 1998), but far fewer researchers have focused on 
investigating how students construct graphs as emergent traces of quantities’ covariation (e.g., 
Frank, 2016; 2017; Tasova, 2021). Even fewer researchers have investigated the sources of 
students’ capacities to create a point as a simultaneous representation of two quantities’ values so 
that they can construct a graph as an emergent trace of those values’ covariation (e.g., Tasova & 
Moore, 2020; Thompson et al., 2017). Thus, I investigate the following questions: What ways of 
thinking do students engage in graphing activities intended to emphasize quantitative reasoning? 
What ways of reasoning are involved in students developing productive meanings for graphs? 

Theoretical Framework: Quantitative and Covariational Reasoning 
This study focuses on students’ graphing activities involved in reasoning with relationships 

between quantities in real-world situations. I use quantity to refer to a conceptual entity an 
individual constructs as a measurable attribute of an object (Thompson, 2011). When engaging 
in dynamic contexts, students can use covariational reasoning, which entails attending to how 
one quantity varies in relation to the other (Thompson & Carlson, 2017). In this study, I 
demonstrate ways in which students make sense of quantitative relationships in dynamic events 
and in graphs by reasoning with quantities’ magnitudes (i.e., the quantitative size of an object’s 
measurable attribute) independent of numerical values (i.e., the result of measuring that 
attribute). Researchers have argued for the powerful role of reasoning with magnitudes in 
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supporting students understanding of quantitative relationships (e.g., Thompson et al., 2014). 
A relationship between two quantities is often represented in a Cartesian plane formed by 

two perpendicular number lines creating a two-dimensional (2D) space. The idea of representing 
quantities’ values or magnitudes on number lines is often taken for granted by researchers when 
discussing students’ construction of coordinate graphs (Lee et al., 2018). This is not surprising 
given that the focus of instruction is given to bar graphs and pointwise readings in elementary 
and secondary education. The researchers (Earnest, 2015; Schliemann et al., 2013) who have 
studied the relationship between the conception of number lines and coordinate systems have 
focused on individual points on the number lines and the intervals between them. Their focus did 
not give attention to representing quantities’ magnitudes and continuously changing quantities. 
Thus, in this study, I extend this previous work by investigating the nature and extend of 
students’ ability to represent varying quantities’ magnitudes on number lines, and how those 
abilities influence their meanings of graphs.  

Methods 
Participants 

This study is situated within a larger study that examined two sixth-grade students’ (Mike 
and Naya) and four seventh-grade students’ (Ella, Dave, Marc, and Zane) graphing activities in a 
teaching experiment (Steffe & Thompson, 2000) that occurred at a public middle school in the 
southeast United States. This study focuses on Mike’s meanings for graphs and his develop-
mental shift of those meanings over the teaching experiment. 
Data Sources and Analysis 

Mike participated in 14 teaching sessions each of which last for approximately one hour. 
Data sources included video and transcripts that captured the participants’ exact words, gestures, 
and drawings. Students’ written work, screen recordings from a tablet device, and notes taken by 
research members who participated in the sessions were also collected as data sources. I 
conducted a conceptual analysis in order to understand students’ verbal explanations and actions 
and develop viable models of their mathematics (Steffe & Thompson, 2000). My analysis relied 
on the generative and axial methods (Corbin & Strauss, 2008), and it was guided by an attempt 
to develop working models of Mike’s thinking based on his observable and audible behaviors.  
Tasks 

Before conducting the teaching experiment, I developed an initial sequence of tasks with a 
dynamic geometry software and displayed on a tablet device (for digital versions of all the tasks, 
go to https://www.geogebra.org/m/szscxzd8). In Downtown Athens Bike Task (DABT), I 
present the students with a map of Downtown Athens highlighting a straight road, two places 
located near the road (i.e., the Arch and Canon; see Figure 1a), and a bike on this road. I asked 
students to graph the relationship between the bike’s distance from Arch (DfA) and distance 
from Cannon (DfC) as the bike moves at a constant speed back and forth along the road.  

In the Crow Task (CT), I present with the same map in addition to a movable crow (see 
Figure 3). I also presented a Cartesian plane with the horizontal axis labeled as DfC and vertical 
axis labeled as DfA. Students can move the crow freely while observing how the corresponding 
black point in the plane moves (see https://youtu.be/5JgrPAuG15Y). 

In Matching Game Task (MGT; Figure 2a), I present the students with the same map 
highlighting a straight road (i.e., College Avenue). Arch and Cannon are located on the road, and 
a bike rides along this road. I also present a dynamic tool where students engage with quantities’ 
magnitudes represented by directed bars placed on empty number lines (also called magnitude 
lines). The directed bars can be varied in length (see https://youtu.be/knrN7XCbyOY). In this 
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part of the task, the bars and the bike in the situation are not synced, and I ask students to adjust 
the length of the bars on the magnitude lines to match with various bike positions in the map. I 
aim to help students understand that the length of both bars should be constrained in a way that 
they simultaneously represent the bike’s DfA and DfC. I asked students to place tick marks as a 
way to record those lengths on the magnitude lines before I change the bike’s location to another 
state. I conjectured that this tool might help students when they move to 2D space to represent 
two quantities by a single point in a coordinate plane. 

Results 
Mike’s Graph in Downtown Athens Bike Task 

I asked Mike to sketch a graph to represent the relationship between the bike’s DfA and DfC. 
The reader can see Mike’s graph in Figure 1b, which consisted of a line upward from left to 
right. Mike first conceived the entire vertical and horizontal axes of the plane as the psychical 
Cannon and Arch, respectively. The axes did not represent magnitude or number lines, but 
instead were referents to the objects themselves. Mike then drew a line upward from left to right 
to represent “where the bike travels.” He added tick marks and dots on his line graph “to 
represent like where the bike could be.” For example, when the bike is at a location 1 in the map 
(i.e., DfA and DfC are each at their minimum), he said “it [the bike] would go right here 
[pointing to the tick mark on his graph near 1 in Figure 1b].”  

     
Figure 1: (a) DABT and (b) Mike’s graph (numbered labels are added for the reader) 
Mike also imagined moving the bike on the plane according to the variation of its DfA and 

DfC. He conceived DfC and DfA as being represented by vertical and horizontal segments 
drawn on the plane, respectively. He said “this distance [moving his finger up and down over the 
vertical line segment that he drew on the plane] is the distance from the Cannon and this distance 
[moving his finger over the horizontal line segment that he drew on the plane] is the distance 
from the Arch.” The vertical segments on the plane represented the bike’s DfC because Mike 
assimilated the horizontal axis as a reference ray that he measured bike’s DfC from. Similarly, 
the horizontal segments on the plane represented the bike’s DfA because he assimilated the 
vertical axis as a refence ray he measured the bike’s DfA from. Increasing length of the 
horizontal and vertical segments on the plane indicated an increase in the bike’s DfA and DfC. 
Moreover, Mike understood that the length of horizontal segment is shorter than the length of the 
vertical segment for each point on the graph as the bike’s DfA is always less than the bike’s DfC 
on the map. Thus, although Mike assimilated his graph as “where the bike travels,” Mike’s graph 
was not the bike’s path as it is seen in the map; it was not an iconic translation. Mike’s meaning 
of the points included determining quantitative features of the bike in the situation (i.e., its DfA 
and its DfC) and he ensured they preserved those quantitative properties on the plane. 

I consider Mike’s graphing activity as a different way of graphing relationships because he 
engaged in quantitative operations to make sense of the results of his activity and produce a 
graph to his satisfaction. Specifically, he represented the quantities’ magnitudes in the space by 
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committing to two frames of reference (i.e., the axes), and then placing a point where those 
magnitudes meet on the path he produced. Tasova and Moore (2020) termed this meaning of 
points as a spatial-quantitative multiplicative object, which involves an individual envisioning 
point on the plane as a location/object that also entails quantitative properties. This meaning of 
points on the space is different than representing quantities’ magnitudes on the axis and creating 
a point by taking two orthogonal magnitudes along the axis and creating projections. In the next 
activity, I provided an opportunity for Mike to develop such a meaning of a point.  
Mike’s Activity in Matching Game Task 

I designed MGT (Figure 2a) in order to engage Mike to (i) represent two quantities’ 
magnitudes on parallel magnitude lines and then transition to (ii) representing two quantities’ 
magnitudes as a single point by making the magnitude lines orthogonal and projecting the 
magnitudes on the plane. I conjectured that Mike’s engagement with MGT could promote an 
understanding of points for Mike as an abstract object in relation to representing two quantities’ 
magnitudes rather than representing a physical object that moves on the plane. I let Mike to 
change the bike’s location on the path and observe how the bars were moving on the magnitude 
lines (see https://youtu.be/6Q3pSDhXEMs). I asked Mike what the red and blue bars might 
represent. He responded that the blue bar represents the bike’s DfA, and the red bar represents 
the bike’s DfC. When asked to show how he knew, he located the bike near Cannon on the map 
and said “well, the bike’s distance from Arch right now [measuring the length of the blue bar on 
the magnitude line with his fingers] is this much [translating his fingers—by keeping the same 
distance between them—and placing it on the map]”. He also added “it [pointing to the bike on 
the map] is right by the Cannon, so, it [the red bar] is not there [pointing to the zero point on the 
magnitude line labeled ‘Distance from Cannon’].” 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2: (a) MGT (b) Mike’s tick marks on the magnitude lines representing the bike’s 
DfA and DfC, and (c) Mike’s activity seeking to create a single point 

I also hid the red and blue bars on the magnitude lines. Then, I asked Mike to place tick 
marks on the magnitude lines to show where the head of each bar would be on the magnitude 
lines for different locations of the bike on the map. For example, I located the bike at the bottom 
of the map and Mike successfully placed tick marks on each magnitude line accordingly (see 
Figure 2b). When placing the tick mark for the bike’s DfA, he engaged in the same measurement 
activity with his fingers—measuring the distances with his fingers on the map and translating his 
fingers onto the magnitude lines by keeping the same distance between them. Moreover, he 
stated that “tick marks show where the end of the bars would be.” I conjectured that this meaning 
of tick marks might help Mike to record the variation of the bar on the magnitude line since the 
varying bars do not leave trace or a mark as they move on the magnitude lines. In turn, I 
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conjecture that this activity might help Mike when we move to 2D space to record the 
relationship between two varying quantities on each axis of the plane. 

With Mike doing so successfully and indicating that he conceived of the tick marks in 
relation to quantities’ magnitudes, I decided to transition to the next part of MGT where I asked 
Mike if he knew a way to represent the bike’s DfA and DfC by a single point instead of the two 
tick marks that he placed on two parallel magnitude lines. I also informed him that he can move 
and rotate those lines freely on the tablet screen. Mike was not able to create a single point to 
represent two quantities’ magnitudes, except for one case where the bike’s DfA and DfC had the 
same length (see Figure 2c). He moved the magnitude lines on top of each other by matching the 
zero and max points. He then located the bike in the middle between Arch and Cannon on the 
map and pointed out that the tick marks representing the bike’s DfA and DfC were matched on 
the magnitude lines. Referring to the tick mark, he said “it represents both the distance from 
Arch and the Cannon because when the bike is right there [pointing to the bike located in 
between Arch and Cannon], they are both the same distance from the Cannon and the Arch.”  

He could not find a way to create a single point that simultaneously represented other states 
of the bike’s DfA and DfC. He needed to construct a new space that was different than the one-
dimensional (1D) space in a way that he could satisfy the simultaneity for all states of the bike’s 
DfA and DfC. This was a need, from my perspective, why we need a 2D space. I didn’t have 
evidence that Mike perceived such a need at the moment as he was satisfied with his activity for 
one occasion of the bike. This suggested that I should provide other opportunities for Mike that 
could afford him to structure the space in a way that he could see additional features that is not 
available in 1D space. Thus, I decided to move to CT where I provided him a coordinate system 
as a given space. My goal was to provide Mike with additional figurative material that might 
afford him to structure the space in a way that is compatible with Cartesian plane. 
Mike’s Activity in Crow Task 

Mike was able to move the crow freely while observing how the corresponding black point 
on the plane moved (see https://youtu.be/mIpOiSuq0mE). When asked to explain what the black 
point might represent on the plane, he conceived the dot as the crow. However, he was not sure 
how the black dot moved according to how the crow flied on the map. He said, “I guess [the dot 
is] the crow, but I still don’t understand this” meaning that he did not know how the black dot 
moved on the plane as the crow moved on the map. Since I knew he was able to reason with 
quantities, I wanted to draw his attention to the crow’s DfA and DfC in the situation when the 
crow was not flying (i.e., static moment). I asked Mike to show how he imagined the crow's DfA 
and DfC on the map when the crow was located next to Georgia Theatre (see Figure 3a, left). He 
drew two segments to show the crow's DfA and DfC on the map (Figure 3a, left). I then asked 
him to place tick marks on the axis of the plane to represent the crow’s DfA and DfC. Recall 
that, in MGT, Mike was able to transform (i.e., dis-embed and represent) the magnitude of the 
bike’s DfA and DfC from situation to the parallel magnitude lines by ensuring to preserve their 
length by using his fingers. He successfully placed tick marks on each magnitude line to 
represent the bike’s DfA and DfC (see Figure 2b). Since he never assimilated what I perceive to 
be the axes of the coordinate plane as the magnitude lines, I did not expect him to insert tick 
marks on each axis normatively in his first attempt. However, I still desired to ask this question 
because this could draw his attention to the axes of the plane in later attempts. My goal was to 
help him to make connection between his activity of inserting tick marks on two parallel 
magnitude lines and inserting tick marks on the axis of the coordinate system. 
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He first assimilated the black dot on the plane as the crow stating “so, um, and this is where 
the crow is.” Mike then plotted two tick marks on each axis where he thought where the physical 
Arch and Cannon were on the axes (Figure 3a, right). He said “these tick marks are where the 
Cannon and Arch is, I think.” Mike then represented the crow’s DfA as the distance from the 
Arch on the axis and the crow’s DfC as distance from the Cannon on the other axis. He drew 
segments from these marks to the black dot on the plane explaining “these [sliding his index 
finger over the segments he drew on the plane] are the two distances. I mean, I don’t know” (see 
Figure 3a, right; the computer-generated tick marks on each axis were not available at the 
moment). This suggested that his meaning of the point at the moment included envisioning the 
point as a location/object by coordinating quantitative features of the object on the plane, which 
is the same meaning that Mike had in his previous graphing activity in DABT (see Figure 1). 

 

 
(a)  

(b) 
 

(c) 
 

(d) 
Figure 3: (a) Mike’s activity in CT, (b) Mike’s segments on each axis, (c) Bars in CT, and 

(d) Mike’s physical action of joining the projection of the two magnitudes on the plane   
Then, I showed the computer-generated tick marks on each axis of the coordinate plane (see 

the additional tick marks on each axis in Figure 3a, right). My goal was to provide additional 
figurative material for Mike that could afford him to conceive the axis as the magnitude lines. 
Mike immediately surprised by the locations of the tick marks on the axes. He questioned “why 
are they there” and he could not resolve this perturbation at the moment. Since I knew Mike had 
a meaning for tick marks on the parallel magnitude lines in relation to quantities’ magnitudes in 
MGT, I decided to ask Mike to reflect on his previous activity where he placed tick marks on the 
magnitude lines in MGT. I asked Mike what the tick marks meant to him in the previous activity. 
He said, “end of the bar, like where the bar ended.” I then asked him where these bars might be 
on the plane in CT. He began erasing his work on the plane in Figure 3a (right). He stated that 
“based on, um, the little tick marks, um, like maybe there is two bars, maybe like there is two 
lengths from the origin that go to these two [referring to the tick marks].” He then drew the 
horizontal and vertical bars on axes (see Figure 3b). When asked to describe what these bars 
represented, he responded “the distances from the Cannon and Arch.”    

In order to get more insights into his meaning of bars on the axis, I showed the blue and red 
bars on the map and on the axes (see https://youtu.be/oFGjq9UgQNA?t=11). I asked Mike to 
move the crow on the map and observe what was going on with the bars on each axis of the 
plane. As he moved the crow on the map, Mike determined that the bars on the axes and the bars 
on the map “are the same.” He elaborated by saying “lines are getting longer and shorter, like the 
lines here [pointing to the bars in the map] or the bars are equal to the bars like [inaudible].” For 
example, he moved the crow right next to the Arch on the map and determined the length of the 
blue bar was too small (see Figure 3c). He said “it [the crow] is right next to the Arch [on the 
map] and the blue bar is really small.” This activity provided evidence that Mike conceived the 
bars on the axes of the plane in relation to the quantities’ magnitudes. Thus, I decided to 
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investigate his meaning of a point on the plane to see if and how Mike could join two magnitudes 
and generate a point that represented both. Then, I hid the black dot on the plane keeping the 
blue and red bar on each axis visually available and asked Mike where the black dot would be on 
the plane. Mike plotted a point on the plane by intersecting the projections of the quantities’ 
magnitudes that were represented on each axis of the plane (see his joining gesture in Figure 3d) 
and his meaning of the point included “the crow’s distance from Cannon and Arch.” 
Mike’s Activity in Matching Game Task (Second Attempt) 

I next directed Mike to the previous task (i.e., MGT) and asked that he create a single point 
to represent the bike’s DfA and DfC simultaneously given two parallel magnitude lines (see 
Figure 2a). I asked Mike if this task and CT are related. Mike said “maybe, if we make this 
[pointing to the parallel magnitude lines] a x and y-axis thing.” Then, Mike rotated one of the 
magnitude lines and placed it perpendicular to the other magnitude line by matching the zero 
points in both lines (see Figure 4a). He then plotted a point where the projection of the red and 
blue bars intersected on the plane. I asked him how he knew this point showed both the bike’s 
DfA and DfC, he drew the vertical and horizontal segments (see Figure 4b) and said “it 
[referring to the vertical segment] is the bike’s distance from the Arch and it [referring to the 
horizontal segment] is the bike’s distance from the Arch.” Mike also successfully created a 
single point to represent the bike’s DfA and DfC for another location of the bike (see Figure 4c). 

 

    
(a)       (b)      (c) 

Figure 4: (a) Mike’s orthogonal magnitude lines and his single point representing both 
quantities, (b and c) Mike’s segments on the plane to show the magnitudes   

Mike’s Final Graph in Downtown Athens Bike Task 
In DABT, I played the bike animation (see Figure 1a) and asked Mike to draw a 

representation showing how the bike’s DfA and DfC varied. Mike began his graphing activity by 
drawing a straight line upward from left to right on the tablet screen (Figure 5a). Mike also drew 
his graph on paper as a dotted and dashed straight line upward from left to right (see Figure 5c, 
the additional horizontal and vertical segments were not drawn yet). When asked to illustrate 
how his graph showed the relationship between DfA and DfC, he moved his right index finger 
horizontally back and forth in the air and moved his left index finger up and down vertically in 
the air (see the red arrows an indication of the path for his fingers in Figure 5b). His movement 
of the fingers suggested that he might be imagining the varying bars in relation to his graph on 
the plane. I asked him to elaborate on his finger movements. He explained,  

When we moved them, we moved them like [making the same gestures in Figure 5b over the 
vertical and horizontal axis of the plane], the two lines go like [joining his fingers on the 
graph] and it crosses these little tick marks [pointing to the tick marks on his graph by sliding 
his finger on his graph from left to right]. 
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From his activity, I infer that Mike imagined the projection of quantities’ magnitudes on the axes 
meeting on the plane along with the variation of these bars creating the graph. In order to get 
more insights into his meaning of the graph on paper, I asked Mike to show how his graph on 
paper showed the bike’s DfA and DfC for certain states of the bike in the situation. For example, 
I asked Mike how his graph showed the moment where the bike was located at the right side and 
at the middle of the path on the map. Mike drew horizontal and vertical segments on the plane 
representing the bike's DfA and DfC to show these two moments (see Figure 5c). The horizontal 
segment represented the bike’s DfC because it was the projection of the red bar on the horizontal 
axis. Similarly, the vertical segment on the plane represented the bike’s DfA because it was the 
projection of the blue bar on the vertical axis. I infer that the way he represented quantities’ 
magnitudes was now compatible with representing a point in a canonical Cartesian plane.  
 

    
(a)     (b)     (c) 

Figure 5: (a) Mike’s final draft in DABT on the tablet, (b) Mike’s finger movement in the 
air, and (c) Re-drawing his final draft on paper. 

Discussion 
In this study, I illustrated Mike’s meanings for graphs and the development of those 

meanings from the teaching experiment as I implemented an instructional sequence that I 
developed in order to support him in developing emergent shape thinking—a productive and 
covariational meaning for graphs from quantitative reasoning perspective (Moore, 2021). In 
particular, I aimed at promoting meanings of (i) representing quantities’ magnitudes as varying, 
directed bars on parallel magnitude lines, (ii) coordinate system as a two-dimensional space 
constituted by two orthogonal magnitude lines, (iii) points in coordinate systems as a 
simultaneous representation of two quantities’ magnitudes, and (iv) graphs as an emergent trace 
of that point representing the quantities’ covariation.  

 Mike initially assimilated the points in the plane in relation to the physical objects that 
appear in the situation, and his meanings for points were based in quantitative properties. I 
consider Mike’s initial representational activity as illustrating an alternative meaning of a 
coordinate system and coordinate points. I found that being able to represent the quantities 
magnitudes as varying bars on the magnitude lines was a critical development in the teaching 
experiment as it laid a foundation for students to re-organize the space and construct a Cartesian 
coordinate system. In his subsequent activity in MGT after his engagement in CT, Mike 
successfully manipulated the parallel magnitude lines to create a single point on a Cartesian 
plane. This re-organization of the space was an important moment for him to be able to use the 
plane in order to create a single point that simultaneously represented two quantities magnitudes. 
Furthermore, representing quantities on magnitude lines played a significant role in his 
development as he subsequently and frequently referred to the variation of quantities’ 
magnitudes represented on the axes when explaining how his graphs showed certain 
covariational relationship on the plane. 
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STUDENT REASONING IN DYNAMIC SITUATIONS: SPATIAL PROXIMITY 
REASONING 
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In this paper, I introduce a mode of reasoning, which I call spatial proximity reasoning, that 
entails coordinating the (co)variation of an object’s degree of proximity (i.e., closeness or 
nearness) to other objects (i.e., reference objects) in a dynamic real-world situation. I compare 
and contrast spatial proximity reasoning with quantitative (co)variational reasoning. I also 
present the implications of spatial proximity reasoning on students’ graphing activities in one- 
and two-dimensional spaces. 

Keywords: Algebra and Algebraic Thinking, Cognition, Mathematical Representations.  

This paper reports on a study addressing the following research questions: (a) How does 
spatial proximity reasoning differ from quantitative covariational reasoning? (b) What are the 
implications of spatial proximity reasoning for students’ graphing activities? In the findings 
below, I illustrate that Zane who engaged in spatial proximity reasoning assimilated what I 
perceived to be the representation of a quantity’s magnitude on a number line in a certain way 
that was different from Ella who engaged in quantitative covariation. Zane imagined the physical 
objects on the number line whereas Ella represented the quantity’s magnitude on the number line 
isolated and decomposed from its physical context. In turn, their representational activity in two-
dimensional space differed as an implication of their reasoning. 

Background 
This study focuses on students’ reasoning when they engage in dynamic real-world situations 

that involve quantities varying (from my perspective). I use quantity to refer to a conceptual 
entity an individual constructs as a measurable attribute of an object (Thompson, 2011). When 
engaging in dynamic contexts, students can use covariational reasoning, which entails attending 
to how one quantity varies in relation to the other (Carlson et al., 2002; Saldanha & Thompson, 
1998; Thompson & Carlson, 2017). Different from students’ quantitative covariational 
reasoning, I identified a new mode of reasoning, which I call spatial proximity reasoning. I 
define students’ spatial proximity reasoning as coordinating the (co)variation of an object’s 
degree of proximity (i.e., closeness or nearness) to other objects (i.e., reference objects) in a 
dynamic situation (e.g., the bike is getting closer to or farther from Arch). Note that students do 
not engage in coordinating the magnitudes or values of quantities, instead they coordinate the 
nearness between two objects without attending to the measurable attributes of these objects. For 
example, I observed students conceiving “the bike’s distance from Arch” not as a measurable 
attribute of the bike, instead as the bike’s degree of proximity to Arch. Indication of this type of 
reasoning might include having students using the linguistic adverbs “closer”, “farther” when 
there is no evidence of students imagining quantified attributes of an object (e.g., the values or 
magnitudes of the bike’s distance form Arch getting increase or decrease). I have often observed 
that student’s image of variation regarding the bike’s proximity to Arch included two separate 
objects that were getting close to or farther from each other, rather than including a varying 
length of a segment. Based on the analysis of my teaching experiments, I present evidence of 
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spatial proximity reasoning and identify implications for students’ representational activities 
(e.g., imagining the physical objects on the number line or on the coordinate plane). 

Methods 
This study is situated within a larger study that examined two sixth-grade and four seventh-

grade students’ graphing activities in a teaching experiment (Steffe & Thompson, 2000) that 
occurred at a public middle school in the southeast United States. In this study, I focus on two 
students’ data, Ella and Zane (seventh-graders) because their reasoning and graphing activities 
were distinct, and worth documenting and contrasting. Ella and Zane (as a pair) participated in 6 
teaching sessions each of which last for approximately one-hour. 

Data sources included video and transcripts of each session that captured their exact words, 
gestures, and drawings. I conducted a conceptual analysis in order to understand their verbal 
explanations and actions and develop viable models of their mathematics (Steffe & Thompson, 
2000). My analysis relied on generative and axial methods (Corbin & Strauss, 2008), and it was 
guided by an attempt to develop working models of their thinking. 

Before conducting the teaching experiment, I developed an initial sequence of tasks each of 
which was designed with a dynamic geometry software and displayed on a tablet device (see 
https://www.geogebra.org/m/uyy2kxz8 for digital versions of the tasks presented in this paper). 
In Downtown Athens Bike Task (DABT), I present the students with a map of Downtown Athens 
highlighting a straight road (i.e., Clayton St.; Figure 1a, left). I asked students to graph the 
relationship between the bike’s distance from Arch (DfA) and distance from Cannon (DfC) as 
the bike moves at a constant speed back and forth along the road. I also designed numerous tasks 
where students engage with quantities’ magnitudes represented by varying length of directed 
bars placed on empty number lines (also called magnitude lines, see Figure 1a, right). The length 
of directed bars on the magnitude lines vary according to the bike’s movement in the map. Note 
that I call the line “empty number line” in order to emphasize magnitude reasoning as opposed to 
numerical or value reasoning. 

Results 
In this section, I illustrate and contrast Ella and Zane’s activity where they were asked to 

interpret the varying bar on a magnitude line (see Figure 1a, or https://youtu.be/xMa9sNMxRIo). 
While moving the bike to the right from its position seen in Figure 1a, I drew students’ attention 
to the fact that the right end side of blue bar on the magnitude line was moving to the left 
(indicating the bike’s DfA was decreasing). Then, I asked Zane and Ella to explain why that was 
happening. Referring to the map, Zane claimed, “the bike is getting closer to Arch,” which was 
compatible with how he described the variation of the bike’s DfA in the previous activities using 
the linguistic adverbs “closer to” and “farther from.” I did not have any evidence that Zane 
coordinated the bike’s DfA as the bike’s measurable attributes. When I explicitly asked him to 
visually show how he saw bike’s DfA on the map, he wrote “Far” at each end side of the bike’s 
path on the map where the bike was far from Arch. This suggested that Zane’s image of variation 
included coordinating the variation of the bike’s proximity to Arch.  

Then, by pointing to the blue bar on the magnitude line (Figure 1a, right) and tracing the pen 
over the line from right to left, he added it “is gonna get closer to right here [pointing to the zero 
point on the magnitude line], which is Arch.” Zane conceived Arch and bike as physically placed 
on the left and right end side of the blue bar, respectively, and he thus perceived blue bar’s 
change to be compatible with his spatial proximity reasoning because the bike moved closer to 
the Arch along the line, with Arch playing the role of reference object. Zane abstracted the two 
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objects (Arch and bike) and their proximity when engaging in the situation. Thus, he imagined 
these physical objects in his representational activity too.  

Differing from Zane, Ella determined that the bike’s DfA is decreasing while moving the 
bike to the right in the map. She explained “it [pointing to the blue bar] is gonna get smaller 
because distance is smaller on the number line too.” Moreover, Ella labeled the starting point as 
“zero”, whereas Zane conceived the same point on the magnitude line as “Arch.” Her activity 
suggested that Ella conceived the length of the blue bar on the map and on the magnitude line as 
a representation of the bike’s DfA. I conjecture that Ella’s activity was an implication of her 
quantitative variational reasoning (i.e., the bike’s DfA is decreasing) whereas Zane’s activity was 
an implication of his spatial proximity reasoning (i.e., the bike is getting closer to Arch). 

In order to understand how Zane understood Ella’s response and focus on “distance”, I asked 
Zane to re-voice Ella. Zane’s explanation included his original reasoning (i.e., imagining the 
Arch and the bike physically on the line getting closer and farther). Thus, Zane assimilated Ella’s 
answer to his meaning because they were compatible with respect to the behavior of figurative 
material. Since Zane’s meaning included spatial proximity (i.e., nearness) between two places, it 
made sense to imagine Arch in place of the origin in one-dimension because the value of the 
bike’s DfA was zero at that point. However, their meanings and reasoning have different 
implications when we move to two-dimensional systems, which I illustrate as follows.  

 

  
(a)        (b)    (c) 

Figure 1: (a) Representing the bike’s DfA on the map and on the magnitude line, (b) Zane’s 
graph, and (c) Ella’s graph 

In DABT, I asked them to represent the relationship between the bike’s DfA and DfC on a 
given paper with a coordinate plane. By the time I asked this question, the picture of the situation 
and the parallel magnitude lines on the tablet screen was visually available to them. Recall that 
Zane conceived the objects from the situation (i.e., Arch and the bike) on the magnitude line, and 
he thus conceived the varying bar as illustrating the bike was getting closer to Arch. In two-
dimensional space, and via conceiving Arch and Cannon on the axes implied by the labels, Zane 
attended to the spatial proximity between objects by coordinating the bike’s location in the plane 
(see his graph in DABT in Figure 1b). To justify his graph, he rotated the plane counterclockwise 
in order to match with perceptual feature of the map. That is, he rotated the plane in a way that 
Cannon and Arch are at the top and bottom of the plane, respectively, and the bike moved 
horizontally in the plane, just like it did on the map.  

Although Zane’s form of reasoning is productive in terms of completing the goal of the 
activity as he perceived it (i.e., showing where the bike is in the plane), this creates a problem in 
the normative Cartesian that is based on two directed distances (i.e., horizontal and vertical). On 
the other hand, Ella conceived the length of the bar on the magnitude line as a proxy for the 
quantity that she conceived in the situation (i.e., the bike’s DfA). In doing so, she conceived a 
constrain regarding how to represent the variation of a quantity on a magnitude line (e.g., only 
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left and right on a horizontal line). Thus, she organized the space accordingly in later activities 
when considering two-dimensional space (see her graph in DABT in Figure 1c). Ella referred to 
the axes of the plane as “number line” and plotted tick marks on each axis in conjunction with 
tick marks plotted on the magnitude lines on the tablet screen. She added dots near certain tick 
marks on each axis (see the dots in Figure 1c) to represent a certain state of bike’s DfA and DfC. 
Then, she plotted a point in the plane “where those two [tracing the pen in the air from the dots 
on each axis to the dot on the plane horizontally and vertically, respectively] would meet up if 
they have like a little line.” This provided evidence that Ella was able to assimilate the axes of 
the plane in relation to the magnitude lines and, in turn, she was able to imagine the magnitudes 
varying on the axes of the coordinate plane. Since it has a significant impact on students’ 
graphing activity, we, as a researcher or teacher, should pay attention to the types of reasoning 
students might demonstrate when they graph in dynamic situations. 

Discussion 
In this study, I illustrated various ways in which students reasoned in dynamic situations (i.e., 

quantitative covariational reasoning and spatial proximity reasoning). These different ways of 
conceiving dynamic situations suggest that it is really important for us, as researchers and 
teachers, to understand how students conceptualize the objects’ varying attributes in the 
situation. We should not assume that the variation that students might conceive is the same as 
given in the dynamic situation. Thompson and Carlson (2017) pointed out that researchers might 
conceive the varying quantities in a situation; however, it might not be the case for students. In 
their extensive literature review, Leinhardt et al. (1990) reported that researchers often thought 
that variation has something to do with the situation only as opposed to acknowledging the 
importance of conceptualizing the variation in students’ mind. Thus, merely offering dynamic 
situations to students does not imply that students will engage in quantitative covariational 
reasoning. We need to understand how students might conceive dynamic situations and how they 
might imagine and represent the quantities’ magnitudes vary. 

I believe the distinction I made in this study could provide a lens for researchers to 
investigate students’ graphing activity especially in contexts in which a motion occurs. Since 
many embodied activities often involve graphing with a motion sensor technology, students 
could either coordinate an object’s distance from the motion detector or coordinate the object’s 
proximity to the motion detector when creating or interpreting a graph. Researchers (e.g., 
Hobson, 2017; Nemirovsky et al., 1998) reported that students could produce a normative graph 
(or interpret a graph normatively) as a representation of the motion although they don’t attend to 
the quantities in the situation, such as distance between the object and the reference point (e.g., 
motion detector). For example, when engaging in creating graphs generated by a motion detector 
representing how a handheld button’s distance from the detector varied over time, Nemirovsky et 
al. (1998) reported that students determined “the line on the screen becomes higher when one 
moves the button away from the tower and lower when one moves the button toward it” (p. 122). 
Nemirovsky et al. interpreted that, for the students in their study, distance between the button and 
the tower (i.e., motion detector) was not related to meters, instead it “concerned the possibility 
and impossibility of creating certain graphical responses” (p. 164), which is related to spatial 
proximity reasoning. They noted that distance “is about the impossibility of certain actions that 
would be possible if the objects were nearby, not a matter of meters” (p. 164). Therefore, I 
believe the construct, spatial proximity reasoning, can be used as an additional lens when 
investigating students’ representation of motion as a graph (e.g., distance-time graphs).  
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One of the main practices that separates arithmetic and algebraic reasoning is the use of 
variables (i.e., literal symbols). Drawing upon decades of research, Lucariello et al. (2014) noted 
that secondary school students struggle to make sense of and use variables correctly, making 
errors like ignoring variables in algebraic expressions, treating variables as labels for objects, or 
assuming all variables refer to specific unknowns. At least part of students’ confusion regarding 
variables is caused by the multiple meanings associated with variables in algebra (Blanton et al., 
2011; Philipp, 1992; Usiskin, 1988). We refer to the meanings and accompanying uses for 
variables as variable types. Examples of variable types include generalized number (for 
expressing properties), unknown number (for solving an equations), and parameter (for 
describing a family of functions or problem types). Usiskin (1988) highlighted the complexity of 
deciphering variable type by not only identifying many variable types, but also by showing that 
the variable type associated with a literal symbol can change during algebraic activity, even 
within a single problem. While scholars have identified and described many variable types, little 
empirical research has been conducted to determine which variable types students encounter in 
secondary school mathematics, particularly in middle school where the frequent use of variables 
is first encountered.  

In this study, we investigated the variable types used in three popular US 7-8 grades 
mathematics curricula: Eureka Math (2015), Connected Mathematics 3 (Lappan et al., 2014), 
and Glencoe Math (2015). We sampled 3 units from each grade of each textbook series. For each 
textbook, we selected 2 units related to the expression and equations strand and 1 unit related to 
the geometry strand of the Common Core State Standards for Mathematics (NGA & CCSSO, 
2010). We started our textbook analysis using a coding scheme consisting of the variable types 
described by Usiskin (1988) and Blanton et al. (2011). We both participated in coding all 3 
textbook series, and began coding individually when interrater reliability exceeded 90% on each 
textbook series. Original codes were modified and new codes added as needed to fit the data. 

Our analysis led to the identification of 8 main variable types. All 8 types were observed in 
both grades of all 3 of the textbook series. The most widely used variable types were unknowns, 
placeholders, and objects. All lessons used at least 2 variable types, and some involved as many 
as 5 types. Adding to the complexity of variable use was the frequent need to reinterpret a literal 
symbol without explicit acknowledgement by textbook authors that the type had changed. For 
example, the textbook authors would use variables as placeholders to represent relationships 
between quantities in a story problem, reinterpret them as unknowns at the start of the equation 
solving process, treat them as objects when performing symbolic manipulation, and then rethink 
of them as knowns to check the answer. Our results indicate that a sophisticated understanding of 
variable types and their accompanying uses is necessary to make sense of algebraic expressions 
and equations even in the early weeks of a 7th grade course. These findings suggest a strong need 
for explicit instruction on variable type and use to enable students to meaningfully create, make 
sense of, and operate on variables in algebra. 
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This theoretical paper describes how Community-based Mathematical Modeling can advance 
equity and cultivate civic empathy in elementary school settings. We provide a framework for 
community-based mathematical modeling instruction consisting of five goals: facilitating 
connections, fostering engagement, promoting rigor, cultivating civic empathy, and elevating 
justice. We illustrate how these goals work together to advance equity and cultivate civic 
empathy through classroom vignettes of community-based modeling lessons. Through this 
theoretical synthesis, implications for community-based mathematical modeling instruction will 
be discussed. 

Keywords: Equity, Inclusion and Diversity, Modeling, Elementary Education, Culturally 
Relevant Pedagogy, Professional Development 

Mathematical Modeling as an Equity and Empathy Lever 
Mathematical modeling (MM) is an iterative cyclical process that uses mathematics to make-

sense of and analyze real-world situations. MM includes posing the real-world problem, 
identifying important quantities and making assumptions to define variables, which then leads to 
developing a mathematical model, analyzing and assessing the solution, and refining the model 
(Garfunkel & Montgomery, 2019). MM nurtures 21st century skills of creativity, critical 
thinking, communication, and collaboration (Suh & Seshaiyer, 2013). It is an area of 
mathematics that offers children opportunities to grow mathematically and connect mathematics 
to their lived experiences, families, and communities. There has been a well-established 
literature on mathematical modeling. However, the centering of equity and empathy remains 
underemphasized (see Anhalt et al., 2018; Aguirre et al, 2019; Suh et al, 2018; Turner et al, 
2022; Cirillo et al., 2016; for notable exceptions). We argue that MM is a humanizing endeavor 
that authentically connects to the real world, starting with ill-defined, often messy community-
based problems and providing opportunities for students to develop empathy and compassion 
toward other people, living things and our planet (Lee et al., 2021). By showcasing children’s 
diverse perspectives, curiosities, and mathematical and experiential strengths as resources for 
learning, mathematical modeling is a powerful lever for equity and civic empathy in the 
elementary mathematics classroom.  

In our work, equity means that: All students in light of their humanity – personal 
experiences, backgrounds, histories, languages, physical and emotional well-being – must have 
the opportunity and support to learn rich mathematics that fosters meaning-making, empowers 
decision-making, critiques, challenges, and transforms inequities/injustices. It promotes equitable 
access, attainment, and advancement for all students (Aguirre, 2009; Aguirre et al, 2013). 
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In terms of empathy, we draw on the foundational work of Freire (1970) on critical 
consciousness and recent report from the National Academy of Education (Lee et al., 2021) for 
civic reasoning and discourse to deepen children’s empathy with others who may have different 
perspectives. Civic empathy- “working to see the world from another person’s perspective—can 
help us to overcome some of the impediments to listening and can improve our ability to relate to 
each other civically” (Lee et al., 2021, p. 39). Mirra’s (2018) concept of critical civic empathy is 
useful because she differentiates individual empathy, or simply seeing another’s perspective, 
from critical civic empathy, which includes seeing another’s perspective while also engaging in 
structural analysis of power and privilege to take civic action for social transformation. We lean 
on this concept of critical civic empathy as we focus on community-based mathematical 
modeling. There is growing consensus that elementary grade students can engage in community-
based mathematical modeling. Researchers specifically highlight how students draw on their 
lived experiences to support mathematizing activity (Albarracín & Gorgorió, 2020). Turner et al 
(2011) found that when children mathematized situations rooted in their communities, what the 
authors referred to as community mathematization, children considered the real-world 
implications of their decisions and models.  

Recent research confirms how teachers foster this connection through community-based MM 
tasks and routines (CMM). Turner et al (2022) document how elementary teachers designed 
community-based modeling tasks centering social and environmental justice such as helping a 
community-center order food supplies to feed unsheltered families and determining plastic waste 
generated from the school cafeteria. Aguirre et al (under review) designed an instructional 
routine called Mathematizing-the-World routines (MWR) that leverages community 
mathematization. The MWR focuses on three prompts that are similar to those in the 
introductory act of Three Act Tasks (Lomax et al., 2017). The first question, “What do you 
notice?” strengthens students’ observation skills. The second question, “What do you wonder?,” 
builds on students’ curiosities and strengthens problem-posing skills. The third question, “What 
questions can be solved using mathematics?” draws students’ attention to problem-posing with 
mathematics. To foster empathy and connection while mathematical problem-posing, the teacher 
offers additional prompts including: Why is this question/issue important? "Why should we care 
about this question/issue?" "Who else might care about this question/issue?" "Why might it be 
important to them?” (Arnold et al, 2022). For each prompt, teachers record student responses on 
a class chart. In some cases, the class identifies a specific mathematical question to investigate 
further. The teacher may also use this routine to launch a CMM task. 

This theoretical paper describes how CMM can advance equity and cultivate civic empathy 
in elementary school settings. We continue to push the field of MM and teacher education to 
center on equity, empathy, and justice; opening up space for young children to be critical 
decision makers and community change agents (Aguirre et al, 2019; Anhalt et al., 2018; Cirillo 
et al., 2016). We draw on current and past MM projects that advance equity and strengthen 
teaching in elementary settings. Through this work we identified 5 instructional goals that frame 
how CMM leverages equity and civic empathy: facilitating connections, fostering engagement, 
promoting rigor, cultivating civic empathy, and elevating justice. To illustrate these goals in 
action we present two elementary classroom vignettes: a MWR on analyzing racial 
representation in school libraries and an environmental justice modeling task on water quality. 
To ground our work, we propose a theoretical framework to leverage equity and empathy with 
CMM. 
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Theoretical Framework to Leverage Equity and Empathy in Modeling 
Below, we identify five instructional goals in CMM instruction that advances equity and 

empathy in elementary classrooms: facilitating connections, fostering engagement, promoting 
rigor, cultivating civic empathy and elevating justice (see Figure 1). Each goal is grounded in 
the literature and preliminary findings from our projects.  
Goal 1: Facilitate Connections 

Through CMM children can connect mathematics to themselves, their peers, families, 
communities, and to the world. CMM acts as a mirror and a lens for students and their teachers. 
The emphasis on deliberately connecting to children’s lived experiences promotes multiple 
opportunities for children to see themselves in the mathematics (mirror) and use mathematics to 
analyze the world around them (lens). CMM connects children with each other in order to share 
ideas and experiences. By building multiple connections to self, family, community, other 
subjects, and the world, CMM humanizes mathematics teaching and learning (Suh et al, 2018; 
Gutierrez, 2018).  
Goal 2: Foster Equitable Engagement 

CMM activities open up access to meaningful complex problem solving for children with 
varied mathematical, cultural, and linguistic backgrounds. Modeling lessons incorporate a 
variety of participation structures to elicit diverse contributions, support peer collaboration, and 
minimize status issues in the classroom (Featherstone et al., 2011). CMM tasks are also group-
worthy tasks that have multiple entry points and solution paths for students with varied 
mathematical strengths to work collectively and solve (Horn, 2006). We have also seen that 
modeling activities build math stamina and perseverance. In our project, teachers reported more 
children engage in mathematics for longer periods of time with modeling activities (Turner et al, 
2021).  
Goal 3: Promote Rigor  

CMM activities are high cognitive demand activities that emphasize observation, analysis, 
argumentation, and critique (Smith & Stein, 1998). All strands of mathematical proficiency can 
be accessed through modeling activities: conceptual understanding, procedural fluency, strategic 
competence, adaptive reasoning, and productive dispositions (National Research Council, 2001). 
Historically, one way children have been marginalized in mathematics is by denying them access 
to rich and rigorous mathematics. Through racist tracking practices, challenging enrichment 
opportunities are often reserved for children with a specific label like “gifted” or “highly 
capable”. However, denying access to rich complex tasks that foster curiosity and problem 
posing is a form of dehumanization (Aguirre, 2009; Freire, 1970). CMM opens up new avenues 
to engage more children in high cognitive demand (rigorous) activities. 
Goal 4: Cultivate Civic Empathy 

Learning for Justice (https://www.learningforjustice.org/) provides educators with a set of 
social justice standards (Learning for Justice, n.d.) as a road map for anti-bias education with 
four critical domains—identity, diversity, justice and action. In the diversity domain, one anchor 
standard states-Students will respond to diversity by building empathy, respect, understanding 
and connection. To unpack what building empathy means, we lean on Mirra’s (2018) work on 
critical civic empathy–moving beyond oneself and into the perspective of another person and 
then to take civic action. Mirra (2021) challenges educators to consider the power of empathy- 
“If my experience of seeking to empathize with another person’s challenges does not encourage 
me to heal the roots of those challenges–through community action, voting, protesting—then 
what good is that empathy, right?” (p. 12). CMM has the transformative potential (Jemal, 2017) 
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to develop a level of critical civic empathy that leads to action to transform contextual factors 
that may be perpetuating inequitable conditions and that are necessary for change.   
Goal 5: Elevate Justice  

CMM provides opportunities to examine issues of fairness, access, power, and civic 
engagement in our homes, communities, and schools. CMM and teaching mathematics for social 
justice share three important features: both engage students in ill-defined (messy) problems for 
which there can be multiple and equally valid approaches; both leverage real-world knowledge 
that students bring to the classroom; both raise students’ interest in mathematics by supporting 
them to better understand their world (Cirillo et al., 2016). Children have questions about the 
world; they have ideas about what it means for a situation to be fair. They have heard adults talk 
about societal topics such as healthcare, government sanctioned violence, racism, as well as 
food, water, and air quality. Some experience economic hardship while others look for ways to 
relieve it. Some experience natural disasters such as hurricanes, earthquakes, and fires. And most 
recently, we have all been touched by the COVID19 pandemic. CMM can provide a space for 
students and their teachers to engage in these justice-focused discussions. 
 

 
Figure 1: Theoretical Framework to Leverage Equity and Empathy in Modeling 

Community-based Mathematical Modeling Case Vignettes 
Vignette #1 MWR - Exploring representation of class/school libraries 

The first vignette provides a picture of practice from a team of elementary teachers who 
wanted to integrate MM to prompt deep conversation around the important social issues of ethnic 
representation in library collections and to learn about race as a part of identity. They launched 
the unit with a MWR, where a picture prompts (see Figure 2) students to notice and wonder 
about a phenomenon. In order to mathematize representation of race in classroom libraries, 
students examined a numberless graphical representation. As students noticed and wondered 
about the real-world statistics the mathematician was communicating, their conversation 
suggested awareness of injustice. Students perceived this as an issue of fairness, connecting the 
availability of main character representation to the disparate number of mirrors for different 
races and the characters’ facial expressions. Empathetic comments emerged such as, “The kids 
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are frowning because there’s a lot of books about White people and not a lot about Brown 
people,” and “The Latinx girl is shocked, the mirror is broken. This is not fair.”  

 

Figure 2: Numberless Graph Depicting Characters From Diverse Backgrounds  
Used in Data Talk 

This data talk compelled third graders to take inventory of their classroom libraries, framing 
an investigation to see if their personal race was represented in the main character of books 
(mirror of representation) as well as if they could see another's racial representation among the 
books (window to representation of others) (Sim-Bishop, 1990). The analysis of their classroom 
library involved collective decisions from the students about how to sort the books, what racial 
categories to use, and how to determine the race of the main character. The inventory revealed 
the underrepresentation of diverse main characters and led to a powerful modeling task to make 
their library more fairly represent their classroom demographics. The class created a model that 
determined how many books of diverse characters should be purchased and wrote a letter to the 
principal asking for funds to make their library collection more representative of the class. This 
vignette showcases how the CMM had a transformative potential (Jemal, 2017) to develop a 
level of consciousness around race representations in their library that led to action to get more 
books for their library.  

The absence of a child’s culture and race from classroom libraries is problematic as they 
receive a message that their school does not think their culture is important enough to feature in 
the library. This library representation modeling task facilitated connections by giving students 
ownership in how they would solve the problem of underrepresentation. Having students identify 
books that reflected their culture and race provided an opportunity for students to make 
connections to their identities. It fostered engagement through a group-worthy task with 
multiple entry points for students to participate in mathematical and democratic decision making. 
Grade appropriate rigor was promoted through important data analysis, representation, and 
mathematical decision-making for justice. It also cultivated civic empathy, first with feelings of 
sadness and outrage at the realization of injustice, then through community pride and healing in 
taking action to purchase books that affirmed their own representation as well as their 
peers'. Taking action elevated students’ sense of justice, and reinforced how they can use 
mathematics to address inequities and transform their community into a better place.  

 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

353



 
 

Vignette #2 Safe Water for Schools 
This vignette focuses on students learning about the importance of access to clean water 

through studying the Flint water crisis and engaging in a math modeling task about safe water for 
their school community. To facilitate connections, teachers launched the CMM task by building 
context about the water crisis in Flint, Michigan. Students read short articles and viewed images 
of corroded pipes and brown water in bottles. Teachers shared information about how lead is 
toxic to the human body, especially for children’s brains. Next, teachers engaged in an MWR 
routine with images of water fountains covered with plastic and signs that said “do not drink” 
and an image of two elementary students taking a large five-gallon jug of water from a supply 
room. The MWR provided space to foster engagement as different students voiced their 
noticings, wonderings, and personal connections and emotions about the situation. Figure 3 
depicts the wonderings from a 5th grade class. The starred questions are questions that could be 
answered with math. Students then pursued a modeling task that asked them to imagine 
themselves in this situation, cultivating civic empathy as they determined how many large jugs 
of water they would need for their class for one day, week or month.  

  

 
Figure 3: MWR Chart 

In Ms. G’s 4th grade class, students were living this reality. Their classroom sink/water 
fountain had recently been shut off due to lead found in the water. They had dispensers with 
large jugs of water in the hallway shared with other classes. Students identified two important 
quantities to take into consideration. They needed to figure out how many people would be 
drinking and how much they would drink per day. Students wrestled with who to include, for 
example just students; students and teacher; absent students or guests. To help students make 
decisions about the amount of water to drink, teachers provided a data table that gave ranges of 
daily water needs (in cups or ounces) by age and grade level. Teachers also shared that the large 
jugs were 5 gallons and there are 16 cups in 1 gallon. Students worked together in groups to 
make decisions that took into consideration how long they spent at school, and if people brought 
their own water bottles. Students’ solutions varied with some groups deciding they would need 2 
large jugs, 3 large jugs or 4 large jugs. After several students shared their solutions, Ms. G 
invited students to think about how other students could use their models if a similar situation 
arose in their school. In other words, to generalize. 
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Ms. G: So, we've all done our presentations, but we didn't get a chance to talk about what 
directions would you give another kid.  If you were telling a kid in another class how to 
make a plan for how much water to order, what are some things we could say we could 
generalize? We can say, that is generally true, that is consistent? So, if another kid from 
another class wanted to make that plan for the water, what are some things we would tell 
them that they could do? Max? 

Max: I would probably say first start off to find how many kids are in your class. And how 
often do they drink water? And, ask for their age and just go from there. 

Ms. G: Okay so knowing their age. Does it matter that one team said 7 cups because their age 
was young on the chart and another team said 10 cups? Does it matter or is that okay to 
make a decision like that? 

Many Students: Yeah - Make a decision 
Ms. G:  So, you make your decision and then you go with it to do the math. What else can we 

generalize?...  
Max: One thing is to define, like, how long are you going to do it. Are you going to do it for 

a day, or are you going to do it for a week? 
Ms. G: Ok. Amari, you have a thought? 
Amari: Yeah, how do you know if all the kids are going to show up for school? 
Ms. G:  Yes, some kids could be absent. Those are other things. So, when you plan how 

many students, you might assume that somebody is going to be absent.  
Ms. G. promoted rigor by asking students to generalize, as this communicates that students 

are capable of complex mathematical work. Ms. G supported students in this rigorous practice by 
reminding students of the components of their own models, and by revoicing the ideas that 
students shared. The CMM lesson facilitated connections as it was relevant to Ms. G’s students; 
they found lead in the water at their school, and students were genuinely concerned about access 
to safe water. Finally, Ms. G advanced equity and civic empathy by inviting students to 
connect the specific situation of the task to broader issues of social and environmental justice. By 
generalizing their solutions, students had opportunities to cultivate empathy, and elevate justice 
for their own and other’s communities.   

Theory Synthesis and Implications for Teaching CMM for Equity and Empathy 
These two vignettes illustrated how community-based mathematical modeling promotes five 

equity goals for mathematical modeling instruction in elementary settings (facilitate 
connections, foster engagement, promote rigor, cultivate empathy and elevate justice). Next, we 
discuss these theoretical perspectives on mathematical modeling as a lever for equity and civic 
empathy in relation to the phases of the mathematical modeling process. 

 In the first phase, Making Sense of the Problem, CMM affords opportunities for teachers to 
select meaningful contexts that connect to student experiences and issues of fairness, access, 
representation and justice. In both of our vignettes, elementary students were engaged in local 
community-based problems -- issues of equitable representations of classroom library collections 
and access to clean water - that also align with broader initiatives to reduce inequity and improve 
the health and lives of global citizens(https://sdgs.un.org/goals). We make these parallels to 
global issues to demonstrate how community-based math modeling has transformative potential 
(Jemal, 2017) for even young mathematical modelers to bring awareness of inequities, and to 
experience critical civic empathy to take action in powerful ways in their community. By 
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providing images, videos, realia, and graphs to support students’ engagement in discussion, we 
can position students’ funds of knowledge and experiences as resources to pose problems.  

In the second phase, Identify Important Quantities, CMM afforded opportunities to listen to 
students’ ideas and experiences with a sense of curiosity. Modelers make assumptions and 
decisions when defining variables and determine what they consider to be important 
which impact the models they create. This is also where data can present evidence of inequities 
as the library representation modeling task revealed a disproportionate number of books in one 
racial category, as compared to the others. Older students might examine inequities in COVID 19 
pandemic data such as the disproportionate mortality rate for African American and Latinx 
communities. These important quantities drive the need to better understand underlying issues. 

In the third phase, Build and Operate on a Model, CMM affords students opportunities to use 
diverse tools, strategies and representations to build and operate on models and to recognize the 
strengths in other students’ strategies. Teachers honor the ways that students draw on 
mathematical understandings and funds of knowledge in their model building work. This phase 
is what inquiry-based learning and “doing mathematics” looks like in terms of promoting rigor 
and engagement in a cognitively demanding task (Smith & Stein, 1998). This type of learning 
disrupts the misguided belief that children need to master the basics before engaging in rich and 
complex math which often happens in schools with historically marginalized student groups 
causing harm and differential learning experiences (NCTM, 2020).  

In the fourth phase, Analyze and Interpret Models, CMM affords opportunities for students to 
collaborate, refine, and consider multiple models by comparing and contrasting strategies and to 
identify how decisions and assumptions impact solutions. This is a crucial component of 
perspective taking that is highlighted in the social justice standards (Learning for Justice, 
n.d.)  and in the civic reasoning and discourse literature (Lee et al., 2021). Encouraging students 
to revise and refine models foster engagement. 

In the final phase, Validate and Generalize Models, CMM encourages students to consider 
how the components of their own models would work or need to change in a new situation. The 
Safe Water task enabled students to consider situations similar to the Flint Water Crisis. And, in 
fact, one classroom recently had their water shut off because lead was found. Inviting students to 
generalize models to help others in similar situations cultivates civic empathy and empowers 
action to change the inequities discovered through mathematical analysis in the CMM task.  

We situate this work in the midst of the ‘double pandemic’ (Brennan, 2020) which refers to 
the COVID-19 interruptions as well as the heightened awareness of systemic racism. Aligned to 
the PMENA 44’s theme, Critical Dissonance and Resonant Harmony, we share this theoretical 
paper to engage in conversation to move beyond the “dissonance” and inequities in our world 
and consider how Community-based Mathematical Modeling can be a “post pandemic 
pedagogy” (Ladson-Billings, 2021) to advance equity and cultivate civic empathy in school 
mathematics. Our hope is that the framework offers a pathway for harmony and humanizing 
children’s learning experiences in the elementary mathematics classroom. 
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DISCOURSES OF JUSTICE: CONNECTING VISIONS AND PRACTICES TO 
IDENTIFY AREAS FOR FUTURE RESEARCH AND TEACHING 

Megan Brunner 
Oregon State University 

brunnerm@oregonstate.edu 

This systematic review aims to identify the Discourses (Gee, 2000) invoked regarding justice in 
PK-12 mathematics education literature, linking visions and practice. The three Discourses of 
Justice presented in this manuscript draw upon different visions of justice, where the differences 
arise through the proposed locus of change – the individual (Empowerment), the institution 
(Transformation), and ideologies around purposes of education (Democracy). However, the 
Discourses also share similarities across the associated teaching practices for each. There are 
differences in usage of these Discourses across the literature, which present opportunities for 
innovations in future research and teaching toward a more just math education system. 

Keywords: Social justice; systemic change; instructional vision  

Social justice in mathematics education has been a long-standing and evolving conversation 
among researchers (Gutierrez, 2002, 2013; Ladson-Billings, 1995, 2021; Martin, 2019; Secada, 
1994), teacher educators (Aguirre, et al., 2019; Bartell, 2013; Felton-Koestler, 2019; Wager & 
Stinson, 2012), and teachers and administrators (Gutstein, 2006, 2013; NCSM & TODOS, 2016). 
Each of these groups of stakeholders has wondered, what does it mean to do social justice work 
in mathematics education? How does one teach mathematics, prepare teachers, or conduct 
research in a way that serves social justice goals? 

In response, many have raised the need for identifying classroom practices that can support 
more just mathematics teaching (Aguirre & Zavala, 2013, Bartell, et al., 2017, Garii & Rule, 
2009). Others have talked about the need for teachers to develop critical consciousness and 
reflective capacity to better attune to the dynamics of power and privilege in their classrooms 
(Esmonde, 2014, Gutstein, 2006, Harper, 2019, Kokka, 2019, Ladson Billings, 2021, Stinson, 
2014). As the field engages in these conversations, a variety of terminology is invoked to 
problematize the state of mathematics education and identify focal points for change. These 
differing perspectives can lead to challenges in understanding the outcomes of possible 
instructional innovations; across the literature, different implications for practice may be aligned 
to a variety of perceptions of what justice entails (Chubbuck & Zembylas, 2008) Researchers, 
teacher educators, and teachers look to the literature for insight and inspiration on next steps 
towards justice. Thus, it is important to be able to parse what members of the field perceive as 
justice and the connected actions they suggest to make progress towards those aims.  

Parsing perceptions of justice and their associated practices can occur by examining the 
framings researchers link together when discussing justice in mathematics education. Some 
mathematics education researchers have called out the ways different framings operate to 
communicate the values, beliefs, and perspectives one might hold and how these perceptions 
shape their actions, such as Louie’s (2017) exploration of a culture of exclusion in a mathematics 
department. In this study, I use the term “vision” to describe the multifaceted set of values, 
beliefs, goals, and priorities that guide one’s exploration of justice. Many researchers claim that 
teachers’ classroom practice is entangled with their visions of justice (Adiredja & Louie, 2020; 
Chubbuck & Zembylas, 2008; Gutierrez, 2002; Horn, 2007). Consider that the problem 
perceived by a researcher influences the focus of their study, the data they collect, and the ways 
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they interpret that data; the problem articulated by a teacher educator shapes the conversations 
they facilitate and the facets of instruction they focus on in their teaching; the purpose teachers 
perceive for shifting their instruction influences the practices they enact and the ways they 
interact with other members of their institutions. Making visions of justice and the connected 
practices and actions explicit provides a foundation to unpack the ways researchers, teacher 
educators, and teachers work towards the goal of a more just mathematics education. Explicitly 
articulating a vision of justice is challenging, yet without the acknowledgment of problems of 
injustice one perceives, the instructional choices one makes can become confused or misaligned 
with their goals toward justice.   

This study is a systematic literature review of K-12 mathematics education research 
regarding justice. First, I overview foundational literature on justice in K-12 mathematics 
education. Then, I articulate the theoretical underpinnings of Discourses as a way to connect 
visions of justice and the actions taken to achieve that vision (Gee, 2000, 2008). I discuss my 
methods for selecting relevant literature and the coding process I applied, through which I found 
three different Discourses of Justice in K-12 mathematics education research. I present each 
Discourse of Justice and detail the ways it is invoked across the research base. Finally, I propose 
implications for research and teaching based on the current status of Discourses of Justice in the 
field. 

Theoretical Background 
The ways that people use language and other forms of communication build on those that 

come before them, which serves to construct sets of meaning or interpretation. Gee (2000, 2008) 
identifies these sets of meaning as Discourses, where invoking a Discourse can identify one as a 
certain type of person. Invoking a Discourse involves not just language (written or spoken) but 
also “…language, other symbolic expressions, and ‘artifacts’, of thinking, feeling, believing, 
valuing, and acting” (Gee, 1996, p. 131). These features are considered discourses, or “stretches 
of language in action” (Gee, 1996). Regarding the research literature, discourses are the ideas 
and practices captured in stretches of writing. The ways these discourses are used to make an 
argument across a manuscript draws upon (and simultaneously adds to) particular sets of 
meaning or framing (Discourses). Invoking a certain Discourse can help position the researcher 
towards a certain audience or align their work with other researchers in the field.  
Visions of and Practices Towards Justice 

Discourses can be recognized through the beliefs, values, and goals one insinuates, and the 
actions, or practices, one engages in towards those goals (Gee, 2000, 2008). In this study, I 
consider the beliefs, values, and goals one holds about the future of a more just mathematics 
education as their “vision of justice” (Hytten & Bettez, 2011; Picower, 2012). A vision of justice 
can encompass the reasons justice is needed (i.e., the injustice being addressed), the things 
justice should provide or lead to, and the key features of justice that are seen as necessary and 
important. Visions of justice refer to the overarching perspectives one holds for what education 
should look like in a more just world. Visions of justice include macro-level considerations about 
value systems and perspectives that one considers regarding mathematics education. These 
values and beliefs are communicated through micro-level interactions as one takes action to 
achieve their goals (Ryve, 2011). The other component of Discourses is the practices that align 
with certain beliefs, values, and goals. Practices include the habitual actions of instruction and 
the pedagogical strategies one might engage in to achieve a teaching goal (Lampert, 2010). 
Practices may be of a variety of grain sizes, but they are action-oriented and implementable in 
contextually situated ways. Practices may not be aligned with any one vision of justice. The 
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combination of visions of justice and the practices one sees as serving that vision are what 
constitutes a Discourse. 
Conveying Meaning via D/discourses 

D/discourses (Gee, 1996, 2000) coordinate the ways language is used to construct and 
negotiate meaning, where language involves not just speech and text but also actions, practices, 
and ways of interacting. Discourses are sustained through the cultural, political, and institutional 
recognition that happens within interactions as a result of the ways individuals portray and 
perceive themselves and others (Gee, 2000). That is, as individuals interact with others, they 
invoke parts of Discourses that give insight into the meanings they are conveying and the ways 
they want to be perceived.  

Discourses may be invoked in a few ways. First, we can revoice language stretches 
associated with a particular Discourse. Revoicing serves to align intended meanings with the 
histories and prior uses of that phrasing (Bakhtin, 1981).  In research, revoicing occurs through 
citations or quotations to support an argument; in teaching, revoicing may come through 
discussing certain pedagogical resources or goals an educator holds for a lesson or task. Framing 
one’s work alongside others who use similar language in their research and teaching raises a set 
of meanings from which to interpret their current argument. Another way Discourses might be 
invoked is through similar cues of meaning explicated through new stretches of language (e.g., 
talk and action), otherwise thought of as refracting (Volosinov, 1973). Refracting is the 
reauthoring of a Discourse into a new context. The power of refracting is important to 
acknowledge, as discourses are enacted within interactions; individuals need to act in a way that 
draws upon available Discourses but fits the context in a given moment. 

Discourses are macro-level frames for sense-making that get recognized in interaction 
through combinations of practices, behaviors, values, and tools, among other features. Drawing 
upon certain Discourses can support utilizing specific tools or practices to achieve objectives. 
Discourses link perceptions of situations to the actions one may take toward an objective; in 
pursuing a goal of a more just mathematics education system, the Discourses available to an 
actor will shape the perceptions of justice they hold and the actions they see as necessary to 
achieve it. Likewise, holding a certain vision of justice may influence the practices that one sees 
as accessible at a given moment. This study argues that connecting visions of justice and the 
practices that achieve those visions will help researchers, teacher educators, and teachers more 
clearly communicate their goals for education regarding justice. 

Research Questions 
Identifying the Discourses that are available across the field of K-12 mathematics education 

research and teaching can be challenging - Discourses are culturally recognized and 
acknowledged, so they can operate implicitly as well as explicitly in one’s actions. However, 
knowing how researchers, teacher educators, and teachers are invoking Discourses to situate 
their work of transforming the mathematics education system is necessary to understand their 
scope and intentions. Further, recognizing different framings of justice (against the perception of 
injustices currently existing in the mathematics education system) is necessary to continue 
aligning, innovating, and imagining the actions that are possible to take in creating change and a 
more just system. Thus, this study explores the questions: 

1. What are the Discourses of Justice that exist in the literature on justice in PK-12 
mathematics education? 
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2. How does the literature on justice in PK-12 mathematics education invoke Discourses of 
Justice? What implications does this have for future research and teaching? 

Methodology 
Systematic literature reviews provide a synthesis of the research base on a topic, to present 

arguments for new perspectives or provide insight for future research (Petticrew & Roberts, 
2008). This systematic literature review serves to synthesize research on justice in K-12 
mathematics education and to present an argument for using Discourses of Justice as an 
organizational and analytical lens in future research and practice.  
Data Collection: Identification of Literature 

To identify literature relevant to the construction of Discourses of Justice, I set a series of 
selection criteria. I searched the Education Resources Information Center (ERIC) and Google 
Scholar to look across general education and mathematics databases for manuscripts published 
after 2000 regarding “mathematics” AND “justice” to yield 409 and 420 initial results, 
respectively. Subsequent rounds of criteria were applied to the initial results to narrow the focus 
and applicability of selected papers to answer the research question (Petticrew & Roberts, 2008; 
Yolcu, 2019). Manuscripts that did not explicitly discuss mathematics and justice in these three 
areas were excluded. Then, I skimmed the entire body of the remaining manuscripts for 
definitions of justice and explicit focus on teaching mathematics in grades PK-12. Texts that did 
not make an explicit theorization or definition of justice were excluded. In this stage, I also 
excluded manuscripts that did not explicitly connect to PK-12 mathematics education in terms of 
research focus or participants. Finally, I read each of the remaining manuscripts in full, 
excluding papers from the same author or group of authors which leveraged the same articulation 
of justice. In my reading of the data set, I kept notes on additional texts that were regularly cited 
about social justice research but had not been identified in my original search results; I reviewed 
each of these texts using the exclusion criteria laid out above, and 5 additional manuscripts 
passed each stage and were added to the data set. Thus, the data set for this study consisted of 70 
total manuscripts focused on PK-12 mathematics education and justice. 
Data Analysis: Segmenting and Coding for Discourses of Justice 

Once demographic information was identified for all manuscripts in the data set, I segmented 
each text into sections. Segmenting the manuscripts provides a narrower focus for coding and 
allows for patterns to arise around how Discourses are invoked throughout manuscripts in the 
field. The three-section descriptions I used to chunk each manuscript were Problem Setting, 
Theoretical Framing, and Findings & Discussion. While these sections are aligned with some 
headers of manuscripts, every paper uses a unique organization for its argument. I only coded the 
sections of the manuscript that were specific to justice and mathematics education. 

I read each manuscript section multiple times and highlighted phrases or sentences that 
provided answers to each of the analytic questions, color coding for each (Table 1).  
 

Table 1: Analytic Questions for Eliciting Discourses 

Analytic Questions Contribution to Eliciting Discourses 

Q1. Why is “justice” important? articulates the problem needing to be solved 

Q2. What will “justice” provide? evidence of the action that should occur 

Q3. Who decides what “justice” is? identifies the stakeholders and responsible 
actors 
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Q4. What are the key elements of “justice”? clarifies the focus and values of the Discourse 

Q5. How is “justice” assessed or achieved? explains what tools and practices will get 
utilized 

Q6. What implications for “justice” are 
reported? 

reports challenges and insights for tools and 
practices  

Adapted from Churchward & Willis (2019) 
 
As this open coding process was completed for each manuscript, I kept memos to track common 
themes and patterns I noticed in the ways authors discussed justice (Auerbach & Silverstein, 
2006). I regularly re-read all the excerpted text across all coded manuscripts for each analytic 
question to identify new themes in the data or notice outliers in the framing of justice used across 
manuscripts. Once all 70 manuscripts were coded and entered into the spreadsheet, I created 
themes of the Discourses of Justice out of my memo-ed patterns. I then re-read the manuscripts 
and coded the manuscript sections with the Discourse of Justice descriptions. Instances where the 
text excerpts from coding did not align with the descriptions of the Discourses led to revision 
across the themes, until all Discourses were able to be applied to the coded data without outliers 
(Auerbach & Silverstein, 2006).  

The resulting three themes, or Discourses, represent sets of meaning that encompassed 
answers to all six analytic questions. These Discourses stand apart from one another due to the 
focus placed on what needs to occur to achieve justice in mathematics education. The Discourse 
of Justice as Empowerment centers on the empowerment of individuals in pursuing justice; the 
Discourse of Justice as Transformation focuses on taking action to challenge systems, structures, 
and policies at an institutional level; and the Discourse of Justice as Democracy identifies a need 
for ideological change to truly achieve justice in mathematics education. 

Findings: Three Discourses of Justice 
The three Discourses of Justice (DoJ) presented in this manuscript draw upon different 

visions of justice, where the differences arise through the proposed locus of change. However, 
the Discourses also share similarities across the associated teaching practices for each. I discuss 
trends for how each DoJ is invoked throughout arguments in manuscripts in K-12 mathematics 
education. I connect each trend to potential reasons for their existence and propose future areas 
of exploration and innovation for research and teaching.  
A Discourse of Justice as Empowerment 

The Discourse of Justice as Empowerment (DoJ-E) gains its name based on its focus on the 
empowerment of individuals via mathematics education. In this frame, justice is achieved 
through individuals becoming more empowered. this occurs through developing students’ (a) 
mathematical power (e.g. Gutstein, 2003; Frankenstein, 2013; Nicol et al., 2019; Voss & 
Rickards, 2016); (b) participation, agency, and identity (e.g. Aguirre, et al., 2013; Hand, 2012; 
Planas & Civil, 2009), (c) humanity and ethical awareness, (e.g. Atweh & Brady, 2009; Boylan, 
2009; Nava et al., 2019; Register, et al., 2020) and (4) awareness of the power and role of 
mathematics in structuring the world (e.g. Brelias, 2015; Felton-Koestler, 2017; Gutstein, 2016).  
Patterns of Empowerment. The DoJ-E centers on the improvement of individual learning 
opportunities and personal growth in awareness and agency. This Discourse was the most 
commonly invoked of the three, with 100 percent of analyzed papers containing at least one 
section that referenced this Discourse (Table 2). Only 13 papers did not cite a notion of justice 
based on the DoJ-E in the problem setting section. Almost every single manuscript analyzed in 
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this study leveraged a theoretical background (64 of 70) or presented findings or implications (68 
of 70) that invoked a DoJ-E. Further, this Discourse was consistently invoked throughout 
manuscripts, with 56 out of 70 papers drawing upon a DoJ-E in every section. This implies that 
many researchers in mathematics education are envisioning justice as empowerment from their 
initial conceptualizations of problems for study, through their articulation of justice and the 
theories that guide their study and return to notions of empowerment in their presentation and 
interpretations of findings. 
 

Table 2: Discourse of Justice Across Manuscript Sections1 

 Problem 
Setting 

Theoretical 
Framing 

Findings & 
Discussion 

At Least One 
Section2 

All 
Sections3 

Empowerment 57 64 68 70 56 
Transformation 31 43 32 51 17 

Democracy 19 14 17 28 7 
1n=70 total manuscripts reviewed 
2number of papers that invoked the Discourse of Justice in at least one section of the manuscript 
3number of papers that invoked the Discourse of Justice in every section of the manuscript 
 

This focus on individual empowerment draws from the research base, which has a strong 
focus on identity, participation, and practices as evidence of learning. In 2000, Lerman invited 
the sociocultural turn in mathematics education, followed by Gutiérrez’s (2013) call to take up 
sociopolitical perspectives in teaching and research. Research from these perspectives regarding 
teaching practice and social justice naturally involves some focus on impacting individuals. 
Researchers, teacher educators, and teachers alike must focus on supporting all students’ growth 
as mathematicians and as people in the pursuit of justice. True systemic justice cannot happen 
without individual empowerment and changes within interpersonal interactions (Gutiérrez, 
2009). It is challenging to do social justice work (Gregson, 2013; Gutstein, 2003) and discussing 
specific practices and principles that impact learning and classroom interactions can seem more 
manageable (Bartell, et al., 2017), as well as provide more opportunities for evidence of change. 
However, researchers and practitioners must be able to connect practice to the broader visions 
for justice and the mechanisms for change they are working through; without this explication, the 
impact of these practices may not address structural issues past those at the micro-level of 
classroom interactions. 
A Discourse of Justice as Transformation 

The Discourse of Justice as Transformation (DoJ-T) resonates closely with ideas from 
foundational critical theorists and mathematics educators who discuss justice such as Freire 
(1993) and Gutstein (2003, 2006). Researchers who discuss notions of justice using the DoJ-T 
focus on taking action to challenge and transform unjust systems, structures, and policies. These 
researchers move past building awareness of inequities or providing access for success within 
inequitable systems to discuss actions to shift the systems themselves. This Discourse is invoked 
as researchers frame goals of social justice teaching towards transforming (a) the norms and 
practices of the discipline of mathematics (e.g., Felton-Koestler, 2019; Hughes & Laura, 2018; 
Povey, 2002, (b) structures and policies in schools (e.g., Kokka, 2015; Raygoza, 2020; Rands, 
2013), and (c) societal organization and systems (e.g., Gutstein, 2013; Leonard & Moore, 2014; 
Martin et al., 2010). 
Patterns of Transformation. The DoJ-T was regularly evoked across literature on justice in K-
12 mathematics education. This Discourse encompassed conceptions of justice that focus on the 
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disruption of unjust systems, structures, and policies – and acting to right those wrongs. Fifty-
one manuscripts cited a DoJ-T at least once across possible sections (Table 2). Of these 
instances, 43 manuscripts invoked a DoJ-T in the Theoretical Framing sections (84%). Some of 
these manuscripts elaborated a DoJ-T from their initial conceptualization of a problem through to 
their results or implications (n=17). Of those 43, 10 manuscripts invoke a DoJ-T only in their 
theoretical framework, and not in any other section of their argument. This pattern shows that 
DoJ-T is most commonly referenced through explication of theoretical foundations and is less 
likely to be drawn upon in setting up studies or interpreting findings. 

The predominance of DoJ-T in the Theoretical Framework sections of manuscripts, whether 
in conjunction with other DoJs or on its own, speaks to the power of envisioning structural 
change in mathematics education. Much of the foundation for this power can be traced back to 
critical theorists in mathematics education, such as Freire (1993), Frankenstein (1983, 1990), and 
Gutstein (2003, 2006). These theorists all identify some component of transforming society and 
schooling in their conceptions of justice. As researchers, teacher educators, and teachers build on 
these foundational ideas of justice in math education, they are revoicing notions of 
transformation. The revoicing of DoJ-T consists of the vision of justice and fair systems, as well 
as the call to action. Less common in this revoicing is a variety of practices and implications of 
what this call to action might entail. The literature emphasizes the use of real-world, open-ended 
tasks within which students construct alternative solutions that rectify inequities, which are still 
challenging to incorporate effectively (Bartell, 2013; Gregson, 2013; Gutstein, 2003, 2016; 
Harrison, 2015). However, because of the hesitation to turn “justice” into a set of teaching 
practices – instead choosing to talk about justice as a sliding signifier (Larnell, et al., 2016; 
Stinson & Wager, 2012) – it is challenging to communicate how to act towards transformation in 
their environments. Transformation is a lofty vision, and the steps to achieve it are not clearly 
defined. Future research should support the linkages between micro-level interactions and 
structural transformations necessary for achieving system-wide justice. 
A Discourse of Justice as Democracy 

The Discourse of Justice as Democracy (DoJ-D) attends to a broader ideological motivation 
for pursuing justice. The ideological purpose of general education discussed concerning social 
justice work is to prepare well-developed and successful persons to sustain society. This vision 
of justice entails pursuing democratic societies constructed and maintained by civically engaged 
persons (Apple, 1992). Achieving justice involves the organization of teaching and learning to 
serve these democratic ideals. In mathematics education scholarship, researchers who discuss 
justice through a DoJ-D identify ideals of preparing members of society who take up (a) 
democratic participation and environments (e.g., Frankenstein, 1990; Panthi, et al., 2018; 
Reagan, et al., 2011) and (b) citizenship and civic engagement (e.g., Bond & Chernoff, 2015; 
Kokka, 2019; Ndlovu, 2011; Tanase & Lucey, 2017). 
Patterns of Democracy. The DoJ-D was the least likely of the three Discourses to be invoked 
across the research base. The DoJ-D was found in 28 unique manuscripts (Table 2). Papers often 
leveraged notions of justice as democracy when constructing their problems for research (n=19) 
or in discussing implications of their arguments (n=17). A further 14 papers mentioned 
democracy in their theorization of justice. However, only 7 papers invoked a DoJ-D across every 
section, which implies that 13 of the 28 total articles referencing democracy only utilized a DoJ-
D in one section and did not carry this thread consistently across their argument. I see this trend 
of DoJ-D as evidence that phrases like “democracy,” “citizenship,” or “civic/political 
engagement” are connected to broader ideologies around the role of education in preparing 
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students to be meaningful participants in society. This ideology is useful to justify the attention 
to social justice in mathematics, but there is a lack of connection to clear theorizations and 
aligned practices to achieve it.  

The role of democracy and citizenship as central principles of teachers’ pedagogy requires 
critical thinking and analysis, not just the incorporation of specific teaching practices into 
classrooms.  The DoJ-D lacks consistent refraction in manuscripts such that it is challenging to 
understand how one should work toward goals of democratic justice. Many manuscripts do not 
as clearly link instructional practices to visions of justice through the lens of DoJ-D (e.g., Turhan 
Turkkan & Karakus, 2018), or they identify instructional practices that overlap with those 
suggested in other DoJs. Ladson-Billings (1995) notes that citizenship can be achieved best by 
the practice of critically analyzing societal injustices, which connects DoJ-D to Transformation. 
Other researchers echo this call, articulating that TMfSJ practices, which emphasize 
transformation, are essential to creating a democratic society (e.g., Gutstein, 2003; Reagan, et al., 
2011). Register and colleagues (2020) theorize about the role of mathematics literacy in public 
policy and decision-making for the democratic preservation of society; however, when 
discussing implications for teaching, these authors recommend practices around identity work 
and participation, rigorous mathematics, and other forms of empowerment. Other manuscripts 
simplify their calls for democracy by building democratic participation through group work and 
complex tasks (Kokka, 2015) or equitable turns of talk (Hung, 2015), similar to strategies 
aligning with the DoJ-E. Researchers need to explicate connections they see between the DoJs or 
provide more context to facilitate discussion on how teaching practices might be different in 
action when attending to different visions of justice. 

Conclusion: A Call to Action 
This study is a systematic literature view of the ways justice is discussed in research on K-12 

mathematics education. It provides a theoretical lens of Discourses (Gee, 2000, 2008) to connect 
visions of what justice provides with the actions necessary to achieve it. The three DoJs that 
arose from the analysis of the literature represent different articulations of justice around 
different mechanisms of change (the individual, the institution, and ideologies, respectively). 
This manuscript posits that these DoJs are invoked inconsistently across research arguments, 
with some Discourses more fully connected and articulated than others. The patterns of use led to 
the identification of areas for future scholarship and exploration. The purpose of establishing this 
lens is not to prioritize one DoJ over another, nor is it to critique the existing research’s current 
innovations towards constructing a more just mathematics education system. Rather, this 
perspective provides an opportunity for intentional reflection in scholarship on justice in 
mathematics education and identifies areas for further exploration and clarification of how to 
move, together, towards a more just system. 
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This paper focuses on Emergent bilinguals (EBs) who traditionally face unequal opportunities to 
learn mathematics, harming their identities. The purpose of this paper is to illustrate how a fifth-
grade teacher cultivated the development of her EBs’ mathematical identities by giving them 
opportunities to participate in cognitively demanding activities. Drawing on a conception of 
mathematical identity as something that changes in response to different situations, we illustrate 
how a fifth-grade teacher positively impacted her students’ mathematical identities. The results 
reveal that when teachers use instructional strategies such as distributing mathematical 
authority, positioning students as mathematically capable, and incorporating students’ 
languages as a resource for instruction, their EBs have multiple opportunities to build positive 
mathematical identities. 

Keywords: Equity, Inclusion, and Diversity, Instructional Activities and Practices, Problem 
Solving. 

Most teachers in the United States have or will have Emergent Bilinguals (EBs) in their 
classrooms, and few are well prepared to teach them (Samson & Collins, 2012). In this paper, the 
term EBs is used as equivalent of the term English Language Learners (ELs) because it has a 
more positive connotation of students language abilities; It acknowledges students proficiency in 
one language who are becoming proficiency in another language (de Araujo et al., 2018). EBs 
face unequal opportunities to learn mathematics, reflected in their limited access to advanced 
mathematical courses and experienced and qualified teachers (Flores, 2007; Samson & Collins, 
2012). One approach to address the opportunity gap is to provide EBs with meaningful 
opportunities to learn mathematics (Moschkovich, 2013). Providing equitable opportunities to 
learn mathematics for EBs entails increasing their access to teachers who focus on developing 
their reasoning and use language as a means to enhance instruction (Moschkovich, 2013). An 
outcome of such instruction is positive mathematical identities for EBs (Bartell et al., 2017). 

This paper explores how “Ms. Wilson” implemented equitable teaching practices to support 
students to develop positive mathematical identities. Equitable teaching practices allow teachers 
to provide all students with opportunities to participate in cognitively demanding activities that 
enhance their mathematical identities (Moschkovich, 2013). The equitable teaching practices 
portrayed in this study were implemented to support every student, particularly those historically 
marginalized by race, class, ethnicity, culture, and language. The research question we explore 
here is: How do the opportunities provided to EBs during the implementation of equitable 
teaching practices help students develop positive mathematical identities? 

Equitable Mathematics Teaching Practices  
Equitable teaching practices in mathematics are defined as teachers providing all students 

with opportunities to participate in high cognitively demanding activities that respond to 
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students’ needs and enhance their mathematical identities (Moschkovich, 2013). Equitable 
mathematics teaching practices develop students’ conceptual understanding, mathematical 
reasoning, and mathematical identities through discourse by integrating students’ previous 
knowledge, cultures, and languages (Moschkovich, 2013). Bartell et al. (2017) identified nine 
equitable mathematics teaching practices: Draw on students’ funds of knowledge, establish 
classroom norms for participation, position students as capable, monitor how students position 
each other, attend explicitly to race and culture, recognize multiple forms of discourse and 
language as a resource, press for academic success, attend to students’ mathematical thinking, 
and support the development of a sociopolitical disposition. In this study, we highlight three of 
these practices as characteristics of Ms. Wilsons’ classroom that positively impacted her 
students’ mathematical identities: (1) Positioning students as capable, (2) Recognizing multiple 
forms of discourse and language as a resource, and (3) Establishing classroom norms for 
participation.  

Teachers’ instructional practices determine the degree to which students develop confidence 
in themselves and see them as mathematical doers (Aguirre et al., 2013). Teachers can support 
students’ development of positive mathematical identities by believing in their students’ 
capabilities, allowing students to use diverse strategies and forms of communication, giving 
students a voice, and monitoring students’ identities development (Allen & Schnell, 2016). 
Students’ positive mathematical identities are developed when their peers or teachers recognize 
their mathematical contributions (Wood et al., 2019). Unfortunately, EBs are more likely to face 
low expectations and be stereotyped, harming their mathematical identities (Flores, 2007). 
Positioning students as mathematical capable is promoted when teachers move away from 
stereotyping students based on their cultural backgrounds, select challenging curricula, and share 
mathematical authority with students (Bartell et al., 2017). Classrooms in which teachers hold 
high expectations for their students result in students having more opportunities to learn 
challenging mathematics (Flores, 2007). Teachers provide students with opportunities to 
communicate their ideas, justify their reasoning, make sense of others’ ideas, and transfer their 
knowledge to other contexts and concepts (Banes et al., 2018; Moschkovich, 2013). Moreover, 
teachers consider students’ cultural and linguistic differences as strengths (Bartell et al., 2017). 

As part of their instruction, teachers should choose high cognitively demanding tasks and 
maintain or enhance that demand during classroom implementation. Cognitively demanding 
tasks have the potential to develop students’ conceptual understanding through oral and written 
explanations that involve pictures, gestures, diagrams, and formal and informal language (Wood 
et al., 2019). In a classroom where promoting mathematical reasoning is the goal, tasks must 
provide opportunities for all students to engage in thinking, make comparisons, establish 
relationships, make conjectures, validate, and justify their thinking (Vale et al., 2017). Teachers 
of EBs must provide mathematically and linguistic rich tasks that allow all students to 
collaborate, interact, think, talk, reason, and use their first language (McGraw & Rubinstein-
Ávila, 2009). Instruction of EBs needs to incorporate processes such as explaining, comparing, 
conjecturing, generalizing, justifying, and exemplifying, referred to as the language of reasoning 
(Bragg et al., 2016). Teachers should use questions, sentence frames, and prompts to support 
students in communicating their reasoning (Coleman & Goldenberg, 2009). Tasks serve as 
resources for positioning students as mathematic doers and consequently enhance their 
mathematical identities. 

Equitable teaching practices for EBs support developing mathematical reasoning by 
implementing mathematical activities that allow students to use multiple resources to understand, 
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solve, and communicate their mathematical ideas (Moschkovich, 2013). Teachers of EBs need to 
emphasize the development of everyday and academic English language and focus on culturally 
diverse and inclusive practices (Samson & Collins, 2012). Incorporating students’ first language 
and cultures creates a school philosophy where home and community are integrated, facilitating 
access to the curriculum, reducing stress, and maintaining self-esteem (Necochea & Cline, 2000). 
Teachers are encouraged to use students’ first languages for support when possible. For example, 
prior to a lesson, teachers might preview the content for the students in their primary language 
and identify vocabulary and different representations that may help students in the 
communication process (Coleman & Goldenberg, 2009). Additionally, translanguaging, 
identification of cognates (e.g., equation and ecuación), and use of words in context are strategies 
teachers can use to help students make meaning of new languages (Coleman & Goldenberg, 
2009). Translanguating goes beyond language switching and includes all the linguistic resources 
to communicate based on social and cultural practices (García & Wei, 2014). 

In general, students benefit from teachers establishing sociomathematical norms for 
participation as an equitable teaching practice (Bartell et al., 2017). Sociomathematical norms go 
beyond regular classroom norms and are specific norms in mathematics that regulate discussion, 
encourage students to justify their mathematical ideas, make their reasoning clear, and improve 
their reasoning skills (Yackel & Cobb, 1996). Sociomathematical norms influence the 
effectiveness of instruction by providing an adequate environment to support student 
engagement. In particular, establishing sociomathematical norms helps build a community by 
setting up and guiding discussions so that all students have a voice and their participation is 
valued (Bartell et al., 2017). As students become familiar with the accepted norms, they 
understand their role and the role of others in the classroom (Yackel & Cobb, 1996). In equitable 
classrooms, students have consistent opportunities to share their reasoning and to assess the 
reasoning of others; they become a mathematical authority in the classroom (Cobb et al., 2009).  

Mathematical Identity 
Research on mathematical identity considers students’ persistence and interest in 

mathematics, their motivation to learn mathematics (Cobb et al., 2009), and the relationship 
between learning and cultural and social issues that influence the learning environment (Cobb & 
Hodge, 2007). Teachers’ instructional choices determine the impact that instruction will have on 
students and the degree to which they develop positive mathematical identities (Aguirre et al., 
2013). As part of instruction, teachers should support students to develop confidence and see 
themselves as powerful doers of mathematics. Teachers can accomplish this goal by grouping 
students to work collaboratively, establishing high expectations for students, and creating 
environments where teachers are facilitators of classroom activities (Bartell et al., 2017). Allen 
and Schnell (2016) share some strategies that teachers can use to support students’ development 
of positive mathematical identities. These strategies include knowing and believing in the 
students, reconceptualizing mathematical success (e.g., giving value to the use of different 
solution strategies instead of already defined procedures), prioritizing students’ voices, and 
monitoring identity formation. Teachers should know and believe in their students’ capabilities. 
In short, "viewing student attributes as assets rather than deficits" (Allen & Schnell, 2016, p. 
401). When students believe in one another as problem solvers, they are able to value the 
positive contributions of their peers. 

Meanwhile, teachers can use instructional strategies such as representing new ideas in 
diverse ways, asking purposeful questions, listening to others, revoicing and paraphrasing 
students’ reasoning, discussing an idea before writing it down, establishing connections, and 
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communicating mathematics ideas using different forms of communication (Moschkovich, 
2013). Teachers can prioritize student voice by giving students opportunities to discuss their 
ideas in small groups and then in the whole class. The incorporation of formative assessments 
can support teachers to assess student’s readiness and understanding of the language and the 
content of the lesson, as well as tools to monitor identity formation (Allen & Schnell, 2016; 
Hakuta, 2014). 

Beyond these strategies, distributing classroom authority and incorporating students’ 
languages and cultures as resources during instruction are equitable teaching practices 
(Moschkovich, 2015) that support students’ burgeoning mathematical identities. Using language 
as a resource allows EBs to discuss and share their mathematical reasoning and understand 
mathematics. An important part of such instruction involves teachers creating a learning 
environment where students’ roles and norms for participation are well defined; specifically, 
students understand that their ideas are important and need to be publicly shared (Yackel & 
Cobb, 1996). Additionally, teachers need to promote respectful relationships among students and 
position them as mathematically capable (Bartell et al., 2017).  

Theoretical Framework 
The theoretical framework for this study is socio-constructivism, which integrates cognitive, 

constructivist, and socio-cultural theories to make sense of the different teaching practices and 
examine students’ mathematical reasoning, languages, and identities (Shepard, 2000). Cognitive 
theories provide the means to look at students’ thinking structures as they develop their solutions 
and specific forms of reasoning (in this case, algebraic reasoning). Constructivist theories guide 
our analysis of social constructions of knowledge through discourse by looking at classroom 
interactions. Finally, socio-cultural theories inform our interpretation of students’ prior 
knowledge, experiences, and languages in developing their mathematical identities (Cobb & 
Hodge, 2007).  

Research Methodology 
During the 2019-2020 academic year, we gathered detailed evidence of a teacher’s and 

students’ experiences during problem-solving lessons (Creswell & Poth, 2018). An explorative 
case study helped us identify the research question and the procedures to refine our intervention 
(Yin, 2014). A fifth-grade teacher, "Ms. Wilson" who worked in an urban elementary school, and 
our research team, collaborated three times to develop the "Discursive Mathematics Protocol," an 
instructional protocol designed to support the development of students’ mathematical reasoning 
and language competencies (see Kitchen et al., 2020, for additional information about the DMP). 
The DMP builds on Pólya’s (1945/1986) iconic problem-solving heuristic and incorporates 
research-based "language practices" and essential teaching practices borrowed from the 
Principles to actions: Ensuring mathematical success for all (NCTM, 2014).  

 This paper examines how Ms. Wilson’s implementation of the equitable teaching practices 
with the aid of the DMP contributed to developing her students’ mathematical identities. Ms. 
Wilson is a bilingual (English-Spanish) White woman certified as an English as a Second 
Language (ESL) teacher. When this study was undertaken, Ms. Wilson had taught for five years, 
attending a significant number of EBs because of her ESL expertise. For each problem-solving 
lesson, the research team engaged Ms. Wilson in a planning session conducted via Zoom prior to 
the lesson and in a debriefing session after the lesson. The focus of the planning lessons was on 
the language and cognitive demand of the task, possible strategies and challenges, and the 
formulation of questions to elicit students’ thinking and participation. The debriefing sessions 
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serve as a space for reflection and improvement. The teacher and the team discuss what went 
well in the class and what can be improved to support students’ participation and development of 
mathematical reasoning and language. During the problem-solving lessons, the three research 
team members and Ms. Wilson followed a co-teaching approach (Cook & Friend, 1995) to teach 
the lesson (roles and amount of teaching vary across lessons). Team teaching served as a strategy 
to directly support Ms. Wilson to plan, deliver, and reflect on the problem-solving lessons.  

We gathered information to gain insights about the equitable teaching practices and how the 
different opportunities provided to EBs supported them to develop positive mathematical 
identities. We collected data from two problem-solving lessons that included students’ work, 
videotapes of interactions among students and Ms. Wilson and just the students, and videotapes 
of Ms. Wilson carrying out each lesson. In addition, we interviewed Ms. Wilson to learn directly 
from her about the teaching practices she implemented to support EBs in developing positive 
mathematical identities. 

We interpreted videotapes, student work samples, and the interview conducted with Ms. 
Wilson using interpretative methods (Creswell & Poth, 2018). The emergent themes summarize 
Ms. Wilson’s beliefs and teaching practices during problem-solving lessons that supported 
students’ development of positive mathematical identities. In the findings, we discuss each 
indicator by examining Ms. Wilson’s narratives, her teaching practices, and her students’ work.  

For the problem-solving lessons illustrated here, the “Hexagons in a Row” task (See Figure 
1) was implemented. In the first, second, and fourth questions, students start by finding near 
generalizations (patterns that can be found by drawing or making a short table) and then directly 
apply the derived functional relationship to find a far generalization (patterns that require to find 
arithmetic or algebraic expressions) (Callejo & Zapatera, 2017). In questions 3 and 5, students 
apply the inverse of the functional relationship derived (reverse thinking) (Callejo & Zapatera, 
2017) to find the number of hexagons made with a given number of toothpicks.  
 

 

1. How many toothpicks does Joe need to make 
5 hexagons? Explain how you figured it out. 

2. How many toothpicks does Joe need to make 
12 hexagons? Explain how you figured it out. 

3. Joe has 76 toothpicks. How many hexagons 
in a row can he make? Explain how you 
figured it out. 
Extension questions 

4. How many toothpicks does Joe need to make 
100 hexagons? Explain how you figured it 
out. 

5. Joe has 1001 toothpicks. How many 
hexagons in a row can he make? Explain how 
you figured it out. 

Adapted from Mathematical Assessment Resources Service 
https://www.insidemathematics.org/sites/default/files/materials/hexagons%20in%20a%20row.pdf 

Figure 1: Hexagons in a Row task 

Research Findings 
We identified three major themes related to equitable teaching practices enacted in Ms. 

Wilson’s classroom during the mathematics lesson to support EBs’ development of positive 
mathematical identities: Sharing mathematical authority, positioning students as mathematically 
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capable, and incorporating students’ languages as resources for instruction. Table 1 summarizes 
the different indicators we identified in the data. All the vignettes are instances of EBs’ oral 
participation in the class or written work.  

 
Table 1: Themes Derived for Mathematical Identity 

Theme/ Indicator Practice code 
Sharing 
mathematical 
authority 

Students had consistent opportunities to develop 
and articulate their solutions to tasks and assess 
the solutions of others (Cobb et al., 2009) 

Exchange and 
assessment of ideas 

Students acknowledge the importance of making 
their ideas public shared (Bartell et al., 2017). 

Making ideas public 

Positioning 
Students as 
mathematically 
capable 

Teachers believe their students are mathematically 
capable (Bartell et al., 2017).  

Teacher’s beliefs 

Choose and implement high cognitive demand 
tasks.  

Tasks 

Incorporating 
students’ 
languages as 
resources 

Incorporate of students’ languages as resources 
during instruction (Moschkovich, 2015) 

Language 

Review vocabulary and develop mathematical 
language (Banes et al., 2018). 

Vocabulary 

Engage students in mathematical discourse (Banes 
et al., 2018). 

Discourse 

 
Ms. Wilson Shared her Mathematical Authority. She distributed the authority in the 

classroom, letting students share their ideas and assess the ideas of others. She engaged students 
in productive discussions that included asking purposeful questions, using and connecting 
multiple representations, interpreting diagrams, and discussing ideas in small groups and whole-
class discussions. Throughout, Ms. Wilson encouraged students to build arguments and to reject 
or accept the strategies or solutions presented in the class. For example, three students shared the 
expressions they use to calculate the number of toothpicks to make 12 hexagons. Students 
discussed the similarities, differences, and validity of those expressions to answer the problem. 
Most of the students could indicate what each number in the expressions represented (number of 
hexagons, number of toothpicks to make one hexagon, and number of touching sides) and 
applied those expressions to respond to questions in the task. Laura described the three different 
expressions provided for her classmates giving the arguments for their validation (expression 1: 
12 x 5 + 1, expression 2: 6 x 12 -11, expression 3: 5 x 11 + 6)  

Me and Sandra said that for the first one, 12 times five plus one; Ryan was looking at it like 
they were all five [the number of sides in a hexagon]. And then he saw that one of them has 
six sides while the others have five, so he had to add that one to show that one is six [has six 
sides]. The second one, six times 12 minus 11, shows that it was easier for them to think of 
them [the sides] as all six and then because only one of them was six and there was 12 
hexagons, they needed to subtract 11 because one still has six [sides]. [For] five times 11 plus 
six; we thought of it as the two different groups, the groups of the fives and the one six, and 
so it just depends on how you group them. 

Laura’s explanation showed a clear understanding of the different strategies. She acknowledged 
her peers’ ideas and tried to make sense of those ideas. Students presented their solutions, while 
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Ms. Wilson asked them to indicate the meaning of each term in their expressions. We can see 
that through this exchange, Laura was able to summarize the different strategies indicating how 
many sides were counted, how the hexagons were grouped, and why some expressions included 
addition and others subtraction. Laura was able to connect multiple ideas and restate others’ 
thinking. In Ms. Wilson’s class, students were constantly asked to make their ideas public and 
assess others’ ideas to engage them in learning mathematics and as a means to demonstrate that 
their ideas were important contributions. Students in Ms. Wilson’s classroom valued all the 
mathematical ideas presented to solve the task. Ms. Wilson let students decide when a strategy or 
solution was wrong. 

Positioning Students as Mathematically Capable. Ms. Wilson’s high expectations were 
reflected in her students’ positive attitudes and participation in the class. She believed in 
students’ capacities to solve challenging tasks. In the following excerpt, Ms. Wilson talked about 
the hexagons in a row task and the possibilities it offers to the students. 

… when I was thinking about [choosing a task] I was trying to think more in line with the 
content that I was doing, but I think this one was broader, and so it allowed for more thinking 
and problem-solving, which is something I would like to be focusing on more…how does 
this [content of the task] connect to a bigger mathematical idea or what can you take away 
from this and use later because I feel like there’s so much good in math and the hexagons 
task that maybe some of them [the students] will say I can look for these different patterns 
next time. 
When implementing cognitively demanding tasks, Ms. Wilson was challenged by some of 

her students who had negative attitudes toward mathematics or lower expectations for 
themselves. Some of her EBs were not confident about their abilities. We asked her how she 
dealt with EBs when they did not participate in the class and how she helped them realize that 
they could solve the task. 

Students like Samuel [an EB student], he definitely wants teacher direction first, even if he 
does understand. He wants to like to clarify everything with me. So I’m working on it with 
him of like, we can talk through it, but I’m not going to tell you what to do. And same with 
today, he really likes to just know that he’s doing the right thing. And so, for them, it’s just 
like building confidence.  

Building students’ confidence increased their participation and helped them develop positive 
mathematical identities. Ms. Wilson created a learning environment that empowered her EBs. 
She constantly compared their work to the work of mathematicians. At the conclusion of the 
problem-solving lesson, she stated the following to the whole class:  

What does complete [a task] look like? It is having an answer for each question, showing 
your work for each question, and then explaining your thinking. Each place [questions in the 
task] has explain how you figure it out. You will not be able to communicate with them [the 
researchers] after this task is over, right? So, you have to put it in writing. Great 
mathematicians put their ideas into writing. 

Ms. Wilson had high expectations for her students and prioritized their voices. Students talked 
about mathematics, compared their solutions, tried other strategies, and assessed their thinking 
and other students’ thinking. 

Incorporating Students’ Languages as Resources in Instruction. Ms. Wilson recognized 
and valued students’ backgrounds as a resource to learn mathematics (Aguirre et al., 2013). Her 
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acknowledgment of students’ languages helped her EBs develop positive mathematical 
identities. As a whole class, they discussed the meaning of some words, used the words in 
context, and put the problem in their own words. Mathematical discourse played an important 
role in supporting students to understand the task and share their ideas using multiple forms of 
communication. Students in Ms. Wilson’s class mainly increased their vocabulary by talking. 
Gestures were widely used to describe mathematical patterns during which students pointed at 
different parts of the diagram or showed how to count the toothpicks and the shared sides. 
Gestures combined with speech helped students assess their thinking by noticing disagreement 
between the description provided and the elements pointed to in the figure. One EB, Samuel, 
explained that there were four shared sides in four hexagons in a row. He used the diagram as an 
aid to explain his understanding of the task. When counting and pointing to the shared sides, 
Samuel realized that there were just three of them. The use of gestures supported him and other 
students to communicate their ideas. Ana, another EB, used her pencil and the figure 
representing four hexagons to explain how she found the number of toothpicks needed to make 
five hexagons:  

What I did was I got 6 as like a whole, so there is 6 right there [circle the first hexagon and 
write down 6], and then there’s 1, 2, 3, 4, 5 [she outlined the second hexagon using the 
pencil] and then there’s 5 [counting the third hexagon], and then there’s 5 here and then is 5, 
5, 5, and since there are five hexagons is another hexagon right there [sketching the fifth 
hexagon] so then 5 times 4, because is 4 right then plus 6 because is the hexagon here [She 
pointed out the first hexagon in figure 4] and then 26 which is the answer. 

Consistently communicating her ideas and combining linguistic resources (gestures, diagrams, 
language) helped Ana and other students to assess their solutions and become more confident 
about their ideas.  

Discussions and implications  
In this study, we explored how the implementation of equitable teaching practices provided 

EBs with opportunities to develop positive mathematical identities. Ms. Wilson’s 
implementation of equitable teaching practices, such as opportunities to solve cognitively 
demanding tasks, use multiple forms of discourse and language, position students as 
mathematically capable, and share mathematical authority, helped her students develop positive 
mathematical identities. She valued the ideas of her students and held high expectations. The 
excerpts show that representations, discourse, gestures, and language served as resources for 
students to communicate their reasoning, increasing their opportunities to participate in class to 
share and assess their ideas (Banes et al., 2018; Cobb et al., 2009). Students like Laura 
recognized multiple solution strategies and were able to justify the validity, similarities, and 
differences between them. Students in Ms. Wilson’s class had the authority to evaluate others’ 
thinking and were positioned as mathematical capable. Their linguistic approaches were seen as 
strengths instead of deficiencies contributing to the development of positive mathematical 
identities (Bartell et al., 2017). 

Incorporating equitable teaching practices in the mathematics classroom benefits all students, 
increasing participation and enhancing students’ mathematical identities (Cobb et al., 2009; 
Yolcu, 2019). This study demonstrates that incorporating equitable teaching practices is 
beneficial for EBs to develop positive mathematical identities. Specifically, our analysis of 
equitable teaching practices shows the benefits of providing opportunities for EBs to 
simultaneously develop mathematical reasoning and language competencies.  
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This research report analyzes the process of engaging 18 youth in urban emergent communities 
to enact Digital Mathematics Storytelling to explore their mathematics identities. The youth, in 
grades 7-11, engaged in the process of crafting and sharing their digital mathematics stories 
within two week long summer camps. Using a Participant and (Re)design Research 
Methodology, the research team explored how the constructs of Digital Storytelling, 
Mathematics Identity, and Storytelling can help us better know how to craft experiences that 
connect to youth knowledge. 

Keywords: Equity, Inclusion, and Diversity; Design Experiments; Informal Education; 
Technology 

Objectives 
During the COVID-19 pandemic, many urban emergent school districts1 in the United States 

of America, already dealing with racial and socioeconomic segregation, were overwhelmed with 
how to support the health and safety of their students and communities, while also responsible 
for their students’ academic learning. Because of this context, research projects based within 
school settings had to either switch to a completely remote model or completely disconnect from 
the school context.  

Our research team delt with the dissonance of our urban emergent partner schools having to 
engage in a much more stressful version of teaching by enacting a community-based approach, 
creating our own external summer camp experiences to invite youth to work with and co-create 
ways to enact Digital Mathematics Storytelling together with us without having to burden school 
and teaching partners. In particular, our summer camps hoped to create community-oriented 
spaces for thriving mathematics conversations, particularly for youth from urban emergent 
communities, after a year of remote learning that isolated many young people from their school 
communities. While our other work focuses on the actual stories and learning that young people 
enacted when engaging in Digital Mathematics Storytelling, this paper focuses on the ways our 
research team were able to plan, augment, and enact two week-long summer camps to best serve 
and learn from 18 youth, aged 12-17, in the wake of the COVID-19 pandemic. The objectives of 
this research study involved: (1) developing a protocol for Digital Mathematics Storytelling 
through Participatory (Re)design Research and (2) understanding how youth might see the 
construct of storytelling as connected to their own mathematics identities. 

                                                 
1 The term urban emergent signifies communities in large cities, but not as large as metropolitan areas such as New 
York or Los Angeles. These urban emergent communities, however, encounter the same scarcity of resources and 
historical issues of segregation (Milner, 2012).   
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Theoretical Perspectives 
Non-white children in urban emergent communities are often positioned in ways that do not 

allow them to craft their own mathematics identity. In particular, while students in urban 
emergent communities live mathematically rich lives, they are provided few opportunities to 
connect their out-of-school mathematical knowledge to in-school mathematics tasks that are 
often based on white, middle-class lifestyles they cannot relate to (Civil, 2009; Nasir & de 
Royston, 2013). For instance, when a student shares about the intricate proportional reasoning 
she witnesses in the kitchen as her mother and aunts prepare multiple dishes in unison, she 
positions them not only as holders of culinary knowledge, but also of mathematics knowledge. 
However, scaling up this approach of connecting out-of-school mathematics knowledge to in-
school mathematics learning has been difficult because (1) family and community mathematics 
often operates socially, involving storytelling and group problem solving, while school 
mathematics is often positioned as internal knowledge measured individually (D’Ambrosio, 
1985; González et al., 2001; Powell & Frankenstein, 1997), and (2) exploring students’ home 
and community mathematics knowledges asks for even more labor from already overworked 
teachers. 
Community Funds of Knowledge 

One approach to address this issue of connecting out-of-school mathematics to in-school 
mathematics is through funds of knowledge, which honors families, communities, and the 
knowledge they bring to classroom mathematics. This community-based approach to 
mathematics teaching recognizes that “the historically accumulated and culturally developed 
bodies of knowledge and skills essential for household or individual’s functioning and well-
being” are mathematically rich resources (Moll et al., 1992, p. 133). A child’s motivation to learn 
mathematics, thereby increases based on the increase in connections they make between two 
types of mathematics: (1) the mathematics they see in their families and communities and (2) the 
mathematics they experience in the classroom (Aguirre et al., 2013; Civil, 2016; González et al., 
2001). 

Within most urban and urban emergent communities, mathematics knowledge exists within 
social discourses such as storytelling (Turner et al., 2009). However, in the mathematics 
classroom, mathematics is treated and assessed as individual knowledge with little social 
interaction (González et al., 2001). For instance, Turner et al. (2012) detailed how well-meaning 
elementary teachers who were not from a Latinx community created a contrived mathematics 
activity around buying and selling raspados (shaved ices) at a community stand, but they did not 
ask children nor community members to share how mathematics conversations actually take 
place at the raspado stand. Surface-level attempts like this create harm by tokenizing children’s 
cultures and imposing foreign values. In this case, the teachers imposed a value of capitalistic 
efficiency–getting the most raspados for your money, rather than connecting to community 
values (Bright, 2016).  

To be successful, a community funds of knowledge approach to mathematics teaching must 
invite family and community members into the learning experience (Moll et al., 1992). These 
experiences help mathematics educators become part of the communities they serve, helping 
them understand how mathematics knowledge exists outside of Eurocentric ways of knowing 
(D’Ambrosio, 1985; Powell & Frankenstein, 1997), how mathematical thinking is situated within 
local contexts (Lave, 1988), and how to merge the classroom and community spaces to form a 
third space that honors all practices, knowledges, and beliefs (Gutiérrez et al., 1999). However, 
reaching this level of awareness is particularly difficult as it essentially asks teachers to become 
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ethnographic researchers (Oughton, 2010). This approach also has a tendency to prioritize 
teachers’ cultural capital, since the teacher is often involved in translating the community 
knowledge for the classroom (Oughton, 2010; Turner & Drake, 2016).  
Digital Storytelling  

Another approach to connecting out-of-school mathematics to in-school mathematics 
involves the ancient art of storytelling. When students in urban emergent communities tell 
narratives about their out-of-school mathematical experiences, they position themselves and their 
communities as mathematical. They tap into the power of authorship to counter stigmas that 
discourage them from engaging in mathematics (Aguirre et al., 2013; Love, 2014; Özpinar et al., 
2017). In a world where video and image-sharing platforms, such as Instagram and TikTok allow 
for routine sharing of personal stories (Rideout, 2017; The Associated Press-NORC Center for 
Public Affairs Research, 2017), a strong case exists for utilizing these emerging digital literacies. 
Therefore, this study’s aim involved developing and exploring how Digital Mathematics 
Storytelling, a mechanism in which students use videos, photographs, and audio to craft and 
share mathematically-rich narratives from their families and communities, might help connect 
out-of-school mathematics to in-school mathematics in a non-school-based setting. 

Digital storytelling involves using images, voice, and music to tell a story in the form of a 
short one to five-minute videos (Lambert, 2013). Storytelling is the primary mechanism for 
sharing important knowledge between generations in nearly all cultures–the very act of 
storytelling can define a community, a history, and a shared knowledge base (Prusak et al., 
2012). Furthermore, children from marginalized communities often tell counter-stories that push 
against deficit-focused stereotypes, using these stories to explore and strengthen their identities 
and connect more deeply to their communities (Delgado, 1989; Duncan, 2006; Matias & 
Grosland, 2016).  

The transformative moment in a digital storytelling cycle happens within the listening-
focused small group space called the storycircle, when storytellers share their stories-in-progress 
to each other (Lambert, 2013). This storycircle forges a collaborative learning space where 
participants see the value of their cultural and community identity (de Jager et al., 2017). It is 
within the sharing of and retelling of stories that mathematics identities are formed as children 
begin to see themselves as part of their mathematics narrative (Aguirre et al., 2013; Chao, 2014; 
Langer-Osuna, 2015; Sfard & Prusak, 2005). Often, structured story prompts or visual organizers 
can help children manage the complexity in their stories (Ohler, 2006), so that children do not 
simply document what is happening, but craft a narrative that involves conflict, growth, and 
change in order to strengthen their ties to the community. Simply put, Digital Mathematics 
Storytelling is not just documenting what one sees, but involves crafting a narrative that centers 
one’s humanity, growth, conflict, and soul. 

Figure 1 shows our initial framework of a digital mathematics storytelling experience, which 
features two storycircles, the first involving self-reflection and the second involving sharing 
drafts for feedback from peers and adults. In this example, a 4th-grade child initially wants to tell 
a story about how she uses mathematics in the kitchen, a classic connection to home 
mathematics. In her first storycircle, as she thinks about how to tell her story and realizes that she 
does not see much measuring and adherence to recipes at home, but rather sees her mother and 
aunt cooking through approximation and tasting. In her second storycircle, she shares her 
emerging narrative with peers and uses their feedback to assemble video and audio clips to create 
a finished video to share at a culminating community screening. This research paper troubles our 
initial Digital Mathematics Storytelling framework by exploring the research question: During 
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the COVID-19 pandemic, when engaging in classroom-based research became too burdensome 
for teachers in urban emergent communities, what happens when enacting and building a Digital 
Mathematics Storytelling workshop for youth, particularly in connection to the construct of 
mathematics identity? 

 
Figure 1. The Initial Storycircle Framework, which shows how a child’s mathematics story 

evolves through two storycircles of reflection, sharing, and revision.  

Research Design and Methodology 
The research team enacted two week-long digital mathematics storytelling camps involving 

18 students, aged 12-17, in grades 7-11. The students came from a variety of school districts and 
ethnic backgrounds and were recruited heavily from the researchers’ own networks. The camps 
were hosted at a university-owned community innovation and outreach center in the Midwestern 
region of the United States of America. Because the camp was hosted in a facility operated by 
this university, all participants had to show proof of COVID-19 vaccination, which potentially 
influenced the pool of recruited participants. 
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Participatory and (Re)design Research 
Researching technology that values participants’ voices invites a Participatory Design 

Research methodology, which builds upon design-based research, but positions all participants 
as integral to designing the research goals and aims (Bang & Vossoughi, 2016). One of the main 
critiques, however, of design-based research (Cobb et al., 2003; The Design-Based Research 
Collective, 2003) is that, while very suitable for technology-driven educational research, the 
researchers still hold the authority to make research decisions (Engeström, 2011). Therefore, we 
attempted to enact a modified (Re)design Research method, to allow participants to not just 
engage in the enactment, but also help us with the very design of the Digital Mathematics 
Storytelling research framework itself. 

By utilizing feedback from students who participate in the Digital Mathematics Storytelling 
camp, we used this developmental study to focus on developing protocols of how to implement 
Digital Mathematics Storytelling for middle and high-school aged students in urban emergent 
communities. Additionally, we explored the ways that Digital Mathematics Storytelling impacted 
and allowed insight into students’ evolving mathematics and storytelling identities.  
Research Measures 

Pre and Post-Interviews. Over the course of the first two days of the Digital Mathematics 
Storytelling camp, a member of the research team met with each student to talk about the 
student’s identities around mathematics and digital storytelling in a 5-to-10-minute interview. 
Then, on the last day of the camp, each student engaged in a similar 5-to-10-minute post-
intervention interview with a research team member. These interviews also asked students about 
what they would like to change about the camp, which allowed us as facilitators to alter our daily 
structures to respond to what the students felt could better help them become Digital 
Mathematics Storytellers..  

Analysis of Digital Mathematics Stories. The final Digital Mathematics Stories that the 
students submitted as their “final project”, as well as the digital artifacts (videos, images, 
photographs, text comments) that the students used in their process to create their stories, were 
also analyzed. In this paper, we focus less on the content of these stories and more on what they 
unveil about the ways the camp and the protocols of Digital Mathematics Storytelling engaged 
the students.  

Reflective Analysis. Over the course of the two camps, the students engaged in the 
developing Digital Mathematics Story curriculum. At the beginning of the first camp, this 
curriculum consisted of four loose modules, each involving a combination of whole-group, 
small-group, and individual activities. The modules were designed to take about three hours to 
enact, which was the length of each day of the camp. This initial Digital Mathematics Story 
curriculum was created and maintained by the research team and based heavily on the existing 
Digital Storytelling modules created over the past 30 years by StoryCenter (Lambert, 2013). 
Every afternoon, after the students had left the camp, the research team met for an hour to 
discuss how the day went and how to alter the next day’s plans, with the only caveat being that 
the camp should culminate in the students creating individual 3–5-minute Digital Mathematics 
Story videos to present on the last day of the camp. These conversations were recorded and 
served as an artifact of how we engaged in continual tweaking and augmentation of the daily 
activities to best engage the students.  
Analysis 

The three measures, as detailed in Table 1, show: (1) The Pre and Post-Interviews, (2) 
analysis of the Digital Mathematics Stories, and (3) the recordings and notes of the daily 
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reflections to document how we changed the curriculum. First, in terms of exploring ways to 
enacting a Digital Mathematics Storytelling protocol, we used a Participatory (Re)design 
Research Framework (Bang & Vossoughi, 2016; de Jager et al., 2017; Lambert, 2013). Second, 
to attend to student’s mathematics identities as connected to other narrative and other social 
identities (Aguirre et al., 2013; Langer-Osuna & Nasir, 2016; Sfard & Prusak, 2005). 

 
Table 1: Alignment of the research objectives, data collection, and analysis methods 

Research Objective Data Analysis 
Enactment of a 
Digital Mathematics 
Storytelling 
Experience  

Pre/Post Interviews 
Students’ Stories 
Reflective Conversations 

Participatory (Re)design 
(Bang & Vossoughi, 2016; 
The Design-Based 
Research Collective, 
2003) 

Mathematics & 
Storytelling 
Identitites 

Pre/Post Interviews 
Students’ Stories 

Identity as Narrative 
(Sfard & Prusak, 2005) 

Results 
Evolution of the Digital Mathematics Storytelling Enactment  

The initial digital mathematics storytelling modules consisted of a warmup game to start the 
day, two initial activities to help get students comfortable with making and editing videos, and 
four daily modules focusing on students making videos that explored their identities as a (1) 
storyteller, (2) digital storyteller, (3) mathematician, and (4) digital mathematics storyteller. 
Additionally, each morning started off with a community building game. Each of these modules 
focused on exploring activities around those identities such as learning to tell a story in three acts 
or how a close-up shot conveys a different tone than a wide-angle shot.  

In the early feedback from the students and our own reflective conversations, we noticed that 
(1) students gravitated towards group tasks and wanted to engage in almost all activities in small 
groups as opposed to individually and (2) students who signed up to attend this camp thought 
that this would primarily be a mathematics camp and thereby were hoping to have more 
opportunities to engage in mathematics. Both early observations led to modifications to our 
protocol. 
Community Activities 

This summer camp occurred in 2021. Every single student in our camp had spent the prior 
year in a remote or virtual learning environment and had missed opportunities to work with other 
peers in a physical setting. So, we decided to augment all the modules so that they did not 
emphasize individual videos and contributions, and to use the majority of our camp time to focus 
on community and group activities and games. This was a move that seemed appreciated, as 
almost every one of the post-interviews mentioned that the best part of the camp was the games 
that students played to get to know each other and build camaraderie. In hindsight, we even 
realized that the end goal of having each student create their own individual digital mathematics 
story took away from this emphasis on community as it situated digital storytelling as an 
individual endeavor. In the post-interviews, all but three of the students mentioned that they had 
much more fun working on the group video projects as opposed to making their own individual 
videos. And when students were asked to create individual video stories, two students never 
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finished their videos, but were willing contributors to the group video stories. Figure 2 shows an 
example of the ways the students engaged in creating videos together in small groups. 

 

 
Figure 2: One finding was that students engaged much more with group video storytelling, 

as shown here, as opposed to making individual videos.  
 

Mathematics Identity 
Because so many of the students wanted to engage in mathematics, the research team decided 

to stop focusing so heavily on telling stories and actually engage the students in an augmented 
mathematics circle, opening up space for students to join groups to solve open-ended, 
challenging mathematics tasks. Figure 3 shows a group of students analyzing and discussing 
each other’s strategy to an open-ended mathematics task. In the majority of the post-interviews, 
students mentioned how much fun it was to engage in this open ended, inquiry-based 
mathematics discussion, particularly because it was so different than the mathematics they were 
used to doing at school.  

 

 
Figure 3: Students were surprised that this was more a video making camp and not a 
mathematics camp, so we gave them an opportunity to engage in group mathematics 

problem solving 
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Storytelling Identity 

Additionally, students expressed to us that they found engaging in visual storytelling and 
learning about storytelling to be quite new and challenging. The majority of students who 
attended the camp shared that they had experience making videos in the past, but that these were 
videos for class projects or talking head videos. In our emphasis on understanding the various 
aspects of video filmmaking, such as exploring the differences in wide, medium, close-up, and 
extreme close-up shots or how to diagram a story into an exposition, rising action, climax, falling 
action, and conclusion, we realized that a generational divide existed between what we, as 
educational researchers thought storytelling was as compared to our students. We crafted our 
modules to explore storytelling from unpacking popular commercial films from Pixar or Marvel 
Studios. But what we found was that, while these pop-culture references were recognized by the 
students, our students’ funds of knowledge around videomaking and storytelling revolved more 
around a new style of visual communication: the YouTube video. Again and again, our students 
wanted to make videos where they spoke directly to the camera, use graphics and editing features 
that drew visual emphasis onto particular objects or close-ups, and contemplate how to engage 
the viewer after their video was viewed.   

Discussion 
Overall, our digital mathematics storytelling camps opened a space for us to learn directly 

from our participants about how to enact and support the process of digital mathematics 
storytelling, as connected to emerging mathematics and storytelling identities. As with all 
(re)design research, what we sought was not a solution to a problem, but to better understand a 
process, the process of connecting storytelling to mathematics using digital video technology. 
First, we found that our students in urban emergent communities craved opportunities to engage 
with each other, both as mathematicians and storytellers. We interpret this to mean that as a field, 
the mathematics experiences our students encounter are too heavily based in individual 
accomplishment and competition. Second, we learned that our own interpretation of digital 
storytelling needs to be updated for the modern world, in which our own students’ savviness with 
the language of TikTok and YouTube enabled them to revise what digital storytelling is and looks 
like. And finally, we all struggled in connecting storytelling to mathematics. A week-long camp 
is not enough time to do away with the years of focusing on mathematics as solving short, single-
answer problems and seeing and understanding the ways narrative structures can be used to 
explore mathematical thinking. Our work is ambitious. But through this experience, we found a 
glimmer of hope that a digital mathematics storytelling experience can start re-orientating a 
student as to what mathematics is, how it connects to personal experiences, and how it is the 
product of one’s own narrative. 
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In this paper, we analyze a widely shared article from a prominent conservative media outlet 
that positions current mathematics education reform as something to be feared. We characterize 
how the text upholds whiteness and positions actors attempting to accomplish reform as bad 
actors. This work has implications in how mathematics education researchers can understand, 
approach, and respond to the current backlash towards reform and beyond.  

Keywords: Social Justice; Equity, Inclusion, and Diversity; Policy 

Recent reform efforts to center issues of equity and social justice in mathematics classrooms 
have been under fire from the loudest sectors of right-wing media. In its current form, reform 
efforts have centered around the inclusion of social justice discussions in mathematics 
classrooms or as some policy-makers frame it, “critical race theory” with some states explicitly 
banning the topic and setting up “tip lines” to report teachers who teach anything that could be 
misconstrued as teaching “critical race theory.” The hysteria around incorporating social justice 
issues in mathematics classrooms has been increasing alongside recent attacks on mathematics 
education researchers. For instance, critics of the proposed new California mathematics 
framework argued that integrating issues of racial justice in mathematics will water down 
rigorous mathematics and harm society because “with fewer people who know math well, how 
are we going to build bridges, launch rockets or advance technologically?” (Evers, 2021). Even 
though the number of vocal critics of the current mathematics education reform (MER) are 
increasing, there has been little work to understand the nature of the backlash and how it is 
growing. It is essential to understand the machinations of the backlash because it is through 
understanding the tools of backlash, we can contextualize meanings and diffuse their potency 
(Rubel & McCloskey, 2019). In this paper, we ask, “How is the current MER movement towards 
racial and social justice framed in conservative media?” Using critical discourse analysis (CDA) 
and theories of whiteness, we examine a National Review (NR) article on the current MER. We 
demonstrate how this text upholds whiteness by the ways it constructs MER and its actors.  

Theoretical Framework 
We examine the resistance to current MER efforts toward racial and social justice in 

mathematics education through the lens of whiteness. Whiteness, “the ideology that maintains 
White supremacy, valuing one racial group over others” (Battey & Leyva, 2016, p. 50), operates 
in mathematical spaces to maintain the status quo, across three dimensions of institutional, labor, 
and identity. Here, institutional refers to neutral approaches to teaching mathematics, privileging 
of some voices and histories, and recognizing who has power in mathematical spaces; labor 
recognizes the ways in which emotional, behavioral, and cognitive contributions of marginalized 
individuals are undervalued; identity recognizes ways in which people who identify as white or 
with white ideals are granted unearned privilege and unquestioned validity. Furthermore, in 
(mathematics) education, “those who benefit from whiteness hoard real property to gain 
intellectual property” (Bullock, 2017, p. 633).    
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We also adopted Okun’s (2021) lens of white supremacy culture to consider ways in which 
power is maintained. We are interested in four of the 18 elements: fear, one right way, either-or 
and the binary, and power hoarding. Okun shares fear is the primary strategy for sustaining 
white supremacy culture by undergirding all other elements, and “promised safety is false 
because it is always based on the abuse and misuse of power” (p. 7). One right way adheres to 
the belief that there is one right way to do things, and those who do not conform must have 
something wrong with them. An either-or and binary perspective limits the recognizing 
possibilities of both/and, and attempts to simplify complexity. Finally, power hoarding is used in 
white supremacy to instill the belief that there is limited power to go around. 

Data, Methods, and Analysis 
We use CDA to “explore connections between educational practices and social contexts” 

(Mullet, 2018, p. 117) and how power structures are maintained (Oughton, 2007). We explored 
one text from the NR entitled “The Folly of ‘Woke Math’” (Spivak, 2021). To analyze the text, 
we used Mullet’s (2018) CDA framework. Mullet outlines CDA in stages, yet allowing for 
flexibility to “best fit the scope and goals of the research problem.... [and] textual analysis is also 
left to the analyst.” In this case, we use whiteness constructs to interpret the data. Moreover, 
Mullet cautions analysis may “further the researcher’s own ideological agenda, rather than the 
agenda of the disempowered” (p. 123). To this end, we are mathematics education researchers 
and teacher educators (two of whom are white) with a commitment to racial and social justice. 

Based on the framework, we selected a discourse to examine (i.e., the backlash to decenter 
social and racial justice in MER), selected and explored the background of a text, identified 
overarching themes, analyzed external (i.e., Discourses, ideologies) and internal (i.e., power, 
positionalities) relations, and interpreted the themes as manifestations of whiteness. Although 
literature on whiteness helped sensitize us to code for themes, concepts from the literature on 
whiteness were used to interpret the themes rather than dictate the themes. 

We selected the NR text because the backlash against current MER is fueled by accessible, 
widely shared articles such as this text. NR is credited for defining conservatism in the modern 
American era (Hart, 2006; Sivek, 2008; Bogus, 2011) with many conservatives crediting NR as 
formative in their understanding of politics (Del Visco, 2019). In their 2021 media kit, NR 
received 25 million page views, produced 75,000 units for print, and communicated with 
788,000 newsletter registrants and 1.4 million followers on social media. They also identify their 
audience as 86% male, 14% female, and a household income of $187,000 (they do not specify 
the measure of central tendency). Of their readers, 84% “took action as a result of reading NR.” 
The text we analyzed (i.e., Spivak, 2021), has been shared on social media 1,678 times according 
to sharescore.com. By examining sources with a strong ideological identity, we show the 
constructed identities and how they operate within an ideological bound (Del Visco, 2019). 

Results & Discussion 
In Spivak’s (2021) article, NR constructs mathematics in ways aligning with how researchers 

have operationalized whiteness in mathematics education. They also construct and position 
current MER as internally inconsistent, dangerous, and growing. This results in a fear-based 
image of the current MER. In our elaboration, we use quotations for direct lifts from the text. 
Naming the Paradigm: Backlash to a Threat to whiteness 

Throughout the text, the author elaborates on “woke math,” which we call the paradigm— 
white supremacy culture is upheld by long-standing conceptions of mathematics (e.g., focus on 
answers, using correct methods). In opposition, the author positions mathematics as objective: 
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It is an undeniable truth that there are correct and incorrect answers in basic math. There is 
no white math, or black math. There is only math. Americans, particularly our black and 
Hispanic students, are falling behind because, instead of finding better ways to teach, 
progressive educators debase math. 
By naming mathematics as apolitical and absolute truth, as refuted by the paradigm, the 

author adheres to perspectives of mathematics that have been, and continue to, uphold whiteness 
(i.e., institutional; Battey & Leyva, 2016). Namely, the paradigm focuses on “getting the right 
answer, using the right method, or believing some students are more capable than others is white 
supremacy.” The author’s positioning of mathematics maintains white supremacy through 
claiming there is one right way to engage with mathematics (Okun, 2021), and using 
mathematics to sort and rank students based on perceived ability (TODOS, 2020). 

Further, the author frames the paradigm as a threat by positioning mathematics as removed 
from ongoing conversations of equity and justice. For instance, the author comments on “the 
idiocy of having math teachers lead discussions on social justice instead of teaching black 
children how to do math.” By upholding binaries of practice (Lolkus et al., 2022), or an either-or 
mentality (Okun, 2021), that justice-oriented teaching does not or cannot also support rigorous 
mathematics, the author perpetuates whiteness. The author also positions the paradigm as 
inconsistent because, although it supports Black and Brown children, they are “falling behind” 
because of a de-emphasis on better teaching and that those who espouse the paradigm “claim the 
mantle of protector have become the oppressors.” They also argued the paradigm eliminates 
practices supporting “needs of black children, [thus] they do not believe black children can learn 
math.” White supremacists used this tactic to remedy “past and current racism by asserting that 
the plea for justice is racist itself” (Rubel & McCloskey, 2019, p. 117). 

Ultimately, the author’s critique of and resistance to the paradigm demonstrates how white 
supremacy upholds and maintains the order and structure of the status quo (Giroux, 2021). By 
calling out examples of the paradigm as threatening mathematics institutional systems that have 
historically benefitted white folks, the backlash upholds whiteness. 
Fearmongering: A Mechanism to Preserve whiteness 

Fearmongering, or attempts to “use fear to divide and conquer, always in the service of profit 
and power for a few at the expense of the many” (Okun, 2021, p. 7) is a part of white supremacy 
culture. Much like attempts to create fear of the ‘other’ through harsh language and labels (e.g., 
Zimmer, 2019), the author of the text describes the paradigm as unsuitable due to being 
“dangerous,” “fiction,” “idiocy,” “cringe-inducing,” and “gobbledygook.” Exemplars of the 
danger of the paradigm are laid out when the author reinforces mathematics needing nothing 
more than correct methods by recounting the loss of the Mars Climate Orbiter, the failure to 
track and intercept an Iraqi Scud missile, and deaths associated with errors in medication doses.  

Aligned with safety, the author instills fear by illustrating what happens when the othered 
(i.e., minoritized) students are included. They argued ending standardized and proficiency 
exams, currently used for international competition and college admittance (i.e., institutional; 
Battey & Leyva, 2016), would “pre-select outcomes by race” and “adjust the scores for poor 
students.” They also see tracking as “hold[ing] back gifted children” and not “permitting gifted 
students to take advanced courses” and limiting “better students to advance,” “no one learns, 
[thus] outcomes are equitable.” Again, they promote whiteness and preserve white supremacy by 
positioning some students as superior to others (i.e., identity; Battey & Leyva, 2016) and for 
Black and Brown students to learn, white students must not (i.e., power hoarding; Okun, 2021).  
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The author describes the paradigm as something to be feared by illustrating a society marred 
with death and “substantial property damage” with an educational system that assesses based on 
“skin pigmentation;” thus, positioning the paradigm as something to be avoided at all costs. 

Bad actors: Orchestrating the paradigm. As an extension of the fearmongering, the author 
elucidates the paradigm as a growing movement with powerful orchestrators. Throughout the 
text, they introduce two powerful actors, “progressive” mathematics educators and their funders. 

 First, the author positioned a group of “progressive” mathematics education researchers (i.e., 
Deborah Ball and Rochelle Gutiérrez) who espouse and promote the paradigm. The author casts 
them as actors not to be taken seriously by using emotional verbiage when describing their 
actions such as “complains,” “groans,” “fretting,” and “overstates.” We take this framing to 
discredit their ideas, a mechanism usually directed towards female scholars (Cameron, 2022). 
Moreover, the emotional language is also placed upon their work. For instance, they write, 
“Gutiérrez worries that algebra and geometry perpetuate privilege,” and “Ball complains that 
math is a ‘harbor for whiteness.’” Thus, the author positions them and their work as not to be 
taken seriously because it “sound[s] like parody.”  

The author named powerful institutions and their initiatives as one of the driving forces 
behind the dissemination of the paradigm. They note the Gates Foundation’s involvement as a 
funder of Ball’s project, TeachingWorks, and positions it as “ready to profit.” They identify 
Education Trust-West as one of the funders for the toolkit, A Pathway to Equitable Math 
Instruction. They position Education Trust-West closely to the Obama administration by 
identifying the organization’s president, John B. King Jr., Obama’s secretary of education from 
2016-2017. The inclusion of both Obama and Gates positions them as the orchestrators of the 
paradigm. It is clear through past articles in NR how they position both Obama and Gates as the 
bogeymen of the left (Smith, 2021; McLaughlin, 2021) and, based on the intended audience of 
the text, would bring less credibility to the paradigm. Moreover, the author argued that these 
actors may be a reason why the paradigm is “gaining traction” and “strongly endorsed by 
educators, leading mathematics organizations, and policy-makers.” As part of the fearmongering, 
the author creates an image of the paradigm not as a static curricular feature, but as a flawed and 
emotionally-based growing initiative backed by powerful orchestrators. 

Conclusions and Implications 
We demonstrated how NR constructs mathematics as steeped in whiteness and how they 

reject whiteness as a feature of status quo mathematics by positioning this as a paradigm to be 
feared. They illustrate a world where, if the paradigm is fully implemented, it would have 
adverse consequences to its readers’ lives. They then amplify this fear by portraying the 
paradigm as a growing phenomenon with the help of several powerful actors and institutes.  

This work has implications on understanding backlash to MER. Perhaps, whiteness is a 
feature of resistance to MER. In that, NR is not unique; it echoes past critics that do not call out 
whiteness explicitly in the way NR does. For instance, in Tom Lehrer’s song New Math, he 
derides making sense of algorithms in favor of getting the correct answer. The critics of the late 
90’s MER argued reform would deteriorate the “economic and social well-being of our nation” 
because MER “favors weaker students, [and] the top students being shortchanged” (Wu, 1997, p. 
951). Tactics have also persevered. Critics of the 90’s standards positioned MER as unreliable 
and inconsistent because of “extremely bad” and “fuzzy” mathematics (Schoenfeld, 2004). It is 
through understanding the nature of the backlash that mathematics educators may see how 
whiteness rebuilds the status quo. In turn, educators and allies can begin to respond to the loudest 
voices suppressing those who fight for more inclusive and just mathematics education. 
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This brief research report showcases an alternative to transcript analysis that halts the process 
of reducing participants’ expressive worlds to an orderly regime of words. Drawing from a 
philosophical conversation with grade-five students on the concept of space, the paper advances 
a methodological/analytical perspective that recalls transcripts and reissues them as liminal 
spaces of possibility while interrogating the limitations of conventional approaches to transcript 
analyses for generating new knowledge. Several philosophies inform our contribution, including 
Indigenous Knowledges, Feminisms, New Materialisms, and Posthumanism. The paper describes 
the process of constructing a transcript and coming to see it beyond its static, linear nature. The 
findings suggest that the encounter of researcher with data constitutes an opportunity to re-
encounter possibility, embrace generosity, and engage imagination in research.  

Keywords: research methods; elementary school education; equity, inclusion and diversity. 

Objectives and Research Question 
Many educational research practices promote a distancing of the researcher from the 

participants by reducing their world of experiences to codes stamped on transcripts or transcript 
excerpts that interrupt the continuity and vibrancy of a human experience. Arguments supporting 
these practices herald the objectivity (e.g., the case of coding) or representativity (e.g., the case 
of excerpts) of knowledge. Good research, then, must generate knowledge that skews the 
redundant details that belong in the imperfect material/subjective experiences of humans. 

Our motivation for writing this paper grew out of our concern for the dissonance between 
philosophies that openly and honestly recognize how human experience is uncertain yet alive 
and vibrant, and the widely accepted analytic approaches that remove both uncertainty and 
vibrancy from our human affairs. Our concern has slowly grown into this opportunity to provide 
a specific example of how we as researcher-graduate student have come to recognize—to know 
again, but differently (Dominguez, 2014)—our encounter with data. The purpose of this short 
research report is to share with our mathematics education research community this specific 
example that illustrates (a) a methodological/analytical critique on how language territorializes 
methodologies and analytic approaches in mathematics education research, (b) an alternative that 
we see as trespassing the static lines of text on transcripts as a transgressively liberating 
methodology that takes the research back to worlds filled with possibility and philosophy, and 
(c) a theoretical perspective that looks more into the future of knowledge, the possible that has 
been sequestered, and a reinvigorating vision of the relationship between researchers and data, 
including how we encounter data in our research. Accordingly, our research question is: What 
possible worlds (of ideas, relationships, and resonances) emerge when researchers halt the 
process of reducing everything to language and instead re-enter the space between words and 
images as a way of reinvigorating the researcher-data encounter? What opportunities to advance 
the learning of mathematics can we envision from these generous researcher-data encounters? 

Philosophical Perspective 
Every line in a transcript and every frame in a video includes both the actual (what was 
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realized) and the virtual (not in the sense of unreal, but in the sense of unrealized, what remained 
as a possibility). In Spanish, “lo que se quedó en el tintero” (what remained in the inkwell).  

 

 
Figure 1: Lines of flight as reductionist process is halted 

 
This drawing (see Figure 1), for example, expresses all at once the reductionist process of 

researcher-data encounter that we halted right at the space between video and transcript, where 
tensions produced lines of flight (vibrant dark area moving in multiple directions).  

This new way of thinking about the researcher-data encounter is minoritarian when compared 
with more commonly accepted views (Deleuze & Guattari, 1987). As Lenz Taguchi (2012) 
explains, “The expression ‘becoming minoritarian’ defines the very process of escape from 
‘majoritarian’ norms, subject positions, and habits of mind and practice” (p. 267). Reinvigorating 
the researcher-data encounter aligns well with the idea of a living theory (Whitehead, 2009), for 
we see images, sounds, movements, materials, bodies, and the concept of space as a living, 
vibrant assemblage (Bennet, 2010; Cajete, 2000). In that living time-space-matter (Barad, 2007), 
agentivity emerged not from individual humans—the traditional perspective from the 
humanities—but from the assemblage of forces, intensities, and energies coming together (Little 
Bear, 2000; Mikulan & Sinclair, 2017).  

Our current technology for producing data is human- and language-centric, with a focus on 
sequentially recording the actual while neglecting the virtual. Yet, virtuality (Barad, 2012; 
Deleuze, 1995) is as important as what becomes actualized (Whitehead, 1978). Virtuality is not 
completely invisible, though, for it tends to awaken gestures (Châtelet, 2000). Returning to a 
neglected virtuality as our methodological/analytic approach does, “requires another kind of 
thinking […] using all of our bodily faculties and our imaginary” (Lenz Taguchi, 2012, p. 267).  

Drawing reconnects us to virtuality, by freeing the researcher-data encounter from its linear 
cage to an all-over relationality of a drawing surface (Sousanis, 2015). The possibilities become 
endlessly rhizomatic, and the vibrant indeterminacy of spatial, temporal, and bodily boundaries 
become more palpable (Abreu, in press). Drawing can become a generative node of 
transformation where the virtual is particularly vibrant since the actual and the virtual are in 
intense tension as uncertainty “está en la mera punta del lápiz”—is right at the tip of the pencil. 
A drawing is never ‘finished’ as it continues to be an active force that transforms and is 
transformed by the world after the drawing encounter (de Freitas & Sinclair, 2012). 

The material agentivity of drawing brings into focus the role of multiple expressivities that 
emerge from spaces of tension in which multiple materialities look unapologetically into the 
researcher’s eyes (and other senses). Barad (2007) reminds us, “Neither discursive practices nor 
material phenomena are ontologically or epistemologically prior. Neither can be explained in 
terms of the other. Neither is reducible to the other. Neither has privileged status in determining 
the other. Neither is articulated or articulable in the absence of the other; matter and meaning are 
mutually articulated” (p. 152). We therefore envision our analytic approach as “a ‘meeting 
place,’ where different data, each with their own trajectories, come together with the researcher 
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to create something new” (Taylor, 2013, p. 814).  

Modes of Inquiry 
Consistent with the idea of possibility as emerging from uncertainty (and vice versa), our 

analytical approach emerged not as pre-planned but rather from conditions of uncertainty as 
follows. The first author had been collaborating with one teacher for about two years as part of 
his community engaged scholarship. One morning, he received the usual phone text from the 
teacher, this time asking him to help her teach how to plot ordered pairs. Rather than turning this 
opportunity into a procedure-oriented lesson, the first author decided to engage the grade-five 
students into a philosophical discussion of space. An influential idea that was brought into this 
discussion was that “the body does not move into space and time, it creates space and time: 
There is no space and time before movement” (Manning, 2007, p. xiii). With a small plane made 
with popsicle sticks hanging from a piece of thread and three cardboard Cartesian planes, the 
philosophical discussion attracted the students’ moving bodies, gestures, drawings, imagination, 
and language into an assemblage that was videorecorded by one graduate research assistant. 

Although term “data” comes from the Latin datum = given (Brinkmann, 2014), data are 
never generously given to researchers; we produce data. We find this recognition helpful in 
terms of sensitizing us to the idea of the researcher-data encounters. One of these key encounters 
occurred when we watched the video followed by the transcript production and reading. We thus 
felt the need to have responsive and responsible encounters with data. Consequently, in our 
analysis we assumed that the words in the transcripts and the moving images on the video were 
as agentive as the participants and researchers. As such, we needed to co-respond with these 
data, as in the correspondence of people exchanging letters (Ingold, 2013; Roth, 2016).   

Results…Or rather Possibilities 
 

    
Figure 2: Panels from Young Philosophers 

 
Our results, or rather possibilities, come from a comics book we produced titled, Young 

Philosophers: What Can They Teach Us about the Concept of Space? Drawings in this book 
emerged saturated with possibilities, creating a generous flow of ideas that harmoniously 
connected with other ideas, while harboring imagination at every trace of the pencil and use of 
the space on the page (see Figure 2). We allowed, neither video nor the transcript alone to 
influence our analytic departure, our line of flight (Deleuze, 1995); instead, we sought the energy 
of the tension between the two. The energy we describe here can also be understood by 
envisioning a zigzag movement between the words in the transcript and the moving images on 
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the video. As an example, on the page at left, we trespass the fixity of the words “…everything is 
kind of living…” by illustrating this idea as shown on the bottom part of the page. These 
illustrations—not the words on the transcript; not the images on the video—took us back to 
philosophical ideas about space (e.g., Cajete, 2000; Kimmerer, 2013; Little Bear, 2000; 
Manning, 2007). The generosity of these possibilities is in how our analytic approach invites the 
virtual to be at par with the actual. We refused to further reduce words into codes; instead, we re-
encounter the words with a recognition of their agentivity to revive our imagination with images 
that, being also agentive, mobilized ideas that had been virtual. 

    Although it may be tempting to see our comic book as a final result, we prefer to see in it 
a space of possibility, a living artefact whose life is sustained as it passes across diverse hands, 
assemblages, and imaginations. At each passing, an expansion of the space that connects the 
actual with the possible occurs. The following is one moment filled with possibilities. Unlike 
traditional expectations to generalize findings, our hope is to generalize possibilities. Is what you 
will read also possible in your own context? In your own research? In your own practice?  

Discussion and Takeaway 
Transcript analysis answers the question: What did actually happen here? In contrast, our 

analytic approach, with its focus on halting reductionism, addresses the question: What could 
have happened here? Not content with an exclusive focus on the actual, our approach brings the 
researchers into a reinvigorating encounter with the data by considering spaces of tension; in this 
case, the space between video and transcript. Attention to this space allowed us to vivify the 
virtual through the continuous energy and imagination of drawing. Through drawing, we were 
able to connect students’ philosophical ideas with the ideas of other philosophers. These 
possibilities emerged from our analysis in the form of a line of flight (Deleuze, 1995). We see in 
these lines of flight a more generous reading (Spence, 2011) of the worlds that transcripts tend to 
reduce to the actualized. For us, an important takeaway is how generous readings can contribute 
to address issues of equity, diversity, and inclusivity in our research.  

Our methodological/analytic approach draws on feminist new materialisms and Indigenous 
Knowledges. Collectively, these philosophies look more into the future and the possible (Grosz, 
2010) than more traditional theories that are interested in confirming a kind of knowledge that is 
assumed to pre-exist, which we see as a way of disdaining the future. Our interest in the virtual is 
motivated by our love for the possible; analyses that are closed and deterministic exclude not 
only the possible but our faculty to imagine it. We wonder how many students and their ability to 
imagine the possible have been excluded by these kinds of ungenerous readings of their worlds.  

Finally, the “wheels” of transcript analysis continue to turn, and we wonder to what extent 
are they turning away from complex realities and more toward what Popkewitz (2004) calls the 
fabricated fictions of educational research. Our analytic approach intends to halt this wheel, to 
redirect it, not to an objective or finished reality, but to the potentiality that is part of every 
reality. We see the space between video and transcript as filled with tensions that we can use as 
catalysts for what is possible. Video, transcript, and coding are all complicit in reducing human 
experience. Reducing the human experience is dehumanizing. We are concerned with 
humanizing researchers (Tuck & Yang, 2014) first, so we all can see the limitations of current 
technologies when placed vis-à-vis force such as possibility, imagination, and generosity. Given 
the transformative effect this methodological/analytic approach has had on the emergent career 
of a mathematics education graduate student, Sofía, and the mid-career of a mathematics 
education researcher, Higinio, we believe the approach has the potential to re-engage researchers 
more generally to conduct more humanizing research in mathematics education.  
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In this exploratory action research study we investigated teaching mathematics for social justice 
in undergraduate mathematics. We asked: How if at all do undergraduate students consider the 
importance of local social justice issues as embedded in the context of a precalculus course 
assignment?; and As instructors, how might feedback from students’ experiences of a social 
justice mathematics lab inform our future teaching and research practices? We discuss emerging 
findings from our initial analyses of student surveys. We also elaborate how these findings will 
inform our efforts to link research and practice at the intersection of supporting students’ math 
cognition and exploring social justice issues through teaching mathematics for social justice. 

Keywords: Precalculus, Problem Solving, Social Justice, Culturally Relevant Pedagogy. 

Social justice is, ultimately, about understanding the macro systemic power dynamics that 
perpetuate the conditions in which we live. Social Justice Mathematics (SJM) educators 
explicitly aim to develop students’ sociopolitical consciousness in addition to teaching 
mathematics content (Gutstein 2006; Gutiérrez 2013). This bivalent approach to justice 
emphasizes that both redistributive justice, or equitable distribution of fundamental resources, 
and recognition justice, or respect for human dignity and diversity with all groups having a 
voice, are necessary to achieve social justice (Basok et al 2006; Gonzalez, 2009; Bartell, 2013). 
SJM may also be referred to as critical mathematics orteaching math for social justice (Kokka, 
2015). 

The purpose of this exploratory action research study is to traverse the terrain of 
incorporating research on SJM teaching into our classrooms as mathematics educators at the 
university level. The main problem we aimed to address in this research was to move from 
theory to practice in employing conceptual orientations toward SJM in our own teaching and 
research. Our research was guided by the following questions: How if at all do undergraduate 
students consider the importance of local social justice issues as embedded in the context of a 
precalculus course assignment? As instructors, how might feedback from students’ experiences 
of a SJM lab inform our future teaching and research practices? In this paper we discuss 
emerging findings from our initial analyses of students’ surveys. We also elaborate how these 
findings will inform our future efforts to link research and practice at the intersection of 
supporting students’ mathematical literacies and exploring social justice issues. 

Conceptual and Theoretical Framework 
Gutstein (2006) and Kokka (2020) posit two sets of goals in teaching mathematics for social 

justice. First are the mathematics pedagogical goals which aim to support students in gaining 
mathematical power to read the world, succeed academically, and conceive of mathematics as a 
useful tool. Second are the social justice pedagogical goals—reading the world with 
mathematics and being able to take actions to change the world. SJM involves developing 
positive cultural and social identities among students to coexist in the current diverse society 
where values from both dominant cultures and non-dominant cultures are preserved. 

We draw on Freire’s (1970) notion of ‘praxis’ to argue that students should use mathematics 
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to investigate and challenge injustices and inequalities relating to their own lives and wider 
society. Praxis can be understood as “reflection and action upon the world in order to transform 
it” (Freire, 1970, p.36). The goal is to recognize and draw upon learners’ lived experiences to 
emphasize the cultural relevance of mathematics (Aguirre et al., 2013) and develop a critical 
understanding of the nature of mathematics and its position and status within education and 
society. In this approach, students can play a role in providing solutions to injustices that 
surround us. As argued in Freire (1970) it is not enough for people to study the world only, there 
is also a need to act towards creating a more just world. To accomplish such a goal, students 
must gain a deeper understanding of the conditions of their lives and the social dynamics of their 
real world. To incorporate social justice issues into mathematics teaching, tasks can be designed 
to improve students’ mathematical thinking which will help them to become aware of the social 
injustices that occur within society at large and in their own lives at the same time increasing 
their mathematical understanding. 

Methods 
We employed one cycle of action research (Segal, 2009) to explore the phenomena of 

integrating social justice issues into mathematics lessons and course assignments for 
undergraduate precalculus students. This cycle of action research included systematic planning, 
engagement with students, and reflection on our research-based teaching intervention. 
Participants and Teaching Context 

This research was conducted at a university in the Northeastern U.S. All students enrolled in 
an undergraduate precalculus course in Fall 2021 completed a problem solving lab within the 
first four weeks of the semester. Of this larger pool of students, 16 students chose to complete a 
survey about their experiences during the last 2 weeks of the semester.  

The pre-calculus course is designed to prepare students for success in the study of calculus. 
The core focus of the course is to develop representational fluency in using functions to model 
relationships between quantities. Throughout the semester, students engage in applied problem 
solving in collaborative group settings using graphing technologies. 
Authors' Statements of Researchers Positionality 

As argued in D’Ambrosio et al. 's (2013) and Holmes’s (2020), the researcher’s positionality 
influences the design of research in terms of how participants are recruited, the kind of data 
collected, and how that data are analyzed. I (Abigail) recognize myself as an African female, a 
graduate student, and an advocate for educational equality. I understand what it means to be in a 
classroom with people from diverse backgrounds. I believe in an educational setting where every 
student has the right to be as inclusive as possible in the classroom. I was a lead instructor for 
Precalculus in the Fall of 2021 and supervised students who participated in this study. I (Brian) 
identify as African, a father, STEM educator, researcher, and Ph.D. student and subscribe to 
liberalism(Bell, 2014; Charvet, 2018) as political and moral philosophy. As a man, I recognize 
that there are privileges that I may have because of my gender, the same way I recognize the 
alienations I have experienced as a person of color residing in the United States. This has 
motivated me to advocate for critical consciousness or conscientização (Freire,1970) in the 
spaces I participate in. As a white female mathematics education researcher and faculty member 
(Nicole), I seek to explore both research and practice focused on SJM to advance a more 
meaningful understanding of mathematics for a racially diverse group of students. My interest in 
SJM is largely motivated by a personal journey of unlearning racism and whiteness ideologies as 
they intersect with my work as a mathematics educator. During Fall 2021 I was the course 
supervisor for all undergraduate precalculus courses that study participants completed. In this 
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role, I set the syllabus and introduced the problem solving lab that is the focus of this research 
study. 
Problem Solving Lab 

Fonger designed the problem-solving lab by adopting a set of tasks that a high school 
mathematics teacher had developed over the past 4 years (Keech, Routhouska, & Fonger, in 
press). Erskine was among the group of instructors who gave this task to precalculus students at 
while they were learning about linear function and change. In general, students investigated 
trends in the historical population of residents in a city and the role of building a federally funded 
highway system that impacted population decline in that city. The mathematical focus of this lab 
was to model and make predictions of population data over time using linear equations. Prior to 
completing the mathematics tasks of the problem-solving lab, students read news articles and a 
zine (a mini-magazine) to inform their understanding of the social issues in this lab related to 
redlining, the razing of a predominantly Black neighborhood, and the impact of highways on 
population decline in this city. We intended to support students’ understanding of how 
government decisions negatively impacted many Black residents of the city. Figure re 1 
introduces the lab. 

 

   
Figure 1: Screenshots of the problem solving lab, activities, and related texts. 

Research Instruments and Data Collection 
We used two primary instruments to collect data: students’ written responses to the problem-

solving lab, and a post-lab survey. We designed these instruments to obtain information about 
students’ experiences of the mathematics lab with a focus on relating their classroom 
mathematical experiences to real world situations and social justice issues. The problem solving 
lab write up was in the form of paragraph responses designed to address both the mathematics 
(e.g., write the equation of your “line of best fit”) and the social issues (e.g., what does the 
highway have to do with population decline in this city?). The survey consisted of 10 questions 
and students responded on a 5-point Likert-type scale asking them to (1) Strongly Agree, (2) 
Somewhat agree, (3) Neither agree nor disagree, (4) Somewhat disagree, or (5) Strongly 
Disagree. 
Data Analysis 

Following Morse (2009), we adopted a mixed methods approach wherein the qualitative 
component (collection of student problem solving lab) preceded and informed the design and 
delivery of a quantitative component (the survey of student experiences). At the time of this 
writing, our analyses are ongoing. We focus this brief report on our analysis of the survey 
responses. We plan to share qualitative analyses of students’ lab responses when presenting this 
research. 
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Results and Discussion 
Recall the two research questions that guided this study: How if at all do undergraduate 

students consider the importance of local social justice issues as embedded in the context of a 
precalculus course assignment?; As instructors, how might feedback from students’ experiences 
of a social justice mathematics lab inform our future teaching and research practices? To the first 
question, we share a summary of student responses to the survey questions in Table 1. 

 
Table 1: Students’ experiences with social justice mathematics lab 

  N 

Strongly 
disagree 

Somewhat 
disagree 

Neither 
agree nor 
disagree  

Somewhat 
agree 

Strongly 
agree. 

The Problem Solving Lab supported me to read and interpret a 
scatter plot relating two quantities (city population, time since 
1850)  16 6% 0% 13% 50% 31% 
The Problem Solving Lab supported me to model local data with 
a linear function and interpret the meaning of the data with 
respect to the context. 16 0% 6% 19% 31% 44% 
l The Problem Solving Lab supported me to learn about possible 
reasons the city population declined after the year 1950 16 0% 0% 13% 19% 69% 
The Problem Solving Lab supported me to believe that the 
construction of the highway is an important issue for city 
residents 16 0% 0% 19% 19% 63% 
The Problem Solving Lab supported me to affect change on 
social justice issues in the city 16 0% 0% 31% 38% 31% 
The Problem Solving Lab supported me to identify inequities for 
city residents 16 0% 0% 19% 25% 56% 
The Problem Solving Lab supported me to appreciate the 
connection between math and problem-solving skills. 16 0% 6% 13% 25% 56% 
The Problem-Solving Lab is relevant to my life experiences. 16 0% 19% 19% 38% 25% 
The Problem-Solving Lab is relevant to what I learn in math 
class. 16 13% 13% 19% 31% 25% 

 
From Table 1, we see that over 60% of the participants either agree or strongly agreed to the 

survey questions. The percentage of student who disagree or strongly disagree was 6% or 0% on 
7 out of the 10 questions. We can infer that majority of the students (>70%) can relate 
mathematical content learnt in class to social issues that revolve around them. This analysis also 
shows that the social issues incorporated in the pre-calculus lab seemed to support students’ 
awareness and consciousness of being able to identify inequities for city residents.  

These data inform our response to the second question as well. It is troubling that 26% of 
responses disagreed with the idea that the problem solving lab is relevant to what I learned in 
math class. Moreover, 38% of respondents either disagree or are neutral about the relevance of 
this lab to their life experiences. As instructors, we had designed the problem solving where lab 
to connect to issues in the same city where the university classrooms are located. We have used 
this feedback to inform and revised iterations of the problem solving lab. For example, we have 
added content to the lab that explicitly connects to the place of the social justice issues. Given 
that many students on the university campus have not physically visited the site of the social 
injustice, we also introduced additional videos and visualizations as resources to connect to 
students’ experiences in potentially more meaningful ways. We would also like to move toward 
designing opportunities for SJM that not only mathematizes the social justice issues, but pot 
position students to address the issues.  

In future iterations of this lab, we will take greater care to help students see explicit links 
between the lab and course goals. 
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Inequities in STEM participation for people of color and women are documented extensively, 
often highlighting issues of representation and/or achievement. This study adds to the literature 
by looking at participation inequities in a high school calculus class. Equity is conceptualized as 
a fair distribution of opportunities for students to engage in rich mathematical experiences. 
Analysis of participants’ dialog revealed talk about student participation focused primarily on 
gender patterns, even when pertaining to only one race-gender group of students (i.e., White 
males). Analysis of whole-class participation showed White dominance superseded male 
dominance; White males had the most robust opportunities to participate followed by White 
females, females of color, and males of color. Findings suggest participants’ gender-focused 
discourse obscured racial inequities in classroom participation. 

Keywords: Gender; Equity, Inclusion, and Diversity; Classroom Discourse 

Decades of research document inequities related to sexism and racism in STEM (science, 
technology, engineering, and mathematics) participation (e.g., Martin, 2009; Wang & Degol, 
2017). Often participation studies focus on issues of representation (e.g., Cheryan, et. al., 2017) 
or achievement (e.g., Oates, 2009). In contrast, this study looked at participation inequities as 
they played out through interactions in a 12th-grade calculus class over one distance learning 
semester. The focus of this study was on how classroom participants (teacher, student teacher, 
and students) made sense of students’ participation with respect to race and/or gender and how 
whole-class participation patterns corresponded to race and/or gender.  

Equity is defined as the fair distribution of opportunities for students to engage in rich 
mathematical experiences, supporting deep disciplinary understandings and positive 
mathematical identities (Esmonde, 2009; Schoenfeld, 2014). Students’ identities are 
conceptualized as complex and multi-dimensional. In the words of Crenshaw (1991), “Because 
women of color experience racism in ways not always the same as those experienced by men of 
color and sexism in ways not always parallel to experiences of white women, antiracism and 
feminism are limited, even on their own terms” (p. 1252). Racism and sexism extend into 
classroom spaces where students’ opportunities to participate and learn mathematics are shaped 
in racialized and gendered ways (Esmonde & Langer-Osuna, 2013; Gholson & Martin, 2019; 
Sengupta-Irving & Vossoughi, 2019). 

This study aims to provide a nuanced understanding of students’ varied experiences in a high 
school calculus class “by making visible what has been obscure and bringing to the center what 
has been marginalized” (Bullock, 2018, p.123). Research questions are: 1) How did participants 
articulate participation issues related to race and/or gender? 2) How were whole-class 
contributions distributed across students in the class?  

Theoretical and Conceptual Framing 
Teaching and learning are considered sociopolitical endeavors through which power is 

distributed, either perpetuating persistent inequities or challenging existing hierarchies and 
injustices (Gutiérrez, 2013; Philip et. al., 2017; Valero, 2018). Based on sociocultural theories, 
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learning is defined as changes in students’ participation in collective classroom practices (Lave 
& Wenger, 1991; Vygotsky, 1978) and is a function of students’ opportunities to participate 
(Gresalfi, et. al., 2009). Inequities are created and perpetuated through the construction of 
disparate and stratified opportunities for students to engage in meaningful learning experiences 
(Esmonde & Langer-Osuna, 2013; Shah & Crespo, 2018). Over time, patterns of participation 
play out through interactions between teachers, students, and mathematical tasks (Clarke, 2004), 
and these interactions are racialized and gendered forms of experience (Leyva, et. al., 2021; 
Martin, 2006). 

Methods 
Data Collection 

Participants. Participants included one math teacher (White female), one student teacher 
(Mexican male), one researcher (White female) and 12th-grade students in the teacher’s 1st period 
(Pd.1) AB Calculus class and 2nd period (Pd.2) AB Calculus class. The public high school used 
distance learning during the 2020-21 school year. Due to the pandemic, students took only three 
courses at a time, resulting in fewer lessons per course than is typical. Race and gender identities 
are self-stated for participant interviewees. Racial identities included Black, Chinese, Filipino, 
Iranian-American, Mexican, Mixed, White, and others. Gender identities included female and 
male. I have selected identity groups intentionally and I acknowledge they are imperfect. Non-
White identifying students are grouped as “Students of color” based on how students talked 
about themselves related to their peers. (Guadalupe said, “it's different with PoC girls and the 
White girls in class…”) I have chosen to capitalize “White” to draw attention to the power this 
classification holds, intending to highlight the non-neutrality of this label (Ewing, 2020). 

Participant Discourse Data. Table 1 displays descriptions for the four data types included in 
the race-gender discourse analysis: lessons, lesson debriefs, one-on-one participant interviews, 
and informal conversations. Table 2 shows the race and gender of participant interviewees. 
 
               Table 1: Data Used for Discourse Analysis                Table 2: Interviewee Identities  

 
 
All lessons, lesson debriefs, and participant interviews were video-recorded through Zoom and 
took place during the spring semester (Jan - June 2021). Most video-recorded informal 
conversations and email exchanges took place during this timeframe as well; however, several 
informal exchanges between the researcher and teacher occurred during the fall semester. 

Student Contribution Data. This paper uses observations of whole-class discussions that 
occurred during 30 “regular” semester 2 Calculus lessons (Pd. 1); optional “help” lessons were 
excluded from the analysis (Table 3). In addition, Pd. 2 calculus lessons were excluded from this 
analysis due to space, though both classes are included in the race-gender discourse analysis.  
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Table 3: Description of Data Used for Contribution Analysis 

 
* 5 days - groupwork only; 2 days - testing, 1 day - researcher absence 

 
Whole-class discussion data was collected using EQUIP (Equity QUantified In Participation) 
(Reinholz & Shah, 2018), an observation tool used by researchers to track user-defined discourse 
dimensions at the student contribution level. The discourse dimensions in EQUIP relevant to this 
paper are Contribution solicitation method (i.e., cold-called, encouraged, volunteered) and 
Contribution type (i.e., responded to a teacher question, asked a question, shared solution, 
responded to student question, declined to answer, offered a comment, identified mistake, read 
out loud, shared screen). Every time a student contributed during a whole-class discussion, the 
contribution was logged using EQUIP and selections were made for each discourse dimension. 
Data Analysis 

Participant Discourse Analysis. All explicit references to gender and/or race made by 
participant interviewees (from Pd. 1 & Pd. 2) during the spring semester 2021 were identified 
from video; several conversations between the teacher and researcher at the end of the fall 
semester 2020 were also included. All references were sorted into one of four topics (Table 4). 
 

Table 4: Reference Topics with Examples 

 
 

Once sorted by general topic, references were grouped into specific observations, accounting for 
different wording but the same meaning. For example, the comments “I noticed the classroom is 
very male-dominate” and “the boys were talking too much” were both coded as the same 
participation issue (i.e., boys dominated class conversations). These observations were then 
sorted according to identity category (e.g., gender, race-gender, race-class) depending on how 
participants framed their observations. For example, if a participant referred to students’ gender 
and race identities, the observation was assigned race-gender as the identity category. 
References were also coded depending on which participant made the observation. 

Whole-Class Contributions. Student contributions were exported from EQUIP to excel and 
merged with student gender and race data (self-stated when available, otherwise teacher 
ascribed). Data were aggregated by lesson, student, and class. Quantities were first tabulated by 
gender (i.e., male, female) and then by race-gender groups (i.e., female students of color, White 
female students, male students of color, White male students). Only student contributions from 
Pd.1 (not Pd.2) were included in this paper due to space limitations. 

Findings 
Findings are organized according to the two research questions. The first section reports how 

classroom participants (the teacher, student teacher, researcher, focal students) articulated 
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participation issues related to gender and/or race. The second section reports how whole-class 
contributions were distributed across gender-race groups.  
Participation Issues as Articulated by Classroom Participants 

To understand how participants conceived participation “issues,” we take a closer look at the 
references related to classroom participation that were positioned by participants as less-than-
ideal. Table 5 shows specific classroom participation issues by identity category, including 
which participant(s) made the references.  
 

Table 5: Race and/or Gender Participation Issues by Participant 

 
 
Almost all observations of participation issues referenced gender in some way, either gender-
alone or the intersection of gender and race (36 out of 39, 92%). The most common participation 
issue articulated was that boys dominated class conversations, identified by the teacher, student 
teacher, researcher, and four students. There were 18 references to this issue; 12 referred to boys 
in general and 6 referred to White boys. This issue was talked about as a gender issue (boy 
dominance) twice as often as a race-gender issue (White boy dominance), even though the 
students to whom participants were referring were all White males. The four students who 
mentioned this issue were students of color (3 female, 1 male) and all described the issue without 
mentioning race. However, it is possible students thought about the issue as race-related but 
chose to speak about it as gender-related. On the other hand, the adults all spoke about 
imbalanced participation as a race-gender issue at least once. The teacher spoke about this issue 
sometimes as a gender issue and sometimes as a race-gender issue, as did the student teacher. 
The researcher made one reference to the issue, referring to it as “White boy” dominance.  

Another often-mentioned participation issue was that girls in the class did not speak up 
enough. The teacher mentioned this issue 6 different times, expressing frustration with the 
situation. During a lesson debrief, the teacher shared, “I’m really annoyed with [name 1] and 
[name 2] cuz they are the starlets in this class. They get everything right. They would have been 
in BC Calculus, but they decided not to bother. And they’re not contributing to the class.” The 
issue was also brought up once by a White female student who shared, “For the really hard 
problems, there are 3 girls who get it and they’re the only girls in the class- or not the only girls, 
the only students in the entire class who get it, but they don’t really want to speak up and explain 
it or talk about it, which I’ve found really interesting.” The three students to whom the teacher 
and student are referring are all female students of color; however, the issue was identified as a 
gender issue, not a race-gender issue. The teacher and student’s confusion regarding why 
students were not speaking up could have been connected to presumed similarities in gender 
identity, but they were not accounting for differences in racial identities. The White female 
teacher and White female student may not have known what it was like to be a female of color in 
a White male-dominated math class. In support of this theory, here is one example of how race 
shaped experiences for one female student of color in this class:  
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Within calculus and the girls, I feel like we should be supporting each other more than some 
of us do… it's different with PoC girls and the White girls in the class… It's a little bit more 
hostile, [White girl] is very hostile toward me. And so, I'll be like, ‘Oh, okay.’ I don't want to 
overstep. And with [PoC girl] it's not like that… I understand the PoC girls more and so 
they're a bit more supportive… a lot of times [White girls] are a little bit more reserved 
about their work, which is fine. You don’t have to help us or share your work with us, but we 
don't necessarily act that way towards them… it’s not the same. It’s just different. 
There was only one reference to a participation issue related to race-only; that reference was 

made by the researcher. After completing a preliminary class observation at the end of the fall 
semester, the researcher shared with the teacher her observation that only one student of color 
had opportunities during the class period to participate in competent mathematical ways (e.g., 
answer how/why questions). The only other race-related participation issue raised was by the 
teacher in reference to two affluent White students talking about their ski vacations. 
Student Contributions during Whole-Class Discussions 

Contributions were quantified by totaling the number of contributions made by Pd. 1 students 
during regular lesson whole-class discussions over the entire semester. There were 28 students 
enrolled in this course who made a total of 767 contributions during the 30 observed lessons.  

Given participants’ gender-focused discourse shown in the previous section, contributions 
were initially examined by gender. Table 6 shows total contributions, mean contributions, and 
contribution solicitations broken down by gender (female / male). Values in the table are color-
coded depending on how the percent of contributions compares to the percent of female and 
male students in the class. If the percent of contributions made by a group is more than 3% 
higher than the percent of population represented by that group, then table values are green. If 
the contribution percent is within 3% of the population percent, then values are yellow. If the 
contribution percent is more than 3% lower than the population percent, then values are red. The 
same color-coding scheme is used in all tables in this section. 
 

Table 6: Student Contributions by Gender 

   
 

Female students made 24% of all whole-class discussion contributions averaging 22.6 
contributions per student, which is 5% lower than what would be expected given perfect 
alignment between contributions and population representation. The difference is notable but not 
extreme. Looking at solicitation method highlights bigger differences in participation patterns 
between female and male students. Specifically, 83% of voluntary contributions were made by 
male students, and the teacher encouraged roughly the same number of contributions from 
female and male students. In addition, the teacher cold-called on male students twice as often as 
female students. Considering females represented 29% of students, the number of voluntary 
contributions was considerably lower than expected for females, whereas the numbers of cold-
called and encouraged contributions were higher. Table 7 shows contributions made, again 
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broken down by gender, by participation type (e.g., # of responses to a teacher question, # of 
questions asked, # of times a student declined to answer a question).   
 

Table 7: Student Contributions by Participation Type and Gender 

 
 

Data indicate females (compared to males) were somewhat less likely to offer unsolicited 
comments or respond to teacher questions and much less likely to ask questions. They were also 
somewhat more likely to respond to student questions and much more likely to share problem 
solutions, decline to answer questions, identify mistakes, read out loud, and share their screen. 
There was a mix of seemingly productive and unproductive forms of participation by female 
students. Taken together, data suggest female students were less likely than male students to 
participate in academically risky ways. One explanation is that females shared problem solutions 
and identified peers’ mistakes when they felt confident with content; in contrast, they declined to 
answer teacher questions and neglected to ask their own questions when they were more unsure. 

To get a better sense of how contributions were distributed among individual students, total 
contributions per student were sorted from high to low and then plotted (Figures 1a & 1b). 
 

    
Figures 1a & 1b: Contributions per Student by Gender (1a) & Race-Gender (1b) 

 
Figure 1a shows two outlier male students (dots), one with 169 contributions and one with 80. 
Female students (stars) seem to be spread evenly across the class, with females taking 4 out of 
the top 9 contributor positions. Based on Figure 1a, one might conclude inequitable participation 
in this class could be attributed to the dominant males; presumably, if these two students stepped 
back allowing others to contribute, then all would be ok. However, adding race to the analysis 
tells a notably different story. Figure 1b reveals 12 out of the top 14 class contributors were 
White (86%), including the two dominant males. Although females seemed to be distributed 
evenly across the spectrum of class contributors, students of color (green symbols) were not. 
This finding prompted analyses of contributions by race-gender groups (Tables 8 & 9). 
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Table 8: Student Contributions by Participation Type and Race-Gender 

 
 

Table 9: Student Contributions by Participation Type and Race-Gender 

 
 

Findings from this analysis reveal that participation inequities in this class extended beyond 
gender groups. Male students did not dominate class contributions; White male students 
dominated. In fact, male students of color experienced the fewest opportunities to participate 
across all contribution categories compared to the other gender-race groups. Male students of 
color made 117 contributions, only half of what would be expected given their representation in 
the class (15% of contributions vs. 29% of population). They were the least likely group to share 
problem solutions, respond to student questions, or offer unsolicited comments. None of these 
three types of participation were required by the teacher; the teacher asked for volunteers to 
share homework solutions for extra credit and if no one volunteered, the teacher did it. The 
teacher also answered students’ questions if no student volunteered to answer them, and 
unsolicited comments were shared without any explicit invitation and therefore not required. The 
only participation type for which male students of color were within the expected range was 
declining to answer questions. They declined to answer their fair share of questions, but this is 
the one contribution category for which higher is not better. 

Female students of color experienced the second fewest opportunities to participate. The 
three group members accounted for 54 contributions (7% of total contributions vs. 11% of 
population) averaging 18 contributions per student, slightly higher than male students of color 
(14.6 per student), but lower than White females (25.4 per student) and White males (39.1 per 
student). Female students of color were cold-called and encouraged to contribute as expected, 
while White female students were cold-called and encouraged more often than expected. In 
addition, White female students responded to teacher questions and offered unsolicited 
comments as expected, while female students of color contributed in these ways less often than 
expected. White female students were not that different from their White male peers with most 
contribution frequencies falling within the expected range or above. Consistent with the initial 
analysis, the exceptions seem to be related to risk-averse participation and seem to be true 
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regardless of race; specifically, females (in general) were less likely to ask questions, more likely 
to decline to answer, and less likely to offer voluntary contributions. With 469 total contributions 
(61% of total contributions vs. 43% of population) White male students dominated whole-class 
participation. The two outlier White male students certainly impacted the contribution numbers, 
but they were not the only White males contributing; nine out of the top 14 class contributors 
were White males. The only two participation types with lower-than-expected rates for White 
males were declining to answer questions and sharing screens. Four times during the semester 
the teacher asked, “Can someone please share the task prompt on their screen?” and all four 
times females responded to this request; three of those four times were female students of color.  

Discussion 
Participants spent much more time talking about classroom participation issues related to 

gender than race. Even issues that pertained only to White male students or female students of 
color were repeatedly framed with respect to gender alone. Differences in whole-class 
participation by gender did indeed exist but the analysis of gender-race groups revealed a more 
nuanced, and consequentially different, participation story. Findings revealed White dominance 
superseded male dominance; White male students had the most opportunities to participate, 
followed by White female students, female students of color, and finally male students of color. 

Taken together, findings suggest participants’ gender-focused discourse obscured racial 
inequities in classroom participation. Gender-focused discourse drew attention to discrepancies 
in male / female participation, but differences in the participation of White students and students 
of color were not noticed, or at least not talked about. The only participation issue mentioned 
related to race (and not gender) was an issue I raised before the start of the spring semester. After 
doing a trial run with EQUIP, I shared with the teacher that only one student of color had been 
given opportunities during that class period to contribute in “mathematically competent” ways. 
The teacher acknowledged the importance of this observation at the time. Yet, neither one of us 
(both White women) referenced this (or any other) race-related participation issue again. It was 
not that I noticed issues and chose not to mention them; I did not see racial inequities in spring 
semester participation until I conducted the gender-race analysis of student contributions.  

Questions remain as to how our identities as White women may have clouded our ability to 
talk about and notice racial inequities. However, the student teacher, a man of color, did not 
mention race-related participation issues either. It is very possible that students of color noticed 
racial inequities but chose not to talk about them. Despite the seemingly strong relationships I 
built with students that year, the fact remained that I was a White woman researcher asking 
students of color to share with me their personal observations. Students shared a lot, but I cannot 
assume they shared everything they noticed or experienced.  

While attending to gender inequity is extremely important, attending to gender alone is not 
enough. Discourse focused exclusively on gender obscures the intersectional experiences of 
numerous other marginalized groups of students, including male students of color, transgender 
and queer students, and students labelled with “disabilities.” In addition, attending only to gender 
reifies gender as a binary, which further marginalizes students who identify as neither male nor 
female. Moving forward, an intersectional approach to mathematics education research is of 
utmost importance. Topics worth exploring further include: how racial and gender-based 
inequities interact with inequities related to virtual classroom spaces, how gender and race shape 
participants’ noticing, how classroom participation varies for groups of students across different 
contexts, and how the experiences of individual students within the same identity groups 
compare to one another. 
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This preliminary work is from a larger study on the experiences of Black students learning 
mathematics in rural Appalachia. Following previous findings, this piece analyzes a series of 
interviews with Black students from West Virginia who were asked to imagine their ideal 
mathematics education through the lens of critiquing injustices. These freedom dreams were 
intended to develop features of a new mathematics education; however, there were tensions 
present in their re-imagination. They were often constrained by dominant notions of achievement 
and race in mathematics education. These tensions and student voices need to be taken into 
consideration in reform and change in mathematics education in rural Appalachia and beyond. 

Keywords: Equity, Inclusion, and Diversity; Social Justice; Systemic Change 

Past movements in mathematics education have had de-humanizing effects on students, 
particularly Black students and other students of color. Success in mathematics education has 
been defined by achievement on standardized tests and a limited conception of what it means to 
do mathematics (Martin, 2019). Mathematics education policy has contributed to this de-
humanization through standardization (Martin, 2015), including through the standards movement 
of the past three decades (e.g., CCSSO, 2010; NCTM, 1989, 2000). This de-humanization also 
sidesteps systemic racial issues in mathematics education, instead focusing on ways to “help” or 
remediate the “low” performance of poor or Black students (Bullock, 2019).  

Recent efforts to pursue equity in mathematics education have focused on humanizing 
mathematics and the experiences of students engaging in school mathematics (i.e., Gutstein, 
2006; Rubel et al., 2016, Su, 2020). However, much of the focus on educational equity in 
mathematics education attends primarily to traditional notions of achievement (i.e. grades, 
standardized test scores) and access to high quality mathematics. As Gutierrez (2012) states, this 
only partially addresses the concept of equity and the de-humanization of mathematics and 
students by focusing only on dominant structures while failing to emphasize critical issues of 
power and identity issues (Gutierrez, 2012). Current notions of equity are generally uncritical 
and avoid human and social issues. They maintain the status quo in mathematics education, 
failing to re-think the field, especially for Black students. This allows mathematics education to 
remain as a White institutional space into which Black students are “invited” (Bullock, 2019). A 
more human mathematics education is possible by re-thinking and critiquing current embedded 
practices and structures and by considering the voices of students, particularly Black students. 

In this brief report, we highlight preliminary analyses of a series of interviews with Black 
students from West Virginia to re-imagine a new mathematics education, highlighting the ideas 
and tensions that shape their perspectives. This research contributes to efforts to humanize 
mathematics education and center student voices by situating the work in a context that is under-
researched—rural, central Appalachia—where issues of race are traditionally backgrounded 
(Cabell, 1985; Hayden, 2002). Students were asked to re-imagine a mathematics education that 
focuses on identity, power and racial issues. This was an attempt at a “freedom dream” (Love, 
2019) of what mathematics education can be through the lens of critiquing injustice and 
harnessing the power of Appalachians and their communities. We enter this work as White, 
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cisgender male mathematics educators who live and work in rural Appalachia. We acknowledge 
our Whiteness and the benefits we receive from the status quo in mathematics education, and we 
believe in the power of students in Appalachia, particularly Black students, and use this work to 
elevate their voices in this re-imagining. 

Freedom Dreaming/Black Liberatory Mathematics 
In order to make mathematics education truly equitable and human, particularly for Black 

students, and to make it an instrument for social justice, we need to begin truly re-imagining 
what it can be. Freedom dreams are imaginations that are focused on challenging injustices in 
education and society (Love, 2019). Freedom dreams are, however, grounded in reality. They are 
not “whimsical, unattainable daydreams, they are critical and imaginative dreams of collective 
resistance” (Love, 2019, p. 101). The de-humanization of the educational system, in particular 
mathematics education, is so ingrained that to change it requires imaginative resistance to the 
oppressive structures that exist including standardized achievement tests and linear teaching 
based on memorization and procedures. This is especially necessary as Black students have 
experienced various forms of violence in their participation in mathematics education. They have 
long been invited to the space, but only if they apply to the norms of mainstream mathematics 
education (Martin, et al., 2019). Freedom dreaming can move towards a Black Liberatory 
Mathematics education that moves away from the notions of access, equity, and inclusion which 
often fall short. This is a way to re-think mathematics in a way that values Black students, their 
families, their communities, and their cultures (Martin et al., 2019). 

Rural Appalachia as the Context of the Study 
As hooks (2009) states, there are competing cultures in rural Appalachia: “the world of 

mainstream white supremacist capitalist power and the world of defiant anarchy that championed 
freedom for everyone” (p. 11). The goal of freedom dreaming is to tap into the second culture 
that is found in so many communities across Appalachia and to upend the first dominant culture. 
This can have an impact not only on Appalachian communities, but it can build mathematics 
communities that challenge the status quo. Rural Appalachians, and particularly Black people in 
the region, face health, environmental, educational, and other issues imposed on them by a White 
capitalistic society (Catte, 2018). A new mathematics education can work to dismantle the 
structures in mathematics education and society that contribute to these disparities. To begin to 
make progress on this vision, we pursue the following research questions: (1) What do Black 
students in rural Appalachia consider an ideal mathematics education when they freedom dream 
through the lens of critiques of injustice and community-based solutions? (2) What tensions exist 
for students between this re-imagination and traditional notions of success rooted in de-
humanization? 

Methods and Data Analysis 
Data for this study come from a larger study exploring Black students’ experiences learning 

mathematics in rural Appalachia. Participants were six high school students from across West 
Virginia who identify as Black and who took part in a statewide after-school mathematics and 
science program focused on mentoring students to enter and succeed in STEM-based degree 
programs. The first author was previously an assistant director of the program, which provided 
initial mentoring relationships with the participants. In the program, students conduct 
community-based research projects, thus providing experience in addressing injustice in their 
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communities. They also are admitted to the program based on traditional academic achievement, 
and they must maintain a certain grade point average to remain in the program.  

The first author conducted initial one-on-one and focus group interviews with the students 
followed by individual follow-up interviews. Each interview was approximately sixty minutes in 
length. Following previous findings (Freeland, 2021), this work is focused on a re-imagination of 
mathematics education by Black students who are subjected to de-humanizing mathematics 
education in the region. Students were asked multiple questions particular to this research. First, 
they were asked to describe their ideal mathematics education. Next, they were asked to consider 
how their work in communities and with community-based research could be applied to 
mathematics classes. Lastly, students were asked what they would want mathematics teachers to 
know about teaching mathematics to Black students in rural Appalachia. 

Data analysis occurred over multiple phases via open coding (Miles et al., 2019). The first 
stage involved coding students’ responses when asked to freedom dream and finding examples 
of a re-thinking or re-imagining of mathematics education. While the goal was to move from 
codes to features of a re-imagined mathematics education, what emerged were tensions present 
in their freedom dreams. To explore the tensions that were present, codes were further refined to 
include examples of humanization and de-humanization. Also, we drew on Rubel’s (2017) work 
discussing “changing the game” and “playing the game” of mathematics education, providing 
another lens to explore the conflicts that students experienced when freedom dreaming. This data 
focuses on three students from the larger study: Letitia, Zahara, and Yara. Their freedom dreams 
represent a preliminary view of the complexity of re-thinking mathematics education and the 
tensions students feel when doing so. 

Preliminary Findings 
Tensions Associated with Achievement in Mathematics Education 

Students’ freedom dreams re-imagine the way that classroom interactions occur and re-thinks 
traditional classroom structures. However, these dreams always have an eye towards traditional 
achievement through exams, standardized testing, and high grades. For example, Letitia 
mentioned a way for students to work consistently with their classmates in groups of two or 
more. However, this found its way to a discussion of assessment as she imagined that students 
could complete tests together: 

We can have like two people at a table or little area. And they can work together on their 
stuff and be like partners for the rest of the year. Assigned partners and stuff and they help 
each other even when they’re doing a test. Because it can be like on paper. And they’re both 
trying to solve it. 

Letitia also wants a re-imagining of grades, but she still sees the need for them. She said, “I 
would still keep grades, just a different type of grading based on how you understand it. But 
maybe not like A B C D…” However, Letitia strives greatly for high grades even though it 
causes her stress. She said, “I want to have good grades because I wanted to graduate with 
honors. I would get stressed out if I got a bad grade. I’ll have like a breakdown.” Similarly, Yara 
feels the pressure and de-humanization of grading policies while still seeing value in them. When 
asked if her re-imagined mathematics education would need grades, she said: 

I don’t know because I like that I have good grades. Like it makes me feel good that I’m 
doing good and stuff. But also, I feel like I’m stress a lot about my grades. I’m always 
checking my grades constantly. Constantly. 
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In contrast to Letitia’s ideas about collective learning, Zahara imagines a freer mathematics 
education that relies on the individual to move at their own pace in learning. She saw a video 
about a high school in Canada where “you learned at your own pace.” She said, “There weren’t 
really grades you just learned what you need to learn, and you just go past it whenever you learn 
it and just keep going.” However, she also realized that teachers must prepare them for the ACT 
and SAT, so although they could learn whatever they could individually, the next teacher would 
need to “pick up where they left off.” The traditional ideas of mathematics education as linear 
and achievement based remained strong. 
Tensions Associated with Race in Rural Appalachia 

The main tension for students associated with race was the feelings of wanting to be treated 
equally to their White peers while also having their race and Blackness recognized and honored. 
This is especially important in the mostly White, rural spaces these students live and learn. This 
is highlighted by Zahara who said, “It would be best for the teacher to treat all of them, every 
student, the same because if you’re the only Black person you don’t want to feel different more 
than you already do.” Letitia agrees as she believes that many people doubt Black students’ 
intelligence or mathematics abilities: 

I want them to know that you’re not dumb. ‘Cause people have this I guess idea that Black 
people aren’t smart. And not really nice … or smart. I think people should just ease up on 
that. And treat everybody the same not any different. 

This feeling of wanting to be treated exactly the same contrasts with their desire for their 
Blackness to be acknowledged and for people to be treated appropriately. Zahara said, “You 
know just treat everyone like you should be treating them in the first place.” She also expressed 
her pride in being Black: “We didn’t ask to be Black, but I’m proud to be Black. But that doesn’t 
mean we have to be talked to or treated different like we’re not as smart as other kids.” Letitia 
sums up this tension when discussing the equal treatment of White and Black students in rural 
Appalachia. She said, “I think (treating everybody the same) that’s different than just like saying 
you’re the same like treatin’ you White. You know, treat me the same, but you know that I’m 
Black and not White. And that, this is different.” 

Discussion and Conclusion 
Black students were able to freedom dream and re-imagine a more human mathematics 

education. However, they were often constrained by the deeply ingrained structures including 
testing and grading that have defined mathematics education. They are also constrained by the 
Whiteness that exists in their context. Based on these students’ experiences (Author, 2021), they 
often dislike mathematics education and view it as a series of de-humanizing series of 
memorizations and procedures. A re-imagining needs to occur for Black students in rural 
Appalachia to live in their full humanity; however, the tensions they exhibit are very real and 
need to be taken into consideration and honored. Their perspectives as Black students in rural 
Appalachia must be a part of any reform and change in mathematics classrooms.  

While the students interviewed for this study seem unfulfilled in their de-humanizing 
mathematics education—seen as a means to an end for college or career—those same endpoints 
constrain the opportunities to imagine what else is possible. This provides an important starting 
point for future work with students and teachers to work towards a full re-imagining of a more 
human mathematics education focused on community, particularly in this context. These 
students’ voices also provide an important voice now and moving forward in the discussion of 
mathematics education and other systems in rural Appalachia and beyond. 
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Principals play an important role in shaping, encouraging and supporting mathematics teachers 
in their daily work. They also have the responsibility for teachers and students’ welfare. A survey 
of almost 1000 district decision-makers in the U.S, however, found that these administrators tend 
to make decisions about structuring students’ opportunities to learn based on principles of equality 
rather than principles of equity (Herbel-Eisenmann, et al., 2018). Bound with, or with support of, 
regulating policy, principals move their school life forward day by day, being responsible for 
students’ opportunities to learn in all subjects, including mathematics. Conversations and 
interviews with principals in this study focused on understanding the complexities of storylines—
or grand narratives—related to organizing mathematics education for Indigenous and (rather) 
newly migrated students in Norwegian schools. This paper addresses the storylines about these 
minoritized youth, mathematics and languages. 

Our research goal is to understand a range of “available” storylines (Wagner et al., 2019) to 
inform our longitudinal, participatory research project with teachers, administrators, community 
members, youth, and families. We are motivated by the fact that the opportunities that students 
from minoritized groups have for learning mathematics are often diminished as compared to their 
majority group peers due to systemic and institutional issues (Barwell et al., 2007; Civil, 2012; Le 
Roux, 2016; Meaney et al., 2011; Valoyes-Chávez & Martin, 2016). Over time, our partnership 
will develop strength-based pedagogies based on positive, asset-based storylines. In this paper, we 
analyze in-depth interviews with nine Norwegian principals and share some of their complex 
storylines about minoritized student groups, their languages and their learning of mathematics. 

Positioning Theory and Storylines 
The key construct we use for this paper, the idea of storylines or “lived stories for which told 

stories already exist” (Harré, 2012, p. 198), comes from positioning theory. As Davies and Harré 
(1999) point out, the multiple storylines at play “are organized through conversations around 
various poles, such as events, characters, and moral dilemmas. Cultural stereotypes like 
nurse/patient, conductor/orchestra, mother/son may be called on as a resource. It is important to 
remember that these cultural resources may be understood differently by different people.” (p. 39). 
Storylines are negotiable; they are reciprocal and contingent (Wagner & Herbel-Eisenmann, 2009). 
Storylines also can occur at a range of scales (Herbel-Eisenmann, et al., 2015). Although 
positioning theory has been used in mathematics education research for over a decade, there is 
typically less focus on storylines than on positionings. Because storylines indicate what is expected 
in an interaction and can shape the potential fluid roles or positions that are made available to 
people, they are important to consider in relationship to mathematics teaching and learning. 
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Methodology 
Context 

This research is part of the Norwegian Research Council’s FINNUT-granted project MIM: 
Mathematics Education in Indigenous and Migrational contexts: Storylines, Cultures and Strength-
Based Pedagogies, (see https://www.usn.no/mim), a collaboration drawing on participatory 
approaches to investigate educational possibilities and desires, in times of societal changes and 
movements. Although we focus on the Norwegian context, we recognize that these kinds of 
societal changes and movements impact many countries throughout the world. With these changes 
and movements of people, language diversity may be the most obvious challenge in mathematics 
classrooms, but this reality also connects to cultural differences and conventional characteristics 
of the discipline. Indigenous communities have experienced linguistic and other challenges for 
decades as a result of colonization. In Norwegian contexts, several groups with a different origin 
than Norwegian are recognized, often with a reference to a connection to a (former) nation state. 
These groups are mainly seen mentioned from the 1970s and onwards when migrant workers from 
Pakistan, Turkey, and Morocco started to arrive in Norway. More recently immigration also 
comprises people from other European countries and from conflict areas in, for example, Asia and 
Africa (Reisel, Hermansen & Kindt, 2019). In addition to these, there are peoples/nations of 
Norway (without their own nation state) that appear in the contexts we are interested in; the Kven 
and Sami peoples belonging to the northern part of Norway. The schools in which we have 
partnerships are in both the northern and southern parts of Norway. Principals in northern Norway 
are expected to provide mathematics education in Sami, and sometimes in endangered languages 
such as Kven. In some of the further north communities, and in the principals’ schools in the south, 
there are a high number of migrated youth who have arrived in the last decade and hence are not 
(yet) proficient in the main language of instruction, Norwegian. 
Methods 

Between August 2021 and now, we have been working together with people in five schools. 
As part of this work we did In-depth interviews with nine principals in our collaborating schools 
in Norway. Each interview involved two people from our university-based team and one school 
principal and took place on Zoom. The interviews were recorded, then transcribed in Norwegian 
and were also translated into English. We independently read each interview multiple times and 
took notes on the range of ways Indigenous and (newly) migrated students, families, and teachers 
were positioned in the episodes and tried to identify the kinds of storylines that were at play. We 
then met and shared the storylines we had identified and evidence for that storyline and, after 
discussion, came to consensus on a set of storylines to report. As Wagner and Herbel-Eisenmann 
(2009) have pointed out, there is not a ‘correct’ way to name a storyline because each participant’s 
perspective may be different. Thus, we drew on the context of the interview, information we knew 
about the school and community, and the educational, historical, and political context of the 
specific country to consider how to name the storylines.  

Results 
In the data material from conversations with principals focusing on Norwegian minoritized 

youth and their mathematics education, we found a number of storylines, Here we share two larger 
intertwining storylines, with both supporting and contradicting “smaller” storylines in the 
conversations. We found that the main storylines were similar from schools in different 
geographical and socioeconomic areas in Norway. How the principals developed and talked about 
the storylines, however, differed geographically, with an emphasis on the particular communities 
in their areas. In this section, we elaborate on the two overarching storylines: “Mother tongue 
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teachers are important resources” and “Students don’t (yet) have the basic language skills to build 
their mathematics language” in separate sections while acknowledging that they intertwine and 
sometimes overlap each other. 
Mother tongue teachers are important resources 

The overarching storyline that all principals address is their concerns for giving students the 
best opportunities to learn mathematics. The principals talked about how they strive to find support 
for students who do not (yet) know the language of instruction (Norwegian) or try to ensure 
teachers can teach or support in the classrooms in languages other than Norwegian. Depending on 
the geographical area, however, the principal’s way of talking about this storyline differed. 

In the Northern context, the principals are obliged to offer education in the minoritised 
languages, as Sami and Kven. In addition, a number of the parents from indigenous communities 
want to protect and revitalize their languages and hence wants these languages to be the language 
of instruction for their children in schools. There are also a number of parents, however, who want 
their children to learn and know mathematics in Norwegian because this will support the students’ 
further university studies. In addition, it is very difficult to find teachers who can teach 
mathematics in Sami and/or Kven. Teachers who are both educated in mathematics teaching, and 
know the Sami language are rare, if they even exist. The challenges are complex and contradictory.  

In southern Norway, there are a higher number of minoritised student groups due to recent 
migrations. A high number of youth came to Norway as refugees, or in families who arrived in 
Norway for work.  These students are usually offered to participate in a “mottagsklasse”, a 
“welcome/arrival class”, in schools where these exist. In these classes, they together get 
accustomed to the school, learn Norwegian and learn subjects such as mathematics even if they 
are of different ages and are on different learning levels in the subjects. After one year, the students 
are dispersed in, what is described as “ordinary” classrooms where children are in the same age 
groups despite knowledge levels. Principals do not talk about these “welcome/arrival classrooms” 
as ordinary: they are “special” classrooms, in some schools, where the students go one year. 

A storyline about the latest arrived students is that it is hard for them to learn mathematics 
because they do not (yet) know the language of instruction, and the teachers—mainly 
Norwegian—do not know the students’ languages. As one principal said, “they get lost in 
translation and it goes both ways”. The principals talked about wanting to employ a higher number 
of mathematics teachers with migrational background, to teach in these classes. Another option 
they suggested would be to have mother tongue teachers present in the classrooms. 
Students don’t (yet) have the basic language skills to build their mathematics language  

This storyline is shared by principals both in the north and south of Norway, however, with 
different explanations. The storyline addresses minoritised students who do not have sufficient 
language skills either in their mother tongue language or in Norwegian. These students may be 
second or third generation migrants, who heard and talked Norwegian only in day care (for 
example kindergarten and preschool) and then during school hours only. At home, they speak a 
“modified”, or “adjusted” mother tongue language, mostly lost due to parents, grandparents and/or 
siblings not being fully exposed to this language while living in Norway over time. The principals 
talk about these students as having extra challenges as they do not have enough language skills to 
build a mathematical language in either of their languages. 

In the north, the challenges with this storyline are experienced in the same vein, however, the 
reasons for the storyline are different. The reasons here concern either endangered languages (for 
example Kven) but also generations that have lost their indigenous languages due to being forced 
to speak Norwegian during “fornorsksningsperioden”. In other words, families have “lost their 
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heart language” (mistat hjärtespråket sitt) (Broch Johansen, 2020). The situations are complex, and 
we here give two examples: If the children have been exposed to, for example, Sami, during 
kindergarten, pre-school and the early years, and/or at home, then they might not know the basic 
mathematical concepts in Norwegian when they move to secondary school where they switch 
language to Norwegian as language of instruction. Or, conversely, a student may have attended an 
early education in Norwegian, and then moved to a secondary school where they may learn 
mathematics in Sami. Or they were exposed to the indigenous languages in the early years of 
schooling, but at home they speak Norwegian only. In these cases and according to this storyline, 
as a minoritised youth, they get caught in the structures and do not have sufficient language skills 
in any language to build their mathematical language skills. For the principals, the impact and 
complexities of this storyline becomes an ethical dilemma.  

Discussion 
We are sharing here our early interpretations about the interviews with principals. In the 

presentation we will have translated transcripts to share, which will help us illustrate the 
complexities of these storylines. We recognize that some of these storylines also appear in first 
attempts to gather international data related to understanding school policies and principals’ 
acknowledgement of difference and strategies that assist or deny access to schools for all children. 
For example, Goddard (2007) reported that “the issue of adequate funding for interpreters is 
present in many countries, as is the practice—albeit contested by some—of using children to 
interpret for their parents” (p. 4). Providing financial resources for mother tongue teachers in 
schools would be a systemic approach to supporting language for newly arrive immigrants and 
Indigenous students. Alternatively, resources could be provided that would educate a higher 
number of teachers with migrational backgrounds to become educators. 

In Sweden, Johansson, et al. (2007) reported mixed messages from principals and teachers 
about the kinds of responses and attitudes to the increasing school diversity. Alongside valuing 
diversity for how it enriched the school community, for example, was associations with problems 
of “language difficulties, social programs, support programmes…[and needs of] special support” 
(p. 26). One of the complexities for us relates to our desire to avoid perpetuating deficit framing 
of students and cultures. When we identify storylines that pervade education discourse, deficit-
framed storylines exist. We struggle to find ways of reporting on these storylines to research and 
professional education communities while making it clear that we see them as problematic. We 
also acknowledge that other storylines we have found have centered on individuals rather than 
systems or structures that need to change (Andersson, et al., 2021; Ryan, et al., 2021). An 
additional complexity in our work relates to the pandemic and its influence on our research plan. 
Although we planned to foreground the experiences of minoritized children in Norwegian 
mathematics classrooms, the pandemic’s restrictions on face-to-face interaction forced us to talk 
with principals before talking with students. We consider this arrangement less than ideal for 
research drawing on participatory methodology that focuses on classroom opportunities. 
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In this paper, we provide two analytical methods for measuring the intersecting constructs of 
equity and professional noticing, as defined by Jacobs et al. (2010). One is a scoring rubric 
utilizing Gutiérrez’s (2009) four dimensions of equity to include access, achievement, identity, 
and power, along the dominant and critical axes. The second is a flowchart to examine asset, 
deficit, or neutral language in professional noticing responses about students’ mathematical 
thinking. We discuss the affordances and limitations of both methods, along with challenges for 
measuring equitable noticing in meaningful ways. Preliminary findings have shown a positive 
increase in the dominant axis where responses elaborate upon the dimensions of access and 
achievement.  

Keywords: Teacher Noticing; Equity, Inclusion, and Diversity; Research Methods  

Perspectives 
There is emerging interest in studying equity in conjunction with professional noticing (Jong, 

2017; Louie et al., 2021). For example, both Kalinec-Craig (2017) and Hand (2012) have 
examined student positioning (and, by extension, power) in the context of professional noticing. 
Specifically, Hand’s construction of taking up space does not simply “comprise [students] 
participation in classroom mathematical practices, but rather is about being able to contribute to 
the classroom community that is aligned with who one sees herself as becoming” and the extent 
to which teachers’ in-the-moment decision-making enlarges or constrains such student 
contributions through manifestations of culturally dominant ideologies (p. 237). Such 
connections of noticing and equity are consistent with portrayals of professional noticing as 
contested and political space (Lefstein & Snell, 2011; Louie, 2018). Regarding the pedagogical 
activity that might productively influence such spaces, van Es et al. (2017) posited a number of 
practices (i.e., make norms explicit for doing mathematics, support students in developing 
mathematical identities) and associated foci for professional noticing that they describe as 
noticing for equity. Building on this work, Louie et al. (2021) recently developed a sociopolitical 
framework for conceptualizing anti-deficit teacher noticing, which aligns closely to the 
flowcharts we will present.  

The aim of this brief report is to describe two analytical methods for measuring equitable 
noticing, which is a burgeoning area of research (Jong, et al., 2021). Several scholars have 
developed frameworks for equity or social justice in mathematics (Goffney et al., 2018; 
Gutiérrez, 2009; Stinson & Wager, 2012), which have been applied to research in mathematics 
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education. However, limited studies have shown analytical methods that are generalizable to 
multiple research settings within equitable noticing. Jackson et al. (2018) describe a coding 
dictionary they created in the form of a matrix that uses Gutiérrez’s (2009) four dimensions of 
equity as columns on top and three levels of noticing as rows, which mirror the components of 
professional noticing (Jacobs et al., 2010). They then provide sample text based on preservice 
teachers’ responses to vignettes about equitable access to mathematics, which is helpful to 
understand how they operationalized the varying dimensions of equity across levels of noticing. 
In our project, the depth of responses to the varying dimensions of equity were also taken into 
consideration.  

Methodology 
Context of Project 

The research team was awarded an NSF grant to develop modules that integrate equity and 
noticing for mathematics methods courses. A total of eight modules were developed and 
implemented in mathematics methods courses for elementary teacher candidates during fall 2020 
and spring 2021. The two frameworks woven into the modules are Gutiérrez’s (2009) four 
dimensions of equity and Jacobs, Lamb, and Philipp’s (2010) professional noticing of children’s 
mathematical thinking, including attending, interpreting, and deciding. To measure improvement 
in teacher candidates’ professional noticing skills and deepen understanding of equitable 
mathematics teaching, we designed a video-based instrument that is administered pre- and post-
methods course. After viewing a 74-second clip of a second-grade classroom with racially 
diverse students participating in a number talk to solve the open number sentence of 10 + 10 = 
__ + 5, teacher candidates respond to five prompts. Three prompts relate to that which they 
attended, interpreted, and decided about the children’s mathematical thinking in the video. And, 
the following two additional prompts relate to equitable noticing. Q5: “Describe how equity 
relates to this classroom scenario in different ways.” Q6: “If you were the classroom teacher, 
how might you strengthen equity in this classroom scenario?” Here, we focus on our analysis of 
the noticing equity responses which is framed by the work of Gutiérrez (2009, see figure 1).  

 

 
Figure 1: Four Dimensions of Equity (Gutiérrez, 2009)\ 

Gutiérrez describes four dimensions categorized into two axes: the dominant axis (access and 
achievement) and critical axis (identity and power). We developed a scoring rubric ranging from 
0-4 for each axis of equity (see figure 2). Alongside the scoring rubric, we created a codebook 
that includes codes for each dimension of equity to help us determine which dimension is 
mentioned and whether the response elaborates on a dimension while also grounding it in the 
video of the classroom scenario. While we acknowledge the limitations in this approach, we also 
think there is great potential for our scoring rubric to be applied to the analysis of additional 
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mathematics classroom video clips to further research the intersection of noticing and equity. In 
addition, we used a flowchart developed for another equitable noticing project to code each 
response based on whether the framing of the language was oriented toward one of the 
following: asset, deficit, neutral, or both (Thomas, et al., 2020). However, in this paper we do not 
include results of these categories.  
 

0 1 2 3 4 

incorrect “OR” 
Attend to 
(mention) either 
dimension of the 
axis 

“AND” 
Attend to (mention) 
both dimensions of 
the axis 

“OR” 
Attend to either 
dimension of axis with 
interpretation/productive 
response along the axis 

“AND” 
Attend to both 
dimensions of axis with 
interpretation/productive 
response along the axis 

*Must be connected to classroom scenario to move beyond level 2.  
Figure 2: Coding Rubric for the Dominant and Critical Axis 

Each response was given a score for the dominant and critical axes. Take this attending 
response as an example. “The teacher doesn’t seem to call on many girls. This could be a 
classroom dynamic they struggle with, or a bias on the teacher’s part. This relates to equity 
because she isn’t giving each child equal access to the problem. Only certain students have the 
floor to give their answers, while the others sit around looking bored. It also connects to the 
demographics of the classroom. Which students need extra scaffolding and help while other can 
get the correct answer quickly.” For the dominant axis, this would score a 3 because it provided 
an interpretation of the access dimension by elaborating on it. For the critical axis, it would score 
a 4 because it elaborated on the identity dimension with gender then acknowledged power by 
who has a voice to share their answers (see figure 3). We created a spreadsheet with a Boolean 
Function to score responses depending on whether it elaborated on one of the dimensions on the 
axis as the “OR” (for the score of 3) or included both dimensions within the axis and elaborated 
one of them for the “AND” (score of 4). The spreadsheet also had a summarizing tab that 
highlighted discrepancies between the two scorers to discuss and negotiate.  

 

 
Figure 3: Google Spreadsheet with Boolean Function for Scoring each Axis 

In our scoring, we also wanted to flag any responses that discussed systemic or structural 
inequities and potentially score those as a 5, but none included that in the equitable deciding 
responses for Q6 where it was more of a possibility. In addition, we wanted to flag responses that 
were deficit oriented, incorrect, or unproductive. For example, the following response speaks to 
access, but is incorrect and unproductive: “Students did not understand the problem and should 
be grouped to make sure they do.” Because of the nod to access, this response was scored a 1, 
but also given a negative code due to the deficit orientation.  Using both scoring mechanisms 
(dimension and orientation) for each response assured another step toward reliability. 
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Results 
Given our limited sample size (n=34) of matched responses from pre to post, we cannot make 

substantial claims based on statistically significant differences (see Table 1). However, we 
noticed that for Question 6 related to the dominant axis, there was an increase in responses that 
mention access and achievement. What is more encouraging is that post-responses appear to be 
more complex and include rationales. They also noticed that only boys were selected in the video 
and recommended in Q6 that girls should also be selected to elevate their voices, and that 
students should be given time to share their ideas with a partner before a whole group discussion.  

 
Table 1: Paired T-test Results 

Pre/Post Responses Change 
in Mean Std. Dev. Std. Error Mean t Sig. (2-tailed) 

Q5 Dominant Score 1 0.75593 0.2672 3.742 0.007 

Q5 Critical Score 0.125 1.45774 0.5153 0.243 0.815 

Q6 Dominant Score 0.625 0.74402 0.2630 2.376 0.049 

Q6 Critical Score 0.375 0.74402 0.2630 1.426 0.197 

Discussion 
We are beginning to see some patterns emerge in the way preservice teachers notice 

equitable teaching practices in mathematics. It is encouraging that there was some growth 
detected in the dominant axis of equity related to decisions in Q6. However, we also 
acknowledge the many limitations of the implementation of the modules during the pandemic 
year that included a small sample size. It might also be the case that the video-based assessment 
and analytical process did not allow for more variation in the dimensions of equity to be fully 
explored. In fall 2021, there were more sites that implemented the modules with over 200 
preservice teachers. Thus, we aim to better examine potential changes and relationships among 
the dimensions of equitable noticing in this next round of coding.  

Video-based measures have been widely used in noticing because they serve as an 
approximation of practice (Jacobs, 2017). However, the video only shows a snapshot of a 
classroom interaction and may not provide a full picture of the classroom environment or 
dynamics. Expanding the type of classroom artifacts to include vignettes, videos, and student 
work might capture a more valid measure on preservice teachers’ equitable noticing in 
mathematics that could also have greater variation across dimensions of equity.  
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This study examines early childhood preservice teachers’ experiences using anti-bias picture 
books to design mathematics lessons addressing issues of social justice during a children’s 
literature course. With reference to the Teaching Mathematics for Social Justice framework 
(Gutstein, 2006) and the Learning for Justice (2016) social justice standards, preservice 
teachers designed lessons to address issues of identity, diversity, justice, and action. Findings 
indicate that the preservice teachers were more likely to target social justice pedagogical goals 
focused on identity and diversity over justice and action. Additionally, the preservice teachers 
experienced increased confidence when working with such lessons. Recommendations are made 
that preservice teachers in early childhood education have explicit opportunities to engage in 
such tasks to develop their justice-related mathematical consciousness and professional practice.    

Keywords: Preservice Teacher Education, Social Justice, Early Childhood Education, 
Instructional Activities and Practices  

Early childhood educators provide some of the first experiences for young learners to engage 
with mathematical thinking (National Research Council, 2009). Thus, early childhood preservice 
teachers (PTs) need the opportunity to engage in explicit tasks focused on mathematics in order 
to become well-rounded early childhood educators (National Council of Teachers of 
Mathematics, 2013). An increasing priority in the field of early childhood education (ECE) is 
creating equitable instruction that is reflective of the world outside the classroom (Alanís et al., 
2021). With content only lessons, students can experience a disconnect between the skills they 
learn in the classroom and real-world applications. The intersection of mathematics and social 
justice is recognized as Teaching Mathematics for Social Justice (TMfSJ) and aims to use 
mathematics as a tool to confront systemic challenges within and outside the classroom 
(Gutstein, 2006). When establishing goals for TMfSJ lessons, teachers need to consider both 
mathematics and social justice standards. Learning for Justice (2016) developed social justice 
standards that organize anti-bias standards within four domains: Identity, Diversity, Justice, and 
Action (IDJA). These standards feature grade-level outcomes that are applicable to young 
learners and can be used in ECE to target social justice ideas.  

While the current literature examining TMfSJ lessons is primarily focused on mathematical 
concepts found in secondary settings, mathematics in ECE settings can benefit from the goals of 
TMfSJ. Although the literature on TMfSJ is broad, Ward (2020) demonstrates that TMfSJ can be 
used in ECE to create opportunities for action targeting social justice through child-led decision-
making. Current studies (e.g., Bartell, 2013; Myers, 2019) regarding PTs experiences with 
TMfSJ are more commonly associated with secondary education, with very few looking at the 
experiences and beliefs of early childhood PTs. This study examined the research question: What 
are PTs’ experiences engaging in an anti-bias picture book task to develop their skills and 
confidence to design mathematics lessons targeting social justice issues? 

Theoretical Framework 
Rooted in Freire’s (1970) concept of critical education and Frankenstein’s (1983) application 
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of the theory to mathematics, TMfSJ aims to empower students to investigate and challenge 
societal inequities through the development of their critical consciousness and subsequent 
application of mathematical skills (Berry et al., 2020). This empowerment occurs through the 
prioritizing of both mathematical pedagogical goals and social justice pedagogical goals 
(Gutstein, 2006). One noted tension of TMfSJ is how the success of students or teachers 
engaging with both pedagogical goals is determined (Kokka, 2015). One variable noted in 
contributing to success in achieving both goals is the ability to cater instructional time to both 
goals (Gregson, 2013; Gutstein, 2006). Learning to balance both mathematical and social justice 
concepts and goals is a skill that is developed in TMfSJ practices.  

For purposes of this work, we consider the theoretical lens of Berry et al. (2020)’s social 
justice mathematics framework that incorporates six elements detailing the progression of the 
social and mathematical practices that lead to action and public products. We position the 
elements into two stages, which we deem as progression markers, to describe where PTs are on 
their journey of “justice-related mathematical consciousness”. We note the first stage as 
“beginning of justice-related mathematical consciousness” to address the preliminary progress 
toward equitable teaching practices that consider authentic and challenging questions or concerns 
to generate social and mathematical understanding. The second stage described as “emergent and 
continuing justice-related mathematical consciousness” continues beyond those questions or 
concerns to create a social and mathematical investigation that requires reflection and action, 
resulting in a tangible outcome. We posit that students who created an action plan were more 
inclined to put their plan into action, thereby having success within their targeted pedagogical 
goals (Kokka, 2015). 

Research Methods 
We used a qualitative case study (Yin, 2014) across two asynchronous sections of a 

children’s literature course at a rural, public two-year college in southwestern United States. 
Consenting participants included 35 PTs who self-identified as female (n=33), male (n=1), and 
gender fluid (n=1) seeking early childhood teaching certification. Their demographics could be 
further described as Hispanic/Latinx (n=20), White (n=6), Black (n=3), Asian (n=2), American 
Indian/Alaskan Native (n=1), Biracial (n=1), Egyptian-American (n=1), and other (n=1).  
Task Design 

Students worked through asynchronous, scaffolded modules to complete this task. The first 
module encompassed resources from DREME (2022) to explore the use of picture books to teach 
early mathematics as well as review of the Learning for Justice (2016) anti-bias framework and 
Ward’s (2020) research. Next, the PTs were tasked with selecting a relevant anti-bias picture 
book with consideration for how the books embodied standards from one of the anti-bias IDJA 
domains. They also considered which early mathematics standard each book could target, such 
as spatial relationships, number sense, classification, measurement, and patterning (Carpenter et 
al., 2017). Using their selected standards, PTs then wrote an early mathematics lesson targeting 
social justice in reference to their anti-bias picture book. The final action required PTs to reflect 
on their experience incorporating social justice into a mathematics lesson.  
Data Sources 

A variety of data sources were collected including pre- and post-surveys, artifacts (lesson 
plans), and reflection responses. Before accessing course material, PTs completed a pre-survey 
and answered questions relating to confidence incorporating themes of social justice into lesson 
planning. All participants submitted lesson plans that included both the mathematics and social 
justice standards that informed the lesson, background information about their selected anti-bias 
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picture book, and a step-by-step description of the lesson. After completing the lesson plan, 
participants answered reflection questions about their specific lesson and responded to the post-
survey that addressed their confidence incorporating themes of social justice into lesson planning 
after having attempted this anti-bias picture book task.  
Data Analysis  

We initially looked at which social justice domains the participants selected standards from 
and if certain books were chosen for specific domains. We also noted which early mathematics 
skills were selected. In addition to analyzing which standards were selected, we used descriptive, 
in vivo, and values coding (Miles et al., 2018) to discover what themes or aspects of identity 
(e.g., race, gender, ethnicity, socioeconomic status) each task and respective book centered in the 
context of the social justice standards. We then coded for themes within the reflective responses 
regarding how their mathematics task and selected anti-bias picture book encourages advocacy 
and action, reflects diversity as an asset, and promotes social justice mathematical thinking. 

Findings 
Most of the PTs (n=23; 65.71%) selected Identity and Diversity standards rather than Justice 

and Action standards (n=8; 22.86%), with the remaining (n=4; 11.43%) not selecting a standard. 
Figure 1 shows the associated issue within each domain that PTs targeted using their selected 
texts. For example, the domains of Identity, Justice, and Action included race as a focused issue 
in the lessons; however, race was not a focus in the Diversity domain. While it is good practice 
to support Identity and Diversity within ECE, the TMfSJ framework encourages more critical 
thought through inclusion of standards from the Justice and Action domains (Berry et al., 2020). 
The most common mathematical concept selected by PTs (n=19; 54.28%) was number sense. 
Others included patterning (n=5; 14.29%), measurement (n=5; 14.29%), classification (n=5; 
14.29%), and spatial relationships (n=1; 2.85%).  

 

 
Figure 1: PT’s Book Selections by Social Justice Domain  

It was apparent that the PTs who selected anti-bias books within the Identity and Diversity 
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domains created lessons that leaned heavily on the social justice goals with less focus on the 
mathematical goals. Findings revealed that there were fewer lessons that seemed to integrate the 
two pedagogical goals in a cohesive manner. One lesson plan that succeeded in balancing the 
pedagogical goals used an Action standard and targeted number sense. The PT used the book 
Farmer Will Allen and the Growing Table by Jacqueline Briggs Martin to explore concepts of 
community leaders, food deserts, and food insecurity to organize a class action plan to address 
food insecurity through a classroom food drive. The class demonstrated one-to-one 
correspondence and cardinality by counting the collected food items. A degree of mathematical 
consciousness was required for this PT to create a TMfSJ lesson plan that included an Action 
plan resulting in a tangible product for the community. When identifying a PT’s stage in their 
journey of justice-related mathematical consciousness, it is necessary to examine the ability, or 
inability, that a PT has in balancing mathematical and social justice goals.  

As noted in Figure 2, the PTs’ mean confidence levels with social justice lessons increased 
after participating in the task. Furthermore, an interesting dichotomy arose in the reflective 
questions. For instance, two PTs commented that their text and lesson promotes social justice 
mathematical thinking by emphasizing how all individuals should have fair opportunities to 
engage. Another PT stated, “some of our peers have had the opportunity to visit some of these 
places and others haven't, which highlights the fact that life is easier for some people and harder 
for others and reasons are not always fair.” These three PTs recognize that fair opportunities are 
needed; however, the third PT makes deliberate action plans in their lesson to critique systemic 
injustices, thereby demonstrating an “emergent and continuing justice-related mathematical 
consciousness”. PTs need exposure to pedagogies that prioritize social justice, such as TMfSJ, in 
order to gain the confidence to create and implement these lessons into their future practice.  

 

 
Figure 2: PT’s Mean Confidence Levels with Social Justice Lessons  

Conclusion 
The application of TMfSJ is needed not only in the early childhood classroom but also 

teacher education programs. Positioning this work in generalist courses, in addition to 
mathematics methods courses, is important especially given how early childhood PTs lack 
opportunities to dive deeper into mathematical concepts and issues (Bates et al., 2013). TMfSJ 
gives PTs the ability to use mathematics as a tool to critically analyze the world around them, 
which will expand lessons past the Learning for Justice (2016) domains of Identity and Diversity 
and into Justice and Action (Bartell, 2013; Ward, 2020). Recognizing that PTs are at various 
stages of their justice-related mathematical consciousness means that scaffolded support is 
important for success when engaging with TMfSJ in the early childhood setting.  
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A persistent problem in mathematics education has been deficit thinking by teachers about the 
mathematical potential of students with disabilities and students who have been marginalized in 
mathematics. This paper reports analysis of findings of a six-week virtual class in the summer of 
2020 for 45 mathematics and special educators which integrated Universal Design for Learning 
(UDL) with design thinking, focusing on the teaching and learning of mathematics. Our 
approach grounds UDL in empathy, beginning design with developing understanding of student 
perspective through Empathy Interviews. In focus group conversations nine months late, 
participating classroom teachers reported that empathy and Empathy Interviews were the most 
important long-term takeaway of the course, and that empathy became a touchstone in their 
teaching practice. Empathy seemed to disrupt deficit thinking for these teachers.  

Keywords: Equity and Diversity; Students with Disabilities; Teacher Beliefs; Affect, Emotion, 
Beliefs, and Attitudes. 

A fundamental issue with including students with disabilities into inquiry-based mathematics 
is not the difficulties those students might have, but deficit thinking about the students held by 
teachers (Lambert, 2018). This deficit thinking is a part of the larger stigma and oppression of 
disabled people, but also a specific result of decades of traditional special education questioning 
whether of these students to profit from inquiry-based teaching (Lambert & Tan, 2020). 
Disrupting deficit thinking in teachers is necessary to create opportunities. But how do we as 
math educators and researchers disrupt deficit thinking? What kinds of practices can engage 
teachers in on-going development away from deficit thinking? 

       This brief report discusses positive findings from a professional development course for 
math and special educators on Universal Design for Learning through a Design Thinking lens. In 
our 6-session course, we explored UDL for math, as well as rethinking disability through 
frameworks such as disability rights and neurodiversity. Groups of educators worked together in 
Design Teams to identify a problem of practice around inclusion and accessibility, to learn more 
about the users’ perspectives through empathy interviews, and to engage in a cycle of Design 
Thinking to develop a prototype for a new curricula, system, space or routine. Data sources for 
our research included class video recordings, transcripts and artifacts, as well as pre- and post-
surveys.  

Our course goals included empathy, specifically as an element of design thinking.  
RQ1: How did participants who took our online course on UDL and Design Thinking in 

Mathematics take up elements of the class in their practice during the 2020-2021 school year? 
RQ2: How did participants conceptualize empathy and empathy interviews? How did they 

operatize empathy interviews in their classrooms after the course? 
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Literature Review 
Instead of locating disability within individual students, In UDL, disability is located in 

inaccessible classrooms, curriculum, and spaces (Meyer et al., 2014). The potential of UDL rests 
in its power to redesign these classrooms, curriculum, and systems to work better for students 
with disabilities. We take a critical approach of UDL through a disability studies approach 
(Domage 2017). We have integrated Design Thinking for Educators into our approach to UDL 
(Lambert et al., 2021). Design Thinking among teachers is seen as a collaborative, human-
centered problem-solving approach which starts by developing empathy and understanding for 
the user’s experiences (IDEO 2012). Empathy, as suggested by proponents of design thinking, 
attempts to integrate two larger ideas: perspective-taking and cultivating sense of care. 
Cultivating empathy for a user is to more clearly understand how that user lives in the world --- 
how they experience it and make sense of it. This requires a designer to put aside their own 
experiences, beliefs and ideas and work to view from another’s point of view. Within design 
thinking for educators, teachers are positioned to appreciate and make sense of their students’ 
lived experiences, so that they can later design for and with them.  

In our use of Design Thinking we highlighted the importance of the empathy interview, in 
which the designer elicits a series of stories from the user to better understand their experiences. 
Empathy interviews are meant to be informal conversations between designers and users that 
uncover the users’ experiences in a particular setting, their feelings about those experiences and 
ultimately, their unmet needs within that context. The goal, in a way, is to understand a person’s 
thoughts, emotions, and motivations, so that we can design for them. When leading an interview 
the strategy is typically to get the user to tell stories, because stories allow designers to better 
make sense of how a person sees the world. 

Because the empathy interview can be rich, detailed and complex, it is often the case that 
designers work in teams to better capture the important ideas and moments. Often the detailed 
notes from an interview are synthesized into a few broad categories and codified into an empathy 
map. The making of empathy maps allows the designers to move out of the empathy phase of 
designing and into the define phase, where two goals emerge: to develop a deep understanding of 
the user and develop an actionable problem statement, or point of view. Additionally, the visual 
aspect of an empathy map itself (not a narrative statement but a colorful retelling) reflects a 
common mindset of designers: showing, not telling. While not specific to mathematics 
education, empathy has been found to be a critical feature in teaching. Teachers’ ability to 
empathize with their students shapes the teachers’ response to problem behaviors (Wink et al. 
2021). One meta-analysis of student teacher relationships found that empathy by the teacher was 
the strongest predictor of positive outcomes for students (Cornelius-White, 2007).  

Findings from survey data (Lambert et al., 2021) indicate that the course resulted in shifts in 
participants’ conceptualization of UDL as a set of guidelines to an active design process. Our 
initial survey findings also indicate that our centering of empathy became a guiding principle for 
participants’ understanding of designing for disability. We wondered how classroom teachers 
who participated in the summer course would take up these ideas during a year of pandemic 
teaching.  

Methods 
We used a design research teaching experiment methodology (Cobb et al., 2003) for this 

study, beginning with our theory of action and using multiple, iterative methods to understand 
participant’s learning. This paper focuses on data from a focus group of classroom teachers held 
in April 2021, 9 months after the completion of the course, recruited with an email sent to all 
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course participants. The four participants in the focus group all identified as women, 3 as white, 
1 as Latina, and 1 as disabled. Two were high school special educators, and two were elementary 
school general education teachers at a dual language school. All teachers had students with 
disabilities in their classes during the 2020-2021 school year, with the majority of all their 
students being Latinx.  

Data Sources and Analysis 
The focus group was semi-structured, with questions designed collectively by the research 

team. Two members of the research team participated in the focus group, with one facilitating 
and one listening for follow-up questions. The first set of questions explored experiences 
teaching in the 20-21 school year, then UDL and Design Thinking. After the focus group, a 
member of the research team transcribed the interview and wrote an initial memo on the 
findings, as they related to each of the research questions. All members of the research team then 
conducted in vivo coding of the transcript. We analyzed these codes and came to consensus on 
codes and themes. 

Results 
An important context in these results is the modality of teaching. These teachers are 

describing their work in the 2020-2021 school year in California, primarily in districts that were 
conducting school through virtual distance learning. Their students, including emergent bilingual 
and disabled students in elementary and high school, were taking classes over Zoom. Only one 
teacher, Bella, a secondary teacher, was teaching hybrid, with students in person and over Zoom 
each week. Learning over Zoom created (or perhaps heightened) the importance of building 
relationships with students (Lambert et al., 2020), particularly students with disabilities. 

We found that classroom teachers described the work of the course as extremely useful for 
the challenging teaching of 2020-2021, particularly taking up empathy as a core aspect of their 
practice.  When asked the general question, “What did you take away from the course,” the first 
and all following respondents focused on the concept of empathy and the specific tool of 
empathy interviews. We found three themes in their understanding of empathy and its role in 
their teaching. First, all participants reported using empathy interviews extensively in order to 
design for students’ actual needs and to build relationships. Second, empathy appeared to 
interrupt deficit thinking in designing and reflecting on mathematics activities. Finally, empathy 
was used as a way to understand larger themes in their work, including racial equity and 
inequalities around the pandemic. 
Empathy Interviews 

Both secondary special education math teachers described themselves as “case managers” 
and both did empathy interviews with all or most of the students on their caseload. Zelda, a 
secondary special educator who taught math, responded to our question (“What did you take 
away from the course, if anything”) by first centering empathy as a core value in her work, 
“Empathy is absolutely like, just keeping that at the heart of my practice.” She then described 
how she used Empathy Interviews with all her students. Both elementary inclusive teachers also 
did a version of Empathy Interviews. One interviewed all her students at the beginning and then 
the end of the year, over Zoom. The other elementary math teacher also did Empathy Interviews 
with all of her students, as well as with each family. The focus was on developing understanding 
of the student’s perspective and experience learning mathematics, with the teacher framed as 
listener. The teachers discussed the importance of building relationships through these 
interviews, of learning more about the student’s experiences. This knowledge, particularly of the 
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student’s past experiences learning mathematics, was described as invaluable, and played a 
central role in the teacher’s design of their courses that year. 
Shifts away from deficit thinking 

Teachers described that the course effected a shift away from deficit thinking and towards 
more complex, strengths-based understanding of students. They reported that this shift was 
linked to empathy. Discussing a shift away from deficit thinking, Bella said, “I think empathy 
has a lot to do with that too, because once we put ourselves in the place of a child, with a 
disability . . . it has to change our thinking. So I think empathy is a gateway for that.” Zelda 
noted that the course “revealed to me some of my deficit thinking that I wasn’t aware was 
necessarily there.” She described a math activity with her students over Zoom that seemed to go 
poorly. She narrates her thought process, first how she immediately jumped to the idea that that 
kind of activity was too complex for her students. Then, she narratives how she interrupts that 
thought, 

I can catch that thought and be like, no it's not that they can't do it, it's like – what, do we 
need to try again? Does [the student] need more time? You know, and also asking them, like, 
‘How is this going?’ So I think, for me, I feel like the course has hugely impacted my 
practice. 
Empathy appears to be useful in helping teachers disrupt their habits of assessing students as 

knowing, or not knowing, or capable or not capable, and instead to see learning as a process. 
And to see design of instruction as necessarily co-design with students. 
Larger themes related to empathy 

Another application of empathy was to note when it was lacking in other teachers during the 
pandemic. Zelda noted that for her, as a case manager of high school students with disabilities, 
she brough to the math department’s attention the high number of students with disabilities who 
were failing math over Zoom. She reports that the math department was “rigid” and lacked 
empathy. She describes a feeling a “rage” towards other educators who do not seem to connect 
with the students. 

it's – there's been moments of rage, I'm not gonna lie …there’s such a lack of empathy, right? 
There's such a lack of empathy with – and rigidity. Like if there's no other time for you to 
like rethink your grading like – this isn't going to do it for you? What’s gonna do it? But I do 
think sometimes in crisis actually people like stick harder to their guns, you know they hold 
to their guns they're like No, this is how I do it. 
Empathy seems for these educators to link the core values of social justice with relationships, 

and a more relational approach to the teacher student relationship.  

Significance 
We call attention to how a focus on empathy, coupled with analytic tools for putting empathy 

into practice, was important in shifting deficit thinking about students with disabilities, and 
shifting teachers to more flexible mathematics teaching. While empathy was an important part of 
our design, we did not expect it to be the primary driver of change for teachers. We certainly did 
not expect all four of the teachers in our focus group to have used Empathy Interviews 
extensively in their challenging classroom work in 2020-2021. They reported, however, how 
central empathy was to their work in challenging ties. In future work, we seek to better 
understand links for racial equity as well as disability equity. As mentioned by a participant in 
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the course in the surveys “empathy really is like, it's like the center of the pandemic, for me, and 
also the racial justice work that has needed to happen and it's like cracked open in this new way. 
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Preservice teachers need to develop political conocimiento—experiential political knowledge—
to be able to effectively advocate for their students. This includes developing a complex 
understanding of their own positionality with respect to race and mathematics. This brief report, 
part of a larger study, uses interviews of three preservice teachers describing their participation 
in a math content course to explore the diversity in their developing political conocimiento. 
Responses ranged from considering race irrelevant due to the quasi-anonymity of online 
instruction to drawing connections between competitiveness and White supremacy.  

Keywords: Preservice Teacher Education, Social Justice, Affect, Emotion, Beliefs, and Attitudes, 
and Equity, Inclusion, and Diversity 

In spring of 2020 Arundhati Roy described the potential for the COVID 19 pandemic to 
serve as a catalyst for a fundamental reorganization of our global society. The Movement for 
Black Lives and the so-called “racial reckoning” that followed seemed like important steps 
forward, but many changes were shallow, short-lived, and overwhelmed by the subsequent 
White-supremacist backlash (Holloway, 2021). Part of this backlash manifested as laws related 
to teaching, with 36 states restricting education about racism, bias, Critical Race Theory, and 
related topics (Stout & Wilburn, 2022). In contrast, 17 states have recently passed laws 
expanding requirements for teachers to address such topics. Teacher educators who work with 
preservice teachers (PSTs) need to acknowledge the divisive and high-stakes nature of the 
teaching environment into which our PSTs will graduate. We must help our PSTs develop the 
political understanding they will need to successfully navigate this environment and advocate for 
themselves and their students. Fostering the necessary learning requires addressing issues of 
race, justice, and equity in all aspects of teacher preparation programs (Garii & Appova, 2013; 
Gutiérrez, 2013; McDonald & Zeichner, 2009; Nieto, 2000; Wiedeman, 2002; Xenofontos et al., 
2020), including math content courses (Lee-Hassan, 2021; Felton-Koestler, 2020). This brief 
report explores the developing political knowledge that PSTs in an urban education program 
demonstrate as they reflect on their participation in a racially diverse math content course.  

Theoretical Framework 
Gutiérrez (2012; 2013; 2017) describes the political knowledge that teachers need as political 

conocimiento for teaching mathematics (PCTM). This framework highlights the need to integrate 
political knowledge with mathematical content knowledge, pedagogical knowledge, and 
knowledge developed with students and communities. Gutiérrez draws conocimiento from the 
work of Anzaldúa (2002), describing a situated form of knowledge that develops through 
experience in community and entails the need for solidarity and praxis. Relationships and context 
are critical to the development of conocimiento, so PCTM is inherently context-dependent. Part 
of PCTM involves teachers’ developing understanding of connections between mathematics, 
math education, and Whiteness (Gutiérrez, 2017), which can include mathematics’ privileged 
role in society and a dominant culture of mathematics valuing hierarchies, competition, and a 
particular version of intelligence. In this report I propose that racially diverse, collaborative math 
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content courses are spaces where PSTs’ PCTM can manifest as they navigate and reflect on their 
relationships and participation. I focus on the question: How can PCTM related to race manifest 
through PSTs’ reflections on class participation in a racially diverse math content course? 

Methods 
Context and Participants 

The data analyzed in this report were drawn from a larger study exploring the development 
of PCTM in a math content course for elementary math concentrators and secondary math PSTs. 
The course was initially designed to develop a conceptual, function-based understanding of 
algebra. The larger study modified the curriculum to incorporate explorations of data from the 
local school district and reflections and discussions about PSTs’ personal experiences to foster 
their developing PCTM. Tasks highlighted the relevance of race and racism in the contexts we 
analyzed and encouraged PSTs to share background and ideas from other courses, but 
connections between race, racism, White supremacy and mathematics were not explored as 
explicitly as might happen in an anti-racist math methods course. During the study the course 
used remote, synchronous instruction. There were 36 PSTs in the course with a racial distribution 
that approximated the university overall (no racial majority). After the course, 3 students 
consented to participate in the interviews analyzed in this paper. All names are pseudonyms. 

 Emily: White woman pursuing her masters in secondary mathematics education 
 Jessica: White woman pursuing an undergraduate degree in elementary education with a 

mathematics endorsement  
 Anjali: South Asian woman pursuing an undergraduate degree in elementary education with 

mathematics and special education endorsements 

The low participation rate was likely due to the sensitive nature of the course and the high-stress 
context of the pandemic. The analyses in this report are intended to illustrate a range of potential 
manifestations of PCTM, not to represent PSTs’ overall experience in the course. 
Positionality 

I am a White, agender individual who attended suburban public schools, and whose work in 
urban elementary schools and universities has been grounded in critical perspectives and a focus 
on equity and social justice. I held a dual role as teacher/researcher for this project, so my 
positionality influenced all stages of the research (D’Ambrosio et al., 2013). Most relevant to the 
current analyses, my design and facilitation of the course included multiple prompts for PSTs to 
reflect on their course participation, frank discussions of race and racism, and emotional check-
ins and discussions of mental health. All three participants identified the course’s supportive 
environment as important for their comfort level, a comfort level that probably influenced their 
decision to engage in the interviews. Our shared race and my history of discussing race in class 
likely made Jessica and Emily more open in their interviews. My critical perspectives likely 
influenced what the PSTs felt comfortable sharing in the interviews, and certainly informed what 
aspects of their responses I identified as significant during my analyses. 
Data Sources and Analyses 

The data from this paper came from semi-structured interviews that occurred the summer 
after the course ended. Interviews were approximately 75 minutes long and included questions 
about PSTs’ beliefs and experiences related to social justice, mathematics, and links between the 
two. This report focuses on responses to two questions about participation during the course. 
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1. We talked a lot at the beginning of the semester about trying to balance different people’s 
participation in class discussions. Tell me about your thinking during those 
conversations. 

2. Did you consider race at all when thinking about participation and class relationships?  

Responses were analyzed using narrative analysis. Analyses focused on a) who/what PSTs 
included in their narratives and b) how PSTs positioned the individuals and entities they included 
with respect to each other. This paper focuses on how PSTs positioned themselves, Whiteness, 
and mathematics. These positionings offer preliminary insights into their developing PCTM. 

Findings and Implications 
All three participants described the challenges entailed in engaging in class discussion using 

Zoom. Both Emily and Jessica described struggling with the impulse to talk too much during 
class discussion, and when I asked explicitly about the role of race they both described their 
Whiteness as relevant to that struggle. The ways in which they narrated those struggles, however, 
highlighted differences in their developing PCTM. 

Jessica framed her high levels of participation as a personality trait, describing herself as “a 
very wordy person…I bond with conversation.” She described herself as wanting to engage in 
discussion with her peers because it’s “how [she] build[s] relationships” and empathy. She 
highlighted that her current desire to build empathy contrasted with her experiences growing up. 
When asked about race, Jessica acknowledged that  

When it boils down to it I am a white woman. Um, whether or not I view myself as a white 
woman in every single sentence that I say, that is how I'm perceived, because that is who I 
am…It has an effect [laughs] on everything I say if someone knows that I'm white. 
Especially people of color. If they know I'm white and they're hearing me it plays into 
everything. It just has an effect on it. Um, and so I don't wanna overspeak in general. 
(Jessica) 

In this quote Jessica positioned her race as a personal characteristic that is primarily relevant 
based on how other people—particularly people of color—perceive her. She had the declarative 
knowledge that her Whiteness matters, and she connected it with a concern about overspeaking, 
but her descriptions of why Whiteness matters were somewhat vague, alluding to other people’s 
perceptions and a desire for everyone to have “space to speak.” She did not connect her 
reflections about empathy with her discussion of race. 

Emily, in contrast, described herself as having “a complex about being the best student”—an 
explicitly negative and active characteristic. When asked about race she explicitly connected that 
complex to “playing into white supremacy.” She explained how even though she thought of 
herself as “hav[ing] done a lot of work on [her]self, and… done a lot of work in the world,” in 
the context of this math class she found herself enacting toxic levels of competitiveness that she 
associated with Whiteness and settler colonialism. In her words: 

[S]ome of this shit is buried deep, you know? And...it can come out in—It came out in, like, 
ways that I was not proud of, honestly. You know? And, yeah. I think that, I think I did—I 
thought about it A LOT. I thought about it a lot in terms of how I was using my Whiteness, 
my age, my education, and all of that—all of my privilege, right? To, like, dominate a class. 
[laughs] It was sad when you put it that way. [half laughs] I guess what I'm trying to 
communicate is, like, I think I'm just doing my best, but that's what behind it, right? (Emily) 
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Here Emily identified a toxic characteristic of White supremacy that played a role in her 
behavior. She acknowledged its roots in her upbringing, but also acknowledged the ways in 
which it harmed her classmates and the class community and described her efforts to do better. 
She also reflected on the challenges of balancing participation through collective effort using a 
pedagogical lens that considered the relevance of mathematics in her experience. 

[S]aying, like, "Can we have a collective class?" or "Can we have a collaborative classroom." 
You know. So even, like, trying—even if it doesn't come out perfectly…know, because that's 
not a revolutionary concept in, like, you know, a seminar, right? Like, if you're in, like, a, 
you know, women's studies seminar or whatever [laughs] like, that's not, you know—they're 
probably going to try to do it like that, right? [laughs] Um...but in a math class, you know, 
that's, like, a whole nother—that's not something that usually is on the table. And so I think 
even putting it on the table was something that really made me reconsider and think deeply 
about,,,what does, like, an equitable class look like, you know? (Emily) 

Here Emily alternated between positioning herself as a student and as a teacher. She compared 
the political implications of the pedagogical choices made in the course and cold-calling 
techniques she had been instructed to use at her current teaching job, and specified the ways in 
which the context of teaching mathematics influenced the pedagogical and political implications. 

Anjali, in contrast, said that she did not think that race played a significant role in the 
dynamics of class discussions. From her perspective the fact that class was on Zoom and many 
students kept their videos off and mainly communicated via chat provided a degree of anonymity 
that “was nice because, like, nobody could judge you.” She felt that overtalking was “just 
dependent on how the student was as a whole.” She did, however, describe a lot of anxiety 
around how classmates or group members might be judging her class participation. In particular, 
she highlighted Emily’s apparent competence as connected to her insecurity. 

[Emily] knew what she was doing. I was like, "Wow. I feel very dumb compared to this." 
And so, er, like, I tried very hard, like, that's why I would private message you questions, 
because I was very nervous to ask in front of people, because they're like, "Wow. She doesn't 
get this. Wow. Like, she should really know what's happening." And obviously I'm sure other 
people were in the same boat, but at that time—because I also didn't know you as well as I 
did nearly at the end of the semester—it was more like, just scared—being scared. (Anjali) 

Here Anjali shows the other perspective of the domination that Emily described. Anjali positions 
herself as anxious because of the potential or perceived judgement of her classmates. It is 
important to note that while Anjali did not describe race as relevant to the classroom dynamics, 
in other parts of her interview she explicitly positioned herself as “a person of color” and 
described why she believed that positionality would give her better insight and help her build 
relationships when teaching students of color compared with White teachers. 

These preliminary analyses illustrate some of the ways in which, given opportunities for 
reflection and discussion, PSTs’ experiences in a math content course can support and illuminate 
their developing PCTM. As Emily explicitly noted, even though she had thought about 
Whiteness and competitiveness in other contexts, reflecting on her practice in an ongoing math 
class put things in a different perspective. The political nature of math teaching and learning 
(Gutiérrez, 2017) makes participation in math content courses a potentially valuable space for 
PST reflection as part of teacher preparation programs addressing race, equity, and justice. 
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Research exploring how Hispanic-Serving Institutions (HSIs) serve Latin* STEM students has 
largely focused on features of organizational structures (e.g., support programs), but minimally 
examined instruction and classroom experiences. This is an important gap to fill, especially in 
gateway mathematics courses, where faculty relationships and quality of instruction impact 
Latin* students’ persistence and identities in STEM. To advance such research, this report 
presents findings from an analysis of how perspectives from HSI mathematics faculty and 
students about instruction in introductory statistics converged and diverged in terms of serving 
Latin* populations. We present two illustrative cases of dissonant and resonant perspectives on 
serving Latin* students through instruction that frames mathematical ability expansively (e.g., 
not limited to being fast or correct). We conclude with research and practice implications. 

Keywords: Equity, Inclusion & Diversity; Undergraduate Education; Data Analysis & Statistics 

Purpose of the Study 
Institutions are designated as Hispanic-Serving Institutions (HSIs) if at least 25 percent of 

enrolled undergraduates are Latin*1. Despite receiving funding to increase Latin* postsecondary 
persistence, HSIs often lack visions of serving Latin* students and thus may not advance 
equitable outcomes or affirming support (Garcia, 2020). Thus, racialized and intersectional 
oppression among Latin* STEM students (Leyva, 2016; McGee, 2016; Rodriguez et al., 2017) 
are not necessarily disrupted in HSIs (Contreras Aguirre et al., 2020; Valenzuela, 2020). 

Instructional quality in gateway courses, including calculus and statistics, is a major 
contributor to Black and Latin* attrition in STEM (Dadgar et al., 2021; Larsen et al., 2016). 
Although research that examines racially-equitable features of gateway mathematics instruction 
is emerging (Hagman, 2021; Leyva, McNeill, et al., 2021), an explicit focus on equity for Latin* 
students has not been adopted. Such inquiry can build a theory of racially- and culturally-
affirming instruction in gateway courses to strengthen Latin* students’ persistence and sense of 
belonging in STEM, along with enhancing HSIs’ efforts to serve Latin* STEM students. 

To fill this research gap, our report presents an analysis from a larger study of a HSI 
mathematics department’s reform of instructional and organizational practices to better serve 

                                                 
1 The asterisk in Latin* creates space for fluidity in gender identities among Latin American people. Latin* responds 
to (mis)use of Latinx, a term reserved for Latin American gender-nonconforming peoples (Salinas & Lozano, 2019). 
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Latin* students. We looked across faculty and student perceptions of instruction for fostering 
equitable opportunities of classroom participation among Latin* students in gateway courses. 
The following research question, aligned with the PME-NA 44 theme, is addressed: What are 
forms of dissonance and resonance across faculty and student perceptions of serving Latin* 
students through instruction in gateway mathematics courses? We raise implications for 
improving ways to serve Latin* students in mathematics departments based on our findings. 

Theoretical Perspective & Relevant Literature 
A guiding perspective for our analysis is servingness, a framework for developing culturally-

enhancing experiences at HSIs for Latin* students across various dimensions, including 
outcomes, experiences, organizational structures, and external forces (Garcia et al., 2019). Prior 
research on serving Latin* STEM students in HSIs has focused on organizational features that 
promote academic persistence, such as course design (Chang & Chen, 2020; Meling et al., 2020), 
departmental policies (e.g., course placements; Burn et al., 2019), and support programs (Cruz et 
al., 2019). This work has importantly depicted structural interventions’ advancement of equitable 
outcomes for course success and STEM persistence. However, these outcome-focused analyses 
left implicit how organizational features impacted Latin* students’ racialized experiences 
specifically in STEM. Instruction in STEM courses was also not central in analyses. Extending 
this work, the present analysis uses servingness as a lens to examine HSI faculty members’ and 
students’ perceptions of instruction in gateway courses as reinforcing or disrupting racialized 
outcomes (e.g., grades) and experiences (e.g., cultural validation). Our analysis also considered 
how departmental structures (e.g., professional development) for fostering culturally-responsive 
learning and resisting forces of white supremacy shaped servingness in mathematics instruction. 

Faculty advance servingness at HSIs through instruction and student support that disrupt 
racialized oppression to promote Latin* students’ positive identity development and sense of 
belonging (Ching, 2019). However, it remains unclear the extent to which STEM faculty at HSIs 
leverage awareness of Latin* students’ cultural backgrounds and racialized experiences to 
inform pedagogy. For example, in a study of HSI faculty’s racial attitudes, Garcia and colleagues 
(2020) found that faculty held low levels of colorblind attitudes, indicating racial consciousness. 
However, findings also showed that STEM faculty demonstrated more colorblind attitudes than 
faculty in other disciplines, even when controlling for differing racial and gender demographics. 
Colorblind faculty attitudes in mathematics and STEM more broadly leave stereotypes of ability, 
inequities of access, and other racialized forces unchallenged (Bensimon et al., 2019; McCoy et 
al., 2015; McNeill et al., 2022), which can reinforce deficit views and thus limit instructional 
servingness (Chase et al., 2013; Ching, 2019). The impacts of faculty racial attitudes, including 
orientations to servingness through STEM instruction in HSIs as well as Latin* students’ 
classroom experiences, have been underexplored. Our study fills this gap by triangulating faculty 
and student perspectives to explore the efficacy of gateway course instruction in servingness. 

Methods 
Study Context and Participants 

Our present analysis comes from a larger study exploring the effectiveness of an ongoing, 
equity-oriented professional development (PD) in the mathematics department at Sonoma State 
University (SSU). SSU is a medium-sized, public university in California that recently received 
the HSI designation. In 2021, enrolled undergraduate students at SSU were approximately 45% 
white, 35% Latin*, 7% two or more races, 5% Asian, 2% Black or African American, and 6% 
some other race. Faculty PD began in summer 2021, and data collection started in fall 2021. The 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

445



 

 

two-year faculty PD aims to develop culturally-responsive institutional practices, including 
classroom instruction and student support, to better serve Latin* students. 

The research team (a collaboration between two faculty involved in the PD and educational 
researchers at Vanderbilt University) designed a study to look across instructors’ and Latin* 
students’ perspectives on instructional servingness in gateway courses. Twelve mathematics 
faculty PD participants agreed to participate in the study. Over half of faculty participants served 
as gateway course instructors. Latin* student participants were recruited from gateway courses 
by sending an e-mail message to all enrolled students with a flyer containing a URL to express 
interest and completing classroom visits (in-person and virtual) to provide a study overview. 
Instructors were not informed if any of their students served as study participants and vice versa. 
To the extent possible, we purposefully sampled from students who expressed interest to have 
multiple voices from each course section as well as to ensure variation in race-gender identities. 
Data Collection 

Researchers at Vanderbilt (1 faculty, 2 Ph.D. students, 1 graduate student, and 1 
undergraduate student) led data collection. SSU team members also served as study participants 
and did not assume data collection responsibilities. Using event journaling methodology (Leyva, 
Quea, et al., 2021), one data source was student and faculty participants’ journaling of events 
from instruction in gateway courses perceived as marginalizing or supportive for Latin* students. 
Journal entries were submitted using an online form that prompted participants for a description 
of events and reflection on why events were perceived in these ways. Students journaled about 
their course experiences as learners, and faculty journaled about their practices as instructors. 
Journaling was ongoing throughout the fall semester without any required number of entries. 

Near the end of the semester, each participant completed a 90-minute, semi-structured 
individual interview on Zoom. Interviews were audiotaped and transcribed. To the extent 
possible, we matched interviewers and participants by race and gender as an attempt to build 
comfort with discussing issues of structural oppression. The first half of the interview explored 
what serving Latin* students meant to participants in gateway mathematics courses and in 
general. The second half of the interview centered around two prompts of instructional events 
that reflected emergent themes of servingness from journaling. Each prompt was written as a 
composite of journaled events. One prompt was written from a faculty perspective and addressed 
issues of student support. The second prompt, which is central to the analysis presented in this 
research report, was written from a student perspective and focused on classroom participation: 

I was asked to share my solution for a homework problem during class. I was unsure if I 
solved the problem correctly. I was worried about presenting an incorrect solution in front of 
the instructor and the rest of the class. My instructor acknowledged that my final answer was 
incorrect and guided me through steps for solving the problem. The instructor also mentioned 
that perfection was not the expectation for success and how students can learn from errors. 
This interaction made me feel less pressure about having to always be correct and 
encouraged me to more readily share my thinking during class. 
For each prompt, participants were asked about the instructional event’s frequency of 

occurrence and potential for serving Latin* students as well as recommended changes in gateway 
courses for more racially-equitable participation or support. All participants were prompted for 
specific examples from their gateway courses to support their reasoning about servingness. 
Data Analysis and Positionality 

Vanderbilt research team members de-identified data prior to sharing with SSU research 
team members for analysis. Information that explicitly or implicitly revealed participants’ 
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identities (e.g., names, students’ backgrounds, faculty’s professional histories) was redacted. For 
the present research report, we completed an analysis of data specific to participants involved in 
courses that contained both faculty and student participants. Our analysis looked across data for 
4 faculty participants and 6 Latin* first-year student participants associated with calculus and 
statistics courses. In addition to journaling, we analyzed interview responses to questions about 
the meaning of serving Latin* students in and beyond gateway mathematics instruction, along 
with responses to the prompt about classroom participation presented above. 

A research team member from each university coded each faculty participant’s data. Two 
Vanderbilt team members coded each student participant’s data since de-identification was still 
in progress. To the extent possible, at least one coder for student data identified as Latin* to have 
an insider perspective for data analysis. Team members independently and inductively coded 
data to flag instances when participants raised instructional features and departmental structures 
perceived as advancing or limiting servingness in gateway courses, including attention to Latin* 
students’ social identities and cultural backgrounds. When individual coding was complete, one 
coder from each pair synthesized the two sets of codes for each participant’s data into themes on 
instructional servingness. Themes were exchanged and discussed during weekly team meetings. 
To address our research question about dissonance and resonance across HSI faculty and student 
perspectives on servingness, the research team identified points of convergence and divergence 
in how faculty members and students in the same class perceived servingness in instruction. 

Our research team approached the present analysis with critical reflexivity. The team consists 
of two Latino cisgender men, a Latina cisgender woman, a Black cisgender woman, a white 
transmasculine person, a white cisgender woman, and a white cisgender man. We brought 
awareness of how our varying forms of privilege and oppression influence our inquiry on 
instructional servingness in mathematics at HSIs. The team resisted deficit engagement with 
participants’ reflections as mathematics learners or educators and constantly recognized how 
gateway mathematics instruction is situated in broader systems of social power. Interviewers and 
coders bracketed their lived experiences in engaging with participants’ reflections to avoid 
analytically distorting their perspectives, all while approaching the study with a lens of criticality 
to interrogate structures that limit servingness in STEM contexts across HSIs. Our infusion of 
multiple faculty members’ and Latin* students’ voices in the findings captures complexities of 
instructional servingness in gateway mathematics and avoids portraying it in essentializing ways. 

Findings 
We present findings centered on an emergent theme of instructional servingness – namely, 

expansive framing of mathematical ability to increase Latin* students’ classroom participation. 
This framing resists dominant views of correctness and speed as indicating innateness of ability, 
which do not account for educational inequalities that limit Latin* students’ opportunities to 
develop such skills. Two cases of coupling HSI faculty and student perspectives were most 
illustrative of this theme. One coupling includes faculty member Dina (white woman2) and her 
students, Rosalinda (Mexican female) and Christian (Mexican male). The second pairing 
includes faculty member Michael (white male) and his students, Lisandra (Chicana female) and 
Nereyda (Salvadoran female). These couplings were specific to introductory statistics courses 
that enrolled exclusively first-year students and predominantly Latin* students. We organize our 
findings in two sections that each presents a coupling of faculty-student perspectives to highlight 
dissonance and resonance in reflections on instructional servingness through framing ability. 

                                                 
2 Participants’ identities are reported as they were self-described during interviews. 
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“My Teacher Likes to Tell Us That It’s Okay to Ask for Help and If We Get Something 
Wrong, It’s Not the End of the World. It Just Means That We’re Actually Learning.” 
Serving Latin* students for faculty participant, Dina (white female), meant “need[ing] to do 

what it takes for all [her] students to succeed” regardless of race and other social differences, 
which included expanding opportunities for classroom participation. Dina perceived Latin* 
students’ participation as often inhibited by narrow constructions of mathematical ability in K-12 
education that frame being correct and quick as essential to being successful. 

Interviewer:      How common do you think it is for Hispanic and Latinx students to be 
concerned about being incorrect or being unwilling or unable to share? 

Dina:             It’s very common… I would say, ‘I’m afraid I have the wrong answer’ is 
very common.... The way they’re [Latin* students] prepared in math 
makes them feel stupid… We’ve been taught that math is fast. 

To disrupt limited views of mathematical ability and broaden space for Latin* students’ 
participation, Dina asks students to share prior experiences with mathematics and emphasizes 
that “math is really hard” to reassure them that struggle does not reflect inability. She interpreted 
her practice, along with the faculty behavior featured in the interview prompt, as bringing relief 
to Latin* students about being negatively judged when sharing their thinking. Dina approached 
instruction with awareness of potential linguistic barriers to classroom participation among 
Latin* students, especially in statistics where terms (e.g., bias) have specific meanings that differ 
from everyday use, “If English is not your first language, that’s already a huge piece of 
baggage… You are at risk of having a language gap… I need to pay a lot of attention to… 
[students] being able to use and understand and pronounce.” Dina’s perspectives convey 
awareness of how narrow ideas of mathematical ability collide with Latin* students’ experiences 
of educational inequities. Her awareness led to instruction that framed ability expansively and 
practices that clarified mathematical concepts in order to increase Latin* student participation. 

Dina’s view of serving Latin* students through instruction resonates with Rosalinda’s 
reflection on her experience as a Mexican female in her class. In a journal entry, Rosalinda wrote 
that Dina’s instruction made her “more confident in math… [and] capable in math” after having 
several high school mathematics teachers who undermined Latin* students’ ability and dismissed 
her contributions. She experienced Dina’s practice of framing errors as entry points for learning 
as reducing her fears about being wrong and encouraging her to readily participate. 

Rosalinda:             Math isn’t my strongest subject and… I have failed a few classes because 
                     my teachers didn’t know how to serve me or other students like me. And 

so I like my class [with Dina]… My teacher likes to tell us that it’s okay to 
ask for help and if we get something wrong, it’s not the end of the world… 
It just means that we’re actually learning rather than feeling bad. Because 
in the past, when I would get something wrong, it felt the worst. 

 […] 
Interviewer:     How comfortable do you feel as a Latina student to participate? 
Rosalinda:        I’m slowly getting more comfortable when it comes to going up to the 

board… Every time my professor, before we present, she’ll be like, ‘If you 
have any questions, even if it’s a small question, feel free to ask. If we 
don’t ask, she’ll be like, ‘It’s okay if you get it wrong, I’ll help guide you.’ 
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Dina’s instruction served to increase Rosalinda’s access to classroom participation as a 
Mexican female with a history of racial oppression in K-12 mathematics, which captures 
resonance in faculty and student views on servingness through an expansive framing of ability. 

Christian’s reflection on his classroom experience as a Mexican male student largely 
resonated with Dina’s view on serving Latin* students and aligns with Rosalinda’s experiences 
in the classroom. He likened the faculty behavior in the interview prompt to Dina’s comments 
during instruction for encouraging participation, “This sounds very much like my professor who 
has [said] things [like] ‘Mathematicians don’t always do the problems right away. They take 
their time’… It definitely encouraged me to not rush and take my time in math.” Christian 
perceived Dina’s instruction removing pressures of solving problems quickly to demonstrate his 
mathematical ability, which he commonly experienced prior to college. Such classroom practices 
brought Christian to feel like Dina “made [him] like math… [and] feel involved all the time.” 

However, Christian also noted limitations on his access to participation despite Dina’s 
expansive framing of mathematical ability. He sometimes felt his participation was constrained 
by his command of the English language. Christian described “get[ting] a bit anxious sometimes 
for presenting [his] math solutions” out of concerns about any embarrassingly incorrect phrasing 
or pronunciation, “Some words, I can’t pronounce them correctly, so I struggle a bit getting my 
phrasing out there.” Although Christian journaled about how Dina strengthened his mathematical 
understanding through explanations of vocabulary, classroom participation remained less 
accessible to him due to risks of classmates’ negative judgment about how he communicates his 
ideas as an emergent bilingual. Dissonance between Dina’s and Christian’s perspectives convey 
how servingness through instruction that resists narrow views of mathematical ability must 
account for varying levels of comfort with verbal communication, especially among Latin* 
students developing command of the English language on top of mathematical terminology. 

“When I Asked My Teacher for Help After Class and He Stayed Until I Understood the 
Problem, It Was A Little Bit of a Shocker For Me! I Thought I Would Be Perceived as the 
Stereotype That Hispanic Students are Lazy… [and] They Don't Understand Anything.” 

Faculty participant, Michael (white male), reflected on growth in his development of 
instructional practices that foster servingness, “It's a huge part of my job right now, going 
through that change that's happening at our school [becoming an HSI]... Redefining my job 
around my students... I'm just like in preschool with the whole thing.” Michael positioned 
himself as constantly trying to learn more about Latin* students’ backgrounds and needs, “The 
way I’m trying to do it is just trying to collect more, and more, and more information, and think 
about how we can serve based on the information.” While Michael recognized the value of 
understanding Latin* students as a group, he also felt tensions about how such knowledge may 
shape assumptions and activate stereotypes when interacting with students, “I want to get my 
head around that, but I don't want to look at a student and think I know what's going on.” 

Like Dina, Michael noted fear of being wrong as a barrier to Latin* student participation due 
to the equating of ability with correctness and speed in K-12 mathematics. He shared 
instructional comments about leveraging wrong answers as learning opportunities to allay such 
fears and frame ability expansively, “If it’s [a student’s answer] wrong, I’m going to actually be 
happier… You’re not the only person making a mistake, first of all, and then it’s going to give us 
a discussion to have.’” At the same time, Michael grappled with concerns about how his social 
distance from Latin* students as a white male, on top of students’ histories as K-12 mathematics 
learners, shaped skepticism toward his instructional messages, “They’ve [Latin* students] had 
dozens of teachers… And I’m just one guy they don’t know, who doesn’t look like them… So 
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it’s hard for me to make provocative statements like this about how to approach this 
[mathematics learning] differently.” He reflected on the promise of connecting his students in 
statistics classes with former Latin* students who can “bridg[e] that culture, and race, and age 
gap” and disrupt current students’ distrust about his expansive views of mathematical ability. 

Lisandra’s (Chicana female) reflection on her classroom experience largely exhibited 
dissonance and also somewhat resonated with Michael’s conceptions of servingness. Although 
Lisandra observed instructional practices with an expansive view of mathematical ability (e.g., 
attending to student struggles), she did not feel comfortable sharing incorrect thinking or 
exhibiting struggle with content in the statistics classroom, “It doesn't feel like, ‘Oh, we can be 
wrong because it's alright; we're learning.’ It doesn't feel like that. It feels like, ‘Oh, you have to 
be right.” Reflecting on how Latin* students are commonly worried about being wrong, she 
shared, “It’s been one of the many reasons why I haven’t spoken up in any class, because I’m not 
sure and I don’t want to embarrass myself... So I just keep to myself… I don’t want to sound 
dumb.” Lisandra’s concerns about being negatively judged for her intellect as a Latina student 
prompted her to hold back on participating in her statistics class, which resonated with Michael’s 
concerns about Latin* students’ skepticism toward his framing of mathematical ability. 

Lisandra also described how her inhibited participation, despite Michael’s encouraging 
instructional behaviors, stemmed from a lack of community in the classroom. Servingness, for 
Lisandra, was forming part of a community that understood her as a first-generation Chicana 
female where she can “fully feel comfortable and safe to reach out” when needing support. The 
lack of community in her statistics classroom made her feel isolated and that her needs were not 
recognized, “I feel on my own… The teacher goes around and everything… but I feel like in the 
classroom, it doesn’t feel so much as a community… I don’t feel represented.” Lisandra, as a 
result, was often “not feeling safe in the environment enough to speak” in terms of sharing ideas 
and seeking help. Dissonance between Michael’s and Lisandra’s perspectives convey how 
servingness through instruction with an expansive framing of mathematical ability can fall short 
in increasing Latin* students’ access to participation. Lisandra was missing a foundation of 
safety and community to feel comfortable taking risks in her participation as a Chicana female. 

Nereyda’s reflections as a Salvadoran female were both resonant and dissonant with her 
instructor Michael’s perspectives on servingness anchored in an expansive view of mathematical 
ability. Unlike Lisandra, Nereyda perceived her classroom experience, including Michael’s 
openness to student struggle and creation of a non-judgmental learning environment, as aligned 
with her views of servingness in mathematics. She related the faculty behavior in the interview 
prompt to Michael’s instruction, “He's constantly telling us that there's no need for perfection. 
‘Do not worry about getting the right answer. It's just the process of learning and showing me 
what you have learned.’” She shared instances of seeking and receiving Michael’s support, 
which she perceived as especially impactful for Latin* students who often “don’t speak up 
because they don’t think they’re going to get the help they need” due to stereotypes of being 
dumb or lazy. Nereyda journaled about such support from Michael after class that disrupted 
stereotyping influences, which often limit Latin* students’ access to classroom participation. 

When I asked my teacher for help after class and he stayed until I understood the problem, it 
was a little bit of a shocker for me! I thought I would be perceived as the stereotype that 
Hispanic students are lazy in their study [sic] and they don't understand anything, but it made 
me feel heard and seen [and] that it's okay to not get things from the get-go. I now don't want 
to hide out.. I'm eager to go to class and keep making mistakes so I can continue getting help 
from my professor. 
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Nereyda’s reflections of relief from pressures of sharing correct mathematical thinking and 
concealing academic struggles, thus, capture resonance with Michael’s perspectives of serving 
Latin* students through instruction that challenges narrow constructions of ability. 

Despite perceiving an overall sense of servingness through Michael’s instructional practices 
of welcoming students’ contributions and questions, Nereyda still experienced moments of 
discomfort with participation as a Salvadoran female due to stereotypes of ability. 

There’s that stereotype that women aren’t really good at math and they just don’t understand. 
I feel like that impacts me in the classroom sometimes. I just get kind of intimidated… As 
well as with race, I feel like they [faculty] think that Hispanic students… need a little bit 
more attention… [and] can’t capture the full event [referring to instruction] and it’s not really 
like that. I journaled about it. It’s the stereotype. 
Nereyda particularly felt intimidated during groupwork to seek support and share her ideas. 

She observed a racialized pattern in self-sorted groups with “white students working together 
and… Latinx students just sitting out on those sidelines.” When working with female and Latin* 
peers, either the group or Nereyda herself suppressed asking Michael for help, “In that space, I 
feel a little iffy or uncomfortable… He [Michael] goes around and helps people, but I feel like 
sometimes, some days, I can’t speak up.” Nereyda felt that further opening the statistics 
classroom space where “you share your identity with the class and when your classmates share 
their identity with you…creates a safe place of trust” that could alleviate racialized-gendered 
tensions with classroom participation. Therefore, dissonance is also evident across Michael’s and 
Nereyda’s perspectives on servingness. Michael approached instruction with commitment to 
resist stereotypes about Latin* students and increase participation through an expansive framing 
of mathematical ability. While Nereyda valued the reduced risks of seeking help and sharing her 
thinking, the unchallenged stereotypes of ability in her class often left participation inaccessible.  

Discussion and Implications 
Our findings reveal complexities of instructional servingness in gateway mathematics 

courses. Resonance in HSI faculty and student perspectives captured how instruction with an 
expansive framing of mathematical ability alleviated pressures of being quick and correct, which 
increased opportunities of classroom participation and support. At the same time, dissonance 
across faculty and student perspectives conveyed how these instructional practices were not 
always responsive to Latin* students’ social positions (e.g., emergent bilinguals’ language-based 
support needs, navigating racial and gender stereotypes of ability). Extending research on racial 
attitudes among HSI faculty (e.g., Garcia et al., 2020), our study shows how faculty 
consciousness of Latin* students’ racialized experiences in mathematics that informed expansive 
framing of ability did not necessarily translate to experiences of servingness. Latin* students’ 
perspectives suggest how instructional servingness that ensures equitable classroom participation 
requires explicitly confronting stereotypes of ability and building identity-affirming community. 

Future work can extend our analysis by further unpacking Latin* identities to explore how 
within-group differences (e.g., nationality, gender and sexuality) can further inform servingness 
in HSI mathematics classrooms. We also call for research that explores how features of 
instructional servingness shift in upper-level mathematics and across other HSI contexts. In 
terms of practice, we call for HSI mathematics faculty to use instructional feedback from 
students to explore dissonance and resonance between classroom practices and Latin* students’ 
needs. Mathematics faculty can also engage in observations of instruction with departmental 
colleagues and educational researchers to dissect practices that advance or constrain servingness. 
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Abstract. We are three mathematics teacher educators (MTEs) at a Hispanic serving institution 
that predominantly teach mathematics education courses for elementary and secondary teacher 
candidates (TCs). In this paper, we present findings from a collaborative self-study in which we 
used dimensions of the Rehumanizing Mathematics (RM) framework (Gutiérrez, 2018), to situate 
and integrate our work across mathematics content and methods courses. Our diverse cultural and 
academic backgrounds and lived experiences profoundly influence our professional practices, 
particularly our work with teacher candidates. We intentionally utilize counter storytelling as a 
way to describe how our respective work with TCs aligns with particular dimensions in the RM 
framework. Our findings indicate that our collaborative self-reflections have positively influenced 
our individual pedagogical practices. We have recognized through our collaborations that we have 
much to learn from one another to both inform and strengthen our practice as MTEs in ways that 
put forth a collective commitment to rehumanizing mathematics education for our students and the 
children they will ultimately teach. 

Keywords: Culturally Relevant Pedagogy, Equity, Inclusion, and Diversity, Ethnomathematics, 
Systemic Change. 

Introduction 
Author A. As a woman of color, international scholar, a non-native English speaker, and a 
citizen of a formerly colonized nation, I have experienced firsthand how a conventional math 
curriculum, implemented in a traditional school setting has become a tool that disadvantages 
marginalized students, damages their self-esteem, and strips them of agency and identity. I use 
ethnomathematics as a tool to help learners (re) claim ownership of mathematics, acknowledge 
cultural funds of knowledge and establish harmony between academic mathematics and out-of-
school mathematics. 
Author B. I am a privileged white heterosexual female and follower of Jesus Christ and know 
that I hold a place of privilege and power as a mathematics teacher educator. I take ownership 
for my conscious and unconscious acts of racism. I realize that my position and power 
inherently can be a deterrent to BIPOC students unless I provide space for them to bring their 
whole selves to the classroom and be critical of the social and socio-mathematical norms that 
continue to be perpetuated in a traditional mathematics classroom. 
Author C. As a former mathematics teacher of Black and brown high school students, I have 
witnessed how cumulative systemic inequalities in mathematics learning and teaching impact 
many student outcomes including affective outcomes like confidence and math identity, as well 
as achievement outcomes such as enrollment in advanced math courses, college, and interest in 
STEM majors. I have had to address their expressions of not seeing themselves in the 
curriculum or even feeling unseen by their own teachers. 
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We begin by sharing excerpts that reflect our positionality and its impact on our work as 
Mathematics Teacher Educators. In this paper, we describe how we disrupt the dominance of near-
universal conventional mathematics (NUC) (Bishop, 1990) in mathematics content and methods 
courses for teacher candidates (TCs). Research reported in this paper is part of a larger project in 
which we engaged K-8 TCs at a Hispanic-serving Institution in experiences that potentially 
broadened their perceptions of and vision for mathematics education. Stimulating discussion and 
action is the goal around this question: 

How do we, as Mathematics Teacher Educators, attempt to rehumanize mathematics in our 
content and methods courses? 
We intend for this collaboration and communication to result in tangible ideas that will add to 

the current Mathematics Teacher Educator knowledge based on promoting more humanizing 
practices in mathematics teacher education. 

Theoretical Foundations 
The philosophical questions, Mathematics for Whom? How? and What? are being repeatedly 

asked as it dictates what mathematics and whose mathematics is taught and how it is taught 
(Aguirre, Mayfield-Ingram, & Martin, 2013). Around the world, most schooling dehumanizes 
mathematics by claiming that mathematics is neutral, and the culture and identities students bring 
to the classroom should be lost to achieve academically (Paris & Alim, 2017). The research fields 
of situated cognition (Lave & Wenger, 1991), ethnomathematics (D’Ambrosio, 1985), culturally 
responsive mathematics education (Gay, 2000, 2018) and critical mathematics education 
(Frankenstein, 1983; Gutstein, 2006; Skovsmose, 1985) provide the theoretical foundations, 
research knowledge base, and practical methods to address the central research question. 

Adopting these perspectives allows us, as researchers, to challenge dominant and traditionally 
told narratives about teaching mathematics and about learners in a mathematics classroom. From a 
practical standpoint, these theoretical constructs enable us to investigate meaningful pedagogical 
approaches that will empower and transform learners. For a truly transformative mathematics 
education, we must continue to engage with and support teachers and TCs who are in a position to 
address the philosophical questions. 

As MTEs, we aspire that our instruction will prepare competent and caring teachers who will 
serve as an advocate for each learner. To make this a reality, we must provide seamlessly 
structured learning experiences that will enable our TCs to engage in a critical reflection of their 
beliefs about mathematics and teaching. Equally important is to identify those MTE practices that 
dehumanize mathematics teaching and learning. Most of the focus for rehumanizing mathematics 
focuses on what teachers and TCs can do in their classrooms but there has been much less on the 
practice of MTEs’ practice for rehumanizing mathematics. Thus, from an MTE vantage point, we 
embrace the chosen theoretical perspectives to find commonalities in our work with TCs, creating 
counter spaces that refine and redefine our goals for mathematics teacher education. 

Theoretical Framework 
We use rehumanizing mathematics (RM) (Gutiérrez, 2018) as a lens to engage in a critical 

inquiry of our “selves”, and to position and discuss our work. We are drawn to this framework 
because it provides powerful affordances for weaving funds of knowledge (Gonzalez, Moll & 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

454



Amanti, 2005), culturally responsive mathematics (Gay, 2010), ethnomathematics (D’Ambrosio, 
1985), and critical mathematics education (Frankenstein, 1983; Gutstein, 2006; Skovsmose, 
1985) into the fabric of our scholarship. 

 
This framework includes eight dimensions (Gutiérrez, 2018) (See Figure 1), three of which are 

most relevant to the work discussed in this paper. Cultures/ histories glorifies ethnomathematics as 
a lens to counter eurocentricism, acknowledge and valorize contributions from learners’ funds of 
knowledge, and attend to the history and evolution of mathematical ideas through non- dominant 
civilizations and communities. A second facet, windows and mirrors allows freedom of access to 
learners and “see themselves in the [mathematics] curriculum” (Gutiérrez, p. 5). This allows an 
MTE to provide a space for TCs to explore their relationship with mathematics. TCs draw on their 
own mathematics learning experiences to investigate their traditionally held beliefs about the 
teaching and learning of mathematics. Positioning/participation, the third feature that we highlight, 
enables an MTE to recognize the order of class systems in mathematics learning spaces in and out 
of classrooms and find ways to shift authority and share the space with learners. 

 
 

Figure 1: Eight dimensions of Rehumanizing Mathematics (Gutierrez, 2018) 

Methodology 
We adopt a collaborative self-study (Bullock & Sater, 2017; Lovin et.al., 2012) methodology to 

frame and situate our work. As Loughran (2004) posits, “There is no one way, or correct way, of 
doing self-study. Rather, how a self-study might be ‘done’ depends on what is sought to be better 
understood” (p. 15). As we engaged in this self-study, we noted similarities in our approaches to 
present mathematics as a human activity and parallels in our efforts to rehumanize mathematics 
with our teacher candidates. We engage in a deep reflection of our roles as MTEs in relation to our 
“selves” and in relation to others. Table 1 provides a general overview of our teaching practices. 
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Table 1: Author information 
Authors Department Courses Taught 

A Mathematics Elementary & Secondary Math content courses 
B Teacher Education Secondary STEM Methods course 
C Teacher Education Elementary Math Methods course 

 
Three characteristics define our self-study – collaborative inquiry, contextual knowledge, and a 

commitment for improving our practice. The traditional research methods of data collection and 
data analyses are a misfit in our chosen methodology. Instead, we intentionally use a counter 
storytelling method (Alemán, 2017) to present narratives informed by our personal and 
professional lived experiences. This method derives from the interpretivist tradition (Walsham, 
1993) where researchers advance their work by showcasing “multiple perspectives of stories and 
who tells the stories,” (Creswell, 2007, p. 24). The similarities that we noted in our work led to 
intriguing stories that we are compelled to share. Our personal and academic backgrounds and 
lived experiences profoundly influence our dispositions, values, habits of mind, and scholarship 
and we begin each story by stating our positionality. Next, we describe how our work fits along a 
particular dimension of the RM framework. The narratives are bound by a common commitment to 
providing humanizing mathematics learning experiences for our teacher candidates. 

Our Stories 
Author A’s Narrative (cultures/histories) 

I am a Mathematics Teacher Educator, and I subscribe to socio-cultural and critical theories of 
learning. I am also a learner enculturated in a nation subject to centuries of invasion, tyranny, and 
colonization. This resulted in the suppression of the rich history of Indian mathematics which 
distorted the philosophy of mathematics and how it is taught and learned (Raju, 2004). My lived 
experiences and teaching memoirs with diverse learners in K-12 settings and higher education 
contexts across two continents has illuminated how the near universal conventional curriculum has 
dominated academic mathematics, treating “mathematical knowledge as being uncontestable, 
objective, and disassociated from experience, history, and cultures” (Barton, 2008). Math learning 
experiences in such settings perpetuated among many learners, a narrow perception of and an 
aversion towards mathematics. Thus, I care deeply about issues of inclusion in mathematics 
classrooms, particularly for historically marginalized students. 

My research interests primarily lie in the field of ethnomathematics which espouses 
connections between mathematics, culture, and society. From this perspective, I position and 
discuss my work along the culture/histories dimension of the RM framework because of its explicit 
acknowledgement and attention to the foundational principles of ethnomathematics. I mostly teach 
mathematics content courses where I have witnessed firsthand how many TCs, particularly those 
that are marginalized, feel disenfranchised in a math classroom that subscribes to a conventional, 
near universal math curriculum. Future teachers can learn how to “enhance” and “restore dignity” 
(D’Ambrosio, 2002) to learners in their classroom by experiencing it themselves. Thus, I 
deliberately anchor coursework to the principles of ethnomathematics and components of a 
culturally responsive mathematics education (Gay, 2000) to portray  
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mathematics as a human activity (Bishop, 1990). These constructs also provide the necessary 
pedagogical reinforcements and equips me with empathy, consideration, and skills necessary to 
appreciate all individuals that comprise my classroom community and to see them as capable of 
learning and doing mathematics. 

In many courses that I teach, coursework comprises practical and research components (Naresh 
& Kasmer, 2018). As part of the practical component, each week, TCs participate in at least one 
content exploration activity set in a social/cultural/historical/political context. For instance, as part 
of content explorations, I designed a pattern investigation activity based on the tradition of Kolam, 
an artform that has been practiced for many centuries by the women of the household in Tamilnadu 
(Ascher, 2002). By highlighting connections between mathematics and my own culture and by 
placing the spotlight on the mathematics of Kolam-drawing women, we develop an appreciation of 
the diversity and respect of cultural heritages, thus supporting the belief that all people are capable 
of doing mathematics. The research component requires TCs to complete a mathematics and 
culture project in which they partner with a community member to identify out-of-school activities 
that have a potential to transform into rich mathematical tasks (Naresh, Goodson-Espy & Poling, 
2017). TCs use communal knowledge to frame problems that are central to their lived experiences, 
classical knowledge to develop mathematical competencies, and critical knowledge to gain a 
comprehensive understanding of the sociopolitical context for the problem (Gutstein, 2006). We 
adopt a socio-critical modeling approach in conjunction with Gutstein’s 3-C framework that 
provides an “emancipatory perspective” [that] leads to a critical understanding of the surrounding 
world” (Kaiser & Sriraman, 2006, p. 304). 
Author B’s Narrative (participation/positioning) 

My conscious journey to transform my instructional space to be culturally relevant 
(LadsonBillings, 1995) began while teaching a secondary STEM methods course about six years 
ago. A critical review and reflection of my own teaching revealed that I did not know the K-12 
mathematics and sciences experiences and identities of the teacher candidates (Aguirre et al, 2013). 
During this time, I became conscious and acknowledged my privilege for identifying as a white 
heterosexual female and follower of Jesus Christ (DiAngelo, 2018). As a result, I hold a place of 
privilege and power as a mathematics teacher educator. For this reason, I chose the 
participation/positioning dimension of rehumanizing mathematics (Gutiérrez, 2018). 

First, I needed to acknowledge my own upbringing in a single parent non-Christian home 
where I experienced both poverty and wealth. At home, my mom and maternal grandmother shared 
stories of our Indigenous heritage, but we have no record or connections to our Indigenous tribe. At 
school, I did not share my heritage but sought to fit in. My mathematical experiences were initially 
impeded by my dyslexia. In eighth grade was when I first recall experiencing agency in 
mathematics. Now I seek to support teacher candidates in giving agency and power to the students 
they will teach. My position and power inherently can be a deterrent to BIPOC teacher candidates 
unless I provide space for them to bring their whole selves to the classroom and be critical of the 
social and socio-mathematical norms that continue to be perpetuated in a traditional mathematics 
classroom. Next, are examples of activities in STEM and mathematics methods courses. 

In the secondary STEM methods course, equity and diversity became a thread throughout the 
course rather than finite topics covered in the semester. Virtual anonymous discussions embedded 
in the course beginning with candidates writing their STEM autobiography and other 
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discussion such as how their culture was an advantage and disadvantage. The anonymous post 
to each other gave teacher candidates a voice and space to share what they would not share with 
one another. In the middle grades mathematics methods course, teacher candidates chose to lead in 
Number Talks (Parrish & Dominick, 2016; Sun, Baldinger, & Humphreys, 2018) or keeping a log 
of what occurred in class. Everyone signed up once for a particular class for posting to the class 
Twitter about what they saw as worthwhile for sharing with the teacher community. My thinking 
was that by including Number Talks as part of our weekly routine, the position of teacher 
candidates would be us rather than me and them. In the elementary mathematics methods course, 
teacher candidates also lead Number Talks (Parrish & Dominick, 2016), but rotated in Quick Draw 
(Wheatley, 2007), and mathematics literacy during the semester too. Instead of Twitter, students 
reflect weekly through the course webpage on what was the highlight of their learning. 

What I continue to find difficult is that I am ultimately seen as the person with authority/power 
who gives grades that account toward their progress in the teacher preparation program. Ideally, I 
would like the work we do together to be intrinsically motivating rather than what is needed for the 
‘A’. By having a component of the grading system for weekly engagement, I can capture in the 
moment and reflect on the participation and positioning of teacher candidates. 
Author C’s Narrative (mirrors/windows) 

I am an Afro-Caribbean mathematics teacher educator with a positive mathematics identity that 
was developed largely due to the influence and encouragement of K-12 teachers who always made 
me feel capable in mathematics. My positionality towards my work with elementary preservice 
teachers stems from my converging identities as a former high school mathematics teacher at a 
Title I school, mother to two elementary aged Black boys, and mathematician. In my research I 
investigate the nuanced ways that inequity occurs in the mathematics learning of children from 
racially minoritized groups. Furthermore, in my work with PSTs, I am most interested in 
facilitating the evolution of their critical consciousness (Ladson-Billings, 1995) and investigating 
the varied ways that this evolution can occur. Due to systemic injustices, including racism, that 
have been illuminated during the global pandemic, it is especially important that preservice 
teachers have opportunities to be self-reflective and explore sensitive topics that may have 
impacted their own mathematics learning experiences and those of the children they will teach 
(Gay & Kirkland, 2003). 

Through my research, as well as my lived experiences, I am aware of how cumulative systemic 
inequalities in mathematics learning and teaching impact many student outcomes including 
affective outcomes like confidence and math identity (Riegle-Crumb, Morton, Nguyen, & 
Dasgupta, 2019) as well as achievement outcomes such as enrollment in advanced math courses, 
college, and interest in STEM majors (Madkins & Morton, 2021). I am always striving to center 
the lived experiences of my TCs (especially those of Color) in my elementary math methods 
courses as a means to illuminate, confront and expose past traumas in mathematics learning in an 
attempt to interrupt reproduction of those traumas. I value my work with elementary preservice 
teachers. Through this work I am able to directly influence and contribute to mathematics teacher 
education that centers equity and antiracism in math methods courses. 

Recognizing that our PSTs are the future teachers of racially minoritized children traditionally 
underserved and marginalized in math classrooms, children much like my own two boys, adds a 
certain level of urgency to my work. However, I couple this urgency with critical grace (Amidon et 
al, 2020) recognizing that this process should be an intentional and continuous one. 
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In my elementary mathematics methods course, I strive to create a space for PSTs to reflect on 
their own experiences learning mathematics and have explicit discussions about the common 
inequities that exist in mathematics learning and teaching. When delving into the dimension of 
mirrors/windows, I engage TCs in a number of activities that stem from the math autobiography 
assignment (Aguirre, Mayfield-Ingram, Martin, 2013) where students tell their mathematical story, 
recounting their in-school and out-of-school learning experiences with mathematics. As they 
answer several question prompts, TCs describe specific moments in their elementary mathematics 
learning. Following this we spend time unpacking those autobiographies through 2 in class 
activities: word cloud and math corners activity (Ward, 2020). The dimension mirrors/windows 
allows TCs a space for exploring their relationship with mathematics as well as “seeking to 
understand themselves and others in relationship” (Gutiérrez, 2018). Both activities are intended to 
illuminate the commonalities and differences in the TCs’ mathematics learning experiences and 
begin to have discussions around those patterns. The RM framework allows us as MTEs to address 
inequitable opportunities to learn mathematics for children traditionally marginalized in math 
classrooms by highlighting these same inequities in the learning experiences of those who are 
becoming teachers themselves, teacher candidates. 

Impacts of Our Collective Work on our Individual Practice 
In this paper, we shared findings from a collaborative self-study that traced the collective 

journey of a team of MTEs. We used three dimensions of the RM framework to situate and 
integrate our work across mathematics content and methods courses. As MTEs, we along with our 
teacher candidates are the needed change to create more humanizing and socially just contexts for 
learning and teaching mathematics. Our collaborative self-reflections have begun to deeply 
influence our individual practices as mathematics teacher educators. We each have particular 
strengths developed through our lived experiences, both personal and professional, that we draw 
from in our collaborative work. For instance, while we are all mathematics teacher educators, one 
of us is the sole MTE faculty in the mathematics department unlike the other two MTEs who are 
faculty in a teacher education department. This difference presents the opportunity for 
conversations around the pedagogical challenges commonplace within many mathematics 
departments that are in direct opposition to the dehumanizing practices that undergird our work. 
Similarly, our identities as female mathematicians intersected with our racial/ethnic identities 
further inform our collective understandings around privilege, oppression, and equity in 
mathematics education as they relate to our own mathematics learning experiences in schools, as 
well as our individual work with teacher candidates. We have recognized through our 
collaborations that we have much to learn from one another to both inform and strengthen our 
practice as MTEs in ways that put forth a collective commitment to rehumanizing mathematics 
education for our students and the children they will ultimately teach. 

Conclusion 
Together, we reflect on our own math learning experiences and recall instances when we felt a 

sense of joy, pride, and belonging, and discover ways to re-experience those in our courses. 
Mathematics teacher education courses must offer a space for transformative learning experiences 
“not only for how students understand their abilities in mathematics but also in how they 
understand their relationship to others in the world” (Staats, 2006, p. 41). Our work with TCs, 
which we have presented using the lens of RM, has enabled us to challenge myths such as 
a) meaningful math cannot exist when we engage students in non-traditional math activities, b) 
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math knowledge is mostly generated within the walls of the academy, and c) “just plain folks” 
are credible sources of knowledge and are able to demonstrate the use of more sophisticated 
mathematics. This work is rewarding and challenging at once; as a collective, we are presenting a 
counter-narrative to the dominant perspective that has permeated mathematics education. We 
believe in the potential this work holds for transforming the landscape of mathematics education 
and mathematics teacher education. Concomitantly, we must continue to engage in a critical 
inquiry of our own biases, assumptions, and teaching practices to become advocates for and to 
provide more empathetic mathematics learning experiences for TCs. In our future work, we 
intend to be critical friends (Ragoonaden & Bullock, 2016) to one another, utilizing both formal 
(e.g., required annual peer observations) and informal means to provide feedback to one another 
in ways that advance our collective agenda. 

Our collaboration has resulted in an emerging Community of Practice (CoP) (Lave & Wenger, 
1991) within our institution focused on providing more streamlined and humanizing learning 
experiences for TCs. We hope that this work will spark interest among other likeminded MTEs 
beyond our institutional context, broaden participation, and strengthen our CoP. In addition, from a 
research standpoint, it will enable us to a) investigate ways in which we can encompass additional 
dimensions of RM in our work, b) continue to present counter narratives to empower TCs that are 
marginalized in mathematics learning spaces and c) contribute to a collective repertoire of 
knowledge on MTE professional development centered on rehumanizing mathematics. 
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The heritage practices of many communities of color have historically been and continue to be 
the target of deficit approaches. In Mathematics Education, the existing solutions to this problem 
have focused on modeling approaches to bridge cultural ways of knowing with the 
institutionalized forms. This article argues that solutions to deficit approaches in cultural ways 
of knowing in mathematics education (ethnomathematics) are not simply about modeling 
bridges. We must bring together and extend these domains' various activities and practices in a 
forward-looking third space that occurs socially for all learners to voice, personalize, challenge, 
and negotiate mathematical meanings. Ethnomathematics research holds an intellectual 
accomplishment that results from one's ability to remediate the mathematical motives in 
activities done by diverse ethnic groups to include the mathematics used in formal spaces. 

Keywords: Sustainability, Ethnomathematics, Culturally Relevant Pedagogies, Informal 
Education. 

Background 
 As we know, our society―hence, our classrooms―are becoming increasingly diverse in 

terms of racial, ethnic, cultural, economic, and religious diversity (Colquitt, 2014; Mensah, 
2021). However, education environments in such pluralistic societies offer students little purpose 
(Paris & Alim, 2017) to connect the content, pedagogical, and curricula approaches to the 
intellectual motives in ethnic practices of students from the non-dominant groups in the same 
educational environment.  

Researchers like D'Ambrosio (1986) proposed ethnomathematics as one of the approaches to 
identifying the mathematical ideas of culturally distinct people (D'Ambrosio, 1986). The 
educational implications of ethnomathematics include those cited in Blikstein (2020, p. 117) by 
Adam et al. (2003). Ethnomathematics is a supplement for students to see mathematics as a 
response to human needs found in nearly every culture. A springboard for academic 
mathematics. As a stage in teaching and learning of mathematics that starts from the 
mathematical world of the child and then moves into other cultures. As support for preparing rich 
learning situations and activities, an approach that looks at the classroom itself as a situated 
cultural context and mathematical learning as part of this context. 

 I build on these educational implications to situate ethnomathematics as a research approach 
that connects the practices of today's mathematics classroom to that of ethnic practices. This 
includes connecting the Euclidean geometry in the classroom with the geometric practices in 
ethnic woodwork practices like measurement and construction in Africa. I conceptualize 
ethnomathematics as a third-space construct situated within the Freirian and Neo-Vygotskian 
approaches to intervening in educational activities (Gutiérrez, 2008). This approach allows us to 
bring together and extend various activities and practices of these domains' (institutionalized 
Mathematics and ethnomathematics) in a forward-looking third space (Paris, 2012; 
Guitierez,2008). This third space serves as a cross-cultural space (Nasir et al., 2010) for all 
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learners to remediate by reorganizing and reconstructing (Gutiérrez et al., 2009) the narratives in 
the form of written texts of ethnic motives of mathematical practices to add to the 
institutionalized mathematics (Gutiérrez & Jurow, 2016). 

Theoretical Framework 
In 1977, the late Professor D'Ambrosio Ubiratan concluded that educators usually study the 

aspects of knowledge and learning in mathematics education (generation of knowledge, its social 
and intellectual organization, and its diffusion) in isolation from one another. Researchers 
identified mathematics education research with cognition, epistemology, history, sociology, and 
other educational disciplines but not culture. Hence, D'Ambrosio coined the term 
"ethnomathematics'' during a presentation for the American Association for the Advancement of 
Science in 1977. Ethnomathematics (D'Ambrosio, 1986) became the first well-developed attempt 
to find curricular and theoretical combinations of institutionalized and ethnic motives of 
mathematics (Blikstein, 2020). Etymologically, D'Ambrosio (1990) defined ethnomathematics in 
the following way: the prefix "ethno" is today accepted as a broad term that refers to the social-
cultural context and, therefore, includes language jargon, codes of behavior, myths, and symbols. 
The derivation of "mathema" is complex but means explaining, knowing, understanding, and 
doing activities such as ciphering, measuring, classifying, inferring, and modeling. The suffix 
"tics" is derived from techné and has the same root as technique. For example, Gerdes (1986) 
and Mukhopadyay (2008) studied implicit mathematics in basket-weaving techniques. Gilmer 
(1995) studied mathematics in techniques of braiding African American hairstyles.  
Criticisms Against Ethnomathematics 

Despite the importance of ethnomathematics, its approaches to bridging cultural ways of 
knowing (braiding of hair, weaving of baskets in Native American communities) with the 
institutionalized mathematics (like Euclidean Geometry) have been the center of critiques and, 
thus, its current research focus. Research in ethnomathematics uses institutional knowledge to 
model ethnic knowledge (Dowling, 1998; Eglash et al., 2021; Pais, 2011; Rowlands & Carson, 
2002; Skovsmose & Renuka, 1997). Some researchers are known to be imposing 
institutionalized mathematical concepts and practices on ethnic motives of mathematics. Take, 
for example, an investigation of Navajo weaving by Babbitt et al. (2012, pp.1-2); they posited 
that: 

 a common recurring angle in the weaving patterns was about 30 degrees. When asked about 
this particular angle, the weaver said it is created by an "up one over one" pattern (up to one 
weft over one warp). We could see why that would result in a 30-degree angle: because the 
height to width ratio of each successive stitch was about 1/3. But she then said she could 
make lots of other patterns (up to one over 2, up to two over 3, etc.). 
In the quote above, majority ethno-mathematicians know that the native basket weaver 

knows not the rubrics of angles. However, the exchange above shows how sometimes we tend to 
research ethnic motives of mathematics by what Pais (2011) described as squeezing the natives 
from their otherness (Pais, 2011). This unidirectional approach deprives ethnic groups of their 
emic approaches to mathematics. Thus ethno mathematicians deprive the ethnic groups of their 
social and cultural specificity about differences that make mathematical practices unique from 
their point of view (Rosa & Orey, 2019). This risks reproducing etic approaches leading to 
colonial, primivitzing views about mathematics in ethnic practices (Dowling, 1998; Eglash et al., 
2021; Powell & Frankenstein,1997). Thus, researchers build ethnic mathematical practices from 
an outsider's view (Rosa & Orey, 2019). 
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Building from the above, as cited in Lachney et al. (2016, p. 222), Rosa and Orey (2013) use 
the language of dialectics to describe their work on ethnomodeling, aiming for a bidirectional 
synthesis of emic and etic interpretations. Ethnomodelling, which combines ethnomathematics 
and mathematical modeling, is an approach that creates a firm foundation that allows for the 
integration of emic, etic, and dialogic approaches in exploring mathematical knowledge 
developed by the members of distinct cultural groups (Rosa & Orey, 2019). However, this 
bidirectional approach had some troubling asymmetry (Lachney et al., 2016). The bidirectional 
approach mainly assumes that the academic form of mathematics is outside of time and space: 
final, perfected, ahistorical, and universal (Lachney et al., 2016). Hence, Lachney et al. (2016) 
argued for a new form of modeling ethnic motives of mathematics with that of institutionalized 
mathematics. They believed that any new approach to bringing these two systems of knowledge 
together must show how Western science, mathematics, and computing are also culturally 
specific (Lachney et al., 2016). 

Another troubling asymmetrical approach was Pias and Mesquita's (2013) Urban Boundaries 
Project and Tedre and Eglash's (2008) ethnocomputing. These projects have parts that failed to 
correspond to academic mathematics or local mathematics. This one-way approach fails students 
to learn to appreciate Mathematical achievements from their own and other cultures 
(D'Ambrosio, 1990). In the urban boundary project, Pias and Mesquita(2013) believed that our 
society needs to create alternative educational settings to respond to the increasing problem of 
exclusion faced by so-called minority populations. They think that as long as schools are 
structured as credit systems (Vinner, 1997), only within non-scholarized settings can a genuine 
ethnomathematical approach be reached. However, what is the essence of this setting if it has no 
linkage to the mainstream where students also go to learn? Researchers identified initiatives like 
the Urban Boundary Projects as a potential cause for some ethnic children's conception that 
doing Mathematics is as being White (Fryer & Torelli, 2005).  

Mathematicians and anthropologists use computational media platforms to address these 
challenges from initiatives like the Urban Boundary Project (Ethnocomputing, 2017). However, 
a different project for using this computational media platform expanded its initial foci (Eglash, 
2006). It was a rubric for the computational aspects of the computational media platform for 
Computer Science Education (Tedre & Eglash, 2008). The computational media platform 
became an amalgamation of both mathematics and computations in cultures for Mathematics and 
Computer Science Education research. This has resulted in the problem of striking the difference 
between using the platform for its ethnomathematics purpose or Computer Science Education. 
Lachney et al. (2016) found that adding computations in cultures to the computational platform 
for Computer Science Education has disempowered indigenous communities and silenced their 
mathematical heritage.    

Lachney et al. (2016), building on their critique of Rosa and Orey's bidirectional form of 
modeling and that of the computation media platform, called for a recursive form of modeling. 
Lachney et al. (2016) concluded that there are bi-directional flows within the indigenous culture 
and bi-directional flows within the western culture (such as the interaction between people and 
machines). Hence, bringing those together results in a recursive modeling process, a nesting of 
flows within flows. (Lachney et al., 2016). These researchers fully fleshed out the recursive 
modeling in their Adinkra Computing (AC, acronym used in the original study) project. AC was 
a form of computations in cultures within the computational media (Eglash & Tedre, 2008) in the 
West African context. Hence, it is not surprising to find that it equally disempowered indigenous 
communities and silenced their mathematical heritage. 
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Also, in the recursive modeling, students only moved after computer simulations to physical 
renderings to repurpose STEM innovation and discovery in the service of indigenous community 
development (Eglash et al., 2019). This is a form of Rosa and Orey's (2013) bidirectional 
approach, which Lachney et al. (2016) critiqued as troubling and asymmetrical. In addition to 
this, recent use of recursive modeling (Eglash et al., 2021) never focused on authentic forms of 
cultural making (Blikstein, 2020), mathematics, and its ethnomathematics. Everything existed on 
the Computer. Students tend to lose the realistic pre-planning of executing any artistic pattern 
from diverse cultural groups. I assert that there is no reason why a mathematical model cannot 
include the possibility of an indigenous counterpart or conscious reflection on the part of 
communities who shape their own material conditions from generation to generation (Eglash, 
1997). 

In line with this, Barbosa (2006) and Rosa and Orey (2015) proposed socio-critical forms of 
modeling. This is a learning milieu where teachers invite students to take a problem from 
everyday or other sciences that are not pure mathematics and investigate it concerning reality via 
mathematics (Barbosa, 2003). However, much of everyday mathematics ignores the diverse 
ethnic motives of Mathematics. The question to be answered here is whose everyday? Beyond 
this, ethnomathematics research is more than just looking for modeling approaches; I assert that 
it is an encompassing and robust socio-critical literary program. Instead of researchers using 
everyday, I assert we use relevant ethnic mathematical practices. I will discuss this as we go 
forward.   

What Other Options Are Available? 
Ethnomathematics reflects the growing consciousness of the existence of mathematics, 

particularly in a certain way to (sub)cultures (Gerdes, 2001). Ethnomathematics challenge that 
the development of mathematics is not unilinear (Gerdes, 2001). Hence, we can use broad terms, 
including, in particular, counting, locating, measuring, designing, playing, and explaining 
(Bishop, 1988), which emphasize and analyze the influences of socio-cultural factors on the 
teaching, learning, and development of mathematics (Gerdes, 2001).   Institutionalized 
mathematics is already a composition of Mathematics from the Greeks like geometry, 
expressions, and algorithms from the Indians, and Europeans like algebra. This characterization 
makes the techniques and truths of Mathematics a cultural product (Gerdes, 2001). Hence, we 
can revitalize ethnomathematics research to expand our understanding of the development of 
mathematics like geometry beyond Greeks to cultures of others like Africans, Native Americans, 
and many others (NCTM, 2021).    

Generally, this research interest in moving "everyday life into the school" (Scribner & Cole, 
1973, p. 558), in this case, "the mathematical thoughts in practices of diverse ethnic groups into 
schools" has a long tradition in neo-Vygotskian approaches. They help intervene in educational 
activities (see Gutiérrez & Jurow, 2016). This theoretical orientation and educational and social 
goal inspire the design of educational settings that seek to bring together cultural forms of 
learning and scientific practices in ways that places them on a more level playing field, that is, 
without reproducing inequitable hierarchical relations (Gutiérrez & Jurow, 2016). A typical neo-
Vygotskian approach is the social-design experiments, leading to socio-critical literacies 
(Guitterez, 2008; Gutiérrez & Jurow, 2016). In what follows, I describe how I frame 
ethnomathematics in the social-design experiments and the consequential socio-critical literacies.  
Ethnomathematics and Social Design Experiments 

Social design experiments (SDEs) are an advanced approach to design research organized 
around a commitment to transforming the educational and social injustices faced by members of 
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non-dominant communities to promote social equity and learning (Gutiérrez & Jurow, 2016). 
The injustices toward which social design experiments focus are those that are structural, 
systemic, and experienced as unjust by non-dominant communities. These include those 
discussed above. Thus, the silencing and marginalization of the mathematical practices of diverse 
ethnic groups by researchers in an attempt to bring them into the academic space. This also 
includes education environments in pluralistic societies that offer students little purpose (Paris & 
Alim, 2017) to connect the content, pedagogical, and curricular approaches to students' 
intellectual motives in ethnic practices from the non-dominant groups.  

Researchers focus on SDEs is on redressing historical injustices and inequities and the 
developing of theories focused on the organization of equitable learning opportunities. Hence, 
situating ethnomathematics research in SDEs is focused on finding solutions to those mentioned 
above structural and systemic injustices in the pluralistic Mathematics classroom. Researchers 
achieved this through the  SDE  methodology combines traditions of design-based research 
(Design-Based Research Collective, 2003), namely; (a) the need to develop innovative 
approaches for educational improvement and (b) the need to address theoretical questions about 
the nature of learning in context (c) the need to study learning in the real world rather than in the 
laboratory (d) the need to go beyond narrow measures of learning and understand how complex 
learning ecologies support learning (Gutiérrez & Jurow, 2016, p.2). As well democratizing such 
forms of design-based inquiry. It seeks to make the design experimentation process a 
coconstruction between different institutional stakeholders (Cole & The Distributed Literacy 
Consortium,2006), which leads to social transformations (Gutiérrez & Jurow, 2016). In addition, 
social design experiments build on the different forms of knowledge and expertise that people 
develop across the multiple contexts of their lives, recognizing that even in the face of 
oppression, non-dominant groups have many resources for being resilient (Gutiérrez & Jurow, 
2016). Hence, situating ethnomathematics research in SDEs is a means for learners from diverse 
ethnic backgrounds to find the pluralistic mathematical classroom as a meaningful shared space 
where they co-construct mathematical meanings from both the academic space and that of their 
diverse backgrounds. By building on ethnic motives of mathematics, the solutions and the 
learning that emerges through SDEs have a greater likelihood of achieving sustainability, 
meaning, and impact. This is contrary to the deficit approaches I outlined above.  

Of significance is that SDEs' explicit focus on disrupting educational, structural, and 
historical inequities through the design of transformative learning activities provides openings 
for learning, a context of critique for resisting and challenging the conditions that create and 
sustain inequities, and space for generating their possible solutions (Gutiérrez & Jurow, 2016). 
With this perspective on equity-oriented design research in mind, SDE researchers ask and offer 
one solution to this central research question:  How can researchers organize design interventions 
that intentionally leverage the diverse forms of expertise of non-dominant communities so as to 
create the possibility of more consequential learning opportunities for them? (Gutiérrez & Jurow, 
2016, p.4). The answer proposed by Gutiérrez and Jurow (2016) is that the designs at the center 
of SDE strategically link practices that are valued differentially, like the ethnic motives of 
mathematics in society, with that of the dominant forms like academic mathematics for learners 
to reorganize and reconstruct. I describe designing for ethnomathematics through SDEs below.  
Designing for Ethnomathematics through SDEs 

Designing SDEs begins with teachers creating a repertoire of ethnomathematics testimonios. 
This well-developed complementary methodology enables one to uncover the mathematical 
motives (Pias, 2013), like measurement and designing in diverse ethnic practices like basket 
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weaving (Gerdes, 1986). Through cognitive anthropological interviews, teachers video record 
the basket weaving and hair braiding techniques of Indian and African Americans, respectively. 
Teachers, students, or Native scholars write the audio from the video recordings into texts of the 
Native language, English, and many more. This written narrative is for students to use in the 
pluralistic mathematics classroom. They serve as mediational artifacts. Ethnomathematics 
testimonios are also syncretic texts, designed to exploit the existing hybridity and help to create 
particular social environments of development in which students begin to reimagine who they 
are and what they might be able to accomplish, academically and beyond (Gutiérrez et al., 2009). 
Developing such ethnomathematics testimonios involves conditional knowledge that involves 
teachers knowing when to use particular sources of ethnic motives of mathematics and how to 
evaluate their effectiveness concerning institutionalized mathematics. Ethnomathematics 
testimonio keeps to Papert's (2000) reminder. Children can learn powerful ideas about the world 
if we forgo those that schools have politically disempowered, teaching mathematics only through 
applying formulas or by proposing problems situated in "fake" contexts that fail to be meaningful 
for pupils. 

Ethnomathematics testimonios serve as the fabric of knowledge from cultures (Nasir & 
Hand, 2006). They are the detailed description of cultures, including pre-planning thoughts and 
natural language use in cultural practices. Subsequent use of such narratives in diverse contexts 
might call for translations to eliminate the language barrier. This is possible through the 
fractionated trading zone metaphor (Collins et al., 2010). Thus, we can see that mathematical 
thoughts are boundary objects and interactional expertise. They adapt to the local needs and 
constraints of the several parties employing them (materially and linguistically) yet are robust 
enough to maintain a common identity across sites. This fractionated trading zone informs the 
definition of culture in my use of social-design experiments. Culture is both by the material 
culture largely in the absence of linguistic interchange. Also, culture is the interactional 
expertise. Students mediate by language mainly in the absence of the material culture from the 
ethnomathematics testimonio. The literacy in the neo-Vygotskian focus of ethnomathematics 
reflects that of Guitterez and Jurow (2016) and diSessa (2018). Thus, it is a form of massive 
intellectual accomplishment as learners go through a grand "remediation" of shifting and 
expanding fundamental forms of mathematics as they unfold in diverse ethnic groups and their 
practices to include institutionalized forms of mathematics as universally known and used. The 
premise for using the ethnomathematics testimonio in SDE follows that of Engeström's re-
mediational design. Thus, 

Rather than giving the child just a task, ignoring her interpretation and reconstruction of the 
task, and observing how she manages, Vygotsky and his colleagues typically gave the child 
also potentially useful mediating artifacts - tools and signs. With them, the nature of the task 
could be radically changed. The child's potential capabilities and emerging new 
psychological formations might be revealed. (Engeström et al., 1986, p. 5) 
 As in social-design experimentation (Gutiérrez & Jurow, 2016), developing 

ethnomathematics through SDEs does not aim merely to contact the practices of non-dominant 
communities and institutions (e.g., schools). Rather, researchers organized ethnic motives of 
mathematics for students. Students reconstruct and reorganize to engender new forms of 
knowledge and expertise. This knowledge and expertise embody characteristics of the best of 
both sets of practices (ethnomathematics and institutionalized mathematics), albeit in new forms. 
At the same time, it is critical to note that the researcher designed ethnomathematics testimonios 
to transform the institution to embrace multiple ways of knowing, acting, and valuing. These 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

467



social design experiments (Vossoughi & Gutiérrez, 2008) are organized around expansive forms 
of learning, powerful literacies, and hybrid language practices that result from the intercultural 
exchange and boundary-crossing involved in students' everyday lives like socio-critical 
literacies. 
Socio-Critical Literacies and Ethnomathematics  

Socio-critical literacies is a syncretic literacy that emphasizes the development of literacies in 
which researchers reframe everyday and institutional literacies into powerful literacies oriented 
toward critical social thought (Gutiérrez, 2008). As Gerdes (2001) characterizes 
ethnomathematics, socio-critical literacies focus on the cultural dimensions of learning. It takes 
an approach that resists home and school binaries, formal and informal learning. Instead, it 
focuses on what takes hold as children and youth move in and across their everyday lives' 
various settings and contexts (see Tuomi-Gröhn & Engeström, 2003). This approach identifies 
both possibility and constraint within and across contexts (Cole & Engeström, 1993). From this 
perspective, we can capitalize on the understanding of the cultural dimensions of learning and 
development that occur as "people, ideas, and practices of different communities meet, collide, 
and merge" (Engeström, 2005, p. 46). The socio-critical agenda of ethnomathematics does not 
see the original ethnic motives of mathematics as a profound source of only intervention (see 
Vossoughi et al., 2016). It rejects the assumptions that the computational capital of some cultures 
is hidden (Eglash & Bennett, 2009; Gerdes,1985) and needs a suitable environment before being 
made available to their owner (Eglash & Bennett, 2009). 

The socio-critical forms of ethnomathematics assume that they are untapped. When tapped, 
they are a deep source of learning in their cultural context, which overlaps with/into other 
modes/mediums of learning for expansive forms of knowledge. This distinguishes the socio-
critical form from most research in recursive modeling of ethnomathematics, which mostly 
rejects the original forms of learning. The socio-critical literacies conceptualize the notion of 
repertoires of practice. SDE researchers capture both vertical and horizontal forms of expertise 
through this repertoire of practices (Gutiérrez & Rogoff, 2003); this includes what students learn 
in formal learning environments such as schools and what they learn by participating in a range 
of practices and ethnic motives of mathematics. The socio-critical forms of ethnomathematics 
conceptualize the idea of a Third Space (Gutiérrez & Roggoff, 2003). This Third Space construct 
is more than a celebration of the local literacies of students from non-dominant groups; and 
certainly more than what students can do with assistance or scaffolding; and also more than 
ahistorical accounts of individual discrete events, literacy practices, and the social interaction 
within (Gutiérrez & Rogoff, 2003).   Instead, it is a transformative space where the potential for 
an expanded form of learning and the heightening of the development of new knowledge 
(Gutiérrez & Rogoff, 2003).  

Conclusion 
The divide between many educational institutions and the students they are supposed to serve 

grows (Paris, 2017). Students do not feel that their identities are affirmed through the curriculum 
taught; it is irrelevant, very impractical, and exclusionary to their backgrounds, experiences, and 
lives (Paris, 2017). In Mathematics Education, a unidirectional approach has been the mode for 
researchers to connect the cultural ways (ethnomathematics) and institutionalized forms of 
learning. This seems to be very challenging. As Miller (1992, p.11) posited; how can anyone 
who is schooled in conventional Western mathematics “see” any form of mathematics other than 
that which resembles the conventional mathematics with which she is familiar? The answer to 
this question partially formed the focus of this write up. I assert that although these diverse forms 
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of mathematics might be familiar, the language, terminologies, tools and many others used in 
one context might be different from the other. It only takes remediation in the form of 
reorganizing and reconstruction for one to resolve the constradictions between these two systems 
of knowledge for an expanded form of learning. One way to start with is to write the pre-
planning thought and natural language used in ethnic motives of mathematics for learners and 
teachers to co-construct by adding to that of the institutionalized mathematics.   

In this article, I proposed using repertoires of ethnomathematics testimonios through the neo-
Vygotskian theories of intervening activities.  Learners can reorganize mathematical motives in 
the making processes of material culture from a diverse ethnic group into institutionalized forms 
of Mathematics (Vygotsky, 1978). Through this, I assert that we will all become enlightened 
about the motives of mathematics from other cultures through the neo-Vygotskian foci of 
ethnomathematics research. This would help us avoid the thought that ethnomathematics 
research is mainly for people of color and merely turning cultural products into lessons for a 
white-dominant society. As a PMENA-43 reviewer who rejected my initiatives, among other 
reasons, stated: 

"…as a community, we need to be careful of turning cultural products into lessons for a 
White dominant society and be critical of who this research is to research (on Communities 
of Color) is out to benefit (the communities with whom we are conducting research on/with 
or the Mathematics classroom where mostly white middle/upper-class student benefit". 
I have emphasized that institutionalized mathematics comprises cultures like Greek 

Geometry, Indian Algebra, American English, and symbols. Hence, mathematics education 
research can add that of other cultures on the grounds of Mathematics. Untapped Mathematics in 
other cultures might be the source of our discoveries in the form of advanced mathematical 
thoughts.   I hypothesize that ethnomathematics as a syncretic mathematical activity is a massive 
intellectual accomplishment that one achieves from the grand remediation of mathematical 
motives in the activities done by diverse ethnic groups to include institutionalized forms of 
mathematics. This is a practical approach for all learners to reorganize and reconstruct non-
routine Mathematical problems. One approach is designing mathematical activities that would 
involve all manner of learners to think with at the intersection of cultural presence, embedded 
knowledge, and the possibility for personal identification (Papert, 1980).   Through such 
activities, we can answer research questions including; (a) how does ethnomathematics 
testimonios stimulate reflexive discussions among all learners in common cultures of 
Mathematics about its connectedness with the mathematical motives in other (sub)cultures?   (b) 
How do we create a repertoire of ethnomathematics testimonios from holistic ethnomethodology 
which is globally accessible to all?  
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TRANSLANGUAGING AS A SOURCE OF MATHEMATICAL SENSE-MAKING 
PRACTICE DURING PROBLEM-SOLVING 

Ayse Ozturk 
The Ohio State University, Newark 

ozturk.25@osu.edu 

This study focuses on how strategic translanguaging occurs when bilingual students engage in a 
real-life-oriented problem-solving process and communicated their reasoning. Data for this 
report came from an after-school program for bilingual high school students. Action-research 
methodology guided data collection from classroom sessions that consisted of problem-solving 
with quantities. Analysis revealed that translanguaging can be a source of the sense-making 
process in mathematical problem-solving that leverages bilingual students’ linguistic repertoire 
to combine everyday and mathematical registers while bridging multiple solution pathways. 

Keywords: Communication, Equity, Inclusion and Diversity, Problem Solving 

Research has shown that bilingual students can use a variety of tools to construct sense-
making in mathematical problem-solving, such as community funds of knowledge (Gutiérrez, 
2017); cultural resources (Moschkovich, 2015); everyday experience (Domínguez, 2011); and 
mathematical discourse, gestures, and representations (Garcia, 2017). More recent research has 
demonstrated that to maximize mathematical sensemaking during communication-based 
problem-solving, bilingual students strategically use two languages by code-switching or code-
alternating (DiNapoli & Morales, Jr., 2021). This paper aims to build on prior research by 
studying how strategic translanguaging occurs when Turkish-American bilingual students make 
sense of real-life-based problem-solving processes and communicate their reasoning. 

The Conceptual Framework 
Drawing on Garcia’s (2017) description of translanguaging as a holistic and dynamic 

meaning-making practice that involves coordinating linguistic and semiotic resources to make 
sense of concepts and contexts of mathematical problems, we adapted DiNapoli and Morales, 
Jr.’s (2021) framework for translanguaging mathematical practice (Figure 1) to investigate 
Turkish-American bilingual students’ problem-solving processes: 

 

 
Figure 1: Framework for Translanguaging Mathematical Practice (Adapted from DiNapoli 

& Morales, Jr., 2021) 

 
Within the framework, bilingual students activate their linguistic repertoire and switch 

between Turkish and English by utilizing mathematics and an everyday linguistic register. In 
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order to complement mathematical discourse, bilingual students deepen their problem-solving 
experience with mathematical representations, including visuals, notations, and gestures. The 
framework guided the data analysis to reach an understanding of students’ communication of 
their mathematical reasoning. 

Research Setting and Participants 
Data for this paper came from a more extensive research study conducted during a 6-week 

long after-school program for high school students at a public university in a Midwestern state. 
The class met twice a week for a total of 10 sessions, or 20 hours. The goal of the research 
program was to examine how bilingual secondary students call upon their mathematical 
experiences in real-life problem-solving contexts involving quantities (Ozturk, 2021).  

The participants included six 10th-grade Turkish-American students from middle-class 
socioeconomic backgrounds and first-generation college dreamers. These students were all 
children of Turkish parents, their home language is Turkish, and their school language is 
English. Constant code-switching between Turkish and English is the typical way of speaking for 
all of them. Therefore, the study provided a flexible environment to use the two languages as 
they engaged in classroom activities. All participants’ names given here are pseudonyms. 

Methods and Data Collection 
Drawing upon an action-research methodology (Mostofo & Zambo, 2015), the after-school 

classroom sessions consisted of real-life-based problem-solving with quantities. In each session, 
students solved problems in pairs, and then small groups shared strategies with others to reflect 
upon diverse ways of reasoning. Students were free to code-switch any time during problem-
solving and group presentations, and the researcher communicated with students in two 
languages. All sessions were videotaped and transcribed. In addition, the students’ written work 
was collected. 
Data Analysis, Example Group Dialog, and Written Work 

Data for this study consisted of video excerpts in which students were solving problems and 
communicating their solutions to the class. The criterion for the selection of video excerpts was 
that they contain students translanguaging while problem-solving. We paid attention to how 
students used resources such as code-switching, visual-graphic representations, or gestures while 
developing sense-making of quantities in the problem contexts. 

Drawing from a thematic analysis (Braun & Clarke, 2012), the data analysis consisted of four 
steps: 1) Capturing evidence of students’ translanguaging instances; 2) using a conceptual 
framework (Figure 1) to code student’s use of English and Turkish as well as everyday and 
mathematical registers; 3) elaborating each translanguaging moment in which students supported 
their communication with non-verbal mathematical representations; 4) using the constant 
comparative method, we inductively created themes to describe the ways in which evidence of 
strategic translanguaging occupied different roles during the phases of problem-solving and 
collective sense-making.  

Although analysis is still in process, to illustrate one theme from our data regarding the role 
of strategic translanguaging in the problem-solving process, we purposely selected a vignette 
from a group of students that worked on a problem that demonstrated students’ interaction while 
beginning the problem and selecting appropriate mathematical units to continue their solution. 

Translanguaging as an entrance of problem-solving while selecting appropriate units. In 
this theme, students work in pairs in the beginning phase of the problem-solving process. They 
brainstorm and decide how to make sense of a problem and choose methods of mathematization, 
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abstracting a given situation and representing and manipulating it symbolically. For example, in 
the Traffic Jam Problem (Figure 2), students were required to perform estimation, relate 
quantities, and work on units in order to make sense of their interpretations of the calculation 
results. 

 
Figure 2: Traffic Jam Problem (Adapted from Illustrative Math, 2016) 

While the problem involves simple arithmetic operations, students must make reasonable 
assumptions about the average length of vehicles and the space between vehicles in the traffic 
jam. In the excerpt below, Hale and Asya were trying to imagine a 24-kilometer-long traffic jam 
and discussed how many cars might fit such a traffic jam. Although the other two groups chose 
to continue with 15 miles as a length unit, this group first converted units from the U.S. 
customary system to the metric system to do the rest of the calculations. 

While Asya was searching for photos (from Google) to determine how long 15 miles was in 
kilometers and how many cars could fit in a 24 km-long road to visualize the traffic jam scenario 
in her mind, Hale asked her why 24 km was important to her. Asya immediately switched the 
code from English to Turkish and explained that it is hard to imagine the length in miles (Figure 
3): 

 

 
Figure 3: Transcript and English Translation: Evidence of Translanguaging Practice 

(Turkish-English) 

She preferred to imagine the distance in kilometers because she could relate the distance 
(approximately 25 km) to her everyday experience. Asya combined everyday and mathematical 
registers when describing 24 km (close enough to 25 km) as “it’s like the distance” between her 
and her aunt’s houses. She rethought the context of the problem, 15 miles, in the metric system 
because describing and representing 15 miles was not accessible at the beginning. When she 
explained this unit conversion (from 15 miles to 24 km), she immediately switched code into 
Turkish. This might have occurred because thinking in the metric system was learned in Turkish 
before she was introduced to the U.S. customary system; thus, working with metric units 
stimulated her Turkish repertoire as an intellectual resource for mathematical sense-making. 

Converting units from miles to kilometers was a strategic decision because it allowed 
students to access mathematical ideas through their prior work—making assumptions about the 
length of vehicles and spaces between them in the traffic jam. Note that communication between 
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Hale and Asya was a valuable exchange through meaning-making in the problem-solving 
process. Hale’s affirmative comments (“Make sense” and “I got you”) about Asya’s unit 
conversion description showed a sign that this group persevered in problem-solving steps as long 
as both students met at a shared understanding built on collaborative meaning-making efforts.  

     After Hale’s confirmation, Asya started drawing the two-lane freeway and wrote down 15 
miles as 24 kilometers using the sign “≈” of approximation (see Figure 4). Their first assumption 
about an average car length was 4.5 meters. They converted 24 kilometers to meters to more 
easily divide that into cars 4.5 meters long. In this way, they estimated how many cars would fit 
in one lane, and multiplying by 2 resulted in approximately 10,600 cars in the traffic jam. 
Another assumption was that the average number of people in a car during a traffic jam was 2. 
Students multiplied 2 with 10,600 cars and reached the result of approximately 21, 200 people 
would be in the traffic jam. Figure 4 illustrates students’ first attempt to solve this problem: 

 

 
Figure 4: Example Solution for Traffic Jam Problem 

When Hale and Asya presented their results to the whole class, other groups asked questions, 
such as why they made the assumption of 2 people in a car or why they assumed there would be 
only cars in the traffic. Hale and Asya also realized they had not considered the gaps between the 
cars, and they assumed the cars were lined up back-to-back. Hale said that even in a traffic jam, 
there should be a gap between cars. Students made recalculations by considering different 
scenarios, such as what if there were trucks and motorcycles in the traffic, and how changing 
vehicle numbers could impact the total number of people. Later, the class focused on how to 
come up with minimum and maximum numbers of people in the traffic jam if they reconsidered 
the important factors that could change the results (vehicle types, the length of gaps, etc.) 

Preliminary Results and Conclusion 
The study focused on understanding how strategic translanguaging occurs when Turkish-

American bilingual students make sense of real-life-based problem-solving processes. The 
preliminary results showed that translanguaging occupied different roles during the phases of 
problem-solving and collective sense-making. The results revealed that students used 
translanguaging as an entrance to problem-solving while strategically selecting units that were 
more accessible to them. 

These findings resonate with previous studies (e.g., Garcia, 2017) suggesting that positioning 
translanguaging as a source for sense-making practice encourages bilingual students to leverage 
their full linguistic repertoire as well as to combine everyday and mathematical registers. The 
results also show that strategically selecting appropriate quantities and their units became tools to 
justify mathematical reasoning and shared understanding among bilingual students. Therefore, 
strategic translanguaging is a powerful tool for bilingual students to bridge multiple pathways 
while engaging in problem-solving. 
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THE COMPETING EXPECTATIONS OF MOTHERHOOD AND MATHEMATICS: 
INTERNALIZED GENDERED AND RACIALIZED NARRATIVES WITHIN 
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I draw attention to the tensions between the expectations of mathematics and motherhood to 
highlight how mothers positively engage with their children in mathematics, even when that 
activity is not recognized or granted legitimacy. I ask: what do mothers’ experiences in 
mathematics and with their children say about U.S. society’s expectations of mathematics and 
motherhood? I highlight the experiences of five participants as they reflect on their mathematical 
experiences and interactions with their children. The findings demonstrate the pervasive nature 
of gendered binaries and privileged whiteness in the expectations of mothers in both motherhood 
and mathematics. The constraining expectations of what it means to mother and be involved in 
mathematics shows the need to shift perspectives of what counts as mothering, as parenting, and 
what counts as mathematics. 

Keywords: gender; equity, inclusion, and diversity 

The images of motherhood and mathematics in Western society have long perpetuated 
expectations that privilege the experiences of certain people, but not others. Expectations 
surrounding parenting in the U.S. are deeply rooted in gendered binaries and the norms of white, 
middle-class families (Dillaway & Pare, 2008). Mathematics is framed as a field for white, 
middle-class men aligning to the norms of masculinity and limiting who can be viewed as 
mathematical (Hottinger, 2016). Mothers, however, are often expected to support the early 
education of their children, which can include mathematics (Odenweller & Rittenour, 2017). 
Although some may argue that early mathematical work is not subjected to similar framing of 
masculinization the issue lies in the erasure of early mathematical practices as mathematics. 
Skills such as counting and early numeracy are described as separate from and less rigorous than 
mathematics (Hacker, 2016), which can further emphasize a divide in what and who counts as 
doing mathematical work. When a masculine mathematics intersects with the expectations of 
teaching in motherhood, tensions come to the forefront. A dissonance is clear between the 
expectations of who can do mathematics and mothers raising children that questions what it 
means for women who are mothers to support children in mathematical learning. Bringing 
attention to such dissonance, highlighting the specific tensions in the gendered and racialized 
components of motherhood and mathematical participation, has the ability to shift societal 
perspectives of what counts as mothering and what counts as mathematics. 

I draw attention to the tensions between the expectations of mathematics and motherhood to 
highlight the challenges of parents helping their young children learn. I respond to the following 
research question: What do mothers’ experiences in mathematics and with their children say 
about U.S. society’s expectations of both mathematics and motherhood? Weaving together the 
narratives of five mothers, the findings show persistent challenges with assumptions of whiteness 
and upheld gender binaries in the roles of motherhood and mathematics. The reflections from the 
five mothers show the pervasiveness of such expectations from their time in school and its 
current impact on their activity now with their own children. Connecting the experiences of the 
participants to the literature on parents’ experience in mathematics and the role of motherhood 
offers opportunities to disrupt notions of what mothers must do in children’s early mathematical 
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learning by considering the possibilities for what motherhood and mathematics can look like in 
different contexts. 

Perspectives on Motherhood and Mathematics Expectations 
This study expands on the literature that addresses the experiences of mothers in mathematics 

and their resultant interactions with children by considering the interactions between the two 
bodies of work. Some literature considers the experience of mothers as mathematics learners 
(Chase, 2018), some considers mothers’ beliefs or impact on their children’s mathematical 
performance (e.g., Cannon & Ginsburg, 2008; Tomasetto et al., 2011), and others have 
considered mothers’ mathematical interactions with their children (e.g., Anderson & Anderson, 
2018). It is necessary to put the experiences of mothers and their interactions with children in 
conversation, to understand the complex relationship of expectations put on them in their roles of 
motherhood and early mathematics teachers for their children. In this section, I describe the 
literature on the Western expectations of both motherhood and (school) mathematics. Then I 
consider the tensions between those expectations on a parent being upheld to the expectations of 
both. 
Expectations of Motherhood 

Previous literature has shown a continued connection between womanhood and motherhood 
(e.g., Arendell, 2000; Collins, 2000; Roberts, 1993). In this way, the term ‘woman’ is often seen 
as synonymous to ‘mother’ (Mora, 2006). Historical images and expectations of motherhood 
often focused on mothers’ labor centered at home and fathers’ labor out of the home, with clear 
divides in what mothers and fathers were expected to do for their family. This division of labor 
and familial expectations for mothers has evolved into present day to include additional 
responsibilities, such as working to provide other resources to the family while still being the 
primary parent to raise children (e.g., Duxbury & Higgins, 1991; Rothausen-Vange, 2004). Zhao 
and colleagues (2011) argued that “traditional thinking assumes that women should do a greater 
share of household labor and childcare, and mothers may be particularly overloaded compared to 
fathers and women without children” (p. 725). This traditional thinking persists in ways today 
that may not look like an expectation that mothers stay at home or homeschool their children, but 
still supports notions of mothers taking on the greater share of childcare.  

Some of the pervasive expectations surrounding motherhood in Western society include a 
focus on (1) mothers being the exclusive or primary caregiver for their children (Dillaway & 
Pare, 2008), (2) mothering being a sacrifice of other aspects of a mothers’ life (Maher & 
Saugeres, 2007), and (3) good mothers being recognized by the well-behaved nature of their 
children (Austin & Carpenter, 2008). Unfortunately, these three pervasive expectations for 
motherhood do not consider the complexities of what mothers do and how they do it to support 
their children. For example, families may be in situations where it is not possible for a mother to 
be the exclusive or primary caregiver, but this should not imply such a person is a bad mother 
because of that. Analysis of mothers’ actions, context, and intentions with their children can 
illuminate other ways of doing motherhood. 
Expectations of (School) Mathematics 

What is typically expected in mathematics in school environments centers on students getting 
the correct answer to a problem and working quickly, where a teacher has the authority to define 
what student actions and answers count as appropriately mathematical or not (Esmonde et al., 
2013). School mathematics is often about memorization and algorithms, even when it aspires to 
be about understanding. Marta Civil (2002) characterizes the traditional norms of school 
mathematics as "an overreliance on paper-and-pencil computations with little meaning, clearly 
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formulated problems following prescribed algorithms, and a focus on symbolic manipulation 
deprived of meaning" ( p. 41). Additionally, what is determined as appropriately mathematical or 
who mathematics is for is based in systems that privilege the norms of white and middle-class 
men (Rousseau Anderson & Tate, 2016). In the minds of many, the framing of mathematics in 
school is privileged over other types and styles of mathematical learning, such as what might 
happen at home (Takeuchi, 2018). Given the images and expectations of what mathematics is, 
students can develop ideas about themselves and their mathematical ability, taking these 
understandings beyond school. The expectation of mathematics as a masculine subject, intended 
for men but not women, has persisted (Hottinger, 2016). Such narratives about a white-centered 
and masculine mathematics continue to shape students’ perspectives of themselves as 
mathematical as they grow up and become parents.  
Dissonance in Expectations for Women and Mothers in Mathematics 

The specific masculinization of mathematics provides context for the impact gendered 
expectations of mathematics has on mothers’ experiences in the subject. Past understanding of 
mathematics and who is capable of mathematical work assumed that women do not or should not 
be learning and doing mathematics (Hottinger, 2016). Mathematics is a subject associated with 
masculine characteristics such as working independently and thinking with logic and rationality 
(Ernest, 2018; Solomon, 2012), but at the same time distancing these characteristics from women 
and their potential association with mathematics (e.g., Connell, 2010; L.A. Leyva, 2017). In the 
same way that mathematics highlights a separation between men and masculinity from women 
and femininity, the roles of parents (mother and father) have also been divided to correspond to 
what is considered ‘appropriate’ gender roles. Fathers, who are assumed more aligned to the 
masculine, are associated with mathematics, working, providing for their family outside of the 
home (Rothausen-Vange, 2004). Mothers, who are assumed more aligned to the feminine and 
not expected to do or understand mathematics, with a focus on domestic work that includes 
raising and teaching young children (Zhao et al., 2011). But the expectations of mothers to 
support children’s early learning as part of domestic work is in tension with the expectation of 
women’s inability to be mathematical. Past studies on mothers’ involvement in children’s early 
mathematical learning have not addressed the dissonance in expectations of mothers’ roles as 
early teachers and a masculine mathematics. 

Theoretical Framing 
While the tension in expectations for mothers and mathematics stems from gender binaries 

for the actions and images of men and women, I want to consider the multi-layered influence of 
both gender and race in expectations for being a mother and doing mathematics. I use Collins’ 
(2000) concept of matrices of domination as an analytical tool to critique the influence of 
expectations in mathematics and motherhood surrounding gender and race. Collins defines a 
matrix of domination as the organization of intersection oppressions. For example, the tension a 
mother feels when engaging in mathematics with children is influenced by the expectations of 
doing mathematics and being a mother that privileges gendered family roles, white and middle-
class norms. As Collins (2000) argues, “regardless of the particular intersections involved, 
structural, disciplinary, hegemonic, and interpersonal domains of power reappear across quite 
different forms of oppression” (p. 21). The organization of expectations and domains of power of 
gendered binaries reappear in both motherhood and mathematics. Similarly, the privileging of 
whiteness reappears in both expectations of being a mother and doing mathematics.  
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Methods and Modes of Inquiry 
I focus the findings for this paper on the experiences of five participants from a larger study 

about the impact of past experience on mothers’ current mathematical interactions with children. 
The smaller set of participants is intended to give space to their narratives in the context of 
existing literature on the expectations of mathematics and motherhood but does not represent a 
generalization for all mothers’ (or parents’) experiences with parenting or mathematics. The 
larger study used a narrative inquiry approach to frame the narratives of the mothers to 
understand parts of their lives and make connections to the narratives of others (Clandinin & 
Connelly, 2000). Due to limited space, I focus only on short excerpts from their shared stories to 
draw attention to their discussion of motherhood and mathematics expectations. The study 
consisted of three interviews, two observations with debriefs, and collected artifacts to support 
shared stories with each participant. The elements of the study intended to capture participants’ 
past experiences, current stories of mathematical activity, what that activity looked like and 
confirmation of those stories. I focus on the experiences of five participants: Amanda, Brittany, 
Courtney, Elizabeth, and Tara1. These mothers ranged in age from their late 20s to late 30s, 
living in rural to urban locations. Table 1 shows more detail about each of the participants. 

 
Table 1: Name and Basic Demographics of Participants 

Participant Children (+Age) Race Occupation 
Amanda Grant (2) Native American Graduate student 
Brittany Rosie (2), Bobby (4) White Part-time music teacher 
Courtney Eva (3) Black Teacher 
Elizabeth Talia (2), Luna (7) White Stay-at-home parent 

Tara Sasha (1.5), Peter (3.5) White Part-time grocery worker 
 

Transcripts from the three interviews and debriefs, as well as field notes from the two 
observations, were used as data for the study. Analysis focused on the context of participants’ 
stories in response to the literature’s expectations of motherhood and mathematics. An initial 
coding scheme looked for moments in their stories that described (a) emotions in mathematics, 
(b) positive mathematics engagement, (c) past experience influencing current mathematical 
interaction, (d) gendered experiences in mathematics and mothering, and (e) racialized 
experiences in mathematics and mothering. The details from codes a, d, and e informed the 
deeper analysis for this paper. Nuance in the mothers’ feelings, words, and self-definitions 
received careful attention in coding for moments of mathematical engagement and motherhood 
activity. This specific attention to detail is meant to parallel the ideas of the work of the feminist 
narrative inquirer Madison (1993). As such, the transcription and analysis involved careful 
attention to deeper detail such as when the participants laughed, paused, sighed, or used filler 
words in sharing their stories. 

Findings 
What shaped the mothers’ interpretations of themselves in their interaction with mathematics 

as well as motherhood identity was shaped by larger societal narratives of what it meant to do 
mathematics and be mothers. The mothers noted what counted as mothering or doing 
mathematics in implicit and explicit ways that highlighted gender binaries and the privileging of 

                                                 
1 All participant names and the names of their children are pseudonyms. 
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white norms. The layers of expectations in gender and race, appearing in both conceptions of 
motherhood and mathematics, aligns with Collins’ (2000) matrices of domination, as the 
organization of intersecting oppressions. In this section, I highlight aspects of the participants’ 
stories around motherhood and mathematics that show common expectations in those areas that 
privilege gender binaries and white norms as described in previous literature. Although the 
audience for this work is centered in mathematics education, I specifically foreground the 
motherhood connections in relation to mathematics as the role of mothering in mathematics 
education is often ignored or devalued (Jackson & Remillard, 2005). 
Motherhood Narratives 

All but one participant shared how their mother did all or most of the work in raising them, 
including supporting their early learning, which shaped an expectation of what they saw was 
important to do for their children. Across all five mothers was a general expectation to be the 
primary caregiver for their children. Several participants also closely aligned their identities with 
that of being first and foremost a mother, reflected in the literature as a sacrifice of self for the 
sake of motherhood (Garey, 1995; Maher & Saugeres, 2007). Brittany, for example, talked about 
how she saw and defined herself in the past and now, sharing “the things that I feel like really 
define, in the past musical theater really defined a lot of my life and now it’s mostly, my kids and 
my family. So sometimes that has been kind of a hard transition” (Interview 3). Brittany 
explained how she felt she needed to see her children and family as her primary focus, centering 
her role as mother above other aspects of herself, which used to center music and musical 
theater. The domestic work of participants’ mothers as well as their frequent identification with 
the role themselves shaped how they interpreted their activity, as a necessity to being identified 
as mothers first and being the primary caregiver over other partners.  

The influence of race on expectations of motherhood were more explicit in the stories of the 
mothers who identified as mothers of color or who had children of color. As Western society has 
privileged white norms in motherhood (Dillaway & Pare, 2008), reflections of fitting into such 
norms or helping their children fit into a world that does not privilege their experiences outside 
of whiteness. Due to limited space, I highlight the experiences of Elizabeth and Tara in the 
remainder of this section, both mothers who identified as white but currently parent children of 
color. In both cases, how they spoke about race related only to the experiences of parenting their 
children of color, not in the stories of their experiences growing up or how their actions as white 
mothers would be perceived. Elizabeth saw the challenges of appropriate representation in 
children’s books, with many characters in popular and classic literature reflecting white faces. 
She saw this as a disservice to her daughter, Talia, who was Hispanic, sharing that she 

was really disappointed at how many books were like white kids in the books…And so, I set 
all those aside and I’m, we’re giving those away [laughs] cause I, I think more and more how 
important it is for when {Talia} to open a book to see people like her reflected in that book. 
(Interview 3) 

Elizabeth’s statements reflect an expectation in motherhood (to help her daughter learn about 
herself through reading) and the challenges to meet that expectation given the books she has 
available. The activity of motherhood has an embedded association with whiteness in Western 
society (Morgan, 2018). In Elizabeth’s story, this is reflected in the characters in children’s 
books where there are white characters meant for white mothers to read to their white children. 
But those characters and expectations do not align to the experiences Elizabeth sees as important 
for her daughter, Talia.  
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Tara considered the impact of assumed whiteness for her children’s future and what she 
needed to consider as a parent, raising children in a world that privileges whiteness. In talking 
about what she hopes for her children as they grow up, Tara shared the following story about 
potential racial prejudice they may encounter: 

Yeah I’m worried about my kids. Um, because right now they’re in the super cute adorable 
Korean, half Korean/half white stage and they’re just angelic and everyone loves them but 
then when they become teenagers they’ll be little shits and then you know they won’t have 
that you know, that draw anymore, and I just hope that they can just be respectful. (Interview 
3) 

Tara’s worries for her two young children reflect how they will be perceived by others. Within 
her worries are particular actions as a mother she feels she needs to prepare them for such a 
future with actions and behaviors that fit into a world that privileges whiteness.  

In the stories of these participants, the influence of gendered binaries and privileged 
whiteness informs their actions and thoughts about motherhood. Mothers like Brittany feel a 
personal responsibility to be the primary caregiver of their children, centering an identity of 
mother before other options, because of the expectations of women as mothers, nurturers (Austin 
& Carpenter, 2008). Mothers like Elizabeth and Tara consider what it means to raise children of 
color in a world that privileges the norms of white children and how to best support them. The 
next section highlights stories within the experiences of mathematics where assumptions of 
gendered binaries and whiteness reappear to assert particular expectations on the participants. 
Mathematical Narratives 

When talking about their experiences with mathematics, the participants highlighted several 
expectations in alignment with what happens in school mathematics, such as mathematics being 
a quick mental task, working on problems is done independently, and that such problems have 
one correct method and solution. Several of the mothers (Amanda, Elizabeth, and Brittany) 
shared how these characteristics of mathematics did not work for them and drew connections 
between a lack of mathematical ability to it being a subject meant more for men. Elizabeth, 
Brittany, and Tara also highlighted how they assumed their partners (identified as men) were just 
better at mathematics than they were, even though Elizabeth and Tara had extensive experience 
in the subject. Amanda explicitly identified the gendered expectation of who could or could not 
do mathematics from her schooling experience and how that shaped her perspective of herself, 
sharing that: 

I feel like it was very gendered when I was a kid. Like I always assumed there were the smart 
boys in class. And they were just better at math and that maybe it had something to do with 
me being a girl that I wasn’t good at math. My mom would openly talk about how she wasn’t 
good at math either. And then I felt like all the kids who were the best in my mind at doing 
math, that they could, like in elementary school they could do the timed tests and get the 
most answers down on the paper. And um, they didn’t seem to have a problem doing algebra, 
were like, I can think of 1 or 2 guys specifically that I was always in the same classes with 
and they were always like the good at math guys. (Interview 1) 

Amanda relates to expectations of school mathematics as well as the influence of her mother to 
shape a perspective that she must not be good in mathematics. Mendick (2006) highlights the 
challenges of identifying with mathematics when the subject is associated with the masculine 
and gendered binaries position men and fathers as masculine but women and mothers as 
feminine.  
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How people are perceived in school and in the mathematics classroom also includes racial 
representation, where the norms of whiteness are privileged along with characteristics of 
masculinity in mathematics (Hottinger, 2016). Courtney, who was an excellent student and 
particularly skilled in mathematics, shared stories of a teacher who constantly doubted her ability 
to answer questions and know the content, reflecting a similar bias in all his students of color. 
The assumption of whiteness in being able to learn or do well in school shaped how Courtney 
thought about her daughter, Eva and what she needed to be successful in school.  

I always think that I have to include the fact that yes you may not look like all of your 
classmates and that’s ok. Um but how can we use that to teach, to teach them more about 
you? Or more about African Americans or like try to use that as a learning opportunity and 
allow her to find her own voice … I mean she’s still capable of doing almost whatever, she 
wants or whatever she puts her mind to at least. So I think it will definitely come into play, 
it’s come into play a little bit but, yeah, I think, I, I’m definitely I wanna be more conscious 
of it because I wasn’t when I was a kid and I wish that I had been. (Interview 3) 

What Courtney shares reflects the assumed whiteness in both school and mathematics. Her 
daughter Eva may need to learn to stand up for who she is and how she learns, which Courtney 
pulls from her own experiences in school as a Black girl. 

The experiences of the mothers in mathematics show concerns about the perceptions of who 
can do mathematics that centers white norms and masculinity. Amanda talks about how she 
thought of herself as less capable in mathematics because she identified as a girl, enforced by 
perspectives of her own mother and the actions of students in her class. Amanda later returned to 
this perspective and considered what this would mean for her soon-to-be-born daughter and not 
wanting her to get the impression that mathematics also is not for her. Similarly, Courtney 
connected her own experiences with mathematics and the challenges with being perceived as a 
good mathematics student as a Black woman and what she felt was important to support her own 
daughter. 

Discussion and Action 
The experiences described by the mothers in both their past interactions with mathematics 

and how they engaged in the present with their children in the subject were influenced by the 
expectations of what it means to be a mother and to do mathematics in U.S. society. The 
gendered binaries shaping U.S. society uphold a divide in the roles of mothers and women vs. 
fathers and men that continue to define rigid expectations for mathematics and motherhood. 
Mathematics is often aligned with men and masculinity (Hottinger, 2016) and mothering is 
assumed to be the work of women, aligned with femininity (Odenweller & Rittenour, 2017). In 
mothering, the participants highlighted the expectation that they (as mothers) should be in charge 
of raising their children and teaching them. However, in mathematics many participants 
highlighted assumptions about the subject being more for boys and their perceived lack of ability 
in comparison to others, particularly their partners. Both instances point to the dissonance in 
expectations for mothers and doing mathematics; that mothers should help their young children 
learn but that mothers (often aligned with the identity of women) are lacking in mathematical 
skill. How are mothers expected to support most or all of children’s early learning, which 
includes mathematics, while simultaneously being viewed as less capable in the subject? The 
response to such tensions cannot be an acceptance that mothers simply cannot well support early 
mathematics development. 
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The tensions in expectations of mathematics and motherhood extends beyond gendered 
binaries. The privileging and assumptions of whiteness are also a major part of U.S. society’s 
interpretation of what counts as both motherhood and mathematics. Literature has documented 
the embedded racial expectations in policy and practice, as Marx (2006) states “the privileges 
attached to Whiteness have been, and continue to be, perpetuated in subtle ways through 
American institutions and popular culture” (p. 52). In mothering, the participants draw attention 
to what is available to support children that assumes whiteness (such as Elizabeth’s recognition 
of primarily white characters in children’s books). But in mathematics, participants reflected on 
how white students are assumed more capable and what it might take to support themselves and 
their children of color to recognize their own ability. Douglas and Attewell (2017) summarize 
the challenge of viewing some children as more capable than others, stating “the belief that 
mathematics requires innate talent is widespread in our culture…it rationalizes the notion that 
only some students will be able to learn school mathematics successfully” (p. 651). These 
perspectives of whiteness show the expectations of motherhood that support white mothers and 
their white children. At the same time, the expectations within mathematics make assumptions 
about who can and cannot do mathematics based on their race. Before any mathematical activity 
begins, mothers of color and mothers with children of color are already positioned as less 
capable and with fewer resources that support their experiences as not white. 

How the mothers of this study experienced school and reflected on their experiences 
interacting with children as parents were shaped by gendered binaries of roles for mothers as 
well as expectations of whiteness in their parenting and participation in mathematics. The 
structures of expectations in both motherhood and mathematics have maintained activities and 
beliefs that uphold gendered roles for parents and their activity and privilege the norms of white 
families. The relationship between the expectations of motherhood and mathematics is more 
complex than a list of tensions or challenges experienced by individuals who are mothers and 
also support early mathematical learning. Take, for example, the context and experience of 
Elizabeth. As a white woman parenting a daughter of color, Elizabeth was concerned for the 
images and role models her daughter had that looked like her, with many media representations 
for children were white characters. However, the influence of race did not yet extend to 
Elizabeth’s own experiences growing up.  

Future work on mathematics experience and identity for mothers, particularly related to 
parents, requires a broader perspective on what it means to raise children and what it means to do 
mathematics. The limited images of what is expected for mothers and what is expected to be 
successful in mathematics contribute to the participants’ narratives of this study; the mothers 
frame themselves as less mathematically capable while worrying about how their children will 
take up mathematics or be perceived by others. More can be seen with a similar analysis of a 
wider array of parents supporting early mathematical learning, such as different family dynamics 
and different associations with the role of ‘motherhood’. Creating broader perspectives of both 
parenting and mathematics involves parent-centered research, considering both the actions, intent 
and context of how parents engage with their children in mathematics. Centering and listening 
closely to the experiences and actions of parents creates an opportunity for mathematics 
education researchers to understand new ways of mathematical engagement and new possibilities 
for connecting to children’s mathematical learning. 
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In recent years, mathematics lessons addressing social justice have been increasingly published 
and taught, but little is known about how mathematical and social content unfolds within them. 
In this study, we interpret five secondary social justice mathematics lessons (SJMLs) as stories 
and analyze the questions that arise within them. We found that most of these lessons began and 
ended with a focus on social matters, while shorter mathematical questions arose in the middle 
of the lessons. However, the lessons varied in terms of what proportion of the questions overall 
were focused on social or mathematical thinking. Finally, we found that narrative devices were 
used in several lessons when the focus transitioned from social issues to mathematics, or vice 
versa. This way of thinking about lessons could enable the design of SJMLs that meaningfully 
integrate social and mathematical thinking. 

Keywords: Social Justice, High School Education, Curriculum  

To confront social inequity and systems of oppression, secondary mathematics teachers are 
increasingly seeking to integrate social justice themes within their lessons. Expanding 
opportunities for students to engage in a thoughtful analysis of social injustice and its 
consequences may enable students to become informed citizens (Gutstein, 2006). Moreover, it 
can enable students to recognize mathematics as a useful tool in better understanding the world, 
which in turn increases the relevance of mathematics and the motivation for its study (e.g., 
Darby-Hobbs, 2013). Finally, integrating social justice issues within mathematics lessons can 
provide an opportunity to (re)position mathematics as a human endeavor as opposed to a set of a 
priori truths (Ernest, 1998), created in part to solve worldly problems with which students can 
personally identify (Berry III et al., 2020).  

Yet, incorporating social justice topics while teaching mathematical content is a complex 
goal, which therefore benefits from curricular support. Since most secondary mathematics 
teachers base instruction on published materials (Banilower et al., 2013, 2018), those who want 
to include social justice content will likely rely on existing materials. To address this need, a 
growing collection of social justice mathematics lessons (“SJMLs”) has been published. Using 
published SJMLs enables teachers to explore the benefits of these lessons while developing 
critical new teaching practices (e.g., managing challenging discussions).  

However, there is a potential for none of these benefits to come about, and maybe even for 
harm to be done, if SJMLs are not well-designed. In particular, SJMLs may poorly balance 
mathematical and social justice content. A lesson may give students the opportunity to engage 
deeply in a social justice issue, but treat mathematical content superficially, offering few 
opportunities for mathematical learning. On the other extreme, a lesson may give students the 
opportunity to engage deeply in mathematical thinking, but treat social justice content 
superficially. Such a lesson could limit insight into the world or into recognizing ways to take 
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action and promote justice. We propose that to be beneficial and successful, SJMLs must 
interweave mathematical and social justice content so that they mutually benefit one another and 
advance what students know about both (what we refer to as integration). 

Previous work has demonstrated how a narrative framework can enable different structures 
of content in lessons to become visible (e.g., Dietiker & Richman, 2021; Richman et al., 2018). 
This approach draws from literary theory, approaching unfolding mathematical content within a 
lesson as a story. Similar to a literary story, a mathematical story is the ordered sequence of 
events (such as tasks or discussions) that connect the beginning with its end (Dietiker, 2013, 
2015). This conceptual metaphor provides the basis for studying how an unfolding story supports 
student inquiry, such as how withholding information can stimulate a reader to ask a question or 
how incremental revelations can enable a reader to piece together information. Thus, with 
mathematical stories come analytic tools that highlight what questions are raised and how these 
questions are addressed over the course of the lesson (i.e., analyzing the plot of the unfolding 
story). 

By adapting the framework to include content related to social justice, we can learn whether 
and how social justice and mathematical content can mutually develop, potentially enabling us to 
identify lessons that span the spectrum as described earlier. Thus, this study explores how 
mathematical and social justice content is integrated (or not) in existing high school SJMLs. We 
begin to address the questions: When viewed as narrative, what is the nature of SJMLs? 
Specifically, how is the mathematical and social content integrated? 

Theoretical Framework 
Literary theory suggests that the “same story” (e.g., Wizard of Oz by L. Frank Baum) can be 

told in different ways (e.g., a reader learning that Dorothy is asleep the entire time from the start 
vs. learning this at the end). This difference is attributed to a story’s plot, which describes how a 
story enables or constrains what a reader knows at different points of the story. Thus, a plot1 can 
be described by examining the opportunities a story offers as it unfolds for a reader to recognize 
they don’t know something that they want to know (i.e., ask or adopt a question) and to make 
progress in learning what they do not yet know (i.e., deducing part of a question). For example, 
plots that contain questions that span multiple parts of a story (e.g., How will Dorothy get 
home?) can enable a reader to make connections and anticipate what is to come (Nodelman & 
Reimer, 2003). As the number of questions a reader engages with increases (e.g., Who is the 
wizard?), the plot “thickens,” creating a potentially interconnected web of questions with which 
the reader is parsing information and seeking answers. At the same time, in order to maintain a 
reader’s interest, a story needs to regularly enable a reader to make progress on enduring 
questions and answer some questions relatively quickly. When a story only offers questions that 
are not answered nor even partially addressed for large portions of a story, a reader may not 
sense progress and may even forget some of the questions that remain unanswered (Nodelman & 
Reimer, 2003). Finally, in a plot with many open questions, learning new information may 
impact what is known by a reader about multiple questions at the same time. For example, when 
a reader learns that the wizard is not magical, this also reveals that the Tin Man always had a 
heart and that there may not be a way for Dorothy to return home. Therefore, within a learning 
context, a SMJ plot is a description of the dynamically changing tension between what is known 
and unknown for a student experiencing a SMJ story.  

1 Although the word “plot” has specialized mathematical meaning regarding the graphical representation of 
data, in this study, we use the term in a literary sense. 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

488



Story Arcs within a Lesson Plot 
Central to a lesson plot is how questions emerge and are addressed for a student. Similar to 

the plots of literary stories, lesson plots contain multiple questions that can be answered 
immediately or remain open for longer portions of the story. How each question opens and is 
addressed constitutes a story arc. Multiple story arcs can be open simultaneously. Within written 
curriculum materials, story arcs, indicated via questions and other curricular elements (e.g., 
teacher notes or expected responses), arise that may involve different kinds of thinking. Due to 
our focus on the integration of mathematical and social content, we are particularly interested in 
distinguishing whether story arcs involve students engaging with mathematical thinking, 
thinking about social phenomena, or both. 

For the purposes of this study, mathematical story arcs are those that expect students to 
engage in mathematizing, which involves abstraction and pattern-seeking (Ernest, 2018; 
Gutiérrez, 2017; Su & Jackson, 2020), and using objects (e.g., numbers), or practices (e.g., 
proving) that have been developed over time through mathematizing. When engaging in 
mathematizing, those objects and practices are interpreted in terms of their meaning and 
relationships within mathematical systems. For example, a story arc based on a question about 
the distance between two buildings would include mathematizing the buildings’ locations, as one 
calculates the distance between their coordinates, but does not require the consideration of the 
impact on humans who travel between the buildings. Common practices of mathematizing 
include counting, calculating, and measuring (Gutiérrez 2017, Ernest, 2018). 

Likewise, we consider social story arcs to be those that require interpreting an object or 
practice within its social context. For example, a social story arc based on a question about the 
use of a building would include the consideration of how humans would use the building and 
what value it might hold for various people, but would not require mathematizing the building’s 
coordinates on a map, even if they are noted superficially for communication purposes. Social 
values may be material, emotional, political, or spiritual (Gutiérrez 2017, Ernest, 2018). 

Hybrid story arcs involve both mathematizing and interpreting a social context. For example, 
a story arc based on a question about how two proposed locations of a grocery store would 
impact local residents would be hybrid because answering the question requires both calculating 
distances between the proposed locations and other buildings (i.e., mathematizing), and 
comparing the impact of differing distances on potential shoppers (i.e., social thinking). These 
foci (mathematical or social) may occur simultaneously or in tandem. Although many 
conceptualizations of mathematical thinking define it as being detached from the material or 
human world (Ernest, 2018), we hold that it is possible to mathematize while recognizing social 
connections. Allowing for multiple types of knowing may lead to tensions (Gutiérrez, 2017) or 
explorations about what each can illuminate about the other. 

Methods 
To learn more about the nature of the content of SJMLs, we analyzed five lessons as stories. 

In this section, we briefly explain our processes of lesson selection and analysis.  
Lesson selection 

To analyze SJMLs that secondary teachers might use with their students,we identified 
lessons that teachers would have access to, including those that are published online and those 
published in print. We identified three main sources of SJMLs for high school mathematics 
topics that contained substantive teacher guidance (see Table 1). To create a set of lessons that 
would contain variety while being of manageable size for comparison, we selected one or two 
lessons from each source, aiming to have variety in mathematical topics and social justice foci. 
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Table 1: Lessons Analyzed 

Curricular Source Lesson Social Justice Focus Mathematical Topic 
Reflecting the World: A guide to 

Incorporating Equity in Mathematics 
Teacher Education (“Reflecting”, 
Felton-Koestler et al., 2017) 

Incarceration Rates Increasing 
incarceration rates in the 
USA 

Modeling and 
making predictions from 
data 

Water Bottles for Detroit 
(“Water Bottles”) 

Access to clean 
water in Detroit, MI 

3D nets, surface 
area, and volume 

High School Mathematics 
Lessons to Explore, Understand, and 
Respond to Social Justice 
(“Responding”; Berry III et al., 2020) 

What’s a Fair Living 
Wage? (“Fair Living Wage”) 

Living wage Systems of linear 
equations 

Bringing Healthy Food 
Choices to the Desert (“Food 
Desert”) 

Access to nutrition Centers of triangles 

Citizen Math (“Citizen”, Citizen 
Math, accessed August 2021) 

Wage War Minimum wage Systems of linear 
equations 

 
For our analysis, we considered all available student and teacher resources, as well as any 

online materials referred to in the lessons, such as videos or infographics. In instances in which 
online materials had been updated since publication, we included the updated online materials. 
SJM Plot Analysis 

To examine patterns in how SJMLs unfold, we categorized story arcs that arose in the lessons 
according to our framework of mathematical and social expectations. We used teacher notes, 
lesson overviews, and student-facing curricular materials to determine how the lesson design 
expected content to unfold. For example, if the materials described students creating and 
presenting posters of information, we included this as part of the unfolding information that 
would enter that SJML story at that point of the lesson. This analysis was performed by 
researchers in pairs, who gathered periodically to find consensus. 

First, to analyze the plot of a SJML, researchers identified the acts of the SJM story. The 
beginning of an act occurs when the focus of the SJM story changes. For example, if a lesson 
shifts from having students compare wages across the country to having students explain how 
wages are determined, then researchers would mark a new act.  

Next, we identified all questions, both implicit and explicit, that potentially arise throughout 
each SJML. We included questions that were asked explicitly in the lesson materials, or were 
suggested implicitly (i.e., researchers anticipated that students would potentially consider the 
implicit questions in order to accomplish the goals of the SJML). For each question, researchers 
identified the story arcs by marking, for each question, the act in which it is initially proposed or 
formulated, how information advances what is known about the question in subsequent acts, and 
how the answers to questions were disclosed. We also noted whether there are potential moments 
that could prevent students from making straightforward progress toward an answer to a 
question. To do so, we borrowed three codes from the mathematical story framework (authors, 
year): equivocation (an instance in which students are allowed to make an incorrect assumption), 
snare (an instance in which there is explicit misinformation about a question), and jamming (an 
instance at which point something prevents students from making progress on a question). 

We categorized the story arcs of each lesson based on whether they expected students to 
engage in thinking about mathematics, social contexts, or both. For example, the question “How 
would we describe the US imprisonment changes on the graph from 1925 to 1970 (stable / 
increasing / decreasing / fluctuating)?” (Incarceration Rates) would be classified as 
mathematical because it involves mathematizing and can be answered without considering the 
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social context; the text indicates that it expects students only to identify that the graph is 
increasing. In contrast, the question “What are the benefits and limitations of Design 1 as a water 
bottle?” (Water Bottles) would be categorized as hybrid because students are expected to figure 
out that a given geometric design packs well for shipping to Detroit, but it is not the most 
efficient in holding water based on volume and surface area calculations. Finally, “What is 
minimum wage for tipped employees?” (Fair Living Wage) is an example of a social question as 
it expects students to consider people or aspects of the social world, but not to mathematize. 

To compare focus on mathematics and social contexts across the lessons, we also evaluated 
how much each act of a lesson emphasized mathematics or social topics on a scale from 0-100%: 
0% meaning a total emphasis on mathematics, 50% a perfect balance of mathematics and social 
topics, and 100% a total emphasis on social topics. To calculate these percentages, we assigned 
values for each question open in an act (0% for each mathematical question, 50% for each hybrid 
question, and 100% for each social question), found the sum, and divided by how many 
questions were open. 

Findings 
Within these lessons, students are expected to engage in both mathematical and social 

thinking, but the focus shifts between the two across a given lesson. Most of the lessons begin 
with a focus on social contexts, shift to mathematical phenomena, and then expect students to 
revisit the social context, perhaps answering questions raised earlier. Sometimes the transition is 
motivated because questions in one paradigm require inquiry in the other. To explain how these 
SJMLs integrate mathematical and social justice content, we first share our findings about the 
type and length of story arcs that compose each SJML. Next, we describe the variation in how 
the emphasis on different topics changes over the course of the lessons. Finally, we discuss how 
special narrative characteristics identified in three of the lessons could impact shifts in focus 
between social and mathematical ideas. 
Story Arcs 

We identified three distinct patterns in how the story arcs focused student inquiry. To 
illustrate these patterns, each row of the SJM plot diagrams in Figure 1 shows how a question is 
raised and addressed throughout a story (i.e., a story arc). The shaded portion of the row 
indicates in which act (represented by the columns) the corresponding story arc is raised and the 
extent of the lesson during which the question remains unanswered. The story arcs are colored 
based on their category (social, hybrid, or mathematical), and the letters in each cell represent a 
shift in what is known about the question during that act. In Incarceration Rates and Water 
Bottles, over two-thirds of the story arcs are mathematical. Fair Living Wage has a large 
concentration of hybrid story arcs, with mathematical and social story arcs interspersed 
periodically. Finally, in Food Desert and Wage War, the majority of story arcs are social or 
hybrid, while mathematical story arcs make up less than half of each lessons’ arcs.  
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Figure 1: SJM Plots for the SJM lessons. Large version at [blinded]. 

In all of the lessons, students were invited to consider social phenomena for longer periods of 
time. All lessons contain overarching social or hybrid story arcs that stayed unanswered across 
the entire lesson, or all but one act. However, none of the lessons contain mathematical story arcs 
that spanned such a large portion of the lesson. Although some of the lessons do contain a large 
proportion of mathematical story arcs (i.e., Incarceration Rates and Water Bottles), the 
mathematical story arcs are often short and grouped together within only a few acts. On average, 
hybrid and social story arcs are longer and mathematical arcs are shorter (see Table 2). In two 
lessons, Food Desert and Wage War, mathematical story arcs are particularly short. 

 
Table 2: Average Arc Lengths by Lesson and Type of Question 

Lesson Social Hybrid Mathematics Overall 
Incarceration Rates 10.0 5.7 3.1 4.2 
Water Bottles 2.9 4.8 5.3 2.8 
Fair Living Wage 4.2 7.0 6.4 6.4 
Food Desert 4.8 9.5 1.8 4.6 
Wage War 3.1 3.4 1.3 1.6 
 

Story Acts 
There are also distinct patterns of attention to mathematics vs social contexts that became 

evident as we compared the lessons (see Table 3). In all of the lessons, there is an early emphasis 
on social contexts. The emphasis on mathematics increases in the middle of the lessons, and then 
decreases as questions start to be resolved via the text. However, the degree of emphasis on 
mathematics and/or social context differs. Some lessons have a greater focus on mathematics 
(Incarceration Rates and Water Bottles), while others have a greater emphasis on social and 
hybrid phenomena throughout (Fair Living Wage and Food Desert). Another characteristic that 
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distinguishes the lessons is that some shift abruptly between the two foci (note extreme values 
such as 0% and 100% in Wage War), while others are more balanced throughout (as can be seen 
by many acts with between 40-60% emphasis on social contexts). 

 
Table 3: Focus Maps of the SJMLs (intensity of shading represents the relative degree of 

focus on mathematizing, where blue represents a focus on social contexts)  

Lesson/Acts          0 1 2 3 4 5 6 7 8 9 0 1 2 3 

Incarceratio
n Rates 1% 2% 8% 2% 4% % 7% 0% 0% 4%              

Water 
Bottles 5% 4% 6% 7% 2% 2% 5% 3% 7% 0% 7% 0%            

Fair Living 
Wage 8% 2% 1% 9% 5% 4% 0% 8% 0% 5% 2% 0% 3% 2% 7% 7%        

Food Desert 5% 00% 1% 8% 0% 0% 9% 0% 7% 7% 0% 1% 9% 0% 8% 5% 7% 7% 9% 0% 0% 3% 3% 

Wage War 0% 00% 00% 2% 3% 1% % 3% 1% 8% 5% 9% 5% 8%          

 
Special codes: Equivocations and Snares 

Three lessons included equivocations and snares, which have the potential to motivate or 
curtail the pursuit of understanding of social issues within the lessons. 

In Incarceration Rates, equivocations within six related mathematical story arcs enable a 
surprise with the potential to shift the focus of the lesson from mathematics to social contexts. 
Students are prompted to predict how prison populations will grow, using data from 1925 to 
1970 (see Figure 2a). The data is fairly linear, which encourages students to assume that a linear 
equation would lead to an accurate prediction. Later, students are given additional data, up to 
2006, which does not follow the linear trend (see Figure 2b). Instead, it increases at a much faster 
rate. Students’ realization that the new values are much higher than their earlier predictions could 
provoke students to ask and pursue answers to questions about incarceration in the US that had 
not yet been raised in this lesson, such as “What caused US imprisonment rates to greatly 
increase in the 1970s?” The initial withholding of data may cause students to feel more impacted 
by the drastic difference in imprisonment rate, increasing their felt need to address it. 

 

 
Figure 2: Incarceration rates for (a) years 1925-1970 and (b) years 1925-2006. 

In Fair Living Wage, an equivocation in a social story arc gives students a reason to pursue 
mathematical questions. The text asks students to figure out what a suitable standard of living is. 
A video and infographic present a living wage for each of the 50 states, suggesting that the living 
wage is the same for every person in a state. However, students later learn that there are many 
factors that can impact the living wage of every individual (e.g., number of children). This 
complexity is revealed gradually, through hybrid story arcs. The initial equivocation that a living 
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wage is a straightforward concept makes this complexity unexpected, which in turn can make the 
inquiry into related social issues (e.g., the racial pay gap in the US) more compelling. 

In Wage War, a snare within a hybrid story arc demonstrates how mathematics can obscure a 
social context. The lesson models the relationship between supply (individuals who want a job) 
and demand (number of employees companies want to hire) of labor for a company with a 
system of linear equations. Students are prompted to calculate the intersection of the two 
equations, representing a supposedly ideal wage and number of workers. The lesson asks how 
changing the minimum wage could impact the labor market, suggesting that the company will 
hire fewer workers if it pays higher wages. No other factors are introduced for consideration. The 
simplistic linear function used to model a complex social phenomenon is a misrepresentation, 
constituting a snare. The snare does not engender further inquiry into the mathematical or social 
concerns of the lesson. That is, students are not expected to probe any related social or 
mathematical phenomena in order to identify the misrepresentation. Students who independently 
identify the model as overly simplistic may come away from the lesson with the impression that 
mathematics is not useful for interrogating a complex world. 

Discussion 
Since all lessons analyzed in this study were framed by extended social or hybrid story arcs, 

mathematical story arcs act as support for investigating social contexts in SJMLs, rather than 
being meaningfully integrated with social inquiry. Thus, mathematics is largely positioned as a 
tool worth using to solve social problems. This means that these lessons do not readily offer 
students the opportunity to engage in extended mathematical thinking, or develop complex 
mathematical ideas of their own through the exploration of social phenomena. While it is 
possible that the lessons may introduce new mathematical ideas when enacted in some 
classrooms, we found no evidence of that intent, and teacher-facing materials offered no support 
for doing so. We are concerned that the lack of extended mathematical inquiry in these lessons 
may perpetuate the belief that mathematics is for others to develop, and for students only to use. 
We wonder: Could SJMLs be designed to have extended mathematical questions, in addition to 
social ones, so that students can view mathematical inquiry as connecting to the world? 

We also note that the design of lessons does not necessarily indicate how it will be enacted in 
a classroom, which has implications for teachers using these lessons. For example, we identified 
a trend of using narrative devices, such as withholding information, in order to enable a plot twist 
later in the lesson, such as that seen in Incarceration Rates. This design approach may serve to 
make these lessons more interesting and engaging for students. However, it also introduces the 
potential for lessons to fall flat during enactment. What if a lesson’s success hinges on students 
being surprised by something that they already know? This points to the importance of teachers 
having knowledge of their students that goes beyond their mathematical abilities and classroom 
behaviors, to include students’ prior experience with social justice topics. 

Finally, we categorized story arcs based on whether they would include social interpretation, 
but we did not analyze how the arcs would engage students in thinking about social justice. 
Social justice involves critiquing the status quo or taking action to change the world, which is not 
necessarily happening just because students are considering questions about social contexts. 
Future work is needed to analyze how these lessons enable students to engage in the work of 
social justice and challenge the way things are. 
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This study presents the use of the Social Identity Wheel (SIW, Social Identity Wheel, 2021), to 
build community in a newly formed mathematics education research team. The SIW, originally 
built for use in classrooms, was used to allow each team member to share about themselves 
which led to the team learning about each other. The research focus of the team is to connect 
social and political issues to mathematics in elementary classrooms. Reflecting on identity and 
discussing social and political issues are essential components of this work. Hence, building 
community is part of fostering safe, productive environments in which to build these tasks. To 
better understand what building a community might look like, the project team used the Social 
Identity Wheel to build community within the team and get to know one another. 

Keywords: Equity, Inclusion, and Diversity; Social Justice; Professional Development; Research 
Methods 

Research suggests that understanding teacher identities in mathematics professional 
development (PD) can make PD more impactful. Teacher identities impact how they participate 
in PD, as well as what knowledge they both take up from the PD and how they implement PD 
ideas in their classrooms (Battey & Franke, 2008). Wager and Foote (2013) urge that 
mathematics and equity PD facilitators take teachers’ lived experiences into account and view 
teachers as a resource. Moreover, implementing mathematical tasks that connect to social and 
political issues requires significant teacher reflection on their students’ identities, their own 
identities, how these identities interact with the task context, and how these identities might 
interact with each other (Koestler et al., in press). Given this extant scholarship, it is important 
that professional development communities spend time reflecting on identities.  

As part of a larger grant project, our team collaborates with a group of expert teachers in an 
ongoing PD setting to build mathematical tasks that connect to social and political issues. This 
work necessarily requires reflecting on identities and discussing social and political issues. To 
create a safe space for these potentially difficult conversations and to be able to better collaborate 
with each other and with the collaborating teachers, the project team considered ways that we 
could build community among ourselves. Particularly, our team wanted to create opportunities 
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for each of us to share about our identities in an effort to get to know each other better. Thus, we 
decided to use the Social Identity Wheel as one way to do so. 

The Social Identity Wheel (SIW, Social Identity Wheel, 2021), which was developed at the 
University of Michigan, is one tool that can be used to support sharing about identities. Jacobsen 
and Mustafa (2019) suggested a similar tool, a Social Identity Map, intended to support 
researchers in beginning to “think deeply about how their assumptions translate into discussions 
with participants, influence their understanding of participants’ experiences and lives, and how 
this impacts the way they code, analyze, and interpret findings,” (p. 11). The project team wanted 
to collectively get to know each other better as a community and explore the model of using the 
SIW with people who do not yet know each other well. We chose the SIW as a vehicle to present 
ourselves to each other to work towards forming a community. 

Theoretical Background 
The study of identity in mathematics education has taken many paths: student identity (e.g., 

Aguirre et al., 2013), mathematics teacher identity (e.g., Battey & Franke, 2008; Wager & Foote, 
2013), and researchers’ identities (e.g., Glesne, 2011). Bartell and Johnson (2013) argue that 
researchers should openly talk about identity and their own privileged research positions to avoid 
paternalism and consider the role of their privilege in their research. Similarly, Foote and Bartell 
(2011) propose that “life histories provide a particular opportunity to explore researcher 
positionality that might be used more widely as a support to understanding the relationship 
among the researcher, the researched, and the research problem,” (p. 65). Given that it is 
important for researchers to share and reflect upon their own identities and how their identities 
shape and impact their research, then it is arguably just as important for teams of researchers to 
share and discuss their identities in the context of the research team. 

Identity is dynamic, mutable, and socially constructed (Park, 2015; Vygotsky, 1979). 
Naturally, theories about identity are manifold and complex. Sfard & Prusak (2005) argue that 
identity does not exist as a tangible object; rather, it is discursive in nature. This means that 
identities are collectively created and exist in the narratives that are told about individuals and 
that individuals tell about themselves. These narratives become part of an individual’s identity 
when they are “reifying, endorsable and significant” (Sfard & Prusak, 2005, p. 16). Tangible 
tools like Social Identity Maps or Social Identity Wheels become a means of eliciting and 
supporting a person’s narration of their identities (Jacobson & Mustafa, 2019). Further, Social 
Identity Wheels could allow individuals on a research team to narrate their various identities and 
identify the resources that they draw upon when constructing their narrative. In turn, this storying 
can become a part of the ongoing discursive construction of identity, particularly within the 
context of the research team. We treated these narrative identities supported by the SIW tool as a 
vehicle by which we might get to know one another.  In this paper, we examine the research 
question: How, if at all, does the SIW tool support the project team in getting to know one 
another? 

Methods 
Social Identity Wheel Presentations   

The SIW (Social Identity Wheel, 2021) is an oval wheel, with 11 social identity categories 
listed around the outside: age, religious or spiritual affiliation, race, ethnicity, socio-economic 
status, gender, sex, sexual orientation, national origin, first language, 
physical/emtional/developmental (dis)ability. There are five prompts in the center of the oval to 
help users reflect on their identity, including “identities you think about most often” and 
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“identities that have the greatest effect on how others perceive you.” Each team member created 
a representation of their own responses to each of the categories on the SIW, placed these in a 
shared online folder, and narrated their SIW to the group at later team meetings. Questions, 
comments, and connections from other group members were encouraged after the narrator was 
done. Time for sharing and asking questions was intentionally not limited and included up to two 
SIW per meeting. In this paper we treat the initial presentation and the discussion that followed 
as one unit, and we call this unit the presentation. The mean and median average presentation 
times were 30 minutes with a range of 17 minutes to 45 minutes. Team members consisted of 4 
project PIs, 5 graduate students, and 1 project manager who is also a graduate student. The PIs 
are Andrew, Bailey, Sandy, and Anna; the graduate students are Augusto, Jeff, Judy, Ellison, and 
Silvia; and the project manager is Sharon (all names are pseudonyms). Data collected for this 
study included recordings and transcripts of the presentations of each team member’s SIW. 
Transcripts were broken into paragraphs by the constructs that they addressed (i.e., race, gender, 
etc.). Research team members then coded each presentation with the category of the SIW tool 
that was the focus of the paragraph. Multiple categories were coded if they were part of the same 
paragraph. Coding was done in MaxQDA. Visuals of each presentation were created based on 
the coding through MaxQDA. 
Survey 

After all SIW were presented, we surveyed all team members via Qualtrics to learn how 
presenting and listening to others presenting their SIW impacted the community formation. 
Questions included open and closed formats. Sample questions from the survey include: 

 How, if at all, has this activity impacted your interactions with the group overall and/or 
specific group members?  

 Were there things that you shared that you wouldn't have shared outside the group? If so, 
what were they, and why did you choose to share in this context? 

 What, if any, were the benefits of having done this activity with our group? 

Survey responses were coded using thematic analysis (Braun & Clarke, 2006) by a research 
team member to identify themes that appeared across multiple responses to each question and 
across multiple questions. For example, in response to Question B, participants wrote things like, 
“I am trying to become more open about who I am,” “I felt like I needed to share [about my 
anxiety] to be honest,” or “I felt like if I was going to convey an accurate representation of my 
identity… that [my mental health] was a very important piece that could not be left out.” Initial 
codes for these responses related to representing oneself honestly and authentically. Participants 
also wrote things like, “[The other group members] shared some vulnerable details, so it felt like 
it would be unfair NOT to also be vulnerable” in response to Question B, or “As a faculty 
member on the grant I did feel some responsibility to be a bit more open and illustrative of the 
kinds of things that could be shared and included,” in response to Question C. Initial codes for 
these responses related to desire for reciprocity in authentic sharing. Participants also referenced 
authenticity directly; one participant wrote, “After I shared, I felt like I was more able to 
authentically show up to the group in future meetings” in response to Question D. Together, 
responses like these and their initial codes constituted the theme of “authenticity and 
reciprocity,” which emerged across multiple responses to the same question and across responses 
to different questions. This example is illustrative of the way in which themes were developed. 
The final themes are shared in the results section.  
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Results 
Social Identity Wheel Presentations  

Though all team members used the SIW to begin their reflection and sharing, the topics 
discussed during presentations varied. Figure 1 shows the visualizations of the topics discussed 
for each team member; this provides an overview of some of the major topics that team members 
talked about. Duration varied across SIW presentations, but their visualizations were resized so 
that all visualizations are approximately the same size despite any time differences.  

Andrew Sandy Augusto Jeff Judy 

     
Anna Bailey Sharon Ellison Silvia 

     
Color Code Key:        Socio-Economic                                      Sex/Sexual Orientation 
                                   Race                                                         Religion  
                                   Ethnicity                                                  Hometown  
                                   Citizenship and Language                       Family  
                                   Gender                                                     Disability/Mental Health 

Figure 1: Visualization of topics discussed during team members’ presentation of the SIW. 
Note The color code key includes only those codes that come directly from the SIW 

categories, or that came up across multiple presentations.  

Of note is that for half of the research team the themes of disability/mental health (Sandy, 
Jeff, Judy, Anna, Sharon), ethnicity (Sandy, Augusto, Jeff, Anna, Bailey), and/or socio-economic 
status (Andrew, Augusto, Jeff, Ellison, Sharon) showed up in the presentations during the 
discussion portion. Sex and/or gender (Andrew, Sandy, Anna, Jeff, Bailey) was also discussed by 
5 team members during the discussion portion of the presentation. Religion was discussed by 4 
team members (Sandy, Jeff, Judy, Sharon) during the discussion portion of the presentation. 
These topics typically do not get discussed in large research group settings but are learned about 
in more intimate conversations. For most of the participants the presentation and discussion 
focused mainly on 2 to 4 constructs.  
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Survey Responses 
The theme that appeared most in the survey responses was “Community Building,” with 66 

occurrences across the 10 participants and 8 open questions. Four of the codes within this theme 
appeared at least 8 times and across at least 7 team members, with “increased interpersonal 
knowledge” (IIK) mentioned by all 10 participants, “bonding, community/relationship building” 
(BCRB) and “authenticity and reciprocity” (AR) mentioned by 8 of the 10 participants, and 
“teamwork” (TW) mentioned by 7 of the 10 participants. See Table 1 for the code counts.  

Table 1: Code Counts for Community Building Theme 
Team Member Code Occurrences Total 

IIK BCRP AR TW 

Andrew (PI) 1 2 1 1 5 

Sandy (PI) 1 1 2 1 5 

Augusto 2 0 0 0 2 

Jeff 2 0 0 1 3 

Judy 1 2 3 1 8 

Anna (PI) 1 1 1 0 3 

Bailey (PI) 3 3 1 2 9 

Sharon 2 3 2 1 8 

Ellison 1 3 2 2 8 

Silvia 1 2 1 0 4 

Number of Team Members 
with at Least One Occurrence     10 8 8 7 

  

Total Occurrences 
Across All Team Members     15 17 13 9 

  

Note Codes are: increased interpersonal knowledge (IIK), bonding, 
community/relationship building (BCRB), authenticity and reciprocity (AR), and 

teamwork (TW). 
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Increased Interpersonal Knowledge (IIK) Knowing more about someone does not 
necessarily mean that a bond or relationship is formed between individuals, so the code IIK is 
distinct from the BCRB code. However, some occurrences of IIK overlap with BCRB. For 
instance, Andrew said “I've enjoyed learning about others and I feel that it increases our intimacy 
and connection.” The portion “I've enjoyed learning about others” on its own does not imply 
building an emotional bond but does emphasize learning about others, and so the response was 
coded with IIK.  Because Andrew continued with “I feel that it increases our intimacy and 
connection,” which indicates building relationship bonds, this response was then also coded with 
BCRB. Knowing about others and bonding with others may overlap, but they do not inherently 
overlap. Augusto and Jeff were the two group members who did not have any responses directly 
mentioning bonding with other group members, though they each had two instances of 
mentioning that they learned about others. Augusto shared that “I think for our group with such 
diversity, it was important to dive much deeper into our lives and backgrounds, and not just our 
names and professional credentials or programs and faces.” Sharon felt that the activity 
supported “a deeper contextual understanding of a person's lived experiences.” This knowledge 
of other team members was one benefit of using the SIW that Bailey identified: “I think one 
benefit is understanding people’s backgrounds and identities, and knowing how they position 
themselves so that I don't have to assume.”  

Bonding, Community/Relationship Building (BCRB) Responses received the code BCRB 
when they referred to forming or building relationships, either with other team members or with 
the group as a whole. Several team members observed that the remote meetings made it hard to 
bond, and that the activity helped address this problem. Anna expresses it here: “I think it was a 
great bonding activity learning more about everyone. I feel like it sped up the process of having 
chats especially since we are on Zoom and I am not sure when and how we would get a chance 
to get to know one another better.” Silvia joined the group for the first time to share her identity 
wheel, and felt “practically instantly at home with the group; I felt that all the ice had been 
broken after sharing, and that I was part of the group and less of an outsider.” The activity 
allowed Silvia to quickly feel bonded to the group. It also created an opportunity for 
conversations that might not have happened otherwise. Sharon noted that she has “had a few one 
on one conversations with individuals that most likely would not have occurred had the identity 
wheel activity not taken place.” Sandy echoed the connections others found, sharing that she 
“found resonance with people that I wasn’t expecting to find, which was nice.” This resonance 
and connection helped build community within the group. Judy shared that as a result of the 
activity, she felt “more empathy for the group members after hearing their own backgrounds and 
vulnerabilities and struggles.” Ellison said that one of the benefits of the activity is the team’s 
“ability to connect with and support others in the group making the group more cohesive.” The 
BCRB code was present in all but two of the group members’ responses, as seen in Table 1. 
However, those two team members’ responses both showed instances of the code IIK. 

 Authenticity and Reciprocity (AR) A total of 13 responses were coded with AR, including 
the excerpts previously shared to describe how the theme was developed. Each response met at 
least one of these criteria: explicitly mentioned authenticity, indicated wanting to be open and 
authentic about themselves to the group, indicated sharing details to model authenticity or 
vulnerability to others, or sharing details because authentic sharing was modeled by others. 
Sandy explicitly mentioned authenticity in two of her responses, including this excerpt: “I also 
think it gave me some ideas of how people see/position themselves so I can integrate that into 
how I see them can work to have more authentic interactions with them.” Sharon also explicitly 
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mentioned authenticity, saying “I feel as though the senior leadership impart equitable practices, 
which were demonstrated by every person’s authentic participation.” Sharon shared that, though 
it was challenging, she gave herself “permission to speak and fully participate without regret.”  
Judy echoed this desire to represent herself authentically to the group with this response: “I 
wanted to share enough to feel like I was being honest and not hiding anything important.” For 
Bailey, their connection to other group members impacted their understanding of authentic 
sharing. Bailey wondered “what some people would think when I got to certain descriptions, 
especially those who know me well. Like, would [they] wonder why I was holding back?” 
Several people were encouraged by other SIW presentations to share more details about 
themselves, as seen in Ellison’s response: “I did return to my wheel after seeing others’ work and 
felt more comfortable adding to it at that point.” In response to a different question, Ellison also 
noted that “Because everyone was participating there is some comfort in the reciprocity.” The 
AR responses signal that team members were influenced by a desire to be honest and authentic, 
either for themselves or as a responsibility to foster reciprocal sharing with the group. 

Teamwork (TW) Seven team members specifically referenced how the activity might 
impact the research work the team will do for the grant, as seen in the 9 instances of TW. Three 
of the PIs talked about the grant work generally. Andrew referenced specific goals of the grant, 
noting that the team’s experience with the SIW “will be helpful in thinking through our project 
work as we consider how to create lessons and ask teachers and ourselves to reflect on our 
identities relative to the topics in the lessons.” Sandy referenced the grant work more generally, 
sharing that we “now have a fuller understanding of each other and how who we are might shape 
how we approach the work of the grant.” Bailey referenced teamwork in response to two 
questions. One was more general: “I thought it was a good activity to do as a project team.” In 
another response, Bailey shared, “I only added in the pronouns in at the end because I thought 
that it was important to share since we would be working together for the next 3 years.” Three of 
the graduate students referenced teamwork interactions in their TW responses. Jeff shared that 
the SIW activity helped him “have a better sense of what should I be careful or attend to when I 
interact with other group members in general.” Ellison explicitly mentioned her graduate student 
role in the group related to teamwork: “I also feel more comfortable sharing my ideas, needs, and 
concerns since I feel like I have an identity beyond ‘graduate student’ in the group.” On a similar 
note, Judy shared “I feel emotionally safer in the group, so I feel like I can participate more and 
make mistakes and accept critiques easier.” Her response goes on to mention how the SIW 
activity might support navigating difficult conversations: “Before the activity, I felt like there 
were some ‘hot’ moments where maybe people misunderstood someone or felt challenged. It 
seems like we will be able to deal with those more directly as a group now.” Responses coded 
with TW talked about teamwork in reference to specific grant goals, working together as a team, 
and group interactions.  

Conclusion 
The activity with the SIWs supported the project team in getting to know one another and 

fostered bonding and building community. Every team member’s response was coded with at 
least two of the Community Building codes. Though not explicitly elicited with the survey 
questions, there were 9 instances in responses that referenced working together as a project team, 
as seen in the instances of teamwork.  Every team member’s response showed at least two 
instances of either bonding, community/relationship building or increased interpersonal 
knowledge, which suggests the activity did support the team in getting to know each other at a 
deeper level.   
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The identity wheel allowed for the feel of more intimate discussions in the larger research 
group (over Zoom), as evidenced by discussions of disability/mental health, ethnicity, gender, 
and religion during the discussion portion of many presentations. Some team members described 
the activity as speeding up the getting to know you process. Anna shared “I feel like it sped up 
the process of having chats especially since we are on Zoom and I am not sure when and how we 
would get a chance to get to know one another better.” This suggests that the SIW tool might 
accelerate community building in groups, particularly those that meet remotely and have fewer 
opportunities for casual, spontaneous conversations. It is also important to note that no one 
activity is sufficient for building community. Activities like this one can begin to facilitate 
community building, but community building requires sustained effort.  

While this was implemented remotely, this tool was originally designed for in-person use. 
Research teams wanting to get to know one another and build community could possibly see 
similar results, but we do not claim that our experience is generalizable to other groups and 
settings. Rather, our goal is to contribute to ongoing work regarding researcher identity and 
positionality and how it can be explicitly shared. It is important to note that there may have been 
some status issues at play in our group. In fact, 4 of the responses mentioned power issues as a 
potential drawback or pressure that participants might experience, regardless of whether or not 
the respondent felt that pressure themselves. For example, all the graduate students have one of 
the PIs as their advisor. These power dynamics could have influenced the types of SIW sharing 
individuals engaged in, as well as the questions or comments they felt comfortable sharing. 
Group norms and feelings of safety will not be the same in every group. While our team 
emphasized several times that members need only share what they are comfortable sharing, some 
may have still felt pressure to share. Sharing identity stories requires vulnerability on the part of 
the sharer. Hence, careful emphasis needs to be put on establishing group norms. While many of 
our team describe that this experience might influence teamwork over the course of the project, 
we wonder what future studies might learn about how building community in research teams 
does or does not impact the work they do together.  
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One area in the growing call to create more equitable and just mathematics classrooms is 
supporting and strengthening students’ mathematical identities. Limited scholarship in this area 
considers an intersectional lens when exploring undergraduate mathematical identity (Leyva, 
2021; McGee 2016). Informed by Data Feminism, this research uses a transformative, mixed 
methods approach to consider how women of color in introductory undergraduate mathematics 
group based on attributes of mathematical identity. We first analyzed quantitative data using 
cluster analysis followed by the discussion of qualitative data through free response survey 
questions and future follow-up interviews to better conceptualize the experiences of each cluster. 
Key ideas emerging from this work include the role of peers and friendship, instructor care, 
class structure, and mathematical affect in women of color’s mathematical identities.  

Keywords: Equity, Inclusion, and Diversity, Gender, Undergraduate Education, Calculus 

A growing call from research and professional organizations within mathematics education 
aims to create more equitable and just mathematics classrooms for students with various 
identities (Mathematical Association of Mathematics Instructional Practices Guide, 2018; 
National Council of Teachers of Mathematics, 2014). This includes supporting and strengthening 
students’ mathematical identities. Mathematical identity encapsulates students’ relationship with 
mathematics and their perceptions of themselves as a doer of mathematics, including their beliefs 
about ability and participation, sense of belonging, and institutional and interpersonal supports 
(Voigt, 2020). Limited scholarship in this area considers an intersectional lens when exploring 
undergraduate mathematical identity (Leyva, 2016, 2021; McGee 2016). However, these studies 
suggest that gendered and racialized mathematical discourses uniquely influence expressions of 
mathematical identity for women of color. Mathematical discourses continue to communicate 
who belongs in the space by promoting values associated with dominant masculinities and 
whiteness, therefore often excluding women and students of color (Leyva, 2017; Adiredja & 
Andrews-Larson, 2017; Martin, 2006). Thus, this research engages critical frameworks at the 
intersections of gender and race to challenge those exclusionary norms and encourage 
counternarratives to white, masculine mathematical discourses. Using a transformative, 
sequential mixed methods design, we ask:  How do women of color in introductory 
undergraduate mathematics group based on attributes of mathematical identity? With respect to 
which attributes do the groups differ? With respect to which attributes are the groups similar?  

Theoretical Perspective 
We utilize a Data Feminist lens to frame and support the design of this work. Coined by 

D’Ignazio and Klein (2020), Data Feminism encourages “a way of thinking about data, both their 
uses and their limits, that is informed by direct experience, by a commitment to action, and by 
intersectional feminist thought” (What Is Data Feminism?, para. 9). The authors argue how data 
have maintained inequitable power structures through promoting discrimination, policing, and 
surveillance. However, data similarly present an opportunity to challenge these dominant 
narratives and acknowledge the culture and community inseparable from the data collection and 
analysis. One area that exists at the intersection of these realms is higher education, and 
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especially mathematics education due to the continued marginalization of women and students of 
color by maintaining white, patriarchal norms (Leyva, 2017). We chose to center women of color 
in this analysis to provide counternarratives to the white, patriarchal mathematical context 
without comparisons to the dominant group. Instead, we highlight the often submerged and 
undervalued variety of experiences of women of color related to mathematical identity. 

Methods 
We use a transformative, sequential mixed methods design in this work (Creswell et al., 

2003; Mertens, 2012). We first analyzed quantitative data using cluster analysis (n=3296) 
followed by the discussion of qualitative data through free response survey questions and future 
follow-up interviews to better conceptualize the experiences of each cluster.  
Quantitative Data Methods 

The data for this study originate from the S-PIPS-M survey instrument administered by the 
Progress through Calculus (PtC) project. This survey collected information about undergraduate 
students’ experiences in precalculus and calculus, including mathematical activities, interactions, 
and affect (Street et al., 2021). We considered the subset of the S-PIPS-M dataset that includes 
only women of color. We first classified women as any participant who selected at least woman 
from the following select-all response options related to gender: Man, Transgender, Woman, Not 
listed (please specify). We classified a person of color to include any participant who selected at 
least one of the following select-all response options related to race and/or ethnicity: Alaskan 
Native or Native American, Black or African American, Central Asian, Hispanic or Latinx, 
Middle Eastern or North African, Native Hawaiian or Pacific Islander, Southeast Asian, South 
Asian. Thus, women of color represent the intersection of these two participant classifications. 

To narrow in on mathematical identity, we selected 22 survey questions that aligned with one 
or more of the components of mathematical identity, including students’ perceptions of ability, 
participation in class, feelings of inclusion, and resources such as tutoring (Voigt, 2020). 
Previous research using this dataset (Voigt, 2020; Apkarian, 2019) suggests correlation between 
certain survey questions. Thus, we performed a factor analysis under a promax rotation with four 
factors as informed by the scree plot. We removed any loadings less than 0.2 and allowed factor 
items to load onto more than one factor. This resulted in four factors we label Class Experience, 
Inclusion/Positionality by Instructor, Mathematical Peer Interaction, and Self-Efficacy. These 
labels emerged from themes across the factor items and connections to the components of 
mathematical identity. We appended four new scores to each participant based on this factor 
analysis and then performed a cluster analysis over 4-dimensions, one for each factor. The graph 
of the total within-group sum of squares by cluster number implied an optimal four clusters. 
Qualitative Data Methods 

Informed by Data Feminism, we used participants’ responses to four free-response survey 
questions about their classroom and mathematical experiences to help contextualize the clusters. 
This process involved filtering the responses by cluster and reading through each response 
looking for concepts related to attributes of mathematical identity such as peers, instructor, 
pedagogy, tutoring, and emotions. This was not intended as a full thematic analysis, rather as a 
means of helping illuminate common mathematical experiences within each cluster. The next 
phase of this work will deepen these results by collecting qualitative data from a sample of 
survey participants. We will conduct interviews with participants from each cluster and ask them 
to write a brief math autobiography. The interview protocol will capture questions around their 
relationship with undergraduate mathematics and their perceptions of themselves as doers of 
math, including questions related to the four key ideas presented in the discussion section. 
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Results 
The results of the cluster analysis suggest four distinct groups related to women of color’s 

mathematical identity. The table below outlines the mean scores for each factor of mathematical 
identity derived from the cluster analysis. Class experience, mathematics peer interaction, and 
inclusion have been normalized on a scale of 0 to 1 and self-efficacy on a scale of -0.5 to 0.5. 

 
Table 1: Cluster Analysis Results 

 Cluster Overall 
Mean   Cluster 1 

(n=857) 
Cluster 2 
(n=842) 

Cluster 3 
(n=549) 

Cluster 4 
(n=1045) 

Mathematical 
Identity 
Factor 

Self-Efficacy 0.04 -0.02 -0.14 0.04 -.004 
Mathematics Peer 
Interaction 0.76 0.15 0.52 0.43 0.46 

Inclusion 0.51 0.47 0.39 0.52 0.48 
Class Experience 0.78 0.35 0.34 0.61 0.54 

 
The overall mean for Class Experience was 0.54. This factor measures students’ perceptions 

of the frequency of class activities literature often relates with active, student-centered teaching. 
Clusters 1 and 4 have class experience scores above average, suggesting these students perceive 
their class to more frequently include active learning components. Clusters 2 and 3 have scores 
below average, suggesting these students perceive less frequency of these activities and more 
lecture. The overall mean for Inclusion was 0.48. A score of 0.5 in this factor implies students 
feel equally included by their instructor in class as their peers. Clusters 1, 2, and 4 have inclusion 
scores at about the mean, suggesting the women of color in these clusters feel equally included 
by their instructor in class as their peers. Cluster 3’s below average inclusion score suggests the 
women of color in this cluster feel less included by their instructor in class as their peers. The 
overall mean for Mathematics Peer Interaction was 0.46. This factor measures the frequency of 
students’ mathematical interactions with their peers both inside and outside the classroom. 
Cluster 1 had an above average mathematics peer interaction score, implying more frequent peer 
interactions. Clusters 3 and 4 present about average scores in this factor, suggesting a moderate 
amount of peer interaction. Cluster 2 has a far below average score in this factor, suggesting 
infrequent peer interaction. The overall mean for Self-Efficacy was -0.004 representing a 
practically null change in students’ perceptions of their mathematical ability, interest, and 
confidence during the course. Clusters 1, 2, and 4 present self-efficacy scores essentially at the 
mean, suggesting little to no change in self-efficacy during the course. Cluster 3 has a below 
average score in this factor, suggesting a negative change in self-efficacy during the course.  

Discussion and Key Ideas 
To contextualize the quantitative results, this discussion presents key ideas that emerged 

when looking at students’ free-response questions grouped by cluster appointment. The next 
phase of this research will use interviews and written reflections to investigate these key ideas 
and their potential role in supporting women of color’s mathematical identity. 
Key Idea 1: Peers and friendship 

 Students in Clusters 1, 3, and 4 frequently labeled peers and friends as notably helpful 
aspects of their course. In line with their class experience scores, Clusters 1 and 4 perceived 
more opportunities to engage in mathematics with their peers through group work and class 
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discussions. Cluster 3 presented peer interaction almost solely with outside of class experiences 
such as study groups and tutoring. Notably more so than other clusters, these students used the 
term “friends” in their free responses. Coupled with the low class experience and inclusion 
scores in Cluster 3, these friendships may have acted as what Leath et al. (2022) describe as 
“communicative resistance” (p. 9) toward exclusion and frustration in class. Interviews will 
further explore the potential distinction between peer interactions and peer friendships related to 
these women of color’s mathematical identity. 
Key Idea 2: Instructor care 

While the majority of the inclusion scores suggest equal feelings of inclusion from their 
instructor compared to their peers, how each cluster described this inclusion differed. Students in 
Cluster 1 described their instructor as patient, understanding, and encouraging. They also used 
more personally directed statements using “my” or “I”, such as their “teacher’s interest in my 
learning process.” Other clusters usually addressed positive qualities about their instructor 
through teaching style and approachability or appeared fairly neutral toward their instructor. 
Students in Cluster 3, with their uniquely below average inclusion score, mainly pointed out 
negative qualities in teaching style or unapproachability in communication and office hours. 
Interviews will explore not only how general feelings of inclusion in classroom activities and 
opportunities to participate relate to women of color’s mathematical identity, but also the role of 
students’ observations of their instructor’s care for them (Rainey et al, 2019; Bartell, 2011). 
Key Idea 3: Class structure and implementation 

Although the classroom experience score suggests different pedagogy types, additional data 
are necessary to describe these classrooms and how these activities and their implementation 
relate to women of color’s mathematical identity. Generally for Clusters 1 and 4, students 
described consistent group work as a helpful class component, where the instructor provided 
explanation of a topic and then presented students with a task to complete in groups. Students in 
Cluster 2 described a mostly lecture-based course with some group work components, although 
some students mentioned discomfort working with peers in-class given the infrequent 
implementation of this activity (Yoon, 2011). Students in Cluster 3 appeared frustrated with in-
class lectures and would have preferred more opportunities to work with others in class. 
Interviews will prompt participants for further details about their undergraduate mathematics 
courses and the classroom structures they found supportive of their mathematical identity. 
Key Idea 4: What affects affect? 

Surprisingly, only Cluster 3 showed a non-zero average change in affective components. 
While Clusters 1, 2, and 4 differed across various other factors, participants in these clusters on 
average maintained their same level of mathematical confidence, interest, and perception of 
ability. However, Cluster 3 resulted in negative average change in each of these components. 
Many students in Cluster 3 express how the negative experiences in their course contributed to 
confusion and frustration, which negatively affected how they viewed mathematics and their 
ability and confidence in the subject. Various studies show that supporting positive experiences 
in mathematics can improve students’ perceptions of their mathematical ability (Hannula, 2006; 
Weber, 2008), but we appear to see the opposite effect here. While we see in this analysis either 
a negative or null change in self-efficacy, follow-up interviews will explore which components 
of undergraduate mathematics classrooms can promote feelings of confidence, interest, and 
competency for women of color. 
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As identity becomes more discussed within education, it becomes crucial to understand identity 
in relation to power and social justice. In this paper, we discuss the identity frameworks of 
figured worlds and rightful presence to operationalize the critical consideration of identity 
within mathematics learning environments. We argue that by themselves, figured worlds and 
rightful presence have shortcomings that make it difficult to attend to power, and contextualize 
change, respectively. When considered in tandem, however, these two frameworks complement 
one another and build a stronger attention to identity that mobilizes student agency in the 
classroom. We call on educators and researchers to combine and utilize these frameworks to 
address the dissonance of identity that often occurs for marginalized students, thus building 
towards a greater harmony of identity and mathematics.  

Keywords: Identity, Social Justice 

Identity-- the notions and processes by which we recognize ourselves, and others recognize 
us, as a certain “kind of person” (Gee, 2000)--has become an increasingly discussed topic within 
education over the past several years. Within education, the development of identity has been 
articulated as the central purpose of education, where its outcome is, in fact, learning (Bracher, 
2006; O’Donnell & Tobbell, 2007). Unfortunately, particularly in mathematics, many students 
are asked to give up parts of their identity in order to assimilate into the field. Thus, in order to 
ensure that students, especially those who are marginalized, are not leaving parts of themselves 
behind in order to study mathematics, it becomes critical to consider identity within mathematics 
education (Gutierrez, 2012). 

As educators, we have the authority to position, or influence the ways that students are 
perceived, into a variety of identities, both academic and nonacademic (e.g., smart, lazy, 
collaborative, independent, etc.). The way that students are positioned to participate in 
mathematics learning environments affects how they learn math as well as how they perceive 
themselves as learners of mathematics (Turner et al., 2013). With this authority and 
understanding comes great responsibility. Students ought to be viewed as holistic beings with 
lives that extend beyond where they learn mathematics; thus, understanding identity is vital if we 
are to more fully understand and position our students in productive ways that help them succeed 
both in and outside these learning environments (Wilkes & Ball, 2020). Having a positive 
mathematical disposition impacts an individual’s identity far outside of the walls of education. 
Positive dispositions towards mathematics–where one’s identity is in harmony with the field as 
opposed to clashing with it– can lead to persistence, agency, and confidence, all of which are 
useful qualities for navigating everyday life (Bishop, 2012; Brown, 2004). 

 A focus on identity within mathematics education equips researchers with the analytic 
lens needed to comprehensively examine ethnicity, gender, culture, and power in mathematics 
(Brown, 2004; Martin et al., 2010). Identity research also helps us to understand the oppressive 
narratives, such as positioning students of color as “not being good at mathematics,” that exists 
within mathematics classrooms (Reinholz, 2021). The dissonance that can arise from these 
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dynamics can be leveraged to create harmony within mathematics by reauthoring narratives that 
allow us to more productively position students and help them succeed within mathematics (Gay, 
2018; Gholson & Wilkes, 2017). In this paper, we will discuss two identity frameworks: figured 
worlds (Holland et al., 1998; Urrieta, 2007) and rightful presence (Calabrese Barton & Tan, 
2019; Squire & Darling, 2013). We will discuss some of the main dimensions of these 
frameworks, and then synthesize the frameworks in tandem to highlight how these ideas, when 
applied together, can help educators and researchers bring identity as a tool into mathematics 
learning environments to build towards harmony between identity and mathematics, furthering 
the possibilities of learning for all students. 

Background 
While the field of mathematics has long been perceived as an objective field and thus a neutral 
space in which all students have equal access to succeed (Gutierrez, 2013), a large body of 
research exists that evidences the reality of mathematics functioning as a field which further 
marginalizes students (Dubbs, 2016; Gutierrez, 2017, 2019; Leyva et al., 2021; Reinholz, 2021; 
Solomon & Craft, 2015; Solomon et al., 2021). This body of research highlights dissonance (e.g., 
stereotype threat, mathematics anxiety, microaggressions, etc.) that exists for many students as 
they encounter mathematics through an identity-blind paradigm (Jett, 2019; Spencer et al., 2016). 

Research shows that attending to the various aspects of students’ identities can improve 
their learning opportunities and experiences (Gay, 2018; Bishop, 2012). In other words, 
attending to identity can serve as a way to create harmony and to mediate some of the challenges 
that otherwise exist within mathematics education. We present the identity frameworks of 
figured worlds and rightful presence to make sense of the vast concept of identity. Figured 
worlds is a commonly referenced identity framework (Hatt, 2007; Holland et al., 1998; Urrieta, 
2007), and rightful presence is a more recent framework that contributes additional 
considerations to expand our understanding of identity and the possibilities that can be achieved 
by attending to it. 
Figured Worlds 

Figured worlds are “socially and culturally constructed realms of interpretation in which 
particular characters and actors are recognized, significance is assigned to certain acts, and 
particular outcomes are valued over others” (Holland et al., 1998, p. 52). Common roles in a 
mathematics classroom might include instructors, students, and teaching assistants. Certain types 
of actions are typically associated with each of these roles, such as lecturing, working with peers, 
and answering questions, respectively. Certain values are also promoted within this context, 
predicated by the norms that are established, such as solving for correct answers or collaboration. 
These characters, actions, and values inform how individuals can construct their identities in a 
given context. Thus, figured worlds function as a production of identity in mathematics 
education and serve as a framework for understanding the context in which certain identities can 
or cannot emerge (Voigt et al., 2021; Urrieta, 2007). 

 Figured worlds as a framework often provides a lens through which to identify the 
dominant narratives surrounding identity within various contexts (Hatt, 2007; Urrieta, 2007). 
However, values, such as smartness and success, can be associated with differing actions or roles 
in various figured worlds, creating inconsistent expectations students must negotiate (Hatt, 2007; 
Zuckerman & Lo, 2021). While there can be dissonance between various figured worlds, the 
concept of third spaces helps to conceptualize how these worlds can be mediated (Calabrese-
Barton & Tan, 2019). According to Jackson and Seiler (2018), third spaces are spaces which 
blend multiple figured worlds. This enables individuals to incorporate resources from various 
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figured worlds in which they participate into a new blended space which is itself a figured world. 
Participating in these third spaces also allows new resources to be created within them. An 
example of this might be students forming a study group outside of class. This space creates the 
opportunity to form different norms (e.g., sharing personal experiences, playful interaction, etc.) 
compared to those of the class. Students can pull from the figured world of their classroom, as 
well as personal figured worlds, to mediate a learning environment that better suits their learning 
needs. The emergence of third spaces allows us the opportunity to consider, and perhaps even 
disrupt dominant narratives that are shaped by these interpretations of characters, actions, and 
values. 
Rightful Presence 
 Rightful presence is a social justice oriented identity framework, which implies that it is a 
framework that elicits action toward change. This framework was first applied to the concept of 
sanctuary cities serving refugees (Calabrese Barton & Tan, 2019; Squire & Darling, 2013). In 
these cities, refugees are often viewed as guests and the city as a host. This guest-host dynamic is 
thought to perpetuate inequity since the city functions as a host which extends rights to its 
guests-- the refugees. However, this notion of extended rights means that refugees are extended 
the opportunity to assimilate into the city and culture which they are now living in; it does not 
empower the refugees to change anything, rather it maintains the status quo, which is often rife 
with injustices. Rightful presence challenges this notion of extended rights (Calabrese Barton & 
Tan, 2019; Squire & Darling, 2013). The rightful presence framework seeks for people to 
reauthor their rights within a space, making all characters fully fledged members of their own 
accord rather than guests who must assimilate to the dominant notions that currently define the 
space. There are three tenets to the rightful presence framework: 1) allied political struggle is 
necessary to reauthor rights, 2) rightful presence is claimed when (in)justices are made visible, 
and 3) rightful presence is a shared burden between the guests and host. 

We now outline what these three tenets might look like in a mathematical learning 
environment. In a mathematics classroom, reauthoring rights could take the form of challenging 
what valid participation or meaningful learning looks like. The first tenet of rightful presence 
highlights that if allies, like teachers, are not engaged in this political struggle, it is difficult for 
reauthored rights to gain legitimacy in the classroom (Calabrese Barton & Tan, 2019). For 
instance, if a teacher helps students challenge what are considered valid ways of knowing and 
doing mathematics (i.e., encouraging partial solutions, valuing and discussing mistakes, etc.), 
they are engaging in a politically-oriented act of reauthoring rights in mathematics. The second 
tenet underscores the need to highlight the cultural historical relevance of a context in order to 
understand its current dynamics, and how these injustices must be both visible and present in 
teaching and learning in the classroom. Teachers can make injustices visible in their classrooms 
by highlighting the voices of their students, creating opportunities to find intersections between 
students’ authentic lives and the discipline of math. These greater insights can help instructors 
find ways to position students with greater agency (Calabrese Barton & Tan, 2019). Lastly, the 
third tenet states that rights are not reauthored with top down approaches from teachers to 
students, rather they must be mediated by both groups working together. While allied political 
struggle from a teacher is necessary, the teacher alone cannot reauthor their students’ rights; 
together, action must be taken by both the students seeking to reauthor their rights and the 
teachers who have the power to extend rights, thus disrupting the traditional power dynamics in a 
mathematics classroom (Calabrese Barton & Tan, 2019).  
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We now discuss our reasons for bringing the two frameworks together, and what we 
believe can be accomplished through their synthesis 

Purpose and Aim 
In this paper, we advocate for research that collates the theoretical frameworks of figured worlds 
and rightful presence. In particular, we see a need for researchers and educators to consider these 
perspectives within mathematics learning environments. The racist and sexist narratives that 
women and people of color are forced to navigate in their pursuit of mathematics can inhibit 
them from viewing themselves as mathematicians (Leyva et al., 2021; Reinholz, 2021). Thus, we 
see a need to study identity from a critical lens that both recognizes the unjust reality that exists 
and leverages the discomfort created by this recognition in order to make mathematics 
classrooms more equitable.  

Figured worlds is a commonly used framework in identity-based research (Holland et al. 
1998; Hatt, 2007; Urrieta, 2007). While this framework does discuss notions of power and 
acknowledges the potential for artifacts to be repurposed for liberation (Holland et al., 1998; 
Urrieta, 2007), we believe that the insights that figured worlds provide cannot be successfully 
operationalized to disrupt the status quo without a more critical lens. We argue that while the 
framework of figured worlds allows us to study how classrooms function within the status quo 
and how students negotiate their identities within them, rightful presence gives us the tools to 
work toward disrupting the status quo locally. We believe that considering the figured worlds of 
mathematics learning environments while seeking rightful presence allows researchers to situate 
their research within the broader sociopolitical issues that affect traditionally marginalized 
students while providing tools to work toward healing local injustices. 

Synthesis  
In this section, we discuss the shortcomings of figured worlds and rightful presence and 

affordances that the two frameworks provide one another. In particular, figured worlds as a 
framework falls short of explicitly challenging power dynamics while rightful presence can be 
challenging to contextualize. By considering these shortcomings, we see opportunities for these 
frameworks to complement and support one another. Specifically, figured worlds help to identify 
change that can occur via rightful presence, and rightful presence provides a way to navigate the 
tensions that are merely identified within figured worlds.  
Shortcomings 
  Figured worlds fall short as a framework in the way it models power and its impact 
within society. The roles and actors in any given figured world are likely to have rank and status 
associated with them, creating a hierarchy through which power and privilege play out (Holland 
et al., 1998). Power and privilege are not preexisting in figured worlds, but are constructed 
relationally and made visible through interactions (Esmonde & Langer-Osuna, 2013; Holland et 
al., 1998). While the figured worlds framework does account for power, it is often presented in 
an amoral, objective way, such as by stating who the actors are, what their roles are, and what 
significance is bestowed upon their acts. While the framework acknowledges that the constraints 
in a figured world (such as the actors, roles and actions permitted) can paradoxically be 
repurposed for change and thus disrupt power dynamics, it does not explicitly provide a way to 
analyze how such repurposing takes place (Holland et al., 1998). While figured worlds has 
helped many to conceptualize identity, these holes surrounding the concept of power make it 
challenging to use this framework to model a dynamic that challenges the status quo.  
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Because rightful presence seeks to disrupt oppressive power dynamics (Calabrese Barton 
& Tan, 2019; Squire & Darling, 2013), many may find the framework challenging to 
contextualize in their own learning environments, which could be interpreted as a shortcoming. 
Knowing how to engage in political struggles, to make invisible injustices visible, and sharing 
burdens of injustice with those who are marginalized is a different task from simply knowing the 
importance of these tenets. A framework is only as useful as it is applicable, and rightful 
presence might require some scaffolding for many in order for the action-oriented tenets to be 
approachable.  
Affordances 
 While figured worlds and rightful presence both have shortcomings of their own, we see 
these two frameworks working together and complementing one another, allowing new ways for 
educators and researchers to consider identity within mathematics. We will first discuss how 
figured worlds questions and makes explicit the context in which rightful presence needs to 
occur, and then we will discuss how rightful presence navigates tensions created via third spaces 
within figured worlds. These affordances provide opportunities to create greater harmony amid 
the dissonance that often surrounds identity in the world of mathematics because these 
synthesized ideas attend to power dynamics and their potential oppression within figured worlds 
and provide actionable steps towards rightful presence.  

Figured Worlds for Rightful Presence. While rightful presence in and of itself can seem 
like a major jump from reality for some, figured worlds provides a way to mediate some of these 
tensions by asking questions about the roles, actions, and values at play within a mathematics 
learning environment, which can help bring to light the local injustices that exist within them. 
When considering rightful presence, Yeh et al. (2021) challenges us to ask the questions “what is 
mathematics?”, “who can do mathematics?”, and “where is mathematics done?” (p.4). We now 
use these questions to help us consider the roles, actions, and values that might exist within a 
mathematical figured world, thus enacting the frameworks in tandem. 

When we address the question of what mathematics is, we consider the actions that are 
expected for individuals to be perceived as successful in math. Is mathematics the process of 
memorizing procedures? Is it a representation of the universe that allows us to abstractly problem 
solve? These questions, and their subsequent answers for various mathematical figured worlds 
then give rise to roles that are allowed to exist, answering the questions who can do mathematics 
and where. What does it mean to be a mathematics student? Does this identity exist only in the 
classroom or does it extend outside of school? Are students’ funds of knowledge from outside of 
class valued in class discussion or are they dismissed and seen as irrelevant (Esmonde & Langer-
Osuna, 2013; Langer-Osuna, 2015)?  

These questions that naturally arise when considering mathematical figured worlds help 
us to recognize how and where we can start to enact rightful presence. As we critically consider 
the ways that mathematics is expected to be done in a given context, we can start to see the ways 
that certain types of students might be positioned as smart and successful or otherwise (Hatt, 
2007; Leyva et al., 2021). As we consider these types of roles that we position students to fulfill 
within the classroom, we can see the values that are being assigned to math. These critical 
considerations allow us to bring to light some of the injustices that otherwise go unseen within 
mathematics, bringing to life the second tenet of rightful presence. Our understanding of the 
figured worlds that exist within mathematics is what allows us to understand what rights need to 
be reauthored so that students can be positioned for further success within and beyond the 
classroom. 
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Rightful Presence for Figured Worlds. Rightful presence and its orientation toward the 
illumination of political struggles can help educators be more intentional about creating 
opportunities for third spaces to arise in the classroom. Because each figured world has its own 
characters, roles, and values, the convergence of figured worlds in these third spaces can create 
tensions if characters, roles, or values do not align from one figured world to the next (Jackson & 
Seiler, 2018; Zuckerman & Lo, 2021). Rightful presence helps bring to light the tensions that can 
emerge in the process of creating these third spaces, and can also appropriate ways to navigate 
these tensions. By challenging the status quo of given figured worlds, rightful presence carves a 
pathway of political struggle, making injustices visible, and sharing the burden of reauthoring 
rights.  

 When various figured worlds are recognized within a classroom, then rightful presence 
as a social justice framework can be operationalized simultaneously as a means to productively 
leverage tensions that might arise with the emergence of third spaces, allowing for new resources 
to also emerge that students can utilize in the classroom. Rightful presence does this first by 
highlighting and giving permission for the political struggle that is a part of this process. While 
change is not a comfortable process, educators and researchers can take comfort in knowing that 
engaging in political struggles is to be expected on the journey towards liberation, where 
education fundamentally should act as a tool and process of empowerment and liberation 
(Calabrese-Barton & Tan, 2019; Gutierrez, 2013). Rightful presence helps to highlight why 
political struggle is necessary by demanding that injustices at play be brought to light. Where 
educators might recognize tensions within classrooms, rightful presence can bring these issues to 
the forefront of attention so that the group (both hosts and guests) can collaborate together to 
navigate and mediate these challenges. This process of open communication and collaboration is 
in and of itself the beginning of reauthoring rights, allowing the tensions that inevitably exist 
within learning environments to serve a purpose. When educators open up these spaces to 
include students in these ways, the burden of change can be shared by all involved, allowing for 
more resources to be utilized in navigating tensions by way of third spaces. Once these third 
spaces have been cultivated through enacting rightful presence, students have an ideal 
environment that affords the benefit and utility of their full identities, rather than just fractions of 
them, within mathematics. 

Discussion 
We see important implications that can stem from drawing upon the figured worlds and 

rightful presence frameworks together. The figured worlds framework allows educators to 
characterize how the status quo operates within their classroom. A mathematics classroom exists 
as a figured world but also serves as a third space where additional figured worlds with highly 
established hierarchies and power structures, such as race and gender, intersect. While students 
can draw upon more resources when figured worlds come together like this (Calabrese-Barton & 
Tan, 2019; Jackson & Seiler, 2018), in mathematics classrooms, the dominant narratives in the 
figured world of mathematics that regard innate ability, intelligence, race, and gender actively 
position women and people of color as not belonging in mathematics classes, and even as being 
incapable of mathematics altogether (Leyva et al., 2021; Reinholz, 2021). Thus, characterizing 
the extant roles, actions, values, and dominant narratives surrounding student identity in a 
mathematics classroom reveals to educators what currently exists in these educational spaces, 
bringing awareness to where change can occur. Rightful presence then provides a student-
centered lens oriented toward creating this change.  
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For researchers, applying these theoretical perspectives concurrently provides a powerful 
lens through which to analyze how students renegotiate their identities and reauthor their rights 
within educational contexts. This perspective could be powerful in revealing how problematic 
narratives within mathematics manifest locally within classrooms and how educators can most 
effectively leverage the insights figured worlds grant them while studying how the tenets of 
rightful presence give space for students to renegotiate their beliefs and reconfigure their figured 
worlds within the classroom (Calabrese Barton & Tan, 2020). Thus, lessons and learning 
environments can be designed with an orientation toward revealing current injustices in the 
classroom through the active analysis of figured worlds while the tenets of rightful presence can 
orient the lesson and learning environment toward remedying these injustices. This creates an 
explicit focus toward leveraging student agency to use what exists within figured worlds to 
disrupt and ultimately rewrite the roles, actions, and values within students’ figured worlds, 
creating new counter-narratives for what it means to study mathematics and to be a 
mathematician.  

While we do not claim that this critical lens of identity can be operationalized to change 
mathematics as a whole, we believe they can greatly assist educators and researchers to better 
understand how students negotiate their identity and leverage their agency within mathematics 
learning environments. This can help educators and researchers to then enact these ideas, 
designing and implementing mathematics lessons and contexts that treat students as holistic 
beings, creating space for students to mobilize their  agency, and working toward disrupting 
systemic issues within mathematics, one classroom at a time.  

Conclusion 
In this paper we have discussed the importance of identity in mathematics education and 

the affordances of synthesizing the frameworks of figured worlds and rightful presence as a 
means to create harmony among the dissonance in mathematics that surrounds mathematical 
identity. By viewing mathematics learning environments as figured worlds, researchers can 
identify how the status quo and power dynamics operate within it. Through explicitly identifying 
the roles, actions, values, and dominant narratives in the classroom, the possibility for change 
emerges. By contextualizing the dynamics of injustice, rightful presence equips us with the tools 
needed to navigate tensions within these environments. Thus, through the illumination of 
injustices, spaces like classrooms can be cultivated in a way that mobilizes student agency in 
order to disrupt and reauthor the roles, actions, and values within the pre-existing figured worlds. 
Through this reauthoring, counter-narratives can be created, blazing the trail for a new 
conception of what it means to study and do mathematics, as well as what it means to be a 
mathematician. Together, figured worlds and rightful presence can inform us of what is within 
mathematics and empower us to build towards what could be. We call on educators and 
researchers to consider and apply these frameworks, in tandem as outlined, in their future work 
so that we might work towards creating mathematics education as a space of liberation. 
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“I WATCHED AS HE PUT THINGS ON THE PAPER”: A FEMINIST VIEW OF 
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In this study we present results of a discourse analysis of the interactions between two partners, 
Uma and Sean, through a feminist lens. During roughly five hours of small group work in a 
teaching experiment, how each partner used language to position each other’s thinking as 
mathematically significant and establish a collaborative environment varied dramatically. 
Specifically, Uma shouldered the burden of continuously working to maintain collaboration, 
oftentimes at the expense of having her thinking positioned as mathematically significant. On the 
other hand, Sean regularly offered little opportunity for Uma to engage openly with his thinking, 
which ultimately constrained Uma’s opportunities to learn. 

Keywords: classroom discourse; gender; attitudes, affect, and beliefs; equity, inclusion, and 
diversity  

Numerous organizations invested in transforming mathematics education from predominately 
teacher-center towards student-centered advocate strongly for collaborative group work (e.g., 
Conference Board of the Mathematical Sciences, 2016; National Council of Teachers of 
Mathematics, 2014). Group work has been identified as an element of ambitious teaching in 
college calculus (Sonnert, Sadler, Sadler, & Bressoud, 2014) and has been associated with 
undergraduate students’ positive attitudes towards learning mathematics (Sonnert et al., 2014). 
Research focusing on how mathematical ideas emerge as collective ways of reasoning during 
whole class and small group discussions has demonstrated the importance of interacting with 
peers’ thinking for students’ own learning (Rasmussen et al., 2020), and aligned mathematical 
development with the nature of collective mathematical argumentation during class discussions 
(e.g., Rasmussen, Wawro, & Zandieh, 2015). Additionally, language does much more than 
establish normative ways of reasoning about mathematics. In fact, discourse allows participants 
to enact and construct their identities (Gee, 2014; Langer-Osuna & Esmonde, 2017). Therefore, 
discourse occurring within small groups simultaneously offers students opportunities to learn 
mathematics and establish their identities. This study presents a discourse analysis of interactions 
between two students, Uma and Sean, to investigate how their use of language influences 
opportunities for learning. 

Review of Literature 
Mathematical Identity and Classroom Discourse  

Over the last twenty years, mathematics education research has moved beyond “gap gazing,” 
(Gutierrez, 2008) at static pictures of inequity, and toward research on the role of identity in 
teaching and learning mathematics. A variety of perspectives on identity formation have arisen, 
each emphasizing how learning in classrooms goes beyond understanding new concepts. 
Students also learn who they are and what they can and cannot do “with respect to the norms, 
practices, and modes of interaction” (Bishop, 2012, p. 36). Students’ identities are “dynamically 
negotiated,” representing a synthesis of who they are and who they have learned to be through 
interactions with others (Bishop, 2012, p. 38). Researchers have found the study of how students 
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enact their identity at the microlevel, through classroom discourse, to elucidate explanations for 
the variability in mathematical identities within the same classroom.      

Building on the framework proposed by Gee (2014), alongside Sfard and Prusak (2005), 
mathematics education researchers have used classroom discourse as a window into the 
formation and enactment of students’ identities. Every instance of discourse in a mathematics 
classroom affords students the opportunity to negotiate their identities and respective social 
positions (Davies & Harre, 2001; Gee, 2014; Sfard, 2001; Wetherell, 2001). Early research on 
discourse focused on differences in students’ desires when participating in group collaborations, 
finding that girls preferred to work cooperatively in groups, whereas boys “disliked working in 
groups because they felt it slowed them down” (Boaler, 1997, p. 297).  

Langer-Osuna (2011) and Bishop (2012) shifted these conversations to focus on how 
students used language to position each other. Bishop (2012) described discourse between two 
students, Bonnie and Teri, and showed how Teri enacted the identity of the mathematical 
expert—speaking with authority and controlling activity and the uptake of ideas. Whereas 
Bonnie’s discursive actions provided a window into the identity she inhabited and, in fact, helped 
to author—"dependent, mathematically helpless, and, at times, unknowledgeable” (Bishop, 2012, 
p. 57). Meanwhile, Langer-Osuna (2011) analyzed discourse to map how two students, acting as 
leaders in the same group, “developed opposite trajectories of identity” (p. 222). Brianna, 
originally publicly positioned by her teacher as an example of strong leadership, saw these same 
qualities positioned as inappropriate by her group. Whereas, Kofi, also positioned as 
knowledgeable but who was initially unengaged in the group’s activities, found himself 
positioned as an authority figure by his group. Thus, discourse enables participants to establish 
and enact mathematical identities and also works to position members with (or without) power 
and authority.   
Power & Authority in the Mathematics Classroom  

Research on student interactions during small group problem solving has further 
demonstrated how students’ mathematical identities, power, and authority can influence 
students’ opportunities to learn (Chohen, Lotan & Catanzarite, 1990; King, 1993). Group 
collaborations fall prey to issues of status – the distribution of power among peers. Langer-
Osuna and colleagues have documented how power and authority is negotiated among groups of 
students and is directly connected with how responsibilities for shared work are distributed 
(Engle et al., 2014; Langer-Osuna, 2016). Students as young as fifth grade have been seen to 
compete for intellectual and directive authority, which are heavily influential in determining 
whose solution strategies are used, whose ideas are assumed to be mathematically correct, and 
how effort is distributed among partners (Langer-Osuna, 2016). Johnson (2002) states that fights 
over who gets to speak and whose words are recognized are indicative of power and status.   

Historically, male students have been positioned with power in mathematics classrooms 
(Webb & Kenderski, 1985; Wilkinson, Lindow & Chiang, 1985). Forgasz and Leder (1996) 
observed two boys refusing to work with their female group members when collaborating on a 
project with a “female-stereotyped context.” Instead, the boys “used sexist language and taunted 
the two girls” (p. 163), insulting them while the girls completed the project entirely on their own. 
Jill voiced her disdain for the boys’ behavior yet voiced how she and Cara didn’t have any 
recourse— “If we didn’t do it, it wouldn’t get done” (p. 165).   

These chiding remarks by group members took on a different flavor with Brianna (Bishop, 
2012), who took on an early leadership role in her group. Less than halfway through the project, 
however, “group members increasingly positioned Brianna as bossy, claiming that Brianna was 
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overstepping her authority” (p. 212). Two boys, repeatedly interrupted Brianna and scolded her 
for “being bossy,” positioning themselves as a unified front against Brianna’s bossiness. While 
the boys assaulted Brianna’s leadership with criticism, they actively positioned Kofi as the 
group’s leader, asserting his ideas deserved attention and seeking out help from Kofi. The leader-
related utterances from Kofi were taken up by the group over twice as often as Brianna’s, and his 
utterances were ignored or rejected nearly 25% less often than Brianna’s.   

These studies offer two perspectives for how students’ negotiated identities go beyond the 
social interactions in the day-to-day classroom. Rather, student’s identities also depend on the 
broader context of a student’s life experiences (Gee, 2014; Wenger, 1998) and society’s 
expectations for who they are and how they behave. Society grants students who are members of 
certain social categories with the right to hold positions of power over others. For decades we 
have seen research comment on how women—expected to be polite, accommodating, and 
reassuring—are not afforded positions of power in mathematics classrooms. Discourse has 
allowed us to see how these subservient positions manifest in classrooms, where women and 
girls do not have access to the conversational floor, are not able to decide what is correct, and are 
not seen to contribute meritorious ideas. 

Theoretical Framework: Feminist Theory 
Boaler (1997) admonished mathematics education as a discipline to “stop blaming girls for 

the underachievement and non-participation caused by the educational system forced upon them” 
(p. 304). The root of this underachievement and non-participation, however, potentially lies 
outside the educational system. The goal in mathematics education is for every student to have 
access to the resources and opportunities to be successful (NCTM, 2000). However, if discourse 
is viewed as a resource, then Jill, Cara (Forgasz & Leder, 1996), and Brianna (Bishop, 2012) 
exhibited pervasive differences in their discursive opportunities.  

The gendered macroaggressions Brianna (Bishop, 2012) faced caused her to disengage from 
her group’s mathematical activity and disassociate herself from her ambitious mathematical 
identity (Bishop, 2012). Villain (1998) argues that experiences such as those seen by Jill and 
Cara (Forgasz & Leder, 1996)—having their contributions ignored—implicitly conveys the 
message that their ideas have lesser value. Researchers have discussed these inequitable 
discursive opportunities as issues of power and authority (Langer-Osuna, 2016), but this research 
has not named these actions for what they are—oppression. A feminist standpoint, however, 
demands a commitment to understanding and challenging systems of oppression (Crasnow, 
2014; Harding, 2004; Intemann, 2010; Intemann, 2016; Wylie, 2003). Adopting a feminist 
standpoint requires “studying from the margins out,” (Intemann, 2016, p. 269) to reveal how 
power structures shape and limit the scientific phenomena under investigation.   

This research expands these political discussions to focus on how discursive patterns between 
two undergraduate students positioned one student’s thinking as significant and restricted 
another student’s opportunities to learn. 

Methods 
  The purpose of this study is to investigate the learning opportunities afforded to two 

students, Uma and Sean, while they solved problems during a small-scaled teaching experiment 
(Cobb., 2002). In particular, we pay specific attention to how the students used language and 
actions to, (1) position each other's thinking as significant, and (2) establish a collaborative 
environment. Each of these “building tasks” (Gee, 2014) are accomplished through discourse and 
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allow us to understand the learning opportunities afforded to Uma, Sean and their group as a 
collective.  
Setting and Participants  

Uma and Sean were among six students participating in a small-scaled teaching experiment 
covering concepts of logarithms. The experiment consisted of five sessions each lasting one 
hour. Uma and Sean elected to work with each other. The two did not know each other prior to 
the experiment. Uma, a traditionally aged white women, had recently changed her major to 
secondary mathematics education. Sean, a non-traditionally aged white man, had returned to 
school to major in secondary mathematics education after a military career.  
Data Collection and Analysis  

Data collected for this study include recordings from the teaching sessions and individual 
semi-structured recall interviews. Interviews took place after the teaching experiment.  

To analyze the discourse between Uma and Sean, we first watched the recordings from the 
sessions and identified meaningful interactions, which we define as an exchange of one or many 
talk-turns around a common on-task topic, idea or subject. Meaningful interactions may contain 
intervals of silence as long as subsequent talk-turns continue with the same subject and no 
changes to conversants occur. We considered instances when the teacher-researcher joined or left 
the conversation to constitute new interactions. Then, we transcribed all meaningful interactions 
and coded each conversant’s use of language with verbs (e.g., revoicing, clarifying, explaining). 
Then, we analyzed the groups of codes emerging in the meaningful interactions to characterize 
how students positioned each other’s mathematical thinking as significant, and whether their use 
of language was open or closed to collaboration. For example, a student asking, “Before, you 
were thinking..., do you think that still applies?” is using language to revoice their partner’s 
previous mathematical thinking, positioning it as significant, and is also inviting collaboration. 
We also noted whether Uma or Sean shared ideas or strategies in each interaction.  

Participants were shown three clips during the recall interviews. The first clip depicted an 
interaction where the interviewee had expressed either a high- or low-point in their engagement 
(see Williams et al., 2020). The second clip depicted the interviewee sharing a mathematical 
idea, and the third clip depicted an interaction where Uma shared a potentially meaningful 
mathematical idea that was not pursued on Sean’s authority. We judged Uma’s contribution to be 
potentially meaningful because it could have led to a solution to the problems being solved based 
on our evaluation. The first two clips were unique to each student. The third clip was the same. 
We use interview transcripts as evidence to support our claims from the discourse analysis. 

Results and Discussion 
Uma and Sean participated in 67 meaningful interactions while working together during the 

teaching experiment. Uma shared her thinking or a solution strategy in 20 interactions, while 
Sean presented his thinking or strategy in 54 interactions. From these interactions, Sean 
positioned Uma’s thinking as significant 6 times, compared to the 38 instances in which Uma 
positioned Sean’s thinking as significant. The common clip presented to both students during 
their recall interviews emerged as an interaction marking a shift in Uma’s behavior while 
working with Sean. In what follows, we describe the progression of Uma’s use of language for 
accomplishing the building tasks before, during, and after clip 3, as compared to Sean’s.  

Prior to clip 3, Uma was much more forthcoming in sharing her own mathematical ideas or 
strategies for solving problems with Sean, even though she self-described having low confidence 
stemming from how long it had been since she studied logarithms. Uma would share her 
thoughts without solicitation from Sean, and would respond to Sean with questions, even when 
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presenting an argument for her own thinking. These uses of language are exemplified in the 
following interaction, which took place half-way through the first teaching session when students 
were attempting to create a timeline that accurately positioned a set of events (note, we use 
dashes in the transcripts to indicate when a student is cutoff or stops speaking abruptly).  

Sean: So, I kinda ran out of room here, but I just went 10 to the 10th, 10 to the 9th... 
[pointing to his paper and turning to Uma] and then will fit those within there.  

Uma: Oh ok! And then we’ll fit them. Yeah [both work independently] … [Looking at 
Sean’s paper, thinking aloud] 10 to the 6th  

Sean: Yep, 10 to the 5th, and then I'm going to start my line. Over here, I'm actually 
going to extend it on- [continuing to work on his paper]  

Uma: [9 seconds, looking at Sean’s paper] and then you’re adding a little bit more?  
Sean: Mmhmm [7 seconds] Well, and that’s turning into a scale that I recognize 

[bobbing, smiling slightly, looking over his glasses at Uma].  
Uma: Yeah, so then that’s- it goes to 10 to the 4th and then that’s going to be 10 to the 

3rd, and then to the 2nd (?) [looking at Sean]  
Sean: Yep. And then I just went on out to-  
Uma: 10 to the 0, yeah to make it easier [4 seconds]. So then, “Now” falls in at the 0 

mark, right? Right? Would that be where we have “Now?”---  
Sean: That’s “Now,” yep [working on his own paper]  
Uma: [5 seconds] and then 10 to the 2nd is 100, right?  
Sean: Yeah, so you want to kinda like- [continuing to work on his paper]  
Uma: So then you have- [working on her own paper]  
Sean: So if you wanna like- [7 seconds] the difference from here is actually 900 years, 

right.  
Uma: Yeah, but then with each one the years are going to be more [gesturing 

“expanding” with her hands]  
Sean: Yep. Yep.  
Uma: Yeah, that’s what I was thinking. I was like- because 500 is going to be- this is 

1000, so your 500 is kinda going to be like half-way, right?  
Sean: Yeah [slowly and hesitant]  
Uma: it should be like here, 500, and then this will be 1000  
This interaction begins when Sean states how he is creating his timeline using “eras” based 

on powers of 10. Uma positions this approach as signification by agreeing with the approach, 
revoicing his thinking (e.g., “10 to the 0 to make it easier...”), asking clarifying questions, and 
implementing his approach on her own paper. Uma’s use of clarifying questions and posing her 
argument about where 500 should be positioned on the timeline as a question work to establish 
an open collaboration between the two students. Alternatively, Sean does not position Uma’s 
thinking about where to position 500 as significant (which he disagrees with in a later 
interaction), nor does he elect to have a conversation about her suggestion to achieve consensus. 
Instead, Sean’s responses are frequently short acknowledgements (“Mmhmm”) that are closed to 
further collaboration. In fact, during his interview, Sean explained, “I don’t think we were 
working together, we agreed on things, but I don’t think we were truly working in unison.”  

Sean’s limited attention towards Uma’s mathematical thinking and frequently closed use of 
language persisted throughout the teaching experiment. In some interactions, Sean would elicit 
Uma’s thinking vaguely—e.g., “What are you thinking?”—while in others Sean would invite 
Uma to read the next prompt, locate events on the problem sheet, or “unvite” Uma as a way to 
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work independently—e.g., “we’re going to do the math to see what it actually looks like, right?”. 
However, Sean’s use of language was not exclusively closed towards collaboration. Sean would 
initiate interactions by inviting Uma to share her thinking, or present his own thinking as an 
argument (i.e., Toulmin, 1963). Presenting an argument, over stating claims without evidence, is 
considered an open form of discourse because of the benefits to engaging with the reasoning of 
others (Rasmussen et al., 2020). In total, Sean’s use of language was open to collaboration in 27 
interactions and closed in 37, where it is possible for both to occur in the same interaction. 
Language that functions to open interactions for collaboration versus that which closed 
interactions was one primary difference in the discourse between Uma and Sean. Uma never 
used language that closed collaborations, while Sean’s language was more closed than open.  

The patterns of open and closed uses of language between the two students did not change 
much throughout the teaching experiment. However, Uma’s willingness to share her thinking or 
solution strategies changed dramatically after clip 3, which took place as the last interaction from 
session 2. Leading up to this interaction, Uma and Sean were discussing a prompt designed to 
have students compare two large values, represented as events on a timeline constructed with an 
exponential scale with base 2. Uma and Sean were discussing the prompt, “Consider events, A 
which would be positioned at 16.005 and B which would be at 18.013. Which event took place 
longer ago and by how much? Explain.”  

Uma: [reading the prompt] Which event took place longer ago and by how much? So, 
did that just mean that the one point is going to be over here and the other point is going 
to be over here? Is that what that-  

Sean: [looking back and forth between papers] Yep. Yep.  
Uma: [quietly] So, B... and this is A. It says, which one of these took place longer ago. I 

mean, it would just be B, right?  
Sean: It would be B, yep.  
Uma: And that’s just because it’s farther back on the timeline.  
Sean: [nodding, using his calculator] Yep. And then it’s asking by how much.  
Uma: So, then you’d have- you would just subtract 18- [gets quite]  
Sean: [11 seconds] So that would give us the, the- [using his calculator] I don’t know if 

there’s a simpler way of doing that... [4 seconds]. So about 199,000 years. Does that 
seem right?  

Uma: I think- Does it- so I’m just trying to remember like with exponents, can you, if it 
had the same like number, you can- can you take- so, like if we were to subtract because 
what I had done- because if you had subtracted the one and then the other one, and if you 
were to put 2 to the power of that (?)  

Sean: So by inspection that’s going to be-  
Uma: be a little bit bigger, right?  
Sean: be very, very small. Because that’s going to be almost 4. Right, because 2 

squared. But I think you’re on to something. There’s probably a relationship there. Um- 
[working on his own paper]  

Uma: [40 seconds, quietly thinking aloud, working on her own paper] 2 to the 18[.013] 
minus 2 to the...  

At the end of this interaction, Uma can be heard implementing Sean’s subtraction approach 
for determining the amount of time between events A and B from the prompt, which takes place 
after she presents an argument for using a multiplicative approach that relies on properties of 
exponents. Implementing Sean’s strategy and foregoing her own positions Sean’s thinking as 
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significant. Alternatively, Sean does not position Uma’s thinking as significant in this 
interaction. In fact, there are two instances when Uma presents an argument (i.e., for event B 
taking place longer ago, and for how to compare the events using exponents), where Sean’s 
responses are closed. Sean indicates agreement with Uma’s first argument in a one-word 
response. Then, after Uma’s second argument, Sean counterargues for why her response is 
different from his, and ends the interaction stating, “... but you’re on to something...” while 
proceeding to work on his own paper. Sean’s limited willingness to further consider Uma’s 
approach while simultaneously comparing her solution to his own suggests he is positioning his 
own thinking as more significant than Uma’s. Additionally, that Uma waited for 40 seconds, 
looking at Sean, before implementing his strategy may suggest she wished for more discussion.  

Prior to and including the interaction from clip 3, Uma shared her thinking in 12 out of 27 
meaningful interactions. Sean positioned Uma’s thinking as significant in 4 of these instances. 
Following the interaction from clip 3, Uma only shared her thinking in 7 out of 40 interactions. 
Also, Uma adapts the way she positions Sean’s thinking as significant in future interactions. 
Prior to clip 3, Uma would agree with, revoice, and implement Sean’s thinking as a way of 
positioning his thinking as significant. Following clip 3, Uma also routinely invites Sean to 
collaborate with her by posing questions that also revoice his thinking. In other words, Uma 
found that Sean was a more willing collaborator when she initiated interactions with his thinking. 
For example, Uma would ask questions such as those in this interaction from the third session.  

Uma: Well, it said that each segment is equal, right? So you’re saying that this part 
[pointing to Sean’s paper] is the same amount of space as this part, right?  

Sean: I think from here there is about the same as there.  
Uma: Yeah, okay, so now the question is, ‘when you take the overlapped time, does this 

still preserve the same amount?’  
Sean: As that 10 to 1? That is the question. I don’t think that it is.  
Uma: Mmhmm. Do you have any thoughts leaning you more towards why not?  
Sean: [15 seconds] if we graphed them longer, we would end up with something like 

that. Um, we’re saying then that is equal with that, or this is 10 times that, but I think-  
Uma: that overlap takes away from it being able to be 10 times that, right?  
Sean: Yeah, I just don’t know how to- I guess here’s what I would say. We know that if 

this were true, then shouldn’t I be able to slide it a little bit further and a little bit further, 
and then I would have them on top of each other, and they are clearly not 10 to 1 then. 
You know what I mean? If I keep overlapping more and more, then they become the 
same time period. So, I don’t--- any overlapping, I think is-  

Uma: it conflicts, I guess. Yeah, that’s a good way to-  
Sean: does that make sense?  
Uma: Yeah, that does make sense. What do you think about the overlapping? Do they 

still have a relationship similar to what you were looking at before, or how do you even 
compare their relationships with the overlapping?  

Sean: Well, I think we are subtracting exponents here.  
Uma: Mmhmm, and then you’d be comparing from there (?)  
From Uma’s interview, we know that she valued working with Sean because, “if I was 

struggling on something, we could talk it out, and I could like go somewhere with it.” However, 
when reflecting on clip 3, Uma also explained, “in that moment, I felt like I actually knew what 
was going on... and it actually start[ed] to make sense to me.” In this way, the interaction from 
clip 3 emerged as pivotal in how Uma positioned Sean’s thinking as mathematically significant 
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and maintained a collaborative working environment. Moreover, Uma appears to have made a 
conscious decision to sacrifice being viewed as smart by Sean in favor of maintaining 
collaboration, which proved productive when she positioned Sean’s thinking as significant.  

Unfortunately, Uma’s approach worked. Sean did not appear to value Uma’s mathematical 
contributions, and reflected on this in his interview, “I kind of felt like I wasn’t getting much 
from her.” Sean also did not place the same value on working collaboratively as Uma. It is 
possible that Sean’s assessment of Uma’s mathematical ability influenced his use of language to 
position her thinking as significant (or not) and to establish a collaborative environment. 
However, as demonstrated subtly in the previous example, Sean also began using strategies that 
involved properties of exponents (“Well, I think we are subtracting exponents here.”). In fact, by 
the end of the last session, Sean posed an argument almost identical to the one Uma shared in the 
clip 3 interaction. Sean also reflected on this when discussing clip 3 in his interview, “... she’s 
probably contributing more than I gave her credit for.”  

Conclusion 
The discourse patterns emerging between Uma and Sean showcase how Uma took on the 

responsibility of establishing and maintaining a collaborative environment at the expense of 
having her own mathematical thinking positioned as significant. We believe Uma made this 
choice consciously, based on her reflection during the discussion of clip 3 in her interview and in 
the clear change in her use of language in all subsequent interactions. Uma took on significant 
cognitive load by deciding whether to share her thinking or create a collaborate environment by 
constantly posing invitations to Sean. We can imagine how tiresome it must have been for Uma 
to seek collaboration in this way. In fact, Gholson & Martin (2019) suggest these tedious micro-
confirmations “might be experienced as pain” (p. 400). Moreover, seeking out these micro-
confirmations, required Uma to “fundamentally distrust her own thinking and intuition” (p. 401), 
which could have contributed to her sense of co-dependence on Sean. In fact, in the interview, 
Uma stated, “I was looking to Sean to set an example of what his thoughts were and where he 
was going...I was watching as he put things on the paper.”   

Critically, Sean positioned Uma’s thinking as significant in six of the 20 times Uma shared 
her thinking. This is not to say that Uma’s ideas were inferior to Sean’s, rather Uma’s suggestion 
during clip 3 ultimately became the group’s concluding “solution,” nearly three hours after 
Uma’s posed the argument to Sean. These constant negations of Uma’s thinking as significant 
could be considered a type of microaggression (Sue et al., 2007).  

To be clear, Sean was not outwardly harmful to Uma. In fact, their interactions may appear 
as “typical” or benign when viewed individually or through a non-critical lens. However, this is 
precisely our concern. The “typical” gendered interactions students such as Uma, Brianna 
(Bishop, 2012), Jill, and Cara (Forgasz & Leder, 1996) experience are oppressive and limit their 
opportunities to learn. Strategies for combatting such oppression consist of establishing 
classroom norms and cultures that value all mathematical thinking from each and every student 
such as rough draft thinking (Jansen, 2020) and holding all students responsible for actively 
engaging with their classmates’ thinking and how that thinking contributes to problem solving 
(e.g., Rasmussen et al., 2020). Moving forward, our future research will investigate classroom 
and small group norms that elevate all students. 
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This work presents an exploration of poetic transcription as a promising critical methodology 
for use in mathematics education research. I make the case for mathematics education as a 
specific space in which such methodology could be valuable, and provide a use case for poetic 
transcription through the poetic analysis of three students’ definitions of student success within 
mathematics. Following a reflection on some of the critiques and limitations of re-presenting 
data in this way, I conclude that poetic transcription offers mathematics education an 
imaginative and simultaneously grounded method of understanding, while still necessitating 
critical thought and methodological malleability. 

Keywords: Research Methods, Ethnomathematics 

As poetic transcription gains popularity and credibility in research spheres, it is prudent to 
investigate its efficacy in the context of mathematics education. Poetic transcription draws from 
the literary tradition of a found poem, in which excerpts from existing written media are 
juxtaposed to create poetry with distilled meaning. In poetic transcription, participants' words 
from interview or focus group transcripts are pulled in such a way as to honor and reflect the 
participant’s meaning and narrative style (Glesne, 1997). Prendergrast (2009) emphasizes that 
these poetic transcriptions are built from the participants' words but filtered and “re-presented” 
through the lens of the researcher by referring to these poems as “participant-voiced poems.” Via 
use of member-checking practices and researcher-participant co-construction of such poetry, 
poetic transcription can provide direction for research that is “genuinely inclusive and 
democratic” (Levinson, 2020, p. 195). Further, via the artistic embodiment of experiential 
knowledge, poetic transcription can present nuances of qualitative data in a way that the quoting 
and analysis of traditional prose may not, particularly when viewed through a lens of feminist 
theory (Faulkner, 2018) and critical qualitative research (Burford, 2018; Faulkner & Cloud, 
2019; Keith Jr. & Endsley, 2020).  

Poetic transcription is already utilized in meaningful ways in other educational spheres (see 
Mercer-Mapstone et al., 2019; Thunig & Jones, 2020; West & Bloomquist, 2015). Mathematics’ 
well-chronicled existence as a racialized and gendered space which privileges White, masculine, 
Western ideology (Battey & Leyva, 2016; Gutiérrez, 2018; Leyva et al., 2021; Martin, 2006) 
makes for a particularly potent case in which critical methodology—that which not only uplifts 
but foundationally gives power to the voices present in its work—is necessary to explore 
(Skovsmose & Borba, 2004). As research in this field more closely seeks to align itself with 
critical perspectives, our own research methodologies should not be above the kind of critical 
questioning that we ask of mathematical content and practices. Poetic transcription offers 
opportunities to introduce a humanizing lens to research, center participant voices, and disrupt 
traditional hierarchies (Fernández-Giménez et al., 2019). If these are goals explicitly stated for 
our research foci in mathematics education, why would they not also be goals we bring into our 
methodological practices? 
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A Use Case for Poetic Transcription in Mathematics Education Research 
As asserted by Prendergast (2009), poetic transcription is best utilized when the topic in 

question “lead[s] into into the affective experiential domain” (p. 546). O’Shea and Delahunty 
(2018) note that student-constructed definitions of student success are “embodied and 
emotional,” and in this way they are ripe for exploration of and expression through poetic 
transcription. In the spring of 2021, I conducted semi-structured interviews of five first-year 
undergraduate women, all of whom identified as First-Generation, Pell-grant eligible, and/or 
women of color, with the intent of gaining insight into how these women define what it means to 
be “successful within mathematics.”  

Each transcript contained between ten and twenty minutes of spoken text, in which the 
women narrated a time in which they experienced success within mathematics and responded to 
the question “how would you define student success in undergraduate mathematics?” As in line 
with previous work on students’ definitions of student success being nuanced and varied (see 
Weatherton & Schlusser, 2020, for a comprehensive overview), these women each carried and 
shared with me diverse experiences and definitions of this amorphous term. Quotes from several 
of these women students have been previously highlighted in advocacy for the necessity of 
explicit definitions of student success and acknowledgment of their nuanced and expansive 
nature with mathematics education (Tremaine, 2021). The purpose of the present work is to 
contemplate poetic transcription as a viable methodology in mathematics education; as such, I 
am not including the contextualization or discussion of these data and how they are situated in 
broader societal issues of how success within mathematics is conceptualized and valued, and by 
whom—that is outside the scope of this brief report.  

My poetic transcription process was primarily informed by my readings of Glesne (1997) and 
Prendergast (2009). Both of these authors acknowledge that there exist a myriad of ways in 
which to engage with poetic transcription; I summarize here my methods, but explicitly note that 
because poetic transcription is inherently a creative process, the process which worked for me in 
the context of this affective domain of mathematics education research may not be appropriate 
for other explorations in which poetic transcription might be utilized.  

The first phase of my process was an initial parsing of the data, in which meaningful phrases 
were highlighted and excerpted from the entire interview transcript. This parsing was done in 
careful conjunction with a revisitation of the audio recordings of the interviews, allowing for 
attention to vocal emphasis, and is reflective of Lahman et al.’s (2010) concept of “poking 
around poetically” and Glesne’s (1997) concept of “sifting through the data”. This selection was 
based upon my own recollections and perceptions of what the participant emphasized, and what 
phrases might best represent the meaning from longer narratives or passages. For example, Isabel 
expressed that she found mathematical success in being able to practically apply geometry skills 
to make buying fabric for her quilting efficient. While this anecdote was discussed at length, I 
found the phrase “I really enjoyed being able to know how much fabric to get” an effective and 
important phrase in her longer narrative, and thus it was selected in this parsing of the data. I also 
attended to phrasing which I found particularly poetic—sequences of words which gave myself 
as a listener pause for thought, or provoked imagery and emotion, and perhaps contained deeper 
meaning. Kenzie referred to her achievement of her definition of success as a “breath of fresh 
air”; this phrase’s attribution to the acquisition of success provided vivid imagery and captured 
some of the “embodied and emotional” nature of student success definitions. 

Once these phrases were distilled, the second phase entailed juxtaposing them in a variety of 
ways that were reflective of poetic structure. This proved to have many iterations, and resulted in 
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two prominent methods of grouping meaningful phrases: grouping for structure, and grouping 
for theme. Thematically, certain phrases were grouped based on the topic or thread of thought 
they related to (i.e. a group of phrases which all related to success in math as pragmatic 
application). Structurally, phrases were grouped based on rhetorical parallelism (for example, 
grouping Kenzie’s words of “that’s where I want to be” and “that’s what I was reaching for”). 
Phrases were often used multiple times in various groupings. These poetic juxtapositions then 
enabled the creative composition of poems, which were edited and re-edited in additional 
consultation with the full interview transcript to ensure fidelity to the individual’s narrative. 
Poems and interview transcripts were then revisited several months after their initial 
composition, and edited in small ways as felt needed.  

The final phase of this analysis consisted of a member-checking process, engaged in via 
email with each participant. Participants were provided a brief of the poetic transcription 
methodology of the project and were invited to edit and/or affirm their poem as they were written 
via an editable Google Document. Overall, five finished poems were produced for this work, and 
I showcase three of them below in Table 1. 

Table 1. Three of the five poems resulting from poetic transcription, capturing 
undergraduate student definitions and experiences of student success within mathematics. 

 
Isabel* Kenzie Taylor* 

It’s two different intelligences: 
being able to do well in school 
and being able to use what 
you’ve learned. 
Some people enjoy doing math 
for the sake of math; 
I really enjoyed being able to 
know how much fabric to get. 
Being able to practically apply 
your math skills- 
this is what math was meant to 
be used for. 

They determined success: 
your grades matter a lot. 
That’s what I’m aiming for. 
Having studied, 
internalizing the materials, 
I worked at my dues. 
Feeling proud after all that 
work- 
that’s where I want to be, 
that’s what I was reaching for: 
a breath of fresh air. 
Here I am.  

Math can be really hard. 
Of course, 
grades are important. 
More important than that 
is 
understanding what you’re 
learning. 
I met the requirement 
and passed it too. 

*Poem affirmed by participant as reflective of their experiences and definitions. 
 
The resultant poems endeavor to present transcript data in a way that is unconstrained by any 

particular coding scheme or field-specific jargon, while still conveying the nuanced definitions 
of student success in mathematics held by each of these women. Faulkner (2019) notes that 
poetic transcription provides qualitative researchers with a “more approachable, powerful, 
emotionally poignant, and accurate form than prose research reports allow” through the 
incorporation of rhetorical style and dimensions of emotion that poetry can bring to qualitative 
work (p. xi). Certainly, the presentation of this data could benefit from an additional thematic or 
perhaps narrative analysis, as, I argue, would any data set benefit from additional lenses of 
applicable analysis. However, as Prendergast (2009) argues, the poems produced from poetic 
transcription are best when they are capable of standing alone. In poetic transcription, the poetry 
is both the analysis and the presentation of the analysis, rolled into a singular creative process.   
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Discussion of Limitations Inherent in Poetic Transcription 
While poetic transcription affords mathematics education researchers an invigorating and 

holistic way through which to re-present data, it is important to also make explicit the limitations 
present in such a methodology as its use is contemplated in our field.  

I choose here to acknowledge my positionality in the work I described above; I am a White 
woman who does not identify as First-Generation or Pell-grant eligible, and while I endeavored 
to maintain fidelity to participants’ rhetoric and meanings, my filtering of participants’ words 
through my own lens and poetic style is in itself a form of colonization of these stories and 
definitions. Glesne (1997) provides candid reflection on how she and her participant’s differing 
native languages may have construed her ability to accurately reflect her participant’s voice and 
experience in her resultant poetry. Similar to Glesne’s concern of not capturing the nuance that 
would be present in her participant’s untranslated responses, I recognize that I cannot fully 
understand the nuanced responses regarding the lived experiences of my participants. While 
poetic transcription can help “heal wounds of scientific categorization and technological 
dehumanization” (Glesne, 1997, p. 214), it also maintains opportunity for withholding and 
privileging certain lenses that are already dominant in research spaces through its inherent 
subjectivity. Burdick (2011) and Mercer-Mapstone et al. (2019) are two examples in which 
participants were explicitly involved in the creation of resultant poetry, thereby more effectively 
enabling the participant’s own creative voice to shine within the work from its very genesis.  

I also acknowledge the criticism put forth by Tuck and Wayne Yang’s (2014) work, in which 
they note that, by advocating that poetic transcription join the ranks of established research 
methodologies in our field, I do nothing to disrupt the problematic exaltation of research as the 
dominant and most reputable form of knowing- research, of course, being a space which 
historically and contemporarily marginalizes important and necessary perspectives. 
Simultaneously, other scholars highlight that poetic transcription pushes back against the 
dominant culture of academia by “allowing [researchers] to communicate to cultures other than 
that of academics” (Vannini & Gladue, 2008, p. 146). Vannini and Gladue assert that, in 
conjunction with claims made by poetic inquiry powerhouse Laurel Richardson, most informants 
to research converse in non-academic voices that are better reflected by poetry than written 
academic prose. In approaching research presentation in a way that is more colloquial, embodied, 
and free from academic jargon and structure, we re-present research that remains accessible to 
the individuals who contributed to it. Faulkner (2018) also notes that poetic transcriptions’ 
“evocative critique and resistance of the status quo” enables it to function extremely effectively 
within necessary critical discourse (p. 23). 

In conclusion, I hope this work has provided the reader with food for thought regarding the 
use of poetic transcription within a mathematics education context. While by no means a 
methodology which is free from continued tensions regarding colonization and dehumanizing 
practices, it does endeavor to push back against such influence through a more embodied, 
accesible way of re-presenting data. Poetic transcription as a methodology remains in its infancy 
when compared to many other forms of qualitative inquiry, and as such has immense opportunity 
for development as scholars experience and refine it in ways that continue to grapple with the 
subjectivity of research. I present it here in this brief report with the hope that it (a) prompts 
others to engage in and research poetic transcription as a viable methodology for use within 
mathematics education and (b) allows for a continual reflection on how we, as researchers in this 
field, can be continually critical in our use of methodology and grow in what we conceptualize as 
valid and important ways of knowing and re-presenting the experiences of our participants. 
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This study seeks to demonstrate how knowledge and authority are linked for preservice 
mathematic teachers and how this link may pose a challenge for teaching mathematics for social 
justice. A CDA of multiple preservice class discussions is presented. 

 Keywords: Social Justice, Equity, Inclusion & Diversity, Preservice Teacher Education  

There is a great need for social justice mathematics (SJM) in U.S. schools. Students of color 
frequently feel disconnected in mathematics classrooms (Gutiérrez, 2012b). Despite the efforts 
of Frankenstein (1983), Gutstein (2006) and others, SJM has not gained wide acceptance 
(Gutstein, 2006). Bartell (2013) notes that mathematics teachers prepared to teach SJM often fail 
in the moment. De Freitas (2008) has suggested that mathematics teacher identities are tied to 
mathematics and Walshaw (2013) notes that teachers are caught by dominant discourses of 
mathematics. These represent mathematics as apolitical, acultural and neutral (Ernest, 1991; 
Walkerdine, 1988). These characteristics contrast sharply with the openly political aims of SJM. 
Further, these characteristics form the basis of White authority (Frye, 1992), thereby creating an 
overlap of authority between mathematics and Whiteness (Author, 2015). For mathematics 
teachers to address social justice requires that they come into conflict with this authority.  

One means for teachers to connect to authority is by emphasizing mathematical competency. 
Since many teachers, White in particular, have limited knowledge of social justice issues they 
can feel a lack of authority in this area. Further, the mathematical competency of U.S. 
mathematics teachers is under fire (Wolfmeyer, 2012), potentially leading mathematics teachers 
to be defensive. This may link mathematical knowledge and authority, leaving little room for 
SJM. This study seeks to understand the relationship between knowledge and authority for 
secondary mathematics teachers. To this end I aim to answer the following questions:  

1) How do we discursively link mathematical knowledge and teacher authority? 
2) How can we disrupt this link to create space for social justice in mathematics education? 

Theoretical Framing 
Wagner and Herbel-Eisenmann (2014) found that authority issues were prevalent in 

mathematics classes. These issues may arise because of the perceived authority of mathematics 
(Amit & Fried, 2005). Skovsmose and Valero (2001) describe a kind of “omniscient authority” 
embedded in mathematical discourse.  Authority relations are primarily between teachers, 
students, and mathematics. Authority is a key aspect of equity (Gutiérrez, 2012a). A potential 
problem arises when teachers use a knowledge-authority link to justify authoritative mathematics 
teaching. I focus primarily on this teacher-student authority relationship linked to knowledge. 
This link is important because the dominant mathematical discourses may dissuade teachers from 
questioning their authority and from creating equitable relationships. Amit and Fried (2005) note 
that when teachers are too authoritative it reduces student authority. One means of understanding 
authority is through the lens of agency (Sengupta-Irving, 2016). Authority can attempt to limit 
who (and how) can exercise agency. This may create a dynamic where students are mostly 
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passive (Boaler & Greeno, 2000). While this passivity can be an exercise of agency (or 
resistance), it does not contribute to the mathematical development of the student or classmates.    
Authority and Social Justice in Mathematics  

Reforms in mathematics promote a redistribution of authority (Amit & Fried, 2005); this is 
not sufficient to equitable relationships. Because authority is in the discourses of classes 
(Skovsmose & Valero, 2001), it does not disappear with the adoption of more “student-centered” 
pedagogy. Gutiérrez (2009) notes that teachers cannot pretend to lack authority; instead teachers 
need to explicitly discuss authority (Gutiérrez, 2015), so that its use can be negotiated. In terms 
of equity, Gutiérrez (2012a) outlines four dimensions: access, achievement, identity and power. 
The power and identity dimensions intersect with authority in terms of which mathematical 
practices are valued, whose voices are heard, and in using mathematics to critique structures.  
Discourse  

Discourses can establish authority. I look at the discourses of mathematics, mathematics 
education, SJM and teacher and student roles. Discourses both enable and constrain (Fairclough, 
2001). Appropriate discourses allow me to be recognized as a mathematics teacher through how 
I speak, interact, dress, and use mathematics materials. Discourses constrain by limiting what 
speech and behaviors are acceptable for a mathematics teacher. This enabling/constraining 
illustrate the operation of power in discourses. As a result the use of discourses is a negotiation 
of power. This negotiation occurs most directly between the teacher and students. These 
negotiations are implicit and dependent on a shared idea of teacher or student roles.  

The discourses that carry the greatest power are dominant. A discourse becomes dominant by 
excluding other ways of thinking by establishing a static understanding of truth. Current 
dominant discourses about mathematics portray it as apolitical, neutral, acultural and objective 
(Ernest, 1991; Walkerdine, 1988). SJM argues, in part, that mathematics is political, cultural, and 
subjective. Since the dominant discourses of mathematics specifically disallow this perspective it 
may be difficult for teachers to understand the why and how of SJM. Walshaw (2013) notes that 
teachers and students are caught in these discourses. Thus, I expect to find that mathematics 
teachers generally will struggle to understand SJM, because of the of these dominant discourses.  

Discourse and Whiteness. The pressure to conform to dominant discourses and their limits 
help maintain power structures. In the U.S. dominant discourses are discourses of Whiteness. 
Whiteness Theory helps uncover how discourses maintain white privilege. Whiteness Theory 
operates on the assumption that the lives of all people in the U.S., in particular, are racially 
structured (Frankenberg, 1993; Frye, 1992). Since mathematics achievement follows racial lines 
\ (Stinson, 2004), race is a significant factor in defining traditional measures of mathematical 
success. Further, Skovsmose and Valero (2001) explain that mathematics is used to sort students. 
Battey (2013) specifically applies Whiteness Theory to the material benefits of this sorting. Here 
I will analyze discursive connections between knowledge and teacher authority.  

Methodology 
Participants 

Like my students, I am caught in the dominant discourses of mathematics education. As a 
young, white teacher I taught all of the mathematics classes for emergent multilingual students at 
a rural, public high school. I witnessed the roles of race and class in the lives of my students. 
There were clear divisions along race and class lines. As a teacher I felt pressure to support 
school policies; I also wanted to support my students who were not served by those policies.  

Teacher Candidates. The teacher candidates included four White males (Pseudonyms: Jeff, 
Karl, Gavin, and myself), two White females (Stella and Lisa), one Latina (Esperanza), and one 
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Japanese-American female (Jane). They were working towards a Master’s degree in mathematics 
with certification funded by Mathematics for America (MfA). During the Fall semester I 
supervised their student-teaching, attended monthly meetings, and a retreat. During the Spring 
semester I taught their action research class as I continued their supervision. Several of the 
preservice teachers expressed an interest in SJM and four attended a conference on SJM. I 
considered each of them to be capable and committed, who struggled with SJM.  
Critical Discourse Analysis 

Drawing from critical theory, critical discourse analysis (CDA) explains how language is 
linked to society (Chilton, 2011). Fairclough (2001) draws on Foucault to explore how consent is 
gained through dominant discourses. Fairclough uses discourse to explain the relationship 
between social norms and power. Here I will analyze discourses we used to explain the links 
between mathematics and authority. Critical discourse analysis draws on post-structural 
understandings of discourse and the circulation of power (Rogers et al., 2005). In particular, as 
speakers use discourses we construct objects and subject positions. But even these objects and 
subject positions are multiple and changing; they are negotiated and re-created. I have also 
framed these discourses within Whiteness Theory to analyze how they maintain white privilege 
and how we begin to re-work some of these discourses in order to understand SJM.  
Data Collection 

All data for this study were drawn from a teacher research (with a SJM focus) course for 
preservice teachers. Each class was recorded and transcribed, resulting in over 25 hours of 
recorded data. The teacher candidates’ written work, as well as my reflection journal were 
additional sources. I chose sections in the data where there was evidence of, or potential for, SJM 
for further analysis. I performed line-by-line analysis of each of these transcripts using Gee’s 
(2005) building tasks paying particular attention to authority. From these analyses I identified 
themes and re-analyzed for key ideas I missed, to fill in details, and to identify deviations.  

Results  
Linking Knowledge to Authority: A Traditional Frame of Knowledge and Authority 

The transcript that follows illustrates the link between knowledge and authority, how that 
link is normalized, and is representative of other discussions. This discussion focused on the 
discourses that shape mathematics education. Prior to the transcript we discussed teacher and 
student roles. These discourses structure teacher-student relationships.  

Jeff: It’s inevitable I mean if I am more knowledgeable than my students you can't change 
that, that automatically gives me some more power that they don't have, you can't change 
it so that's not necessarily a bad thing. Sometimes there's this connotation that we want to 
remove all power differences. 

Teacher: Right 
Jeff: I think that that's erroneous. 
Teacher: And I think to pretend that you don't have that authority is false and the students are 

going to recognize it right away and they're not going to respond to it. 
Jeff: Well and if they don't respect the fact, if they don't think you have the knowledge you 

can't teach them in any way 
Here Jeff draws on a discourse that links authority to knowledge. Within this discourse 

greater knowledge necessarily creates greater authority. In drawing on this discourse Jeff 
positions teachers as naturally having more authority than students since teachers have “more 
knowledge”. Presumably he is talking specifically about mathematical knowledge. This 
knowledge differential is unchangeable (“inevitable”, “you can’t change it”). These statements 
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naturalize the relative positions of teacher and student and the teacher’s authority as authority 
over students, which is “automatic”. Finally, he evaluates these positions as “not necessarily a 
bad thing”. My comment does nothing to disrupt this link and, in fact, accepts it as natural. Jeff’s 
final comment points to the necessity of this authority as necessary for teaching. Among the 
assumptions of this discourse is that authority is static (i.e., natural to a teacher), teacher 
authority and student authority are in an inverse relationship, and that the authority-knowledge 
link applies only to sanctioned knowledge—especially mathematics.  
Lack of Knowledge as Justification 

Alternatively, the following transcript shows how this link can be used as justification to not 
engage SJM. Prior to this, the teacher candidates had read an article by Gutstein (2012) on 
implementation of SJM. In response, we discussed various topics including the importance of 
addressing racism. During this discussion Esperanza drew on her experiences as an immigrant 
student of color to argue that teachers need to discuss these issues. In the transcript Jeff shifts the 
discussion by asking Esperanza more about her experiences.  

Jeff: Because one of my fears is I don't see when I'm doing it wrong for them so but if I said 
look I want to have a discussion about immigrant reform . . . and I know that I'm not an 
immigrant so I'm not going to see all of the issues the way that you will and so if I do 
something you know prelude that says I'm going to probably screw some of this up but 
it’s not because I'm trying to would that have made a difference for you 

Esperanza: Letting me know yea and I think it would be great to not take on and shut because 
I know my U.S. history teacher he thought he knew everything he just knew the 
newspaper like you're not looking at the families that are being deported you're just 
bringing the issues the media brings out to the table and not other perspectives and so if 
you really want to do touchy subjects like that I feel like you have to make sure you know 
both sides of the coin you know what I mean like 

Teacher: Yeah and I think like you said acknowledge the limits of your knowledge 
Esperanza: Exactly let them know 
Jeff: I don't know, at some point then I might just decide not to have it because the problem 

is that if there is something that the teacher brings to the class and if nothing else it’s 
some sophistication in how debates can go and realizing that kids just like to argue and so 
what are they going to do they're going to bring the news to class and their parents views 
and if you aren't knowledgeable you can't manage that discussion very well right I mean 
if I personally am not knowledgeable about it it can get out of hand very quickly. 

As Jeff directs his question to Esperanza he frames it around his own fear which is, “I don’t 
see when I’m doing it wrong”. In Esperanza’s response she emphasizes that a teacher should 
“know both sides” of an issue. This would require a teacher to learn about issues before 
discussing them in class and positions the teacher as taking responsibility. It is at this point that 
the direction of Jeff’s argument becomes clear. In response he says, “I might just decide not to 
have [the discussion]”. Thus, he draws on a dominant discourse that uses ignorance as a reason 
not to engage rather than a responsibility to learn. He links this to the idea of “sophistication” 
that a teacher should bring to the class. This sophistication requires more knowledge than what 
the students have (who “just like to argue”) in order to give the teacher the authority to control 
“how debates can go”, since “if you aren’t knowledgeable you can’t manage that discussion”. 
The concern is that the discussion “can get out of hand”, which may undermine teacher 
authority. In this way, white ignorance (of racism) creates a fear of losing authority. This fear 
prevents a willingness to learn to have the difficult discussions that could benefit students. It is a 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

537



fear of not being a “good” teacher, when a good teacher is understood as knowledgeable and in 
control. While Esperanza provided an opportunity for a different perspective, the dominant 
discourse of Whiteness, and a lack of white responsibility to understand racism was reasserted. 
Again these are the dominant discourses that are available to us.  
Problematic Relationships in Social Justice Mathematics  

In another moment of this same class Karl brought up a question of how to bring up difficult 
topics, such as HIV/AIDS, and have students engage appropriately. In our responses to this 
question we describe the concerns we have about teaching this kind of SJM lesson. 

Teacher: So let’s talk about this so somebody there brought up the idea that if you're teaching 
this lesson on the west side [lower income, more students of color] that it could be 
possibly discouraging to students. How would you address that? 

Gavin: Well just that life sucks and that's how it is. 
Multiple: ((laughter)) 
Jeff: Isn't it all in the context of being able to create change if you can do that it doesn't have 

to be inherently negative being reminded of reality and if that’s all you're doing is saying 
yeah tell me something I don't know 

Teacher: Isn't well ok I want to hear you out is there any benefit to doing that? . . . . 
Jeff: Well maybe I mean to let them know that you're aware 
Teacher: To remind them mhmmm why might that be beneficial? 
Jeff: Because they may feel that you aren't and they can't approach you and talk . . . 
From the beginning I position the teacher as the authority, bringing difficult topics to the 

class (“how would you address”). While this was Karl’s question, I do not challenge this 
assumption. This leads us to continue in a way that assumes the authority of the teacher. I ask the 
teacher candidates to recall a SJM lesson that Esperanza, Stella, Lisa, and Jane had written. Their 
lesson highlighted an unequal distribution of parks based on geography and population density.  

After Gavin’s joke, Jeff mentions the importance of “being able to create change”. The 
passive construction here leaves it unclear who is creating change. However, if it is parallel to 
the structurally similar “being reminded of reality” where it is clear that the students are “being 
reminded,” the implied agent is the teacher. This passive role for the student maintains teacher 
authority, even if that teacher intends to “create change”. Picking up on Jeff’s point I ask if there 
is benefit to just pointing out inequity. Jeff mentions a benefit of overcoming some of the 
teacher’s authority to make them more approachable. This point suggests that students are 
careful in their relationships, positioning them as agents as they negotiate the school system.  

This improved relationship could benefit students, as they will be more likely to have 
someone they can work with and who will listen to them. In this discussion there are implicit 
references to knowledge of inequality; this will become more explicit as the discussion 
continues. As Lisa responds (below) to my questions she seems to suggest that bringing up 
difficult, social justice topics is beneficial because it can increase teacher authority.  

Teacher: And why would they care if you as their teacher are aware? 
Jeff: Because you have authority that you're trying to hand out to them. 
Teacher: K. other thoughts on that? 
Lisa: Yeah. Because you're trying to teach them stuff if they think you have no idea what's 

going on and they don't get you at all they're not going to participate in your classroom 
Jeff: So you can't create relationships you mean 
Lisa: Yeah. So I think that's something that I never really thought of that much making them 

aware that you're aware of it 
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Teacher: Is there benefit in just making students aware of social issues like this . . . .? 
Lisa: I think that you have to talk about the actual thing before you can start to talk about 

why that thing is occurring and I don't think that that is a given that all students know 
reasons that could potentially explain why things are unfair. 

Lisa highlights the importance of what students think of their teacher. If their opinion of the 
teacher is low (in terms of knowledge) then “they’re not going to . . . participate in your 
classroom”. This is a very similar statement to one Jeff made in week 4, “if they [students] don't 
think you have the knowledge you can't teach them in any way.” Also “your classroom” suggests 
teacher ownership. Both Jeff and Lisa link teacher knowledge, with students’ willingness to 
listen. A lack of teacher knowledge may result in students exercising agency disagreeably.  

If we discuss teaching mathematics in a traditional sense (as Jeff was) then the 
knowledge/authority link is restricted to mathematics. However, if we discuss SJM (as Lisa is) 
then that knowledge is expanded to include sociopolitical knowledge. This is a potentially 
disruptive view suggesting that being a mathematics teacher requires sociopolitical knowledge. 
However, increased knowledge is still linked to increased authority. There is no discussion of 
benefit to the students from this kind of teaching. It seems that our primary concern is how 
bringing up difficult topics in the classroom will affect the teacher. As I rephrase the question I 
maintain this focus on the teacher as agent who is “making students aware.” This may reflect my 
own whiteness where I was largely unaware and may also universalize this white perspective. 
Lisa also notes that we should not assume that “all students know”. We position ourselves as 
responsible for SJM and focus on the teacher as authority.  
Balancing Teacher and Student Authority  

In a later class, Karl shared an example of a SJM lesson in his class. A majority of his 
students were low-income students of color and bussed to the high school. 

Karl: We calculated the area based on those grids that you put over the maps and then talked 
used that as a segue into you found the area it looks like you guys used a rectangle here 
this one you guys said was a half what's really going on so like that was kind of the math 
reason for doing it but the discussion was pretty good it started out kind of poorly . . . . 
they would say let’s just have it how it is now I don’t care what parks are like and that 
was about the first five minutes of the discussion was about how people don’t really care 
about parks 

Here Karl explains the lesson that illustrates the ways local parks are distributed inequitably. 
His focus is on what the students did, positioning them as agents. Notice how he includes himself 
with his students (“we calculated”) and then the frequent use of “you” to refer to his students and 
their work. He positions students and their work as central, while he remains on the periphery. 
When the lesson “started out kind of poorly” he attributes this to his own inexperience. He 
emphasizes the students’ perspective and identifies with it by using first person (“let’s just”, “I 
don’t”). Their perspective went against what he was trying, but he valued their thinking. Students 
are portrayed as exercising agency in valid ways, even when they disagree with the teacher.  

After listening to his students, Karl still thought the lesson was valuable and that his students 
would benefit. As a result, he persuaded them to give the lesson a chance.  

Karl: And I had like a little bit of a discussion . . . . like this I know we’re talking about parks 
right now but take this a little more seriously for a little while this isn’t really about parks 
and I think you guys will figure out what’s going on here . . . . They brought up were 
things that I never thought about in terms of this park issue and one thing being cost or a 
couple things being cost of upkeep for a park I didn’t really think of that as a possible 
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reason for maybe how they’re distributed like maybe one park has more graffiti than 
another park and more cost is gone into upkeeping it. One student brought up the 
distinction between a community park and a city park and I didn’t know the difference 
really and she was kind of thinking she was like schools are kind of supported and I don’t 
know much about taxes and she was kind of asking me about taxes and I was like I don’t 
know your idea could be right or it could be wrong. . . . which I thought was an 
interesting question that I didn’t expect from a 17-year-old 

In the beginning part of this section Karl portrays himself as using some of his authority to 
persuade. He did so through “discussion”, recognized the students’ perspective, and expressed 
confidence in their ability to see beyond the parks. The students brought up things, “that [he] 
never thought about”. Karl clearly views this as a positive (“really good”) even though it 
positions him as less knowledgeable in this area than some of his students. He believed that his 
students’ ideas were valuable enough to share them with the rest of us. Karl also admitted his 
lack of knowledge on the subject to his students (frequent use of “I don’t know” and variations). 
In previous discussions we had constructed teacher authority as closely connected to knowing 
more than students, this admission appears to work against that link. This admission was not 
related to mathematical knowledge. It is possible that Karl feels safe admitting a lack of 
knowledge about park funding, but not mathematics.  

Discussion 
 Dominant discourses appear to link knowledge to authority. By doing so they either leave 

no space for SJM, an unwillingness to engage SJM, or inequitable relationships within SJM.  
Only occasionally were we able to break out of this link as Karl did.  
No Space for SJM 

In the discourses that left no space for SJM we struggled to even understand if or how SJM 
might be possible. This view seems to be consistent with Bartell’s (2013) finding that teachers, 
after planning a SJM lesson, often focused on either the social justice or the mathematics. This 
discourse operates by restricting our ability to imagine alternative relationships between 
knowledge and authority and require a reimagining of what knowledge is valued in a school 
context (Gutiérrez, 2015). A potential alternative to this view of knowledge and authority would 
be one that recognized that both teachers and students have varying levels of knowledge in 
different areas. While the teacher may have more knowledge of school mathematics, students 
also have knowledge relevant to learning mathematics. However, the dominant discourses of 
school mathematics shape the roles of teacher and students to prioritize school mathematical 
knowledge. As a result, our relative lack of knowledge of social justice issues shut down 
discussions of SJM. Discussions that draw on dominant discourses feel “safe” (Yoon, 2012) by 
not disrupting the dominant view of mathematics with the racio-political views of SJM. Further, 
they can help participants maintain an image as “good” (white) teachers (Applebaum, 2008) by 
staying within knowledge domains that are comfortable.  
White Ignorance 

Discourses of white ignorance of social issues, especially of racism reflect a colorblind 
discourse that support racist structures in society (Bonilla-Silva, 2015). It is important for 
teachers, especially white teachers, to recognize the limits of their knowledge and experience. 
However, this recognition should be accompanied by a sense of responsibility, rather than a 
justification. This discourse restricts SJM by reducing the teacher’s role to mathematics, since 
that is the area of knowledge expected for mathematics teachers and prioritized in teacher 
preparation. Alternatively teacher preparation might value multiple forms of knowledge, such as 
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the classical, critical, and community knowledge suggested by Gutstein (2006). Importantly this 
discourse came about in response to Esperanza’s explanations of how and why teachers must 
address sociopolitical issues. She was able to successfully draw from her experiences as an 
immigrant woman of color to access discourses that were temporarily disruptive. She may have 
done so because of an experience of “double consciousness” (Du Bois, 1903). As a woman of 
color in a white space she could see both the dominant discourse and alternatives.  
Problematic Relationships 

Importantly, even when we did successfully discuss SJM we often did so from within a 
dominant discourse linking knowledge and authority. The result, for us, was that we discursively 
constructed inequitable classroom relationships between teacher and students. These 
relationships emphasized teacher authority, the teacher as agent, and the beneficiary of SJM. 
There is little room left to construct an active role for students. Gutiérrez (2012a) in discussing 
identity and power explains that students should have opportunities to bring their full self, 
including knowledge and capabilities. Further, students need opportunities to participate in 
mathematics that is personally meaningful. This is more likely to happen when students have 
voice, which is part of Gutiérrez’s equity dimension of power. In mathematics education we need 
to construct classroom dynamics that value and include student voices.   
Shared Authority 

Finally, Karl’s description of his experience attempting to address a social inequity in his 
mathematics class shows potential for constructing more equitable classroom relationships. This 
occurred as students brought up ideas that Karl had less knowledge of. He was willing to listen to 
and learn from his students as they raised their voices and their ideas in the classroom. To further 
develop these relationships, students would also need opportunities to participate in similar ways 
with both mathematical and social issues and the teacher would need to demonstrate a similar 
willingness to listen to and learn from students.  
Recommendations 

Dominant discourses linking knowledge and authority imply that the simple solution to 
teachers’ lack of knowledge of social issues, such as racism, is to gain knowledge in these areas. 
While increasing teacher knowledge is necessary, it is insufficient and may lead to inequitable 
relationships. In addition, teachers will need to create opportunities to learn from their students; 
white teachers in particular, will need to listen to their students of color. Teacher education 
programs largely focus on what Gutstein (2006) identifies as classical knowledge. This 
knowledge is developed both in mathematics content courses and pedagogy courses. Courses, 
such as multicultural education, may help to develop teacher candidates’ critical knowledge, but 
a single course will not be enough. The embedding of critical themes throughout teacher 
education and beyond will likely be necessary. Community knowledge is challenging and is 
typically not included in teacher preparation. While community knowledge will vary and needs 
to be learned in conjunction with students and their communities, this process can be modeled as 
teacher educators also learn from and with their students.  

Conclusion 
Within mathematics education dominant discourses frame knowledge and authority in ways 

that challenge our ability and willingness to teach SJM. These challenges affect even those who 
desire to teach SJM. The challenges range from the more obvious where we struggle to 
conceptualize SJM or are forced to face our lack of critical knowledge to the more subtle 
concerning classroom relationships and the risk of diminishing student agency as we seek to take 
responsibility for a socially just mathematics classroom.  The need for equitable mathematics is 
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growing and it will require better and more thorough preparation.  This preparation will likely 
need to include modeling and increased emphasis on critical and classical knowledge. 
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There is a clear need for an operational framework that captures the difficulty of implementing 
culturally relevant pedagogy (CRP) and supports teachers to imagine new forms of pedagogy. In 
this report, we present the Iceberg of Culturally Relevant Mathematics and Science Pedagogy 
(CRMSP), a tool, grounded in the tenets of CRP, that delineates practices ranging from the most 
accessible and easy-to-implement, to the most subversive yet arguably the most significant in 
terms of their potential to re-characterize the acts of doing and being competent at mathematics 
and science. We provide examples of CRMSP that re-position marginalize learners in relation to 
mathematics and science. We discuss the levels in which this tool can serve to disrupt dominant, 
inequitable systems of instruction and preview ways it can support teachers’ efforts to provide 
meaningful mathematics and science learning experiences for youth. 

Keywords: Culturally Relevant Pedagogy, Preservice Teacher Education, Teacher Knowledge, 
Curriculum 

Like other social institutions, schooling has served to disenfranchise and subjugate students 
of color and their families, and to reaffirm a white ideology that supports white students, teachers 
and families (Emdin, 2016; Leonardo, 2009; Picower, 2009). Scholars and practitioners have 
explored ways to confront the inherent racism that permeates schools and have developed critical 
frameworks such as culturally relevant culturally relevant pedagogy (CRP), culturally 
responsive teaching and culturally sustaining pedagogies (Paris & Alim, 2014; Ladson-Billings, 
1995, 2014; Gay, 2002).    

In this report, we describe our work with a teaching protocol that both supports the 
identification of CRP and the analysis of these practices within the context of culturally relevant 
science and mathematics classrooms. This approach to understanding Culturally Relevant 
Mathematics and Science Pedagogy (CRMSP) asks preservice teachers (PTs) to use readily 
identifiable practices and materials and then scrutinize them for how compatible or tenuous they 
are with CRP.  For the final analysis of compatibility/tension, we use the idea of a continuum of 
criticality from the Iceberg of Culture (Hall & Hall, 1976; Weaver, 1986) to assist PTs in 
analyzing their own materials, dispositions and practices. To analyze, visualize, and 
develop responses to the challenges and limitations surrounding PTs’ implementation of CRMSP, 
we use two theoretical frameworks: critical whiteness studies and the iceberg of CRMSP.  

Theoretical Perspectives: Culture and Whiteness 
Equitable teaching requires PTs be able to analyze their own teaching and to be able to speak 

clearly about where and how they are supporting all learners and recognizing inherently racist 
practices. Doing this with efficacy requires a deep understanding of whiteness and the 
many structurally racist practices that are often “invisible” to white educators (Leonardo, 
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2009). Supporting PTs to becoming culturally relevant practitioners demands that PTs be able to 
identify emergent, intermediate and advanced culturally relevant practices in STEM.     

Inextricably connected to whiteness, we consider an understanding of culture and how that 
influences what teachers are willing to do pedagogically. If PTs have a shallow understanding of 
culture, it is going to be difficult for them to teach in culturally relevant ways. If PTs see culture 
as only stereotypical examples of food, holidays and celebrations, it is going to be challenging for 
them to see how they reinforce dominant oppressive practices. It also will be exceedingly 
difficult for PTs to fully understand, both theoretically and practically, the role of culture in 
equitable science and mathematics teaching and learning (Nasir, Hand & Taylor, 2008; Nasir & 
de Royston, 2013).   

Research Design, Context, and Methods 
This work is situated in urban teacher education programs explicitly focused on developing 

anti-racist, culturally relevant teachers. Major program goals are to develop critically conscious 
PTs who understand how whiteness permeates schools and classrooms. The PTs we reference in 
this report are both elementary and secondary students from alternative certification programs.     

Using the frameworks above and our experiences with PTs we developed a series of 
activities for helping PTs better understand and enact CRMSP.  Described below, 
the activities first ask teachers to identify concrete elements of their practice (curricular materials, 
instructional decisions and teacher dispositions). This is followed by mapping the teacher 
practices back to the tenets of culturally relevant pedagogy. Finally, we follow this with an 
alignment of the teacher practices on an “iceberg of CRMSP” to assess the criticality of 
the practices (see Figure 1 below).  

 

 
 

Figure 1: Supporting Teachers to Operationalize CRMSP  

Data Sources 
The data sources we draw upon include collaborative documents used in class (where PTs 

document CRMSP), lesson plans that PTs wrote, notes from debriefing sessions with PTs, and 
PTs’ responses to reflection prompts used in class. The data was examined through the lens of 
culturally relevant pedagogy, specifically how each of the classroom events represents the tenets 
of CRP and what impact this event would likely have on dramatically shifting the experiences 
and success of children of color. In this analytical process, we relied heavily on our professional 
experiences as teachers and teacher educators, and our knowledge of the literature and judgement 
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as to the degree to which PTs were moving beyond superficial notions of culture and critical 
pedagogy.   

Results 
As discussed above, PTs overwhelmingly support the idea of culturally relevant teaching, and 

they can, after study, articulate and operationally define the tenets. A disconnect comes 
when PTs are asked to analyze their own teaching through a CRP lens and identify how they are 
enacting or plan to enact CRP. 
Components of Teaching in Culturally Relevant Ways  

The three categories of teacher practice (curricular materials, instructional decisions and 
teacher dispositions) represent a bridge between the visualization of culturally relevant pedagogy 
and actual classroom interactions, and potentially offer PTs a way to access a critical analysis of 
their own science and mathematics teaching. The analysis is embedded within the course that the 
PTs take. For example, as a class assignment PTs read and analyzed Ladson-Billings' (1995) 
article, “But That’s Just Good Teaching.” PTs studied the concept of culture by working on their 
own understandings of culture and CRP. The analytical tool described here evolved out of this 
work with PTs and the provocations put forth by Ladson Billings (1995, 2014) and others (e.g., 
Gay, 2018; Paris, 2012).   

In the first step of the analysis PTs are asked to list curricular materials, instructional 
decisions, and teacher dispositions for a lesson they are developing, have observed, or are going 
to teach. Some of the listings are easily evident, such as the use of a textbook (curriculum 
material) or the decision to move to small groups for problem solving (instructional decision). 
Others, such as how a PT responds to a student’s question or “misbehavior” (teacher disposition) 
are more difficult to identify. We now recognize that the “difficulty” of identifying a practice is 
linked to the criticality of the practice and that the practices that PTs choose to “not see” are 
those that often reinforce a white, hegemonic classroom (one example from our practice and 
research is described below). Despite this recognition, the list offers PTs a series of things to 
analyze. Once a PT has listed a textbook as a curricular material, the conversation about the 
textbook begins and opportunities for discussion about what culturally relevant pedagogy looks 
like continues. 

Curricular Materials. Curricular materials refer to any physical artifacts or resources that a 
teacher may use in class. These include, but are not limited to: trade books, textbooks, videos, 
speakers, handouts, worksheets, and manipulatives. PTs can quite easily identify the concrete 
curricular materials that they use. Once the PT has identified the curricular material we ask, 
“How does this choice connect to one of the tenets of CRMSP?” For example, a student teacher, 
Ned, chose to use an article from The Atlantic entitled, “The Myth of ‘I’m Bad at Math’” 
(Kimball & Smith, 2013) after his middle school students took their first math exam. Ned was 
worried that the students did not see themselves as “good” at math and wanted to challenge 
the idea that some people are “just good” at math. In our class google doc, where we recorded our 
examples, Ned explained how the use of the article connected to the tenet of “academic 
success.” Ned was considering how effort makes a much bigger difference in mathematical 
academic success than we tend to give it credit for, especially in middle and high school.  Ned’s 
example offers an opportunity to see how something as simple as a magazine article can be used 
as evidence of CRMSP. The example also reinforces the idea that the tenets matter and that PTs 
can think about them as a way to dig into what it means to be a culturally relevant teacher. The 
article also pushed the idea of “culture” since it is not specifically tied to the traits that PTs think 
of as culture (e.g., holidays, stereotypes, food, etc.). In this way it opened up a place for a 
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conversation about how we can analyze our teaching using a CRMSP lens. It allowed us to talk 
about how society views “who can do math” as a cultural component. It also begins to set the 
stage for PTs to push themselves. In this example the connection to academic success is 
legitimate but it also generates the question, “What about cultural competence and critical 
consciousness?” Continuing to reinforce the idea that CRMSP is all three of the tenets is an 
important component of this work. 

Instructional decisions. Instructional decisions refer to the ways in which teachers engage 
learners with curriculum. These include the structure of lessons, teacher moves in lesson 
delivery, managing participation patterns, orchestrating classroom discourse, collecting evidence 
of student learning, and overseeing interpersonal dynamics. Like curricular materials, 
instructional practices can be designed for white students (consciously or unconsciously) and 
guided by school or district-level initiatives, or they can be designed with equity and justice in 
mind. Our goal is to have PTs identify their own or other teachers’ instructional decisions and 
then to connect them to the tenets of CRP.   

Below we describe an observation with Sharon, a student teacher teaching a math lesson to 
2nd graders. To prepare for the observation Sharon wrote a lesson plan which included a section 
specifically addressing culturally relevant pedagogy. She was asked to reflect on how her 
instructional decisions connected to CRMSP. She wrote:  

I am using a cognitively guided approach. Students will be leading the lesson with their 
thinking, and I will be able to better scaffold based on what I learn from the process. Rather 
than open with an algorithm, I want the students to tap into their number sense and sense-
making skills to understand the thinking behind the function.   
In this example Sharon identifies cognitively guided instruction (e.g., Carpenter et al., 2015) 

as the foundation for her math lesson. She is intentional about centering student thinking, which 
reveals her commitment to the value of her students’ mathematical ideas, a component of CRP, 
and articulates how she will engage the students in the content. When asked to move from the 
concrete to the abstract, from the actual instructional decision to the tenets, Sharon writes the 
following as a rationale for the instructional decision:  

Soon, students will be introduced to two-digit subtraction with borrowing. Before this 
happens, I want them to get a better understanding of the math thinking behind the 
algorithms they will need to learn. I will use a Cognitively Guided approach to present them 
with a story problem and allow them to work in small groups to find a solution in a way that 
makes sense to them. The story problem is also based on their literacy text for this week. 
This way they have background knowledge that contextualizes the math problem and makes 
it easier for them to connect with. I will not be showing them the algorithm for solving an 
equation with borrowing. I will be walking around the room, checking in with groups, and 
asking them questions about their methodology and if their answer makes sense to them. I 
anticipate that many students will attempt to solve with addition or the improper use of an 
algorithm, so I will use some talk moves to try to guide them to question their own work and 
find another way. At the end, we will share what we did to find an answer. We may not 
arrive at the “correct” answer, but I will get several examples of student thinking that I can 
use to build upon as we move forward with math instruction.    
In Sharon’s rationale we can hear how she is building a theoretical base for her teaching. 

While not explicitly described in her lesson plan, in our debrief after the session we make sure to 
discuss how the instructional decisions made connect to both academic success and cultural 
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competence.  Like the in-class discussions with PTs the debriefs following teaching observations 
are critical spaces for productive talk about the connections between concrete teaching practices 
and the tenets of CRP and CRMSP. Often the PTs themselves are not even aware of how they 
are making these connections in practice. In this case since the use of cognitively guided 
instruction did not necessarily resonate with Sharon’s idea of “culture” she did not recognize 
using it as evidence for CRMSP. During the debrief we highlight how Sharon’s encouraging 
students to share their sense-making, being open to ideas that students share and facilitating 
student-to-student talking opportunities, are actual components of culturally relevant math 
teaching. We want to make sure that Sharon realizes that she is pushing back on the widely used 
math practices of teacher directed algorithmic memorization for problem solving and is instead 
demonstrating an actual practice that supports both academic success and cultural competence. 
Talking with Sharon also creates an opportunity for discussion about the critical consciousness 
tenet that is not addressed. During our debrief with Sharon, like discussions with Ned, we 
brainstorm how the lesson can be extended to interrogate something in the students’ community 
or to investigate an injustice.    

Teacher dispositions. Teacher dispositions refer to the beliefs about, and behaviors toward 
children, science, and/or mathematics that shape teachers’ decision-making and interactions. 
With regard to our own science/math teacher education pedagogy (Willey & Magee, 2019), we 
believe that PTs are more likely to develop an awareness of their, often unconscious, biases if 
they are consistently asked to reflect on how and why they operate as they do. In discussions 
with PTs we often ask: How do you/teachers respond when students offer answers that do not 
match your/their expectations? How did you/teachers respond when students are disengaged or 
resistant to instruction? How do you/teachers perceive how math and science should be taught in 
schools and how are these ideas discussed with students? What behaviors do you/teachers 
display when motivating students to engage in challenging curricula?   

Teacher dispositions can be framed as how educators respond to students at various 
moments. Teacher dispositions, like curricular materials and instructional decisions, are often 
rooted in long-established, oppressive and racist practices that PTs replay with little scrutiny or 
awareness. Intentionally including teacher dispositions has the potential to push PTs to look 
beyond curricular materials used to see CRMSP. Dispositions reveal how underlying beliefs 
about science and mathematics intersect with views of students, and how these beliefs are 
externalized in messaging about the importance of science and mathematics and students’ 
success with the content. It is the identification of these dispositions and further analysis of them 
that offers PTs a way to scrutinize and grow their own teaching practice.   

To illustrate teacher dispositions in practice we share Trevor’s story. Trevor is a 
secondary alternative certification student studying to be a science teacher. After learning about 
CRP and CRMSP he used the categories of curricular materials, pedagogical decisions and 
teacher dispositions to mine his practice for evidence of CRMSP. He shared the following 
vignette in a written assignment that was shared with his classmates:  

After being out of the classroom for over a month (and being out of their medication for a 
longer time) the student was disengaged from what we were doing in class. This student has 
ADHD and with it has difficulty focusing during a note taking session. During this time, I 
gave the student the notes but filled in, so they can work ahead or go back in case they 
missed something and sat them in the back of the room on some comfortable furniture. Since 
doing this, they have taken all of their notes, actively participated during class time, and has 
not distracted other students during this time.  
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Trevor described his actions as supporting the student’s academic success through the use of a 
pedagogical decision - using prepared notes in class and offering a comfortable physical space 
for the student to work. However, in class discussion with Trevor, it was clear that his teacher 
dispositions were also important here and warranted analysis and discussion. By sharing the 
prepared notes and finding ways to include the student honorably, and without humiliation, 
Trevor demonstrated his ability to be supportive and to do whatever needed to be done to re-
engage the student. Importantly he did this without bribes, threats or negative talk to the 
student.   

Trevor’s story presents an opportunity to talk about the often unanalyzed dispositions that are 
so difficult for PTs to name. Bringing out and interrogating the dispositions was a key goal for 
the classroom discussion which occurred during a student teaching seminar. After Trevor shared 
his story in seminar the following question was posed, “How can the frame of whiteness and 
cultural norms help us analyze Trevor’s vignette?” Given that the story doesn’t center race or 
culture explicitly, the PTs were asked to consider the importance of whiteness  and cultural 
norms in this story. Helping PTs see that race influences and informs all that we do as teachers, 
especially the often “invisible” dispositions, is a critical component of the preparation program 
goals. Supporting PTs to see where and how they are negatively impacted by whiteness as well, 
as then they are resistant to its trappings are difficult skills to develop and take time. We will 
often ask, “What does this have to do with Whiteness at all?” The PTs know that Trevor is a 
white male and the student in the vignette is Black. 
Iceberg of Culturally Relevant Mathematics and Science Pedagogy 

The Iceberg of Culturally Relevant Mathematics and Science Pedagogy (see Figure 2 below) 
is used to illuminate the complexities of internalizing and enacting CRMSP in school 
settings, where there is little space readily afforded teachers to innovate and create STEM 
learning experiences grounded in cultural knowledge and experiences. Moreover, the Iceberg of 
CRMSP expands the rigid and problematic boundaries of how science and math teaching and 
learning have historically been characterized.    

Like the Iceberg of Culture, the top of the Iceberg of CRMSP includes visible teaching 
practices that are of low emotional load. These curricular materials, instructional decisions, and 
teacher dispositions are the most accessible for teachers to employ and the least likely to create 
friction in school settings, where teachers are often closely surveilled. For example, common 
practices at the top of the iceberg include, celebrating holidays, using students’ names and 
hobbies in word problems, and using texts and trade books that include diverse characters or 
historical figures. The use of these types of strategies is not bad, and these are, in fact, the ones 
that our PTs often use. What we find worrisome, and what we use the iceberg metaphor for, is to 
help our PTs see that these practices sit at the top of the iceberg in an area of low emotional load. 
They are generally not controversial, and, while not insignificant, they do not really push into 
a critical space where the status quo is challenged and reshaped. Pedagogically speaking, they 
are an acceptable place to start but not where we want our PTs to stay. 

The teacher practices in the middle of the iceberg are more emotionally challenging and 
observed less often in science and math classrooms than those at the top. They represent a level 
of cultural engagement and awareness more emblematic of CRMSP. These practices draw on 
more fundamental aspects of students’ cultural lives, including invisible cultural practices.    
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Figure 2: Iceberg of Culturally Relevant Mathematics and Science Pedagogy 

Finally, the teacher practices closest to the base of the iceberg are the least likely to be 
observed in science and math classrooms and are arguably the most tenuous to enact. These 
moves indicate a strong political and racial consciousness, and a profound understanding of CRP. 
These practices demonstrate a commitment to all tenets of CRP and to a version of science and 
math education concerned with the critical science and math identities of the students. For 
example, one example that we highlight in Figure 2 is “Expect brilliance and resistance in 
all students and demonstrate commitment to challenging oppressive practices (e.g., scripted 
curricula, student disciplinary/punitive practices, exclusion of complex content ideas).” In 
practice this looks like teachers pushing back against skill-based and white-washed curricula 
and demanding that all their students become engaged in learning. 

Discussion and Conclusions 
Mathematics and science educators have been exploring CRP for at least two decades (e.g., 

Barton, 2003; Johnson, 2011; Willey & Magee, 2019; Vazquez Dominguez, Allexsaht-Snider, & 
Buxton, 2018), but it is clear that much work remains to be done. Resistance to change is not 
surprising given the pervasiveness of structural racism, including how mathematics and science 
teacher organizations have long appealed to white sensibilities (e.g., Martin, 2015). Preparing 
new teachers is particularly challenging since most PTs bring to their preparation program 
unchallenged experiences that support westernized perceptions of math and science, white 
supremacy, anti-blackness and a superficial understanding of (cultural) difference. As teacher 
educators immersed in equity work for over 10 years, it is hard to accept the limited progress that 
PTs make in a year or two of a preparation program. Our response to this dilemma has been to 
commit to the framework of CRMSP, trusting in the idea that as PTs explore the tenets and CRP 
holistically, they have the greatest chance of developing long-lasting commitments to racial 
justice and equitable teaching for all their students. We see that time invested in operationalizing 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

549



the tenets, interrogating their own cultural identities, and exploring what CRMSP looks like in 
practice, has the potential to support PTs in their long-term development as critical practitioners.  

The two-pronged approach that we outline here is grounded in our acceptance that PTs 
need support as well as opportunities to understand CRMSP. We do not see these activities as a 
simple protocol, but rather as a way for PTs to understand and internalize the dimensions of 
CRP, develop a stronger sense of their impact, and to serve as a roadmap for how to live them in 
real life. We recognize the inherent danger in “breaking down” a framework into manageable 
pieces as a way to teach it. This is indeed how complex ideas become shallow and superficial 
(Ladson-Billings, 2014). With this in mind we are mindful of constantly returning to the idea that 
CRP and CRSMP are not complete without all of the tenets. Working with PTs to see how the 
concrete and abstract come together - and the theoretical and practical - is the goal of this work. 

Supporting PTs to reflect on and analyze their own teaching through the lens of CRP is a 
critical piece of developing critically conscious teachers. We are hopeful that the approach we 
describe here can guide research investigating mathematics and science teachers’ learning about 
and implementation of critical pedagogy, and be used within teacher preparation programs and 
professional development settings to support humanizing, culturally relevant mathematics and 
science teaching.   
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There has been growing interest in the development of theoretical knowledge on the design 
of learning environments supporting nondominant communities (Bell et al., 2017). We explore 
the ways students are under surveillance (Lugo, 2007) in the mathematics classroom. 
Particularly, how student responses to being under surveillance inform the development of 
equitable mathematical learning environments. We identify mathematics as a social practice 
(D’Ambrosio & D’Ambrosio, 2013), defined by its accompanying context (e.g., school, every 
day, workplace; Moschkovich, 2002a). School mathematical discourse represents a language of 
power (Delpit, 1988). Free use of the word ‘mathematics ’outside of the classroom represents an 
important step toward recognizing non-school mathematics as mathematics and challenging the 
intellectual hierarchy permitting school mathematics dominance over all other mathematics. In 
our research all practices of mathematics are referred to as mathematics, excluding the 
mathematics typically found in US classrooms, which we refer to as school mathematics.  

The white construction of school mathematics (D ’Ambrosio, 1985; Joseph, 2010) carries 
with it a history of cultural erasure (Dowling, 1991; Gutiérrez et al., 2017) and predominantly 
English-only enactment in US classrooms (Gutierrez, 2002; Moschkovich, 2002b). Students are 
constantly building upon their linguistic and mathematical repertoires of practice (Garcia-
Sanchez & Orellana, 2019), and the mathematics classroom is one of many arenas in which their 
knowledge resists disregard and fights to assert and maintain its value. There is violence when 
dominant mathematics and languaging practices encroach upon student borders of their own 
mathematics and language, shifting and reshaping these borders (Anzaldua, 1987). Surveillance 
in the mathematics classroom is influencing how students speak and what they say. Students are 
learning, through responses to seen and unseen work, how to adhere to dominant mathematics 
classroom cultural norms. In order to begin healing from this violence, for students to trust in 
themselves and their instructors mathematically, we must understand how that violence 
manifests in the classroom. Work (Star & Strauss, 1999) students do in the mathematics 
classroom, both traditionally seen and unseen, is one such manifestation. 

We discuss how students are responding to their surveillance and what work should be 
considered in the development of classroom mathematical experiences. In this poster, we analyze 
how elementary Latiné students discussed the surveillance of their language in the context of the 
mathematics classroom, how they expressed the role of mathematics in their world, and how they 
incorporated school mathematical discourse into their communications of mathematics.  
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Rough Draft Math (Jansen, 2020) is a teaching practice in which mathematics teachers strive 
to welcome and integrate students’ in-progress thinking as a valuable part of their learning 
process, inspired by the concept of “exploratory talk” (Barnes, 2008). When enacting this 
practice, teachers foster a mathematics learning environment where students feel safe to share 
their unfinished ideas knowing that they will have the opportunity to revise and refine those 
ideas as they continue to learn. This practice also has the potential to position students as 
mathematical authorities in the classroom and foster students’ sense of ownership of their 
learning. 

Due to the global pandemic, the landscape of education has changed. K–12 math teachers are 
being asked to create highly flexible and engaging learning environments in which all students 
are intellectually challenged. Applying a strengths-based lens to students’ thinking has potential 
to challenge the deficit narrative of “learning loss” that has been prevalent during this pandemic 
(Chen & Krieger, 2022). As an example of changes in teaching, Roman et al. (2021) found that 
secondary mathematics teachers increasingly attended to supporting students’ affective and 
social engagement over time in their instruction as the COVID-19 pandemic unfolded. 

In the spirit of ambitious mathematics teaching (Lampert et al., 2013), “rough draft math” 
can support teachers to engage students with mathematical content, specifically by encouraging 
students to explain their own in-progress thinking and to elaborate on that of their peers. It also 
provides a way for teachers to create a more equitable classroom by publicly valuing all 
students’ thinking at any stage, as well as validating the notion that learning is as an ongoing 
process. The guiding question for this research was: How do K-12 mathematics teachers enact 
Rough Draft Math in their classrooms within the context of the COVID-19 pandemic? 

Data were gathered, by interview, from 32 teachers who participated in book studies about 
Rough Draft Math (Jansen, 2020) from five states around the U.S.A. During the interviews, 
teachers were asked to explain how they enacted rough draft math in their classrooms and to 
share what motivated their use of it. The teachers were also asked to share a digital artifact to 
illustrate their enactments and to reflect on the perceived benefits and challenges associated with 
their enactments of “rough draft math.” Data analysis allowed for the emergence of themes from 
teachers’ responses (Corbin & Strauss, 1990). 

In this poster, we will share unanticipated findings – teachers’ voices about how “rough draft 
math” helped them navigate difficulties of teaching during the pandemic. Teachers expressed 
that they worked to extend grace to their students as they encountered instability and frustrations. 
Teachers reported that their responses to changes in the world included becoming more open to 
welcoming students’ draft thinking and embracing continuous revision of ideas; they reported 
“really needing this” [rough draft math] so that they could meet students as they were, to 
gradually support students to develop their ideas through revising, and to increase empathy in the 
classroom. “Rough draft math” helped teachers move away from a deficit perspective toward 
learners so they could support all students to learn together from one another. 
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Historically, there has been an over-identification of Black students in special education in 
early childhood, even more specifically Black males (Cruz & Rodl, 2018). Black males are 1.4 
times more likely to be referred to special education than students of other racial backgrounds 
(Gordon, 2017). Teachers’ biases about academic success and the behaviors deemed appropriate 
and respectful in a classroom can influence instructional decision-making and students’ 
mathematics learning (Moldavan et al., in press). This study reports on a multi-site, 
interdisciplinary research collaboration where preservice teachers (PTs) from programs of 
mathematics, special education, and early childhood education participated in case-based 
instruction (Decker & Pazey, 2017; Gorksi & Pothini, 2018) to explore racial biases during a 
kindergarten mathematics task. The following research question guided this study: How do PTs 
recognize and respond to race within a case designed to elicit discussion about racial bias in 
mathematics special education?  

Racial noticing (Shah & Coles, 2020) was used as a lens to attend to the various ways PTs 
perceive, make sense of, and react to moments where race and racism occur during a 
mathematics task. We used this framework to guide the case design, which explored a 
kindergarten student named Tay who exhibited typical 5-year-old behaviors while engaging in a 
counting collections task. In the case, a White teacher was frustrated with Tay’s seemingly 
disruptive behavior, which overshadowed his counting strategies and knowledge. When faced 
with the disruptive behavior, the teacher removed Tay from the task, attributing his actions to a 
learning disability. Following the case, the PTs were asked prompts to engage in discussion 
related to the teacher’s instructional decisions and biases as well as Tay’s behavior and 
mathematical understanding of counting. We analyzed the PTs’ responses by first using a priori 
coding to look for instances of race within the responses (Saldaña, 2016). Once those instances 
were identified, we then used in vivo and descriptive coding to further analyze how those PTs 
attended to, interpreted, and responded to race-related phenomena occurring within the case. The 
codes were cross-checked for inter-rater reliability to corroborate the findings (Grbich, 2013). 

Out of the 60 PTs in the study, only 9 PTs (15%) mentioned Tay’s race in their responses. 
Interestingly, the 9 PTs only mentioned Tay’s race in one of the seven discussion prompts. That 
prompt was: How do you think Ms. Caldwell’s implicit bias impacted her instruction with Tay? 
A few PTs (n=4) explicitly stated that Ms. Caldwell had a bias toward Tay due to his skin color, 
and the others mentioned Tay’s race without making a connection to Ms. Caldwell’s race (n=3) 
or an observed racial phenomenon (n=2). In addition, 80% (n=48) of the PTs indicated that Tay’s 
behavior was age appropriate. The other PTs considered Tay’s behavior to be “delayed” or 
“disruptive” from his peers, justifiable for removal from the task. Implications from this study 
indicate that PTs need explicit opportunities and prompts to recognize racial biases, including 
how such biases can impact instruction and students’ mathematics learning. Cases can be used in 
teacher education to disrupt the over-identification of Black males in special education to ensure 
appropriate supports are made to empower rather than dismiss Black males in early childhood. 
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Many scholars have advocated for more sociopolitically oriented research in mathematics 
education (e.g. Adiredja & Andrews-Larson, 2017; Aguirre et al., 2017; Gutiérrez, 2013) to 
address inequities. In that vein, Gutiérrez (2018) created an eight-dimension framework 
highlighting ways to rehumanize mathematics with a distinct call to center the voices of students 
from historically marginalized groups. Further, the gatekeeping function of undergraduate 
calculus courses for STEM majors has been well documented (e.g. Gasiewski et al., 2012), 
especially for marginalized students (e.g. Leyva et al., 2021). This study considers one particular 
dimension of the Gutiérrez framework (2018), namely Theirstories/Culture, and investigates how 
educators can move toward rehumanizing goals for STEM-major students. This dimension aligns 
with teacher moves that acknowledge and center differing ways for people to do mathematics. 

In this mixed methods study, I address two research questions: (1) Is there a difference in 
how students from dominant vs. focal groups view a hypothetical scenario relating to the 
Theirstories/Cultures rehumanizing dimension?; and (2) What can instructors do to implement 
this scenario in ways that positively support students from historically marginalized groups?  

To answer these questions, I analyzed survey data from 153 STEM-major Calculus 2 
students at two PWIs. From this data, two groups were considered, namely the dominant group 
(73 white, cis-male, heterosexual students) and the focal group (80 students who identified as 
being in one or more of the marginalized groups listed above). From the survey responses, 20 
students were interviewed, such that all interviewees self-identified as one or more of the 
following: Native American, Latino/a, Hispanic, Mexican, mixed race, LGBTQ+, or female. In 
particular, this report focuses on the results of one scenario from the survey regarding the 
Theirstories/Cultures rehumanizing dimension (Gutiérrez, 2018), which in part states: Imagine 
that every week in your calculus course, the instructor spends a few minutes in class to discuss a 
current-day Indigenous, Black, Latinx, female or LGBTQ+ mathematician and showcase a bit of 
their work. Students were asked the following three Likert questions regarding this scenario, 
with a 7-point scale ranging from Strongly Disagree to Strongly Agree for each question. A. I 
would likely feel valued and an increased sense of belonging. B. I would likely feel a sense of 
connection between mathematics and my life. C. I would likely feel supported in my learning. 

Using statistical techniques to analyze the Likert questions for this scenario, it was found 
that the distribution of responses to each question were significantly different with a higher 
proportion of students from the focal group reporting positive rankings. Focal group interviewees 
further discussed how this scenario would boost their connections with peers and the instructor 
as well as their confidence by providing role models of mathematicians who looked like them. 
They also voiced concern that this scenario could be dehumanizing if the instructor did not 
implement it thoughtfully and judiciously. Interviewees recommended instructors incorporate 
this practice in ways that don’t interrupt their covering the necessary mathematics curriculum 
and that take an appropriate amount of class time while also providing links to read about the 
mathematicians outside of class time.  
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When I was in kindergarten, which was a long time ago, I was very, very quiet, and because I was 
so quiet, my teacher felt that I just didn't know the content. So, towards the end of the year, she 
recommended to my mom that I repeat kindergarten. My mom asked her, of course, “why?” She 
said, “well, she doesn't know how to read. She doesn't know her numbers.” And so, my mom said, 
“okay well can I come observe tomorrow? Can I come sit in the class?” And so my mom came and 
every question that the teacher asked, she asked me, and I would answer. So I knew all the content, 
but just because I didn't raise my hand or present the information, I was labeled as not knowing it. 
And at the time, as a kindergartener, you don't really think about it [equity or inequity]. But I think 
my mom, just being a person of color, recognized that this is the only Black child in the class, and 
she thinks she doesn't know anything, because she's a Black child and because she's so quiet. And 
the teacher said I didn't know my colors because I colored the sun purple or something. My mom 
said, “why'd you color the sun purple?” I said, “because all the kids were fighting over the yellow 
[crayons] and it wasn't that important to me.” So just being passive and quiet, I just kind of got 
labeled in kindergarten as not knowing. And they did move me on to first grade and the first-grade 
teacher told my mom, like, I definitely should not have been kept back. I was bright. I just kept to 
myself. And I just didn't want to fight over the crayons. 

This presentation highlights a compelling story of dissonance and harmony—Black teachers’ 
early histories as learners of mathematics, and how those early experiences have shaped their 
identity as learners and teachers of mathematics. There is an aligned dissonance in these stories, 
one of inequity and barriers, that has harmonized as they find themselves together striving to 
teach for equity and social justice, to build their students’ positive mathematical identities, and to 
be leaders in their schools. 

Teacher identities are deeply connected to early learning, communities, and professional 
experiences (Aguirre, Mayfield-Ingram, & Martin, 2013). During both individual and focus group 
interviews with 27 elementary mathematics teachers, we asked about those early learning 
experiences, the support and community they had as young learners, and how those have shaped 
them into the teachers they are today. In our analysis of that interview data about histories with 
mathematics learning, we kept returning to provocative stories about navigating inequities and 
redirecting obstacles in order to better serve the students in their classrooms. For this poster, and as 
we prepare for publication, 5 Black elementary mathematics teachers share stories of feeling 
inequities as young learners of mathematics. These stories spoke to us as mathematics teacher 
educators, as qualitative researchers, and as social justice advocates. These inequities, though they 
vary in scope, had a profound impact on the professional trajectory for these 5 Black elementary 
mathematics teachers, as well as their journey towards teacher leadership. Our poster presentation 
will highlight these teachers’ stories, provoking an important conversation about the significance of 
racial injustice on mathematics learners and identity. 
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Philosophers and critical thinkers have advocated for all students to be given access to high 
quality education irrespective of ethnicity or social status (e.g., Adler, 1982; Dewey, 1900; 
Freire, 1970; Ladson-Billings & Tate, 1995). The state of mathematics in the US K-12 education 
system has not experienced successful mathematical reform that projects a unified vision of 
high-quality mathematics instruction (VHQMI) (Munter, 2014). The purpose of this poster is to 
explore some systemic barriers that thwart the best intentions of mathematics educators, 
administrators, and policy makers at all levels of the US K-12 education system, in developing 
and designing around a common vision of high-quality mathematics instruction. We articulate 
three context theories which Edelson (2002) defines as theories that highlight “challenges and 
opportunities presented by a class of design contexts” (p. 113); these include certain types of 
education structures, inequitable distributions of funding, and sociopolitical influences.  

Education systems in the US are decentralized and hierarchical, exacerbating systemic 
barriers; curriculum control is an example of such a barrier. When schools and districts with 
differing fiscal resources make mathematics curriculum decisions but are subject to the same 
state level accountability measures, inconsistent visions are inevitable (DeBoer, 2012). 
Inequitable funding across subsystems inhibits the development of shared VHQMI; because 
funding relies on local revenue, access to curricular resources, high quality teaching, and 
professional development vary, perceptibly, in districts within a state system. Underfunded 
districts and schools become scapegoats when they are penalized for failure to meet unfunded 
mandates and for their inability to provide necessary resources to support instruction (Robinson, 
2015). The sociopolitical nature of education is an additional barrier to the growth of a shared 
VHQMI. Instructional decisions are made by policy makers and stakeholders vying for positions 
of power without regard to the best interests of students, teachers, and educational leaders 
(DeBoer, 2012). For example, the adoption of Common Core State Standards for Mathematics 
(CCSSM) became, according to Larson (2012), a tug-of-war between attention to standards and 
the need for discussions that impact student learning of mathematics. 

We believe that system-wide collaboration and co-designing of implementation resources 
improves equitable access to material and social resources. Research Practice Partnerships can 
offer a solution by bringing together policy makers, researchers, and educators (Henrick et al., 
2017) to co-design and share resources. Such an initiative will stabilize resources for instruction 
and learning for transient students and teachers; all schools can have access to the expertise that 
will be distributed across subsystems.  
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Racially minoritized students are disproportionately tracked into non-credit-bearing remedial 
(NCBR) math classes upon entering college and are often trapped in a cycle of take-fail-repeat. 
While math is positioned as more important than ever before for a diverse pool of learners, 
inequitable access to quality math-learning experiences prevails. This poster features a case 
study of one participant, Marty, a furniture maker and community college (CC) graduate who 
identifies as Latina, whose story may help us see how certain math requirements and learning 
experiences may serve as a dehumanizing force in some students' lives and function to shape 
their mathematical identities. I address the following research questions: 

RQ1: How do CC students who have taken NCBR math identify as math learners and doers? 
RQ2: What mathematical activities or what kinds of discourses do students articulate for 

themselves that evidence the kinds of mathematics identities they associate/identify with? 

My theories and methods privilege narrative in order to center the voices of mathematics learners 
and their interpretations of their experiences, rather than analysis about their experiences. I use 
narrative theory as defined by Langer-Osuna and Esmonde (2017): “[m]athematical identities 
develop as people make sense of their experiences with mathematics and develop stories of 
success and failure and belonging or distance.” I combine this with the frame of mathematics 
identity (as defined by Larnell, 2016), who defines math identity as “...a set of personal 
narrativizations about mathematics-learning or mathematics-teaching experiences that reify, 
endorse, and signify their subjects as a certain kind of mathematics user or doer.” 
Two 90-minute interviews are analyzed using Martin’s Central Themes of Math Identity (2000), 
and findings align with four of the six themes: 

a) the instrumental value of mathematics, (Marty says she doesn’t need math to make furniture, 
when she engages in mathematical problem-solving techniques in her furniture making.) 

d) strategies to learn or participate in formal and informal mathematics contexts, (when Marty 
sees her strategies as mathless, and in her mind is avoiding formal math) 

e) constraints or barriers on participation within mathematics-learning contexts (she describes 
how math hasn’t posed a barrier for her, because she other ways of figuring things out) 

f) one’s own capacity to perform in mathematics-learning contexts. (Marty refers to herself as 
“dumb” and unable to engage in formal math) 

In relation to RQ1, Marty refers to herself as “dumb” (her words) and unable to engage in formal 
math. However, Marty often engages in mathematical activity without realizing she is doing so. 
Marty sees her furniture building as mathless. In relation to RQ2, Marty articulates a discourse of 
math avoidance, despite the fact that she unknowingly uses math every day in her work. 
Implications press for deeper thought about how CCs can implement supportive and appropriate 
math pathways that are best suited to students’ academic and career goals. 
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The purpose of this study was to investigate possible supports and constraints students 
pursuing STEM degrees experienced during their transition from high school to college. Only 
recently have scholars begun to recognize the heteronormativity of STEM and the disconnect 
that can thus occur between the STEM disciplines and students who identify as LGBT+ (e.g., 
Cech & Waidzunas, 2011; Rubel, 2016). Cultural norms can result in invisibility for LGBT+ 
students and ultimately academic and social isolation (Bright, 2016; Cech & Waidzunas, 2011; 
Dzurick, 2018). Gottfried, Estrada, and Sublett (2015) note, “We surprisingly know very little 
about STEM education as it relates to the fuller spectrum of sexual diversity” (p. 66). Creating a 
“gender-complex” education requires greater understanding of LGBT+ students’ experiences, 
and this must extend to STEM (Rands, 2013). This research provides insight into this area, which 
has received little attention to date (Cooper & Brownell, 2016). 

 
Methods 

Recruitment of LGBT+ college students took place through social media posts and 
notifications through LGBT+ college student organizations and community organizations in one 
region of a Western state. Four students pursuing college STEM degrees participated in one-on-
one interviews of 20-40 minutes each with the first author: one lesbian, one gay man, one 
bisexual man, and one male-to-female transgender student. 

Interviews focused on what supports and constraints participants perceived they had in high 
school and college in relation to pursuing a STEM degree and career. The interview transcripts 
were analyzed into thematic categories by identifying main ideas in the data, a process that was 
not linear (Cresswell, 2014; Gay et al., 2012). The hand-coded categories were constructed 
independently and then jointly by the two authors during multiple readings of the data and 
adjusted as needed until they were perceived to represent the data accurately. The categories 
were reviewed for their individual meaning and importance and for larger themes in relation to 
the research question. 

 
Results & Implications 

In terms of encouragement for pursuing STEM, no consistency appeared across the four 
participants. The following influences were reported once each: self, teacher, family, friends, and 
nature of the field. In naming deterrents, participants were equally likely to state incongruence of 
an LGBT+ identity with STEM and the challenge of the subject matter. (Participants often 
named more than one influence in each of those categories.) Suggestions participants offered for 
educators for supporting LGBT+ students in STEM were highly varied and included rigor, 
encouragement, emotional/psychological support (e.g., let them know they are not alone and 
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signal a safe environment), and preparation for possible mistreatment/opposition from others. 
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TANGRAM PUZZLES’ PRIMING OF SQUARES FOR MATHEMATICS EDUCATORS  

Laura Bofferding 
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lbofferd@purdue.edu 

Although solving tangram puzzles is a popular activity for helping students move along the 2D 
shape composition learning trajectory, there is little evidence of what makes one tangram puzzle 
with no internal lines more difficult than another. In this study, 46 educators saw either a square 
in a traditional or non-traditional orientation and then were asked to identify (within 4 seconds) 
where the square puzzle piece would go in a series of 75 tangram puzzles. Results indicate that 
adults were more likely to identify the location of the square if it had more sides outlined, but the 
orientation of the square or number of places it would fit in the puzzle were not associated with 
their success. These results call for similar studies with children and suggest that educators need 
to be careful to look beyond their own impressions when choosing suitable puzzles for students.  

Keywords: Geometry and Spatial Reasoning; Cognition 

As children move through the 2D shape composition learning trajectory, they learn to 
combine shapes, using turns and flips, and explore what new shapes they can create (Clements & 
Sarama, 2009, 2014). To encourage students’ movement through the levels of the learning 
trajectory, teachers can use shape puzzles that increase in complexity, moving from shape 
puzzles—such as tangram puzzles—with each piece separate and outlined, through pieces being 
connected but still outlined, to puzzles where there are no internal lines (i.e., silhouette puzzles) 
and pieces need to be turned (Clements & Sarama, 2009, 2014). However, there are a variety of 
silhouette tangram puzzles, which have varying numbers of sides, piece orientations, and number 
of solutions that might increase or decrease puzzles’ levels of difficulty (Bofferding & Foster, 
2021). When choosing a puzzle to support or a challenge a student, educators might consider 
their own impressions of whether particular pieces are easy to place. This study explores whether 
silhouette tangram puzzles encourage correct or incorrect placement of the square piece based on 
educators’ initial impressions and highlights which factors play a role in their choices.  

Framework 
Given the 2D shape composition learning trajectory (Clements & Sarama, 2009, 2014) and 

an analysis of tangram puzzles (Bofferding & Foster, 2021), there are several factors that could 
contribute to whether the placement of a shape piece is easy or difficult to identify in a silhouette 
tangram puzzle. One of the initial factors that distinguishes difficulty between puzzles for 
preschool children is whether each shape piece stands alone or is combined with another piece 
(Clements & Sarama, 2009, 2014). Therefore, the extent to which each side of the shape pieces 
are exposed, or part of the puzzle outline, could make it easier to identify. Likewise, silhouette 
tangram puzzles with more sides would likely have more sides of the individual shapes exposed 
(Baran et al., 2007) and make it easier to identify where the pieces go (van den Heuvel-
Panhuizen & Buys, 2008). Certain puzzles also can be solved in multiple ways (Bofferding & 
Foster, 2021), which could play a role in how easy placing a particular piece is in the puzzle. 
Another important factor is the orientation of the pieces. Baran et al. (2007) found that adults had 
difficulty placing the square piece in tangram puzzles if the square needed to be placed with a 
corner upward (i.e., a nonstandard orientation for how it is often seen), a difficulty shared by 
children (Clements & Sarama, 2009, 2014). The adults also placed larger pieces in the puzzle 
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first (Baran et al., 2007), making the case of the square all the more interesting, especially as the 
square and two small triangles can make up the large triangle.  

Given the relative difficulty of the square piece and relative lack of research on tangram 
puzzle difficulty, we chose to further investigate how adults identify squares in puzzles. The 
research questions included the following: (1) To what extent are educators’ judgements on 
where the square should go associated with the silhouette tangram puzzles’ number of sides, the 
squares’ number of sides outlined in the puzzle, the squares’ orientation in the puzzle, number of 
locations the square could go in the puzzle, and the orientation in which they were shown the 
square? (2) What characterizes educators’ choices on where the square should go? 

Method 
Participants included 46 educators (e.g., elementary teachers, high school teachers, math 

coaches, professors) and graduate students in education.  Participants accessed a link to a 
Qualtrics survey through a message posted to mathematics education professional groups on 
Facebook and the National Council of Teachers of Mathematics message board. The first part of 
the survey asked participants to indicate their occupation and demographics. Eight participants 
indicated male pronouns, thirty-six indicated female pronouns, and two did not answer. Further, 
41 participants identified as White, one identified as Black or African American, one identified 
as Hispanic, Latino, or Spanish Origin, one did not disclose, and two people did not answer. 

Participants were randomly assigned to one of four versions of the survey, which consisted of 
ten sections. For sections 1-4 and 6-9 participants were shown a square presented in a standard or 
nonstandard orientation and asked to indicate where the square would go in a series of silhouette 
tangram puzzles. Instructions indicated that the square might have to be turned to fit into the 
puzzle. Participants had four seconds to click on the part of the puzzle where the square would 
go; therefore, they did not actually have to fit a square in the puzzle. There were ten silhouette 
puzzles in each section, and if participants saw the square in standard orientation for sections 1-
4, they saw the square in nonstandard orientation for sections 6-9 and vice versa. Two more 
versions of the survey were created by reversing the order of all of the puzzles (except session 10 
was always last). In section 5, participants had to identify where a parallelogram would go in 10 
tangram puzzles, and in section 10, participants were shown an arrangement of puzzle pieces and 
had to pick the silhouette tangram puzzle that had the same arrangement (out of four choices). 
Then, they described how they determined where the square and parallelogram should go in the 
puzzles (see Figure 1 for an outline of the four versions of the survey). 

  

 
Figure 1: Four Orders of the Test Items (10 Items Per Section) 

Of the 80 puzzles where participants identified where the square would go, the square could 
sometimes fit in multiple places. Five of these puzzles had different numbers of sides of the 
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square visible depending on which of the multiple places it could fit, so they were excluded from 
further analysis, leaving 75 puzzles in the analysis. 

Analysis 
To answer the first research question, I grouped participants’ responses for each puzzle into 

two groups: those who saw the shape in a standard orientation and those who saw the shape in a 
nonstandard orientation. Then, I ran a correlational analysis on the percent of participants 
successfully identifying where the square would go and the silhouette tangram puzzles’ number 
of sides, the squares’ number of sides outlined in the puzzle, the squares’ orientation in the 
puzzle, and number of locations the square could go in the puzzle. Further, I classified 
participants’ descriptions on how they decided where the square should go. To address the 
second research question, for puzzles where participants’ overall success rate was lower than 
chance (e.g., 1/7=14% if the square can go in one place), I identified common locations where 
they thought the square should go in relation to their descriptions.  

Results 
Puzzle Features and Participants’ Responses 

Based on the correlational analysis for participants who saw the square in a standard 
orientation, there was a positive and highly significant association between them correctly 
identifying the location of the square and the number of outlines of the square visible in the 
silhouette tangram puzzle: r=.550, p<.001, [.366-.689]. They had higher performance when 
more of the sides were visible. Related to the square outlines, there was also a highly significant 
correlation for identifying the standard square and the number of sides on the silhouette tangram 
puzzle: r=.308, p=.007, [.085-.499]. Puzzles with more sides tended to have more sides of the 
square showing, making the location of the square easier to find. The number of locations that 
the square could go and the orientation of the square in the puzzle were not associated with 
participants identifying the correct spot when shown the square in a standard orientation. 
Participants who saw the square in a nonstandard orientation had similar results. Their 
performance was highly and significantly correlated with the number of outlines of the square 
visible in the silhouette tangram puzzle (r=.551, p<.001, [.368-.690]) and significantly 
correlated with number of sides of the puzzle (r=.275, p=.017, [.049-.471]). Again, number of 
locations and orientation of the square in the puzzle were not associated with them correctly 
identifying where the square would go. 

Overall, 33 of the participants provided one or more explanations for how they decided 
where the square should go. The most popular strategy (from 17 participants) was to look for 
right angles, also described as 90-degree corners. A few elaborated that they started looking for 
four right corners, then looked for two, and then one. Another anticipated strategy (from 14 
participants) was to look for an isolated or obvious square. One person elaborated, “First, I 
looked for a square shape. Then I looked for somewhere a diamond might fit.” Her statement 
suggests that she intentionally looked for the square in more than one orientation regardless of 
how it was shown during the survey. Five participants indicated that they paid attention to the 
sides of the square, looking for parts of the puzzle with the same length sides or part of the 
square “jutting” out.  Seven others tried to make sense of the amount of space the square would 
take up. One unanticipated type of response came from five educators; these people eliminated 
spots based on where other shapes would go: “I tried eliminating corners that could be 
constructed with the large triangle or the parallelogram.” Three others considered “if other 
shapes would hook on to a square to create the figure.” Further, three people mentioned 
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symmetry in the puzzles as playing a role. For instance, one person wrote, “Some of them had so 
much symmetry – with the square being one of a kind…I usually put it in the center.” 
Incorrect Placements 

Out of the 75 puzzles used in the analysis, participants did no better than chance at 
identifying where the square would go on 16 of the puzzles (in seven of these puzzles the square 
would work in two or four spots). Two of the puzzles had squares with zero sides outlined, eight 
puzzles had one side of the square outlined, five puzzles had two sides outlined, and one puzzle 
had three sides outlined. Although 42% of participants identified that the square piece would go 
on the inside of the square puzzle; there were four possible inside positions for the square, so 
they did no better than chance. Their most likely incorrect spot to select was the bottom right 
corner (35%; see Figure 2a). The shark puzzle was interesting because the square was supposed 
to go in the head, a common place in several animal puzzles, but only 19% of participants 
identified it. There was also no strong consensus on where participants thought it should go, with 
16% choosing the small triangle poking out on top, 16% selecting the large triangle space below 
it, and 19% selecting a spot outside of the puzzle (see Figure 2b). Finally, even though the square 
had three sides outlined in the chair puzzle, only 9% of participants identified it. the chair 
appeared to have several spots where it might go; however, 45% of participants thought the 
square should go on the right where a large triangle should go (see Figure 2c). 

 

 
Figure 2: Where the Squares Go (Green) and Popular Locations Participants Chose (Blue) 

Discussion 
Based on these results, those of Baran et al., (2007), and learning progressions (Clements & 

Sarama, 2009, 2014), there is additional consensus that how distinguishable a shape is plays a 
role in how easy it is to place in a silhouette, tangram puzzle. Puzzles where more sides of the 
square were visible were easier for educators to identify, except in circumstances such as the 
chair, where there were additional distractor areas that looked like squares. Educators relied on 
properties of squares (i.e., right angles) to identify places to place the square, as in the square 
puzzle, and also looked for spots where sides were equal, as in the fin of the shark; this suggests 
that a strong focus on shape properties might also help children solve these puzzles when the 
properties align with the shape’s locations. Contrary to results suggested by Baran et al. (2007), 
the participants in this study did not have any difficulty choosing squares based on their 
orientation. One reason Baran et al. (2007) may have noticed difficulty with this is that they 
required participants to rotate shapes using a computer app, which is more difficult than selecting 
a spot where it should go (regardless of its current orientation). Rotating shapes is an area that 
does cause difficulty for children (Clements & Sarama, 2009, 2014), so if adults, as in this study, 
do not struggle with rotating shapes, they may not consider this factor when choosing silhouette 
tangram puzzles for children, especially since there is no classification of puzzles’ difficulty 
based on shape rotation. Likewise, we need more information on whether the rotation and outline 
of specific shapes (e.g., square versus triangle) are more difficult because multiple shapes could 
be rotated or outlined in the same puzzle. Investigating these factors in relation to students’ 
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success in solving the puzzles will help us better understand the relative difficulty of the puzzles 
and what factors to attend to when choosing puzzles to support and challenge students.  
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With the adoption of the Common Core State Standards for Mathematics 12 years ago, the 
content of geometric transformations was shifted from high school to grade 8. In our research 
with middle grades teachers, they often discussed their difficulty in teaching geometric rotations. 
Therefore, we analyzed 444 middle grade students’ responses, across four states, to eight 
rotation questions from the SMART assessment. The results corroborate teachers’ challenges 
with teaching and student learning of rotations. Results indicate that students have a rigid 
understanding of angle measure that may impact their understanding of geometric rotations. 
Although angle measure is introduced in grade 4, we hypothesize that teachers need to provide 
additional opportunities for students to expand their meaning of angle measure. 

Keywords: Geometry and Spatial Reasoning, Curriculum, Assessment, Measurement. 

It has been 12 years since many states in the U.S. adopted the Common Core State Standards 
for Mathematics (CCSSM, 2010), which shifted mathematics content to different grade levels 
and connected mathematics content in different ways than was previously done. For example, 
geometric transformations are now introduced in grade 8 with the purpose to define congruence 
and similarity, which are concepts that continue to build in high school. The use of geometric 
transformations to define congruence and similarity was not typically seen in K-12 mathematics 
curriculum prior to CCSSM, yet it is an intuitive way for students to make sense of congruence 
and similarity (Usiskin, 1972).  

For the past five years we researched teachers’ curricular reasoning (Dingman et al., 2021), 
which is teachers’ reasoning for the decisions they make related to the teaching and learning of 
mathematics. We spent time with middle grades mathematics teachers as they prepared and 
taught lessons in their geometric transformation unit. Many of the middle school teachers 
reported that rotations were the hardest transformation to teach, often stating: Rotations are the 
hardest transformation for students; I am not a rotation teacher; Rotations are so hard for 
students. Although teachers made these statements, we found that teachers seemed to understand 
and emphasize two important mathematical characteristics of rotations: (1) the center of rotation 
and (2) the measure of the angle of rotation. We began to consider why teachers thought 
rotations were such a difficult transformation for students and if students were understanding 
rotations. To investigate student understanding, we analyzed student responses from an online 
assessment (https://smartvic.com//smart/index.htm) designed to reveal student mathematical 
thinking about rotations (Stacey et al., 2013). Our intent was to investigate student understanding 
of rotations based on the content that was taught in the middle school teachers’ classrooms. This 
report addresses the following research questions:  
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1. How well do middle school students do on the SMART geometric rotation assessment?   
2. What meanings of rotations do middle school students display on the assessment?  
3. What unintended meanings may teachers convey to middle school students when 

teaching rotations?   

Theoretical Framework: Mathematical Meanings of Angle 
We utilize Thompson’s conception of mathematical meanings, which are “... images of the 

mathematics they teach and intend that students have” (Thompson, 2016, p. 437), to investigate 
students’ understanding of geometric rotations. Teachers plan and enact mathematical lessons 
with the goal of students understanding specific mathematics content. As teachers enact lessons, 
students interpret both implicit and explicit actions from the lesson to concur with their current 
schema (Piaget, 1968). When students become perturbed in their thinking they often adjust their 
schema, which promotes learning. However, sometimes students interpret implicit actions of the 
teacher or the task that lead students to adjust their schemas improperly.  

Angle measure is a mathematics topic that spans all grade levels. It is introduced in 
elementary grades and students continue to build on their understanding of angles through 
college level mathematics courses. Mitchelmore and White (2000) interviewed elementary 
students to identify how they conceptualized angles in physical settings and how students' 
conceptualization could progress to understanding abstract angles. Their findings suggest that 
students’ standard angle meanings develop with corner physical angle situations (that show both 
rays that create the angle). When a turn was used instead, students had difficulty conceptualizing 
the angle in the situation. Keiser (2004) argues that a static definition “robs students of 
opportunities to experience angles as rotations that might affect their experiences in trigonometry 
and other advanced mathematics courses that require some flexibility in this area” (p. 303-304). 
Moore (2013) argues that teachers and curricula in the United States often define degrees as the 
standard unit of angle measure and then have students use protractors to measure angles, which 
may facilitate relating angles measures, “but it fails to address the quantitative structure behind 
the process of determining an angle’s measure” (p. 227). Devichi and Munier (2013) found that 
the word “angle” typically evokes a right angle. The persistent prototypical image of a right 
angle “opens on the right with arms parallel to the edges of the paper” (p. 3). Browning et al. 
(2007) adds that “even some adults still struggle with identifying 90º angles that do not have at 
least one horizontal ray” (p. 286). 

When presenting angles beyond 90°, curricula may contribute to a persistent image that 
assumes specific angle position. A common image students use to identify angles greater than 
90° are a 12- hour clock or a compass. With both images one ray of the angle is vertical relative 
to the paper (i.e.; 0° North, 12 o’clock) and the second ray created by the students is measured 
clockwise from that initial position. Note that these images maintain the prototypical right angle 
image. While angles can be measured without one ray being perpendicular to the edge of the 
paper, are mathematics curricula or teachers providing students with tasks that require them to 
make sense of angles other than the prototypical right angle image?   

Another incomplete meaning of angle is evident when students use measurement tools 
like protractors. Berry and Wiggins (2001) found that students rely on protractors to measure 
angles without understanding protractors as measurement tools. The authors’ teaching 
experiment with grade 6 students highlighted how little students understood their standard 
protractor when asked to generate a nonstandard unit of angle measurement. Hardison and Lee 
(2020) conducted another teaching experiment with high school and college level students 
providing them with non-standard protractors and asked them which protractor correctly 
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measured angles in degrees. The students thought that equal changes in angle measurement 
amounted to equal changes in the linear distance between non-standard protractor units. These 
students did not demonstrate that equal changes in a circle’s circumference signified equal 
changes in angle measure. It is evident from prior research that K-16 students struggle to 
conceptually understand angle measurement, which may lead to unproductive meanings that 
affect their learning of geometric rotations. 

 Methods 
We report on data from 444 middle school students from 13 teachers’ classrooms across 

four states (AR, MI, NV, UT). Students answered an eight-question online formative assessment 
(http://www.smartvic.com/smart/index.htm) after learning about rotations. The assessment is 
designed to reveal student mathematical thinking about rotations (Stacey et al., 2013). The 
questions assess students’ understanding of identifying 90° rotations, angle measure based on a 
given rotation, whether two figures are rotations, and identifying the center of rotation. One 
question on the assessment had students select a figure and place it so that it represented an 
image rotated 180°. The assessment contains four attributes of rotations that students should 
understand after learning about rotations in grade 8: 1) the distance from the center of rotation to 
any point on the pre-image and image is preserved, 2) identifying the angle measure of rotation 
from pre-image to image, 3) the orientation of the pre-image and image is preserved, and 4) 
rotations mean that the pre-image and image are the same size and shape.  
Data Analysis 

The SMART assessment includes eight questions that reveal student thinking about 
geometric rotations. First, we analyzed all answer choices for each question to identify common 
student thinking. We then matched the common student thinking with four conceptions identified 
by the assessment developers. We created a spreadsheet of all student responses for each 
question part. Two questions (Q1, Q8) on the assessment had multiple parts, which we scored as 
separate questions. Q1 has four parts and Q8 has three parts giving a total composite score of 13 
points with each question part weighted the same. We then calculated a composite score for each 
student based on their correct or incorrect answer choices. With these data we then created 
frequency tables to identify the answer choices that were most prevalent for each question. We 
also grouped similar questions to identify trends in students’ understanding. Finally, we 
identified different mathematical meanings that students have about rotations based on their 
answer choices that may not typically be addressed in mathematical tasks students see in their 
classrooms.    

Only one question on the assessment was open-ended. Figure 1 displays the four “E” options 
students were given for the image. Students selected one image and then placed it on the circle to 
create an 180° rotation from the pre-image (grey). The variability of responses were first coded 
for students’ selected image and location on the circle. This created 31 distinct student responses, 
with 30 variations of an incorrect answer. From there, we categorized these incorrect answers 
into similar meanings. This categorization allowed for trends to be considered across students’ 
varied responses. 
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Figure 1: SMART Question 3 (Stacey et al., 2013) 

Results 
We begin by sharing overall results for the assessment across all students in the study using 

student composite scores. We then elaborate on the different meanings we found across the 
students, regardless of their teacher or the state in which they live. Finally, we present findings 
related to students’ mathematical meaning for rotations that teachers should be aware of as they 
teach topics related to rotations.  
Research Question 1  

How well do middle school students do on the SMART geometric rotation assessment? The 
average composite score for all students was 7.73, with a standard deviation of 3.52. This 
suggests that on average students answered 59% of all questions correctly after being taught 
about rotations. The percentage of correct answers ranged from 46-74% across the eight 
questions. Question 1b, which had students identify the amount of rotation between the pre-
image and image that was rotated 180° was one of the easiest questions for students as 74% 
(n=321) of all students answered it correctly. Conversely question 8a, which had students 
determine if the pre-image and image were a rotation or not and if it was a rotation, then students 
identified the center of rotation was the most difficult for students as only 46% (n=196) of all 
students answered correctly. From these results on the SMART assessment, we conclude that 
students held an incomplete meaning of geometric rotations. Therefore, we further analyzed the 
four attributes of geometric rotations that were challenging for students. 
Research Question 2 

What meanings of rotations do middle school students display on the assessment? We 
illustrate middle school students’ meanings displayed on the assessment with the results of 
questions 1, 2, and 3, which are displayed in Figures 1 and 2. The percentage of all students who 
correctly answered Q1 (parts a-d) completely was 63.6%. The percentage of all students who 
correctly answered Q2 was 68.7% and for Q3, 62.8%. Student responses to these questions 
demonstrate their meanings we identified throughout the assessment. 

One of the most surprising findings was the difference between students who answered 
Q1(parts a-d) correctly and those who missed any part of Q1. Students were given the pre-image 
and had to identify the amount of rotation for the given image (either 45°, 90°, 180°, or 270°). 
The simplicity of the object (i.e., a circle with a radius) allowed this question to assess students' 
understanding of angle measure. The results indicate that when students answered all parts of Q1 
correctly, they scored significantly higher on the remaining questions (F = 99.488, 𝑝 ≤  0.001). 
Students who answered all parts of Q1 correctly also had a higher composite score on Q2-8 (𝑥 =
5.5548, 𝜎 = 2.28444) than those that answered at least one part of Q1 incorrectly (x = 3.4627, 
𝜎 = 2.13336). This indicates that students who have a productive meaning of angle measure are 
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more likely to understand the concept of rotation. 
 

 
      

Figure 2: SMART Questions 1 and 2 (Stacey et al., 2013) 
 

In Q2 (see Figure 2, bottom question) students were given a pre-image (the letter “E”) and 
asked to select the image that is rotated 90°. The answer choices targeted different meanings that 
students form about rotations. Approximately 5.2% (n=23) of all students selected answer A that 
assesses students’ meaning that the size of the image stays the same when it is rotated. 
Approximately 5.4% (n=24) of all students responded with answer D that assesses students’ 
meaning of the orientation of an image when rotated. Answers C and E assess students’ meaning 
of a rotation of 90° from the pre-image. Approximately 4.5% (n=20) of all students chose answer 
C; however 16.1% (n=71) of all students chose answer E. Among the students that answered Q2 
incorrectly, more than half of them chose answers that suggest their meaning of angle measure is 
not productive. While answer choice E has the image with the proper size and orientation, it is 
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rotated to the 3 o'clock position. From here, we conclude that students were more challenged by 
distractor answers that showed an incorrect angle measure than answers that showed incorrect 
orientation or size. We then analyzed student results based upon whether students answered all 
parts of Q1 correctly. We found that 81% of students who correctly answered all parts of Q1 also 
got Q2 correct. However, of the students that did not get all parts of Q1 correct, there were only 
45% of them that answered Q2 correct. This seems to indicate that students who have a 
productive meaning of angle measure are more likely to have an understanding of rotations when 
asked to rotate an object 90° than the students who do not have a productive meaning of angle 
measure.  

Q3 is the open-ended question (see Figure 1). Students were able to place their selected 
image (of four options with varied slant and orientation) anywhere on the circle to represent a 
180° rotation for the pre-image in gray. There was great variety in student responses, which we 
categorized based on their incorrect answers that were associated with different incomplete 
meanings of rotations: (1) an orientation meaning, (2) a distance meaning, and (3) an angle 
measure meaning. A student response was categorized as an incomplete orientation meaning if 
their chosen image did not preserve orientation of the pre-image. Student responses were 
categorized as an incomplete distance meaning if their placed image was located away from the 
given center of rotation (since the pre-image was connected to the center). For incorrect 
responses in which the students’ image is connected to the center of rotation, there may still be 
an overlooked distance meaning based on their final image location. For a simple categorization, 
we categorized a student’s response as “an incomplete distance meaning” if the image did not 
touch the center of rotation. Responses were categorized as an incomplete angle measure 
meaning if their image was not 180° from the pre-image. These were not exclusive groups, so a 
single student response could be categorized in two or three of the meanings. 

Of the students that answered Q3, 7.5% chose an image that suggests an incomplete meaning 
of orientation. By our categorization of the distance meaning, 11.2% of students responded 
without attending to distance preservation, indicating an incomplete meaning of distance 
preservation for rotations. By contrast, 31.9% of students responded with an image placement 
that suggests an incomplete meaning of angle measure. It seems that students have the most 
difficulty, of those three attributes of geometric rotations, attending to the angle of rotation. 
Research Question 3 

What unintended meanings may teachers convey to middle school students’ when teaching 
rotations? Student responses to SMART test Q1, Q2, and Q3 demonstrate implicit student 
meanings of angle measure and the salience of the prototypical angle position. In these questions, 
students were asked about a 45°, 90°, and 180° rotation. Students associated an image halfway 
between the 12 o’clock and 3 o’clock position as a 45° rotation, an image at the 3 o’clock 
position as a 90° rotation, and an image at the 6 o’clock position as a 180° rotation, regardless of 
where the pre-image was located. 

In Q1, students were given the pre-image and identified the angle of rotation (either 45°, 90°, 
180°, or 270°) based on the given image (see Figure 2). Each of the images are shown within a 
circle with the center of rotation as the center of the circle. If the circle were a clock, the pre-
image is located around the 10 o'clock position. When students were shown an image located 
around the 2 o’clock position, many students indicated that the object had rotated 45° instead of 
90°. However, if the pre-image was located around the 12 o’clock or 0° North position, the 45° 
angle would be accurate. Table 2 summarizes the percent of students who selected the different 
angle measures for Q1a. For this question, 25.8% of all students indicated that the angle of 
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rotation was 45°. Regardless of the location of the pre-image, these students seem to associate a 
segment located around the 2 o’clock position with a 45° angle. 
 

Table 1: Question 1 Part A Student Frequencies 
Student Response Percent  

45°  25.8 
90° (Correct) 71.4 

180° 1.4 
270° 1.4 

 
Next, in Q2 (see Figure 2), students were given the pre-image of a rotation with the center of 

rotation and were asked to identify which of five images was a 90° rotation. Table 3 displays the 
percentage of students who selected the different answer choices. Answer E is particularly 
popular, which has the image with the correct size and orientation, but incorrect angle measure. 
However, the distractor showed the image at the 3 o’clock position, 90° from the 12 o’clock 
position but more than 90° from the pre-image’s position. Answer E was chosen by 16.1% of all 
the students. Of the students who did not answer Q2 correctly , 51.45% (n=139) chose answer E. 
Answer E also has the image parallel to the bottom of the screen, instead of tilted like the pre-
image. 

 
Table 2: Question 2 Student Frequencies 

Student Response Percent  
A 5.2 

B (Correct) 68.7 
C 4.5 
D 5.4 
E 16.1 

 
Q3 asked students to choose an image from four options and place the image on the given 

circle to create a 180° rotation from the pre-image (see Figure 1). The image is the same as in 
Q2, which is the letter “E”. About 6.8% (n=30) of all students chose an image that was 
perpendicular with the bottom of the screen, instead of slanted like the pre-image. Figure 3 
shows a few typical student responses that indicate a rigid meaning of angle measure. 
 

 
Figure 3: SMART Assessment Q3 sample student responses with 6 o’clock placement 

 
These students did not attend to a 180° rotation from the pre-image, but seem to interpret 

180° as the location at the base of a circle. The choice of the upright letter E instead of the 
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slanted letter E shows the comfort students have with objects/images that have a parallel side to 
the base of the paper or screen.  

Students appear to have developed an implicit meaning for angle measurement relating 
object position to a clock or compass. Perhaps students infer this meaning through their 
experiences measuring angles. Alternatively, student experiences with geometric rotation may be 
limited to objects aligned with the x- or y-axes on a Cartesian grid. It appears that teachers must 
provide students with opportunities to disrupt this implicit meaning. 

Implications and Conclusion 
Given the results presented on middle school students’ understanding, incomplete meanings, 

and implicit meanings of geometric rotations we recommend teachers explicitly address the 
meaning of angle measure with students in multiple grades starting at grade 4. The incomplete 
orientation and distance meanings of rotation may suggest that students are reasoning 
colloquially with rotations as simply a turn or a flip. Instead, however, the most common  
incomplete meaning was related to the student's mathematical meanings of angles. It is important 
that teachers spend more time on having students understand what an angle is measuring and 
how that measuring unit is different from a linear unit of measure. As can be seen on students’ 
composite scores on the SMART assessment, they are not understanding geometric rotations 
based on one lesson in grade 8; however, more problematic seems to be students’ meanings 
related to angle measure. These grade 8 students rely on the visual placement of an image to 
determine the angle measure, rather than the amount of openness of the angle. While this specific 
meaning of angle measure is introduced in grade 4 of CCSSM, we conjecture that teachers and 
curricula should provide students with opportunities across multiple grades to think about angle 
measure in this way.  

 Many of the students in our study displayed a prototypical right angle meaning of angle 
measure. Students need to be given opportunities to work with angles that are not aligned with 
the horizontal and vertical axes as well as angles that are not 90° to create dissonance in the 
students about their own meaning of angle measure. Without students having the opportunity to 
work with different angle measures they seem to implicitly assume that all angles are the 
prototypical right angle, which may be reinforcing an unproductive meaning of angle. Without a 
deeper understanding of angles, students will continue to struggle with the concept of rotations, 
which may also impact future learning of content for which knowledge of geometric 
transformations is prerequisite. 
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Given the centrality of angle in mathematics curricula and scarcity of research in this area, we 
investigated 64 PTs’ assimilatory domains of angularity by analyzing the angles they indicated 
when presented with four segments mutually sharing an endpoint. In both interview and written 
settings, we found PTs were more likely to recognize convex angles than reflex angles. 
Additionally, they were more likely to assimilate disjoint angles than angles formed via additive 
angular compositions. In particular, we found that PTs were unlikely to recognize full angles or 
additive compositions involving reflex angles. We consider future directions and implications. 

Keywords: Geometry and Spatial Reasoning, Cognition, Preservice Teacher Education 

Teachers play a significant role in students’ mathematical learning. Therefore, prospective 
teachers (PTs) enrolled in undergraduate teacher education programs need opportunities to 
develop strong mathematical content knowledge to support their future teaching (AMTE, 2017). 
Geometry and Measurement are critical domains of mathematics, and, within these domains, 
angle and angle measure are pervasive topics throughout mathematics curricula from elementary 
school through higher education (Barabash, 2017). 

Although many researchers have studied and worked to support prospective and practicing 
teachers’ content knowledge related to other quantities (e.g., length, area, and volume), research 
on teachers’ conceptions of angle and angular measure is scarce (Smith & Barrett, 2017). 
However, we know from the few extant studies in this area that teachers tend to experience 
challenges when it comes to angle concepts (Smith & Barrett, 2017). Prior to the study of 
precalculus mathematics, conceiving of angle measures in degrees is particularly important given 
current conventions and curricular standards. For example, in the Common Core State Standards 
for Mathematics (CCSSM), angle measure is explicitly introduced in Grade 4:  

An angle is measured with reference to a circle with its center at the common endpoint of the 
rays, by considering the fraction of the circular arc between the points where the two rays 
intersect the circle. An angle that turns through 1/360 of a circle is called a "one-degree 
angle," and can be used to measure angles. (NGA Center and CCSSO, 2010, p. 31) 

In subsequent grade levels, robust understandings for angles and their measures are essential for 
topics including the analysis of geometric figures and relationships, constructions, 
transformations, proof, and trigonometry. Given this, more research is needed to understand 
teachers’ conceptions of angles and their measures. Working toward this goal, we focus this 
report on a fundamental question: What angles do prospective teachers recognize when presented 
with multiple line segments mutually sharing an endpoint? We view this question as fundamental 
because PTs’ conceptions of angles as objects will necessarily impact their understanding of 
angular measure.  
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Theoretical Components 
The study reported here was informed by principles of quantitative reasoning (Thompson, 

1994; 2011). A quantity is an individuals’ conception of a measurable attribute of an object or 
phenomenon. Quantities are conceptual entities existing in the minds of individuals. Quantities 
vary both within an individual over time and across individuals. Characterizing a quantity 
involves attending to an individuals’ conception of three interrelated components—an object of 
interest, a particular attribute of the object, and a conceived measurement process (i.e., a 
quantification). Although all three components are important, we focus primarily on the object of 
interest in this report. Specifically, we are interested in PTs’ conceptions of angles as 
mathematical objects and variation in these conceptions.  

To investigate these conceptions, we leverage a radical constructivist (von Glasersfeld, 1995) 
perspective. In this perspective, knowledge is not seen in relation to a “true” understanding of the 
real world (or a mathematical one); instead, knowledge consists of conceptual structures an 
individual has produced to organize experiential constraints (von Glasersfeld, 1997). Within an 
individual, conceptual structures are constructed and modified over time, and the structures that 
persist do so because they remain viable. In other words, the existence of an individual’s 
knowledge implies that the knowledge is useful (for the individual).  

Radical constructivists often offer nuanced characterizations of individuals’ conceptual 
structures via scheme theory, which has roots in Piaget’s (1970) genetic epistemology. 
According to von Glasersfeld (1995), schemes consist of three parts (a) an individual’s 
recognition of a prior situation in a present experience, (b) an executable activity associated with 
the recognized situation, and (c) an expected or beneficial result. In this report, we focus in 
particular on the first component, which is often referred to as assimilation. Regarding 
assimilation, von Glasersfeld remarked, “The mind primarily assimilates, that is it perceives and 
categorizes experience in terms that are already known” (1997, p. 301). Specifically, we are 
interested in specifying the perceptual material PTs assimilate as angle models. In other words, 
we are interested in what PTs recognize as angles and the assimilatory operations of recognition, 
which are crucial steps toward better understanding how individuals quantify angularity. 

Methods 
The findings reported here come from a larger, design-based research (DBRC, 2003; Cobb et 

al., 2003) project. In this project, we designed and iteratively refined task-based lessons for 
elementary and middle-grades PTs enrolled in geometry content courses in order to foster critical 
ways of reasoning about angularity. For more information on the project and lessons, see 
Hardison and Lee (2019). In this report, we focus on a single task we used in two different 
contexts: (a) follow-up interviews conducted approximately one year after eight PTs’ enrollment 
in the course (Method 1) and (b) written responses from 58 different PTs prior to a subsequent 
implementation of the lessons (Method 2).  
Method 1: Follow-up Interviews (Spring & Summer 2020) 

In Fall 2018, we implemented task-based lessons with three sections of elementary and 
middle-grades PTs enrolled in a geometry course. We have argued elsewhere that these lessons 
were successful in engendering productive quantifications of angularity during the course 
(Hardison & Lee, 2019). However, we wanted to investigate whether participants sustained these 
ways of reasoning about angle measure beyond the course. Therefore, we contacted the PTs 
previously enrolled during Fall 2018 to solicit participants for follow-up interviews. Eight PTs 
volunteered, and we conducted interviews with these eight participants during Spring and 
Summer 2020, a little more than one year after the PTs’ original enrollment in the course.  
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Interviews, task, and protocols. The one-on-one, task-based clinical interviews (Clement, 
2000; Goldin, 2000) with PTs were semi-structured and conducted by their previous course 
instructor, which was one of the first two authors. Each interview was approximately 60 minutes 
in length. Due to restrictions associated with Covid-19, each interview occurred remotely via 
Zoom. Microsoft OneNote was used to pose tasks and for PTs to record written work. Each 
interview was video-recorded. Data sources for subsequent analyses included interview 
recordings, PTs’ digitally written work, interview transcripts, and researcher notes. Each 
interview consisted of 6–8 tasks on angle or angle measure, which were either tasks previously 
presented during the geometry course, variations on these tasks, or entirely original tasks.  

Here, we focus on a single original task, How Many Angles, which is shown in Figure 1. We 
designed this task to investigate what perceptual material PTs would assimilate as an angle as 
well as the assimilatory domains for angularity (e.g., whether PTs considered reflex angles to be 
angles in this context). In this task, PTs were asked how many angles they could identify in the 
provided configuration of line segments. If a PT did not spontaneously draw to indicate the 
angles they counted, the interviewer asked the PT to indicate the angles they counted using the 
drawing function. Once a PT committed to a final number of angles, the interviewer pressed by 
asking whether it would be possible to find any more angles. This aspect of the interview 
protocol was repeated until the PT indicated it was not possible to find any more angles.  

 

 
Figure 1: How Many Angles Task 

 
Coding and analysis. Procedures for analyzing the data were established after the interviews 

were conducted. In order to systematically track the angles PTs identified, we created a reference 
and notation for the angles participants considered in the interviews (Figure 2). In Figure 2, 
convex angles are designated C1–C6 and reflex angles R1–R6 with matching enumeration for 
conjugate angles, (e.g., C6 and R6 are conjugate angles in that they share the same sides but have 
different interiors). Designations for full, closed, and straight angles were F, O, and S, 
respectively. We tracked the angles PTs indicated regardless of the indication method. Indication 
methods included usage of arcs, shading, and labels. As shown in Figure 3, we tracked the angles 
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PTs identified, the order in which angles were indicated, and the number of angles indicated. If 
PTs identified more angles after an interviewer press (e.g., “Would it be possible to identify any 
more?”), we continued additional rounds of coding. Each interview was coded by three of the 
authors, codes were compared, and discrepancies were discussed until consensus was achieved. 

 

 
Figure 2: Reference for Angle Names 

 

 
Figure 3: Sample Coding Spreadsheet 

  
Method 2: Written Responses (Fall 2021) 

In Fall 2021, the first author taught two sections of the same geometry content course for 
elementary and middle-grades PTs. Written data was collected throughout the course from 58 
PTs, none of whom were participants in the previous study. The How Many Angles task, with 
minor modification in phrasing (see Figure 4 below), was posed in a written journal prompt, 
which PTs submitted electronically, during the second week of class. This occurred prior to any 
lessons on angle or angle measure. Given the written format of the task, we were limited to the 
responses PTs submitted. So, in contrast to the interview task, we were unable to request 
clarification, track the order in which PTs identified angles, or press for finding additional 
angles. As a consequence, we tracked only the angles PTs indicated and the number of angles 
reported. These responses were coded by two of the authors, and discrepancies in coding were 
discussed until resolution was achieved. We noted the angles indicated using the coding shown 
in Figure 2, with one significant modification described in the paragraph below.  

In their written responses, some PTs indicated a pair of sides without clearly indicating an 
interior (e.g., Figure 4). In these cases, since we were unable to determine whether the PT 
intended to indicate a convex angle or a reflex angle, we adopted the notation P1–P6 to indicate 
the pair of sides that was indicated. For example, we coded the response shown in Figure 4 
below as “P1, P2, P3, P4, P5, P6” since all six pairs of sides were designated in different colors.  
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Figure 4: Indicating Pairs of Sides Without Interiors 

Findings  
We organize the findings in two sections according to the methods described above. We first 

present findings from follow-up interviews and then present findings from written responses.  
Findings from Method 1: Follow-up Interviews (Spring & Summer 2020) 

We begin by discussing the angles PTs identified prior to any interviewer press for additional 
angles (i.e., Round 1). In Round 1, PTs’ numbers of stated angles ranged from four to seven, 
with 50% of the eight PTs indicating six angles were shown in the task (see Table 1).  

 
Table 1: Distribution of Number of Angles Stated in Interviews in Round 1 

Number Stated 4 6 7 Total 
Number of 

PTs 
(% of 8 PTs) 

2 
(25) 

4 
(50) 

2 
(25) 

58 
(100) 

 
The distribution of the angles PTs indicated is shown in Table 2. PTs were more likely to 

indicate convex angles than reflex angles in Round 1 (100% vs. 38%). Thus, PTs were more 
likely to assimilate convex angles than reflex angles. Additionally, we noted that disjoint angles 
(i.e., angles with no perceptual segments penetrating their interiors; C1–C3) were more 
frequently indicated than composite convex angles (i.e., angles that could be formed through 
additive compositions of C1–C3, namely C4–C6). Furthermore, the only reflex angle indicated 
in Round 1 was R6, which was indicated by three PTs. We hypothesize that other reflex angles 
were not indicated since R6 is the only disjoint reflex angle that might be assimilated without 
additive composition. Thus, PTs’ assimilatory domains for angularity appeared not to 
spontaneously include additive compositions involving reflex angles (i.e., R1–R5).  
 

Table 2: Angles Indicated by PTs in Round 1 of Interviews 
Angle Indicated C1 C2 C3 C4 C5 C6 R6 
Number of PTs 

(% of 8 PTs) 
8 

(100) 
8 

(100) 
8 

(100) 
6 

(75) 
6 

(75) 
7 

(88) 
3 

(38) 
 

At the end of Round 1, each PT was pressed by the interviewer for whether it would be 
possible to find any more angles in the figure. Five of the eight PTs indicated that it was not 
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possible; one subsequently entertained R6 as a possibility and discarded it; leaving only two PTs 
who ultimately changed their final number of angles after Round 1. We discuss the responses of 
these two PTs (Lori and Taneem) in further detail in the subsequent sections. 

Lori’s subsequent rounds. At the conclusion of Round 1, Lori had identified 4 angles (C1–
C3 and R6). That is to say, Lori initially assimilated all possible disjoint angles (both reflex and 
convex). In Round 2, she considered whether additive compositions of angles were permitted: 

Lori:   If you can use, like any lines, like in any way that you wanted, you know, like I'm 
not sure if that's allowed, but if you could there's tons of possibilities of angles. 

Int:  Oh yeah? So, what would, what other possibilities would that introduce if that 
was allowed? 

…  
Lori: Okay, does it go from here to here, here to here, this one to here, this one all the 

way back around that'd be 1, 2, 3, 4. And this one would have four – oh, would it be 16?  

 
Figure 5: Lori’s indication of 4 green angles initiating clockwise from the red segment.  

 
Lori’s consideration of using lines “like in any way” indicated that she began to consider all 

possible pairings of the line segments as a way to determine the number of angles shown. Lori’s 
last line of transcript indicates her picking a single initial segment and considering pairing it with 
each of the four segments (including the initial segment she selected) and concluding that four 
possible pairings would be possible. Lori’s conclusion that it might be 16 angles was indicative 
of her awareness that the enumeration of four pairings could be repeated taking any of the four 
segments as the initial segment. Because Lori’s gestures were always enacted in a clockwise 
fashion from the initial segment, she did not double count any of the 12 convex or reflex angles 
(i.e., C1–C6, R1–R6). The additional four angles in Lori’s final count of 16 were four full angles, 
each of which went “all the way back around” and initiated at a different segment. Her 
illustration of the four possible clockwise pairings (in green) with a single initial segment (in red) 
is shown in Figure 5.  

Taneem’s subsequent rounds. At the conclusion of Round 1, Taneem had identified 7 
angles (C1–C6 and R6). That is to say, Taneem initially assimilated all possible convex angles 
(disjoint and additive compositions) and the only disjoint reflex angle. In Rounds 2 and 3, she 
continued considering additive compositions until she had identified all remaining possible 
reflex angles (i.e., R1–R5) and concluded she saw 12 angles in the task. When pressed again 
(Round 4), Taneem considered whether full angles should be counted and how many.  

Taneem:   So, like, if you were just using like this the line [highlighting a line segment in 
pink in Figure 6], I’m thinking about and then, if you just counted that as like, if that was, 
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like the only line here then this would be like a, hold on. [Drawing the circle in green] 
Around there, like a 360-degree angle. I don’t know. 

Int:  Okay. If you, if you counted the one that you just drew, how many would there be 
then? 

 
Figure 6: Taneem indicates a full angle initiating and terminating at the pink segment.  
 
Subsequently, Taneem questioned whether each of the four segments could be used in the 

generation of a distinct full angle remarking, “Well, actually I think that will all be the same for 
all these lines because they all meet up with the same point. So just be like one more angle 
possibly…so it’d be like the same 360-degree angle for all of them.” Taneem ultimately 
determined that if she counted full angles, then only one should be counted, bringing her total 
angle count to 13. Taneem’s decision to count only one full angle, rather than four, was rooted in 
that the four angular candidates shared the same vertex and interior. Ultimately, she decided her 
final count for angles in the figure was 12 as she did not wish to count any full angles remarking, 
“So, I’m not sure if that counts an angle because it’s like 360-degrees. So, it’s like a circle.”  
Findings from Method 2: Written Responses (Fall 2021) 

We now shift our focus to an analysis of 58 PTs written responses to the same task in Fall 
2021. In these responses, the number of angles PTs stated ranged from 3 to 12, with a plurality of 
PTs (47%) stating six angles were shown (Table 3). Only three PTs stated that more than six 
angles were shown, with two PTs stating 7 shown angles and one PT stating 12.  

 
Table 3: Distribution of Number of Angles Stated for How Many Angles Task (Written) 

Number Written 3 4 5 6 7 12 Total 
Number of PTs 
(% of 58 PTs) 

14 
(24) 

11 
(19) 

3 
(5) 

27 
(47) 

2 
(3) 

1 
(2) 

58 
(100) 

 
Regarding the angles PTs indicated, we begin first by noting two findings different from the 

interview setting. First, six PTs (10%) stated the number of angles shown but did not indicate 
any angles on the figure. Second, another nine PTs (16%) did not indicate an interior for any 
angle. We attribute these findings to a constraint in our second research method, namely that we 
could not press for clarification in the written setting. An alternative interpretation is that, for 
some of the PTs, assimilating an angle did not necessarily mean assimilating an angular interior.   

We restrict our remaining findings to analyses of the 43 PTs who indicated the interior of at 
least one angle, either reflex or convex. In other words, we are excluding from subsequent 
analyses the six PTs who did not indicate any angles on the figure and the nine PTs who 
indicated only pairs of sides without indicating an interior for any angle. All of the remaining 43 
PTs indicated at least one convex angle. In other words, convex angles were in the assimilatory 
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domain of angularity for each of the 43 PTs. As shown in Table 4, all 43 PTs indicated C1, C2, 
and C3, while only about half of PTs indicated C4, C5, and C6. We attribute these differences in 
percentages to the disjoint nature of C1–C3 and the composite nature of C4, C5, and C6 in the 
figure. This indicates additive compositions of convex angles are outside of some PTs’ 
assimilatory domain of angularity.  

 
Table 4: Convex Angles Indicated by PTs (Written) 

Convex Angle Indicated C1 C2 C3 C4 C5 C6 
Number of PTs  
(% of 43 PTs) 

43 
(100) 

43 
(100) 

43 
(100) 

21 
(49) 

22 
(51) 

23 
(53) 

 
Reflex angles were indicated less often than their convex counterparts with only 10 of 43 PTs 

(23%) indicating a reflex angle. This suggests that reflex angles are outside of the assimilatory 
domains of the majority of PTs in our study. Moreover, R6 was the only reflex angle indicted by 
these 10 PTs. In other words, none of the 43 PTs indicated R1, R2, R3, R4, or R5 on the 
provided figure. We suggest that the disjoint nature of R6 accounts for PTs assimilation of this 
angle and not R1–R5 since these later angles can be viewed as additive compositions of reflex 
and convex angles. This suggests that additive compositions involving reflex angles are rare in 
the assimilatory domains of the PTs we studied. We do note that, as shown in Table 3, one PT 
stated that 12 angles were shown in the figure, which suggests all 12 possible convex and reflex 
angles noted in Figure 2; however, this PT was one of the six PTs who did not indicate any 
angles on their figures. Finally, we note that none of the 58 PTs indicated consideration of 
closed, straight, or full angles in their responses to this task.  

Brief Conclusions and Considerations 
In this report, we considered PTs’ assimilatory domains of angularity through analyzing the 

angles they indicated when considering four segments with a mutually shared endpoint. In both 
interview and written settings, we found PTs were more likely to assimilate convex angles than 
reflex angles. Additionally, we found PTs were more likely to assimilate disjoint angles than 
angles formed via additive composition of disjoint angles. In particular, we found that PTs were 
unlikely to assimilate additive compositions involving reflex angles. Finally, we note that across 
the 64 PTs from both methods, only two PTs (Lori and Taneem) indicated consideration of a full 
angle and this consideration was occasioned through interviewer prompts. We also acknowledge 
that our results only reflect PTs assimilatory domains of angularity for static angle contexts and 
that dynamic angle models might indicate different assimilatory domains of angularity. Still, 
these results suggest purposeful interventions targeting angular operations may be necessary to 
support PTs conceptions of angularity.  

As noted at the beginning of this report, angle measurement in degrees is typically introduced 
in Grade 4 by taking a full angle as a 360-unit composite. Considering the PTs we studied have 
had 12+ years of experience in school mathematics classrooms, we hypothesize that their 
assimilatory domains of angularity would tend to exceed those of the students they are to teach. 
Of course, more research is needed to verify this hypothesis. Nevertheless, given this hypothesis 
and our finding that PTs tended to assimilate angles in excess of 180° less frequently than the 
convex counterparts, future research is needed to investigate whether approaches that introduce 
degrees using other composite units (e.g., a right angle as a 90-unit composite) might better 
support students in productively quantifying angularity in the context of static angle models. 
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Block building activities help develop students’ spatial reasoning, but few studies focus on the 
development of block building skills beyond preschool. We worked with four kindergarten, four 
first grade, and four second grade students to learn more about their Lego block building. We 
compared students’ accuracy, building strategies, and spatial language as they used manuals 
versus pictures of final Lego structures (presented in color versus grayscale) to build two Lego 
structures. On the first structure, students using color manuals or pictures had an easier time 
choosing correct bricks but had difficulty correctly placing them; students using grayscale 
manuals or pictures had difficulty picking the correct bricks but placed them more accurately. 
By the second design, students did better with the manuals, regardless of color. Students need 
more support to use specific spatial language and building with depth versus height. 

Keywords: Elementary School Education; Geometry and Spatial Reasoning; Instructional 
Activities and Practices.  

The K-2 mathematics standards in the United States emphasize geometric reasoning, which 
includes the ability to identify and describe shapes and to create structures by analyzing and 
predicting the outcome of composing and decomposing shapes (National Governors Association 
Center for Best Practices & the Council of Chief State School Officers, 2010). Children use 
geometric reasoning to make sense of the world through multiple practices (Goldenberg & 
Clements, 2014). The first practice in making sense of the world is classification, which involves 
children identifying the elements in the environment and establishing relationships among them. 
Then, children might use spatial relationships, which help identify an object's location relative to 
reference points by using spatial words (e.g., right, under, top) or numbers (e.g., 3 units away 
from an object). Another practice to understand the environment is noticing the transformations 
of objects at various orientations or distances (e.g., symmetry, rotation). Geometric reasoning 
also entails measuring or counting to identify the relationships between objects in the 
environment. To identify certain properties of the objects, direct measurements (e.g., length, 
area, volume), indirect measurements (e.g., comparing an object to another object being 
measured), or using various units (e.g., one-unit length, block should be placed in the middle) 
might be utilized (Goldenberg & Clements, 2014). 

Play with blocks is a popular early childhood activity that helps children develop a variety of 
concepts, including geometric and spatial reasoning (Casey et al., 2008; Phelps & Hanline, 1999; 
Ramani et al., 2014), part-whole relationships (Gura, 1992), and other early mathematics 
concepts (e.g., aspect of numbers, lines, area surfaces, and volume; Cross et al., 2009; Gura, 
1992; see also Kamii et al., 2004). There is also a 3D shape composition learning trajectory 
(Clements & Sarama, 2009) focused primarily on preschoolers’ block-building; however, 
research on block building beyond the preschool has been limited. Since the development of 
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block-building skills may not be fully established until school age, more research on block-
building behaviors after preschool is needed (Tian et al., 2020). 

Unstructured (free-play) and structured (guided) block building activities are two 
pedagogical approaches to building blocks. Unstructured tasks are more open-ended, allowing 
children to create their own structures without being given specific goals, i.e., “Build the best 
thing you can with these blocks” (Caldera et al., 1999, p. 860). In structured activities, children, 
on the other hand, copy and reproduce a specific structure from a design (Caldera et al., 1999; 
Stiles & Stern, 2009). Structured activities focused on improving skills in sorting and classifying 
blocks and sometimes focused on “...estimation, measurement, patterning, part-whole 
relationships, visualization, symmetry, transformation, and balance” (Casey & Bobb, 2003, p. 2). 
At the preschool level, Verdine et al. (2014) used the Test of Spatial Assembly (TOSA) to 
measure students’ block building accuracy. For these tasks, students must copy a block design 
(e.g., a three-piece Lego structure). However, Lego sets targeted at students ages 5-8 typically 
range from having about 50 pieces to multiple hundred pieces, and the features (i.e., use of color, 
types of pieces, orientation of pieces, placement of pieces) increase in complexity. Therefore, to 
better understand K-2 students’ block building behaviors, we need more investigations into how 
they coordinate these features and how pictures and manuals can support their efforts. 

Framework 
Worked examples are an instructional aid for helping students understand challenging 

concepts. Worked examples show step-by-step solutions to problems that help students 
understand the problem-solving process (Atkinson et al., 2000; Sweller & Cooper, 1985) while 
reducing cognitive load (Paas et al., 2003; Sweller et al., 1998). Analyzing worked examples 
promotes learning in different fields, such as in mathematics (Catrambone, 1998; Congdon et al., 
2018; Durkin & Rittle-Johnson, 2012) and programming (Bofferding et al., 2022; Joentausta & 
Hellas, 2018; Margulieux & Catrambone, 2016). Congdon et al. (2018) investigated first-graders' 
ability to measure using rulers starting at zero or a whole number. The students’ measurement 
conceptions improved when they analyzed worked examples of taking measurements that were 
not aligned with the zero point. 

Worked examples organized by subgoals, on the other hand, may help students learn since 
subgoals make problem steps explicit by explaining the purpose of each step and providing clues 
on how to achieve them (Atkinson et al., 2003; Atkinson & Derry, 2000; Catrambone, 1998). 
Additionally, students can concentrate on the important components in the worked examples 
(Margulieux et al., 2016) and engage in more self-explanations (Catrambone, 1998; Renkl & 
Atkinson, 2002). 

Studies of young children’s block building provide some insight into factors that children pay 
attention to (e.g., spatial language, see Bower et al., 2020; Cohen & Emmons, 2017; Pruden & 
Levine, 2017) or struggle with when recreating block structures (e.g., placement, see Stiles & 
Stern, 2009; Verdine et al., 2017). For example, Verdine et al. (2014) evaluated 102 children's 
(38 to 48 months) spatial assembly skills beyond basic building accuracy as they attempted to 
construct seven models using 2 to 4 Mega Blocks of various sizes and colors. When determining 
if the children's constructions matched the models, the researchers created a dimensions score. 
They scored the accuracy of blocks relative to the base block, taking into account the vertical 
location of the blocks, rotation of the blocks, and the translation or horizontal location of the 
blocks based on the child placing the blocks on the right studs. Based on children's decreasing 
dimension scores, they had difficulty coordinating rotation and translation as the number of 
pieces (e.g., 2 versus 3 pieces) or the spatial complexity (e.g., two blocks sharing the two-studs 
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width of the base) increased. 
Other researchers have investigated the language children use as they work with blocks for 

insight into the factors they find important. Pruden and Levine (2017) investigated boys versus 
girls’ (14-46 months) spatial language in terms of dimensions (e.g., big, little, tall, short), shape 
terms (e.g., circle, square), and spatial features (e.g., curvy, bent). Compared with girls, boys 
produced more spatial words in preschool years. On the other hand, Cohen and Emmons (2017) 
investigated school aged children’s (4-12 years) production of spatial language during structured 
block building activities. Like Pruden and Levine (2017), Cohen and Emmons (2017) identified 
children’s spatial language regarding dimensions (e.g., big, wide, length), shapes (e.g., square), 
and spatial features (e.g., vertical, flat, curvy, side, corner). Additionally, they identified 
children’s spatial language regarding location/direction referring to relative position of blocks 
(e.g., high, under, up), orientation/transformation referring to relative orientation or 
transformation (e.g., rotate, upright, right side up), continuous amount (e.g., a lot, same, half, 
inch), deictic (e.g., here, there, anywhere), and pattern (e.g., order, next, first, increase)(Cohen & 
Emmons, 2017). Children were more likely to produce words in the location/direction category 
than they were in the shape and orientation categories (Cohen & Emmons, 2017). 
Current Study 

Block features (e.g., length, color, shape, size) contribute to spatial complexity, especially as 
the number of blocks increases. The preschool studies involved a few bricks (e.g., up to 4, 
Verdine et al., 2014; up to 8, Stiles & Stern, 2009) and typically focused on children’s final 
structures. Instead, we explored how school-aged children deal with spatial complexity by 
concentrating on the process, particularly what is easy or difficult for them and what they pay 
attention to in relation to language while building 30-40 piece Lego structures. 

Structured (guided) block building can be interpreted as a form of using worked examples, 
where the final structure is shown but also includes all information needed to build it (e.g., 
someone can trace the steps from bottom to top and see the needed pieces). Manuals, such as 
those included in Lego sets, can be interpreted as a worked example with subgoals, where the 
final structure is broken down into smaller chunks to help explain how the pieces fit together to 
make the final structure. Subgoal labels may be of increasing importance as structures increase in 
size and complexity because they make each step explicit. Likewise, colors might reduce 
cognitive load when structural complexity increases by helping children distinguish among 
pieces. 

In this study, we explored: How do students’ composing of Lego structures compare when 
they build with manuals of steps versus a picture of the final structures? (a) What spatial 
language do they use? (b) Which Lego brick features (i.e., location, size, orientation, shape, 
color) are most difficult to coordinate in their building? 

Method 
For this study, we analyzed data from four kindergarteners, four first graders, and four 

second graders in an afterschool program at a Montessori school in the midwestern United 
States. We tried to strike a balance in regard to students’ gender and background. During three 
sessions of a Lego building project, the students composed, decomposed, and fixed Lego 
structures. We met with students individually and video recorded them using two cameras to 
capture the front and back of their Lego structure. Interviewers also asked students questions 
about where they were looking in the picture or manual as they built, how they knew which brick 
to use and where to place it. The data for this study comes from the composing portions of the 
tasks from the project’s first two sessions.  
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In the first session, the students either used a picture (as a worked example) or a step-by-step 
manual (as a worked example with subgoals) to build a Lego structure (see Table 1). We showed 
the picture or manual in color to half of the students and in grayscale to the other half. The 
students built a different Lego structure in the second session but started with half of the 
structure already built. Students who used a manual in the first session used a picture in the 
second session (and vice versa). Likewise, students used a color picture or manual in the first 
session used a grayscale one in the second session (and vice versa). 

 
Table 1: Examples of Pictures and Manuals Used for Each Design 

 Design 1 Design 2 
Order 

1 

  
 Example color pictures Example grayscale manual steps 

Order 
2 

  
 Example grayscale pictures Example color manual steps 

Order 
3 

  
 Example color manual steps Example grayscale pictures 

Order 
4 

  
 Example grayscale manual steps Example color pictures 

  
Analysis 

In order to analyze students’ building process, we first recorded the number of differences 
between students’ structures and the given picture or manual. Differences were divided into 
several categories based on Verdine et al.’s (2014) coding scheme and included students using 
the wrong brick, including an extra brick, leaving out a brick, placing a brick with an incorrect 
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orientation, and placing a piece with an incorrect left-to-right, forward-to-backward, or vertical 
placement. We took notes of the specific bricks students had difficulty with in order to identify 
patterns. Next, we coded the students’ building process based on how they used the bricks, 
pictures, and manuals (see Table 2 for description of codes). During this process, we also took 
notes of changes students made as they built as well as any help they received from the 
interviewers. 

 
Table 2: Codes for How Students Composed the Lego Structure 

Composing strategy Description 
Resource Where students referred when building and explaining: 

Picture of structure The composed picture of the structure (solo picture/in manual) 

Manual of steps Steps in manual for how to compose the bricks 
Lego structure Parts of the Lego structure 

Turning pieces Turned the direction of bricks horizontally 
Flipping pieces Turned the direction of bricks vertically 
Turning structure Turned the direction of the Lego structure 
Direction Built the structure from bottom to top or top to bottom 
Symmetric Built one side and a similar brick on the other side (1 piece, 2 pieces, 

or 3 pieces at a time) 
One side Built up more than 3 bricks of one side, then did the other side 
Lines Used the lines between bricks on the picture 
Counting studs Counted raised dots on bricks to decide the location or brick 

 
Finally, we used Cohen and Emmons’ (2017) classification to code students’ spatial language 

as they built and answered questions about the building of the Lego structures. We did not use 
their pattern category, but we also included a separate color category given our design focus on 
the role of color in building (see Table 3). We calculated the percent of students’ language for 
each of the categories to look for trends. 

 
 Table 3: Codes for How Students Composed the Lego Structure 

Language (Cohen & 
Emmons, 2017) 

Description 

Dimension Length and Width: Students reference the brick size using specific 
numbers (4x2) or in generic terms (e.g., long, big, wide) Height: 
Students reference the brick’s thickness (e.g., thick, thin) or how 
tall it is.  

Shapes Specific: Students use shape words or names of the bricks (e.g., 
square, window, flower) 
Generic: Students refer to the brick using “this” “that” or other 
generic referents 
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Location/Direction  Specific: Students use the number of studs on Lego bricks or 
number of bricks to justify placement 
Generic: Students refer to locations without using numbers (e.g., 
on the top, the other side, on the right)  

Orientation/ 
Transformation  

Students talk about turning or flipping bricks 

Continuous amount  Students use number words to describe number of pieces or the 
count pieces using numbers 

Deictic  Students use generic language (e.g., here, there) to describe brick 
placement 

Spatial features   Students describe the appearance or features of the brick (e.g., 
sharp, slanted, curved, has a shadow, has an eye)  
Generic: Students describe the appearance using vague language 
and actions (e.g., “like this,” “the same,” “looks good”)  

Color (we separated this 
out from spatial features) 

Students refer to the color or shading of a brick (e.g., red, darker) 

Results 
Design One 

When building design 1, all students built from the bottom to the top and used the lines 
between bricks to help guide their building. Further, one student composed several bricks into a 
substructure on one side before building the same sub-structure on the other side; whereas, the 
other 11 students built symmetrically (see Figure 1), placing bricks back and forth between sides. 
Students used more spatial language as their grade level increased, but overall their language was 
pretty generic. They referred to the bricks in general shape terms (27% of language terms) and 
often paired it with a continuous amount (e.g., this one, those two; 24% of terms), leading to 
those categories having the highest percentage. Their language involved specific location terms 
11% of the time and general location terms (e.g., “there”) 13% of the time. Overall, students had 
a median of six differences with the target structure (ranging from 2 to 17) when composing the 
first Lego structure. Students who used the grayscale picture had a total of 38 differences, those 
who used the color picture had 21 differences, those who used the color manual had 16 
differences, and those who used the grayscale manual had 14 differences. Participants who had 
the highest numbers of differences left out chunks of the structure (e.g., the window and 
surrounding pieces or arch and surrounding pieces) and referred to the picture of the final 
structure.  

 

    
Figure 1: Second Grader Building Symmetrically 
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Aside from general differences between students who built using the manual versus the 
picture, there were interesting differences between students who used color pictures or manuals 
and those who only used grayscale pictures or manuals. Students in the color conditions had 
more difficulty placing Lego bricks in the correct spots; their typical difficulties in placing the 
bricks aligned with students not making proper use of the forward/backward dimension (see 
Figure 2). Students in the grayscale conditions had more difficulty using the correct Lego bricks; 
their typical difficulties with pieces involved using the incorrect thickness of pieces, regular 2x2 
bricks instead of taller 2x1 bricks, or incorrect dimensions (see Figure 3). 

 

    
Incorrect: red brick 
does not overhang 

Correct overhang 
for red bricks  

Incorrect: window and 
blue 4x2s set back  

Correct placement of 
window and blue 4x2s 

Figure 2: Difficulty with Placing Lego Bricks 

    

Incorrect: 4x2 curved 
bricks instead of 3x2 

Correct use of 3x2 
curved bricks 

Incorrect: 2 stacked 
2x2 bricks on right 

Correct use of tall 
2x1 bricks on right 

Figure 3: Difficulty with Choosing Lego Bricks 

Design Two 
In general, most students had fewer differences when they completed design 2, which was 

not surprising since they only had to build half of the structure. Students also did not have much 
difficulty figuring out where to start from the manual or general picture. They continued to build 
symmetrically from the bottom up but only eight continued to use the lines between bricks to 
guide them. As with the first design, they continued to use generic language, referring to bricks 
in generic ways (21% of language terms) and paired this with continuous amounts (20% of 
terms). They also continued to refer to locations in generic ways (13% of terms) and increased 
their focus on the bricks’ colors or shading (e.g., darker; 11% of terms). Overall, students had a 
median of two differences in their final designs (ranging from zero to six difficulties, excluding 
one kindergartener who left off 10 bricks). Interestingly, there were fewer differences between 
the color and grayscale conditions with this design. Rather, the biggest difference occurred 
between students who used a manual (who had a total of six differences in their final structures) 
versus those who used the picture (who had a total of 29 differences in their final structures). 
Students’ difficulties were similar to those from the first design. 
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Discussion 
Overall, students who built the Lego structures using the manuals had fewer differences than 

those who built the Lego structures using the pictures. Manuals (a kind of worked example with 
subgoals) may reduce students' cognitive load by engaging them in more self-explanation 
(Atkinson et al., 2003; Catrambone, 1998; Renkl & Atkinson, 2002) and helping them focus on 
transformations (Goldenberg & Clements, 2014). There were benefits and drawbacks to 
students’ building their first design using the color picture or manual. These students were 
largely able to pick out the correct pieces, perhaps aided by the color (see also classification, 
Goldenberg & Clements, 2014) and a reduction to cognitive load (Atkinson et al., 2000; Paas et 
al., 2003; Sweller et al., 1998); however, they had difficulty placing them, especially in relation 
to the forward-backward dimension (see also transformation, Goldenberg & Clements, 2014). 
One potential reason may be that their focus was more on the correct use of pieces vertically in 
relation to each other. Students who saw the pictures and manuals in grayscale may have looked 
more closely at the placement to help them figure out both the pieces involved as well as how to 
place them because they did not have the color cues. The Lego structures were designed to 
emphasize the vertical element, so future work could explore if students have similar color-
placement difficulty with Lego structures that involve a stronger depth element and little vertical 
change. Another possible avenue to explore would be to give students manuals where the pieces 
for the sub-goals are in color but the composed structure is in grayscale. This change might help 
students find the correct pieces but then encourage them to examine the picture more closely to 
interpret how to place the pieces. In fact, by design 2, the advantage of having color appeared to 
wane, and the benefits of the manual, with its sub-goals, took on more importance. Interestingly, 
students were more likely to use general words than specific words to describe the bricks and 
their locations, similar to findings from Cohen and Emmons (2017). Therefore, another fruitful 
avenue may be to help students use specific language when building to determine if that helps 
them have a better sense of the spatial dimensions in the pictures or manuals. 
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We argue that playing board games provides crucial experiences for developing logical and 
spatial reasoning. Drawing on Dewey, growth in spatial and logical reasoning requires the 
accumulation of sufficient experiences in action. Our design-based research involving Grade 4-6 
students playing Qwirkle weekly revealed their significant improvement using three key tile 
arrangements that contributed to strategic play. These strategies occurred as a result of enacting 
intertwining spatial and logical reasoning. Both are necessary for flourishing in mathematics. 

Keywords: Geometry & Spatial Reasoning; Reasoning & Proof; Elementary School Education; 
Instructional Activities & Practices.  

To disrupt the hegemonic discourse of mathematics class as creating arithmetic fluency, 
using commercial games holds promise for mathematics learning through playfulness. Spatial 
reasoning and logical reasoning in abstract strategy games are processes critical for all 
mathematics learning. Games have long been recommended as a way for students to develop a 
meaningful understanding of mathematical ideas before they move toward abstractions (Dieńes̀, 
1971; Skemp, 1993). Only limited systematic research is published on the use of commercial 
games for mathematics learning (e.g., Marshall, 2004; McFeetors & Palfy, 2018; Reid, 2002). 
We argue that playing board games provides crucial experiences for enacting logical and spatial 
reasoning. Play as learning is devalued in compulsory schooling and contexts to develop 
reasoning are needed. Mathematical play is a universal cultural activity (Bishop, 1988) and is 
about the opportunity to flourish (Su, 2020), engage in mathematical thought (Taylor, 2014), 
actively do mathematics (Vogel, 2013) while finding joy as motivation to continue playing 
(Gerofsky, 1999). Contexts which promote the development of reasoning are familiar and 
stimulating in reaching all students – like playing games. Higher achievement in mathematics is 
correlated to spatial reasoning (Young et al., 2018) and logical reasoning (Nunes et al., 2007). 

In this paper, we illustrate the connections of spatial and logical reasoning in the growth of 
game play strategies in Qwirkle. In particular, we ask: How does students’ play with Qwirkle 
occasion moments of spatial and logical reasoning that contribute to strategic engagement? 
Our aim was to understand ways in which students increase strategies for game play as their 
spatial and logical understandings of the game evolved. 

Theoretical Framework 
We ground students’ growth of spatial and logical reasoning in Dewey’s theory of 

experience. Dewey (1938/1997) saw experience as the essence of education, where the aim of 
education is growing. Students learn by (inter)acting in and on the world around them, including 
both physical and intellectual engagement so that the event is meaningful and leads to growth. 
Doing is not sufficient for learning to occur, but students transform activity into experience 
through reflection where they interpretively ascribe meaning to their activity. Learning requires 
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the accumulation of sufficient experiences in action (Kahn et al., 2015; Varela et al., 1991) 
through curated opportunities to ensure each and every learner can engage in a sufficient set of 
educative experiences over time (Francis & Kahn, 2021). 

We view logical reasoning as a systematic pattern of behaviour (Reid, 2002a) to “develop 
lines of thinking or argument” (Brodie, 2010, p. 7) that encapsulates both process and product 
(Jeannotte & Kieran, 2017). As a process, logical reasoning includes specializing, conjecturing, 
representing, generalizing, investigating, explaining, justifying, refuting, modifying, and 
convincing (Lannin et al., 2011; Mason et al., 2010; NCTM, 2000). As a product, logical 
structures include deductive and plausible/inductive (Polya, 1954), analogy and metaphor 
(English, 1997), abductive (Conner et al., 2014) and transformational (Simon, 1996), to name a 
few. Students’ development of logical reasoning follows a trajectory, moving from analysis of 
specific cases to systematic generalizations and proof (Stein & Burchartz, 2006; Tall, 2014). 

Spatial reasoning involves the capacity to relate to and navigate the world, and the ability to 
create and mentally manipulate actual and imagined shapes (Cohen & Hegarty, 2012), recognize 
relations amongst objects (Bruce et al., 2017), manipulate visual patterns (Carroll, 1993), and 
locate shapes as they move along a path (Newcombe & Frick, 2010). It is about being able to 
visualize or picture things in the mind’s eye and to mentally move objects and shapes in space. 
Davis et al. (2015) attempted to collect the many competencies and habits associated with spatial 
reasoning into a model that represents the emergent complexity of spatial reasoning skills as co-
evolved and the complementary nature of the mental and physical actions. Spatial reasoning 
elements include: altering, moving, situating, sensating, interpreting, [de]constructing. 

Methods 
This paper reports on successive cycles of Qwirkle game play as part of a larger design-based 

research project (Cobb et al., 2003; McKenney & Reeves, 2012). The research occurred in one 
elementary school in Calgary (2 teachers and 48 Grade 6 students) and one in Edmonton (4 
teachers and 44 Grades 4-6 students). Qwirkle was played weekly in each class for 60 minutes 
over 4-5 weeks. Weekly sessions included: a class discussion about students’ reasoning from the 
previous week, game play, and students recording their thinking through words and drawings on 
reflection sheets. Data collected included videos, photos, students’ reflection sheets and score 
sheets, teaching materials, and field notes. 

Qwirkle is a tile-laying game of matching six different colors or six different shapes to score 
points (see ultrabaordgames.com/qwirkle/game-rules.php). Qwirkle has been established as 
containing mathematical features, namely combinatorics (Britton et al., 2018), visuo-spatial 
processing (Nyamsuren & Taatgen, 2013), computational thinking (Scirea & Valente, 2020), and 
executive functioning (Allee-Herndon & Roberts, 2018). 

For this report, we limited our analysis to photos, reflection sheets, and field notes generated 
in three grade 6 classes where Qwirkle was played. We conducted two phases of data analysis. 
First, our emergent analysis of reflection sheets revealed three types of tile arrangements for 
game play: 1-line/crane, 2-line/corner, and grid/add-on (see Fig. 1). We coded responses on 
reflection sheets with the three arrangements and collected examples in images from class game 
play. Second, we used Davis et al.’s (2015) elements of spatial reasoning and McFeetors and 
Palfy’s (2017) elements of logical reasoning to analyze the students’ enactment of spatial and 
logical reasoning during their game play, as recorded in photos and field notes. For each action 
or utterance, we coded each manifestation of a spatial and/or logical reasoning element with a 
corresponding verb (e.g., investigate, conjecture, analyze, convince, integrate, generalize for 
logical reasoning; e.g., alter, move, situate, sensate, interpret, (de)construct for spatial reasoning). 
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Figure 1: Strategic Tile Arrangements in Qwirkle 

 Results 
Students’ analysis of game boards for tile placements indicated that they were enacting both 

spatial and logical reasoning (elements indicated in italics, as coded in the data analysis process) 
in their Qwirkle play. Logical reasoning occurred as students investigated possible tile 
arrangements, specialized while considering their hand against the current board, and analyzed 
current and future moves by arranging their hand for maximum points. Spatial elements of 
modelling by deconstructing various paths and imagining how the paths could be reconstructed 
by locating and arranging new tiles informed students’ moves. 

On the weekly reflection sheet, students were asked to analyze a given game board and six-
tile hand by diagramming their preferred move and justifying it. Table 1 shows how quickly 
students eliminated illegal moves and increased awareness of tile arrangements. In the first week 
15% of the students applied the grid on the reflection sheet. By the third week 57% of the 
students chose to make a grid with the tiles. Awareness of a range of tile arrangements increases 
the opportunity to make strategic moves. A repeated measures ANOVA (Huck, 2012) reveals 
that Mauchly’s assumption of sphericity was violated X2(5) = 14.89, p < .05, therefore the 
degrees of freedom were corrected using Huynh-Feldt estimates of sphericity (ɛ= .83). The 
results show a significant change in means F(2.69, 89.93)= 23.68, p < .05. A post-hoc linear 
contrast analysis reveals significant improvement each week F(1,36) = 41.89 p < .05. 

 
Table 1: Cycle 1 Reflection Sheet Results 

  Week 1 Week 2 Week 3 Week 4 
Illegal moves 8 3 0 0 
1-line / crane 12 23  3 1 
2-line / corner 20  4 17 17  
Grid / Add-on 7 12 27 26 
Total (out of 48) 47 42 47 44 

 
While student analysis on reflections sheets was important for demonstrating reasoning, it 

was decontextualized from their immediate experience. However, we observed strategic use of 
the three tile arrangements within the flow of game play. Figure 2 depicts a game in the second 
class of Cycle 2 with analysis of each move. It is apparent that the two players in this game were 
able to employ all three tile arrangements throughout the game. 

We provide commentary on a few key moves. After Move 8, the two students discussed that 
no red tiles had been played yet as they analyzed the board in hopes of drawing a red clover to 
complete the first qwirkle of the game (projecting and pathfinding). In Move 10, Cora’s 
conjecture of playing a red clover expressed as “Jackpot!” when she drew the tile resulted in 
justification of her play. The 15-point creation of the red line of circle-rhombus-clover required 
intersecting, locating, composing, and modelling to complete the maximum score compared to 
any other move possible with the tiles in hand as a corner tile placement. In Move 11, Amy’s 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

604



play of adding the purple line of star-rhombus provided the maximum points of any move 
possible and she was fortunate to have these tiles in her hand as an add-on tile arrangement. 
Between Moves 15 and 16, Amy demonstrates an approach to investigating (modelling with 
arranging, locating,) a tile arrangement to explain (composing and pathfinding) the possible 
point value with her opponent without revealing the specific tiles before completing her turn. 
The students generalized a tile arrangement when they named the red clover placement in Move 
18 as a “corner,” as it became an object of class conversation because a similar play had yielded 
a double-qwirkle for Amy the previous week as a great payoff of 24 points for one tile played. 
Amy convinced her classmates and it became a coveted board arrangement to set up in advance. 
While Move 22 also involves the coordination of two lines similar to Move 18, the students were 
adamant that this was a distinct tile arrangement as they refuted a claim of similarity (composing 
and arranging). In Move 24 where Amy placed the green line of square-circle at the bottom of 
the picture to score a qwirkle and two more points. The qwirkle at 12 points is such a large bonus 
that strategically it may supersede other tile placements that make a board “crowded” as Amy 
explained (modelling). We observed a common strategy across students, where they first looked 
for a qwirkle and then added extra tiles to the line to increase their score on a single turn. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Observing Placements in the Flow of a Game 

Discussion 
What came as a surprise to us as researchers is how just a few experiences with Qwirkle led 

to significant gains in strategic play through developing and using a variety of tile arrangements. 
Over the weeks of Qwirkle play, students were able to analyze the board and make strategic 
plays to maximize scoring. Knowing the three tile arrangements and having sufficient 
experiences in playing the game provided more possibilities for strategic game play. 

Our study reveals that students were continuously drawing on key components of spatial and 
logical reasoning. We found it incredibly challenging to tease apart spatial and logical reasoning. 
In fact, it is not meaningful in understanding students’ actions and mathematical thinking to 
separate moments of spatial reasoning and logical reasoning. Rather, we see these two 
specialized types of reasoning as intertwined. We conjecture that these two types of reasoning 
evolve together. That is, students became more proficient in spatial reasoning as they used 
processes of logical reasoning, and the converse is the case. We suggest that not only further 
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research needs to be conducted to explore this conjecture, but that teachers are invited to use 
intertwined spatial and logical reasoning tasks in classrooms. Such tasks invite the complexity of 
mathematics and simultaneously invite each and every learner into flourishing in mathematics. 
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This document presents the central aspects for the design of authentic tasks and some 
results obtained during their implementation, which were applied to a group of six students 
belonging to the Consejo Nacional de Fomento Educativo (CONAFE) of the state of 
Puebla. The analysis considered the previous knowledge of the students and their 
interaction with each of the tasks. The results obtained show that students present 
misconceptions regarding the relationships between the concepts of area and perimeter 
and the use of extracurricular knowledge is evidenced when working with authentic tasks 
assisted by a 3D software. 

Keywords: Authentic tasks, extracurricular knowledge, Area and perimeter  

En este documento se presentan los aspectos centrales para el diseño de tareas auténticas 
y algunos resultados obtenidos durante su implementación, las cuales fueron aplicadas a 
un grupo de seis estudiantes pertenecientes al Consejo Nacional de Fomento Educativo 
(CONAFE) del estado de Puebla. En el análisis se tuvieron en cuenta los conocimientos 
previos de los estudiantes y su interacción con cada una de las tareas. Los resultados 
obtenidos muestran que los estudiantes presentan concepciones erróneas con respecto a 
las relaciones existentes entre los conceptos de área y perímetro y se evidencia el uso de 
conocimientos extraescolares cuando se trabajan con tareas auténticas asistidas por un 
software de realidad virtual.  

Palabras clave: Tareas auténticas, Conocimientos extraescolares, Área y Perímetro. 

Different researchers, teachers, and educators in mathematics throughout history have 
shown interest in the teaching and learning processes of mathematics in the classroom. This 
interest has exposed that some of the contend in geometry are presented as finished 
products, promoting the memorization of formulas (Araya & Alfaro, 2010).  

The area and perimeter are geometric concepts that are presented explicitly and 
implicitly in many situations of daily life of the students, however, Amadeo and Yáñez 
(2006) affirm that the students have a confusion between these concepts, due to use of 
meaningless formulas. Gómez and Reyes (2015) highlight the fact that many of the students 
perform the proposed exercises in class, ignoring the origin of the algorithms used. In 
parallel, D'Amore and Fandiño (2007) emphasize that the concepts of area and perimeter of 
flat figures present from the scientific field some elements in common, but many others are 
only assumptions created by students and even by the teachers themselves.  

However, it should be noted that extracurricular knowledge plays a role of great 
relevance within the training process of students, because better results are obtained when 
extracurricular knowledge is integrated with that acquired in the classroom (Schliemann et 
al., 2002). Similarly, Palm (2009) mentions that great contributions to the field of 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

608

mailto:romario.montanor@gamil.com
mailto:hruizestrada@gmail.com
mailto:jslisko@fcfm.buap.mx


mathematics education could be generated if authentic word problems can be incorporated 
into the classroom.  

Considering what has been mentioned so far and the fact that one of the places where 
technology has influenced considerably is in the school and in turn, the work of the teacher 
(Parra, 2012), this word poses the following research question:  What designs of authentic 
tasks assisted by the Sweet Home 3D software that simulate aspects of students' daily lives 
under the theoretical approach proposed by Palm and Nyström (2009), promote the learning 
of the relationships between the concepts of area and perimeter of flat figures? 

To answer this question, this study set as a general objective: 

 Design authentic tasks assisted by sweet home 3D software that simulate aspects of 
students' daily lives under the theoretical approach proposed by Palm and Nyström, 
which promote the learning of the relationships between the concepts of area and 
perimeter of flat figures. 

 To achieve the general objective set, the following specific objectives are proposed: 
 Characterize some aspects of the theory of authentic task situations and some 

mathematical elements, which strengthen the work with the concepts of area and 
perimeter in extracurricular contexts. 

 Articulate the aspects of the theory of authentic task situations and the mathematical 
elements in the design of authentic situations assisted by the Sweet Home 3D software, 
which comply with the aspects raised by Palm and Nyström.  

 Analyze the data obtained in the implementation of authentic tasks and determine if the 
students managed to establish the existing relationships between the concepts of area 
and perimeter.  

Theoretical and Referential Framework 
Theory of authentic task situations 

This is a local theory put forward by Dr. Torulf Palm in 2009. In it, word problems are 
considered as situations that are real for a group of people who are immersed within the 
described context and that allow to establish a connection between abstract mathematics 
and mathematics that are immersed in real life, which can be manipulated to eventually be 
proposed in the classroom as authentic tasks.  

This theory seeks to link extracurricular mathematics with mathematics learned in the 
classroom through simulations of real-world situations. However, it is to be recognized that 
not all aspects surrounding a problem situation can be simulated in a word problem. 
Therefore, Palm and Nyström (2009) present three aspects and two sub-aspects that allow 
us to identify an authentic task, which are described below:  

Event: The statement proposed in the task must be a phenomenon, event or incident that 
has existed in real life or failing that may occur, in such a way that the student recognizes 
the situation as an extracurricular environment and allows him to locate himself mentally in 
that situation. 

Question: The questions that arise within the school task must have a close relationship 
with real life, since within the simulation it is essential to establish a concordance between 
the questions posed in the school task and the context of the phenomenon or event proposed 
in the event of the task.  

Information/data: When word problems are raised, they not only describe the event, but 
also provide relevant information that will allow the solution of this, they also have 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

609



explicitly and / or implicitly the conditions of the problem, the possible models to be built 
and even the purpose of the situation.  

Specificity of the data (sub): In the event proposed in the task, it is not spoken in 
general terms, but rather, it seeks to give all the specific characteristics of the simulated 
situation, describing with proper names the people, objects and places that are linked to the 
situation. 

Purpose in the figurative context (sub): The purpose of the task must be clear to the 
student within the simulated situation as it would be within the real-life situation, since the 
considerations that the student considers for the solution, will be framed with the purpose 
of the task.  
Mathematical Referent 

Fandiño and D'Amore (2009) present in detail the relationships between the concepts of 
area and perimeter of flat figures, which can be summarized as follows:  

1. At parity of sides and perimeter, the one with the largest area is the regular polygon. 
2. Among several isoperimetric polygons, the one with the largest area is the polygon 

with the most sides. 
3. Among all isoperimetric figures (figures in general), the circle is the figure that has 

the largest area. 

However, it is necessary to clarify what is meant by area and perimeter in this research 
and understanding that it is not possible to take for granted the definition of a mathematical 
object if the preceding elements that allow us to understand its beginning are unknown 
(Fandiño & D'Amore, 2009). 

Perimeter conception: It is called perimeter to the measurement of the contour of a 
figure, this is measured in linear units which represents a length (for example: m, cm), 
understanding that the perimeter is different from what is understood by contour or border 
of a flat figure, since the contour is a closed line, and the perimeter is the measure the same.  

Area Conception: The area is a two-dimensional measure accompanied by a 
conventional measure (for example: m2, cm2), understanding that the area is different from 
the surface, since the surface is a part of the plane and the area is the measure of said 
surface, understanding that parallel to the perimeter the area is usually defined as a 
synonym of surface.  

Research Method 
This research is qualitative, more specifically it is a descriptive case study. Six students 

belong to the Consejo Nacional de Fomento Educativo (CONAFE) of the municipality of 
Tzicatlacoyan in the state of Puebla. The students belong to an agricultural community, 
which is in the process of expansion, for this reason, in the community there are many 
houses in the process of construction, an aspect that turns out to be of relevance for the 
design of authentic tasks, since the students have been involved in the building process.  

The study subjects do not have computing devices in their homes and have only made 
use of two computers installed in the Educational Institution, for this reason their 
knowledge is basic regarding the use of these devices. Another aspect to highlight is the 
fact that students only have access to the internet in the Institution since there is no 
coverage of this service within the community.  
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For the data collection, the following were used: a test of previous knowledge, which 
allowed to know if there are erroneous conceptions regarding the relationships between the 
concepts of area and perimeter; three designs of authentic tasks, which were constructed 
using their everyday language and situations that occur or came to occur within the 
Community; housing designs in Sweet Home 3D software, in this software students work 
on a 2D plane and visualize their effects in a 3D plane, students here can build or rebuild 
homes; video recordings, which allow the in-depth study of students at the time of the 
implementation of the tasks; and a semi-structured interview, with this it is possible to 
know how authentic the task was for the students.  

Results and Conclusions 
Initially, a Knowledge Test was presented to the study population, which allowed to 

identify that the students consider that there is a direct relationship between the concepts of 
area and perimeter, since, the students consider as true that if you have two iso-perimeter 
plane figures then these figures are necessarily equi- extensive,  in turn, if you have a figure 
A with a greater perimeter than a figure B, then figure A has a greater area than figure B, it 
is also possible to identify that within a set of iso-perimeter figures they cannot identify that 
the figure that has the largest area is the figure with the largest number of sides. All these 
initial data agree with the assumptions that students can generate, which were raised in 
D'Amore and Fandiño (2007).  

About working with authentic tasks, the students when facing them in one way were 
able to identify that these contexts emulated in the verbal problem are related to their 
environment, this aspect allowed them to think about the situation and forget the academic 
part, seeking to propose solutions that fit their reality. From this application you can rescue 
the fact that the software allowed them to quickly visualize the present magnitudes of their 
constructions. The following figure shows some of the students' work:  

 

  
Figure 1. Student design in Sweet Home 3D Software. 

This research is still in the process of analyzing the data collected, however, the 
information analyzed so far shows that working with authentic tasks allows the student to 
use their extracurricular mathematical knowledge and even their knowledge acquired in the 
classroom. In addition, these authentic tasks when linked to the use of the software allow 
the student to think differently than they would in a verbal problem that is worked on pencil 
and paper, since this software not only allowed them to have a realistic image of the 
environment that is described in the task, but also, it allows them a quick view of the 
considerations they come to have as possible solutions.     
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Dynamic geometry environment (DGE) offers a wide range of tools for its users to create and 
interact with geometry diagrams. In this paper, I propose a framework to characterize the 
geometry diagrams learners create in DGEs. This framework considers a learner’s approach to 
creating a geometry diagram (i.e., perceptual-based, measurement-based, construction-based, 
and transformation-based), the driving force that guides the learner’s specific actions in a DGE 
(i.e., tool-driven, and property-driven), and constraints in the resulting diagram (i.e., drawing, 
underconstrained, overconstrained, and appropriately constrained). Examples of student work 
on one geometry construction problem are used to illustrate the use of the framework.  

Keywords: Geometry Diagram; Dynamic Geometry Environments; Geometric Construction 

Geometry diagrams are a distinct mode of mathematical representation and communication 
that uses the visual features of specific drawn objects to convey meaning about abstract 
geometric concepts. Geometry diagrams are both signs that represent abstract geometric concepts 
and visual images that offer graphical-spatial properties, which can mobilize the perceptual 
activities of an individual. The duality of geometry diagrams has been discussed by researchers 
in mathematics education (Fischbein,1993; Laborde,2005). A geometry diagram can be used as a 
visual representation of a geometric figure, which displays the theoretical properties that define a 
geometric figure. Meanwhile, a diagram also has other properties that are not necessitated by the 
defining properties of the geometric figure but rather depend on the spatiographical features of 
the diagram. Geometry diagrams are thus ambiguous representations of sets of geometric 
concepts and their relations. The ambiguity of geometry diagrams as a semiotic mode of 
representation has urged researchers to examine the use of diagrams in teaching and learning 
geometry (Duval, 1995; Herbst, 2004; Alshwaikh, 2010; Jones, 2013; Dimmel & Herbst, 2015). 
However, learners’ activity of constructing geometry diagrams is less examined. This is probably 
due to the limited number of tools to create a geometry diagram and the static nature of a 
geometry diagram in a paper-and-pencil environment. Traditionally, a geometry diagram is 
created through either freehand drawing or a straightedge-and-compass construction. In both 
cases, the diagram is static and cannot be manipulated directly.  

The appearance of dynamic geometry environments (DGEs) not only allows users to create 
and then manipulate geometry diagrams with a wide range of tools but also adds a dynamic 
feature to them. DGEs like the Geometer’s Sketchpad (GSP) and GeoGebra contain multiple sets 
of tools, such as free drawing tools, construction commands, measuring commands, and 
transformation commands. As a result, a user can create a diagram by using different DGE tools. 
Moreover, once a DGE diagram is created by a sequence of primitive commands chosen by the 
user, the diagram can be modified by dragging an element of it while still preserving all the 
geometric relations used in its construction. Therefore, when a user drags an element of a DGE 
diagram, it changes according to the geometry of its construction rather than the wishes of the 
user. In other words, once created, DGE diagrams become quasi-independent from the user and 
react to manipulations of the users by following the laws of geometry. This separates DGE 
diagrams from paper-and-pencil diagrams, which are statics and can be slightly distorted by 
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students in order to meet their expectations. The variety of tools and the dynamism in a DGE 
enrich learners’ construction activities. When asked to create a DGE diagram that represents a 
geometrical object, learners can be guided by different knowledge, take distinctive approaches, 
and use various tools, which can result in different diagrams. Therefore, it is important to 
develop a theoretical tool to analyze the different geometry diagrams in DGE that are intended to 
represent the same geometrical figure. In this paper, I will first present a framework for 
characterizing geometry diagrams in a DGE and then use the framework to describe some 
diagrams that students created with GSP.  The affordances of the framework will also be 
discussed.  

A Framework for Characterizing Student-Created Diagrams in DGE 
The framework was developed based on a review of existing research on learning geometry 

in DGEs and my teaching and research work in DGEs (Figure 1). In developing the framework, I 
considered the possible approaches students could take to create a diagram, the driving force that 
guides students’ specific actions in a DGE, and the constraints in the resulting diagram.  

 

 
Figure 1: A framework for characterizing student-created diagrams in DGEs 

Approaches to Create a Geometry diagram 
Dynamic geometry software includes both free drawing tools and construction commands 

that intend to create a dynamic version of a compass and a straightedge. The accessibility to 
different sets of tools in a DGE allows learners to take different approaches to create a geometric 
figure. The preference for drawing over construction for beginning users of dynamic geometry 
software suggests that visual perception can sometimes dominate diagram creation in a DGE. 
Moreover, in the process of moving from drawing to construction, learners are likely to develop 
different construction techniques. Laborde (2005) differentiated between soft and robust 
constructions. A robust construction is a construction that passes the “dragging test” and is 
obtained by using geometrical objects and relationships characterizing the construction. In 
contrast, a soft construction is a partial construction in which variation is part of the construction 
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itself, and a property becomes evident only at the point at which another property is satisfied. In 
discussing the validity criterion of constructions in DGEs, Stylianides and Stylianides (2005) 
identified measurement constructions as constructions that pass the “dragging test” but violate 
the Euclidean construction restrictions because of their use of measurement. Measurement 
constructions are different from the constructions that are compatible with straightedge-and-
compass constructions. The two types of robust constructions suggest two distinct construction 
approaches in DGEs. Meanwhile, geometric transformations and the invariant properties under 
them offer a new approach to study geometry opposite to the classical synthetic geometry 
approach. The transformation commands in DGEs make it easier for learners to construct 
geometric objects through translation, reflection, rotation, and dilation. For instance, Villiers 
(2016) used transformation tools in GSP to construct geometric objects when solving the classic 
treasure-hunt problem and its generalization. Yao (2020) described how one preservice 
mathematics teacher used the rotation tool in GSP to construct an equilateral triangle with its 
vertices on three parallel lines.  

Based on the above literature, I propose that learners could take at least four approaches to 
creating a diagram in a DGE. In a perception-based approach, a learner relies on visual 
perception to create the intended diagram. The use of free drawing tools and dragging is 
prominent in this approach. A learner who takes a measurement-based approach relies heavily on 
numerical measures to create the intended geometric figure. In this approach, the use of visual 
perception and primitive commands is heavily guided by numerical measures. In a construction-
based approach, a learner mainly relies on geometric properties and primitive construction 
commands that are compatible with straightedge and compass to construct the intended 
geometric figure. A learner who takes a transformation-based approach largely relies on 
properties of transformations and transformation commands in a DGE to construct the intended 
geometric figure. 
Driving Force of Actions 

Studying the behaviors students exhibit when working with DGE tools can lead to insights 
about the appropriateness of their use of those tools and their understanding of geometric ideas. 
Researchers have observed that some students use technological tools judiciously and some 
students use technological tools inappropriately (Ball & Stacey, 2005). This indicates that 
students might use digital tools differently even though they take the same approach to create 
diagrams in a DGE. Guin and Trouche (1999) used work method to characterize students’ 
behaviors when using technological tools and identified five work methods for students’ use of 
symbolic calculators: random work method, a mechanical work method, a resourceful work 
method, a rational work method, and a theoretical work method. These different work methods 
reveal different roles technological tools and mathematical knowledge can play in students’ 
mathematical activities. Based on whether students’ actions with technology are guided by 
mathematics knowledge and their ability to interpret and predict results produced by technology, 
Hollebrands (2007) described reactive and proactive strategies as two distinct ways that students 
interact with tools in a DGE. Students who use a tool reactively perform an action based on what 
is produced on the computer screen rather than their knowledge of the geometric figure to be 
constructed. As a result, they might not be able to fully anticipate what may result from their 
technology-mediated action prior to performing it. In contrast, students who use the tool 
proactively are guided by their knowledge of the geometric figure to be constructed. They are 
likely to anticipate specific results of their technology-mediated action.  
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Based on the above literature, I argue that the dominant force that drives student actions in 
DGEs can be either the technological tools or knowledge of geometry. In tool-driven actions, 
students are guided by instantaneous feedback from the use of DGE tools rather than their 
knowledge of the geometric figure to determine their subsequent actions. It is parallel with Guin 
and Trouche’s mechanical work method and Hollebrands’ reactive strategy. In property-driven 
actions, students are driven by what they know about the properties of the geometric figure to be 
constructed and then choose DGE tools to produce these properties. These properties can be 
visually salient properties that define the geometric figure (e.g., a parallelogram has opposite 
sides congruent and parallel), less visually salient properties that still define the geometric figure 
(e.g., diagonals of a parallelogram bisect each other), properties that are derived from the 
defining properties but not sufficient to define the geometric figure (e.g., two pairs of adjacent 
angles of a parallelogram are supplementary), or properties that are inadequate or irrelevant to 
the geometric figure. In other words, students’ actions can be driven by defining properties, 
derived properties, and inadequate or irrelevant properties. Property-driven actions are parallel 
with Hollebrands’ proactive strategy. 
Constraints in a Diagram 

The dynamism of DGEs has provoked researchers to consider the robustness of a DGE 
diagram under dragging. Finzer and Benett (1995) established four categories (i.e., drawing, 
underconstraint, overconstraint, and appropriate constraints) for diagrams built in a DGE and 
used the case of drawing a parallelogram to exemplify these categories. Scher (2005) applied 
these four categories to assess squares created in a DGE. In this paper, I define the four 
categories according to the relationship between a diagram and the theoretical properties that it 
intends to represent. A drawing is a geometric object that perceptually appears to be the intended 
geometric figure but possesses none of its property under dragging test. It can easily be messed 
up by dragging. An underconstrained diagram is a geometric object that is constructed by using 
one or more properties that are necessary but not sufficient to define the intended geometric 
figure. Like a drawing, an under-constrained diagram can appear to be the intended geometric 
figure but collapse when particular elements are dragged. Laborde (2005) used soft construction 
to describe this type of geometric figure in a DGE. An overconstrained diagram is a geometric 
object that is constructed by using one or more properties that are sufficient but not necessary to 
define the intended geometric figure. Since excessive constraints are imposed on it, when 
dragged, an overconstrained diagram can only generate a subset of all the possible configurations 
of the intended geometric figure. An appropriately constrained diagram is a geometric object 
that is constructed by using properties that are necessary and sufficient to define the intended 
geometric figure. Laborde (2005) used robust construction to describe this type of geometric 
figure in a DGE. When dragged one or more elements of it, a diagram created by a robust 
construction maintains all of its significant properties and is possible to generate all the possible 
configurations of the intended geometric figure.  

Example of Student-Created Diagrams 
To illustrate the affordance of this framework, I will use some geometry diagrams that 

learners created with GSP when solving the following construction problem:  
The center of a circle is accidentally erased, can you find it? 

In addition to the above statement, a circle with its center hidden was shown in GSP.  These 
geometry diagrams were collected through a larger research project that used a sequence of task-
based interviews to examine the dynamic relationship between instrumented activities and the 
development of mathematical knowledge in solving geometric construction problems. The 
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participants of this research project were a group of preservice secondary mathematics teachers 
from a large public university in the United States. All of the participants reported that they had 
not taken any geometry courses after high school. Before participating in this research project, 
these preservice teachers (PSTs) had learned how to use the GSP through a course that focused 
on teaching and learning mathematics with mathematics action technologies. Figure 2 presents a 
few of the methods that the preservice teachers used to find the center of a circle. The geometry 
diagrams in these methods are used to illustrate how the framework can be used to characterize 
student-created diagrams. 

 

 
Figure 2: Methods for Finding the Center of a Circle 
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 In Method 1, the PST was guided by the knowledge that the radius of a circle is 
perpendicular to the tangent line through its endpoint on the circle's circumference. He drew a 
line 𝑗 and made it appear to be tangent to the circle through dragging. After marking the 
“tangent” point 𝐴, he constructed a line 𝑘 perpendicular to line 𝑗 at point 𝐴, which intersects the 
circle at point 𝐵. After creating segment 𝐴𝐵̅̅ ̅̅ ,  he found the midpoint of 𝐴𝐵̅̅ ̅̅  and claimed that the 
midpoint was the center of the circle because 𝐴𝐵̅̅ ̅̅  was the diameter of the circle.  In this method, 
the PST was guided by a property that could define the center of the circle. However, he relied 
on perception when creating a tangent line of the circle. Therefore, the diagram in Method 1 can 
be characterized as a perception-based approach driven by a defining property that resulted in a 
drawing. In Method 2, knowing that the diameter is the longest chord of a circle, the PST drew a 
chord, measured its length, and then gradually dragged an endpoint of the chord to make it the 
longest based on the numerical measure on the screen. After that, he found the midpoint of the 
chord and claimed that it was the center of the circle. Although guided by a defining property of 
the center of a circle, he relied on measurement to create the longest chord (i.e., diameter) of the 
circle. Therefore, the diagram in Method 2 can be characterized as a measurement-based 
approach driven by a defining property that resulted in a drawing.  

In Method 3, the PST was driven by the idea that all points on the circle are equidistant to its 
center. After measuring the radius of the given circle by using the “Radius” command under the 
“Measure” menu, she chose a point 𝐴 on the circle and the length of the radius of the circle to 
construct a new circle by using the “Circle by Center+Radius” command under the “Construct” 
menu, intersecting the given circle at point 𝐵. Using point 𝐵 as the center and the length of the 
radius, she then constructed another circle by using the “Circle by Center+Radius” command 
again. She claimed that the point of intersection of the two new circles would be the center of the 
given circle. In this method, the PST was guided by a property that defines the center of the 
given circle. To use this property, she turned to measurement since the length of the radius of the 
circle was not given. The method did result in a diagram that passes the dragging test. Therefore, 
the diagram in Method 3 can be characterized as a measurement-based approach driven by a 
defining property that resulted in an appropriately constrained diagram.  

In Method 4, the PST was initially guided by the idea that a square and its circumscribed 
circle share the same center. However, she did not know how to inscribe a square in the given 
circle. As a result, she planned to first make a rectangle and then adjust the side lengths to make 
it a square. After drawing a chord 𝐴𝐵̅̅ ̅̅  of the given circle, she constructed a perpendicular line 𝑗 
of 𝐴𝐵̅̅ ̅̅  from point 𝐵 intersecting the circle at point 𝐶, and then a perpendicular line 𝑘 of 𝑗 from 
point 𝐶 interesting the circle at point 𝐷. This resulted in a rectangle 𝐴𝐵𝐶𝐷. After constructing 
the diagonals 𝐴𝐶̅̅ ̅̅  and 𝐵𝐷̅̅ ̅̅ , she noticed that the point of intersection of the diagonals of the 
rectangle seemed to be the center of the circle. While dragging the vertices of the rectangle, she 
observed that it remained to be the center of the circle. As a result, she claimed that the point 
intersection of the diagonals of an inscribed rectangle is the center of the circle. In this method, 
the PST only used construction commands and dragging. Her actions were initially informed by 
a mathematical idea but then heavily driven by the instantaneous feedback from dragging. The 
feedback from dragging made her realize that she had already constructed the center of the circle. 
Therefore, the diagram in Method 4 can be characterized as a construction-based approach that 
was tool-driven and resulted in an appropriately constrained diagram. 

In Method 5, guided by the idea that the hypotenuse of a right triangle inscribed in a circle is 
the diameter of the circle, the PST decided to inscribe a right triangle in the given circle. He drew 
a chord 𝐴𝐵̅̅ ̅̅  of the circle and then constructed its perpendicular line from an endpoint 𝐵 of the 
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chord. He then connected the endpoint of the chord and the point of intersection between the 
perpendicular line and the circle to create a right triangle 𝐴𝐵𝐶. He then found the midpoint of the 
hypotenuse 𝐴𝐶̅̅ ̅̅  of the right triangle 𝐴𝐵𝐶 and claimed that it was the center of the circle. In this 
method, the PST relied on a property that defines the center of the circle and only used 
construction commands to locate the center. Therefore, the diagram in Method 5 can be 
characterized as a construction-based approach driven by a defining property that results in an 
appropriately constrained diagram. In Method 6, guided by the idea that the perpendicular 
bisector of a chord of a circle passes through the center of the circle, the PST drew a chord of the 
circle and constructed its perpendicular bisector by using the “Midpoint” and “Perpendicular 
Line” commands. Then, she drew another chord and constructed its perpendicular bisector in the 
same fashion. The point of intersection of the two perpendicular bisectors was marked as the 
center of the circle. This process of finding the center of the circle shows that the diagram in 
Method 6 can be characterized as a construction-based approach driven by a defining property 
that results in an appropriately constrained diagram. 

Discussion and Conclusion 
In this new framework, I consider learners' approaches to creating a geometry diagram, the 

mathematical knowledge that guides specific actions, and constraints in the resulting diagram. As 
a result, it provides a tool to describe geometry diagrams in a DGE that goes beyond any one of 
the three dimensions in the framework.  

In DGEs a solution to a construction problem is often considered valid if the diagram is not 
possible to be messed up by dragging. In other words, a DGE geometry diagram is appropriately 
constrained when it passes the “dragging test”. However, the framework in this paper shows that 
an appropriately constrained diagram can be constructed in different ways. First of all, 
appropriately constrained diagrams can be created by using a measurement-based approach, a 
construction-based approach, or a transformation-based approach. For example, in the problem 
of finding the center of rotation, although both Method 3 and Method 5 produced the exact 
center of the circle, they took different approaches. While Method 3 relied heavily on 
measurement tools, Method 5 used construction tools. The existence of different approaches to 
constructing an appropriately constrained diagram has raised the issue of validity for diagrams in 
a DGE because the "dragging test" does not distinguish between diagrams involving 
measurement and diagrams involving only those software tools that are compatible with 
straightedge and compass. Stylianides and Stylianides (2005) introduced the compatibility 
criterion, which states that a DGE diagram is valid if and only if it maintains its geometrical 
properties under dragging and its construction process does not violate the DGE-construction 
constraints equivalent to those imposed on straightedge-and-compass constructions. The 
proposed framework can capture the subtle differences among appropriately constrained 
diagrams that are built upon different approaches.  

Moreover, appropriately constrained diagrams can be created based on different geometric 
knowledge. For example, when finding the center of a circle, both Method 5 and Method 6 took 
a construction-based approach and yielded a construction for the center of the circle, but the two 
methods were built on different mathematical ideas. While Method 5 was guided by the idea that 
the hypotenuse of a right triangle inscribed in a circle is a diameter of the circle, Method 6 was 
built on the property that the perpendicular bisector of a chord of a circle passes through the 
center of the circle. The knowledge that is mobilized to create a geometry diagram reveals 
students’ understanding of the geometric object to be constructed and how it connects with other 
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geometric ideas. The proposed framework affords us to account for the mathematical knowledge 
mobilized in the diagram construction process. 

Appropriately constrained diagrams can also result from actions driven by the instantaneous 
feedback from the use of construction commands and dragging in DGE. For instance, when 
finding the center of a circle, although the preservice teacher in Method 4 did not anticipate that 
the intersection of diagonals of the inscribed rectangle would give the center of the circle, the 
instantaneous feedback from dragging made her realize that she just constructed the center of the 
circle. This suggests that an appropriately constrained diagram might not build on a learner’s 
appropriate knowledge of geometry. Rather, it might be created unintentionally by the indirect 
invariants in DGE (Mariotti, 2014). This is particularly true when a learner is not aware of the 
invariant relationship resulting from the use of one and more construction commands. The 
proposed framework can capture this nuance among appropriately constrained diagrams. 
Meanwhile, teachers may leverage such realizations as opportunities to support the making and 
proving of conjectures. 

The proposed framework also provides a tool to identify methods for creating geometry 
diagrams that are only possible in DGEs. As shown in Method 2 for finding the center of a circle, 
an appropriately constrained diagram can be created through a measure-based approach that is 
driven by a defining property of the intended geometry figure. However, this method is only 
possible in a DGE because it is impossible to measure the radius of a circle without knowing its 
center in a paper-and-pencil environment. Indeed, any method that is characterized as a measure-
based approach driven by a defining property that results in an appropriately constrained diagram 
is unique to DGEs. Another unique method in DGEs is dragging an underconstrained diagram to 
create the intended geometry figure. Barabash (2019) suggested adding dragging as a geometric 
construction tool in DGE because it is an application of the continuity reasoning and 
intermediate-value theorem to geometry. In essence, dragging is the continuous variation of one 
of the parameters of a problem, which is only made possible by dynamic mathematics software.  

Creating, interpreting, manipulating, and communicating with geometry diagrams is an 
important part of geometry learning. Dynamic geometry environment offers a wide range of 
tools for its users to create and interact with geometry diagrams. This paper proposes a 
framework to characterize a geometry diagram in a DGE that considers a learner’s approach to 
create the geometry diagram (i.e., perceptual-based, measurement-based, construction-based, or 
transformation-based), the driving force that guides the learner’s specific actions in a DGE (i.e., 
tool-driven, or property-driven), and constraints in the resulting diagram (i.e., drawing, 
underconstrained, overconstrained, and appropriately constrained). Examples of student work on 
a construction problem are presented to illustrate the use of the framework. These examples 
show that the proposed framework can capture the subtle but important differences among 
geometry diagrams that learners create in a DGE. The examples also show that the framework 
can be used to identify methods for creating geometry diagrams that are only possible in DGEs 
and moments of instrumental synergy. 
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The purpose of this study was to investigate K-5 in-service teachers’ geometric reasoning. 
Twenty teachers completed two types of problem sets. The first consisted of three problems in 
which participants were to examine three geometric figures, mark which did not belong, and tell 
why. In the second, participants were to answer five questions on a Venn diagram with three 
intersecting circles (classify figures in each circle and then draw a figure that would fit into the 
intersection of all three and one that wouldn’t fit into any (with explanation). Developing 
geometric thinking involves understanding polygons as a class (Battista, 2007; Clements & 
Battista, 1992). Understanding polygons and relationships among polygons draws on students’ 
ability to recognize and modify relevant attributes of polygons. This process also involves the 
ability to transform a non-example of a polygon into a polygon (Bernabeu et al., 2021). 

Methods 
Participants were 20 in-service teachers in a small city in the West. All were engaged in a 

mathematics professional development project. 
We analyzed written work by marking the eight responses for each participant as correct, 

partially correct, or incorrect and writing notes about possible student thinking. We discussed 
these until we agreed on our assessments of participant work.  

Results & Implications 
Influencing factors in participants’ work were content knowledge (e.g., knowing specific 

polygon and angle types), reasoning (ability to identify similarities and differences, to name the 
most constrictive class describing a set of figures, such as “triangles” versus “polygons,” and to 
interpret a Venn diagram), and visual perception (e.g., noticing key mathematical features 
without relying on visual impressions, such as having “diagonal sides” or a “short base”). 

Participants operated at different levels of geometric reasoning (e.g., Pujawan et al., 2020) 
ranging from use of visual perception to properties of figures to classes of figures (with most 
falling into the second two categories). Participants who based decisions on properties of figures 
relied almost entirely on the sides (number and relationship to each other) with little 
consideration of angles. This points to the importance of that which can be directly observed. 
This can limit an ability to perceive and examine geometry problems more flexibly and could 
interfere with reasoning about shapes. Indeed, creativity in perceiving likenesses and differences 
among figures where several answers were possible was very limited (two examples where this 
did occur involved two isosceles and one scalene triangle that was noted by almost all 
participants, albeit worded differently, but one participant identified the scalene as different due 
to not having line symmetry and another chose the figure that had no obtuse angle). Finally, a 
key issue noted was lack of language precision (e.g., “straight three-sided shapes” instead of 
“triangles” and “all have right angles” instead of all have “at least one right angle”). 

We conclude that teachers need more work with content knowledge, reasoning (visual, oral, 
textual), and language precision in relation to teaching elementary geometry (e.g., Shockey & 
Pindiprolu, 2015). 
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Geometry is a highly spatial domain of mathematics with studies investigating the 
relationship between spatial skills and geometry from both psychometric accounts (Newcombe, 
2013) and domain-centric analyses (Battista et al., 2018). While spatial ability has been linked to 
general mathematics performance (Newcombe, 2013) and STEM achievement (Shea et al., 
2001), little is known about the impact of spatial anxiety on specific domains of mathematics 
such as geometry. Spatial anxiety, a type of domain-specific anxiety, is a relatively new 
construct linked to spatial ability (Malanchini et al., 2017) and varies considerably among 
individuals (Lyons et al., 2018). Recently, studies have begun to investigate its links to 
mathematics (Schenck & Nathan, 2020), but these studies have focused on standardized 
assessments that encompass various mathematics domains. To the best of our knowledge, no 
studies have investigated the links between spatial anxiety and geometric reasoning, which 
drives the research question: What is the relationship between spatial anxiety and geometric 
reasoning as seen in verbal insight, and transformational proof? 

Methods 
The dataset includes undergraduate students (N = 94) recruited from a large Midwestern 

university in the United States. First, participants completed a series of demographic and 
covariate measures including a truncated spatial ability assessment based on the Spatial 
Reasoning Instrument (Ramful et al., 2017) and the Novel Spatial Anxiety Scale (Lyons et al., 
2018). Next, participants played an embodied videogame, The Hidden Village, in which 
participants gave a verbal response to the veracity of eight geometry conjectures (Nathan & 
Swart, 2021). Videos were transcribed verbatim and time stamps were added to split the 
transcripts into eight conjectures for coding. This segmentation resulted in 752 videos clips to be 
coded. Verbal insight and transformation proof were given a 0/1 binary code based on the coding 
scheme developed by Authors (Nathan et al., 2021). 

Results and Discussion 
For verbal insight, the interaction between spatial ability and spatial anxiety was significantly 

associated with a decrease in the chance of producing correct verbal insight. Gender and spatial 
ability scores remained significantly associated with correct verbal insight. The results for the 
model predicting transformational proof showed that the interaction and spatial anxiety scores 
were significantly associated with a decrease in the chance producing a transformational proof. 
Gender and spatial ability scores also remained significantly associated. These results suggest 
that spatial anxiety may not have a direct effect on geometric reasoning but appears to moderate 
effect of spatial ability on geometry reasoning. This effect may need to be considered by 
researchers and educators who are looking to improve students’ geometric reasoning.  
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Following the introduction of embodied cognition by Lakoff and Núñez (2000), several studies 
have expanded body-mind unity in mathematics education (Arzarello & Robutti, 2008; Radford, 
2009; Nemirovsky & Ferrara, 2009; Roth, 2010). We desired to investigate mathematical 
embodied cognition in student’s body movements, including choreographic choices based on 
mathematical ideas, where the students did not share a Science, Technology, Engineering, and 
Mathematics (STEM) background at their undergraduate level. This study, inspired by the 
aesthetic geometrical nature of the human movement categorized and perceived in the Laban 
Movement Analysis tradition (Dörr, 2003; Wahl, 2019). To address this purpose, we suggested 
the following research question: How do non-STEM background students perceive, demonstrate, 
leverage, and perform geometrical concepts and patterns in their moving bodies? 

Methods 
In this exploratory mixed-method study, we offered an elective interdisciplinary undergraduate 

course called "World of Pattern: Geometry, Body, and Beauty", where eight students are enrolled 
and the course is co-taught by faculty in STEM Education and Dance, both with unique specialties. 
For this study, some course experimental activities were developed in the classroom, which 
consisted of recognizing, planning, drawing, and performing movements. The course is still in 
process, and we video record and analyze students’ body movements, their performances, gestures, 
and communications. The theoretical lens of perceptuomotor integration (Nemirovsky, Kelton & 
Rhodehamel, 2013) is used to articulate mathematical embodied communications. The figure 
below illustrates a portion of the student’s planned performance while maintaining an awareness 
of spatial and geometric patterns and directions, followed by dancing in an octahedron. 
 

     
Figure 1 : Geometry is used to communicate, plan, and perform body movements. 

Conclusion 
The initial analysis of the students' actions and feedback shows the students search for patterns, 

directions, and dimensions in the space even beyond the obvious primary ones; they also create 
algorithms, plan, and perform sophisticated 3D geometrical shapes—individually or jointly—and 
propel themselves through the space in specifically patterned ways. We also found the 
interdisciplinary approach promoted spatial reasoning skills and awareness, which are vital in both 
geometry and dance. Furthermore, we saw the emergence of challenging creative ideas based on 
the concept of interconnectedness between mathematics and art, demonstrating mathematical 
embodied cognition with implications for both mathematics education and dance. 
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Accurately measuring and estimating spatial quantities is important for success in and out of 
school and is contingent on grasping core concepts of measurement (Lehrer, 2003). In particular, 
tiling, or successive measurement without gaps, is critical for measurement (Leher, 2003). The 
concept of tiling is that measurement must be done from an acute start point such as the edge of 
an object. The current study explores whether and how elementary and college students use a 
start-point marker strategy for measurement, as an indicator of their understanding of tiling. 

As part of a larger study, we compared the measurement strategies of 15 novice (elementary) 
and 25 advanced (college) learners (Harrison, 2019). Students were given a basketball, which 
had a diameter of 9.5 inches, and asked, “Can you estimate the diameter of this sphere?” 

Students were provided with a 6- or 12-inch stick to help. Students were video recorded, and 
researchers coded measurement strategies during problem solving. Here, we analyze whether or 
not students used a start-point marker strategy, defined as: “the edge of the object lining up with 
the end of the reference tool” (Harrison, 2019). We compare the use of start-point markers across 
students’ accuracy on the task by percent error, calculated by subtracting the correct answer from 
the given answer, dividing it by the correct answer, and retrieving the absolute value. We ask: 1) 
How often do college and elementary students use a start-point marker measurement strategy? 2) 
How does using a start-point marker strategy affect measurement accuracy? 3) Does the 
accuracy differ between college and elementary students? 

First, we found that 72% of college and 67% of elementary students used a start-point 
marker. Second, a 2 (age: college vs. elementary) × 2 (start-point marker: yes or no) ANOVA 
revealed a significant main effect of age, F(1,36) = 18.00, p < .001. College students' average 
percent error (M = 8.39, SD = 5.88) was significantly lower than elementary students' (M = 
20.71, SD = 19.94). Next, we found a significant main effect of the start-point marker, F(1,36) = 
9.04, p = .005. Those who used a start-point marker (M = 10.04 , SD = 9.64) had a lower percent 
error than those who did not (M = 19.9, SD = 20.08). Third, we found a significant Age × 
Strategy interaction, F(1,36) = 10.30, p = .003. When participants used a start-point marker, there 
were no significant differences in accuracy between age (p = .79). However, when participants 
did not use a start-point marker, elementary students had a significantly higher percent error than 
college students (p < .001). There were no differences in percent error between college students 
based on strategy. However, elementary students who used a start-point marker had a 
significantly lower percent error than those who did not ( p= .002).  

The results from this study have implications for instruction and practice in classrooms. We 
found that when novice learners use a start-point marker strategy, they have a much more 
accurate measurement estimation, adding to the literature on concepts of measurement as a 
critical component of instruction (Lehrer, 2003). Researchers should expand this work with a 
larger sample to see if this strategy is successful in other contexts and to identify other successful 
measurement strategies that might inform classroom practice. 
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The concept of scale/scaling is important in mathematics as well as in other disciplines and 
in real life. In mathematics, the concept development of scale/scaling derives measurements 
from qualities and links to spatial reasoning and multiple mathematical topics (e.g., proportion). I 
observed a group of 8th-grade girls (n=10) completing a scaling task in an afterschool STEM 
club; the girls were asked to scale the original design by a factor of two. Eighty percent of the 
girls scaled the original design in one direction or two directions. See Figure 1, the sample of 
student work showing that she only scaled the original design in one direction. 

 
Initial Design Student Work  Correct Model 

 
 
 

 

  

Figure 1. Scaling Task 

I interpret this student’s work as her having understood the concept of scaling by a factor of 
two to mean using double the original number of blocks to make the design bigger. She chose to 
make the design wider, showing her incomplete understanding of the concept of scale/scaling. 
My observation prompted me to investigate how scale/scaling is described and used in the 
mathematics curricula, including the official curriculum and the intended curriculum (Remillard 
& Heck, 2014). Here, I only focus on scale/scaling in the official curriculum (i.e., CCSSM). 

Exploring the Concept of Scale in CCSSM 
I chose CCSSM because, as an official curriculum, it is widely adopted and greatly 

influences the intended curriculum (Reys, 2014). Throughout CCSSM, the word scale appears 
nineteen times, scaled appears three times, and scaling appears twice. These appearances are 
distributed throughout multiple topics: (a) measurement, in the area of Measurement and Data, 
CCSSM expects students to use scaled pictures and scaled bars to represent and interpret data; 
(b) multiplication, in Grade 5, CCSSM expects students to “interpret multiplication as scaling 
(resizing)” (G5, p. 36); (c) drawing, CCSSM expects students to “solve problems involving scale 
drawings of geometric figures” (G7, p. 49); and (d) transformation, in high school geometry, 
scale is used in similarity, e.g., “…formalizing the similarity ideas of ‘same shape’ and ‘scale 
factor’…” (HS-G, p. 74). 

Conclusion and Discussion 
Scale/scaling covers multiple mathematics topics in CCSSM and is used to describe and 

explain other concepts. However, there is no clear description of scale/scaling, and no learning 
expectations for the development of students’ understanding of scale/scaling. CCSSM expects 
students to interpret multiplication as scaling, which interprets scale/scaling as a linear 
quantitative concept. Later, in the topic of similarity, scale/scaling is presented as both 
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qualitative and quantitative transformation of figures. Given the importance of scale in 
mathematics and other disciplines (e.g., engineering), I suggest that mathematics curricula 
present scale/scaling as a formal concept, providing a rigorous definition and explicating 
learning expectations to support the development of understanding. 
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We describe novel teacher education curriculum materials designed to develop secondary PSTs’ 
Statistical Knowledge for Teaching (SKT) along with a new test for measuring teachers’ SKT. 
We report PSTs’ changes in SKT from learning with the materials in a preliminary study.  
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Teachers create meaningful student learning opportunities by drawing on a variety of 
knowledge domains—encompassing not only knowledge of the content to be learned but also 
additional knowledge connected to the work of teaching (Hill et al., 2008; Shulman, 1986; 
Thwaites et al., 2011). Assisting preservice teachers (PSTs) in developing this sort of 
mathematical and statistical knowledge (termed mathematical knowledge for teaching (MKT) 
and statistical knowledge for teaching (SKT)) is of particular interest to those who teach 
mathematics and statistics content courses in secondary mathematics teacher preparation 
programs because we know that there is an association between teachers’ MKT/SKT and high 
quality instruction (Hill et al., 2007). However, there is dissonance between the preparation PSTs 
are receiving in these courses and the preparation they need to develop MKT/SKT (Goulding et 
al., 2003). Additionally, understanding how PSTs develop MKT/SKT and how researchers 
observe and/or measure MKT/SKT is still an open question (Groth, 2017; Silverman & 
Thompson, 2008; Thwaites et al., 2011). The MODULE(S2) project works in this space and has 
created curricular materials that provide opportunities for secondary PSTs to develop MKT and 
SKT in university algebra, geometry, modeling, and statistics courses. With regard to measures, 
some tests exist for measuring MKT (e.g., Hill et al., 2007; Mohr-Schroeder et al., 2017), but 
none exist for measuring secondary (grades 6-12) teachers’ SKT. In this brief report, we describe 
the development of a test we created to assess secondary PSTs’ SKT prior to and after learning 
with MODULE(S2) materials, and report PSTs’ changes in SKT from learning with the statistics 
MODULE(S2) materials in a preliminary study.  

Just as mathematics and statistics are related yet distinct fields (Cobb & Moore, 1997), MKT 
and SKT are related yet distinct domains of knowledge (Groth, 2007, 2013). Both MKT and 
SKT include subject matter knowledge (SMK: understanding the logical necessity of aspects of 
the content to be taught) and pedagogical content knowledge (PCK: understanding how to make 
content understandable to students) (Groth, 2013; Hill et al., 2008; Simon, 2006). However, SKT 
differs from MKT because it contains nonmathematical elements, such as assessing the 
suitability of statistical questions for the context of a statistical investigation (Groth, 2007). The 
MODULE(S2): Statistics for Secondary Mathematics Teaching curriculum (Casey et al., 2019) 
was created to develop PSTs’ SKT regarding study design, exploratory data analysis, statistical 
inference, and association, through enactment of the statistical investigation cycle. The materials 
align with the content of a modern college introductory statistics course while also preparing 
PSTs to address the CCSS-M (CCSSI, 2010) statistics standards in their teaching and meeting 
the recommendations from professional societies (AMTE, 2017; Bargagliotti et al., 2020; 
Franklin, 2015). Attention is given to developing PSTs’ critical statistical literacy (Weiland, 
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2017) and abilities to implement equitable teaching practices. This is accomplished through a 
sustained focus on data sets addressing inequities in educational and social contexts, asking PSTs 
to wrestle with the dissonances that analyses of these data sets illuminate, and prompting PSTs to 
reflect on how they might teach lessons with their future students to leverage these contexts for 
learning. Opportunities for PSTs to develop their PCK are integrated throughout the materials, 
including learning common conceptions of students when learning statistics, responding to 
student work, constructing lessons, analyzing curriculum standards, and learning how to use 
statistics to empower action for social change. The materials are organized into three modules 
that could collectively be taught in a semester course. 

SKT Test 
We developed a 7-item SKT test along with an accompanying scoring rubric for the 

MODULE(S2) project. It is designed to assess secondary teachers’ knowledge for teaching the 
statistics standards in the CCSS-M (CCSSI, 2010). It is aligned with Groth’s (2013) 
conceptualization of SKT, comprehensively assessing SMK and PCK. Its design drew upon 
previous work to develop SKT assessment items (e.g., Casey et al., 2019; Groth, 2014). Items 
assessing PCK utilized released student work from LOCUS (n.d.) to document student 
conceptions of statistics. We piloted and revised the instrument and its accompanying rubric for 
two years. Revisions focused on improving the clarity of the language as well as the reliability of 
the scoring. Thus, we used multiple methods to work towards test content validity (AERA et al., 
2014) for the use of this SKT test for this study. 

The test contains 12 selected response prompts (e.g., multiple choice) and 20 open-ended 
prompts across the 7 items. The maximum number of points possible on the test is 45. Three of 
the items, worth a total of 8 points, address SMK. An additional 3 items, totaling 29 points, 
address PCK. Finally, a single item addresses both SMK (parts i and iii, worth 3 points each) and 
PCK (part ii, worth 2 points). This item is shown in Figure 1 as a sample. 

 
Imagine you were teaching a high school (non-AP) class and presented the following task to your students: 
A simple random sample of 100 high school seniors 

was selected from a large school district. The gender of 
each student was recorded, and each student was asked 
the following questions: 1. Have you ever had a part-
time job? 2. If you answered yes to the previous question, 
was your part-time job in the summer only? Their 
responses are shown in the table to the right. 

Construct a graphical display that represents the 
association between gender and job experience for the 
students in the sample. 

As your students work on the task, you notice a student 
named Juan has created this graph (shown at the right).  
i. Comment on the strengths and weaknesses of this graph.  
ii. How would you respond to Juan in order to advance his 
thinking concerning graphical displays to show association 
between categorical variables?  
iii. Complete the task yourself, creating the best graphical 
representation for representing the association between gender 
and job experience. 

 
Figure 1: Sample item; parts (i) and (iii) focus on SMK while (ii) focuses on PCK 

 
Job Experience 

Gender  
Male Female Total 

Never had a part-time job 21 31 52 
Had a part-time job during 
summer only 

15 13 28 

Had a part-time job but not 
only during summer 

12 8 20 

Total 48 52 100 
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The scoring rubric for the item in Figure 1 delineates how the points should be awarded for 
this item. To earn 3 points for part (i), the response needs to include at least one strength and the 
following two notable weaknesses: (1) there is no label on the vertical axis; and (2) it displays 
frequencies instead of conditional relative frequencies. Relatedly, when creating the best 
graphical representation in part (iii), a representation received all three points if it was a 
segmented bar graph showing percentages conditioned by either categorical variable and there 
were no flaws in the execution of this representation. The rubric tiered down the point values 
when some elements were missing. For part (ii), a response received 2 points if it included 
questions or proposed activities for Juan that addressed either of the notable weaknesses from 
part (i). A response to part (ii) received 1 point if it accurately gave an explanation about what is 
incorrect or correct about Juan’s graph but did not prompt Juan to think about it himself.  

Data Collection and Results 
The SKT test was given to PSTs in two statistics-for-teachers classes at separate universities 

that used the MODULE(S2) materials in the 2020-21 academic year. It was given at the start of 
the semester as a pre-test and at the end of the semester as a post-test. It was administered as a 
take-home test without a time limit. The tests were independently scored by 2 graduate assistants 
using the scoring rubric, and they reconciled any scoring discrepancies for each item. The sample 
sizes were 11 on the pre-test and 11 on the post-test; we present results here for the 10 PSTs who 
submitted both tests. 

Figure 2a shows the pre- and post-test scores for PSTs’ overall SKT, with line segments 
linking each PST’s pre- and post-test scores.  

 

 
Figure 2: Paired dotplots of pre-test (circles) and post-test (squares) scores.  

(a) Overall scores, (b) SMK subscores, (c) PCK subscores 
 

We observe a general pattern of increases from pre to post; the mean pre-test and post-test scores 
were 15.5/45 (34.4%) and 23.7/45 (52.7%), for an average increase of 18.22 percentage points 
(standard deviation 18.20). This results in a strong effect size, measured as 0.92 by Cohen’s d 
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with Hedge’s correction. Similar graphs are provided in Figure 2 for SMK (2b) and PCK (2c). 
These also show that PSTs generally improved from pre- to post-test in both of these areas, some 
quite substantially. The mean SMK pre-test and post-test subscores were 4.2/14 (30.0%) and 
7.2/14 (51.4%), a mean increase of 21.4. The mean PCK pre-test and post-test subscores were 
11.3/31 (36.5%) and 16.5/31 (53.2%), a mean increase of 16.8. We concluded that PSTs made 
similar gains on the SMK and PCK portions of the test. An item-by-item analysis revealed that, 
on average, the PSTs considerably improved their performance on all items from pre- to post-test 
and that their mean change was roughly the same for SMK- and PCK-related items overall. 

Discussion 
The MODULE(S2) project works to resolve the conflict between the preparation PSTs have 

historically received in their university content courses and the preparation they need to develop 
their MKT/SKT.  The statistics teacher education curriculum materials made by the 
MODULE(S2) project were designed to address this by attending to the development of PSTs’ 
SKT, including SMK and PCK development simultaneously. This preliminary study has 
provided initial evidence that harmony in developing these aspects of SKT concurrently is 
possible and productive. Use of the MODULE(S2) project’s materials considerably enhanced 
PSTs’ SKT, including both their SMK and PCK. Additionally, we believe that strong SKT 
supports teachers to effectively implement data-driven lessons focused on equity. The design of 
the MODULE(S2) project’s materials to improve PSTs’ critical statistical literacy along with 
evidence from this study that PSTs’ SKT improved through their use of the MODULE(S2) 
project’s materials is promising for the development of teachers who can teach equity-focused 
statistical lessons. Further research on a larger scale to study the effects of the MODULE(S2) 
project’s materials on SKT and critical statistical literacy is needed to move to more substantial 
findings. In addition, further research that explores how PSTs’ SKT evolves through use of the 
MODULE(S2) project’s materials—including features of the materials’ implementation that 
support or inhibit PSTs’ SKT development—is recommended. 

An additional contribution of this preliminary study is the development of a SKT test for 
secondary teachers, addressing a longstanding lack of teacher instruments in statistics education 
(Groth & Meletious-Mavrotheris, 2018). Future projects can conduct large-scale validation 
studies of the test to work towards establishing more validity evidence for its use in measuring 
teachers’ SKT. 
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Knowledge of student misunderstanding is a critical aspect of teacher knowledge, with 
implications for teacher practice and student achievement. However, there is no mechanism 
describing the progression from how teachers identify student misunderstandings to the types of 
strategies used when addressing misunderstandings. In this study, we analyze 342 cases of 
student misunderstandings, underlying rationales, and instructional strategies reported by 153 
elementary mathematics teachers. Using fsQCA, we identified pathways showing the conditions 
that lead to teachers providing instructional responses that target the misunderstanding and/or 
build students’ conceptual understanding. Overall, we found that if teachers provide 
mathematical rationales to explain why students struggle with a concept/procedure, then their 
instructional responses help students develop conceptual understanding.  

Keywords: teacher knowledge   

Many conceptualizations and studies of teacher knowledge place an emphasis on teacher 
knowledge of students, due to its broad implications for how teachers plan instruction, deliver 
content, and interact with students (e.g., Hill, Ball, & Schilling, 2008; Shulman, 1986; Carlsen, 
1999). A subdomain of teachers’ knowledge of students is their knowledge of student 
misunderstandings (KOSM), a theoretically relevant subdomain which can be traced back to 
Shulman’s (1986) conceptualization of pedagogical content knowledge. Research on teachers’ 
KOSM has shown evidence that there is a positive relationship between teachers’ KOSM and 
student achievement (Sadler et al., 2013; Chen et al., 2020). However, while studies have linked 
teacher KOSM to student achievement, it is unclear how this knowledge plays out in teacher 
decision-making about instructional strategies. To capture how this knowledge plays out, we use 
a novel research method, fuzzy set qualitative comparative analysis (fsQCA; Ragin, 2000, 2008), 
to begin modeling pathways that link how teachers describe student misunderstandings to the 
types of instructional decisions they report using to address the misunderstandings. 

Sadler et al. (2013), Chen et al. (2020), and Hill and Chin (2018) studied science and 
mathematics in-service teachers’ ability to anticipate the most common distractor for students on 
multiple-choice items.  Sadler et al. (2013) found that science teachers who could identify the 
misunderstanding through the multiple-choice distractors had larger classroom gains than those 
teachers who could only identify the correct answer. Chen et al (2020) replicated the previous 
findings but with biology content rather than physical science. Relatedly, Hill and Chin (2018) 
noted that although knowledge of student misunderstandings can be difficult to measure, they 
were able to identify a link between this aspect of mathematics teachers’ knowledge and student 
outcomes. These studies indicate a link between teacher knowledge of misunderstandings, 
instruction, and student outcomes by way of how teachers identify and address student 
misunderstandings in conceptual and procedural ways. However, research has yet to identify the 
mechanism that describes the progression from how teachers are identifying student 
misunderstandings (procedural, conceptual, or a combination) to the types of strategies used 
when addressing the student misunderstanding. Thus, the present study aims to understand the 
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association between how teachers think about student misunderstandings and their planned 
instructional strategies to address the misunderstandings. The research questions were:  

What pathways describe how teachers’ descriptions and rationales for a misunderstanding are 
associated with:  

1. The type of instructional response (i.e., targeted to build students’ conceptual or 
procedural understanding) they use to address student misunderstandings? 

2. Whether the instructional response is specific or not specific to the misunderstanding 
teachers are aiming to address? 

3. Whether the instructional response is or is not both specific and building students 
conceptual understanding when addressing student misunderstandings? 

Conceptual Framework 
We use the constructs of procedural and conceptual understanding (or knowledge) to 

describe the ways teachers identify student misunderstandings and the instructional strategies 
used to address the misunderstandings. Procedural understanding is commonly defined as an 
understanding of procedures and carrying them out flexibly and appropriately (Eisenhart et al., 
1993; National Research Council, 2001; Rittle-Johnson et al., 2015). For instance, knowing the 
steps involved adding two fractions with unlike denominators is an indicator of procedural 
knowledge (i.e., find a common denominator, find equivalent fractions, add across the 
numerator, keep the denominator the same). Instructional strategies focusing on students’ 
procedural understanding of adding fractions would highlight step-by-step overviews of how to 
carry out algorithms or ways to remember the steps (i.e., a song or mnemonic device).  

Conceptual understanding is commonly defined as an understanding of concepts and the 
interconnectedness of topics that provide the structure for understanding procedures (Eisenhart et 
al., 1993; NRC, 2001; Rittle-Johnson et al., 2015). Returning to the fraction addition algorithm, a 
student with conceptual understanding of adding fractions would show an understanding of ideas 
such as part-whole relationships and equivalent fractions, as well as the meaning of addition. 
Instructional strategies supporting students’ conceptual understanding of adding fractions would 
highlight strategies linking the ideas of part-whole relationships, equivalent fractions, and adding 
fractions.  

Methods 
This study used data from a sample of 153 elementary mathematics teachers located in 

Indiana and North Carolina. The teachers completed an online, open-ended survey with three 
items asking teachers to (1) identify common student misunderstandings related to fraction 
content, (2) provide a rationale for why students have a given misunderstanding, and (3) report 
the instructional steps they would take to address the misunderstandings. Since many teachers 
answered the three survey questions referring to more than one misunderstanding, the dataset 
was parsed out such that each row contained one misunderstanding and subsequent rational and 
reported instructional strategies. This means the 153 teachers provided 342 complete cases of a 
student misunderstanding and the subsequent rationale and instructional decision. 

To investigate the links between how teachers describe student misunderstandings and the 
types of instructional decisions they report using to address the misunderstanding, this study 
employed fsQCA (Ragin, 2000, 2008). fsQCA views a collection of individual cases through a 
set-theoretic lens, where Boolean logic is used to look across the cases and identify solution 
pathways that represent the logical paths linking conditions and outcomes. Using fsQCA to find 
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these solution pathways allows us to describe the ways in which how teachers identify and 
understand the reasons for a student’s misunderstanding leads to the types of instructional 
strategies they use to address misunderstandings.  

For the analysis, each case was coded for three conditions related to how teachers described a 
misunderstanding. First, whether the student misunderstanding was described as procedural or 
conceptual in nature (student misunderstanding type). Second, whether the source of the 
misunderstanding was attributed to students’ understanding of procedures or students’ 
underlying thinking about mathematical concepts.  Third, whether there was an external factor 
provided as the source of the misunderstanding (e.g., issues concerning curriculum or home 
support).  

 We also coded each case for three outcomes related to the instructional strategies teachers 
reported using to address the misunderstanding.  First, whether the instructional strategy aimed at 
building students’ procedural or conceptual understanding Second, whether the instructional 
strategy was specific to the misunderstanding or generic. Third, whether the instructional 
strategy was specific to the misunderstanding and built students’ conceptual understanding or 
not. For an overview of the conditions and outcomes, see Table 1. All coding was completed by 
two raters who initially coded a small number of cases (10-20) and checked their coding until 
interrater reliability was >90%. Then, a larger number of cases were coded independently and all 
disagreements were reconciled.     

After coding, we used fsQCA software (Ragin & Davey, 2016) to carry out the quantitative 
analysis, referred to as a truth table analysis (Ragin, 2008). The truth table analysis identified the 
combinations of the presence and absence of conditions (pathways) that led to the presence or 
absence of a given outcome. 

Results 
We report the eight pathways leading to the four different types of instructional responses 

(Table 2). Table 2 indicates which combinations of factors were present in how teachers 
identified student misunderstandings (e.g., procedural versus conceptual) and the underlying 
rationales for these misunderstandings (e.g., based on students’ mathematical or non-
mathematical thinking) and the subsequent instructional response.  

Due to the limited space, we specifically focus on one pathway that leads to teachers 
reporting instructional strategies aimed at building students’ conceptual understanding. Teachers 
in Pathway 1 describe the student misunderstandings conceptually and provide a mathematical 
rationale for why the students have the misunderstanding which led to a conceptual instructional 
response. An example of this pathway is below. The teacher described how students have a 
misunderstanding about the result of multiplying and dividing fractions because they do not 
make connections between the meaning of a fraction and the operation. 

When you multiply, the number gets bigger and when you divide it gets smaller [referring to 
whole number operations]. When students move into operations with fractions, their 
understanding of what a fraction means is lost, and they don't understand why their product is 
smaller than the factors or the quotient is bigger than the dividend/divisor. 

The teacher identified the misunderstanding as a conceptual issue with students’ 
understanding of fractions as different from whole numbers. This teacher later explains the 
rationale for this confusion could be that students, “miss the understanding that a fraction means 
that you divide a whole into parts… a number less than one.” To address this misunderstanding 
this teacher: 
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I have used explicit examples of multiplying by 0 (where the product is 0 - less than the 
factors), by 1 (where the product is the same as a factor), and by 2 (where the product is greater 
than the factors) to show students that there is a pattern to the value of the product compared to 
the factors. When they see that x0 is less than the factors and x1 is equal to a factor, it becomes 
easier for them to accept that multiplying by a proper fraction will result in a product less than 
the factors. I continue with multiplying by 1/2 because it's an easy fraction and students typically 
know that it's the same as dividing by 2, which they know will result in a smaller product. 
Through targeted examples and a slow approach to looking for patterns, students "get it" and are 
able to correctly predict whether the product will be smaller or larger than the factors.  

By identifying a misunderstanding through conceptual issues, along with a mathematical 
rationale for the misunderstanding, this teacher is able to provide an instructional approach that 
uses targeted examples and pattern-making to help students overcome the misunderstanding 
conceptually.  

Overall, across all pathways, it is interesting to note the role of teachers' rationale for student 
misunderstandings.  When teachers are describing strategies that support students’ conceptual 
understanding (Pathway 1, 3), it is important that teachers base the rationale for the 
misunderstanding on students’ mathematical thinking.  In contrast, when teachers are not 
providing specific or conceptually grounded instructional strategies, then they are not providing 
a mathematical rationale for the misunderstanding (Pathway 4-7).   

How teachers interpret the student misunderstandings also seems relevant to their 
instructional decision. Two of the three pathways leading to a conceptual instructional response 
include the teacher interpreting the misunderstanding conceptually, whereas two pathways 
leading to a procedural response include teachers interpreting the misunderstanding procedurally.   

Significance of the Study 
This study adds depth to the field's understanding of teacher knowledge of student 

misunderstandings by capturing an initial snapshot of how this knowledge is operationalized in 
relation to instructional strategies. While student misconceptions are well studied in the literature 
on teaching and learning, there remains a need to identify how teachers progress from identifying 
misunderstandings to addressing them. We found multiple descriptive pathways that highlight 
the complex ways in which teachers make sense of student misunderstandings in order to address 
them. Each path is important, but the repeated occurrence of providing a mathematical rationale 
about the misunderstanding appears to be an important condition to better understand why 
teachers provide the instructional strategies they use.  It is plausible that teachers who have 
considered what causes common misunderstanding are more able to craft an instructional 
response that target the conceptual issues rather than simply addressing the procedural 
components. This suggests that time spent analyzing student responses and discerning why the 
mistake was made could be a valuable addition to teacher preparation and planning.  

Of similar note, is how teachers conceptualize and explain student errors. If teachers 
explained the misunderstanding procedurally, their response to it was procedural. This is not 
unexpected, but reestablishes the importance of teachers having a deep conceptual understanding 
of the content and of their students (Shulman, 1986). Without that conceptual understanding, it is 
unreasonable to expect a conceptual instructional response, which is what we see in these 
pathways.  

Overall, we find value in the fsQCA methodology to assist in answering questions about the 
mechanisms describing how and why teachers’ make particular instructional decisions. How 
teachers interpret a misunderstanding (either procedurally or conceptually) and the rationale for 
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the misunderstanding (mathematical or non-mathematical) seem to be key pieces in 
understanding how teachers choose to respond to student issues.  

 
Table 1: Description of Conditions and Outcomes 

Conditions and Outcomes Description 
Conditions  

Students’ misunderstanding Captures the extent to which teachers described student 
misunderstandings as solely an issue of procedural or 

conceptual understanding. 
 

Mathematical rationale 
 

Captures the extent to which teachers described the cause 
of student misunderstandings through students’ 

understanding of procedures or students’ underlying thinking 
about mathematical concepts. 

 
Non-mathematical rationale 

 
Captures instances where teacher provided non-

mathematical reasons for student misunderstandings (e.g., 
issues around curriculum or home-support). 

 
Outcomes 

 

Instructional strategy aimed at 
building students’ conceptual 

understanding 

Captures the extent to which the strategies teachers 
reported were supporting students’ conceptual understanding 

of the mathematical concepts underlying the 
misunderstanding. 

 
Instructional Strategy Specific 
to Students’ Misunderstanding 

 
Captures whether or not the strategy teachers described 

using specifically addressed the student misunderstanding. 
 

Instructional strategy that is 
specific to students’ 

misunderstanding and builds 
students’ conceptual 

understanding 

 
Captures whether or not the strategy teachers described 

using both specifically addressed the student 
misunderstanding and supported students in making sense of 

math concepts. 

 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

642



 

References 
Ashlock, R. B. (2006). Error patterns in computation: Error Patterns in Computation: Using Error Patterns to 

improve instruction (9th ed.). Pearson Prentice Hall.  
Ausubel, D., Novak, J., & Hanesian, H. (1978). Educational psychology: A cognitive view (2nd  ed.). Holt, Rinehart, 

and Winston. 
Brown, G., & Quinn, R. J. (2006). Algebra students' difficulty with fractions: An error analysis. Australian 

Mathematics Teacher, The, 62(4), 28.  
Carlsen, W. (1999). Domains of teacher knowledge. In Gess-Newsome J., Lederman N.G. (Eds.) Examining 

pedagogical content knowledge (6th ed., pp. 133-144): Springer. https://doi.org/10.1007/0-306-47217-1_5 
Hill, H. C., & Chin, M. (2018). Connections between teachers’ knowledge of students, instruction, and achievement 

outcomes. American educational research journal, 55(5), 1076-1112. 
Kilpatrick, J., Swafford, J., Findell, B., & council, N. r. (2001). Adding it up: Helping children learn mathematics 

(Vol. 2101): Citeseer. 
Loughran, J., Berry, A., Mulhall, P. J., & Woolnough, J. (2006). Understanding and valuing the development of 

pedagogical content knowledge in science teacher education. 
Sadler, P. M., Sonnert, G., Coyle, H. P., Cook-Smith, N., & Miller, J. L. (2013). The influence of teachers’ 

knowledge on student learning in middle school physical science classrooms. American educational research 
journal, 50(5), 1020-1049. 

Ragin, C. and Davey, S. (2016). Fuzzy-Set/Qualitative Comparative Analysis 3.0.  Irvine, California: Department of 
Sociology, University of California. 

Siegler, R., Carpenter, T., Fennell, F., Geary, D., Lewis, J., Okamoto, Y., . . . Wray, J. (2010). Developing Effective 
Fractions Instruction for Kindergarten through 8th Grade. IES Practice Guide. NCEE 2010-4039. What Works 
Clearinghouse. 

Silver, E. A. (1986). Using conceptual and procedural knowledge: A focus on relationships. 
Son, J.-W. (2013). How preservice teachers interpret and respond to student errors: ratio and proportion in similar 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

643



rectangles. Educational Studies in Mathematics, 84(1), 49-70. 
Spillane, J. P., & Miele, D. B. (2007). chapter 3Evidence in Practice: A Framing of the Terrain. Yearbook of the 

National Society for the Study of Education, 106(1), 46. doi:10.1111/j.1744-7984.2007.00097.x 
Spillane, J. P., Reiser, B. J., & Reimer, T. (2002). Policy implementation and cognition: Reframing and refocusing 

implementation research. Review of educational research, 72(3), 387-431. 
Strauss, S. (2001). Folk psychology, folk pedagogy, and their relations to subject-matter knowledge. Understanding 

and teaching the intuitive mind: Student and teacher learning, 217-242. 
Weick, K. E. (1995). Sensemaking in organizations.  
 
 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

644



DEVELOPMENT OF A MATHEMATICS DISCIPLINE-SPECIFIC LANGUAGE 
SCALE 

Alanna Gibbons 
Teachers College, Columbia University 

ag3729@tc.columbia.edu 

Irina Lyublinskaya 
Teachers College, Columbia University 

il2369@tc.columbia.edu 

Existing studies have defined and assessed disciplinary literacy, mathematical literacy, and 
general academic language. However, there is a need to define and assess mathematics discipline-
specific language (MDL), particularly for elementary school teachers. Therefore, the purpose of 
this study was to develop a research instrument to assess the MDL of elementary school teachers. 
The final instrument developed through iterative analysis included 20 items on a 4-point Likert-
like scale distributed between three distinct MDL categories: technical, symbolic, and visual. 
Instrument validity was confirmed using Confirmatory Factor Analysis with the set of 211 video 
recordings and corresponding lesson plans of mathematics lessons taught by pre-service 
elementary school teachers enrolled in a graduate special education program. 

Keywords: Mathematical Knowledge for Teaching, Preservice Teacher Education, Teacher 
Knowledge 

Purpose of the Study 
Mathematical literacy is essential for solving problems encountered in today’s rapidly evolving 
world. It is defined as “an individual’s capacity to identify and understand the role that 
mathematics plays in the world, to make well-founded judgments and to use and engage with 
mathematics in ways that meet the needs of that individual’s life as a constructive, concerned, 
and reflective citizen” (OECD, 2009, p. 14). Mathematically literate students should know how 
to do mathematics and how to speak the language of mathematics. This is not learned by simply 
memorizing definitions; but rather, by using the language of mathematics in their learning 
experiences (Hill, et al, 2008). The Common Core State Standards for Mathematical Practice 
emphasize the importance of developing mathematical literacy and discipline-specific 
mathematics language (National Governors Association Center for Best Practices & Council of 
Chief State School Officers, 2010). 
Discipline-specific language is defined as “the decontextualized oral and written language used 
within a specific discipline or profession with specialized vocabulary, syntax, and discourse 
patterns” (Zhang, 2014, p. 40). Mathematics discipline-specific language (MDL) is different 
from everyday language (Machaba, 2017). MDL is used to encode information and it allows 
members of the discipline to communicate in discipline-specific ways (Bernstein, 1996). 
Examples of MDL include vocabularies, symbols, and notations. A lack of appropriate MDL can 
hinder student learning and become a source of misconceptions carried over to later mathematics 
education (Di Domenico, 2014; Köse, 2008). It is vital that attention be given to MDL beginning 
at the elementary level (Siffrinn & Lew, 2018) since high-quality early mathematics instruction 
serves as a sound foundation for later learning in mathematics (Darling-Hammond & Bransford, 
2005). In order to develop students’ MDL, elementary school teachers must be proficient in their 
own MDL. 
Studies that assess teachers’ knowledge of MDL have been mostly conducted at the secondary 
level (Colwell & Gregory, 2016; Di Domenico, 2014; Spires et al., 2018) and in other content 
areas (Cisco, 2016; Feez & Quinn, 2017; Ruzycki, 2015), but it remains unclear what MDL 
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looks like in the lower grades. Therefore, the purpose of this study was to develop and validate 
an instrument, titled the Mathematics Discipline-specific Language Scale (MDLS), for assessing 
the MDL of elementary school teachers. This study was guided by the following research 
question: What are constructs of MDL for elementary school teachers?  
This study addresses the conference themes by resolving the dissonance between what is 
expected of elementary school teachers’ MDL and the lack of the assessment instrument through 
the process of developing and refining the MDLS.  

Literature Review and Theoretical Frameworks 
MDL is a major component of disciplinary literacy (McConachie & Petrosky, 2009; Fang, 2012). 
Analysis of literature on disciplinary literacy theory provided background information on what is 
known about MDL of elementary school teachers. Disciplinary literacy is defined as “the use of 
reading, reasoning, investigating, speaking, and writing required to learn and form complex 
content knowledge appropriate to a particular discipline” (McConachie & Petrosky, 2009, p. 70). 
Shanahan and Shanahan (2014) proposed that disciplinary literacy should be introduced as early 
as elementary school. Therefore, elementary school teachers must develop MDL to make their 
instruction more accessible (Siffrinn & Lew, 2018). 
McConachie and Petrosky’s (2009) disciplinary literacy framework defined criteria necessary for 
students to develop discipline-specific literacy in the core subject areas. This framework suggests 
the following components of literacy: reading, reasoning, investigating, speaking, and writing. 
Gee (2012) suggested that language incorporates behaving, interacting, thinking, reading, 
speaking, and writing. Therefore, McConachie and Petrosky’s (2009) speaking and writing 
components of disciplinary literacy can be categorized as language. In this study, McConachie 
and Petrosky’s (2009) framework was adapted to focus solely on the language component of 
disciplinary literacy for the discipline of mathematics. The discipline of mathematics has a 
language of its own that is functional for constructing knowledge and reasoning in the subject.  
Further, Fang (2012) suggested that different language patterns of mathematics can be 
categorized as technical, symbolic, and visual. Fang (2012) defines technical language as 
discipline-specific grammatical features, structure, and vocabulary. Symbolic language is 
represented by mathematical symbols that are used to describe relationships between 
mathematical objects. Based on topics covered in elementary school mathematics curriculum, the 
following symbols are learned in grades K-5: basic operations signs, the plus sign (+), the minus 
sign (−), the multiplication signs (×, ∙, or ∗), the division signs (÷ or /), the relation signs (=, >

, <, ≥, and ≤), the fraction notation ( or ▯/▯), the place value signs (decimal point . and 

coma , ), units of measurement signs (feet ′ and inches ″), grouping symbols (parentheses, 
brackets, braces), and money signs ($ and ¢). Visual language at this level is represented by 
number lines, number paths, array and area models, strip diagrams, schematic diagrams, 
drawings, tables, and graphs. These three categories of MDL were used to classify the patterns of 
MDL in this study. 
Theoretical frameworks need to be tested in practice, and in research that is accomplished 
through development of research instruments that are consistent with the theory. There are 
various research instruments that assess MDL of teachers (Stanford: Center for Assessment, 
Learning, & Equity, 2016; Hill, 2010). However, most of these instruments focus on a single 
aspect of the language. For example, the Teacher Performance Assessment (edTPA) evaluates 
pre-service teachers’ precision in language, where MDL precision is defined as being accurate 
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with definitions and symbols in labeling, measurement, and numerical answers (Stanford: Center 
for Assessment, Learning, & Equity, 2016). The Mathematical Quality of Instruction (MQI) 
Coding Tool assesses pre- and in-service teachers’ explicitness of mathematical terminology and 
technical language fluency as part of overall instruction quality rather than focusing specifically 
on quality of MDL (Hill, 2010). In the MQI, fluency is defined as the density of MDL during 
periods of teacher talk. The MQI also defines explicitness as teachers’ accurate use of technical 
terms. Further, most research instruments focus on the teacher's ability to support language 
development of students, rather than assessing the teacher's own MDL. In order to assess the 
quality of teachers’ MDL, this study adapted assessment criteria from edTPA and MQI, e.g., 
precision, fluency, and explicitness for each language category specifically for the MDL of 
elementary school teachers. 
This study’s theoretical framework for the development of the MDLS aligned the three 
assessment criteria of MDL quality for each of the three language categories (Figure 1). 

 

 
Figure 1: Framework for Development of the MDLS 

Methods 
Development of MDLS items was guided by the criteria defined by Hathcoat, Sanders, and 
Gregg (2016). First, category-specific items had to describe directly observed characteristics of 
MDL in video recordings and corresponding lesson plans. Second, the following practices were 
used: 1) generating twice as many items as needed, 2) making items simple and specific, and 3) 
ensuring that items are unidimensional and easy to read. 
Explicit phrases that were found in the literature in relation to MDL characteristics were 
collected and analyzed to generate the preliminary statements for the MDLS items. Further, these 
statements were revised into performance-based statements. Then, each item was classified into 
one of the three categories of MDL. A 4-point Likert-like scale (never, rarely, often, always) was 
used in the MDLS to measure frequency of occurrence for each MDLS item. Iterative process of 
item revisions at this stage aimed to ensure that each item was observable and independent of 
others. 
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The initial version of the MDLS was sent to two mathematics literacy experts to evaluate the 
content validity. Based on their feedback, wording of several items was revised for clarity. The 
reliability and construct validity of the MDLS were tested on video recordings and 
corresponding lesson plans developed by pre-service elementary teachers enrolled in a special 
education graduate program and collected over the course of six years in grades K-5 mathematics 
classrooms in urban public schools in Northeast USA. 
In order to test inter-rater reliability, two raters were trained to use the MDLS. An initial round 
of scoring included independent assessment of a set of thirty video recordings and corresponding 
lesson plans. Pearson correlation analysis was used on this set of scores. Debriefing with the 
raters was conducted and based on debriefing, additional revisions to wording of items and the 
structure of Likert-like scale were made. This version of the MDLS was then independently 
scored by the same two raters on a new set of thirty video recordings and corresponding lesson 
plans. Inter-rater reliability was tested again using Pearson correlations on this set of scores. 
Construct validity was tested using a Confirmatory Factor Analysis (CFA). The CFA was 
conducted in SPSS 28 using varimax rotation with three factors according to the number of 
categories of MDL defined by the theoretical framework. The goodness-of-fit of this model was 
tested using SPSS AMOS 28. This procedure led to removal of several items. Internal 
consistency of the final MDLS was tested using the split-half reliability method in SPSS 28. 

Results 
Initial MDLS consisted of 27 items, with nine items in each category (Table 1). Based on the 
feedback from the experts, the wording of three items in technical language (TL4, TL6, and 
TL8), two items in symbolic language (SL14 and SL17), and all items in visual language was 
revised for clarity (see Revision 1 in Table 1). 
 

Table 1: Iterative Analysis of MDLS 
Label Initial Version Revision 1 Revision 2 Final Version 
TL1 The teacher 

states/writes 
numerical answers 
that are relevant to the 
problem’s context. 

The teacher 
states/writes 
numerical answers 
that are relevant to 
the problem’s 
context. 

The teacher 
states/writes 
numerical answers 
that are relevant to 
the problem’s 
context. 

 

TL2 The teacher uses 
discipline-specific 
words to provide clear 
definitions. 

The teacher uses 
discipline-specific 
words to provide 
clear definitions. 

The teacher uses 
discipline-specific 
words to provide 
clear definitions. 

 

TL3 The teacher correctly 
states/specifies units 
of measurements 
(when applicable). 

The teacher correctly 
states/specifies units 
of measurements 
(when applicable). 

The teacher 
states/specifies units 
of measurements, or 
puts meaning to the 
numerical value. 

The teacher 
states/specifies units 
of measurements, or 
puts meaning to the 
numerical value. 

TL4 The teacher correctly 
uses at least two 
different terms to 
describe the same 
mathematical idea 
(when applicable). 

The teacher correctly 
uses at least two 
different terms to 
describe the same 
mathematical concept 
(when applicable). 

The teacher makes 
connections between 
mathematical 
concepts. 

The teacher makes 
connections between 
mathematical 
concepts. 
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TL5 The teacher discusses 
the meaning of used 
discipline-specific 
words. 

The teacher discusses 
the meaning of used 
discipline-specific 
words. 

The teacher discusses 
the meaning of used 
discipline-specific 
words. 

The teacher 
discusses the 
meaning of used 
discipline-specific 
words. 

TL6 The teacher compares 
and contrasts 
everyday language 
with technical 
language. 

The teacher compares 
and contrasts 
everyday language 
with mathematical 
concepts. 

The teacher compares 
and contrasts 
everyday language 
with at least two 
mathematical 
concepts. 

The teacher 
compares and 
contrasts everyday 
language with at 
least two 
mathematical 
concepts. 

TL7 The teacher provides 
correct explanations. 

The teacher provides 
correct explanations. 

The teacher provides 
correct explanations 
(when applicable). 

The teacher provides 
correct explanations 
(when applicable). 

TL8 The teacher correctly 
uses terms to describe 
mathematical ideas. 

The teacher correctly 
uses mathematical 
terms to describe 
concepts. 

The teacher uses 
mathematical terms 
to describe concepts. 

The teacher uses 
mathematical terms 
to describe concepts. 

TL9 The teacher uses 
mathematical 
language as a vehicle 
for conveying content. 

The teacher uses 
mathematical 
language as a vehicle 
for conveying 
content. 

The teacher uses 
mathematical 
language as a vehicle 
for conveying 
content. 

The teacher uses 
mathematical 
language as a 
vehicle for 
conveying content. 

SL10 The teacher uses 
symbols correctly. 

The teacher uses 
symbols correctly. 

The teacher uses 
symbols correctly 
(when applicable). 

The teacher uses 
symbols correctly 
(when applicable). 

SL11 The teacher correctly 
uses the equals sign. 

The teacher correctly 
uses the equals sign. 

The teacher correctly 
uses the equals sign. 

 

SL12 The teacher uses 
mathematical notation 
to provide clear 
definitions. 

The teacher uses 
mathematical 
notation to provide 
clear definitions. 

The teacher uses 
mathematical 
notation to provide 
clear definitions. 

The teacher uses 
mathematical 
notation to provide 
clear definitions. 

SL13 The teacher discusses 
the meaning of the 
symbols used. 

The teacher discusses 
the meaning of the 
symbols used. 

The teacher discusses 
the meaning of 
mathematical 
symbols. 

The teacher 
discusses the 
meaning of 
mathematical 
symbols. 

SL14 The teacher makes 
connections between 
symbols and 
mathematical ideas. 

The teacher makes 
connections between 
symbols and 
mathematical 
concepts. 

The teacher makes 
connections between 
symbols and 
mathematical 
concepts. 

The teacher makes 
connections between 
symbols and 
mathematical 
concepts. 

SL15 The teacher supports 
the meaning of the 
equal sign as 
relational rather than 
operational. 
 

The teacher supports 
the meaning of the 
equal sign as 
relational rather than 
operational. 

The teacher supports 
the meaning of the 
equal sign as 
relational rather than 
operational (when 
applicable). 

The teacher supports 
the meaning of the 
equal sign as 
relational rather than 
operational (when 
applicable). 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

649



SL16 The teacher uses 
mathematical symbols 
when providing 
explanations. 

The teacher uses 
mathematical 
symbols when 
providing 
explanations. 

The teacher uses 
mathematical 
symbols when 
providing 
explanations. 

The teacher 
correctly uses 
mathematical 
symbols when 
providing 
explanations. 

SL17 The teacher correctly 
uses symbols to 
describe mathematical 
ideas. 

The teacher correctly 
uses symbols to 
describe 
mathematical 
concepts. 

The teacher correctly 
uses symbols to 
describe 
mathematical 
concepts (when 
applicable). 

 

SL18 The teacher uses 
simple, concise 
language to connect 
symbols to their 
meaning. 

The teacher uses 
simple, concise 
language to connect 
symbols to their 
meaning. 

The teacher uses 
simple, concise 
language to connect 
symbols to their 
meaning. 

The teacher uses 
simple, concise 
language to connect 
symbols to their 
meaning. 

VL19 The teacher selects 
visual representations 
that are appropriate 
for the structure of the 
problem. 

The teacher selects 
mathematical models 
that are appropriate 
for the structure of 
the problem. 

The teacher selects 
mathematical models 
that are appropriate 
for the structure of 
the problem. 

 

VL20 The teacher correctly 
labels elements of a 
visual representation. 

The teacher correctly 
labels elements of a 
mathematical model. 

The teacher labels 
elements of a 
mathematical model. 

 

VL21 The teacher correctly 
converts visually 
represented 
information into 
mathematical 
notation. 

The teacher correctly 
converts 
mathematical models, 
or visually 
represented 
information, into 
mathematical 
notation. 

The teacher converts 
mathematical models, 
or visually 
represented 
information, into 
mathematical 
notation. 

The teacher converts 
mathematical 
models, or visually 
represented 
information, into 
mathematical 
notation. 

VL22 The teacher states 
what the visuals 
represent. 

The teacher states 
what the 
mathematical models 
represent. 

The teacher states 
what the 
mathematical models 
represent. 

The teacher states 
what the 
mathematical 
models represent. 

VL23 The teacher links 
visual representations 
with quantities in the 
problem. 

The teacher links 
mathematical models 
with quantities in the 
problem. 

The teacher links 
mathematical models 
with quantities in the 
problem. 

The teacher links 
mathematical 
models with 
quantities in the 
problem. 

VL24 The teacher includes 
only necessary details 
in visual 
representations. 

The teacher includes 
only necessary details 
in mathematical 
models. 

The teacher includes 
only necessary 
information in 
mathematical models. 

 

VL25 The teacher correctly 
uses visual 
representations to 

The teacher correctly 
uses mathematical 
models to describe 
concepts. 

The teacher uses 
mathematical models 
to describe concepts. 

The teacher uses 
mathematical 
models to describe 
concepts. 
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describe mathematical 
ideas. 

VL26 The teacher uses 
discipline-specific 
words when 
describing visual 
representations. 

The teacher uses 
discipline-specific 
words when 
describing 
mathematical models. 

The teacher uses 
discipline-specific 
words when 
describing 
mathematical models. 

The teacher uses 
discipline-specific 
words when 
describing 
mathematical 
models. 

VL27 The teacher uses 
different visual 
representations for 
different types of 
problems. 

The teacher uses 
different 
mathematical models 
for different types of 
problems. 

The teacher uses 
different 
mathematical models 
for the same problem. 

The teacher uses 
different 
mathematical 
models for the same 
problem. 

 
The Pearson r-values for Revision 1 of MDLS ranged from .63 to .86. All items with r-values 
below .7 were discussed with the raters during debriefing and further revisions were made (see 
Revision 2 in Table 2). The raters also suggested changing the original 4-point Likert-like scale 
that was based on frequency of occurrence to a 4-point scale based on quality of MDL (not 
evident, incorrect, somewhat correct, correct). For the scoring with Revision 2 of MDLS, the 
Pearson r-values ranged from .71 to .89 confirming high inter-rater reliability (Asuero, Sayago, 
& Gonzalez, 2006). The remaining video recordings and corresponding lesson plans were 
divided between the raters to complete the scoring using this version of MDLS. 
In order to confirm the construct validity of MDLS, CFA on the set of 211 video recordings and 
corresponding lesson plans was completed in SPSS 28 using principal component analysis 
extraction method with varimax rotation. Loadings less than .42 were suppressed which is 
consistent with assumption about significant loadings for this sample size (Guadagnoli & 
Velicer, 1988). Five items (TL1, TL2, VL19, VL20, and VL24) that did not load to their specific 
categories were removed. 
The goodness-of-fit of this three-factor model was examined using maximum likelihood 
estimation performed in SPSS AMOS 28. The analysis resulted in a significant chi-square, 

2(206) 658.0  , p < .001. The comparative fit index (CFI = .834) and the Tucker-Lewis index 
(TLI = .813) were both below the accepted values. In addition, the standardized root mean square 
residual (SRMR = .082) and the root mean square error for approximation (RMSEA = .102) 
were higher than acceptable. In order to improve the fit of the model, two items (SL11 and 
SL17) that had very high modification indices were removed. The final model (Figure 2) resulted 
in a significant chi-square, 2(167) =368.7, p < .001, although this can be sensitive to the sample 
size.  
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Figure 2: AMOS Path Diagram for a Final 3-factor Model of MDLS 

 
The ratio 2 / 2.208 3.0df    indicates a good fit (Kline, 2005). The comparative fit index 
(CFI = .90) shows relatively good fit and the Tucker-Lewis Index (TLI = .886) is just a little 
below the acceptable value of .9, which suggests a reasonable fit (Bentler, 1990). Moreover, both 
SRMR = .047 < .08, and RMSEA = .076 < .08 are acceptable. Based on these indices, the three-
factor model has a reasonable fit and CFA procedure confirmed the three factors matching the 
three theoretical categories of MDL. 
The final version of the MDLS consists of 20 items with seven items in technical language and 
symbolic language categories each, and six items in visual language category (Table 1). 
Cronbach’s alpha was used to test internal consistency of the final scale. The value of alpha for 
symbolic language subscale (𝛼 = .954) is excellent, for the technical language subscale (𝛼 = 
.795) is good, and just a little below acceptable for visual language subscale (𝛼 = .594) with very 
good overall value of 0.897 indicating acceptable internal consistency of the MDLS. 

Conclusion 
This study developed and validated a quantitative instrument for external assessment of the MDL 
of elementary school teachers. To the best of our knowledge, this is the first instrument that 
defines constructs of MDL for elementary school teachers. Another significance of this study is 
that through validation of MDLS it confirmed three categories of MDL suggested in the 
theoretical framework by Fang (2012). Thus, this study contributes to the field by bridging the 
gap between the theoretical definitions of MDL and the practical measurements of MDL in the 
field. The process of iterative development and analysis of the MDLS items led to the higher 
clarity of MDL categories and clear distinction between them.  
The results of this study have practical implications for teacher education and professional 
development programs. The MDLS could be used to assess gaps and deficiencies in the MDL of 
preservice and in-service elementary school teachers and therefore to support their MDL 
development through focused programs. Further studies are needed to develop better 
understanding of the visual language category and to analyze how the teachers’ MDL influences 
student learning of mathematics. Although this study made progress in operationalizing different 
categories of MDL, more work is also needed to operationalize qualities and correctness of 
MDL. Therefore, future studies will 1) identity levels of the MDLS using the criteria of 
precision, fluency, and explicitness, and 2) connect these levels to the three categories of MDL. 
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In this paper, we describe the method and results of our investigation of structural validity of the 
2021 Knowledge for Teaching Early Elementary Mathematics test, which measures teachers’ 
mathematical knowledge for teaching at the early elementary level. The 2021 Knowledge for 
Teaching Early Elementary Mathematics test was used in a long-term, randomized controlled 
trial of the effect of a Cognitively Guided Instruction professional-development program on 
teachers, teaching, and students. Our sample includes data collected in spring 2021 from 651 
grades K–2 elementary educators in Florida. Exploratory factor analysis and analyses based on 
classical test theory and item response theory were conducted to examine the psychometric 
properties of the test. Results of factor analysis suggest a one-factor solution. The marginal 
reliability for response pattern scores was 0.84, and the test difficulty appears to align well with 
the levels of mathematical knowledge for teaching of the target population. 

Keywords: Assessment, Mathematical Knowledge for Teaching, Measurement, Teacher 
Knowledge  

Introduction 
The quality and usefulness of quantitative research rests on high-quality measurement 

practices (APA, AERA, & NCME, 2014). Hill and Shih (2009) presented a compelling argument 
for improvements in quantitative research methods in mathematics education. In this paper, we 
present a method for examining the structural validity (Flake et al., 2017) of the 2021 
Knowledge for Teaching Early Elementary Mathematics (K-TEEM), a web-based assessment of 
mathematical knowledge for teaching (MKT) at the early elementary level (Ball et al., 2008; 
Schoen et al., 2017; 2019; 2021; 2022a). The intended use of the K-TEEM is to estimate impact 
of three consecutive years of a professional development program based on Cognitively Guided 
Instruction (CGI) and to examine the role of MKT as a mediator of the effect of the CGI program 
on teaching and students. Through this paper, we will describe the process and results of a 
psychometric analysis of the data from the 2021 Knowledge for Teaching Early Elementary 
Mathematics (K-TEEM) test. 

Methodology 
The 2021 K-TEEM test serves as a measure of teacher knowledge in a randomized controlled 

trial of the CGI program. A previous version of the K-TEEM test, which included 31 items 
consisting of a combination of open-ended and multiple-choice questions, was used in 2019 and 
2020. Based on some concern about potential ceiling effects in 2020, the 2021 version of the K-
TEEM included 34 items after adding three items in attempt to improve measurement of teacher 
ability for those with high levels of MKT. Teachers (n = 651) in the K–2 track of the CGI 
program (Schoen et al., 2022) completed the web-based assessment (Qualtrics, 2020) in spring 
2021. Our sample included teachers, math coaches, and other instructional support personnel, 
such as interventionists. K-TEEM contains items designed to measure early elementary teachers’ 
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knowledge in five subcategories: common content knowledge, specialized content knowledge, 
knowledge of content and students, knowledge of content and teaching, and knowledge of 
content and curriculum.  

To examine the structural validity of the 2021 KTEEM test, the exploratory factor analysis 
(EFA) and analyses based on classical test theory (CTT) and item-response theory (IRT) were 
conducted. We followed these steps in the investigation: 1) initial item analysis, 2) 
dimensionality, 3) item- and test-level statistics based on the CTT and EFA analyses, 4) 
reliability, and 5) IRT item calibration and person scoring.  

Analysis & Results 
In this section, we present the results from dimensionality analysis, initial item analysis, and 

analyses based on CTT and IRT. For the sake of transparency and scientific rigor, we also share 
the data, syntax, and output files through Open Science Framework (OSF; Schoen et al., 2022b). 
Initial Item Analysis 

The EFA was run via Mplus 8.0 (Muthén & Muthén, 1998-2017) using the weighted least 
square estimation with mean and variance adjusted method with tetrachoric correlations. The 
structure of the 34-item test was examined by requesting solutions with 1–6 factors. The 
tetrachoric correlation matrix was also checked to investigate the interrelations among the items. 
One of the new items was removed before subsequent analyses due to non-significant factor 
loadings identified through the EFA and negative correlations with the other items. The 
remaining 33 dichotomously scored items contributed to the final scale for the 2021 K-TEEM. 
Dimensionality Analysis & Results 

To investigate the dimensionality of the 2021 KTEEM test, we repeated the EFA with the 
remaining 33 items. Table 1 shows the first six eigenvalues provided in the Mplus EFA output 
with the corresponding percentages of explained variation for the one-factor model. The largest 
variation explained by the first factor was 26.51 percent, whereas second largest variation was 
found to be 5.49 percent. The difference of the Root Mean Square Error of Approximation 
(RMSEA) values between the 1-factor EFA (Model 1) and the 2-factor EFA (Model 2) can be a 
supplementary approach used to identify the optimal number of factors to retain. Specifically, if 
the difference is smaller than a prescribed cut-off value (we used 0.015 for this case), the more 
parsimonious model is retained. Finch’s (2020) study recommended this approach and showed 
that the RMSEA_0.015 approach performed better than Parallel Analysis when the indicators are 
categorical with small factor loadings. The difference was calculated to be 0.007 
(RMSEA_Model1 = 0.030; RMSEA_Model2 = 0.023), again suggesting the more parsimonious 
1-factor model. This result implies that unidimensionality is a reasonable assumption. 
 

Table 1: Eigenvalues Estimated from Mplus and Their Corresponding Percentages of 
Explained Variation 

 Eigenvalue % Variation explained 
1 8.75 26.51 
2 1.81 5.49 
3 1.59 4.81 
4 1.51 4.56 
5 1.28 3.87 
6 1.21 3.67 
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Classical Test Theory (CTT) Analysis & Results 
After concluding the dimensionality analysis (and removing the item with poor fit), we 

conducted the CTT analyses using SPSS 26.0 (IBM corp., 2019). Figure 1 shows the distribution 
of the raw sum scores. The scores ranged from 2 to 33 with a mean of 18.35 and a standard 
deviation of 6.20. Less than one percent (0.61 percent) of examinees in this sample received a 
perfect score of 33. Item means (i.e., item difficulties based on the percentages of correctly 
endorsing an item) ranged from 0.19 to 0.79 with a mean of 0.56 and a standard deviation of 0.17 
and were approximately normally distributed. The coefficient alpha (Cronbach, 1951) and 
standard error of measurement were calculated to be 0.84 and 2.50, respectively. 

 
Figure 1. Observed Test Score Distribution for the 33-item 2021 K-TEEM 

Item Response Theory (IRT) Analysis & Results 
We used flexMIRT 3.6 (Cai, 2020) to perform the IRT analyses. Because the final test 

consists of 33 dichotomously scored open-ended and multiple-choice items, and the 
dimensionality analysis suggested one dominant construct underlying the relationships of the 
items, we fit a unidimensional IRT model to the data. Many cognitive assessments in educational 
practices involve data with binary scores (i.e., assigning “0” to an incorrect response and “1” to a 
correct response). Measurement practitioners may consider fitting a three-parameter (3PL) model 
for multiple-choice items as a way to take a guessing effect into account. However, the optimum 
number of observations required by a unidimensional three-parameter model is recommended to 
be at least 1,000 (de Ayala, 2009).  

Following this suggestion and based on the fact that our test includes open-ended items as 
well as multiple-choice items, a unidimensional two-parameter logistic (2PL) model was used to 
calibrate two items added to the 2019 version of our test. For the other test items, the parameter 
estimates from the 2019 sample were used as anchor items to vertically link the metrics (Schoen 
et al., 2021; 2022). This is known as fixed item parameter calibration (FIPC) approach under the 
common item nonequivalent group test design, which could be used to place scores from the 
tests of different levels on a common scale (Kolen & Brennan, 2004). The population mean and 
standard deviation were freely estimated. Results of flexMIRT showed that the model converged 
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successfully. The formula of the 2PL model is shown in Equation 1 according to the 
parameterization of de Ayala (2009). 
 

𝑃𝑗(𝛳) =
exp⁡[𝑎𝑗(𝛳−𝑏𝑗)]

1+exp⁡[𝑎𝑗(𝛳−𝑏𝑗)]
,     (1) 

where 𝑎𝑗 ⁡is the discrimination index of item j (j = 1, 2,…,J), 𝑏𝑗 is the difficulty index of item 
j, 𝑃𝑗(𝛳) is the probability of correct answer, 𝛳 is the person ability. 

Figures 2 and 3 display the item-difficulty estimates and item-discrimination estimates of 
each item. The item difficulty estimates ranged from –2.48 to 1.99 with a mean of –0.20 and a 
standard deviation of 1.12. The item discrimination estimates ranged from 0.41 to 1.35 with a 
mean of 0.80 and a standard deviation of 0.39. As seen in the figures, the discrimination 
estimates of those two items (see the last two items in the graphs below) added to the 2019 
version were 0.75 and 1.12, and their difficulty estimates were relatively larger as compared to 
many items in the test. We note that the difficulties of the test items are heterogeneous, and the 
difficulty of the test aligns reasonably well with the ability range. The marginal reliability for 
response pattern scores calculated in flexMIRT was 0.84. 

 
Figure 2. Item-difficulty estimate (b) of each final-test item, presented in sequential order. 
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Figure 3. Item-discrimination estimate (b) of each final-test item, presented in sequential 

order. 

Discussion 
The 2021 K-TEEM is one of more than a half-dozen test forms in the K-TEEM set of 

assessments. It is being used in a three-year randomized controlled trial involving teachers in 
more than 200 schools. It is being used as a baseline measure of teacher MKT and to estimate the 
effects of a CGI professional-development program on teacher MKT, and as a measure of MKT 
as a potential mediator of the effect of the CGI professional-development program on teaching 
and student learning.  

Item-level analysis suggested that 33 out of 34 items on the 2021 K-TEEM test form were 
adequate. Dimensionality analysis demonstrated that one dominant construct (i.e., MKT) 
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described the interrelatedness among the items. The difficulty of the test was reasonably well 
calibrated to align with the levels of MKT of the target population. Reliability estimates for the 
observed sum scores and response pattern scores indicated that the test scores may be useful for 
the planned, subsequent, group-level analyses. 

The construct validation process is an ongoing effort of collecting evidence to justify the 
interpretation and use of test scores. Structural validity is one of the phases of the construct 
validation process, which investigates the psychometric/measurement properties of an 
assessment tool. According to Flake, Pek & Hehman (2017), “if the measurement properties of a 
scale do not replicate, then the replicability of the results from analyses using those measures is 
suspect (p. 3)”. Notably, the best practices for conducting construct validation are to continually 
collect evidence to support measures underlying the latent construct using rigorous measurement 
practices. Therefore, the process used for analysis and scoring of the K-TEEM can present a 
model for researchers in mathematics education to use as they increase the methodological rigor 
of their measurement practices.  
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Un grupo de profesores de matemáticas de nivel medio superior buscan mejorar su labor 
docente, para lo cual crean una comunidad profesional de aprendizaje, en dónde los docentes 
producen de manera colectiva actividades de enseñanza mediante un ciclo reflexivo de varias 
etapas que llaman ‘Enseñanza-Reflexión’. En este reporte se describe cómo se amplía el 
conocimiento para la enseñanza de las matemáticas durante un ciclo reflexivo sobre la función 
cuadrática, así como el impacto de la reflexión en el conocimiento de los docentes. Un resultado 
importante de este trabajo es que el marco de Rowland et al. permite analizar el conocimiento 
de profesores, que emerge cuando ellos hacen actividades reflexivas en una comunidad 
profesional de aprendizaje autogestiva. 

Palabras clave: Conocimiento matemático para la enseñanza, Función cuadrática, Álgebra y 
pensamiento algebraico, Desarrollo profesional   

Un grupo de profesores de una escuela de nivel medio superior mexicana, se organizaron 
para diseñar, aplicar y discutir reflexivamente actividades de enseñanza, con el fin de mejorar su 
labor docente ya que consideran que tienen deficiencias para la enseñanza de las matemáticas, 
debido a que ninguno de estos docentes tuvo formación inicial para la enseñanza, Sosa y Ribeiro 
(2014, p. 1) señalan que es una situación muy común en los profesores de ese nivel en México 
hasta 2014. 

Para atenuar sus deficiencias los profesores deciden crear una comunidad profesional de 
aprendizaje, Sowder (2007, p. 185) la define como una agrupación en la cual se comparten 
mismos propósitos, generalmente con el entendimiento de que los docentes son responsables 
unos con otros por lograr sus metas; coordinar sus esfuerzos para asegurar el aprendizaje de los 
estudiantes, aprender juntos para mejorar su práctica y compartir responsabilidades para la toma 
de decisiones sobre asuntos pertenecientes a la mencionada comunidad. 

Los investigadores acuerdan junto con los profesores implementar una metodología de 
trabajo dentro de la comunidad en la que se planean, aplican en el aula y se discuten 
reflexivamente actividades de enseñanza, las cuales están definidas como actividades que 
facilitan el aprendizaje significativo, de temas específicos de conocimiento conceptual o 
procedimental, que pueden estimular la investigación aplicada a la enseñanza diaria de las clases 
(Moreira, 2011).  

También determinan que el tema en el que se van a centrar es en la enseñanza de la función 
cuadrática ya que tiene un lugar relevante en el curriculum, así que a partir de ese momento las 
actividades de enseñanza que van elaborando se centran en ese tema. 

El propósito de este trabajo es mostrar evidencias de que el conocimiento de los profesores 
para la enseñanza de la función cuadrática puede ampliarse cuando los docentes participan en 
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una comunidad de aprendizaje, y hacen actividades reflexivas en las que producen actividades de 
enseñanza. Hay una versión previa de esta investigación en Huerta-Vazquez & Figueras (2020). 

Se analizan esas evidencias aplicando el trabajo de Kula Ünver (2018) como herramienta de 
análisis, a partir del marco teórico del Cuarteto del Conocimiento de Rowland, Huckstep y 
Thwaites (2005). 

Con la herramienta teórica antes descrita se busca, además, observar cómo el trabajo 
reflexivo dentro de la comunidad impacta en el conocimiento de los profesores participantes del 
colectivo. 

El conocimiento del profesor 
Shulman (1986, 1987) es de los primeros en centrar la investigación en el conocimiento del 

profesor en general, proponiendo tres dimensiones: conocimiento del currículo, del contenido de 
la materia (o del objeto matemático) (subject matter knowledge SMK), y conocimiento 
pedagógico del contenido (pedagogical content knowledge PCK). 

Ball et al. (2008) profundizan el trabajo de (Shulman (1986) y lo adecuan para el profesor de 
matemáticas el cuál denominan cómo el Conocimiento Matemático del Profesor para su 
Enseñanza (MKT), que corresponde al conocimiento matemático necesario para la enseñanza de 
las matemáticas a los estudiantes, y se centran en dos dominios del trabajo de Shulman: el 
conocimiento del contenido o de la materia (SMK) y el conocimiento pedagógico del contenido 
(PCK). 

Rowland et al. (2005), proponen un marco que también retoma de Shulman (1986), y lo 
denominan Cuarteto del Conocimiento (KQ del inglés), lo desarrollan inicialmente para describir 
y analizar las observaciones hechas en el aula. Este marco está divido en cuatro dimensiones: 

Fundamentación: La primera tiene sus raíces en la base de los antecedentes y creencias 
teóricas del profesor. Se refiere a su conocimiento, la comprensión y capacidad a recurrir a lo 
que se aprendió en etapa de instrucción (escuela, universidad, etc.), incluyendo la educación 
inicial del profesorado, en preparación (intencionadamente o no) para su papel en el aula. 

Transformación: La segunda tiene que ver con el conocimiento en acción demostrado tanto 
en la planeación de lo que se va a enseñar, como en el mismo acto de enseñar. Al respecto Kula 
Ünver (2018) señala que este componente se puede visualizar como la transformación del 
conocimiento del contenido (SMK) en el conocimiento pedagógico del contenido (PCK) de ahí 
que la transformación requiere del uso de modelos, analogías, ejemplos, ilustraciones, 
representaciones y demostraciones que puedan construir un puente entre la comprensión de los 
profesores sobre la materia y la comprensión que se espera que alcancen los alumnos. 

Conexión: La tercera combina ciertas elecciones y decisiones que se hacen en partes 
concretas del contenido matemático. En gran medida, estas reflejan las deliberaciones y 
decisiones que implican no sólo conocimiento de conexiones estructurales dentro de las 
matemáticas en sí mismas, sino también el conocimiento de las demandas cognitivas relativas a 
diferentes temas y tareas. 

Contingencia: La cuarta se refiere a la respuesta del profesor a todos los eventos no previstos 
en el aula durante la planificación. A pesar de tener todo planeado, libro de texto, programa de 
estudios, secuencia de actividades, etc. las respuestas de los estudiantes son impredecibles, y está 
probado que la respuesta a estas situaciones es de las tareas más difíciles para los profesores 
novatos 

Kula Ünver (2018) revisa de manera exhaustiva las dimensiones del Cuarteto del 
Conocimiento (KQ) de Rowland y colaboradores, y concluye que es un marco detallado y 
exhaustivo para examinar cómo se manifiesta el conocimiento del contenido (SMK) y el 
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conocimiento pedagógico del contenido (PCK) de los profesores de matemáticas en su proceso 
de enseñanza. Además, encuentra conexiones teóricas en cada una de las dimensiones con el 
marco teórico del MKT de Ball et al. (2008).  

Comunidad Profesional de Aprendizaje en acción 
La inspiración para establecer la forma de trabajo en la comunidad fue a partir de la 

metodología de estudio de lección (lesson study) que en consiste que un grupo de profesores 
hagan investigación acerca de lo que planifican, enseñan, observan y comparten con el fin de 
observar lo que pasa en el aula, además tiene también como objetivo la mejora de la práctica 
educativa. Dicha metodología se aplica en muchos países de diferente forma dependiendo del 
objetivo (Soto Gómez & Pérez Gómez, 2015); en Lewis et al. (2019, pp. 17–33) se sintetizan 
varios de estos estudios de lección y se puntualiza que en general están compuestos en cuatro 
etapas: de estudio de lección, de planificación, de enseñanza y de reflexión. 

Basados en lo anterior los investigadores sistematizaron la metodología de trabajo de la 
Comunidad en un ciclo que llamaron Ciclo de Enseñanza-Reflexión, está dividido en tres etapas. 

Primera etapa, planeación /reflexión-colectiva, basado en las ideas de Dewey (1989) se hace 
una reflexión colectiva de la secuencia para ser ajustada antes de su aplicación por algún 
profesor, en este momento se hace una re-revisión de los conocimientos matemáticos para la 
enseñanza, necesarios para la aplicación de la secuencia. 

Segunda etapa, puesta-a-prueba/reflexión-individual, en esta fase se desarrolla lo que Schön 
(1983) llama la reflexión durante la acción, la secuencia se pone a prueba por el docente el cual 
debe tomar decisiones durante el proceso de enseñanza. Esta etapa es videograbada para que 
pueda ser analizada 

Tercera etapa, análisis-síntesis /reflexión-colectiva es lo que Schön llama la reflexión 
después de la acción, en este momento - se analizan los videos de las puestas a prueba, los 
conocimientos que se esperaba que los estudiantes construyeran, de los modos de enseñanza de 
los profesores, de las dificultades de los estudiantes, de cómo se intentó que las superaran y 
como resultado del proceso del diseño de la secuencia enriquecida con la experiencia de todos 
los miembros de la comunidad. Surge una reflexión individual de lo que cada uno de los 
miembros 'aprendió' durante el ciclo. (Figura 1)  

 

  
Figura 1: Ciclo de Enseñanza-Reflexión de la comunidad de aprendizaje 

El Ciclo de Enseñanza-Reflexión del problema del área mínima de un cuadrilátero 
El Ciclo de Enseñanza-Reflexión de la Comunidad para la secuencia didáctica planteada del 

área mínima de un cuadrilátero se desarrolló de la siguiente manera:  
 

Primera etapa:
Planeación/reflexión 

colectiva

Segunda etapa:
Puesta a prueba/reflexión 

individual 

Tercera etapa:

Análsis/síntesis
Reflexión-colectiva
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Figura 2: El problema del área mínima del cuadrilátero 

1. Etapa 1 planeación: la profesora Lola propuso el problema a los docentes de la 
comunidad y se discutieron los pormenores para usarse en la enseñanza y ella dijo que 
esta serie de actividades podría ayudar a la enseñanza de la función cuadrática, pues en 
estas actividades los estudiantes pueden observar tres registros de la función cuadrática: 
tabular, geométrico y algebraico, además de observar la importancia de obtener los 
máximos y mínimos de dicha función. Se acordó que la primera clase la aplicaría el 
profesor Mario y luego el profesor Tadeo. 

2. Etapa 2 puesta-a-prueba: el profesor Mario aplicó la secuencia en el grupo de Tadeo, esta 
clase se desarrolló de acuerdo con la planificación de la secuencia didáctica en cuya 
enseñanza se busca que el alumno haga el tránsito a los distintos registros de la función 
cuadrática asociada al problema. 

3. Etapa 3 análisis-síntesis: en el interior de la comunidad se hace una reflexión colectiva 
usando los videos que se grabaron en la clase de Mario; Lola señaló lo siguiente: Mario 
no dejó que los estudiantes exploraran la solución al problema por sí mismos, sino que 
los apresuró a dibujar el rectángulo ABCD, haciendo que la enseñanza fuera muy 
dirigida. También sugiere que los estudiantes tengan que hacer la actividad de dibujo en 
parejas de tal manera que uno dibuja y el otro calcula el área para varios valores AP. 
Tadeo comentó que Mario debió dejar que los alumnos dibujaran el problema para 
resolverlo y no apresurarlos entre otros comentarios. 

4. Etapa 4 puesta-a-prueba: el profesor Tadeo aplica la secuencia propuesta en el grupo de 
Mario, siguiendo el desarrollo de acuerdo con la planificación de la secuencia y toma en 
cuenta los comentarios de la etapa anterior y de la clase de Mario. 

5. Etapa 5 análisis-síntesis: los profesores llevan a cabo una nueva reflexión colectiva 
acerca de la secuencia didáctica en la que resaltan varios aspectos. 
En particular para pasar del registro verbal al geométrico: el docente debe escribir el 
problema en el pizarrón o llevarlo escrito en un papel para que no se pierda tiempo en 
dictado a los estudiantes. También señalan que los estudiantes deben traducir el texto 
para hacer el dibujo del rectángulo y del cuadrilátero en su cuaderno y eventualmente 
algún estudiante pasar al pizarrón a hacerlo. Así también observaron que muchos 
estudiantes probablemente se van a equivocar al colocar los puntos 𝑃,𝑀,𝑁, 𝑆 como 
puntos medios del rectángulo 𝐴𝐵𝐶𝐷 en vez de preservar la igualdad 
𝐴𝑃 = 𝐵𝑀 = 𝐶𝑁 = 𝐷𝑆, así que el profesor que aplique la secuencia debe estar preparado. 
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Para el registro tabular sugieren que los propios alumnos deben proponer diferentes 
valores de AP para calcular el área del cuadrilátero para que así en el registro gráfico 
vayan trazando la parábola con los valores que hayan propuesto para AP y así observen 
cómo el área varía en cada caso.  
Para el registro algebraico los estudiantes deben generalizar la función cuadrática con 
base a lo hecho en las actividades anteriores, mientras el docente acompaña a los 
estudiantes en el proceso para lograr la expresión algebraica esperada. Y para encontrar el 
área mínima: sería conveniente que usaran los registros tabulares y gráficas, así los 
estudiantes podrían identificar el área mínima del área 𝑃𝑀𝑁𝑆 del cuadrilátero, por 
último, sería conveniente que llevaran la función cuadrática a la forma 
𝑦 = 𝑎(𝑥 − ℎ)2 + 𝑘 donde (ℎ, 𝑘) (ver Figura 3 registro algebraico) es el vértice para así 
interpretar k del vértice, cómo el área mínima del cuadrilátero 𝑃𝑀𝑁𝑆 pero saben que es 
probable que no les alcance el tiempo. 

La enseñanza de esta secuencia didáctica requiere que haya tránsito entre los registros de 
representación de la función cuadrática (Figura 3), además estos registros sirven para señalar 
segmentos útiles para el análisis de cada etapa del Ciclo de Enseñanza-Reflexión. 

 

 
Figura 3: Registros del problema del área mínima del cuadrilátero 

Metodología para análisis del Ciclo de Enseñanza-Reflexión del problema 
Previamente se describieron las cinco etapas que se desarrollan en el ciclo de Enseñanza-

Reflexión, las cinco etapas de dicho ciclo se grabaron en video usando un celular colocado en un 
tripié fijo, grabando a una resolución full HD. 

Para las dos etapas de puesta a prueba la cámara fue colocada al fondo del aula de tal manera 
que el pizarrón fue grabado de manera frontal con el objetivo de captar al profesor y los dichos 
de los estudiantes. Los nombres de los profesores han sido cambiados por confidencialidad. 

Para el caso de las demás etapas la cámara fue colocada al fondo del salón donde se llevaron 
las actividades de discusión de tal manera que los profesores podían ser grabados al menos en su 
audio, además se grabaron dos entrevistas individuales tanto de Tadeo como de Mario 
obteniéndose en total sietes videos para este análisis. 

Para el análisis de este Ciclo de Enseñanza, la participación de tres profesores es analizada, 
Lola la que propone la actividad en la etapa 1, Mario y Tadeo etapa 2 y 4 los que aplican la 
secuencia en aula, y los tres participan en las etapas 3 y 5. 

El software que se usa para el análisis de los datos es el MaxQDA 2020, para codificar y 
transcribir los videos, y el análisis de los datos obtenidos en la investigación descrita en este 
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artículo, a saber: el Cuarteto del Conocimiento (KQ) de Rowland mediante la interpretación de 
Kula Ünver (2018) y como complemento de dichas observaciones se utiliza el marco de Ball y 
colaboradores y las relaciones entre los marcos de Rowland y Ball resumidos en Turner, (2012, 
p. 257)  

Análisis de los datos obtenidos 
En todas las etapas podemos encontrar evidencias del conocimiento para enseñanza de la 

función cuadrática, se muestran algunos ejemplos de momentos donde aparecen indicadores de 
cada una de las dimensiones del Cuarteto del Conocimiento de Rowland, bajo el lente de Kula 
Ünver. Las entrevistas ayudan a entender las actuaciones de los profesores en el aula. 

En la etapa 1, planeación, Lola propone la secuencia didáctica, ya que la ha aplicado durante 
varios semestres previos, así que muestra conocimiento de cómo reaccionan los estudiantes ante 
la secuencia y cómo puede ser implementada, algunos ejemplos se muestran en la Figura 4. 

 

  
Figura 4: Evidencias de las dimensiones del KQ de Rowland en la etapa 1 

 
En la etapa 2 puesta-a-prueba el profesor Mario aplica la secuencia didáctica, al ser una 

lección nueva para presenta algunas situaciones que no previó, que lo llevan a contingencias, 
pero logra sortear las dificultades, además muestra conocimiento acerca de la función cuadrática 
y conceptos asociados como la ecuación cuadrática Figura 5. 
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Figura 5: Evidencias de las dimensiones del KQ de Rowland en la etapa 2 y 4 

 

 
 

Figura 6: Evidencias de las dimensiones del KQ de Rowland en la etapa 3 y 5 
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Etapa 3 análisis-síntesis, en esta etapa se revisa lo hecho por Mario en la etapa anterior, los 
profesores en particular hacen una crítica a Mario en el sentido de que no les dio tiempo a los 
alumnos para que pensaran en el problema lo que, a juicio del Lola, no lograron entender el texto 
del problema de manera correcta Figura 6. 

Etapa 4 Puesta a prueba, es en esta etapa que el profesor Tadeo aplica la secuencia en el aula, 
él tuvo la oportunidad de observar la aplicación del profesor Mario y de estar presente en la etapa 
3 donde se hizo una reflexión acerca de lo hecho por el profesor Mario, la actuación del profesor 
toma en cuenta las sugerencias hechas en la etapa anterior ya que incorpora en su planeación los 
errores que pudieran tener los estudiantes al resolver el problema. 

Etapa 5 análisis-síntesis, en esta etapa se hace una reflexión final acerca de lo hecho por los 2 
profesores se llega a varias conclusiones, la primera es que los profesores deben llevar bien 
planeada la secuencia para evitar problemas en el momento de su aplicación, también los 
profesores consideran que es necesario que los estudiantes tenga la oportunidad de fallar y que se 
les dé tiempo para que rectifiquen sus errores y consideran que se podría mejorar la secuencia 
con el uso de tecnología como GeoGebra o agregar nuevos retos dentro de la secuencia, como el 
cálculo de los coeficientes usando diferencias finitas. 

Discusión de los resultados 
El análisis de las evidencias encontradas en este ciclo de Enseñanza-Reflexión muestran que 

la reflexión de las actuaciones de los profesores al aplicar la secuencia didáctica ayudó a qué 
situaciones de contingencia como la que le ocurrió a Mario durante la transición del registro 
verbal al geométrico, se convierta en una situación de fundamentación de Tadeo ya que sabe que 
los estudiantes fallan al no considerar la anterior igualdad (Figura 6). 

También existen situación donde las creencias, se imponen sobre conocimientos para la 
enseñanza, es el caso de la explicación de la diferencia de la ecuación y función hecha por Mario 
en la etapa 2 (ver Figura 2) puede ser una pérdida de tiempo ya que no está en la planificación 
original, pero puede ser considerada valiosa para otro profesor, ver el caso de Lola y Tadeo 
(Figura 6, Etapa 03, Fundamentación). 

Por otro lado, también se muestra que un docente con experiencia, como fue el caso de Lola 
puede ayudar a mejorar la enseñanza de otros profesores, ya que ella ha enseñado con el 
problema y ha visto cómo actúan los estudiantes cuando hacen las actividades de la secuencia, 
pero los demás profesores pueden enriquecer de manera colectiva el conocimiento para la 
enseñanza a pesar de no conocer la secuencia.  

Otro aspecto que debe ser incorporado a las discusiones reflexivas de la comunidad es el 
hecho de que los profesores podrían involucrarse en el análisis de cada etapa, sobre todo aquellas 
relacionadas con la aplicación de las actividades didácticas, con el objetivo de que conozcan el 
marco del Cuarteto del Conocimiento de Rowland, como una manera de hacer mejores 
reflexiones acerca de su actividad docente. 

De manera más global hay que señalar que esta forma de trabajo colectiva y autogestiva 
puede contribuir a la ampliación del conocimiento de los profesores que participan en una 
comunidad profesional de aprendizaje, un ejemplo que podemos señalar es el enriquecimiento al 
conocimiento de los profesores durante las etapas de 3 y 5, donde se dan discusiones en las que 
se intercambia la experiencia de parte de Lola, las reflexiones en las aplicaciones en aula de parte 
de Mario y de Tadeo sobre todo cuando Mario experimenta momentos de contingencia que 
Tadeo aprovecha para incorporar a su fundamentación. Es claro también que evidencias sólidas 
del crecimiento del conocimiento de los docentes del colectivo solo se podrá observar en 
periodos largos.   
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IMPACT OF REFLECTION ON THE KNOWLEDGE OF TEACHERS WHO ARE 
MEMBERS OF A LEARNING COMMUNITY 

A group of high school mathematics teachers seek to improve their teaching work, for which they 
create a professional learning community, where teachers collectively produce teaching 
activities through a reflective cycle of several stages that they call 'Teaching-Reflection '. This 
report describes how knowledge is expanded for teaching mathematics during a reflective cycle 
on the quadratic function, as well as the impact of reflection on teachers' knowledge. An 
important result of this work is that the framework of Rowland et al. It allows to analyze the 
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knowledge of teachers, which emerges when they do reflective activities in a self-managed 
professional learning community. 

 

 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

670



WHAT’S IN A NAME? SEEKING GEOMETRY IN GEOMETRIC SEQUENCES 

Andrew Kercher 
Simon Fraser University 
andrew_kercher@sfu.ca 

Anna Marie Bergman 
Simon Fraser University 

anna_marie_bergman@sfu.ca 

Rina Zazkis 
Simon Fraser University 

zazkis@sfu.ca 

Mathematical terminology is sometimes created according to conventions that are not obvious to 
students who will use the term. When this is the case, investigating the choice of a name can 
reveal interesting and unforeseen connections among mathematical topics. In this study, we 
tasked prospective and practicing teachers to consider: What is geometric about geometric 
sequences? Participants embedded their explanations within a scripted dialogue between 
teacher- and student-characters in a mathematics classroom, provided commentary on this 
dialogue, and expanded on its mathematical content. Participants most often leverage the 
concept of a geometric mean to explain why geometric sequences are named as such. To capture 
this informal arguments, we built on the work of Toulmin (1958/2003) to conceptualize and 
develop the Toulmin-Reversed (Toulmin-R) model. 

Keywords: Teacher Knowledge, Communication, Professional Development, Preservice Teacher 
Education  

Introduction 
Mathematical communication relies on the use of terms that have a particular meaning within 

the mathematical register. However, confusion may arise when a learner interprets a 
mathematical term by referencing the use of that word outside of mathematics. For example, the 
phrase “only a fraction of students participated in the Olympiad” implies that a “fraction” is a 
small amount and may interfere with a learner’s ability to recognize fractions that are greater 
than one (Hackenberg, 2007). To indicate such fractions within a mathematical conversation, a 
particular adjective is chosen: improper fractions are fractions greater than one.  

Such adjectives often resonate with the intuitive interpretation of the words. Consider for 
example increasing functions, whose graphical appearance is often exactly in accord with 
students’ preconceived notions of what increasing entails. There are also instances of particular 
adjectives which may at first seem unrelated to the mathematical object, but which are 
immediately explained by the associated definition. For example, rational numbers are those 
expressed as ratios (under some constraints).  

However, there are examples of adjectives where the choice is somehow puzzling even after 
learning the corresponding definition. Consider for example a perfect number, defined as an 
integer that is equal to the sum of its factors (excluding itself). It is not immediately obvious why 
“perfect” is an appropriate adjective to describe this particular property. It is only in light of the 
fact that perfect numbers are usually considered together with deficient (smaller than the sum of 
its factors) and abundant (larger than the sum of its factors) numbers that the choice of adjective 
is given some context; and even so, the adjectives “sufficient” or “balanced” could be seen as 
more appropriate than associating the property with perfection. 

We acknowledge that mathematical convention, including terminology, is sometimes 
arbitrary in the sense that it cannot be deduced using logical principles (Hewitt, 1999). For 
example, a student simply cannot deduce the arbitrary fact that circles are agreed to have 360 
degrees—they must be told as much by an authority. But as Hewitt illustrates, it is sometimes 
possible to embed a seemingly arbitrary convention within a historical or mathematical context 
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to justify its use. When introducing degree measure, a teacher may appeal to the Babylonian 
number system in which the degree originated in order to rationalize our modern conventions. 
Our study is concerned with similar explanations surrounding the arbitrary use of the adjective 
“geometric” in connection with a geometric sequence. It is stimulated by a student question, 
“What is geometric about geometric sequences?”, to which we collected responses from 
prospective and practicing teachers. 

Our investigation addresses the following research question: How do teachers justify a 
convention of mathematical terminology? In particular, what is the most common argument 
invoked by teachers to explain the adjective “geometric” in a reference to a geometric sequence?  

Background: Toulmin’s Model 
Toulmin’s model is comprised of six elements which, when taken in relation to each other, 

outline the structure of an informal argument. The data is an assertion from which follows the 
truth of the conclusion (sometimes called the claim: cf. Inglis et al., 2007; Conner et al., 2014). 
The degree of confidence with which the arguer believes the conclusion follows from the data is 
inferred from the use of a modal qualifier (e.g., “therefore, it is necessary that…” or “so, it is 
probably the case that…”). Throughout this report, we refer to the combination of data, claim, 
and modal qualifier as the core argument. 

A lower degree of confidence in the conclusion is often caused by rebuttals, the existence of 
which may be known or only anticipated at the time the argument is made. Rebuttals are 
statements that present contrary evidence to the conclusion by describing how it may not follow 
from the data. Conversely, a higher degree of confidence could be the result of a convincing 
warrant and any associated backing. A warrant is an attempt to support the relationship between 
the data and conclusion with reasoning or evidence; a backing statement is further evidence in 
support of the warrant (Toulmin, 1958/2003). These elements are not considered part of the core 
argument because an argument need not contain rebuttals, warrants, or backings—on the other 
hand, it may contain multiple. 

In mathematics, informal argumentation often serves as a foundation for, or supplement to, 
logical proof; as such, Toulmin models can be used to visualize the structure of mathematical 
activity surrounding more rigorous mathematics. For example, Inglis et al. (2007) examined the 
work of mathematics graduate students who had been tasked with deciding the truth value of 
certain mathematical statements; the authors used Toulmin models to coordinate instances of 
intuitive and inductive reasoning as their participants informally developed the ideas of a 
rigorous proof. Weber et al. (2008) and Conner et al. (2014) used Toulmin models to analyze 
whole-class discussions of middle and secondary school mathematics classrooms, respectively. 
These data were used to illustrate the role of explicit warrants in facilitating learning 
opportunities (Weber et al., 2008) and to generate a framework that categorizes the ways in 
which teachers can support collective argumentation (Conner et al., 2014). 

In this paper, we extend the use of Toulmin models to a situation in which the conclusion is 
known, but the data used to reach that conclusion is not. It is certainly true that geometric 
sequences are named as such—but what set of data and accompanying warrants might have led 
to that conclusion? 

Methods 
Participants and Setting 

A total of 24 participants (referred to here as T-1 through T-24) took part in the study. Of 
these, 9 were prospective teachers in the last term of their teacher certification program. At the 
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time of data collection they were enrolled in a course that used mathematical problem solving as 
a lens through which secondary mathematics could be connected to advanced mathematics. The 
remaining 15 participants were practicing teachers enrolled in a professional development course 
that provided them with an opportunity to investigate and extend their own mathematical 
thinking by focusing on the learning and teaching of mathematics. The practicing teachers held 
bachelor’s degrees in mathematics or science; in the latter case, the degree also included a 
number of mathematics courses sufficient for teaching certification. 

Both populations completed several scripting tasks (see next section) as part of their regular 
coursework. Their responses to one such task, along with their responses to accompanying 
discussion prompts, serve as the dataset for this report. 
The Task 

The data analyzed in this report is based on participants’ responses to a scripting task. 
Scripting tasks were initially introduced in mathematics teacher education as lesson plays, which 
were envisioned as a more robust form of lesson planning. In a lesson play, the scriptwriter 
constructs dialogue that captures key interactions between a teacher and student characters 
(Zazkis et al., 2009; Zazkis, et al., 2013). More recently, the idea of a lesson play has been 
extended to the activity of writing an imaginary dialogue between interlocuters in any 
mathematical context. In this expanded scope, scripting tasks can provide multiple affordances 
not only for teachers but also teacher educators and researchers. 

Scripting tasks often begin with a prompt, which serves as the beginning of a dialogue 
between the scripted characters. In prior research, prompts have introduced a student error (e.g., 
Zazkis et al., 2013), a student question (e.g., Bergman et al., in press; Marmur & Zazkis, 2018; 
Zazkis & Kontorovich, 2016), or a disagreement among students (e.g., Marmur et al., 2020; 
Zazkis & Zazkis, 2014). The scriptwriter responds to a prompt by continuing the dialogue. These 
dialogues reveal mathematical understanding and, for teachers, demonstrate “awareness-in-
action” (Mason, 1998, p. 255). That is, they show an envisioned response in practice, rather than 
in theory, to students’ errors, queries, or unusual ideas. 

Part 1 of the geometric sequence task consists of a scripting task, the prompt for which is 
seen in Figure 2. We refer to the scripted characters as “teacher-characters” and “student-
characters” throughout this report. We refer to participants also as respondents and scriptwriters, 
interchangeably. In Part 2, participants were asked to explain the actions taken by the characters 
in the script. This included justifying both the explanation(s) chosen by the teacher-character as 
well as the responses given by the student-characters. In Part 3, participants were asked to 
elaborate on how their personal understanding of the mathematics might have differed from what 
was presented in the script; that is, they were given the opportunity to clarify the mathematics 
using more formal or advanced language appropriate for a colleague rather than a student. 
 

 
Figure 2: The prompt for the geometric sequences task 
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Data Analysis 

Analysis of participants’ responses began with reflexive thematic analysis (Braun & Clarke, 
2006, 2019; Nowell et al., 2017). First, the research team thoroughly familiarized themselves 
with the data by reading and rereading both the scripts and the accompanying commentary. The 
coding process began by identifying and classifying within Part 1 how the teacher-character 
chose to answer the student-character’s initial question from the prompt: “What is geometric 
about geometric sequences?” Explanations that only appeared in Part 2 or 3 were also identified 
and classified in the same way. During this process, supplementary codes emerged from the data 
that captured other common aspects of the participants’ submissions. These included: ways in 
which the teacher-characters’ explanations were unsatisfactory, either to a student-character or 
the scriptwriter themselves; how characters chose to define the adjective “geometric” and what 
mathematical objects should be described as such; and how comparisons to other types of 
sequences bolstered or diminished the explanatory power of the teacher-characters’ justification. 
In total, the initial codes and supplementary codes combined to form a preliminary codebook. 

Upon review of the submissions, the research team recognized that Toulmin’s model of 
informal argument could capture the scripted dialogue. When a student-character opposed the 
teacher-character’s explanation, we perceived this as voicing a rebuttal. When the dialogue 
attended to what is or is not geometric, the characters were seen to be establishing a warrant or 
its associated backing. However, the existing Toulmin model needed modification given that the 
scripted characters were attempting to find data that supported a forgone conclusion. That is, it is 
certainly the case that geometric sequences are named as such—but one cannot establish that 
they “should” be named this way through formal, deductive logic, as one might establish that the 
square root of 2 is an irrational number. To capture this novel dynamic, we developed the 
Toulmin-Reversed (Toulmin-R) model pictured in Figure 3. The Toulmin-R model contains the 
same elements as a Toulmin model but reverses the direction of the arrows within the core 
argument and draws attention to the fact that the conclusion is already known; instead, the data is 
the subject of the argument. 

The codebook was then reorganized and refined in light of the Toulmin-R model. Finally, the 
research team created Toulmin-R models to visualize the informal arguments as they were used 
by participants to answer the student-character’s question from the prompt. 
 

 
Figure 3: A Toulmin-R diagram template, with the reversed core argument emphasized 
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Findings 
In 13 of the 24 submissions, participants used a connection to the geometric mean as data 

that could rationalize the naming convention of geometric sequences. This made it the most 
prevalent source of data employed in arguments. 

Scripts that invoked the geometric mean in Part 1 sometimes introduced that concept as an 
analogue to the arithmetic mean. When this was a purely computational comparison, the student-
characters typically responded with skepticism. For example, in T-17’s script, an unsatisfied 
student-character observed that the two means are just “more things called ‘arithmetic’ and 
‘geometric’ where one’s about addition and the other is about multiplication.” In these cases the 
geometric mean was, like the sequence, being introduced and handled entirely with arithmetic—
and so its power to explain the choice of “geometric” as an appropriate adjective was limited. A 
student-character in T-20’s script voices this concern explicitly: “If a geometric sequence is 
geometric because it involves geometric means, then why do we call the geometric mean 
‘geometric’?” 

In response to these student-characters, the teacher-character typically provided one of two 
geometric explanation that warranted the geometric nature of the mean, and thus, the associated 
sequence. Both warrants were sometimes accompanied by diagrams, as exemplified in Figure 4. 
 

 
Figure 4: Diagrams used by teacher-characters as warrants 

 
The more common warrant was that if two given numbers were used as the sides of a rectangle, 
then the geometric mean was the side of a square with the same area as that rectangle. T-18’s 
teacher-character provided the accompanying visualization of this relationship pictured in Figure 
4(a). More infrequently, it was explained that the geometric mean could be visualized as the 
altitude of a right triangle that had been cut into two similar right triangles. The teacher-character 
in T-11’s script drew the diagram seen in Figure 4(b) to illustrate this warrant. 

For each of these warrants, an associated backing (sometimes explicit, but usually only 
implied) was that the polygons in these diagrams were clearly geometric, thereby justifying the 
use of that adjective for the associated mean and sequence. Figure 5 provides a composite 
Toulmin-R model illustrating these arguments. This model is a composition in the sense that it 
includes all the rebuttals, warrants, and backings of any submission that argued for the geometric 
mean as a source of data. We also note that the model in Figure 5 express sequences with 
notation familiar to a research audience but, as exhibited in the visualizations provided in Figure 
4, not typically used by participants in their scripted dialogues. 
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Figure 5: Composite Toulmin-R model featuring geometric mean as a source of data 

 
The selection of the geometric mean as the likely source of data sometimes led to rebuttals, 

even with the accompanying warrants described above. For example, the teacher-character in T-
18’s script extended his explanation warranting the geometric nature of the geometric mean to 
also include a geometric explanation of the arithmetic mean. After drawing the diagram in Figure 
4(a), the following dialogue occurs: 

Teacher:   […] Suppose you have A and B are the lengths of two sides of a rectangle. So the 
geometric mean √𝐴𝐵 is the length of a side of a square having the same area of the 
rectangle. 

Student 1: Okay, then? 
Teacher: And the arithmetic mean (𝐴+𝐵)

2
 is the length of the side of a square having the 

same perimeter of the rectangle. 
Student 1: I still not see your point. Why they are both expressed geometrically? 

From Student 1’s perspective, accepting the geometric mean explanation as a likely source of 
data meant that the arithmetic sequence was also similarly geometric. This perspective 
corresponds to rebuttal-a in Figure 5. Even though the geometric mean does justify that the 
geometric sequence is in some way geometric, it does not clearly establish why the adjective 
“geometric” was chosen to apply to one sequence and not the other—thereby calling into 
question whether it is the correct source of data. Some participants avoided this rebuttal by 
providing additional historical context. In one such case, T-23’s teacher-character explained that 
“in ancient times” measures of length, such as perimeter, were not considered geometric. 

Other rebuttals hinged on the fact that the geometric mean did not immediately lend itself to 
generating subsequent terms of a geometric sequence, as seen in rebuttal-b in Figure 5. For 
example, T-17 recognized that the geometric mean could interpolate additional points between 
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two known terms of a geometric sequence, but called into question whether this was a useful 
property: “Why would we ever be in a position where the nth element is unknown but its 2 
neighbours are known?” Similarly, T-14 noted in Part 2 that she was unsatisfied with the 
geometric mean explanation because it “doesn’t nicely describe the progression of numbers […] 
and it isn’t exactly logical what number would come next in the sequence.” The characters in T-
6’s script handled this concern by deriving the common ratio in terms of the geometric mean: 

Allen:   Uh… A, √𝐴𝐵, and B. 
Teacher: Exactly! Short rectangle side, then square side, then long rectangle side, which 

makes A, √𝐴𝐵, and B. Now, what’s the pattern here? […] To go from A to √𝐴𝐵 , what 
do you have to multiply? 

Allen: Multiply? Uh… √𝐴𝐵/A? 
Teacher: Exactly! […] This “pattern” you found is the sequence: the geometric sequence. 
Finally, T-11’s script contained an example of rebuttal-c in Figure 5. This rebuttal was based 

on the fact that warranting the geometric mean explanation with a geometric representation 
actually obscured the underlying sequence. This is illustrated in the following conversation 
between the characters: 

Teacher:   […] This is why this progression is called a geometric progression since it’s 
exactly like growing similar triangles. 

Student: ………………………….. what is a similar triangle? I forget……………….. 
Teacher: I’ll draw similar triangles for you. Here we have 3 similar triangles: There’s the 

large triangle and the two small triangles. 
Student: But where’s the geometric sequence? 

The visualization drawn by the teacher-character in this excerpt is the right triangle in Figure 
4(b). The teacher-character does not answer the student-character’s final question in Part 1, but 
the scriptwriter later explains in Part 3 that she might clarify the construction of this triangle for a 
mathematically mature colleague. 

Discussion 
Mathematics teachers must be careful that they do not take language for granted. This is 

especially true of mathematical names, which are (perhaps naively) expected to encapsulate the 
essence of the object they denote. An expert in mathematics might take familiar terminology for 
granted. But before a novice connects mathematical properties to a name, they might associate 
with it their personal connotations and experiences—which may sometimes cause conflict. It is 
an awareness of this fact that we hope to explore by assigning the geometric sequences task to 
teachers. 

In analyzing participants’ submissions, we considered the following research questions: How 
do teachers justify a convention of mathematical terminology? In particular, what is the most 
common argument invoked by teachers to explain the adjective “geometric” in a reference to a 
geometric sequence? Our findings indicate that the most common argument leveraged by 
teachers to explain why geometric sequences are in fact geometric relies on the relationship 
between a geometric sequence and the geometric mean. This approach necessitated a warrant 
justifying that the geometric mean is in fact geometric. Some participants handled this with a 
geometric diagram: either of a square that preserves the area of a given rectangle, or of a right 
triangle decomposed into two similar right triangles. In both cases, the fact that these diagrams 
were made of familiar polygons implied that they were genuinely “geometric.” 
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In addressing our research questions, we considered the ways in which each explanation was 
considered insufficient to either student-characters or scriptwriters. These observations were 
captured in the findings as rebuttals. Here, we frame these rebuttals as the inability on the part of 
the core argument to meet an intellectual need (as in Harel, 2013). Rebuttal-a in Figure 5 does 
not satisfy the need for structure. For student-characters who voiced this rebuttal, the argument 
from geometric mean did not logically reorganize their understanding of mathematical 
terminology by meaningfully differentiating between geometric and arithmetic sequences. 
Rebuttal-b in Figure 5 does not satisfy the need for computation. Participants already knew how 
to compute the next term of a geometric sequence arithmetically by multiplying by the common 
ratio; the inability of the geometric mean argument to replicate that capability in a geometric 
context was therefore seen as a shortcoming. Finally, rebuttal-c in Figure 5 captures a need for 
communication. The student-character who voiced this rebuttal could not productively translate 
between their symbolic understanding of geometric sequences and the visual embedding of that 
concept in the triangle diagram. 

Recasting other elements of an informal argument in light of intellectual need is one direction 
for future research; for example, how do certain warrants successfully attend to intellectual need? 
Another direction for additional research is to consider the origin of other mathematical terms. 
What is linear about linear algebra? What is natural about the natural logarithm? Whether posed 
to prospective teachers or to other students of mathematics, we anticipate that such questions will 
provoke meaningful introspection on the nature, structure, and history of the subject. This will, in 
turn, lead to further exemplification of the role of informal argumentation in mathematical 
discourse. 

Our study contributes to research in mathematics education by developing the Toulmin-R 
model as a tool for representing informal arguments in which the goal is to establish a likely 
source of data rather than a meaningful conclusion. We have used this model in the context of 
explaining mathematical terminology; we suggest it could also be of use when a mathematical 
effect is observed but its cause is unclear. For example, a novice will eventually prove that the 
product of any two odd numbers is itself odd. Before their thinking is rigorously expressed by 
deductive proof, however, the Toulmin-R model might be leveraged to capture their informal 
arguments as they seek data leading to this conclusion. 

This report also contributes to the body of knowledge on methods for mathematics teacher 
education. In their Standards for Preparing Teachers of Mathematics, the Association of 
Mathematics Teacher Educators recommend that to be “well-prepared,” teachers must 
“understand that mathematics is a human endeavor” (2017, p. 9). It is empowering for teachers to 
understand mathematics as the cumulative result of centuries of human effort—even though, as a 
result, it may sometimes seem disorganized or arbitrary. A well-prepared teacher should 
recognize that this is not always to the subject’s detriment. It may not be set out clearly why a 
geometric sequence is geometric, but by attempting to answer the question, teachers are apt to 
discover unexpected connections between areas of mathematics. Paradoxically, it is often those 
things that seem inexplicable that ultimately reveal a more cohesive and interrelated subject. 
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This study investigates how utilizing student-invented strategies in the classroom can inform 
teachers’ pedagogical content knowledge. Two elementary school teachers participated in 
professional development discussing the benefits of invented strategies. Data was then gathered 
as the participants implemented this practice in their classrooms. Data was analyzed 
qualitatively to show the ways in which invented strategies can be useful in a teacher’s 
development of their pedagogical content knowledge, including their Knowledge of Content and 
Students, Knowledge of Content and Teaching, as well as Knowledge of Content and 
Curriculum. 

Keywords: Teacher Knowledge, Instructional Activities and Practices, Elementary School 
Education, Curriculum 

As one elementary school teacher in this study told me, “In 20 years of teaching I have never 
come across a math curriculum that encourages teachers to ask students to solve problems with 
their own invented strategies.” In her experience, teaching in three different states, she had not 
been exposed to the importance of giving students time to develop their own algorithms. After 
the first day of implementing this practice, I talked with the teacher, expecting to hear validation 
of the research about students’ capacity for thought and their flexibility in their understanding 
(Carpenter, Franke, Jacobs, Fennema, & Empson, 1998; Chambers, 1996). I was surprised that 
the conversation centered on what she, as the teacher, had learned. Her understanding of the 
students, of her own teaching, and of the curriculum changed after watching students invent their 
own strategies to solve problems. 

The teachers in this study reveal how their pedagogical content knowledge (PCK) increased. 
Some of this growth was pleasing to them. It amplified their current beliefs and ways of thinking. 
It resonated with past experiences and harmoniously pushed them in ways that excited them. On 
the other hand, some of this growth was jarring for the teachers to experience. They found this 
practice confusing, and claimed that it created dissonance between their past teaching practices 
and what they wanted to accomplish. This study investigates how teachers can increase their 
PCK directly from observing their students use invented strategies. 

Objectives 
We know the value of invented strategies for students (Carroll, 1999). In this study I begin to 

uncover the value of using student-invented strategies for the teachers themselves. My study is 
exploratory in nature and seeks out possible ways in which teachers can use this practice to 
change how they see and understand their students, what they teach and how they teach, and how 
they use the curriculum in their teaching.  

Framework 
My research uses Deborah Ball’s construct of the mathematical knowledge needed for 

teaching (Ball, Phelps, & Thames, 2008). As Ball illustrates, there are several components of 
PCK. Knowledge of Content and Students (KCS) is knowledge that involves the dynamic 
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between understanding specific mathematical concepts, and familiarity with students and their 
thinking about those concepts. This includes knowing student conceptions as well student 
misconceptions. Teachers need to be able to predict how students will perform on a task, and 
what students will find challenging, what students will find easy, and what students will find 
confusing. As students are developing their own concepts, even while those concepts are still 
incomplete, teachers need to be able to understand the students’ language and ideas.  

Knowledge of content and teaching (KCT), is knowledge that combines knowing about 
teaching and knowing about mathematics. Teachers need to understand the architecture of a task 
and what types of responses will be elicited by the design of the task. Teachers need to know 
how to sequence particular content for instruction. They need to discern the advantages and 
disadvantages of different tasks, manipulative, and technologies. When developing content with 
students, they need to make decisions about which student ideas to pursue, when to pause for 
clarification, and when to pursue a new avenue.  

Knowledge of Content and Curriculum (KCC), the intersection between knowledge of 
mathematical content and knowledge of the curriculum from which it is taught, is not developed 
in the literature, but Ball theorizes that KCC is a factor in a teacher’s PCK. As Hill suggests, 
currently KCC is an “interim placement…still in need of revision and refinement…it may run 
across several categories or be a category of its own” (Hill, Ball, & Schilling, 2008) 

My study also relies on the importance of student-invented strategies in the classroom. 
Carpenter’s longitudinal study of invention and understanding in multi-digit addition and 
subtraction with children shows that students benefit from inventing their own algorithms and 
strategies in a variety of ways (Carpenter, Franke, Jacobs, Fennema, & Empson, 1998). The 
authors explain that, in contrast to standard algorithms, invented strategies generally are derived 
directly from the underlying concepts. Therefore, students who are asked to devise and use their 
own strategies demonstrate knowledge of underlying concepts before students who relied 
primarily on standard algorithms. Invented strategies demonstrate a characteristic hallmark of 
understanding, and children who use them are able to use them flexibly to transfer their use to 
new situations. 

In this study, I helped practicing elementary school teachers understand the benefits of 
invented strategies. They implemented this practice in their classrooms and, in doing so, they 
learned more about their students, they discovered benefits of and problems with their teaching 
methods, and changed their relationship to the curriculum. 

Methods 
After teaching a series of professional development courses at an elementary school, one 

second-grade teacher, Julie (all names used are pseudonyms), approached me and asked me to 
look over the text they were using to “see what was missing.” I noticed that student-invented 
strategies were not addressed in the text, nor in her curriculum. She was very interested in 
exploring the use of this practice. For the second half of that school year, Julie intermittently 
gave time to students to try their own strategies before teaching them the standard algorithm. She 
was impressed with what the students gained from this experience, and I was surprised by and 
interested in what she was learning from the experience. This informal interaction developed into 
a pilot study. I began observing Julie teach each time she used invented strategies in her class 
and interviewed her afterwards. There was so much she was learning that we decided to continue 
the study the following school year and to include other teachers at the school.  

Julie approached all of the other second and third-grade teachers at her school to see if they 
were interested in participating. Over the summer I met with four teachers to discuss the research 
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regarding invented strategies and the benefits for students. Unfortunately, by the end of the 
summer two of the teachers had left the school. This was the summer of 2020, and it was unclear 
if we were going to be able to continue the study at all because of the COVID-19 pandemic. 
However, this particular school district did teach face-to-face for the 2020-21 academic year. So, 
although the number of participating teachers was down to just two, these two teachers were still 
willing to take on this new challenge, in the midst of all of the other pandemic-related 
difficulties, and learn more about student-invented strategies.  

I met with Julie, a second-grade teacher, and Kamila, a third-grade teacher, several times 
during the summer and at the beginning of the school year to discuss general benefits of invented 
algorithms. We focused on things teachers should know about the importance of and reasons for 
employing invented algorithms (Trafton, P., & Thiessen, D., 2004). We also discussed content-
specific invented strategies such as children’s conceptual structures for addition and subtraction 
(Fuson, Wearne, Hiebert, Murray, Human, Olivier, & Fennema, 1997; Huinker, Freckman, & 
Steinmeyer, 2003). The teachers decided, completely on their own, how they would use this 
knowledge to change and enhance their teaching over the following year. Both teachers decided 
to use invented strategies before each section that involved a new algorithm. 

I observed and took notes during any class time during which teachers were using invented 
strategies. I made copies of materials used by the teacher, took photographs of board work, and 
recorded other relevant data including occasional student work. After each observed class, I 
interviewed the teachers. I audio-recorded those interviews as well as took field notes. The field 
notes, curricular materials, board work, student work, and teacher interviews were used to 
analyze how the teachers’ PCK was being affected by utilizing student-invented strategies.  

The analysis was conducted qualitatively. Learning what the teachers noticed, what surprised 
them, what they expected, and what changes they made to future lessons due to their findings all 
provided me with an important avenue for investigating what they were learning. I reviewed the 
materials looking for patterns, and ultimately found evidence of several developments in the 
teachers. It was not until after I looked for patterns that I began thinking of the teachers’ growth 
as improving their PCK. This became the avenue for how I grounded by research and began 
analyzing the data 

Results 
I discovered ways in which students using invented algorithms informed each aspect of the 

teachers’ PCK. The following paragraphs will highlight some of the ways that teachers 
experienced change in their Knowledge of Content and Students (KCS), Knowledge of Content 
and Teaching, (KCT) as well as possibly Knowledge of Content and Curriculum (KCC). 
Examples of Change in Teacher’s Knowledge of Content and Students 

Students as imparters and constructors of knowledge. Because students were given more 
of a voice in the classroom, teachers were able to get to know their students’ capabilities on a 
deeper level. The teacher, as well as the students, began to see the children as ‘imparters of 
information,” according to Julie. Everyone in the classroom saw the students as “capable of 
knowing and sharing things” and not just the teacher. Julie and Kamila frequently described how 
they watched the students build confidence as they displayed their thinking to others or made 
connections to previous strategies. As Julie said, “I’d never asked what they already know. I 
know much more about that now.” The teachers were able to see even their struggling students in 
a different way, focusing not just on what these students did not understand, but also seeing what 
they did understand. After a day of student-invented strategies Julie reported, “One of my 
struggling students today was able to solve a subtraction problem on her own today, without 
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having been taught how.  I think the flexibility in solving problems in different ways has enabled 
her to get better at using the strategy that makes most sense to her. Even when posed with the 
traditional algorithm she uses drawings to help her solve problems and is making great 
gains.  This is so exciting!”  

Students spent a lot of time comparing and critiquing other students’ strategies. The teachers 
realized this forced students to explain themselves more clearly and visibly. It encouraged 
everyone to participate. As Kamila said, “Everyone is working on something. No one is just 
sitting there. They are all willing to come up and share and talk about strategies. They feel 
successful and proud.” Both teachers saw the benefits of students working with partners. They 
acknowledged that they often used partner-work with reading, but rarely with math. Now they 
could see how working in partnerships allowed students to help one another, and built 
confidence and ownership of their work.  

Julie used invented strategies in the previous school year, as part of our pilot study. One day 
after school, one of the students from the previous year approached Julie and asked, “Did you 
teach them my strategy yet?” Julie did not immediately remember which strategy the student 
claimed as hers, but the student quickly reminded her. Julie told me, “It made me realize how 
powerful invented strategies are because kids take ownership of them. They are the constructors 
of their own knowledge. For her to remember that a year later made quite an impression on me!” 
The teachers began to look at their students differently: they were now capable of constructing 
their own knowledge and sharing it with other students. 

Student learning styles. The teachers frequently talked about understanding individual 
students’ ways of thinking more clearly. They did not only view their class as a whole, but the 
teachers could describe each student, what types of strategies each preferred and which strategies 
posed a struggle. This understanding helped the teachers group students more effectively. Julie 
described this process: 

After the lesson I sorted the student work into three categories: 1) students who have at least 
one strategy and were able to solve all of the problems, 2) students who had a start (part of a 
strategy or a whole strategy, but may have had a misconception or mistakes, and 3) those 
who don’t seem to have any strategies at their disposal.  In thinking about these groups of 
students, it confirmed for me which students have solid strategies and can work 
independently and most likely transfer these skills. It also showed me which students would 
benefit from scaffolding…which students need to work with concrete base ten blocks before 
working with pictures or abstract problems. 

Teachers could describe individual students’ learning styles after watching them repeatedly 
invent strategies because they could see which strategies their students relied on, and which 
strategies the students were using when they made mistakes. As one teacher reported, “When 
kids get to the standard algorithm they won’t use it if they don’t understand it. They will fall 
back on other strategies they have used.” The teachers were more aware of how their students 
thought, how the students could best express themselves, and what tools helped them learn. 

Student misconceptions. Julie and Kamila are seasoned teachers, each having taught their 
grade level for over 20 years. They were both surprised that letting students use invented 
strategies revealed student misconceptions of which they were previously unaware. For example, 
many of the strategies in these grades relied on an understanding of place value. But, as some 
students used their invented strategies, it became clear to the teachers that the students had 
unanticipated misconceptions about place value. Frequently, these misconceptions surfaced 
when students were discussing their strategies and they would use words incorrectly, 
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demonstrating to the teachers that the students did not fully understand the math concept behind 
the words.  

The teachers were more informed when words such as “equal” or “whole,” for example, were 
concepts that needed more instruction. It was also apparent to teachers when students did not 
understand why they were doing certain algorithms. Teachers described identifying a lack of 
connection between tasks within a unit that was building to a cumulative goal. There were many 
times when teachers thought the students understood a topic, but recognized that the 
understanding was not there when the teachers invited the students to build on that topic for the 
next topic, using student invented-strategies. 

Student transfer. The teachers were very concerned about and interested in transfer as they 
discussed their students with me. Sometimes the teachers saw the students using previous 
knowledge to solve new problems more than they had expected. They saw invented strategies as 
a tool that students used to help make connections between different topics. There were also 
many times when the teachers expressed discouragement that the students were not able to build 
on what they had discussed previously. In some ways, invented strategies left as many questions 
as answers when it came to students’ ability to transfer knowledge. After a year of using this 
teaching strategy, the teachers are still interested in invented strategies to investigate transfer. 
Examples of Change in Teacher’s Knowledge of Content and Teaching 

Assessment. The teachers immediately saw invented strategies as a form of assessment. Julie 
described using invented strategies, and asking the students to articulate their thinking in writing, 
as one of the best things she could use to see what her students were understanding. “That was 
more helpful than seeing the problem and how they solved it,” she explained. Julie now wants to 
use invented strategies mid-chapter as a formative assessment in her teaching. 

Julie and Kamila also found themselves thinking more about assessment in general after 
using invented strategies. They examined the type of assessments they were using and realized a 
need for changes. In a conversation with the two teachers they said, “There needs to be some 
changes on a school level about how students are assessed. There should be more one-on-one 
assessment with math. We do it with reading; why don’t we do that in math?” 

In addition to assessment at the end of, or even during a chapter, the teachers realized 
invented strategies were an excellent tool to use for pre-assessment. After the very first day that 
Julie taught with invented strategies she said, “Truly today worked as a pre-assessment and 
helped me understand what skills my students already have in this arena, as well as helped me 
identify some action steps for how to address their needs.” The teachers were looking to see how 
students were able to build on concepts they had learned previously and what new boundaries 
they could investigate all on their own.  

Sometimes the pre-assessment went well and sometimes it did not. When the pre-assessment 
did not go well, the teachers learned they might need to go back and address concepts from 
previous lessons. As Kamila described, “If their foundation isn’t there, they can’t see it. They 
can’t move forward.” Based on how the students performed when trying strategies of their own, 
the teachers were able to make decisions about the upcoming lessons. The teachers were able to 
look beyond whether the students performed well or not on the pre-assessment. They were able 
to decide which concepts they needed to review more, the tasks that would most benefit their 
students, which students were best suited to work together, and which students needed more 
instruction. 

Manipulatives. At the end of the study, when asking the teachers how they had changed, 
Kamila expressed that her relationship to manipulatives possibly had changed more than 
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anything else. She said, “I am the type of person that I like to have everything in its place, but 
now my intention is to have manipulatives accessible so that students can take any tool they feel 
will help. I already have this math station envisioned in my mind and am so excited about it!” 
She was looking forward to a time (past the pandemic) when it would be possible to set up a 
table of manipulatives for students to use at their discretion.  

Because of COVID-19, each of Julie’s students had access to their own individual bag of 
manipulatives that they could use anytime they chose. Even if individualized bags are no longer 
necessary after the pandemic, Julie plans to continue this practice so that her students have better 
access to a larger number and a larger variety of manipulatives. 

Along with deciding that students need to have more freedom and more choices with 
manipulatives, teachers were able to tell when, as a classroom, they needed to revert to using a 
tangible tool instead of proceeding more abstractly. For example, when transitioning from single 
digit subtraction to double digit subtraction in Julie’s classroom, she noticed that many of the 
students who tried their version of the traditional algorithm were subtracting the top number 
from the bottom number. She said this helped her understand that “I need to go back to using 
blocks and have them see that they cannot subtract in any order.” Using invented strategies 
helped her see when it would be helpful to revisit using manipulatives. 

The teachers also saw how more use of manipulatives changed the students. Julie noticed that 
her students seemed less intimidated by new problems that had not been explained to them. The 
students knew they could find a tool that could help them think through the problems. “Everyone 
has a starting point now,” explained Kamila. The teachers found value in helping students 
increase their confidence and independence by giving students autonomous access to 
manipulatives when using invented strategies. 

Student-led discussions. According to the teachers, using invented strategies has guided 
them to a more inquiry-based approach for teaching. Julie learned that getting her students to 
think deeply about a topic was more easily done as a discussion that was student-led and 
centered on their own approaches. She realized that when she had been relying on the textbook, 
the discussions were always teacher-led. She could see that even when the class was not 
discussing invented strategies, if she wanted deeper thinking, students needed to become more 
involved. She resolved to plan for times when students would lead the dialogue in all subjects. 

Kamila discovered that, when she asked her students a question about their strategy, the 
students initially would assume that they were wrong. This helped her understand that she was 
not routinely asking enough questions about how the students were thinking. Both teachers 
suggested that using invented strategies has taught them to use questioning in a different way. 
They are more likely to ask questions such as, “What do you already know?” or “What strategy 
have you used before that could help you?” They describe using these questions as a way to 
maintain a high cognitive demand in the tasks, allowing students to think more deeply over a 
longer period of time. In a reflection at the end of the school year Julie said she wants to include 
“at least three thinking questions in every math class, no matter if it is a textbook lesson or an 
invented strategy lesson.” Using invented strategies changed her teaching style to include more 
questioning, which elicited student-led conversations. 
Examples of Change in Teacher’s Knowledge of Content and Curriculum 

Previous research is unclear about the details of PCK with respect to the teacher’s knowledge 
of content and curriculum. As I was listening to the teachers talk about their relationship to the 
textbook and how it was changing, I saw possibilities of how using student-invented strategies 
could change a teacher’s KCC. 
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Freedom from the textbook. After using invented strategies, teachers decided that they 
were relying on the textbook too heavily for their curriculum. According to Kamila, “the 
Common Core was, at least in part, designed to encourage students to think more critically. But 
we are still teaching systematically. We give students more freedom in reading. We need to do 
that more with math.” Both teachers realized this could not be done if they taught straight from 
the textbook, as they had previously been doing. In a conversation with Kamila, Julie said, 
“Teachers need to feel enough freedom, and trust themselves enough, to not rely on the text. 
There needs to be willingness from teachers and administration to supplement the text so kids are 
getting opportunities to develop conceptual understanding.” She said she felt an expectation to 
teach with fidelity to the text but that “if we do it with fidelity, we will never create deep 
thinkers.” 

Students need to have an opportunity to select and invent strategies and, in their experience, 
the text always tells them which strategy to use. The teachers decided that metacognition is not 
present when students work from their books because students are merely following procedures, 
compared to using invented strategies which gives students opportunities to think about their 
thinking. Kamila decided, “teaching the Common core is what we need to do with fidelity, not 
the textbook.” 

Thinking critically while using textbook. Even when using the textbook, teachers realized 
they need to be thinking more about their pedagogical choices. They realized that they could still 
facilitate student-led discussions and group work, and start a lesson with invented strategies, 
while still approaching the lesson from the text. In their opinion, most textbook lessons were not 
complex enough, so they could incorporate activities such as making an argument and critiquing 
others’ work using textbook lessons. One of their conclusions at the end of the study, one they 
had not previously acknowledged, was that they could omit some parts of the units in the 
curriculum and add in other lessons. Invented strategies helped them feel freer to make 
pedagogical decisions. They could decide which units needed to be longer or shorter, and use 
their assessments to guide their practice. They could use modeling, even if it was not an explicit 
part of the textbook lesson. They learned that they needed to decide how to balance things like 
invented strategies versus the textbook’s specific algorithms. 

The teachers also realized that there were parts of the text they now understood better. By the 
end of the year, they discovered sections of the text that were intended as inquiry-based class 
activities, but they were not able to recognize them as such before they started using invented 
strategies. Kamila described a section in the textbook where the students were asked to write 
about their thinking. She realized she had not fully utilized that section in previous years, but was 
now able to see the purpose of the activity. Kamila and Julie both believed that teachers would 
benefit from professional development regarding textbook use, discussing how to encourage 
deeper levels of thinking among students and assessing the curriculum as a group. 

Discussion 
Learning about new ideas and changing teaching practice is both exciting and interesting, as 

well as difficult and discouraging. Kamila and Julie felt all of these emotions as they were asked 
to think more critically about their PCK.  
Critical Dissonance  

It was jarring for the teachers to watch their students fail to see patterns, make connections, 
or transfer knowledge in unanticipated ways when the teachers asked students to use invented 
strategies. This practice illuminated problems in ways that were occasionally surprising and 
disheartening. Teachers sometimes finished a lesson and realized students did not understand the 
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topic to the extent the teachers had supposed. Teachers sometimes realized that they had been 
using a word or an expression for some time that the students did not actually understand, but the 
teachers did not discover this until the students tried to employ their own strategies. These 
realizations were sometimes painful for the teachers, causing teachers to second-guess past 
lessons, and wondering what they had missed before. The teachers frequently wished that they 
had more time. 
Resonant Harmony  

Of course, much of what the teachers learned resonated with them perfectly. Imparting a 
stronger voice to their students helped the teachers accomplish their goals. Because of COVID-
19 each student was given their own set of manipulatives to use. This was a providential turn of 
events that led to teachers learning that students need better access to manipulatives. It was not a 
challenging new idea; the teachers already knew the value of manipulatives. However, they 
learned how to improve the implementation of this idea. 

In addition, learning that their students need to work more with others fit perfectly with the 
teachers’ PCK. They were already implementing this practice in other subjects, but they realized 
that they were not doing it enough in math. These realizations amplified and improved their 
teaching, helping them push through the pandemic’s obstacles to find a better way. 

One of the most remarkable things about teachers such as these is their ability to change. 
These teachers took in new information about PCK and used it to change the experience of their 
students. Regardless of whether the change in PCK was difficult or easy for them, these teachers 
knew that it was necessary to improve their teaching. As Julie said, “Invented strategies are a 
way to open up the dialogue to include more student-directed discussion, to enable teacher 
reflection and analysis of student work, and to allow students to build on their conceptual 
understanding. I will include invented strategies in future lessons to ensure more student voice 
and encourage a more authentic mathematics community.” 

Limitations 
There were many limitations to the study, specifically because of COVID-19. I had four 

teachers who were excited about participating and were planning on recruiting others in their 
grade bands before the pandemic hit. Then two of the teachers decided it was a good time to 
retire from teaching and others realized that, with all the difficulties that were facing them, it was 
not a good time to be in a study. So only being able to work with two teachers was very limiting. 

Additionally, rules for being in classrooms at this time became a lot stricter. Schools were 
not interested in having more people interact with students and teachers. In fact, the only way I 
was able to attend the classrooms was to become a teacher aide. I was not able to conduct 
interviews with or film the students, but I did interact quite a bit with them and even served in 
other capacities, such as a running reading groups and going on field trips. This was a major 
reason for shifting the data collecting to only interviews with the teachers. This seemed 
permissible because the teachers were truly the participants of the study, but videos of the 
classroom would clearly have been helpful for data analysis. 
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Response Process Validity (RPV) reflects the degree to which items are interpreted as intended 
by item developers. In this study, teacher responses to constructed response (CR) items to assess 
pedagogical content knowledge (PCK) of middle school mathematics teachers were evaluated to 
determine what types of teacher responses signaled weak RPV. We analyzed 38 CR pilot items 
on proportional reasoning across up to 13 middle school mathematics teachers per item. By 
coding teacher responses and using think-alouds, we found teachers' responses deemed 
indicative of low item RPV often had one of the following characteristics: vague answers, 
unanticipated assumptions, a focus on unintended topics, and paraphrasing. To develop a 
diverse pool of items with strong RPV, we suggest it is helpful to be aware of these symptoms, 
use them to consider how to improve items, and then revise and retest items accordingly. 

Keywords: Item development; constructed response; pedagogical content knowledge; response 
process validity 

Purpose of the Study 
The mathematics education community has shown a growing interest in mathematics teacher 

knowledge assessment (e.g., Izsák et al., 2016 and Mosvold & Hoover, 2016). There is still much 
to do to understand the domain of mathematics teacher knowledge as well as to understand how 
to best assess this knowledge through a variety of types of scenarios and both CR (constructed 
response) and SR (selected response) types of items. When creating items for any assessment, 
one important task in which developers should engage is the determination of whether items 
exhibit response process validity (RPV). RPV is a measure of whether the person reading the 
items understands them in a way that is intended by the item developers. Our goal in this study 
was to determine the reasons PCK items may fail to demonstrate RPV. By being aware of 
symptoms of low-RPV, item developers can work to improve the assessment items, accordingly. 
Engaging in the RPV process can allow test developers to move beyond a binary decision to 
keep an item, or not, and may facilitate the development of assessment items with strong RPV 
that can also tap more complex, hard to communicate concepts that may take several rounds of 
revision to build strong RPV. We were guided by the following research question: What 
characteristics of middle school mathematics teachers’ responses to CR PCK assessment items 
suggest low RPV? 

Perspective and Review of Relevant Literature 
Effective assessment development requires that relevant content domain (e.g., elements of 

proportional reasoning) first be successfully identified (Orrill & Cohen, 2016). For example, Hill 
and colleagues’ (2008) efforts to measure mathematical knowledge for teaching, started by 
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defining the knowledge domain they hoped to measure. Defining the knowledge domain is 
challenging. Rowan et al. (2001) noted, “One difficulty we faced was developing items (and 
scenarios) that adequately tapped the full range of underlying “abilities” or “levels” of teachers’ 
content and pedagogical knowledge…” (p. 16). Once the domain has been adequately 
conceptualized, the work of trying to measure that domain begins with the development of 
assessment items. Item development is complicated, in part, because the items must invoke the 
intended knowledge from test takers. This means that a participant needs to understand the 
question being asked in ways that align to the developer’s intent. Therefore, it is important to 
determine the RPV of items. RPV has garnered recent attention in STEM education (e.g., Deng 
et al., 2021; Padilla & Benítez, 2014), and think-alouds is one method used to investigate RPV. 
Using methods such as think-alouds (Bostic, 2021), researchers sought to determine the match 
between test developer intent and test taker interpretation and to garner insights into what may be 
causing any mismatches (e.g., Mo et al., 2021). An area of opportunity is to continue to 
investigate sources and symptoms of low RPV and to work to hone our RPV research methods, 
so they lead to diverse items with strong RPV. 

Methods 
Context and Participants 

Participants included a convenience sample of 13 middle school mathematics teachers from 
across the United States (nine female, four male). All the teachers were given pseudonyms. 
Assessment items used in this research study came from an assessment development effort 
seeking to measure mathematics teachers’ content knowledge and PCK about proportional 
reasoning. The findings reported here are based on an analysis of only PCK items, all of which 
were constructed response. The items all involved asking teachers about realistic classroom 
scenarios (i.e., student work and classroom situations) and were based on Kersting and her 
colleagues’ (Kersting, 2008; Kersting et al., 2012) successful work with similar items. Many of 
the items included short video clips that the teachers were asked to comment on. 

 
Data Collection and Analysis 

The 38 CR assessment items evaluated were spread across five surveys completed online. 
Depending on their schedule, teachers completed between one and five surveys and typed their 
responses to items. A follow-up Zoom think-aloud interview was recorded and transcribed. A 
coding template was developed to facilitate the analysis process that involved three researchers 
independently reviewing each item to determine, (1) if the item communicated as intended, (2) if 
the item did not communicate as intended, how had the teacher likely interpreted the item, and 
(3) if the item did not communicate as intended, characteristics of teachers’ responses that led to 
this conclusion. Divergent views triggered a review of a teacher’s data until the research team 
reached a consensus regarding how the assessment item “worked” for that teacher (e.g., did the 
teacher understand it as intended and did it invoke the kinds of reasoning intended).  

Results 
Teacher responses that created RPV issues tended to be: vague/overly general, predicated on 

assumptions, focused on unintended topics, and/or paraphrased information already provided. 
Below, we expand on our findings for each of these characteristics. 
Vague, Overly General Answers 

The intent of all CR PCK items was to elicit answers from teachers that provided rich 
insights into their PCK. Vague, overly general teacher answers to questions were, therefore the 
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antithesis of the types of answers item developers had hoped to solicit, thus, such answered were 
considered indicative of low item RPV. As an example of one vague response, participants were 
asked to watch a short video of a 7th-grade classroom discussing proportions. They were then 
asked, “Would you have led the class discussion in this video clip differently to support the 
student’s understanding of proportional relationships?” If “yes,” “explain how you would have 
led the discussion differently to support student’s understanding of proportional relationships.” 
Seven out of 10 teachers' responses to this item were coded as vague/overly general. For 
example, Christie offered, “…getting input for more than one student and perhaps leading them 
in a direction to the correct answer using keywords from students.” We considered this and other 
answers like it vague or general because Christie did not reference specific mathematical 
concepts, and while she mentioned she would look for "keywords," she did not provide detail 
about which key math words she was looking for or how she could help students make relevant 
connections among them to support an understanding of proportional relationships. We found 
vague/overly general responses were often associated with items that: were not specific enough, 
provided insufficient information, contained distracting elements, and/or did not adequately take 
the test-takers vantage point into account. 
Answering Based on Assumptions  

We considered another indicator of low item RPV when teacher responses suggested that 
teachers made assumptions to answer an item. Assumptions were deemed problematic because if 
test takers are making different assumptions, they are, in essence, answering different assessment 
questions. For example, for an item in which teachers were asked to watch a video and comment 
on a student’s understanding, Lydia, noted, “I think it was difficult to understand what he [the 
student] truly understood…” and Lydia went on to tell us that she “made an assumption about 
what he was sort of thinking …” In other instances, teacher responses suggested an assumption 
may have been inadvertently made which altered the question being asked. One such item 
presented an inverse proportion task (i.e., y = k/x), and the student’s use of cross multiplication 
to solve it—a strategy appropriate for solving proportional problems; not inverse proportions—
was therefore problematic. Yet, seven out of 10 teachers’ answers were predicated on the 
assumption or assessment that the student’s work was correct, when item RPV depended on 
teachers recognizing the student’s work was not correct. In summary, when teacher responses 
explicitly or implicitly suggested an answer was based on an unanticipated assumption, we 
considered it a sign of poor RPV. We found teacher responses that were based on assumptions 
tend to be associated with items that provided insufficient information and/or did not ask specific 
enough questions. 
Focusing on Unintended Topics 

We deemed an item to have low RPV if teachers’ responses focused on an unintended topic, 
as this suggested they had interpreted the item quite differently than anticipated by item 
developers. An item in our research study that resulted in several responses that did not address 
the intended topic included a graph and table that featured a proportional relationship between 
mango weight and cost. The item stated, “how could you help students understand how the key 
characteristics of proportional relationships are demonstrated in both representations?”. This 
item’s goal was to solicit PCK regarding helping students build conceptual understanding of 
proportions across different types of representations. The item’s goal was not to tap PCK 
regarding optimal graph labeling. However, three of nine teachers’ answers focused solely on the 
suboptimal qualities of the graph. For example, Christie noted “you don't see any clear ordered 
pairs. If it was in units of one on the y axis, I think it would be easier for the students to visualize 
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the proportionality.” Emma noted, “we can create ordered pairs: (1,6) (2,12), etc. Then I would 
place these points on the graph, so they can see that the points all fall on the line on the graph.” 
In our study, we noticed teachers tended to have off-topic responses when an item contained a 
distracting element, was not specific enough, or did not adequately take the test-takers vantage 
point into account. 
Paraphrasing the Information 

Some teachers responded to items by simply paraphrasing information provided to them in 
the item scenario. No items were written asking participants to summarize the information 
provided. Instead, all items were designed to solicit PCK specific to a scenario. Hence, we 
considered paraphrasing a sign of RPV issues. In one example, teachers viewed a video clip in 
which a student (Evan) explained why he thought two ratios (6/14 and 15/35) were equivalent. 
Teachers were asked to “Comment on Evan’s understanding based on his method, ‘If you divide 
down, you’ll get the same answer’.” The intent was for teachers to use information about Evan 
and their own PCK to project what else Evan likely understood. Seven out of 10 teachers’ 
responses did not go beyond paraphrasing Evan’s response. For example, Christie noted that 
Evan “… understands that you can check for equivalent fractions by simplifying them.” 
Similarly, Emma offered, “Evan understands that equivalent ratios will always simplify to the 
same numbers.” In our study, paraphrasing was linked with overly general questions as well as 
items that did not adequately reflect the test-takers’ perspective.   

Discussion 
Soliciting teacher feedback on assessment items via think-aloud or other relevant 

methodology is critical for developing items with high RPV. We posit that it is not only 
important to perform such RPV research to refine a given assessment, but also it is important to 
share “lessons learned” so that other research teams can benefit from better understanding 
potential pitfalls. Our findings are situated in one study, and we do not suggest the four response 
characteristics we found in our study are exhaustive of responses that signal RPV issues. We 
suggest identifying responses that signal low RPV is most beneficial if it is used to drive 
subsequent refinement of assessment items. We posit that using RPV as the basis for refinement 
may allow developers to create assessments that better measure challenging and harder to 
communicate ideas. We hope by sharing our analysis of “what teachers told us” in our 
assessment pilot items we will enhance existing knowledge for item development as well as 
trigger discussion regarding how one’s RPV methodology may impact the diversity of 
assessment items that ultimately result. 

Acknowledgments 
This material is based upon work supported by the National Science Foundation under Grant 

No. 1813760. Any opinions, findings, conclusions, or recommendations expressed in this 
material are those of the authors and do not necessarily reflect the views of the National Science 
Foundation. We would also like to acknowledge Dr. Yasemin Copur-Gencturk for her support in 
providing teachers’ dataset and other useful information for this research study. 

References 
Orrill, C. H., & Cohen, A. S. (2016). Why defining the construct matters: An examination of teacher knowledge 

using different lenses on one assessment. The Mathematics Enthusiast, 13(1), 93-110. 
Bonner, S., Chen, P., Jones, K., & Milonovich, B. (2021). Formative assessment of computational thinking: 

Cognitive and metacognitive processes. Applied Measurement in Education, 34(1), 27-45.  

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

692



Bostic, J. D. (2021). Think alouds: Informing scholarship and broadening partnerships through assessment. Applied 
Measurement in Education, 34(1), 1-9.  

de Bock, D., Van Dooren, W., Janssens, D., & Verschaffel, L. (2002). Improper use of linear reasoning: An in-depth 
study of the nature and the irresistibility of secondary school students' errors. Educational Studies in 
Mathematics, 50(3), 311-334. 

Deng, J. M., Streja, N., & Flynn, A. B. (2021). Response process validity evidence in chemistry education research. 
Journal of Chemical Education, 98(12), 3656-3666.  

Dolan, R. P., Burling, K., Harms, M., Strain-Seymour, E., Way, W. D., & Rose, D. H. (2013). A universal design for 
learning-based framework for designing accessible technology-enhanced assessments. Pearson Assessment 
Research Report. http://images.pearsonclinical.com/images/tmrs/DolanUDL-TEAFramework_final3.pdf 

Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical content knowledge: Conceptualizing and 
measuring teachers' topic-specific knowledge of students. Journal for Research in Mathematics 
Education, 39(4), 372-400. 

Hogan, T. P., & Murphy, G. (2007). Recommendations for preparing and scoring constructed-response items: What 
the experts say. Applied Measurement in Education, 20(4), 427-441.  

Izsák, A., Remillard, J. T., & Templin, J. (2016). Psychometric methods in mathematics education [Monograph]. 
Journal for Research in Mathematics Education. 

Kersting, N. (2008). Using video clips of mathematics classroom instruction as item prompts to measure teachers' 
knowledge of teaching mathematics. Educational and Psychological Measurement, 68(5), 845-861.  

Kersting, N. B., Givvin, K. B., Thompson, B. J., Santagata, R., & Stigler, J. W. (2012). Measuring usable 
knowledge: Teachers’ analyses of mathematics classroom videos predict teaching quality and student learning. 
American Educational Research Journal, 49(3), 568-589.  

Mo, Y., Carney, M., Cavey, L., & Totorica, T. (2021). Using think-alouds for response process evidence of teacher 
attentiveness. Applied Measurement in Education, 34(1), 10-26. 
https://doi.org/10.1080/08957347.2020.1835910 

Mosvold, R., & Hoover, M. (2016). The Mathematics Enthusiast, 13(1-2). 
Padilla, J. L., & Benítez, I. (2014). Validity evidence based on response processes. Psicothema, 26(1), 136-144.  
Rowan, B., Schilling, S. G., Ball, D. L., Miller, R., Atkins-Burnett, S., & Camburn, E. (2001). Measuring teachers’ 

pedagogical content knowledge in surveys: An exploratory study. Ann Arbor: Consortium for Policy Research 
in Education, University of Pennsylvania, 1, 1-20.  

Salkind, N. J. (2017). Tests & measurement for people who (think they) hate tests & measurement. Sage 
Publications. 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

693

http://images.pearsonclinical.com/images/tmrs/DolanUDL-TEAFramework_final3.pdf
https://doi.org/10.1080/08957347.2020.1835910


TYPES OF MATHEMATICAL REASONING EVIDENCED BY A MIDDLE SCHOOL 
TEACHER IN PATTERN GENERALIZATION 

 
Karina Nuñez-Gutierrez  

Universidad Autónoma de Guerrero 
kgutierrez@uagro.mx 

Guadalupe Cabañas-Sánchez 
Universidad Autónoma de Guerrero 

gcabanas@uagro.mx 

The objective of this article is to describe types of mathematical reasoning evidenced by a middle 
school mathematics teacher, when answering two generalization questions in a figural pattern 
generalization task, related to quadratic sequences. Reasoning is delimited from teacher's 
arguments, reconstructed from a theoretical-methodological proposal that combines Peirce's 
definitions with some elements of Toulmin's argumentative model. The results show that the 
teacher evidenced abductive, inductive, and deductive reasoning, based on cognitive actions 
such as the decomposition of the figure, strategic counts, recognition of the behavior of the 
figural pattern, formulation, verification, and validation of conjectures. 

Keywords: reasoning, argumentation, figural pattern, teacher. 

Introduction 
Reasoning is one of the fundamental cognitive processes in teaching and learning mathematics. 
Organizations such as the National Council of Teachers of Mathematics ([NCTM], 2000) 
conceive of reasoning as a skill or proficiency that must be developed at all levels. On this 
regard, teacher assumes an important role to promote it in students through different 
mathematical experiences in teaching conditions (Brodie, 2010). Research has reported that 
teacher have limited knowledge both the nature of reasoning and pedagogical knowledge to 
support development in their students (Clarke et al., 2012). On the other hand, the investigations 
on mathematical reasoning that have taken as a case study to the preservice teacher and in 
service have been of an exploratory nature (e.g., Bozkus & Ayvaz, 2018; Mata-Pereira & Ponte, 
2017) and teaching proposals to develop it (e.g., Bragg & Herbert, 2018). 
The study of mathematical reasoning has focused mainly on the central and classic forms of 
reasoning: abductive, inductive, and deductive (Arce & Conejo, 2019; Conner et al., 2014; Soler-
Álvarez & Manrique, 2014), which, in their most have showed cognitive processes developed by 
middle school students and future mathematics teachers when solving tasks in arithmetic and 
geometry context. They connected the structures of Peirce and Toulmin in their analysis to show 
through the arguments, the reasoning they evidenced when solving them. However, the same has 
not happened with the study of these forms of reasoning about the in-service mathematics teacher. 
Patterns are one of the contexts that favor the study of reasoning because it contributes to the 
formulation and justification of generalizations (e.g., Barbosa & Vale, 2015; Rivera, 2013; Mata-
Pereira & Ponte, 2017). Kirwan (2015) states that if students are expected to generalize and justify, 
then it is important to reflect on teachers' thinking about these concepts. The research is focused 
in describing the mathematical reasoning that is evidenced a middle school mathematics teacher 
in the framework of the generalization of quadratic patterns. Patterns are one of the contexts that 
favor the study of reasoning because it contributes to the formulation and justification of 
generalizations (e.g., Barbosa & Vale, 2015; Rivera, 2013; Mata-Pereira & Ponte, 2017). The 
research question of the study is, what types of mathematical reasoning does a mathematics teacher 
evidence when solving a quadratic pattern generalization task? 
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Theoretical Framework 
Mathematical reasoning  
In mathematics education there is no consensus on the definition of mathematical reasoning, 
because it is a polysemic term that encompasses a wide range of mathematical practices (Conner 
et al., 2014; Yackel & Hanna,2003). In this research, it is understood as any action or procedure 
that allows obtaining new information from: a) previous or known information, which 
corresponds to that provided by a statement as initial hypotheses; b) resolution of a problem or c) 
that derived from previous knowledge (Saorin et al., 2019; Torregrosa et al., 2010). In addition, 
it is related to other processes, such as inference, justification, and generalization (McCluskey et 
al., 2016). 
Argumentation and argument 
Argumentation is a sequential process that allows conclusions to be inferred from premises, 
through interactive communication between people (Toulmin, 1958/2003). Mathematical 
reasoning groups a set of arguments based on a series of propositions that implies a conclusion 
inferred from the data (Toulmin et al.,1984). The argument is a complex data structure that 
involves a movement from data (D) to a conclusion (C). The movement of the evidence to the 
conclusion is the certainty that the argumentative line has been carried out successfully, a 
movement or connection that is allowed by the warrant (W), which in turn has a backing (B), a 
modal qualifier (Q) that indicates the degree of strength or probability of the assertion and 
occasionally, objections or refutations may be presented (R). Toulmin´s model is considered to 
analyze the content of the arguments (Inglis et al., 2007) (see Figure 1). 
 

 
Figure 1: Toulmin’s argumentative model (Inglis et al., 2007). 

The study of arguments in this research is based on the core of the argumentative Toulmin´s 
Model (See figure 2). This structure allows to identify the typology or mathematical reasoning. 
 

 
Figure 2: Toulmin's basic argumentative model. 

Types of Reasoning 
Mathematical reasoning is classified into three types: abductive, inductive, and deductive. 
Abduction and induction represent plausible and experimental reasoning, supported by the 
formulation and verification of conjectures, while deduction consists of validating the conjecture 
to warrant its veracity (Polya, 1966). We are based on the theoretical-methodological proposal of 
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Soler-Álvarez and Manrique (2014) (see Table 4) for the identification and description of the 
types of mathematical reasoning. 
 

Table 1: General schemes of the types of mathematical reasoning (Soler-Álvarez & 
Manríque, 2014). 

Abductive Inductive Deductive 

   
 
Generalization 
When a conjecture expresses a plausible mathematical rule related to all the particular cases and 
it represents the mathematical pattern, we speak of generalization, which consists of the process 
of identifying a regular behavior in some particular cases of a sequence, in order to extend that 
identified regularity and construct an expression or general rule that represents and relates all the 
terms of the sequence (Radford, 2008). 

Method 
The research is a qualitative case study (Merriam & Tisdell, 2015). It was developed through a 
course-workshop (CW) in a virtual setting. Participants were 16 middle school mathematics 
teachers (MMT) from three Latin American countries. One of these teachers was selected for the 
analysis of the case study unit with the following criteria: a) to solve seven quadratic pattern 
generalization tasks and b) to participate in a semi-structured interview. For the purposes of this 
article, the analysis focuses on one of the tasks (see Table 2). 
 

Tabla 2: Quadratic pattern generalization task. 
Task of the points and sides Characteristic 

Considering the figures, answer the following 
questions and give a detailed argument for your 
answer. 
a. Find a general rule for the total number of points in 
any figure.  
b. Find a general rule for the total number of sides in 
any figure. 
 
 
 
 
 
 

 
Adapted from Rivera (2010). 

 
The context of the task is a figural 
pattern. The explanation of the 
behavior of the pattern in any of its 
stages involved the construction of 
two general rules, one associated with 
the variable sides and the other with 
points. 
Promotes the use of visual strategies. 

Data analysis 
The data analysis followed three stages: 1) reconstruction of teacher's argument from the task 
resolution process and the semi-structured interview. Toulmin's argumentative model (1958/2003) 
was useful in this process, 2) identification and description of the reasoning based on the typology 
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of Soler-Álvarez and Manrique (2014) and 3) triangulation of data from previous stages, with 
expert researchers in argumentation, generalization and mathematical reasoning. 

Results 
The results are described by type of reasoning that the MMT evidenced when solving the task, 
which challenged him to build two general rules, one associated with the points variable and the 
other with the sides variable. In the construction of the general rule linked to the first type of 
variable, the teacher evidenced three forms of mathematical reasoning and two for the second. 
Abductive reasoning 
a) Reasoning in the points variable 
In the construction of the general rule associated with the variable points, this way of reasoning 
appears when the MMT recognizes how it can explain the behavior of the pattern in each figure 
(see Figure 3). He identifies that the total number of points in the corners is a constant number, 
eight, that, on the sides, the number of points equals four times the figure number multiplied by 
three and in the center, it is four times the figure number minus one, squared. This fact constitutes 
a conjecture, which establishes three actions: a) to decompose the points of each figure in three 
parts: corners, sides and center, b) to count strategically the points in each of the parts, c) to 
establish a correspondence relation between the number of points of this decomposition, in relation 
to each figure.   
 

 
Figure 3: Abductive argument associated with the variable points. 

The behavior identified by the teacher regarding the variable points when decomposed it into three 
parts, represents it through algebraic expressions where the figure number is written down in terms 
of n (see Table 3). The formulated conjecture is: 8 + 3[4(𝑛 − 1) + 4(𝑛 − 1)2].  
 

Table 3. Algebraic expressions about the points and the figure number. 
Points Algebraic expressions 

Corners 8 
Sides 3[4(𝑛 − 1)] 
Center 4(𝑛 − 1)2 
Total 
(conjecture) 8 + 3[4(𝑛 − 1)] + 4(𝑛 − 1)2 

 
b) Reasoning in the variable sides 
In the construction of the general rule associated with the variable sides, the abductive reasoning 
appears when the MMT recognizes that the increase of this variable from one figure to another has 
a quadratic type of behavior, that is, the number of the figure squared multiplied by two, plus twice 
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the number of the figure. This fact constitutes a conjecture, which establishes four actions (see 
Figure 4): a) to count the total number of sides of each figure, b) to establish the first and second 
differences between the total number of sides of one figure and the next, c) to recognize that the 
first differences are not constant, and d) that the second differences are constant. 
 

 
Figure 4: Abductive argument associated with the variable sides. 

The behavior identified by the teacher with respect to the variable sides is based on the method of 
differences, which consists of determining the coefficients of the quadratic sequence. He 
represents them in terms of n. The formulated conjecture is: 2𝑛2 + 2𝑛. 
Inductive reasoning 
This type of reasoning was identified when the MMT evaluated the conjectures formulated by 
abduction within the framework of the variables points and sides of the figural pattern. Therefore, 
he relied on a double-entry table in which he recorded the total points and sides per figure. This 
evaluation consisted of substituting the total number of points and sides of four figures, from 1 to 
4. These data are compared with those obtained by substituting the number of each figure (n) in 
the algebraic expression that he formulated by abduction (see Figure 5). 
 

 
Figure 5: Inductive argument of the MMT in the context of the variables points and sides. 

Deductive reasoning 
This type of reasoning appears in the MMT when validating the conjecture associated with the 
points variable, obtaining the general expression. In addition, he used the method of differences 
to verify the general expression obtained (see Figure 6). The general expression obtained through 
the difference method is 4𝑛2 + 4𝑛, equivalent to 8 + 3[4(𝑛 − 1)] + 4(𝑛 − 1)2(see Table 3). He 
realized this by comparing them. 
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Figure 6: Deductive argument of the MMT on the variable of the points. 

Discussion and conclusion 
In this paper we described types of mathematical reasoning of a MMT when solving a task of 
generalization of figural patterns in the context of quadratic sequences. The mathematical 
reasoning evidenced by the MMT allows characterizing the thought process regulated by mental 
actions and relating it to the typology of reasoning (abduction, induction, and deduction). The way 
of reasoning abductively in the MMT begins with the observation of particular cases to formulate 
a conjecture. Then, inductively, he verifies the conjecture through the particular cases known, in 
order to verify its veracity. Finally, deductively, he validates the conjecture with known particular 
cases. 
According to the characteristics and demands of the figural task, in the construction of the general 
rule associated with the points variable, the MMT evidences the three types of reasoning and in 
the sides variable, it reasoned abductively and inductively. In this sense, it is recognized that the 
types of mathematical reasoning can be presented in an ideal way and not necessarily in a linear 
way. 
The context of quadratic pattern generalization contributed to the MMT evidencing different 
actions when solving the task in the figural context (see Table 4). 

Table 4: Evidence of the reasoning by the MMT. 
Type of reasoning Cognitive Actions 

Abductive 

Points 
Decomposition of the figure, grouping and 
strategic counting of the points, identification of 
the regularity and formulation of the conjecture 
from the visual.

 

Formulated conjecture 
8 + 3[4(𝑛 − 1)] + 4(𝑛 − 1)2 
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Sides 
Total count of the sides by figure number, 
differences between terms, recognition of 
regularity and formulation of the conjecture from 
the numerical through the method of differences. 

 
 

Formulated conjecture 
 

2𝑛2 + 2𝑛 

Inductive 

Points and sides 
Total count of the points per figure and comparison with the results of the substitution in the 
points and sides conjecture. 

 

Deductive 

Points 
 

Difference method 

 
 

The formulated conjecture has been 
justified by the method of differences, 
which are equivalent. 
8 + 3[4(𝑛 − 1)] + 4(𝑛 − 1)2 = 4𝑛2 + 𝑛 

 
In the construction of the two rules of thumb in relation to the points and sides variables, the MMT 
involved his visual skills to recognize the behavior of the pattern. In the analysis of the points 
variable, the arrangements allowed him to establish correspondence relationships through 
decompositions of the figure, while for the sides variable, the MMT decided to work with the 
differences between the total number of points in each figure. According to Rivera (2010), working 
with figural patterns allows different interpretations of their behavior and the organization or 
configurations of the objects of some figural patterns are complex to interpret, even when their 
construction is well defined (Nuñez-Gutierrez & Cabañas-Sánchez, 2020). 
In general, it is recognized that teaching experience and professional knowledge about 
mathematics, supported by the teacher's facts, conceptual images, and beliefs (Lithner, 2006), 
influence the choice of his strategies to formulate, verify and validate conjectures. Furthermore, it 
was evidenced that the mathematics teacher does not make his random choice of his actions but is 
supported by his knowledge of the subject and uses it to respond to the demands of the task, which, 
for his criteria, is the most accurate and quickest method. 
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This exploratory study offers a unique qualitative approach to exploring a teacher’s knowledge 
of proportional reasoning and how that knowledge appears in the classroom. Using two 
theoretical frameworks, Knowledge in Pieces and the Knowledge Quartet, the study analyzes one 
middle grades teacher’s proportional reasoning knowledge in two content interviews as well as 
in classroom data. Results suggest the teacher has both procedural and conceptual knowledge. 
Interestingly, the teacher tended to rely on procedural approaches with a preference for 
efficiency. This was evident across data types. A challenge was coordinating the teacher’s 
understanding with classroom practice and raises questions about needed modifications to the 
Knowledge Quartet to include approaches to teaching that are less didactic. 

Keywords: Mathematical Knowledge for Teaching, Teacher Knowledge 

Purpose 
While it is a commonly held belief that a teacher’s knowledge of mathematics shapes the 

instructional opportunities available to students, proving this conjecture is very complicated. 
Most efforts to date have focused on large scale assessments of teacher knowledge and students’ 
outcomes (e.g., Hill et al., 2005) or more modest efforts using premade tools to assess teachers’ 
practices from a particular lens of practice (e.g., Boston, 2012; Hill et al, 2008). Sometimes these 
studies also align teacher performance on the assessment of practice to the assessment of 
knowledge (e.g., Hill et al., 2008). Further, some studies have attempted to determine the 
relationship of teachers’ knowledge to their practice through assessment items designed to 
engage teachers in life-like scenarios (e.g., Copur-Gencturk, 2015; Kersting et al., 2012) 

In contrast to these approaches, we have undertaken to understand how one teacher reasons 
about proportional situations and how his content knowledge was observable in his classroom 
teaching using a qualitative approach. That is, we relied on Epistemic Network Analysis (ENA; 
described below) to build an understanding of the ways in which the teacher could reason about 
proportions. Then we used the Knowledge Quartet (KQ; described below) to understand how his 
knowledge was implemented in the classroom. This is a first step for understanding, in fine-
grained detail, how teachers’ knowledge aligns to their practices. For this exploratory study, we 
asked: How do we see one teacher’s knowledge of proportions in his practice?  

Theoretical Framework 
We worked from two theoretical frameworks. We used Knowledge in Pieces (KiP; diSessa, 

2016; diSessa, Sherin, & Levin, 2006) to understand teacher knowledge of mathematics. KiP 
posits that knowledge is comprised of fine-grained pieces of understanding connected in a 
variety of ways. As we learn, we refine those understandings, build on them, and make 
connections between them to create a rich understanding. Consistent with the research on 
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expertise (Bédard & Chi, 1992; Bransford et al., 1999), KiP considers greater understanding to 
be characterized by the connections made between the knowledge resources and not just on the 
number of knowledge resources. Therefore, focusing on the connections between these 
knowledge resources provides a view into a teacher’s knowledge that goes beyond simply 
understanding the amount of knowledge they have.  

For this paper, we specifically relied on coding of one teacher’s knowledge that was done as 
part of a larger project. This coding was done using a framework for the robust understanding of 
proportions that was created by the larger research team (Weiland et al., 2021). Each utterance of 
a teacher’s response was coded as they thought aloud about mathematics tasks using a binary 
coding where 1 means they are invoking the knowledge resource in that utterance and 0 means 
they are not invoking the knowledge resource.  

For the teacher interview data, we use ENA (Shaffer et al., 2009) to attend to the connections 
between knowledge resources that were invoked. ENA presents a mapping of knowledge 
resources when used in connection with other resources (Figure 1). Each node represents a 
knowledge resource. The size of the node indicates the relative number of co-occurrences. Thus, 
a larger node indicates a knowledge resource that co-occurred more frequently in this teacher’s 
interview than a smaller node. The visual map also highlights the strength of the connection with 
the thickness of the connecting segment showing the relative frequency of pairs of codes co-
occurring in the interview. Thus, a darker, thicker line indicates knowledge resources that were 
used together more than a thinner, paler line. For the purposes of this analysis, we assume that 
the co-occurrence of codes in an utterance indicates a connection between those codes for the 
participant. Using KiP and ENA allowed us to create a visual image of the teacher’s content 
knowledge as expressed in two interviews. 

 

 
Figure 1: ENA plot of Matt’s interview data.  

The second theoretical lens upon which we draw is the KQ (e.g., Rowland, 2011; Rowland et 
al., 2005; Rowland & Turner, 2007; Turner & Rowland, 2011). The KQ is an operationalization 
of Shulman’s (1986) construct of Pedagogical Content Knowledge (PCK). One of the elements 
that makes the KQ particularly useful and intriguing for our work is that it is a theory of 
mathematics knowledge in teaching, meaning that it is a framework that aims to make sense of 
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that ways that PCK manifests itself in teachers’ mathematics teaching. The KQ is divided into 
four key categories of knowledge: Foundation, Transformation, Connection, and Contingency. 
By using this framework, we were able to think about the ways in which one teacher’s 
knowledge of mathematics was drawn on throughout his teaching. We were unable to use the 
same framework across data types. Originally, we intended to use KiP and ENA to look at 
teacher knowledge in the classroom; however, there was little direct evidence of the teacher’s 
content knowledge during facilitation, in part because this teacher relied on high press 
questioning (Kazemi & Stipek, 2001) and mathematical argument for instruction more than on 
direct instruction. Thus, KQ allowed us to consider teacher knowledge (as well as other 
important categories of teacher knowledge) for the classroom data. 

Methods 
Participant and Data Collected  

In this study, we examine one 7th grade teacher, Matt (pseudonym), as he solved a series of 
proportional reasoning tasks in two interviews and as he taught his own class proportional 
reasoning across four lessons. Matt was a white, male teacher who had been teaching 
mathematics for seven years at the time of data collection. He worked in an urban district where 
he had been able to “wrap” with his class – thus the 7th grade students we observed him teach 
were with him for the second year in a row. 

Matt completed a paper-based think-aloud protocol using a LiveScribe pen, which allowed us 
to capture his speech as he wrote on the paper. He also completed one face-to-face clinical 
interview. Both interviews engaged teachers with a range of proportional reasoning tasks 
including many novel tasks such as tasks that made use of dynamic representations. 

In addition to the two content knowledge interviews, Matt also allowed us to video record his 
mathematics class and conduct brief interviews with him about those sessions. For this paper, we 
analyzed four mathematics lessons and three brief teacher interviews focused on those lessons. 
Data Analysis 

As mentioned above, we used a framework for robust understandings of proportional 
reasoning to analyze the content interviews. For this paper, we particularly focused on 
knowledge resources that were focused on key understandings about the structures of 
proportional situations (e.g., between measure space, covariation, ratio as a multiplicative 
comparison, and compare quantities) and those that were key solution approaches (e.g., unit rate, 
equivalent fractions, scaling up or down). We also considered adherence to a given rule and 
horizon knowledge (Ball et al., 2008), which refers to knowledge that relies on proportional 
reasoning, but extends beyond what 7th graders typically learn (e.g., slope). See Weiland et al., 
(2021) for definitions of each knowledge resource code represented in Figure 1. 

For classroom video, we trimmed the videos to focus exclusively on the main task of the day, 
thus cutting the “do now” or any test preparation, etc. Once the video was trimmed, we cut it into 
three-minute segments. Each segment was coded using the codes set forth by Rowland and 
Turner (2007), however, we also allowed for emergent codes (Charmaz, 2014). Emergent codes 
were included when we noticed a trend in Matt’s teaching that seemed mathematically important, 
but not included in the original coding set. We classified the new codes into the original 
categories based on the original definitions for each category. Each video segment was viewed 
by at least two researchers. Discussion about codes was brought to the whole team and any 
points of disagreement were discussed until there was 100% agreement.  
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We then compared our observations about Matt’s classroom teaching to his ENA graph. 
Noting some important similarities and differences. We then used his classroom interview 
transcripts to inform our understanding of particular decisions he made about his instruction. 

Results 
Our results suggest that Matt had both procedural and conceptual understandings of 

proportional reasoning. In both his own mathematical practice and in his teaching, however, he 
relied heavily on procedural approaches, with a strong preference for efficient procedures. This 
was evident in the tasks he used as well as in his interactions with his students. Further, Matt 
demonstrated a commitment to deep procedural knowledge (Star, 2005) through his use of high 
press questions and fostering of mathematical argumentation. 

In Matt’s ENA plot (Figure 1), we can see he relied considerably on scaling and unit rate, 
which we consider as two approaches for finding solutions to proportional reasoning tasks. We 
can also see that he used covariation and between measure space reasoning with scaling as well 
as comparing quantities with unit rate. These codes are all about understanding and applying the 
structures of proportional situations. That is, covariation, between measure space reasoning, and 
comparing quantities are all codes that consider the invariant relationship between the two 
quantities that are being compared in the ratio. Thus, Matt demonstrated both procedural and 
conceptual knowledge. 

In his classroom, Matt gave the students tasks that could be solved with unit rate or scaling 
up and down. For example, one task asked students to determine how far they would need to run 
to burn off the calories in a sports drink. He allowed students to solve these any way they 
wanted, but in whole-class discussion, he highlighted “efficient” approaches. For example, he 
often asked the students to think about the ways different approaches were the same. And, 
sometimes, he introduced the idea of efficiency in the discussion. In our interviews with Matt, 
we learned this was part of his intentional practice. He noted, “The kids all use ratio tables right, 
that’s what they all had coming in, which is fine. They just need to be able to use these other 
strategies…they need to be able to understand them… I want them to choose one that’s 
efficient.” The focus was primarily on making sure students had key solution approaches.  

Discussion 
This analysis is the first step in our ongoing effort to understand how a teacher’s knowledge 

of proportional reasoning shapes his practice. In this case, we were able to see the teacher has 
more knowledge resources available to him than we saw him emphasize in his instruction. His 
decisions about what to emphasize in instruction were deliberate and had a focus on students 
learning to use more than one method, to focus on efficiency, and to have confidence in their 
ability to use at least one strategy. 

The analysis is interesting because we learned one of the hardest parts of this research is 
learning how to coordinate the ENA analysis of the teacher’s understanding with classroom 
practices. In this classroom, the struggle was amplified by Matt’s lack of use of direct 
instruction. Thus, we needed understand how he leveraged his mathematics knowledge to ask 
students questions, to assess their understandings, and to pose rich tasks. Based on our work in 
this case, we conjecture that the KQ needs to be extended to include less didactic teaching 
approaches. That said, we also note that the four overarching categories of the KQ do hold up to 
Matt’s teaching style, it is only the code set that needed to be extended.  
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This study examined preservice secondary mathematics teachers’ (PSTs’) definitions of a 
function and how those definitions changed because of a teaching intervention. Fourteen PSTs in 
a senior-level content capstone course participated in the study. PSTs’ definition of a function 
before and after the intervention were analyzed using the comparison method. The findings 
showed that the PSTs struggled to revise their rote-learned definitions of a function to 
incorporate both definition univalence and arbitrariness in their descriptions of functions. In 
addition, the findings indicated that PSTs were able to identify whether the given relations or 
graphs represented a function.    

Keywords: Preservice Teachers, Functions, Knowledge    

Introduction 
The concept of a function is fundamentally important in mathematics, relating to topics 

including algebraic representations and expressions, dependency, ordered pairs and graphs 
(Bannister, 2014; Biber & Incikabi, 2016). Indeed, a function has sometimes been described as 
the most powerful and useful concept in all of mathematics (Bannister, 2014). It is regarded as 
basic to undergraduate mathematics, (e. g., to calculus) and essential to applying mathematics in 
many sciences (Oehrtman et al., 2008). Yet, despite the acknowledged importance of functions, 
teaching functions in a conceptual manner has been found to be challenging for many teachers 
(Biber & Incikabi, 2016).  

Part of the challenge has been to enable learners to arrive at a mathematically acceptable 
definition of a function. Providing accurate definitions of important mathematical concepts is 
crucial in teaching and learning mathematics. A student’s construction of appropriate definitions 
is “a mathematical activity of no less importance than other processes such as solving problems, 
making conjectures, generalizing, specializing, proving, etc., and it is therefore strange that its 
[importance] has been neglected in most mathematics teaching” (De Villiers, 1998, p. 249).  

Researchers noted that preservice teachers should understand univalence and arbitrariness to 
successfully teach the concept of functions to their future students (Even, 1990, 1993; 
Haciomeroglu, 2005; Nyikahadzoyi, 2013; Steele et al., 2013; Hatisaru & Erbas, 2017; Viirman, 
2014). According to the Common Core State Standards Initiative [CCSSI] (2010), secondary 
school students should know that a function is a relationship between elements in an “input” set 
(the “domain”) and an “output” set (the “co-domain”) which assigns each input element to 
exactly one output element. This relationship between input and output elements is what 
determines the univalent nature of a function (Even, 1993). Thus, for example, if x and y 
represent real numbers then the equation 𝑦 =  𝑥2 exhibits univalence because each element x 
gets assigned to a unique element y. Similarly, functions are arbitrary because, “the elements of 
the domain and range need not be numbers and that the rule relating them does not have to be 
described by a regular expression” (Steele et al., 2013, p. 455).     
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It is well documented that school students’ mathematics learning depends on their teachers’ 
mathematical knowledge (Ball & Bass, 2002; Tasdan & Koyunkaya, 2017). As such, it is 
necessary to develop prospective mathematics teachers’ mathematical knowledge. With respect 
to functions, researchers (Even, 1993; Even and Tirosh, 1995; Hatisaru & Erbas, 2017; Tasdan & 
Koyunkaya, 2017) found, however, that some preservice teachers have only a partial 
understanding of functions, which limits their ability to teach functional relationships 
thoroughly. Helping PSTs understand the concept of functions should be a priority for 
mathematics teacher educators. Mathematics education researchers are required to examine 
PSTs’ prior knowledge of function concepts, a foundation for constructing a complete 
understanding of univalence and arbitrariness function. This study, therefore, assesses how PSTs 
knowledge of function changed, as measured by their definition of function, because of a 
teaching intervention in a content course for secondary preservice mathematics teachers.      

Theoretical Perspective 
Shulman (1986) defined content knowledge as “…the amount and organization of knowledge 

per se in the mind of the teacher.” When examining different theories of teacher knowledge (e.g., 
Shulman, 1986, 1987; Hill et al., 2008), content knowledge serves as the anchor for other types 
of knowledge (e.g., pedagogical knowledge, knowledge of learners). For example, Shulman 
coined the term pedagogical content knowledge (PCK) (Shulman, 1986). PCK combine the 
knowledge of content with the knowledge of pedagogy and the knowledge of learners to teach 
content in the classroom. Without the anchor of content, PCK would not exist. Similarly, with 
Mathematical Knowledge for Teaching (MKT) (Hill et al., 2008) several subsets of MKT rely on 
mathematics (e.g., Knowledge of Content and Students (KCS), Knowledge of Content and 
Teaching (KCT), and the Knowledge of Content and Curriculum (KCC).) A strong anchor of 
mathematics content knowledge is a starting point to help PSTs build their teaching knowledge. 
This study examines PSTs’ definition of function, which can serve as the foundation for 
successfully teaching the concept of function to students (Chesler, 2012, Edwards & Ward, 2008; 
Hill et al., 2008).  

Related Literature 
Researchers have investigated pre- and in-service teachers’ knowledge of mathematical 

definitions of functions. Chesler (2012) found that most of the PSTs used the definition of 
functions from several resources such as dictionaries, textbooks, and websites. Chelser noted that 
some PSTs provided insufficient details about the definition of functions. Nineteen out of 21 
students defined functions as relations, rules, mappings, correspondences, or relationships 
between variables, sets, or inputs/ outputs (Chesler, 2012). Although participants presented 
correct memorized definitions, intuitive understandings of the concept of functions were usually 
lacking (Chesler, 2012). Haciomeroglu (2005) observed that PSTs’ weak subject matter hindered 
PSTs from acknowledging misconceptions of their students’ mathematical work which caused 
students to make incorrect mathematical assertions.    

Vinner and Dreyfus (1989) investigated junior high teachers and college students’ concepts 
of mathematical functions. Only 82 of the 307 participants in the study noted the univalent nature 
of a function in their definition. Furthermore, while working on function-related tasks, those 82 
candidates exhibited discrepancies in their performance—46 of the 82 did not incorporate any 
well-defined conception of a function while answering function-related tasks. Linchevsky et al., 
(1992) reported that only 21of the 82 junior high school mathematics PSTs in the study 
articulated an understanding of the arbitrary nature of functions.  
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Purpose 
The purpose of this paper is to examine the effect of a teacher intervention aimed at helping 

PSTs refine their understanding of functions. Chesler (2012) explained that creating appropriate 
definitions promotes both teachers’ and students’ understanding of mathematics and helps to 
deepen teachers’ abilities to teach mathematics conceptually. As such, it is imperative for PSTs 
to develop a clear understanding of definition of function, which will strengthen PSTs’ ability to 
effectively teach the concept of functions.  

Research Question 
How did PSTs’ definition of function change because of a teaching intervention? 

Method 
Participants 

This research was conducted in a large public university in the Midwest region of the United 
States. Fourteen PSTs (nine female and five male) enrolled in a senior level content capstone 
course participated in this study. The content capstone course used college-level mathematics to 
develop a deep and connected understanding of secondary-school concepts such as functions, 
complex numbers, and polynomials. The instructor’s pedagogy emphasized group work, problem 
solving, connections, justification, and mathematical communication. The aim of the course was 
to help PSTs conceptually understand both the mathematics of the secondary school and the 
more nuanced mathematical underpinnings that can aid in the implementation of meaningful 
instruction. This course was a part of PSTs’ degree plan to become secondary mathematics 
teachers.  
Procedures   

The PSTs took a pretest on the first day of their course. Post-tests were taken at the end of the 
unit on functions. For two weeks, PSTs examined the content on functions from Usiskin, 
Peressini, Marchisotto, & Stanley (2003). Each class lasted 95 minutes and was structured to 
start with a problem to solve.  The problem was designed to lead into the topic of the day as well 
as to generate discussion. The lesson would then proceed into a variety of planned activities. The 
end of the study session consisted of completing several problems out of the text, worked as a 
group. PSTs’ solutions were offered and discussed. Finally, a journal prompt was put on the 
board for PSTs response and homework was assigned.        

As the first classroom activity, PSTs were asked to write down their “best” definition of a 
function. PSTs then shared their definitions of functions with peer groups and were given the 
opportunity to revise their definitions if needed. The instructor recorded the groups’ definition of 
functions on the board and conducted a discussion comparing the different groups’ definitions.    

With the groups’ definitions of function on the board, the instructor provided circle diagrams 
(see figure 1) that represented examples and non-examples of functions. The instructor asked 
PSTs to identify which representations were functions and which were not, based on the groups’ 
definitions of functions. Based on the activity, PSTs were asked to determine the robustness of 
their definitions of function and make edits if necessary. Finally, the entire class worked to 
establish a common definition of functions. The instructor helped PSTs recognize the 
characteristics of univalence and arbitrariness in the circle diagrams presented.   
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Figure 1: Circle Diagram Representation of Potential Function 

In the remaining classes, PSTs examined different characteristics of functions (e.g., one-to-
one functions, inverse functions) that were central to high school mathematics. The instructor 
made every effort to connect the topic of the day to the concepts of univalence and arbitrariness. 
A post-intervention test was administered to detect change in PSTs’ definition of functions and 
mathematical work about functional relationships.   
Research Design  

This study was qualitative in nature. The pre- and post-intervention assessments were taken 
from a larger assessment on functions used by Winsor (2003). For this study, only three tasks 
were chosen for analysis. The first assessment item asked PSTs to provide a definition of 
function. The second item asked the PSTs to determine whether a given example was a function 
or not and to provide justification. The third assessment item showed a representation of function 
and PSTs were asked whether the item was an example or non-example of a function, and to 
provide a justification for their answer (see figure 2). All 14 PSTs took both assessments.  

 
Pretest Items:       
1. Give a definition of a function. 
2. Is this a function? Why or why not? 

         g(x) = { x, if x is a rational number
0, if x is an irrational number

  
3. Do the following ordered pairs describe a function? Why or why not? 

{(1,4), (2,5), (3,9), (4,4)} 
Post-Intervention Items: 
1. Give a definition of a function. 
2. Is this a function? Why or why not? 

         g(x) = { x, if x is a rational number
0, if x is an irrational number

  
3. Does the following table describe a function? Why or why not? 

 
X 12 5 7 9 4 5 
Y 5 12 8 4 9 7 

 

Figure 2: Pre and Post Questionnaire for the Tests     

A comparative method (Steele et al., 2013) was applied to compare the level of correctness 
of student responses to all the three tasks on both the pre-and the post-intervention test. Before 
analyzing the data, a rubric was created, with five different categories being defined for the 
purpose of analyzing appropriateness of the definitions of functions which would be given. 
Commonalities of definitions of function found in previous research (Steele et al., 2013) were 
incorporated in the rubric. PSTs’ responses to assessment items two and three were based on the 
extent to which valid justifications were given. All data were analyzed by the first author and 
another doctoral student in mathematics education.  
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The following categories are how PSTs definitions were classified. Special attention was 
paid to how PSTs addressed arbitrariness and univalence in their definition of functions.  

Category 4 Assessment. The definition of function should explicitly refer to both univalence 
and arbitrariness. For definition of univalence function a statement like– “y is a function of x 
when there is a relationship between x and y such that for every value of x there is one and only 
one corresponding value of y” was expected (Steele et al., 2013, p. 461). For arbitrariness, 
“elements of the domain and range need not be numbers and that the rule relating them does not 
have to be described by a regular expression” (Steele et al., 2013, p. 455). Definitions that had 
the same meaning as the definitions found in Steele, but not the same wording also were 
classified as a “Category 4” response. For example, the letters x and y could be replaced by 
identical mathematical terminologies, for instance, input and output, independent variable and 
dependent variable, domain, and range, etc.                 

Category 3 Assessment. The definition of a function would include a formal definition of 
arbitrariness or univalence and informally or intuitively refer to the other concept. For example, a 
definition might say that each element in the set of baseball stadiums is assigned to the city 
where it was built. This definition addresses univalence and implicitly hints at arbitrariness.  

Category 2 Assessment. The definition of function only focuses on univalence or 
arbitrariness, but not both. As a sample response for this category is, “a function is any relation 
such that for every number input into a formula result in exactly one number as an output. 

Category 1 Assessment. The definition of function is incomplete. As an example, 
“Functions map inputs to outputs.”     

Category 0 Assessment. The PSTs did not give a response or gave a definition which did 
not include any idea of univalence or arbitrariness. For example, “functions need to be linear 
relationships.” 

Findings 
Assessment Item 1    

The PSTs’ responses were categorized based on their descriptions of definitions of functions 
that they provided for the pre- and post-intervention (see Table 1).          

    
Table 1: Results of Assessment item 1 

Categories from 
the rubric 

Number of PSTs responses on 
the pre-test 

Number of PSTs responses on the 
post- test 

0 1 0 
1 9 2 
2 1 1 
3 1 6 
4 2 5 

 
 The data showed that in both their pre- and post-intervention test responses, some PSTs had 

difficulty in providing accurate definitions of a function. At the pre-test stage, only two of the 14 
participants offered definitions which included detailed information of both the univalent and 
arbitrary nature of functions explicitly (a rating of 4). Five PSTs received a rating of 4 on the 
post-test. An example of a definition of function given at the pre-test stage which was classified 
as Category 4 was “A function is a rule which maps each element of the domain to a unique 
element in the co-domain.” The same participant’s definition of function at the post-intervention 
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stage was “A function is a rule which maps every element of a set A (domain) to a unique 
element in a set B (co-domain)” which was also classified as a Category 4 response.  

Similarly, nine PSTs’ pre-test definitions of functions were categorized as Category 1, and 
two PSTs’ post-intervention definitions of functions were categorized as Category 1. At the pre-
test stage, one of the participants explained definition of function as “a relationship where no 2 
same x’s are paired with different y’s” and was assessed as Category 1. The same participant 
posed, “a relationship where every input has exactly one output” at the post-intervention test. 
That definition was classified as a category 1 response as well.  

Some PSTs who struggled to provide adequate definitions at the pre-test stage improved to 
provide better definitions of functions at the post-intervention stage. In fact, five PSTs’ 
definitions were deemed to have improved from Category 1 to Category 3 and two from 
Category 1 to Category 4. Additionally, one participant improved from Category 0 to Category 
3, another from Category 3 to Category 4, and another from Category 2 to Category 4. However, 
one participant’s responses were assessed as decreasing from Category 4 to Category 3. A 
participant whose responses improved from Category 0 (pre-test) to Category 2 (post-
intervention test) wrote, “a function represents an equation/ graph” (at the pre-test stage) and “a 
function is a domain and range of elements that maps in X (1 2 3) to a unique element in Y (w y 
z) (at the post-intervention stage).    
Assessment for Item 2  

This task required PSTs to determine if the given mathematical statement described 
functions, and to provide justifications for their decisions. The correct response for this question 
was “yes,” and a justification such as, “there is an assignment of a single value to each number" 
(Even, 1990, p. 105). Table 2 has a summary of the results. At the pre-test stage, 50 percent of 
the PSTs gave correct answers and acceptable descriptions. Similarly, at the pre-test stage, two 
of the 14 participants provided a correct response but did not give an acceptable justification, and 
five participants responded with an incorrect answer or did not provide a justification. But, at the 
post-intervention stage, most of them—indeed 13 of the 14, provided correct answers with 
acceptable justifications.  

 
Table 2: Findings of Assessment for Task 2 

Category of Response Number at Pre-test 
 

Number at Post-
test 

Participants with correct responses 
and acceptable justifications  

 

7 13 

Participants who gave correct 
responses without providing 
appropriate justifications 

 

2  
– 

Participants with incorrect responses 
and/or no responses 

5 1 

 
Most of the justifications for correct responses of the PSTs were in the form: “Yes, this is a 

piece-wise function”, or “Yes because ‘it passes the vertical line test.” Justifications that were 
deemed not correct included “No, several x values were mapped to zero” and “No, because these 
are boundaries.”       
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Assessment for Item 3   
This task included to check whether participants could identify if a set of ordered pairs was a 

function. Participants were required to explain why they gave their explanations. The correct 
answer at the pre-test stage was “yes” and at the post-intervention stage, it was “no” (questions 
of assessment item 3 in the pre-test and post-intervention were little bit different). Table 3 has a 
summary of the results. At the pre-test stage, eight PSTs gave correct responses and offered valid 
justifications, and at the post-intervention stage, 13 participants responded with correct answer 
and valid reasoning. All 14 participants attempted to explain their justifications in both tests, 
however six of their responses were incorrect at the pre-test stage and one was incorrect at the 
post-intervention stage.  

 
Table 3: Findings for Assessment for Task 3 

Category of Response Number at the Pre-
Test 

 

Number at the post-
test  

 
Correct response and an acceptable 
justification  

8 13 

Correct response but no justification 0                        0 
 

Incorrect and/or no response 6 1 
  
Some of the PSTs’ responses at the pre-test stage were, “Each x-value in the (x, y) pair maps 

to one y-value”, “no two same x-values have different y-values". Similarly, some correct 
responses in the post-intervention test—for which the correct answer was “no,” were, “no, 
because each x element does not have a unique y element”. Most PSTs appealed to the univalent 
nature of functions to justify why a set of ordered pairs was or was not a function. Some correct 
responses at the post-intervention stage were: “No, the following does not pass the vertical line 
test,” and “No, because there is not a common relation between the x and y coordinates.”     

Discussion 
This study assessed the quality of PSTs’ definitions of a function at pre-test and post-

intervention stages. Analysis of pre-test responses has shown that some of the PSTs did not 
understand the concept of a function. However, it was also found that although most of the PSTs 
improved their understanding of the function concept by the post-intervention stage, some of 
their explanations were still inadequate. This study revealed that at the pretest stage the PSTs 
focused on the univalent nature of a function. Similarly, studies found that their participants were 
aware of the univalent nature of functions but did not know about the arbitrary nature of function 
(Chesler, 2012; Haciomeroglu, 2005). Steele et al., (2013) reported that the arbitrariness of a 
function was not well known by participants in her study, and the same was true for this present 
study.  

Similar trends have been observed in previous research—for example, Even (1993) found 
that many preservice teachers were not aware of both univalence and arbitrariness. This finding 
is not surprising given that most of the concept of functions that preservice teachers experience 
during mathematics classes at school and in undergraduate mathematics programs were 
presented via graphs and expressions which clearly demonstrate univalence. Unfortunately, 
arbitrariness is often overlooked in the high school and undergraduate curriculum. Even (1993) 
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further reasoned that the application of the concept of the arbitrariness of a function is found 
within advanced calculus, which is a part of PSTs’ education. Unfortunately, that is not enough 
for students to reinforce that arbitrariness should be included as a part of the definition of 
function. 

Additionally, an examination of PSTs’ data generated by assessment items two and three, 
revealed that there was significant pre-test to post-intervention improvement so far as clarifying 
whether the given expressions were or were not functions. After completion of all the three tasks 
by the PSTs, some of them showed inconsistency in the justifications which they provided with 
assessment item 2 and assessment item 3 in comparison with the definitions of function they 
provided with assessment item 1. Some of their explanations in the second and third assessment 
items were valid but often their definitions of functions seemed implicit or incomplete. Tabach 
and Nachlieli (2016) found that although students explicitly expressed the definition of function, 
some of them were not able to use the definition to identify the mathematical model of a 
function.    

Even (1990) claimed that the mathematical knowledge of the PSTs in her study was “fragile 
and weak.” PSTs did not hold comprehensive and well-articulated definitions of the mathematics 
which they were going to teach. Even (1993) further elaborated that when the teacher 
participants in her study were asked to define a function, many of them chose to offer rote 
definition and did not refer to univalence and arbitrariness because their minds were influenced 
by the functions with which they had regularly worked on in classes, rather than by the 
definitions of a function which they had memorized. Wilson (1997) found that although the 
PSTs’ understanding of the concept of function had grown significantly, because of their 
participation in different types of classroom activities and had been influenced by their 
involvement in classroom teaching practices, interviews, written work, and observations, they 
still had limited understandings of functions and, more generally, of mathematics. 

Conclusion    
Most PSTs referred only to the univalent nature of a function, omitting the arbitrary nature of 

functions. None of the PSTs mentioned univalence or arbitrariness by their names nor provided 
any distinct examples of those two aspects. Based on previous research (e.g., by Tabach & 
Nachlieli, 2016) and the analysis provided in this paper, it appears to be unlikely that the PSTs’ 
concepts of a function will be changed significantly because of participating in a single 
mathematics course. Shulman’s (1987) concept of pedagogical content knowledge which has 
content as an anchor for a teacher’s pedagogical knowledge and knowledge of learners, suggests 
that if PSTs do not acquire a strong mathematical knowledge of the concept of functions, their 
future teaching on the concept of functions will be limited. PSTs should have multiple 
opportunities to study about functions in multiple classes with the aim of helping them develop a 
clear understanding of the concept of functions. Moreover, it seems as if it is challenging to 
restructure a PST’s definition of functions, which suggests that the concept of functions should 
be taught more carefully in the high school mathematics courses (Vinner & Dreyfus, 1989). High 
school students should be given the opportunity to grapple with the concept of function starting 
in algebra 1. 
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Teachers’ mathematical knowledge is critical for their teaching of mathematics. We investigated 
whether elementary teachers believe that a unit fraction, 1/𝑛𝑛, results only from a whole 
equipartitioned into 𝑛𝑛 parts. We adapted Ciosek and Samborska’s (2016) Frame Task, 
presenting a frame consisting of three unequal segmented squared rings, with one squared ring 
shaded. In semi-structured interviews, 19 teachers engaged the task and reasoned whether the 
shaded portion equals 1/3 of the frame. Our findings indicate that about three-quarters of the 
participants believe that either (1) to have one-third of a quantity, a section needs to be one of 
three parts, or (2) a section cannot be 1/3 of an object if the object is partitioned into three 
unequal sections. Finally, we hypothesize how an iterative perspective of unit fractions may 
mitigate against the false beliefs that Ciosek and Samborska (2016) and our study document. 

Keywords: Number Concepts and Operations, Rational Numbers, Teacher Beliefs, Teacher 
Knowledge 

Introduction 
Foundational interpretations of what is a fraction are numerous and interwoven. They are 

pedagogical, historical, mathematical, and neurocognitive (Cuisenaire & Gattegno, 1954; 
Davydov & Tsvetkovich, 1991; Kieren, 1976, 1980; Matthews & Chesney, 2015). Those 
interpretations shape how learners perceive a whole or unit and an associated unit fraction, that 
is, a fraction with 1 as its numerator. Studies illustrate how assigning a unit of measure to a given 
quantity, or unitizing, is critical for working adeptly with fractions (Lamon, 1996, 2007; Mack, 
2001; Olive, 1999; Steffe & Olive, 2010; Van Ness & Alston, 2017a, 2017b, 2017c). To 
inaugurate students’ study of fractions, textbooks and disciplinary policy (Common Core State 
Standards Initiative, 2010) present the part/whole interpretation. However, research suggests that 
a fraction’s part/whole understanding leads learners to conceive and represent with difficulty 
fractions greater than a unit or whole (Gabriel et al., 2012, 2013; Mack, 1990; Tzur, 1999; Zhang 
et al., 2017). To understand further the difficulty of learners to conceive and represent improper 
fractions, a potentially fruitful line of inquiry concerns investigating how a part/whole 
interpretation of fractions shapes learners’ comprehension of a unit fraction. Exploring an aspect 
of unit fraction comprehension, Ciosek and Samborska (2016) present a hitherto undocumented 
belief among elementary to university students, science graduates, and mathematics teachers that 
a unit fraction, 1/𝑛𝑛, results only from a whole equipartitioned into 𝑛𝑛 parts. Using Ciosek and 
Samborska’s (2016) study instrument, our work extends theirs by examining the related ideas of 
practicing elementary school teachers. Teachers of those grades are responsible for supporting 
elementary school students’ development of ideas about fractions and their operations. 
Therefore, understanding teachers’ ideas may provide valuable insights into the origins of 
students’ beliefs and indicate percipient ways to challenge and enhance students’ fundamental 
awareness of unit fractions. 
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Related Literature and Conceptual Framework 
Teachers’ Mathematical Knowledge 

Teachers’ mathematical knowledge is critical for teaching mathematics and their students’ 
achievement. Several models have theorized the knowledge that teachers need to teach 
mathematics effectively. Our study draws from the Mathematics Teacher’s Specialised 
Knowledge (MTSK) model by Carrillo-Yañez et al. (2018). Extending the work of Shulman 
(1986) and Ball et al. (2008), Carrillo-Yañez et al. (2018) state that teachers’ knowledge consists 
of three major domains: beliefs, pedagogical content knowledge, and mathematical knowledge. 
Since teachers’ beliefs influence teaching practice, MTSK centers the two other domains around 
teachers’ beliefs about mathematics and mathematics teaching and learning. Each of the 
remaining two domains includes three subdomains. The pedagogical content knowledge domain 
involves knowledge of features of learning mathematics (KFLM), knowledge of mathematics 
teaching (KMT), and the knowledge of mathematics learning standards (KMLS). The KFLM 
subdomain encompasses the features inherent to learning certain mathematical content. The 
second subdomain, KMT, concerns awareness of mathematical teaching theories, including 
knowing about activities, strategies, and techniques for teaching specific mathematical content. 
The last subdomain, KMLS, is the knowledge about mathematical standards and curricula for the 
content at different levels. 

The mathematical knowledge domain includes knowledge of topics (KoT), knowledge of the 
structure of mathematics (KSM), and knowledge of practices in mathematics (KPM). The KSM 
subdomain describes teachers’ knowledge about the relations among different mathematical 
ideas. This knowledge influences teachers’ decisions when connecting a mathematical topic to 
previous or future topics. Carrillo-Yañez et al. (2018) define the KPM subdomain as “any 
mathematical activity carried out systematically, which represents a pillar of mathematical 
creation and which conforms to a logical basis from which rules can be extracted” (p. 9). This 
knowledge does not focus on teaching mathematics but on the workings of mathematics such as 
mathematical demonstrations, justifications, definitions, and making deductions and inductions. 
Finally, the KoT subdomain describes “what and in what way the mathematics teacher knows [or 
may know] the topics they teach” (Carrillo-Yañez et al., 2018, p. 7, original emphasis). An 
example of this type of knowledge includes concepts, procedures, and theorems. 

This study investigates the mathematical knowledge domain and focuses on teachers’ KoT. 
The specific topic of our research concerns teachers’ knowledge of the unit fraction concept, its 
relation to a whole and other parts of the whole. Moreover, regarding elementary school teachers 
who teach mathematics, this study also seeks to explore Ciosek and Samborska’s (2016) 
hypothesis: “An iterative procedure of dissecting something into 𝑛𝑛 equal parts to constitute a 
fraction of 1/𝑛𝑛 (as it is defined) may lead to the false belief of the learner of mathematics that if 
a whole is divided into 𝑛𝑛 unequal parts, none of them can be 1/𝑛𝑛 of its size” (p. 22). 
Investigating how teachers conceptualize and identify unit fractions is essential since, as 
Chapman (2014) states, “it is not only important what mathematics teachers know but also how 
they know it and what they are able to mobilize for teaching” (p. 295). 
Unit Fractions 

Fractions, one of three representations of rational numbers, have several interpretations. 
Kieren (1976, 1980) calls them sub-constructs and identifies five: part-whole, quotient, 
measures, ratios, and operators. These interpretations, Kieren further notes, are united by the act 
of equipartitioning a whole. “Partitioning is seen here as any general strategy for dividing a given 
quantity into a given number of ‘equal’ parts. Thus, it can be seen as important in developing all 
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of the five sub-constructs” (1976, p. 138). In that quote and elsewhere in our text, the term 
quantity means a measurable quality of an object such as its length, area, or volume. Positing 
partitioning a quantity as the cognitive basis for fraction knowledge has in practice implied that 
instructionally the part/whole interpretation is the foundational and initial fraction concept. This 
stance perseveres as curricular policy (Common Core State Standards Initiative, 2010).  

This partitioning approach Vergnaud (1983) identifies as the first of two categories of ratios 
or fractions as comparisons or proportions. The first category he calls inclusive fractions, 
represented by a whole and a part of it (𝑝𝑝 out of 𝑞𝑞) such as this set model statement: Aaliyah ate 
two-thirds of the cookies. For an area model, one compares pizza slices to the whole pizza. The 
part/whole interpretation is the ubiquitous basis for initial learning about fractions among 
students in the United States and elsewhere. The inclusive category is how fractional parts of a 
whole are understood, including unit fractions. For example, the unit fraction, 1/𝑛𝑛, quantifies the 
part-whole relationship. It represents one part of the whole’s equal parts. Its quantification or 
magnitude results from equipartitioning a whole and considering the ratio between one part and 
the whole. 

In contrast, Vergnaud (1983) denotes the second category of fraction representations as 
exclusive. In it, fractions multiplicatively compare two distinct quantities with no inclusion 
relationship (𝑝𝑝 to 𝑞𝑞)—for example, the volume of Karma’s luggage is three-fifths of Samir’s 
luggage. The second quantity is the unit to which the first is compared. The quantities are of the 
same kind (volume) and compare proportionally. As a further instance, Davydov and 
Tsvetkovich (1991) present this situation: A student compares two distinct objects, sharing 
length as a common attribute, a ruler to a table’s side. To compare the objects, the student 
assigns a quantity to equal one and measures, actions corresponding to the fraction concept’s 
origin. For example, if 𝑛𝑛 iterations of the student’s ruler equal the table’s side, and she considers 
the table the unit, the ruler is one-𝑛𝑛th or 1 𝑛𝑛⁄  of the table. 

Building on the preceding paragraph’s conceptual ideas, we subscribe to a generalized 
formulation of a unit fraction. A unit fraction, 1/𝑛𝑛, quantifies a particular multiplicative relation 
between two quantities of the same kind (e.g., lengths, areas, or collections). Specifically, the 
multiplicative relation is where 𝑛𝑛 iterations of one quantity measure the other quantity 
considered the unit of measurement. In other words, definitionally, a quantity is 1 𝑛𝑛⁄  of a unit if 
and only if 𝑛𝑛 iterations of the quantity equal the unit. Though this definition integrates inclusive 
and exclusive categories of fractions and their corresponding nonsymbolic models, the crucial 
difference for the two categories is whether the 𝑛𝑛 iterations are internal or external to the unit 
quantity. In either case, a unit fraction is a unit of a unit or a subunit. 

Research evidences learners’ movement from inclusive to exclusive fraction representation. 
This movement is essential for, as Vergnaud (1983) notes, “comparisons and ratios between any 
two quantities of the same kind are a more powerful model than inclusive fractions, providing a 
more general foundation for scalar operators or ratios” (p. 164). Hunt et al. (2016) show how 
tasks for learners with learning disabilities can conceptually prime them to use unit fractions to 
construct non-unit fractions in and out of equal sharing contexts. Tzur’s (1999) study evinces 
how children nontrivially reorganize their numerical operations with a unit fraction to construct 
fractions less than or equal to a whole to represent fractional magnitudes greater than a whole. 

Other than initiating fraction learning with the part/whole interpretation and its inclusive 
representations, challenging the settled partitioning perspective of fraction learning, there are 
instructional research and pedagogical materials that develop fractional knowledge with 
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exclusive models (Cuisenaire & Gattegno, 1954; Davydov & Tsvetkovich, 1991; Dougherty & 
Simon, 2014; Dougherty & Venenciano, 2007). 

Assigning a quantity to equal one or a unit is a mental and bodily act. Lamon (1996) calls the 
“assignment of a unit of measurement to a given quantity” (p. 170) unitizing. For a given whole 
or unit, a fraction whose numerator is 1, a unit fraction, is a subunit. From the part/whole 
perspective, if a whole is partitioned into 𝑛𝑛 equal parts, one part is 1/𝑛𝑛 of the whole. As Ciosek 
and Samborska’s (2016) study suggests, from that statement, learners may incorrectly conclude 
the statement’s converse: If one part of a whole is 1/𝑛𝑛 of it, then the whole is divided into 𝑛𝑛 
equal parts. Besides, learners may falsely believe versions of the following two statements: 

• If a whole is partitioned into 𝑛𝑛 parts, one part is 1/𝑛𝑛 of the whole. 
• If a whole is partitioned into 𝑛𝑛 unequal parts, one cannot equal 1/𝑛𝑛 of the whole. 

The part/whole interpretation of a unit fraction means that if both conditions—𝑛𝑛 parts and all 
parts equal—are true for how a unit is partitioned, each part equals 1/𝑛𝑛 of the unit. However, the 
statement does not imply that a part cannot equal 1/𝑛𝑛 of the unit when the unit is not partitioned 
into 𝑛𝑛 parts, or the parts are unequal. That is, a part of a unit can equal 1/𝑛𝑛 of it even (a) when 
the unit is partitioned into 𝑛𝑛 unequal parts or (b) without the unit being partitioned into 𝑛𝑛 parts. 

To engage learners’ awareness of the meaning and conditions for the existence of unit 
fractions, educators can develop instructional tasks that challenge potential false beliefs (see, for 
example, Problems 1 to 6 in Ciosek and Samborska (2016, pp. 30-31)). However, to support the 
appropriate implementation of those tasks, it is essential to know how elementary school teachers 
understand the consequences of a fraction’s part/whole interpretation for ideas about unit 
fractions. Then, if needed, teacher educators can support teachers to be aware of what the 
interpretation means and does not mean about the existence of unit fractions. 

Methods 
Study Instrument 

To explore how elementary school teachers understand unit fractions and, if necessary, 
support them in educating their awareness of false ideas, we implemented the Frame Task (see 
Figure 1 below), adopted from the study instrument in Ciosek and Samborska (2016, p. 22). This 
task reveals participants’ unit fraction understanding as one of n equal parts of a whole. It also 
allows us to examine whether they have the false belief that if a whole is divided into n unequal 
parts, none of them will equal 1/𝑛𝑛 of the whole. 

In Figure 1, the frame consists of three squared annuli or rings—an outer, a middle or 
shaded, and an inner—each segmented into squares of the same size. Not part of the frame is the 
unsegmented center square. 
Participants and Setting 

From a pool of 47 teachers of grades 1 to 5 participating in a larger professional learning 
project about rational numbers, this study involved 19 of the teachers. They are from a public 
charter school in the Bronx, New York City, with two locations, which we call B1 and B2. They 
volunteered to participate in individual interviews, responding to the Frame Task, justifying and 
illustrating their responses, reacting to challenges to their answers or justifications, examining 
alternative explanations, and discussing their take-aways from the experience. For the interview, 
the teachers meet with one of the two first authors for an average of 18.2 minutes during the 
school day through videoconferencing. All interviews occurred on the same day. So that 
participating teachers did not receive information in advance about the task and the nature of the 
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interview, we asked each participant not to reveal their experience to their colleagues until the 
next school day. All participating teachers signed an online informed-consent form, previously 
approved by the Institutional Review Board of Rutgers University.  

 

 

Figure 1: The Frame Task 

Data Production 
Guided by an interview procedure from Ciosek and Samborska (2016), the current study’s 

two interviewers performed semi-structured interviews (Lune & Berg, 2017). We randomly 
assigned each participant to one of the two researchers for a specific one-half-hour time slot. 
Each researcher interviewed teachers from both B1 and B2. At the assigned time, teachers 
logged into the videoconferencing application, and their interviewer informed them that the 
session would be videorecorded. In addition, the interviewers confirmed that teachers knew how 
to use the application’s annotation tool to illustrate their work and then shared their screens to 
display the Frame Task. 

After displaying the task, we asked participants to read the question—Is the shaded part 1/3 
of the “frame”—and, for the context, explain their understanding of the word “frame.” Their 
explanation was essential since the word as a noun or verb has several meanings. Furthermore, 
even when considering a picture frame, the consideration is variable as to which portion of the 
figure constitutes the frame in question. Once the participant and interviewer agreed that, for the 
task, the “frame” was the area of the figure surrounding the central large white square, the 
interviewer asked the participant to respond to the task. A complete response entailed two 
components: an answer to the task’s question and a justification of the answer. Therefore, aside 
from their answers, we listened to how participants justified them If they did not, we then invited 
them to do so. If the participants’ answers and justifications were correct, we encouraged them to 
provide an alternative rationale for their answers. If they did not have one, we offered an 
alternative explanation based on counting or mentally decomposing and recomposing the task’s 
graphical figure. 
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If participants’ answers or justifications were incorrect, we prompted their awareness by 
offering a monetary scenario that challenged their erroneous reasonings such as whether a unit 
fraction can only be defined for an equally partitioned object. After participants responded to the 
challenge and revised their answer or justification, we invited them to provide an alternative 
rationale for their answer. If they had none, we offered an alternative justification.  

Finally, the interview ended with participant and researcher reflections. First, we encouraged 
participants to reflect on their experience in the interview from the perspectives of mathematics, 
learning, and teaching. Second, to complement or extend what the participants said, we offered 
mathematical perspectives to contribute further to their KoT of fractions. 

Our mathematical perspectives comprise two considerations. The first KoT idea concerns this 
statement: If a whole is partitioned into 𝑛𝑛 equal parts, one part is 1/𝑛𝑛 of the whole. This partition 
or part/whole interpretation of a unit fraction means that if both conditions—𝑛𝑛 parts and all parts 
equal—are true for how a unit whole is partitioned, each part equals 1/𝑛𝑛 of the unit. However, 
the statement does not imply that a part cannot equal 1/𝑛𝑛 of the unit when either the unit is not 
partitioned into 𝑛𝑛 parts or when the unit’s parts are unequal. That is, a part of a unit can equal 
1/𝑛𝑛 of it (a) without the unit being partitioned into 𝑛𝑛 parts or (b) even when the unit is 
partitioned into 𝑛𝑛 unequal parts. 

The second KoT consideration we offered pertains to the following generalized interpretation 
of unit fraction: A quantity is 1 𝑛𝑛⁄  of a unit if and only if 𝑛𝑛 iterations of the quantity equal the 
unit. We hypothesize that this understanding of a unit fraction, including that it is considered a 
subunit, emerges naturally from a measuring perspective of fraction knowledge (Powell, 2019b).  
Data Analysis 

The data consisted of the video recordings of the online interviews, including participants’ 
annotations on a digital version of the Frame Task and transcripts of the videos’ audio tracks. To 
probe the interview data, the authors developed an analysis spreadsheet containing columns for 
components of the interview and a row for each participant. The columns pertinent to this report 
captured participants’ initial answers, whether their justification was unprompted or prompted 
and its content, whether the interviewer challenged their answer or explanation and the content 
of the challenge, the conclusion of how a participant addressed the challenge. In addition, two of 
the authors independently analyzed the interview data. For their analyses, the inter-rater 
reliability measure was 93.42% agreement, and the Cohen’s Kappa coefficient is 0.858, 
indicating strong agreement between the two raters (McHugh, 2012). 

Results 
We report results corresponding to segments of our interview that parallel those Ciosek and 

Samborska (2016) detailed. Consequently, we do not discuss participants’ reflections about 
alternative explanations for why the frame’s yellow-shaded portion is one-third of it that they 
offered or that we supplied and comments about what they learned from the interview.  

A complete response to the Frame Task entails two parts, an answer to the task’s question 
and its justification. However, our data analysis suggests that a small proportion of the 
participants initially responded correctly to the Frame Task, and most teachers struggled at first 
to reason correctly about the conditions necessary for a portion of an object to represent a unit 
fraction.  

Participants’ initial responses comprised an answer to the question—“Is the shaded part 1/3 
of the ‘frame?’”—and the reason for their answers. An answer essentially was either “yes” or 
“no,” coupled with a justification. Nevertheless, two participants’ initial answers were a version 
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of “Let me check” and ultimately responded “yes.” Table 1 contains a tally of participants who 
provided each of the three initial responses and provides justification examples from teachers, 
T19, T5, and T3. In Table 1, of the 11 who responded, “yes,” about 32 percent or six provided 
false justifications, noted with the letter “I” next to a paraphrasing of their explanation, and the 
five others or roughly 26 percent proffered correct reasonings, indicated with the letter “C.” 
 

Table 1: Initial responses and examples 
Initial 

Answer Justification Count Example 

Yes 

(I) The shaded part is one of three 
parts. 6 (31.6%) T19: “the shaded area represents 

one of three parts.” 
(C) The number of small shaded 
squares equals one-third of the 
total number of squares. 

3 (15.8%) 
T5: “So, the yellow part of this 
frame is 32... So, it is one-third of 
96.” 

No The three parts are not the same 
size. 8 (42.1%) T3: “I see three divisions of the 

frame, but they’re not all equal.” 
Let me 

check-Yes 
The number of shaded squares to 
the total number of squares is 1/3. 2 (10.5%)  

Totals 19 (100%)  
 

As participants’ initial responses, the incorrect to correct responses were 26 percent to 74 
percent. Among participants whose initial answer was “yes,” we observed false and valid 
justifications. Six teachers argued incorrectly that the frame’s shaded part is 1/3 of the frame 
since it is one of three parts. The other three participants reasoned correctly by attending to the 
number of the shaded squares (32) to the total number of squares (96). The eight teachers who 
initially answered “no” justified their answers, stating that the three squared rings of the frame 
are not the same size. The two teachers who first answered some version of “Let me check” 
compared the number of the shaded squares to the total number of squares in the frame before 
answering. They inspected the frame, compared the three squared rings, and stated that the 
shaded part is one-third of the frame. Then, they mentally shifted squares from the frame’s outer 
ring to its inner ring and verified that the shifting resulted in two squared rings that are the same 
size as the shaded squared ring. For example, one of the “Let-me-check” teachers, T12, reasoned 
by mentally decomposing and recomposing the outer and inner squared rings to visualize that the 
average number of small squares is the same for the frame’s three squared rings. 

For participants who responded incorrectly, we prompted their awareness by offering one of 
two scenarios that challenged their erroneous reasoning: (a) Suppose you divide $90 into these 
three parts: $45, $30, and $15. Is any of these 1/3 of $90? or (b) Suppose you divide $90 into 
these three parts: $40, $35, $15. Is any of the parts 1/3 of $90? We gave the first scenario to 
participants whose initial answer was “no.” We offered the second scenario to participants who 
answered “yes” but incorrectly justified. In all cases, after we challenged their thinking with a 
scenario, participants revised either their answer or justification or both and, ultimately, 
responded correctly based on the portion of the shaded square ring to the total of the three 
squared rings.  

Discussion 
A goal of our study was to investigate how elementary teachers who teach mathematics 

understand how unit fractions are constituted. Specifically, we were interested in knowing 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

723



whether they believe that a unit fraction, 1/𝑛𝑛, results only from a whole equipartitioned into 𝑛𝑛 
parts, as Ciosek and Samborska (2016) documented among a range of elementary to university 
students, science graduates, and mathematics teachers. Understanding elementary teachers’ ideas 
may provide valuable insights into the origins of students’ beliefs. Also, teachers’ understanding 
is associated with the learning opportunities they create for their students (Borko et al., 1992; 
Fisher, 1988). Furthermore, discerning whether teachers have robust conceptual insights into the 
unit fraction concept might indicate whether they need support to engage students with 
counterexamples to challenge mistaken notions.  

Our study and Ciosek and Samborska’s (2016) results indicate that, respectively, about 75% 
and 65% of the participants initially harbor incorrect interpretations of how the part/whole 
perspective defines unit fractions. Specifically, in our study, elementary-grade teachers who 
teach mathematics believe either (1) for a section of an object to equal one-third of it, the section 
needs to be one of three parts of the object, or (2) a section cannot be equal to one-third of an 
object if the object is partitioned into three unequal sections. Notably, when we presented 
scenarios to challenge their conceptual beliefs, the teachers revised their thinking and responded 
correctly to the task. 

Our investigation suggests that, like teachers, without working through counterexamples, 
students may develop incorrect conclusions about the constitution of unit fractions such as this 
idea: The only way to obtain 1/𝑛𝑛 of a given whole is to divide it into 𝑛𝑛 equal parts. Educators 
will want to challenge and enhance students’ fundamental awareness of how unit fractions are 
constituted. 

Earlier in this report, we mentioned the following generalized interpretation of a unit 
fraction: A quantity is 1 𝑛𝑛⁄  of a unit if and only if 𝑛𝑛 iterations of the quantity equal the unit. 
From a part/whole perspective, Tzur (1999) analyzes a constructivist teaching experiment to 
show how children, engaging in an iterative fraction scheme (Olive, 1999), nontrivially 
reorganize their numerical operations with a unit fraction to construct fractions less than or equal 
to a whole then later to represent fractional magnitudes greater than a whole. This cognitive feat 
is noteworthy since the fundamental basis for conceiving of the unit fraction is the 
equipartitioning of a whole. That criterion causes learners to hesitate iterating a unit fraction 
beyond the magnitude of the whole (Gabriel et al., 2012, 2013; Mack, 1990; Tzur, 1999; Zhang 
et al., 2017) and, as the present study and Ciosek and Samborska (2016) show, perceiving a unit 
fraction among parts of a whole partitioned unequally. To attenuate cognitive obstacles 
associated with founding fractions on equipartitioning a quantity, we hypothesize that learners’ 
iterative fraction scheme, handling comeasurement units (Olive, 1999), and construction of 
proper, improper, and mixed numbers may emerge naturally from a measuring perspective of 
fraction knowledge (Alqahtani & Powell, 2018; Powell, 2019a, 2019b). This perspective defines 
fractions as ratios that express the multiplicative comparison of two quantities of the same kind. 
We surmise that working from a measuring perspective, learners spontaneously encounter the 
meaning of a general fraction, 𝑚𝑚/𝑛𝑛, as an outcome of 𝑚𝑚 iterations of the unit fraction 1/𝑛𝑛. Our 
research team intends to explore this hypothesis in a future study, challenging the settled 
partitioning perspective of fraction learning. 
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Mathematics teacher educators have suggested that preservice mathematics teachers’ (PMTs’) 
practices provide evidence of their Mathematical Knowledge for Teaching (MKT). In an effort to 
explore connections between MKT and PMTs’ practices, we developed a framework that 
operationalizes Ball et al.’s (2008) six MKT domains in terms of approximations of practice. We 
then used our framework to investigate which domains were evidenced in eleven PMTs’ lesson 
plans and how PMTs described MKT in their lesson plan reflections. We found Knowledge of 
Content and Teaching most evidenced and Horizon Content Knowledge least evidenced. Also, 
PMTs made few instances of Knowledge of Content and Students as they struggled to address 
students’ mathematical thinking in their plans. We propose alternative forms of approximations 
of practice to optimize PMTs’ opportunities to demonstrate and conceptualize MKT. 

Keywords: Mathematical knowledge for teaching, Teacher knowledge, Preservice teacher 
education; Instructional activities and practices 

Educators have emphasized that teacher knowledge should be discipline-specific, and 
evidenced through teacher practices (e.g., Ball et al., 2008; Shulman, 1986; Tchoshanov, 2010). 
In mathematics education, discipline-specific knowledge is commonly conceptualized as 
Mathematical Knowledge for Teaching (MKT, Ball et al., 2008), which provides a way to 
contextualize mathematical knowledge during mathematics teaching (Thomas et al., 2017). 
Preservice mathematics teachers (PMTs) often engage in approximations of practices (referred to 
as “approximations”) such as peer teaching (Grossman et al., 2009) during their teacher 
education programs, thus, their MKT could be evidenced in approximations. However, the forms 
of approximations of practice that are appropriate for PMTs to demonstrate specific aspects of 
MKT (e.g., anticipating students’ mathematical reasoning; formulating meaningful questions to 
students) are underexplored. In addition, mathematics teacher educators would benefit from 
opportunities to consider the operationalization of Ball and colleagues’ (2008) six MKT domains 
in terms of associated practices (see the description of the domains in the Perspectives section). 
In this study, we operationalized MKT domains in terms of peer lesson planning and reflections. 
First, we synthesized the literature to develop descriptors for the MKT domains. Then, we used 
this framework to investigate the following questions: (a) How did PMTs demonstrate MKT in 
their lesson planning? (b) How did PMTs describe the use of MKT domains in their lesson plan 
reflections? We conceptualized lesson planning (e.g., formulating teacher and student actions) as 
approximations of practice. As such, PMTs engaged in approximations through peer teaching; 
thus, the actual practices were altered by changing the context of the practice (i.e., PMTs planned 
a lesson to implement in a university classroom) and by offering scaffolding such as peer and 
instructor feedback and a guided lesson plan template (Tyminski et al., 2014). 

Perspectives 
We framed our study around the concept of discipline-specific knowledge, or MKT, with 

foundations in Shulman’s (1986) interpretation of Pedagogical Content Knowledge (PCK)— 
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teachers’ skills to identify and unpack critical mathematical components that are fundamental for 
the teaching of mathematics and use those components in a way that are comprehensible to 
students. PCK was further elaborated by Ball and Bass (2000) and other mathematics educators 
(e.g., Hill et al., 2005; Wasserman & Stockton, 2013). These educators proposed that teacher 
knowledge is discipline-specific; suggesting that focusing solely on generic pedagogy, such as 
classroom management, poses a risk of simplifying the complexities of teaching because generic 
pedagogy does not include the unique characteristics associated with content or discipline. 
Moreover, Shulman and recent educators (e.g., Styers et al., 2021) proposed teacher knowledge 
should be evidenced through their practice as opposed to paper and pencil tests. 

Ball et al. (2008) formalized MKT through a framework, which consists of two domains— 
Subject Matter Knowledge (SMK) and Pedagogical Content Knowledge (PCK), each consisting 
of three subdomains (referred to as “MKT domains”). SMK consists of the following three 
subdomains: Common Content Knowledge (CCK), Horizon Content Knowledge (HCK), and 
Specialized Content Knowledge (SCK). CCK comprises the general mathematical knowledge 
required to solve mathematics problems. HCK is the knowledge of core disciplinary values and 
major structures of the discipline. SCK refers to teachers’ conceptualization of mathematics 
in nuanced ways that include mathematical reasoning and multiple mathematical representations. 
PCK consists of Knowledge of Content and Student (KCS), Knowledge of Content and Teaching 
(KCT), and Knowledge of Content and Curriculum (KCC). KCS includes the understanding of 
students’ mathematical conceptions and reasoning. KCT includes knowledge of effective 
mathematics teaching strategies. KCC comprises knowledge of learning goals and horizontal and 
vertical organizations of mathematics across grade levels. Even though the MKT framework 
provides a way to unpack MKT in terms of six domains, how these domains are operationalized 
in PMTs’ teaching is still underexplored. In addition, teacher education programs have yet to 
ensure practices for PMTs to conceptualize and demonstrate MKT (Wasserman et al., 2019); 
which forms of approximations of practice (our second conceptual framework) are appropriate 
for PMTs to engage with and demonstrate MKT is still underexplored. 

As we worked to operationalize Ball et al.’s (2008) six MTK domains in terms of 
approximations of practice, we looked at how approximations have been defined in research. 
Approximations of practice are defined as “opportunities for novices to engage in practices that 
are more or less proximal to the practices of a profession” (Grossman et al., 2009, p. 2058). 
Approximations are different from actual practices because they often (a) mimic components of 
teaching practice, (b) include scaffolding, and (c) do not always replicate the complexities of 
teaching (Campbell et al., 2020; Janssen et al., 2015; Tyminski et al., 2014). Through 
approximations, teacher educators focus explicitly on the enactment of teaching and aim to 
develop skilled teachers (Forzani, 2014; Janssen et al., 2015). By using the concept of 
approximations, we designed instructional activities that provided PMTs with opportunities to 
rehearse several practices in a setting different than the actual classroom; PMTs rehearsed peer 
teaching and received feedback from their instructors and peers to improve their teaching. We 
explored the explicit connections between MKT and approximations of practice— how MKT 
domains are operationalized in approximations involving lesson planning and reflections. 

Methods 
Using a single case-study design (Yin, 2017), we identified the MKT domains associated 

with teacher and student actions described in the PMTs’ lesson plans and lesson plan reflections. 
We considered all PMTs’ lesson plans as one case and investigated all MKT domains 
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demonstrated across all PMTs’ lesson plans. This merging of all data into one case was 
appropriate for our study because we were interested, not in individual PMT’s demonstration of 
the MKT domains, but rather in the total instances of MKT domains in all PMTs’ lesson plans 
and the way they describe MKT domains in their reflections. 

Context, Participants, and Instructional Activities 
Using convenience sampling (Nielsen, et al., 2017), we recruited 11 secondary PMTs 

enrolled in a secondary mathematics methods course at a large Midwestern University. The first 
author was a course instructor and developed and implemented instructional activities based on 
the fundamental concepts of approximations of practice (Grossman et al., 2009). The PMTs had 
completed content and general education courses prior to taking this course, but this was their 
first methods course. During this course, the PMTs planned, reflected on, and implemented 
lessons with their peers. In the first phase, the PMTs worked with a peer to plan a lesson 
(“Lesson Plan I”) for middle school students using the Connected Mathematics curriculum 
(Connected Mathematics Project, n.d.). Afterward, they individually reflected on their lesson 
plans with prompts (e.g., Describe how the examples, strategies, and representations that you 
have listed in the lesson plan help to build on students’ understanding of mathematics). We used 
González et al. (2020) and Özgün-Koca (2020) to develop prompts. In the second phase, the 
instructor facilitated a discussion of Ball and colleagues’ (2008) MKT framework. In the third 
phase, PMTs individually planned a lesson (“Lesson Plan II”) by adapting activities from the 
College Preparatory Mathematics curriculum (CPM Educational Program, n.d.). For both 
lessons, PMTs were provided a lesson plan template, which partitioned the lesson into three 
sections: Launch (helping students understand the problem setting, the mathematical context, and 
the challenge), Explore (inviting students to explore mathematical ideas), and Summary (inviting 
students to present and discuss problem-solving strategies). 

Data Collection and Analysis 
Our primary data was the PMTs’ lesson plans. We used the PMTs’ reflections on the 

lesson plans as an additional data source to understand how and why the PMTs selected 
certain teacher and student actions. We used content analysis methods (Chi, 1997; Schreier, 
2012) to analyze the data. We first synthesized the literature to develop descriptors for the 
MKT domains (Table 1) and then used these descriptors to code lesson plans and reflections. 

 
Table 1: Descriptors of MKT Domains 

MKT Domains and Associated Descriptors/Codes 
Common Content Knowledge -CCK (Ball et al., 2008; Baumert et al., 2010) 
Define mathematical terms 
Unpack mathematics concepts and/or symbols 
Solve mathematical problems 
Specialized Content Knowledge- SCK (Ding & Heffernan, 2018; Hill et al., 2005; Morris & Hiebert, 2017) 
Anticipate alternative representations, provide explanations, evaluate unconventional student solution approaches 
Identify multiple representations for mathematics problems or concepts 
Offer multiple representations of mathematical solutions 
Unpack mathematical concepts and concrete models for justifying standard procedures utilized in the process 
Horizon Content Knowledge- HCK (Ribeiro et al., 2013; Wasserman & Stockton, 2013) 
Address how a topic is connected with the broader disciplinary territory 
Include big mathematical ideas that contribute to the teaching of mathematics topics 
Knowledge of Content and Curriculum-KCC (Ball et al., 2008) 
Address curricular trajectory 
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Knowledge of Content and Students-KCS (Hill et al., 2005; Özgün-Koca, 2020; Schilling & Hill, 2007) 
Anticipate the contextual factors that would support (or impede) the development of students' understanding 

MKT Domains and Associated Descriptors/Codes 
Anticipate what students are likely to do with a mathematical task and/or concepts 
Evaluate the diagnostic potential of tasks or recognize typical student errors 
Foresee students' alternative conceptions and plan to address those conceptions 
Predict what students will find interesting or motivating or useful 
Knowledge of Content and Teaching-KCT (Ding & Heffernan, 2018) 
Anticipate an item’s difficulty level and plan for mathematical concepts that address rigor demanded by the item 
Describe mathematical tasks or procedures that students would be engaged in 
Formulate, sequence, pose questions to students 
Identify strategies to assess students' mathematical understanding 
Identify supplemental resources associated with mathematics topics 
Identify what different methods and procedures might afford during instruction 
Select and sequence examples or performance tasks that would allow students to understand the topic 
Generic-No MKT-domains 

 Include generic teacher and student actions without referencing mathematics  
 

We also modified the descriptors based on our coding. For example, we identified the code 
“anticipate the contextual factors that support (or impede) the development of students' 
understanding” under KCS from PMTs’ descriptions of contextual factors associated with 
students’ mathematical understanding. The first author used the data from the pilot study (i.e., 
four PMTs’ lesson plans and their reflections collected in an earlier semester) to test the initial 
codes and further develop the coding scheme. The first and second author (a mathematics 
education graduate student and an instructor of the methods course in subsequent semesters) 
identified new descriptors in the data which we added to the framework. For example, we found 
that the PMTs planned strategies to assess students’ thinking. It was not in the original set of 
codes, and we added it as a descriptor of KCT because it is related to teachers’ knowledge 
associated with selecting instructional activities to understand students’ mathematical thinking. 

We coded teacher and student actions described and the assessment strategies noted in the 
lesson plans; the standards, instructional materials, students’ prior knowledge, and vocabulary 
were articulated while describing the teacher and student actions. For the second data set, we 
coded all the reflections. We identified each instance in which the MKT domains were evidenced 
in PMTs’ lesson plans as one coding unit. For example, one PMT mentioned that “students also 
need prior knowledge of probability notation, including that P(x) means that we are looking for 
the probability of x.” We identified this as one coding unit. In addition, we identified instances 
wherein PMTs described generic teacher and student actions without referencing mathematical 
content. We added those activities under the new category “Generic-No MKT-domains.” In 
addition, we refined our coding scheme by revising codes. For example, we aimed to distinguish 
between types of specific questions PMTs planned to pose versus types of tasks PMTs planned 
to implement while selecting mathematical tasks. Thus, we added the code: “formulate, 
sequence, and pose questions.” We each used the coding scheme to code all lesson plans 
independently, then discussed our coding processes and codes to resolve any discrepancies. We 
collaborated to decide which codes or descriptors needed to be added or eliminated. 

Findings 
We first report the frequency of the MKT domains that appeared in the PMTs’ Lesson Plan I 

and Lesson Plan II. We then elaborate on the context of the frequencies— how we identified 
these frequencies from PMTs’ lesson plans and what these frequencies suggest in terms of 
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PMTs’ MKT; we first report MKT domains that were evidenced the most and the shifts in the 
frequency from Lesson Plan I to Lesson Plan II. Afterward, we include examples of less 
evidenced domains in PMTs’ lesson plans. We used PMTs’ lesson plan reflections to provide the 
context and description of potential reasons that PMTs included certain activities in their lesson 
plans. In Table 2, we present the MKT domains that we identified in the PMTs’ lesson plans. 
 

Table 2: MKT Domains in PMTs’ Lesson Plans 
MKT 
Domains KCC KCS CCK KCT HCK SCK 

Lesson Plan I II I II I II I II I II I II 
Total 
Instances 16 22 14 45 8 7 87 102 4 1 11 21 

 
As indicated in Table 2, KCT was the most highlighted domain in both lesson plans, 

including 87 instances in Lesson Plan I and 102 instances in Lesson Plan II. KCT was primarily 
identified when PMTs described the following instructional plans related to teacher actions: (a) 
selecting and describing mathematical tasks, (b) formulating, sequencing, and posing questions 
for students, and (c) identifying what different methods or procedures would afford during 
instruction. PMTs had more instances (102) in their Lesson Plan II associated with teacher 
actions compared to Lesson Plan I (87 instances), suggesting that PMTs may have begun to think 
more about mathematics-specific teacher actions. PMTs presented examples of mathematical 
tasks from textbooks while other times they elaborated on the mathematical tasks from the 
textbook to describe which mathematical concepts students would be engaged in and which 
mathematical concepts or procedures that given mathematical tasks would afford. PMTs also 
discussed how tasks would allow students to engage with certain mathematical concepts. For 
example, Adam (pseudonym) discussed the following task and procedure in Lesson Plan I: 

This [Factor Game] provides students the chance to improve their understanding of factors. 
While playing the game, students become familiar with the factors of the numbers from 2 to 
30. They also review the multiplication and division of small whole numbers while playing. 
In Lesson Plan I, John anticipated that students would be confused by the problems that he 

planned: “I anticipate that students will have trouble initially figuring out what to do and will tell 
the students that the solution lies in using the tools they were given, e.g., a ruler and protractor.” 

In Lesson Plan II, the PMTs began to anticipate students’ mathematical thinking; however, 
their skill of identifying and incorporating students’ mathematical thinking was still evolving 

and they even stated in their reflections they needed to engage with authentic student work. In 
Lesson Plan I, the PMTs’ included generic teacher and student actions (48% of the instances 
were generic). In Lesson Plan II, PMTs began to include more specific teacher and student 
actions. 

Thus, we identified more instances that were related to both KCT and KCS. For example, 
Sarah included more specific questions in Lesson Plan II than in Lesson Plan I. In Lesson Plan I, 
she included the following generic statement: “Pose further questions to keep them thinking and 
understanding their answers to the questions.” In Lesson Plan II, Sarah included specific 
students’ mathematical thinking: “How did you know where to put each variable? If you had a 
word problem that required three equations, do you think it would be possible to solve that?” 

In addition, the PMTs began planning for more mathematics-specific student actions in 
Lesson Plan II with 45 instances of specific student actions compared to only 14 instances in 
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Lesson Plan I. Specifically, in Lesson Plan II, the PMTs began describing how their students 
would be engaged in the mathematical tasks, including how their students might solve 
mathematical problems or what questions students might ask. For example, Sarah anticipated 
that her students could have the following response to a task she planned to pose: “[Students] 
could have an incorrect single equation that doesn’t incorporate all the information from the 
problem.” However, many PMTs still included generic teacher and student actions in Lesson 
Plan II. Some of their generic teacher actions included teacher questioning, division of groups in 
their classrooms, how students would respond to teacher actions. For example, George and Kate 
included the following generic student action: “[Students will] discuss the process with peers to 
gain a better understanding and will respond to teacher prompting to dig deeper and prepare 
responses for class discussion.” PMTs had to use a Lesson Plan template asking them to write 
teacher and student actions separately. Not surprisingly, KCS was evidenced in the PMTs’ 
descriptions of student actions. However, there were only a few instances wherein PMTs 
described which mathematical topics students would find interesting, what would be motivating 
to students, and what kinds of mathematical problems their students might find difficult to 
understand. For example, Jacob in his Lesson Plan II included the following: “I anticipate there 
will be questions and confusion. Students in the past have only worked with equations, so they 
have the tools they just are unaware of how to implement them into solving the problems.” 

We identified more MKT domains from the Launch and Explore sections of the lesson plans 
than in their Summaries. In these sections, PMTs described mathematical tasks building on their 
students’ prior knowledge, what the teacher would present to the students, and what actions the 
teacher and students would perform. We identified only a few instances of the MKT domains in 
the Summary sections. We noticed that the PMTs struggled to plan for those specific actions 
because they had to anticipate what their students would explore in the Explore section. As a 
result, most PMTs planned for generic actions, specifically inviting students to share their ideas. 
For example, Griffin and Sarah wrote: “Walk around to each group and observe what they are 
discussing. Pose further questions to keep them thinking. Decide which groups should share.” 

KCC and CCK were also evidenced in the PMTs’ lesson plans. KCC was evidenced when 
PMTs discussed students’ prior mathematical knowledge and how they would build on it in their 
lessons. For example, in Lesson Plan II, Kate included: “Prior knowledge about calculating area 
and probability knowledge is needed for this lesson. Students also need prior knowledge of 
probability notation, including that P(x) means that we are looking for the probability of x.” 
CCK was evidenced when PMTs presented the specific definitions or solution methods. For 
example, in her Lesson Plan I, Kiara included her plan for defining a factor of a number: 
“Teacher will review what a factor of a number is by reminding them that it can be thought of as 
both the numbers multiplied to get a product and the divisor of a number.” This quote indicates 
Kate’s knowledge of MKT in the CCK domain as she defined factors. 

In their reflections, PMTs mostly described KCT, including which mathematical tasks their 
students were engaged in. For example, in Lesson Plan II reflection, Kate noted: 

I think she wanted the students to think of solutions on their own because there were several 
ways for the students to solve the problems. Through the student presentations, other students 
were able to discover different strategies so that they could figure out which method works 
best for them or what they understand the most. 
In this reflection, the notion of students sharing multiple strategies and different thinking 

allows the teacher to assess their students’ understanding, one descriptor of KCT. In Tania’s 
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Lesson Plan II reflection, another code of the KCT domain, “Identify what different methods and 
procedures might afford during instruction,” was referenced: 

I encourage each activity to involve some sort of discussion with their peer, and the activities 
themselves are asking the students to present the information in different ways, which is 
allowing the students to enhance their conceptual understanding of the material. 

While this reflection could be seen as more generic, the mentioning of “enhance their conceptual 
understanding of the material” points to understanding how students' conceptual knowledge of 
simplifying exponential expressions was important. 

From Table 2, we also notice that there were only a few instances of HCK (four instances in 
Lesson Plan I and one instance in Lesson Plan II). Recall that HCK includes logical connections 
of mathematics topics within broader mathematical disciplines when presenting big 
mathematical ideas. Thus, this domain could have been evidenced when the PMTs presented 
instructional strategies in a way that made connections with advanced mathematical topics. For 
example, in the following excerpt, Sarah used her knowledge of “transitivity” to plan her lesson: 
“If we know that t is equal to two different things, does that mean those two things are equal to 
each other? (transitivity).” 

In addition, SCK, KCC, and CCK were less evidenced in the PMTs’ lesson plans. SCK was 
evidenced in instances where the PMTs were able to offer alternative mathematics solution 
strategies, multiple mathematical representations, and concepts needed to understand 
mathematics. For example, Jacob, in Lesson Plan II, mentioned: 

You are looking for something a little bit bigger but will fit in your TV cabinet and you only 
know the width and height of the TV cabinet. When you get to the store, they do not list the 
Width and Height of the TVs, instead, they only have the diagonal. What are some possible 
ways that you could find out the size of the TV you need? 

Here, Jacob presented his mathematics task, and it included a real-world problem. Tayra planned 
to address students' conceptions in Lesson Plan II: “If the students aren’t understanding 
conceptually, then I’ll spend more time individually with the students and track specifically what 
things they’re finding difficult to understand.” Later, while reflecting on the lesson plan, Tayra 
mentioned that she anticipated the task to be difficult for students; however, she did not explain 
how: “we anticipated this task being difficult for many. It involves students to get creative and 
think outside the classroom.” This finding suggested that while PMTs had generic explanations 
of what their students might find confusing, there were fewer instances wherein PMTs 
mentioned which mathematical concepts students might find interesting and their anticipation of 
students’ alternative problem-solving strategies (e.g., patterns of student errors). 

In their reflections, PMTs noted that they did not anticipate students’ mathematical thinking 
because they wanted to have flexibility about how to modify students’ task-solving strategies 
during lesson plan implementation. For example, Kate reflected that she did not try to anticipate 
students’ thinking because she planned to be open to students’ ideas: “I do not feel like we tried 
to anticipate a lot because I did not want to get caught up in what I think the students will answer 
so that I am more flexible for when they do not answer the way someone typically would.” This 
finding suggests that PMTs need more opportunities to explore students’ authentic work. KCC 
was evidenced when PMTs described how they built their plans on students’ prior knowledge. 
For example, Jacob planned for addressing students’ prior knowledge: “While this is a new 
chapter, this lesson relates back to measurements, triangles and shapes, and heights and areas.” 
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Discussion and Implications 
Our findings indicated that KCS and KCT were the primary MKT domains identified from 

PMTs’ explanations of teacher and student actions. We identified two possible reasons 
associated with this finding. First, due to the lesson plan template, the PMTs demonstrated some 
domains more than others. For example, the template did not include an obvious place for PMTs 
to demonstrate HCK. Each PMT discussed CCK (i.e., addressing students’ prior knowledge). 
Given that the lesson plan template explicitly included the prompts about students’ prior 
knowledge, each PMT included at least one instructional activity that described how they would 
address students’ prior knowledge. Also, the lesson plan template had prompts for the PMTs to 
describe teacher and student actions and not many options to demonstrate how their advanced 
mathematical knowledge connected with the teacher and student actions, which could be a 
reason we identified less evidence of HCK. 

Second, when the PMTs had to explain student actions, they demonstrated fewer instances 
related to mathematics-specific student actions. PMTs noted they could not plan for student 
actions because they had not had a chance to work with specific students in the field. We 
identified that our approximations of practice (i.e., peer teaching, reflections) did not contain 
students’ authentic work. To address this limitation, incorporating authentic student work prior to 
lesson planning could evoke PMTs’ conceptions about mathematics-specific student work. 
Moreover, engaging PMTs with the research about students’ possible mathematical thinking and 
rehearsing how to respond to students’ mathematical thinking could be a way to cultivate PMTs’ 
skills to plan for activities to address students’ mathematical reasoning. Analysis of student work 
could assist PMTs in identifying activities to understand and develop students’ mathematical 
reasoning (Álvarez et al., 2020). We propose authentic forms of approximations wherein PMTs 
first read and discuss students’ potential mathematical reasoning, then engage with students’ 
authentic work in some form. Afterward, they will have opportunities to plan instructional 
activities to develop students’ mathematical understanding of a certain topic, including possible 
ways to address students’ existing conceptions. Finally, PMTs could implement those strategies 
with their peers first and with real students later during their field experiences. 

We found minimal instances associated with SCK, indicating alternative representations of 
mathematics topics and contextual factors associated with the given mathematics topics were less 
discussed. Prior research suggested textbooks played a significant role to enhance PMTs’ MKT; 
for example, textbooks predominantly promoted CCK (Atanga, 2021). Given that the textbooks 
that PMTs used in our study focused on conceptual understanding, our findings do not align with 
Atanga’s findings. Thus, exploring the explicit connections between how MKT domains in 
PMTs’ lesson plans were influenced by the textbook should be a question for further research. In 
addition to textbook content, a section in the lesson plan template about the contextual factors 
and alternative representations of mathematics could help PMTs explore, demonstrate, and 
conceptualize how mathematics topics relate to other concepts and real-life. 

Our study has implications for mathematics teacher educators and is connected with the 
conference theme of Critical Dissonance and Resonant Harmony. As opposed to assessing 
teacher knowledge through paper and pencil tests to identify what teachers know versus do not 
know, we invite educators to critically reflect on approximations of practice so PMTs have 
the opportunity to explore how they can contextualize their advanced mathematical knowledge 
during mathematics teaching. Our MKT domain descriptors provide a way to design 
instructional activities that engage PMTs in both teacher knowledge and practices. 
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Over the past two decades, the landscape of research on mathematics teacher educators (MTE) 
has grown considerably. One particular area of interest has focused on the knowledge needed by 
MTEs for their work with preservice K-8 teachers (PTs). In an effort to understand this varied 
landscape, we conducted an extensive review of research on frameworks of MTE knowledge. 
This report explores the theoretical underpinnings of MTE knowledge and highlights similarities 
and differences among theoretical frameworks. By mapping the terrain of research on MTEs’ 
knowledge, our goal is to identify aspects of MTE knowledge to inform the types of research that 
may be needed for its further development.  

Keywords: teacher educators, teacher knowledge, mathematical knowledge for teaching 

The issues of what mathematics teachers need to know (Ball et al., 2008; AMTE, 2017; 
CBMS, 2012) and how to prepare prospective teachers (PTs) as part of teacher preparation 
programs (e.g., Adler, 2010; Grossman et al., 2009; Dinham, 2013) have become a central focus 
in both research and policy arenas in many countries. The term Mathematics Teacher Educators 
(MTEs) refers to individuals who work with PTs in a variety of contexts to develop and improve 
the teaching of mathematics (Jaworski, 2008a), including mathematicians, graduate students, 
mathematics education researchers, and classroom teachers. As such, these individuals play a 
critical role in the mathematical preparation of PTs.  

Over the past two decades, the landscape of research on MTEs has grown considerably. In an 
effort to understand this varied landscape, the authors conducted an extensive review of research 
on the nature of MTE knowledge. This paper reports the theoretical underpinnings of the existing 
frameworks for MTE knowledge identified in this review. We focus on MTEs who work with 
elementary teachers because of the currently limited number of studies focused exclusively on 
MTEs who teach secondary coursework. Much of the extant research on MTEs draws on the 
construct of mathematical knowledge for teaching (MKT; Ball et al., 2008), a model of teacher 
knowledge that is grounded in elementary school teaching. As such, research on MTEs is largely 
focused on MTEs who teach elementary PTs. We sought to answer the question: What 
frameworks for teacher knowledge are leveraged in conceptualizing MTE knowledge, and in 
what ways? 

Conceptual Framework 
Conceptualizing MTE Knowledge    

Broadly defined, knowledge is the information and skills that teachers develop through 
experience and education. Researchers have long recognized the tension that exists for teachers 
between their general content-specific knowledge, developed in teacher education programs, and 
the craft knowledge that is developed through teaching practice (Shulman, 1986; Leinhardt et al., 
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1991). Practice refers to the things that teachers do consistently in their work with students 
(Lampert, 2010). Craft knowledge, for example, includes “know-how for teaching based on past 
experiences, empirical data, and well-reasoned arguments and predictions” (Hiebert & Morris, 
2009, p. 476), the knowledge that is developed through experience working with students. Like 
others (Cochran-Smith & Lytle, 1999; Ball & Bass, 2000), we argue that teacher knowledge is 
intimately related to teaching practice – teachers’ knowledge is further developed and enhanced 
over time as they teach. 
Mathematical Knowledge for Teaching Teachers 

Shulman (1986) introduced the term pedagogical content knowledge (PCK), which linked 
knowledge of teaching pedagogy with knowledge of the specific content being taught. Since 
then, a great deal of research has focused on identifying the knowledge needed for teaching 
mathematics (e.g., Ball et al., 2008; Davis & Simmt, 2006; Leinhardt et al., 1991; Ma, 1999; 
Rowand et al., 2005). Many of these studies argue that teachers need to understand the 
mathematics in the curriculum they teach in deep and connected ways that are specific to the 
needs of teachers. When combined with PCK, this knowledge base is commonly referred to as 
mathematical knowledge for teaching (MKT) (e.g., Ball et al., 2008).  

Building on MKT research (Shulman, 1986; Davis & Simmt, 2006; Leinhardt et al., 1991; 
Ma, 1999), central to this review is an assumption that the knowledge needed by MTEs for their 
work with teachers differs from the knowledge needed by teachers for working with students. 
Researchers generally agree that the work of MTEs involves working with PTs and/or practicing 
teachers to develop their MKT (Jaworski, 2008a). As there is considerable diversity in the nature 
of MTEs’ work, the range of expertise shared by MTEs is similarly diverse, involving varying 
levels of mathematical expertise, pedagogical expertise, and/or expertise derived from their 
experiences as teachers (Bergsten & Grëvholm, 2008). However, in addition to developing new 
content knowledge, MTEs need to help PTs’ understand the ways in which the concepts they are 
learning connect to their future teaching of students. This requires MTEs to also understand what 
is involved in teaching mathematics to students. To simultaneously enhance different levels of 
PTs’ awareness (as learners and future teachers), work that is different from what teachers do 
with students, MTEs need mathematical knowledge for teaching teachers (MKTT).  

Method 
Literature Search 

We conducted a literature search using ERIC and Dissertation Abstracts using the following 
search terms: (1) mathematics teacher educator(s) AND knowledge, (2) mathematics AND 
teacher educator AND knowledge, (3) teacher trainer AND knowledge, and (4) mathematics 
AND teacher trainer. We also searched edited books and book series that were cited in many of 
the articles we reviewed, recent special issues of peer-reviewed journals, and conference 
proceedings of the Research in Undergraduate Mathematics Education (RUME) annual 
meetings, as these were not captured in the ERIC search results. The search covered articles 
written in English and published in peer-reviewed scientific journals or conference proceedings, 
as well as dissertations. Hereafter we use the term “articles” to refer to the resulting set of 
scientific studies, books, book chapters, dissertations, and conference proceedings. Because 
Shulman’s seminal article about teacher knowledge was published in 1986 (Shulman, 1986) and 
the majority of the research on MTEs emerged in the early 2000s, we confined the search to 
1986-2021. The literature search and initial review of abstracts for studies of MTE knowledge or 
its development (beyond just implications for MTE knowledge) resulted in 87 articles (including 
6 dissertations). We then divided up the articles and individually reviewed each one in its 
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entirety, summarizing each in terms of research goals, method(s), research questions, 
researcher’s role, and findings, resulting in a final tally of 15 articles that proposed different 
frameworks for conceptualizing and characterizing MTE knowledge. Of these, we categorized 
10 as proposing Complete Frameworks for MTE Knowledge and five as proposing Components 
of a Framework for MTE Knowledge. Additionally, we found one paper (Goos, 2009) that 
proposed a framework for analyzing MTE knowledge, which we will not discuss in this review. 

Results: Frameworks for MTE Knowledge 
Complete Frameworks for MTE Knowledge 

We begin with Mason (1998) who presented one of the earliest frameworks for MTE 
knowledge. In particular, Mason conceptualized MTE knowledge not as different types of 
knowledge, but rather as different levels of awareness. Mason identified the key notions 
underlying teaching practice as the nature of awareness and the structure of attention (which 
encompasses the locus, focus, and form of attention moment by moment). Teaching teachers 
involves the refinement and development of a complex of awareness on all three levels, and this 
is manifested in alterations to the structure of attention. He proposed three levels of awareness: 
(a) awareness-in-action involves an awareness of one’s actions and own learning, i.e., the 
development of one’s knowledge of mathematical content; (b) awareness-in-discipline includes 
an awareness of one’s awareness-in-action, i.e., the development of one’s mathematical 
knowledge needed for teaching so that they can develop others’ knowledge of mathematical 
content; and (c) awareness-in-counsel encompasses an awareness of how to develop awareness-
in-discipline in others, i.e., the development of one’s knowledge for teaching teachers so that 
they can develop other’s mathematical knowledge for teaching. In this way, each level of 
awareness encompasses all prior levels. For Mason, MTEs develop awareness-in-discipline in 
PTs, as opposed to just awareness-in-action. Mason points to the unique nature of MTE 
knowledge and the ways in which it builds on, but is different from, teacher knowledge. His 
work provided a foundation for much of the research on MTE knowledge that followed.  

Zaslavsky and Leikin (2004) expanded Jaworski’s (1992) model for the practice of teaching 
mathematics to better understand the practice of teaching mathematics teachers. Jaworski’s 
(1992) model, known as the “teaching triad of mathematics teachers,” highlights the interactions 
among three important components of teaching: challenging content for students (mathematics), 
the management of students’ learning, and sensitivity to students. Zaslavsky and Leikin created 
analogous terms for knowledge important to the teaching of teachers: challenging content for 
mathematics teachers, the management of mathematics teachers’ learning, and sensitivity to 
mathematics teachers. In developing their “teaching triad of MTEs,” Zaslavsky and Leikin 
considered Jaworski’s “teaching triad for mathematics teachers” to be a subdomain of MTE 
knowledge, contained within the component of challenging content for mathematics teachers.  

Similarly, Perks and Prestage (2008), reflecting on their work with PTs and their experiences 
as teachers themselves, proposed the “teacher-educator knowledge tetrahedron,” positioning 
their entire “teacher knowledge tetrahedron” framework (Prestage & Perks, 1999) as a 
subdomain of MTE knowledge. Both frameworks highlight the interactions among four aspects 
of classroom practice: teacher knowledge, professional traditions, practical wisdom, and learner 
knowledge. However, in the teacher-educator knowledge tetrahedron, the learners in question are 
PTs and the teachers in question are MTEs. For Perks and Prestage, teacher-educator knowledge 
refers to the knowledge MTEs develop over time as they teach PTs; professional traditions refer 
to knowledge of teacher preparation coursework and research on mathematics teacher education; 
practical wisdom refers to the tasks and activities used with PTs; and, learner knowledge refers 
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to the content that PTs need to understand. Notably, the teacher knowledge tetrahedron (Prestage 
& Perks, 1999) is entirely contained within the learner knowledge portion of their teacher-
educator knowledge tetrahedron.  

Reflecting on her work as an MTE, Chauvot (2009) conceptualized MKTT as consisting of 
different subdomains that encompass the varied responsibilities of a teacher educator who works 
with PTs. Specifically, she constructed a knowledge map consisting of subject matter content 
knowledge, PCK, and curricular knowledge that parallel knowledge domains for teachers 
described by Shulman (1986), as well as subsequent research on teacher knowledge (e.g., Ball et 
al., 2008). Chauvot’s model expanded upon Shulman’s work by placing all three of his domains 
of knowledge for teaching within the subject matter content knowledge of MTEs. She also 
extended several of the domains identified by Ball and colleagues (2008) and described how they 
are relevant to her work as a MTE-researcher (MTE-R), including knowledge of how to develop 
PTs’ specialized and PCK and knowledge of how to engage PTs with content in ways that are 
connected to teaching. Chauvot also included the notion of knowledge of context, describing this 
knowledge subdomain for MTEs as including an understanding of contextual factors affecting 
the teachers with whom they work, e.g., standards and policies for teacher preparation programs, 
state teacher certification, and national accreditation. Like others, Chauvot’s framework includes 
a teacher knowledge framework as one of the subdomains of MTE knowledge. 

Shaughnessy and colleagues (2016) expanded upon the instructional triangle suggested by 
Cohen and colleagues (2003) by positioning the instructional triangle for teacher knowledge (i.e., 
interactions among teachers, students, and content) as the content knowledge needed by MTEs. 
Furthermore, they proposed analogous subdomains of MTE knowledge that parallel those of the 
MKT framework offered by Ball and colleagues (2008), arguing that MKT is a subdomain of 
MTE knowledge. These subdomains include MTE common content knowledge (e.g., knowledge 
of how to explain multi-digit subtraction that allows PTs to engage in this instructional practice); 
MTE knowledge of content and students (e.g., knowledge of common errors that PTs tend to 
make when engaging in instructional practices like regrouping using base-10 blocks); and MTE 
knowledge of content and teaching (e.g., knowledge of the types of tasks, representations, etc., 
that are useful in helping PTs learn an aspect of mathematics teaching).  

Hauk and colleagues (2017) also expanded upon the MKT framework offered by Ball and 
colleagues (2008) in their conceptualization of MTE Knowledge, which they call Mathematical 
Knowledge for Teaching Future Teachers (MKT-FT).  They argued that akin to the ways in 
which teachers require specialized mathematical knowledge for teaching students, MTEs require 
specialized knowledge specific to helping PTs develop MKT. The “subject matter” for MKT-FT 
is a combination of mathematics and mathematics education, as they conceptualize MKT 
becoming MTEs’ common content knowledge. They then propose a framework for MKT-FT 
PCK, which builds upon a framework for teacher PCK proposed by Hauk and colleagues (2014). 
By adding a fourth domain, knowledge of discourses, connected to each of the three components 
of PCK in the framework offered by Ball and colleagues (2008), this model for teacher PCK 
becomes a tetrahedron with vertices that represent anticipatory, curricular, and implementation 
thinking. Hauk and colleagues (2017) expanded this tetrahedron model for teacher PCK to create 
an analogous tetrahedron to model MTE PCK, where the subdomain of knowledge of content 
and students for MTEs contains the entire framework for teacher PCK. The authors describe this 
subdomain as including knowledge of how to support PTs’ development of MKT, as well as 
knowledge of how to engage PTs in learning to unpack mathematical ideas in ways needed for 
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teaching students. Hauk and colleagues concluded by illustrating ways in which MTEs have used 
the MKT-FT framework in designing and implementing teaching-related tasks with PTs.  

The conceptualization of MKTT that we have proposed (Castro Superfine et al., 2020; 
Olanoff et al., 2018; Welder et al., 2017) similarly extends from and is connected to the domains 
of MKT (Ball et al., 2008). We posit that akin to how MKT is composed of subject matter 
knowledge and PCK, MKTT is composed of subject matter knowledge for MTEs (including 
MKT) and PCK for MTEs (for facilitating PTs’ learning of MKT). We conceptualize MTE-
subject matter knowledge as being composed of three subdomains analogous to those comprising 
subject matter for teachers: MTE common content knowledge (which includes the entire 
framework for MKT), MTE specialized content knowledge (mathematical content knowledge 
that is specific to developing PTs’ MKT), and knowledge at the mathematical horizon for PTs. 
We conceptualize MTE-PCK as being composed of three subdomains analogous to those 
comprising PCK for teachers: knowledge of content and PTs (i.e., MTE-knowledge of content 
and students), knowledge of content and teaching PTs (i.e., MTE-knowledge of content and 
teaching), and knowledge of curriculum for PTs (i.e., MTE-knowledge of curriculum). Our 
conceptualization of MKTT consists of not only the mathematical knowledge needed by teachers 
but also specialized knowledge of content that is unique to teaching PTs and knowledge of how 
to facilitate PT learning (i.e., relearning (Castro Superfine et al., 2020)). Like Beswick and 
Chapman (2012), we consider MKTT to be an elaborated extension of teacher knowledge that 
also includes domains of MTE knowledge that are characteristically different from teacher 
knowledge. 

The most recently offered framework for MTE knowledge was published in a chapter of a 
book on the learning and development of MTEs edited by Goos and Beswick in 2021. Based on 
a review of research with and about mathematics teachers, Escudero-Avila and colleagues (2021) 
constructed a framework for MTE knowledge composed of seven subdomains, the last three of 
which the authors consider to be aspects of MTE PCK: 1) mathematical knowledge, which 
includes both knowledge of mathematics and MKT, 2) knowledge about teachers’ PCK, which 
includes theories of teaching, key features in learning mathematics, and learning standards, 
3) knowledge about mathematics teaching practices and skills, 4) knowledge about professional 
identity, 5) knowledge of the features of the professional development of mathematics teachers, 
6) knowledge of teaching the content of initial mathematics teacher education programmes, and 
7) knowledge of the standards of mathematics teacher education programmes.  

In contrast to all of the frameworks discussed above, in the concluding chapter of a volume 
on MTE knowledge and practice that she edited, Jaworski (2008b) suggested that there are 
aspects of teacher knowledge that are unique to teachers, just as there are aspects of MTE 
knowledge that are unique to MTEs. In doing so, she conceptualized the relationship between 
MTE knowledge and teacher knowledge using a Venn diagram. Similar to Chavout (2009), 
Jaworski posits that unique to MTE knowledge is the professional and research literature related 
to mathematics teaching and learning, including knowledge of theories of learning and teaching 
and knowledge of methodologies of research focused on learning and teaching in educational 
systems. MTEs utilize their knowledge of methodologies used to study teaching and learning in 
schools as they work with PTs both in and out of school settings. According to Jaworski, 
knowledge unique to the needs of teachers, and not necessarily needed by MTEs, includes 
knowledge of school contexts and elementary mathematics curricula.  
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Components of a Framework for MTE Knowledge 
Five articles do not include complete frameworks for MTE knowledge, but rather, they 

present components of a framework. Building on Shulman’s (1986) subdomain curricular 
knowledge, in particular, Chauvot (2008) characterized what such knowledge entails for MTEs. 
Relevant to this review, she identified four components of curriculum knowledge for MTEs 
based on her experiences as an MTE and as a mathematics education researcher. These 
components include (a) knowledge of programs and materials (e.g., different models for teacher 
preparation, textbooks, and materials for use in courses for PTs), (b) knowledge of indications 
and contraindications of curricula (e.g., use of curricula or program materials in particular 
circumstances and effectiveness of curriculum programs), (c) lateral curriculum knowledge (e.g., 
knowledge of other courses PTs are enrolled in), and (d) vertical curriculum knowledge (e.g., 
knowledge of coursework that precedes and follows current courses in which PTs’ are enrolled). 
Chauvot concluded by highlighting the use of MTE curricular knowledge in current studies of 
MTEs’ professional learning, arguing for the centrality of curricular knowledge in MTEs’ work.  

In their studies of an MTE’s practice, Chick and Beswick (2013; 2017) proposed a 
framework for the subdomain of MTE PCK, building their descriptions of PCK for MTEs from 
descriptions of the PCK teachers require. Analyzing the teaching practice of the first author, 
Chick and Beswick identified several components of MTE PCK, including knowledge of 
examples, curriculum, student thinking, and common misconceptions, among others. Using 
vignettes of practice from the first author’s practice, they provided evidence of the existence of 
the various components, illustrating ways in which such knowledge is leveraged as an MTE 
teaches PTs. For each component, they identified ways in which such components of MTE 
knowledge are similar to and different from teachers’ knowledge. 

Olanoff (2011) used observations of and interviews with three MTEs teaching fraction 
multiplication and division concepts, to identify several components of MKTT. Unlike other 
authors, Olanoff examines the components of the domain of MKTT, with a particular focus on 
the knowledge components leveraged while teaching a particular concept to PTs. These 
components include knowledge of (a) multiple representations of the topics, how the 
representations relate to other topics, and which representations best support PTs in making 
connections, (b) how to set specific goals for student learning, and (c) how to design and use 
assessments effectively. Like Chick and Beswick (2013; 2017), Olanoff provided evidence of the 
existence of MTE knowledge components that are unique to MTEs.  

Felton-Koestler (2020) proposed a framework for knowledge for sociopolitical mathematics 
teaching (KSMT), knowledge that teachers at all levels, including teacher preparation, need for 
addressing issues of equity and social justice by what he calls mathematizing sociopolitical 
issues. This framework extends MKT, which he uses as a blanket term to address the specialized 
knowledge for teachers and MTEs, to include knowledge of sociopolitical issues and knowledge 
of sociopolitical curriculum. To have and develop KSMT, teachers and MTEs must be aware of 
current sociopolitical issues and be able to turn a critical lens on how they are presented in the 
general discourse. This work goes beyond just understanding the effects of individual biases on 
current events to include institutional and structural forms of oppression. Although this 
framework is generalized to both teachers and MTEs, Felton-Koestler does identify a need for 
future work to address differences in KSMT for teachers and MTEs. Regardless of these 
potential differences, it is noteworthy to consider KSMT as a component of MTE knowledge. 
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Discussion 
There is general consensus within the teacher education community that the knowledge 

MTEs require in their work with PTs includes not only the knowledge teachers need to know but 
also unique elaborations of that knowledge. In fact, many of the articles we reviewed 
conceptualize MTE knowledge as an extension of teacher knowledge. That is, these frameworks 
not only position teacher knowledge as a subdomain of MTE knowledge but also partition MTE 
knowledge into subdomains similar to those found in frameworks for teacher knowledge. In our 
previous work (Castro Superfine et al., 2020; Olanoff et al., 2018; Welder et al., 2017), similar to 
Hauk and colleagues (2017), we propose a fractalization metaphor to describe the ways in which 
various articles conceptualize MTE knowledge as the visualizations of many of these 
frameworks resemble part of a fractal. We use the term fractalization to refer to the process by 
which one component or subdomain is entirely contained within a larger subdomain, where the 
larger subdomain is analogous in structure to the smaller one. In many instances, a teacher 
knowledge framework becomes the content knowledge subdomain of a framework for the 
knowledge needed by MTEs. We refer to this fractalization metaphor throughout the discussion. 

Three main themes emerged from our review of frameworks for MTE knowledge. First, 
many of these frameworks build on existing frameworks for teacher knowledge, and in many 
instances, represent fractalizations of teacher knowledge frameworks (e.g., teaching triad (Cohen 
et al., 2003), instructional triangle (Jaworski, 1992), teacher knowledge tetrahedron (Prestage & 
Perks, 1999)). Therefore, many frameworks for MTE knowledge included a teacher knowledge 
framework in its entirety as one of its subdomains. Only Jaworkski (2008b) proposed a Venn 
Diagram to suggest that teachers require additional knowledge (e.g., school context, elementary 
curriculum) not needed by MTEs in their work with PTs. Furthermore, researchers 
conceptualized certain subdomains (and related components) of MTE knowledge as being 
“meta” forms of analogous teacher knowledge subdomains (e.g., Chauvot, 2009; Hauk et al., 
2017; Perks & Prestage, 2008; Zaslavsky & Leikin, 2004). For example, similar to Shaughnessy 
and colleagues (2016), we (Castro Superfine et al., 2020; Olanoff et al., 2018; Welder et al., 
2017) have proposed MTE knowledge subdomains analogous to the MKT framework from Ball 
and colleagues (2008). These include MTE common content knowledge (which contains MKT), 
MTE knowledge of content and students, and MTE knowledge of content and teaching. In other 
words, as teachers of teachers, MTEs require similar types of knowledge needed by teachers, but 
MTEs need knowledge of these subdomains in ways that are specific to teaching PTs. Thus, we 
posit that fractalization can be a useful metaphor for conceptualizing MTE knowledge. 

Second, despite some overall similarities, there are important differences in the subdomains 
of the frameworks we reviewed. Broadly speaking, all of the knowledge frameworks in our 
review include some or all of four main subdomains representing extensions of teacher 
knowledge domains (e.g., Ball et al., 2008; Shulman, 1986): knowledge of content, knowledge of 
curriculum and context, knowledge of PTs, and knowledge of ways of supporting PT learning. 
However, some frameworks included subdomains unique to MTEs, such as Zaslavsky and 
Leikin’s (2004) sensitivity to mathematics teachers (PTs). Considering the uniqueness of PTs as 
a population of learners, this knowledge includes understanding that PTs often enter teacher 
preparation programs with limited conceptual understandings of mathematics. As such, the work 
for MTEs is to support PTs’ relearning of mathematics, which involves PTs ultimately 
reconstructing their previously developed knowledge of mathematics (Author 2020; Zazkis, 
2011). Further, Chauvot (2009) included MTEs’ knowledge of mathematics education research 
as part of the knowledge needed to effectively prepare PTs. In fact, Chauvot posited that 
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knowledge of research in mathematics education underlies all other knowledge subdomains 
MTEs require in their work with PTs (e.g., knowing the research on how children learn can 
inform MTEs’ content course design). This subdomain echoes other researchers who describe 
conducting research in mathematics teacher education as a form of professional learning (e.g., 
Rowland et al., 2014). Notably, these different subdomains are unique to MTEs and arguably do 
not have analogous subdomains in a teacher knowledge framework. In addition, there are 
important differences in the grain size at which researchers conceptualized MTE knowledge. 
While the majority only identified subdomain levels using the four main subdomains described 
above, a few deconstructed their subdomains into components. For example, Chauvot (2008) 
described components of MTE curricular knowledge (e.g., lateral and vertical curricular 
knowledge); whereas we (e.g., Castro Superfine et al., 2020) specified components of MTEs’ 
content-specific knowledge (e.g., specialized content knowledge, knowledge of content and 
teaching). Such variation is indicative of the fragmented research landscape on MTE knowledge.  

A third theme that emerged is the process by which MTE knowledge has been 
conceptualized, which has largely been from a knowledge-in-practice perspective. Through an 
analysis of various artifacts of practice and reflections on MTEs’ work with PTs, researchers 
applying a knowledge-in-practice perspective to the work of MTEs highlight the types of 
knowledge leveraged as they teach PTs, reinforcing the dynamic relationship between 
knowledge and practice. A majority of articles on MTE knowledge describe a self-study process 
wherein one or more authors reflect on and describe the types of knowledge they leveraged in 
their work with PTs (e.g., Masingila et al., 2018; Muir et al., 2017; Zazkis & Mamolo, 2018). 
Such a process is productive for understanding the types of resources (e.g., experiences, beliefs, 
knowledge) that impact MTEs’ practice to support drawing on different types of knowledge in 
light of their expertise. However, more work needs to be done to explicate the analytic processes 
taken in research on MTE knowledge so that others can employ similar methods and contribute 
to the growing knowledge base on MTEs. Moreover, while self-studies (i.e., research by MTEs) 
provide unique insights into the nature of MTE knowledge, the research base would be 
strengthened by research on MTEs to corroborate and further specify the various MTE 
knowledge subdomains and components.  

The goal of this review was to explore the theoretical underpinnings of the existing 
frameworks for MTE knowledge. We find that MTE knowledge frameworks that are fractalized 
versions of teacher knowledge frameworks tend to miss the same aspects of MTE knowledge 
that are missing from teacher knowledge frameworks. For example, Felton-Koestler’s (2020) 
KSMT framework addresses MTE’s knowledge of equity, a domain that does not explicitly 
appear in any of the fractalized frameworks. Additionally, none of the frameworks discussed the 
need for MTEs to be knowledgeable of classroom technologies. The COVID-19 pandemic and 
subsequent shifts to online courses demonstrated the need for MTEs to have knowledge of 
relevant technological tools, not only for their practices as teacher educators but also for 
preparing PTs to use such tools in their future classrooms. There exists a corpus of literature on 
technological pedagogical and content knowledge (TPACK) for mathematics teachers (e.g., 
Kohler & Mishra, 2009), but this work has not yet been integrated into frameworks for MTE 
knowledge. To address some of these missing aspects and further build a mutually agreed-upon 
knowledge base for MTEs, researchers might analyze MTEs’ reflections of their teaching 
practices to understand their knowledge-in-practice and the types of knowledge MTEs draw on 
in their work with PTs. Such a knowledge base could inform the design and implementation of 
opportunities to improve the preparation and professional development of MTEs. 
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This study presents an extension of the validity argument for the PCK-Fractions measure. PCK-
Fractions is designed to assess the effectiveness of professional experiences in facilitating 
teachers’ pedagogical content knowledge (PCK) for children’s fraction reasoning in grades 3-5. 
We examined data across 101 participants from two Midwest universities including non-
education majors, education majors, and education majors with grade 3 to 5 math field 
experiences. Results provide additional validity evidence for the PCK-Fractions. Namely, 
evidence indicates differences in scores between groups of participants—preservice teachers 
grade 3 to 5 field experience had higher scores than those without, and all preservice teachers 
had higher scores than non-education majors.   

Keywords: Mathematical Knowledge for Teaching; Rational Number. 

Introduction   
Mathematical knowledge for teaching (MKT) is a practice-based theory that investigates the 

nature of professional knowledge of mathematics that teachers use to make effective 
instructional decisions to help students’ learning (Ball & Bass, 2002, Ball, Thames, & Phelp, 
2008). MKT as a theory and set of constructs has been largely developed and disseminated with 
quantitative assessments across mathematics content. For instance,  many scholars designed 
different kinds of MKT assessments in geometry, rational numbers, and number sense from 
grades K to 12 (Herbst & Kosko, 2014; Hill et al., 2008; Kazemi & Rafiepour,2018; Khakasa & 
Berger, 2016). MKT includes two primary domains of content knowledge (CK) and pedagogical 
content knowledge (PCK). While both domains are considered vital to effective teaching, most 
MKT assessments either target teachers’ CK explicitly ( Lo & Luo; 2012), or include both CK 
and PCK in the same assessment (Depaepe et al., 2015). There has been little attention to 
designing MKT assessments that focus on PCK as a domain worthy of investigation on its own 
(Copur-Gencturk et al., 2019; Hill et al., 2008; Zolfaghari et al., 2021). Rather, by incorporating 
PCK assessments within efforts to develop CK measures, many items designated as ‘PCK items’ 
have later been found to assess CK instead (Copur-Gencturk et al., 2019; Hill et al., 2008). This 
led to Zolfaghari et al. (2021) focusing on a PCK exclusive measure for fractions. Piloting items 
with a focus on the 'task of teaching' of assessing children’s fraction reasoning resulted in a more 
accurate representation of the domain.  

The current study is our continued effort to validate our framework for how PCK for 
Fractions develops, and our associated construct map for the PCK-Fractions measure (Zolfaghari 
et al., 2020, 2021). In this validation process, we hypothesize that PCK develops in a particular 
way that is useful in designing items of varying difficulty – described as construct maps within 
validity argument literature. We also found that exposure to coursework and field experience had 
a positive association with PCK scores. However, there was a need to better examine this 
phenomenon with a larger sample. Given prior results (Zolfaghari et al., 2020; 2021), we 
conjecture individuals’ experiences inform the development of their PCK. In particular, we 
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sought to understand the degree to which majoring in teacher education and having certain forms 
of field experience affected PCK for fractions.  

Theoretical Framework  
MKT is “the mathematical knowledge used to carry out the work of teaching mathematics” 

(Hill et al., 2005, p.373). It involves abilities such as analyzing and interpreting students’ 
reasonings and determining the related materials and information based on that. Mastering these 
skills promotes good instruction and, as a result, effective mathematics learning for students. The 
emphasis on knowledge of teaching a subject was primarily introduced by Shulman (1986) as 
PCK. Later, Ball and colleagues applied Shulman’s theory to mathematics, thus framing MKT 
(Ball et al., 2008). MKT contains two primary domains of CK and PCK, with each of these 
domains consisting of several subconstructs (Hill et al., 2008b). To explore teachers’ MKT, 
various assessments were designed within several mathematical topics, including geometry 
(Herbst & Kosko, 2014), rational numbers (Kazemi & Rafiepour, 2018), multiple mathematical 
topics at the secondary level (Khakasa & Berger, 2016) and elementary level (Hill et al., 2008), 
statistic subject (Siswono et al., 2018), and so forth. These various scholars explored several 
components of MKT, with many finding that MKT scores aligned with teachers’ professional 
experience (Herbst & Kosko, 2014) and effective instruction (Hill et al., 2008). 

MKT is professional knowledge; thus, various forms of professionalized experience have 
been found to affect and/or facilitate MKT. For instance, in examining the effect of types of 
experiences on teachers’ MKT, Hill (2010) found characteristics such as grade taught, math 
content course, years of experiences, and math self-concept associated with teachers’ MKT. 
Although these associations vary in terms of their strengths. Jakobsen et al. (2011) noted the 
grade level at which the teachers taught was related to their MKT scores. Similarly, in the study 
of mathematic teachers grade 3-7, Copur-Gencturk (2020) found that teachers with experiences 
teaching higher grades had stronger MKT scores. However, the number of years of mathematics 
teaching had a weak associate with teachers’ MKT scores.  

Research on MKT for fractions typically includes both domains of CK and PCK (Depaepe et 
al., 2015; Tirosh, 2000; Trobst et al., 2018). For instance, in studying PSTs' knowledge of 
teaching fractions, Tirosh (2000) found that most PSTs know how to solve fraction division 
(CK) but are unable to explain children’s strategy or misconception (PCK). Similarly, examining 
secondary and elementary preservice teachers, Depaepe et al. (2015) noticed that PSTs with 
significant differences in demonstrated CK did not demonstrate differences in their PCK. A 
common premise across such studies is that CK is a prerequisite for higher PCK. Indeed, in 
describing PCK applied to assessing a student’s error, Hill et al. (2008) noted that “teachers must 
be able to examine and interpret the mathematics behind student errors prior to invoking 
knowledge of how students went astray” (p. 390). Yet, Trobst et al. (2018) found that PSTs were 
able to increase their PCK despite limited CK. Coupled with Depaepe et al.’s (2015) findings of 
no statistical relationship between the constructs, there appears to be inconsistent evidence 
towards the common stance that CK is a prerequisite for PCK. 

To be clear, there is a large body of evidence that supports a relationship between CK and 
PCK (Agathangelou & Charalambous, 2020; Depaepe et al., 2015; Hill et al., 2008). However, 
various findings in reports such as those described in the prior paragraph should not be 
disregarded. We believe the inconsistent findings in the literature point to an issue noticed by 
Hill et al. (2008) and expanded upon by Copur-Gencturk et al. (2019): development of PCK 
measures has focused more on CK than PCK and the resulting assessments have led to 
conflicting reports and an incomplete understanding of PCK as a theoretical construct. For this 
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reason, PCK-Fractions was designed exclusively to focus on PCK (Zolfaghari et al., 2020; 
2021), with an initial focus on the PCK sub-domain of knowledge of content and students 
(KCS). This targeted focus allowed us to decrease the risk to validity in designing unintended 
items that might measure CK instead of PCK. 
Measuring PCK-Fractions 

The intended purpose, or use, of the PCK-Fractions measure is to assess the effectiveness of 
professional experiences in promoting or facilitating teachers’ PCK for upper elementary 
fractions concepts. The present version of PCK-Fractions focuses on the KCS domain, and 
represents one of several studies that collectively construct a validity argument for PCK-
Fractions (Zolfaghari et al., 2020; 2021). Hill et al. (2008) define KCS as “used in tasks of 
teaching that involve attending to both specific content and something particular about learners” 
(p. 375). Tasks of teaching are the fundamental means Ball and colleagues have designed items 
for MKT, focusing on what a teacher must do in a specific aspect of the profession. For KCS, we 
focused on assessing children’s reasoning as the task of teaching for fractions. Zolfaghari et al. 
(2021) initially adapted the sequence children learn certain fraction concepts but found that 
“student actions being assessed [were] a better explainer of why certain items have different 
difficulties” (p. 241). Table 1 presents a construct map developed from the initial pilot data 
(Zolfaghari et al., 2020; 2021). At Level 1, teachers are able to assess how children partition, 
fragment, or fair share fractional parts. At Level 2, teachers assess whether and how children 
coordinate parts to whole. Specifically, children may or may not have developed part-whole 
reasoning, but a teacher is able to distinguish between children’s actions demonstrating such 
reasoning or not. Level 3 demonstrates an ability to assess how children compare and use 
different fractions. Level 4 focuses on a teachers’ ability to assess how children coordinate non-
unit fractions with the whole – actions often demonstrated in fraction multiplication and division.  
 

Table 1: Construct map for PCK-Fractions. 
Level Description 

Level 1 Assess children’s creation and/or use of fractional parts. 
Level 2 Assess children’s coordination of parts and of the whole. 
Level 3 Assess children’s creation and use of non-unit fractions & comparison of fractions. 

Level 4 Assess children’s coordination of non-unit fractions with the whole & comparison 
of fractions and wholes. 

 
Key in understanding the role of the construct map presented in Table 1 is that it is child-

focused, not task-focused. Rather, a teachers’ ability to assess children’s reasoning begins with a 
focus on the child. As an example, consider item F44 in Figure 1. The mathematical task at-hand 
is fraction addition that requires the child to convert to a common denominator to obtain a 
correct answer. However, that’s not what this child does. Rather, Tim counts the total shaded and 
unshaded and draws a representation illustrating that total. Thus, Tim is coordinating parts of the 
fraction, but without maintaining the whole. A teacher correctly assessing Tim’s reasoning is, 
therefore, at Level 2 or higher. This focus on the student’s reasoning within a mathematical task 
was key in aligning items with the construct map (Table 1). Additionally, all PCK-Fraction items 
were designed as multiple choice. Most items followed a common template in wording, as 
evidenced in responses for F44 (Figure 1). Specifically, response options were adapted from 
fraction diagnostic literature written for teachers (i.e., Battista, 2012; Hackenberg et al., 2016) 
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and were listed in order of lower to higher level reasoning evidenced by the student depicted in 
the prompt. This design was purposeful, as prior data collection suggested randomization of such 
levels and changes in language decreased consistency in responses across items (Zolfaghari et 
al., 2020; 2021).  
 

 
Figure 1: Example item (F44) from PCK-Fractions with correct response highlighted. 

As noted previously, the present study is one of several papers that present evidence 
towards a validity argument for PCK-Fractions (Zolfaghari et al., 2020; 2021). Validity 
arguments consist of various claims regarding the validity of a measure, and evidence that 
warrants such claims (Kane, 2012). Further, such arguments are conveyed through “the 
accumulation of evidence from various sources for claims” (Krupa et al., 2019, p. 11) and 
“should occur over several studies in order to provide adequate warrants for claim of inference 
for a measure” (Kosko, 2019, p. 19). Prior validity evidence for PCK-Fractions suggests a 
unidimensional construct that aligns with the construct map presented in Table 1 (Zolfaghari et 
al., 2021). There is evidence that exposure to mathematics methods coursework facilitates PCK-
Fractions, but prior samples also represented skew relative to higher scorers (Zolfaghari et al., 
2020; 2021). Rather, Zolfaghari et al. (2021) identified a need for sampling participants with a 
much wider range of ability to better support the validity argument for PCK-Fractions. The 
present study focused efforts at recruiting a sample we believed would have a wider range in 
ability, but in doing so we also sought to align this range in ability with the construct map itself. 
Rather, we sought to better understand how participants with little to no exposure to teaching 
(outside of once being an elementary student) and those with more experience in such contexts 
would respond to our items. In doing so, we also sought to understand how responses aligned 
with our construct map. These efforts fulfill the purpose of the study which is to understand the 
effect of different types of professional experience on the PCK-Fractions measure by 
investigating the validity argument process. Particularly, we addressed the following research 
question: 

How does the construct map for revised PCK-Fractions measure align with validity 
evidence for individuals with different professional teaching experiences? 
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Method  
Participants included 101 undergraduate students enrolled in two Midwest universities. To 

ensure a sample with a wider range of PCK-Fraction scores, both high and low, we recruited 
undergraduate students enrolled in a Marketing 101 course (n=39) who were not, had not, and 
did not plan to major in education. Non-education majors primarily included financing, 
marketing, fashion design, and business. We also recruited participants from 36 early childhood 
(certification preK to grade 5) and 26 middle childhood majors (certification grades 4-8) across 
both universities (n=62). Because grades 3-5 (the focus grade band for PCK-Fractions) was 
included in the teacher licensure for both majors, these participants were asked to report whether, 
and in which grade levels, they had field experience. This resulted in 21 education majors 
reporting having grades 3-5 field experiences that included teaching mathematics (20.8% of total 
sample). Across the entire sample, almost all participants self-identified as white (97%).  Also, 
79.2 % of the participants self-identified as female, 18.8 % male and 2% nonbinary.  
Measure  

As previously described, PCK-Fractions items were designed to measure teachers’ PCK for 
grades 3-5 students’ fraction reasoning. Prior versions of the PCK-Fractions measure included 15 
questions, which included several ‘multiple-response’ items that allowed participants to select 
‘all that apply’ (Zolfaghari et al., 2020). However, following the pilot of the measure, such items 
were either revised into multiple-choice items or removed to reduce variance in response data. 
Previous Rasch modeling of the PCK-Fractions measure indicated sufficient item reliability of 
.90, but less than ideal person reliability of .41 (Zolfaghari et al., 2021). A primary reason 
identified for the poor person reliability was a negative skew in participants’ scores with “75.3% 
of participants having a score above 0.00, or average ability” (p. 238). The current version of the 
measure includes 19 multiple-choice items (see Figure 1 for an example item). As noted earlier, 
these items were revised to further improve item reliability, reduce variance in responses, and 
better align theoretically to the improved construct map. Responses were all coded 
dichotomously (0 = incorrect, 1 = correct) for Rasch modeling.  

Analysis and Findings 
This paper examined validity evidence for revised PCK-Fractions and its construct by 

adopting the Standards for Educational and Psychological Testing (AERA et al., 2014) and 
building upon the prior validity evidence for PCK-Fractions measure (Zolfaghari et al., 2020; 
2021). For the present study, we focused particular on validity evidence related to response 
processes andinternal structure. Evidence towards response processes focuses on how participant 
responses correspond with the intended theoretical design of the items. Evidence towards 
internal structure was used to provide study how response processes correspond to the 
conceptual framework for the revised PCK-Fractions’ measure. The Rasch analysis and the data 
from one-way ANOVA allowed us to seek the validity evidence for revised PCK-Fractions as 
well as how participants’ different level of experiences related their scores in PCK construct 
map. 
Rasch Modeling 

Rasch modeling was conducted to examine internal structure validities for PCK-Fraction 
assessment. Namely, we used item and person reliability aligned with unidimensionality and fit 
statistics to examine the validity of survey (AERA et al., 2014). The initial item analysis 
indicated the acceptable item reliability of .95, which exceeded the acceptable threshold of .90 
(Linacre, 2021). Likewise, the item separation index showed a sufficient value of 4.23 (above 2.0 
implies a good differentiation of item difficulty). In particular, this item separation value (4.23), 
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indicates the items can be differentiated into four different tiers, which coincidentally aligns with 
the four levels of construct map (see Table 1). This result suggests that the hierarchy of difficulty 
of the items for PCK-Fractions would remain constant for different samples in similar contexts. 
Additional psychometric results from the average mean square for item infit (MNSQ= 1.00, 
Z=.00) and outfit (MNSQ= 1.01, Z= .10) provide another indicator that the data fit the model. 
These findings suggested that our revised PCK-Fractions measure represents a significantly 
wider range of item difficulties than the initial PCK-Fractions—improving from an item 
reliability of .90 and item separation of .30 (Zolfaghari et al., 2021) to item reliability of .95 and 
item separation of 4.23. Collectively, these results provide validity evidence that the measure is 
aligned to the construct map in Table 1. 

Despite otherwise ideal psychometric data, the person reliability estimated for participants 
was .42 which is lower than the acceptable threshold of near or above .80. Further analysis 
showed that, although the person reliability was low, the average mean square for person infit 
(MNSQ= .99, Z=.00) and outfit (MNSQ= .99, Z= .00) aligned with Rasch Model expectation. 
This indicated that all participants’ responses to the items behaved as expected (Bond & Fox, 
2015). Two potential reasons for a low person reliability are: 1) the spread of item difficulty is 
too narrow or 2) the ability range of participants assessed is too narrow. In order to examine 
these issues, the Wright Map was investigated (see Figure 2). As indicated in the Wright Map, 
items are almost evenly distributed between -2.00 and 2.00 logits. Recalling that item reliability 
and separation index values were both ideal, this data suggests that the spread of item difficulty 
was not too narrow. Thus, we further examined the second most common reason for low person 
reliability.   

Mean scores for participants were near the model average score of 0.00 (M = -.14, SD = .65), 
which did not clearly indicate an issue with skew in responses. To better understand whether, or 
how, the range of participants may have been too narrow, we visually examined the Wright Map, 
but distinguished participants into three groups: non-education majors, education majors without 
grades 3-5 experience, and education majors with grades 3-5 experience. We also juxtaposed a 
Box-and-Whisker plot to help explore such patterns. Notably, the third quartile is relatively 
smaller than the fourth quartile, suggesting some skew in the upper half of scores. In particular, 
this data suggests a need for more participants with higher scores to improve person reliability. 
The Wright Map in Figure 2 suggests that a targeted sampling of participants with grades 3-5 
experience may be warranted in this regard. To test this conjecture, we compared the person 
reliability of the Rasch model ran with and without participants having grades 3-5 experience. 
Notably, excluding such participants reduced person reliability from .42 to .37. Note this 
reduction is not due to sample size but is due to a lower variance in scores. Thus, despite a 
sample of 101 participants with what visually appears to be a normal distribution (see Figure 2), 
results suggest a need for more teachers with grades 3-5 experience for our sample to be 
representative enough to reliably measure PCK across samples.   
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Figure 2: Wright Map for PCK-Fraction measure 

ANOVA 
The use of a one-way between subjects’ analysis of variance (ANOVA) provided evidence to 

our claim in which differences in PCK scores are associated with participants’ professional 
experiences. We compared Rasch PCK scores of non-education majors, education majors 
without grades 3-5 field experience, and education majors with such experience. Results from 
ANOVA found that there was a statistically significant difference between the three groups [F 
(2, 94) = 11.320, p < 0.001]. A Tukey HSD post hoc analysis indicates a statistically significant 
difference (p < 0.001) between the education majors with grade 3-5 experience (M = 0.16, SD = 
0.62) and non-education majors (M = -0.65, SD = 0.74), as well as statistically significant 
difference (p = 0.034) between education majors with experience and education majors without 
grades 3-5 field experience (M = -0.27, SD = 0.63). Comparatively, the Tukey HSD post hoc 
analysis did not detect a statistically significant difference between non-education majors and 
education majors without 3-5 experience (p = .057). However, non-education majors did have 
lower PCK-Fraction scores than education majors without grades 3-5 experience, and the p-value 
was marginally non-significant at the .05 level. A slightly larger sample may have yielded a 
statistically significant result. Results indicate that differences in PCK-Fractions scores is 
associated with participants’ experience with grades 3-5 students. However, the content and 
quality of such field experiences were not examined, and further investigation is warranted.    
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Discussion  
This study explored differences in participants’ PCK-Fractions scores considering varying 

professional experiences. Results suggest participants with field experience (particularly with 
grades 3-5) demonstrated higher PCK scores for fractions than participants without. 
Additionally, while marginally not statistically significant at the .05 level, education majors 
tended to have higher PCK scores than non-education majors. Prior studies indicated the 
importance of teachers having different types of professional experiences including coursework, 
higher CK, and experience teaching specific grade levels (Agathangelou & Charalambous, 2020; 
Copur-Gencturk, 2021; Hill, 2010). Our results support some of this prior literature (Copur-
Gencturk, 2021; Hill, 2010) as we observed that PSTs’ PCK may benefit from having upper 
elementary field experience. To our knowledge, this paper is the first to compare PCK scores of 
education and non-education majors. Although it is difficult to distinguish how much upper-
elementary field experience may have interacted with some of our participants’ coursework, 
there does appear to be some benefit to pedagogy courses prior to such field experience with  
education majors lacking grades 3-5 field having much higher PCK scores (M = -.27), than non-
education majors (M = -.65).  

Results from our psychometric analysis provided strong validity evidence that the PCK-
Fractions measure is aligned well with our construct map (see Table 1). Recall that this version 
of our construct map was a result from analysis in our pilot study (Zolfaghari et al., 2021). Thus, 
in finding that items designed at specific levels appeared to ordinally fall in the sequence they 
were designed (see Figure 2), and that our item separation statistic allows for distinguishing four 
levels of items, we believe there is strong validity evidence for our construct map. This set of 
findings is non-trivial, as PCK in general is undertheorized. By successfully designing items as 
child-centered and not task-centered, we believe this study provides guidance to those 
constructing PCK measures in similar or other domains. Further, the construct map itself 
provides a framework for examining PSTs’ PCK for fractions with or without our PCK-Fractions 
measure. For example, a PST’s explanation of a child’s mathematics when viewing a video of 
their own teaching could be examined in relation to the construct map in Table 1. Such research 
is needed to further theorize PCK for fractions, as well as other mathematical domains.  

The validity evidence from the present study supports and expands that of the initial 
validation process for PCK-Fractions (Zolfaghari et al., 2020; 2021). Specifically, validity 
evidence suggests the items in the PCK-Fractions measure are strong and do not appear to need 
any further revision currently. However, there is a need to sample a wider range of teachers with 
varying levels of upper-elementary experience. This may include inservice teachers, as well as 
PSTs’ with said experience. Future research in this area may also consider teachers’ professional 
beliefs and other facets.  
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Purposes of the Study 
The question of what knowledge is needed for teaching mathematics has been studied over 

the last three decades in the community of mathematics researchers and educators. Extensive 
theoretical and empirical studies have been conducted in this area. However, there is limited 
systemic review identifying the trends of topics. This study proposes to use a natural language 
processing method to identify the “unseen” patterns of the topics emerged in all relevant articles 
published over the last three decades. This study aims to gain insights on what topics get more 
attention and which other topics are relatively neglected. This study also aims to suggest what 
areas need to be studied more in mathematics teachers’ knowledge to ensure promoting access 
and attainment in learning mathematics.  

Theoretical Framework 
This study was built on the theory of mathematics teachers’ knowledge (Ball, Thames, & 

Phelps, 2008; Davis & Simmit, 2006; Peng, 2007; Rowland, Huckstep & Thwaites, 2005; 
Carrillo-Yañez et al, 2018) that identified the components of it. The previous studies had 
proposed a slightly different, but similar framework of mathematics teachers’ knowledge 
including subject matter knowledge and pedagogical content knowledge. These studies provided 
information on the nature of mathematics teachers’ knowledge, which helped us to interpret the 
topics detected by automatic computation.   

Methods 
This study analyzed the abstracts of 3,485 scholarly articles published in peer-reviewed 

journals. The quantity of data is the largest in the literature review of mathematics teachers’ 
knowledge within our search scope. Topic modeling was used as an analytical method for this 
study. Particularly, Latent Dirichlet Allocation (LDA) has been used as a tool for topic modeling. 

Results and Implications 
Using the topic modeling techniques, eleven underlying topics were found in the articles. The 

most popular topic was the professional development of mathematics teachers followed by 
pedagogical content knowledge and students’ mathematical understanding. Second, sociocultural 
context knowledge in teaching mathematics emerged as one topic, which has not been proposed 
as the component of mathematics teachers’ knowledge. Third, the topics were consistent in their 
popularity over time, which indicates interest in one topic can be quite perpetuating. This study 
suggests that more diverse topics need to be studied in mathematics teachers’ knowledge. 
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Here it is presented part of the results of an exploratory study on the application of advanced 
mathematics topics in the professional development of in-service secondary school teachers. The 
germ of this work was born during the international conference “Connections between Advanced 
and Secondary Mathematics: Exploring the Impact of Abstract Algebra on the Teaching and 
Learning of Secondary Mathematics” (CASM Conference), which took place on May 20-22, 2019, 
funded by the NSCF-IUSE of the USA. Part of the information shared there was the MET II report. 
This report stated that courses for teachers should contain content that examines high school 
mathematics from an advanced standpoint throughout their courses and not just as a capstone. 
Secondary teacher’s educators, therefore, following the MET II recommendations, should be 
interested in generating explicit connections between advanced and secondary mathematics to 
support or enhance teacher’s teaching. 

Following this line of thought, we have then applied variation theory (Koichu et al, 2016; 
Leung, 2012; Marton, 2015) for setting up a four-month online course for professional 
development of secondary teachers. The content of learning we have chosen was how to find the 
general solution to Diophantine equations (see Cárdenas et al, 1988; Guelfond, 1981), a topic of 
superior (or abstract) algebra that immediately could be connected to solving linear (and quadratic) 
equations in integers, a topic of secondary mathematics. Diophantine equations is a topic 
mathematically interesting because to find their general solution all basic properties of integers 
enter in play This topic could be considered as an introduction to Numbers’ Theory. 

In this work we were interested in exploring how we could use variation theory to approach 
finding the general solution of Diophantine equations in a teacher professional development 
course, and how this approach could be reflected in secondary teachers’ practice. In other words, 
what would be possible connections, established by participant teachers, between the general 
solution of Diophantine equations and the mathematics to be taught in high school?  

Some Results 
We observed three different connections between the general solution of Diophantine 

equations and the math participants taught in high school, namely: 1) Transforming fractions from 
improper to continuum; 2) Getting a general formula to solve linear Diophantine equations using 
the Euclid’s Algorithm; 3) Getting a general formula to solve Diophantine equations of second 
degree. That evidenced participants’ pedagogical content knowledge in teaching (see Petrou & 
Goldin, 2011), in this case associated with the topic studied. 
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One of the challenges for researchers interested in studying teachers’ mathematical 
knowledge is characterizing that knowledge in a way that allows it to be visible in practice. 
Some high-profile projects have attempted to create instruments for this (e.g., IQA (Boston, 
2012)) and researchers in the United States have considered a variety of ways to apply the “egg” 
proposed by Ball and colleagues (Ball et al., 2008; Hill et al., 2008). Another approach has been 
proposed by Rowland and his colleagues (Rowland, 2013; Rowland et al., 2005; Rowland & 
Turner, 2007; Turner & Rowland, 2011) who have developed a framework called the Knowledge 
Quartet (KQ) for characterizing teacher knowledge by organizing observable activities into four 
discrete categories: Foundation, Transformation, Connection, and Contingency. 

The developers of the KQ have provided numerous codes that emerged through their work 
with preservice teachers in the United Kingdom. The codes are all observable behaviors that fit 
into one of the four categories. For example, “Identifying Errors” is one way a teacher may 
demonstrate Foundation knowledge or “Making Connections between Procedures” can 
demonstrate Connection knowledge. 

In our work, we were interested in understanding how one seventh grade teacher, Matt 
(pseudonym), applied his content knowledge of proportional reasoning in four video recorded 
lessons. We adopted the KQ for this analysis. However, as we began to apply the KQ, we began 
to understand that it was developed for a different teaching and learning context than we saw in 
Matt’s classroom. To this end, we created additional codes, situating them within the four 
knowledge categories by using the definitions provided by Rowland and his colleagues 
(Rowland & Turner, 2007). 

In this poster, we will present the original KQ code set in addition to the added codes 
necessary to make sense of Matt’s knowledge in his classroom teaching. We will also include 
discussion of the original codes that were cut from our analysis and those that were merged. 
Examples from the data will be included to illustrate the needs for these changes. We discuss the 
implications which consider the extent to which the mathematical knowledge teachers need for 
teaching is culturally grounded. A teacher who does not demonstrate proficiency with the 
original KQ codes may have other proficiencies valued by the math education community that 
may not be captured by the KQ.  
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In the present work, we propose to investigate which elements of problem solving could allow the 
transition to mathematical modeling. The study involved two students from Honduras with 
standard instruction in problem solving, where one of them has participated in mathematical 
Olympiads. We consider that the detection and organization of information, the explanation of 
the results, and the validation processes could be points of contact between these positions and 
that their adequate management would allow the transition between them. We found that the 
students were good problem solvers, but only with the support of the researcher did they develop 
activities of analysis, validation, and determination of the conditions of the problem to achieve 
school modeling. 

Keywords: Problem solving, modeling, metacognition. 

Introduction 
In the Republic of Honduras, since 2003, mathematics education has been implemented 

under the problem-solving approach. At the same time, current trends point to the importance of 
students giving meaning to contextual problems that could enrich their perception of the 
usefulness of mathematics and that can be used in everyday life, positions that have been part of 
what has been called school modeling. 

Thus, we face Honduran students with a background in problem solving but will soon have to 
move towards the modeling perspective, which we must prevent.  

The essential background for this research considers the formulations of Polya (1989) and 
Schoenfeld (1985) on problem solving, as well as the positions of educational organizations such 
as PISA (2015), which establish the objectives and conditions of this position. We also identified 
that currently, institutions realize that the use and detection of the appropriate strategy are 
relevant for teaching mathematics. Still, it is necessary to contextualize the problems. We find 
this phenomenon more clearly in the PISA (2015) position. Over time, they have developed an 
interest in including skills that traditionally are not considered part of problem solving, which is 
the basis of their approach. Now they tend to get the benefits that can be obtained from them, for 
example, when students realize that a problem is associated with specific strategies, where the 
need to interpret them may arise, in addition to giving a solution which would be bringing them 
closer to the interests of modeling. 

To establish the character and depth of the contents treated in problem solving, we analyzed 
the official textbooks of Honduras to identify 1. The perspective present in them, and 2. The 
skills developed based on these materials, so we can say that students in Honduras, from the use 
of these textbooks, have had some experiences that would allow them to address the problems 
making use of: 1. The detection of the aspects that are relevant to the task, 2. The approach and 
identification of the adequate strategies for solving the problems, 3. The organization of the 
information, and 4. To a lesser extent, the acquisition of tools related to the processes of 
validation and generalization, aspects that we consider particularly useful for the creation of 
models. 
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Referential Framework 
In Schoenfeld's (1985) proposal, we identify the dimension called control, which refers to the 

student's ability to realize whether his strategy is going in the right direction and explain his 
results. Both points could place the student in the metacognition field, which is also related to 
"monitoring and control" (Schoenfeld, 2016, p.2), where, if the student takes control of his 
solution process, he can develop an overview of the activities and conditions of the problem, 
which allows him to increase his chances to solve it correctly. 

In our work, by including the development of metacognitive processes, we intend to promote 
a possible and slight change in the paradigm of problem solving. The object of study is no longer 
focused solely on recognizing and using strategies to solve problems. Still, it is required to 
identify the conditions under which it is possible to solve them.  

To achieve this paradigm shift, aspects related to decision-making and the interpretation of 
the problem can be incorporated, including identifying the specific conditions of the problem. If 
we add to this the realistic contextual component, we would be approaching the field of school 
mathematical modeling since: "Mathematical models appear when there is a need to answer 
specific questions in real situations, when decisions need to be made or when it is imperative to 
make predictions related to natural and social phenomena" (Trigueros, 2009, p. 76).  

In this paper, we will consider modeling from a cognitive perspective. In particular, "they 
foreground how students' thinking leads to modeling while serving as a basis for pedagogical or 
curricular goals" (Czocher, 2018, p.138).  

Students' thinking can be abstracted and illustrated through the structures known as modeling 
cycles, which establish the nodal points of the process. We will use the proposal of Blum and 
Borromeo Ferri (2009), which is susceptible, in our understanding, to be used both in problem 
solving and modeling and which is proposed from four activities: 1. understanding task, 2. 
Establishing model, 3. using mathematics, and 4. explaining result. 

This proposal does not state validation activities; however, these are presented through the 
cycle iteration, which indicates that it requires validation to be restarted. In addition, when the 
student can explain his results, he is also developing validation activities. 

To achieve this paradigm shift in problem solving, we consider the need to focus on two 
essential factors 1. The development of metacognitive aspects promotes a reflection on the 
conditions under which the problem can be solved, and 2. The teacher’s role enables a greater 
understanding of the relationships and implications of the problem, which has as a starting point 
a recognition of the contextual conditions, which could result in a transition from one position to 
another. 

 

 
Figure 1: Blum and Borromeo Ferri's Modeling Cycle (2009, p.54) 
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So, if we consider the definition of modeling competence as a starting point to introduce its 
teaching, in this case, the one proposed by Niss et al. (2007) that refers to: 

the ability to identify relevant questions, variables, relations or assumptions in a given real 
world situation, to translate these into mathematics and to interpret and validate the solution 
of the resulting mathematical problem in relation to the given situation, as well as the ability 
to analyse or compare given models (p.12) 
We are interested in analyzing how metacognitive aspects could promote some of the 

minimum requirements to develop modeling activities.  

Methodology 
We developed a qualitative interpretative study to find out how the competencies and skills 

in problem solving taught, both school and extra-school in Honduras, could serve as a basis for 
introducing school mathematical modeling and how the transition process from one didactic 
proposal to the other. Our research hypothesis is that both students who have had regular 
instruction and those who have acquired additional instruction on problem solving can transition 
to a didactic proposal based on modeling through relevant problems and collaborative work with 
the teacher that support the use of metacognitive processes. 

The study was conducted in the context of the COVID-19 pandemic in 2021. Two Honduran 
students of academic excellence participated in the study, both were in the ninth grade at the time 
of the investigation, and both were 15 years old. Student 1 (E1) has experience in mathematics 
Olympiads, while student 2 (E2) does not have this experience.  

The study was based on 1. The students solved an online questionnaire individually on the 
GeoGebra platform, which included open-ended questions and the filling in of tables, and 2. 
From the questionnaire, we detected the level of development of problem-solving skills through 
four problems, and both students showed: detection of relevant aspects in the problem, 
organization of information, use of appropriate strategies, as well as good management of the 
mathematics to solve them. 

In the interview-intervention, we asked the students about their procedures and results to 
deepen the answers to the questionnaire. Also, we took advantage of the incomplete or incorrect 
questions to understand how the students faced the challenges posed by the tasks, to provoke a 
metacognitive type of work to observe the possibility of expanding their perception of the 
requirements of the problem and thus be able to support them in the development of the proposed 
activities. 

Metacognitive reflection in these activities has two functions: The first goes toward 
explaining the procedure, which can provoke students a need for certainty about the arguments 
they offer when communicating their solution. The second they can be developed by the need for 
validation. 

In the following section, we will present the analysis and discussion of the data obtained 
from 1. the answers presented in the questionnaire, 2. the video of the interview-interventions, 
and 3. the audio of their transcripts. 

Results 
In the following, we present the results of our study on the points that could enable the 

transition from problem solving to modeling. This discussion is organized into two moments. In 
the first, which is before the interview-intervention, we will identify the problem-solving skills 
possessed by the students and the type of production they carry out individually. In the second 
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moment, we will establish the important elements identified by the interview-intervention to 
know how the collaborative production with the researcher brought the students closer to 
modeling.  

We will present the results related to activity 2 of the questionnaire since we consider that it 
recovers the work done by the students, which is shown below:  

 

 
Figure 2: Activity 2 

Before the interview-intervention 
At this point, we were interested in the problem-solving skills used by the students to solve 

the activity individually. The following table shows the students' answers to question 1 of 
activity 2. 

Table 1: Answers to question 1 of Activity 2 
E1 

 
E2 

 
 

We can observe that E1 recognizes proportionality relationships between the objects that 
appear in the combos but do not find the total value of each one because it is probably not 
important to do so for her, at that moment of the solution. While E2 focuses on the composition 
of the combos, and she gets all the numerical information. We can say that both students detect 
the relevant information of the situation, but with different approaches, which seem to be directly 
linked to the possible strategies they will use. This will be reflected in the way they establish the 
data, which we show below: 

 
Table 2: Answers to question 2 of Activity 2 

E1 

 
E2 

 
 

The purpose of this question is to know how the students organize the information provided 
by the problem. In this task, E1 describes the composition of the combos incorporating the 
numerical relations that appear in the problem. Still, she does not yet show the elements that 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

767



allow us to know which strategy she will use. However, in answer to question 1, she identified 
compensation relations between the elements of the combos. On the other hand, E2 expresses his 
strategy by organizing the information using a system of linear equations. 

After retrieving the relevant information from the problem, in questions 1 and 2, students 
could be able to find the value of a box of popcorn and soft drink in questions 3 and 4. This is 
shown in Figure 3. 

 

 
Figure 3: Solution to Activity 2 (questions 3 and 4) 

The students' backgrounds explain the difference in the approaches used. When E1 identifies 
the comparison relationship by compensation, she recognizes a heuristic that consists of 
duplicating combo #1 to obtain combo #2, realizing that in doing this, there will be a surplus; in 
this case, it is two sodas. He refers to: "the value of Combo #2 - Twice the value of Combo #1, to 
find the value of one soda". This recognition allows him to solve the activity using a strategy that 
is not emphasized in the curriculum and is more typical of a mathematical Olympiad. 

On the other hand, in work done by E2, we recognize the use of a strategy emphasized in the 
curriculum, which is to construct a system of linear equations. Still , she does not adequately 
label the variables when she applies, which does not allow her to find the correct values. This 
aspect does not have repercussions on the choice of the strategy, but it does have implications in 
the results, a situation that is taken up and discussed in the interview. 

With question 5, we aimed to identify the metacognition activities that students might be 
performing, and that relate to the suggestions they would make to another student to solve this 
activity: 
 

Table 3: Answers to question 5 of Activity 2 
E1 

 
E2 

 
 

At this stage and before the interview, the suggestion offered by E1 does not give the key 
elements for another person to solve the problem using her strategy, which seems to show a 
tendency to make use of a self-explanation since for her, these elements are already codified and 
therefore should be understood by others. For her part, E2 proposes a method to solve the 
problem by formulating a system of linear equations but does not explain how to construct the 
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equations from which the solution is obtained. Both explanations lack the important points that 
could help another person replicate their strategies, which shows us that they could not do 
metacognitive work on their solutions. 

The questionnaire results show that the student’s previous experiences condition the type of 
approach to the proposed problems. E1, having a background in mathematical Olympiads, uses 
ways of thinking such as compensation strategies that allow her to understand and solve the 
problem. E2, on the other hand, has only as a resource the elements that have been offered to her 
through regular instruction. This aspect limits her strategies, but she manages to operate them 
correctly. 

In addition, we identified that the students possess skills related to detecting the relevant 
information of the problem and its organization. Still, we observed that individually they are not 
showing the use of metacognitive processes associated with explaining procedures and results. 
Analysis of the interview-intervention 

Next, to promote reflection, we will address the results from the intervention-interviews we 
conducted with the students, based on the incomplete or incorrect answers to activity 2 of the 
questionnaire. In particular, our focus will be on identifying the activities that could be 
recognized as an approach to modeling and showing how the researcher promoted the need for 
the development of metacognitive processes that would allow them to reflect on their 
productions. 

In the following excerpt, which corresponds to the discussion of activity 2, E1 is asked to 
explain what it is like to complete? to which she responds: 

(161) E1: That is to say, the value, well, ... of a box of popcorn, that by doubling it I have two 
boxes of popcorn and the soft drinks, ... I would subtract two soft drinks from the combo, 
the combo is multiplied twice, to go like, I do not know how to explain it, sometimes I do 
not understand my logic, but sometimes I find myself thinking like this 

(162)  I: I understand it; we are doing well. 
(163) E1: So, to more or less complete, what it was, more or less, to achieve an equality 

between combo 1 and combo 2. 
(164) I: Ok, you say you duplicated combo 1 and compared it to combo 2. 
(165) E1: Yes, and when I subtracted it, I was left with the two soft drinks. 
(166) I: ou had the soft drinks left, so by subtracting it, you could get what...? 
(167) E1: The value of one soda, because I only had two sodas left and the answer I had would 

be to divide it by 2, because they were the two sodas I had leftover. 
(168) I: Ok, Excellent, divide by two because they were the two sodas you had leftover. So, ... 

now knowing that, ... how would you tell a classmate of yours? Can you think of this, 
how would you do it? What things would you ask him to think about so he could solve 
the activity? 

(169) E1: Let him look, ... try to compare combo 1 with combo 2, so that he can see a 
relationship between them and make a shorter procedure, try to duplicate combo 1 in 
order to find the quantity. 

(170) I: What quantity? 
(171) E1: The one for soda ... for the case I used that, first in order to find the popcorn value, I 

first had to find the soda value. 
From the above, we note that E1 realizes that: explaining his procedure can be a complex 

task (line 163 - E1) that involves ordering his ideas so that they can be conveyed clearly. From 
the questions posed by the researcher: (could you get what ... What things would you ask him to 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

769



think about so that he can solve the activity? ... What amount?) he pushes E1 to clarify his ideas 
and be able to explain his approach. Through a continuous dialogue with the teacher, this type of 
approach allows students to develop a self-demand on their production, where they could 
establish a mental schema that serves them to order their ideas and explain their procedures and 
approach. 

When we discussed this activity with E2, the following question was posed to her: what 
elements of the problem allowed her to think of a system of equations? she responded: 

(106) E2: I realized (that) we could make a system of 2-variable equations and solve it fast… 
(107) E2: I noticed that, ... to begin with ... that there were two situations ... two different 

situations, but involving the same variables. So, if we organize by variables, we have x on 
one side and y on the other, then x could represent one of the things they sell us, in this 
case, the popcorn, as I put it there, and the other would be the amount of soft drinks ... 
because they are selling us a certain amount of each thing for a specific price. So, I came 
... so, I saw that you could make two ... two different equations and make them into a 
system. 

In the dialogue we show, we observe that E2 already recognizes a solution strategy, which is 
curricular emphasized; this gives him a lot of confidence about the approach he uses to solve the 
problem since he has used it before and knows that it works.  

When the researcher asks E2 to explain the strategy she used to solve the activity, she has a 
moment of doubt. In the course of her explanation, she realizes that she had not constructed the 
equations according to the labels she had chosen for the variables (line 150 - E2), as we see in 
the following dialogue: 

(150) E2: But... now I have a doubt; I don't know if I solved it right because it says that 38 
would be the price of popcorn because... I think that the... the equations that I did were 
correct, which would be 𝑥 + 𝑦 = 83 and we have that x is the amount of soft drinks, one 
soft drink and one popcorn, it is the first one. The second one is 2𝑥 + 4𝑦 = 242. It would 
be the one in the second combo, 2... 𝑥... so, there's the mistake. 

(151) I: But how could we correct that mistake? 
(152) E2: This would be 4𝑥 + 2𝑦 

The uncertainty in E2's explanation produced the need to verify the procedures used, 
allowing him to have an approach consistent with the initial interpretation (line 152 - E2). 

From this, we can say that: placing students in a situation where they must explain their 
procedures could provoke the need to perform validation tasks to obtain answers that are 
consistent with their strategies and activity conducive to working with models that seek to justify 
the structure of the problem. 

In addition, we can say that the teacher, from the development of metacognitive processes 
and the questions that the teacher asks, can propitiate in the students a dialogue that allows them 
to overcome their particular zone of proximal development, encouraging the creation of adequate 
mental schemes to use the necessary resources and order their ideas through the suggestion of 
explaining their procedures and approaches, realizing that, in some cases, they can perform 
validation tasks that go beyond verifying their immediate results, which could help them to 
improve the solution of problems and provide a broader view of the variety of problems that can 
be solved with the resources present, which can then be applied to the model idea from the point 
of view of its general structure. 
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Conclusions 
As shown in the study, we identified that metacognitive reflection was fulfilling two 

functions, one as a means of explanation of the solution and the other as a validation resource, 
which allowed the students to identify the conditions under which the proposed problem was 
solved.  

In some cases, certainty about a method may cause the student to resist change or to make his 
strategy explicit, as happened in the case of E2, who developed an internal dialogue to establish a 
finer validation process than the one initially developed because the error he presented was 
exclusively in the process of constructing the equations and in the consistency of the labels he 
used for the variables and not in the approach, since it was correct. 

Finally, in this work, we can say that the skills related to the detection of relevant information 
and the organization of this, as points of contact between these proposals, can be used as a 
necessary condition to bring students closer to modeling, which allows the researcher to take 
advantage of these resources of the students to promote metacognitive processes, which allowed 
them to be able to analyze and explain their solution and strategy in an orderly manner, as well 
as to identify the conditions under which the problem was solved, which are activities that go 
beyond the objectives of problem solving, and that in particular would be approaching the 
interests of modeling, in an elementary approximation. 
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En el presente trabajo se plantea investigar cuáles elementos de la resolución de problemas 
podrían permitir el tránsito hacia la modelización matemática. En el estudio participaron dos 
estudiantes de Honduras con instrucción estándar en resolución de problemas, donde una de 
ellas ha participado en olimpiadas matemáticas. Consideramos que la detección y organización 
de la información, la explicación de los resultados y los procesos de validación podrían ser 
puntos de contacto entre estas posturas y que su adecuado manejo permitiría el tránsito entre 
ellas. Encontramos que las estudiantes se manejan bien en resolución de problemas, pero que 
sólo con el apoyo del investigador desarrollaron actividades de análisis, validación y la 
determinación de las condiciones del problema para lograr la modelización. 

Palabras clave: Resolución de problemas, modelado, metacognición.  

Introducción 
En la República de Honduras, desde el año 2003 se ha venido implementado la educación 

matemática bajo el enfoque de resolución de problemas. Mientras que las tendencias actuales, 
señalan la importancia de que los estudiantes den sentido a los problemas llamados contextuales 
que podrían enriquecer su percepción sobre la utilidad de la matemática y que pueden usarse en 
la vida cotidiana, posturas que han sido parte de lo que se ha dado en llamar modelización. 

De esta manera, nos encontramos frente a estudiantes hondureños que poseen los 
antecedentes de la resolución de problemas, pero que pronto deberán transitar hacia la 
perspectiva que se apoya en la modelización, situación que debemos prevenir.  

Los antecedentes básicos para esta investigación consideran las formulaciones de Polya 
(1989) y Schoenfeld (1985) sobre la resolución de problemas, así como las posturas de 
organizaciones educativas como PISA (2015), que establecen los objetivos y las condiciones de 
esta postura. También identificamos que actualmente las instituciones se percatan de que: no sólo 
el uso y detección de la estrategia adecuada es relevante para la enseñanza de la matemática, sino 
que es necesario contextualizar los problemas. Este fenómeno lo encontramos más claramente en 
la postura de PISA (2015), dónde a través del tiempo han desarrollado un interés por incluir 
habilidades que tradicionalmente no se consideran parte de la resolución de problemas, que es la 
base de su aproximación y ahora se inclinan por los beneficios que se pueden obtener de esta 
ampliación, por ejemplo, cuando los estudiantes se dan cuenta de que una problemática está 
asociada a ciertas estrategias, donde puede surgir la necesidad para interpretarlas, además de 
darle solución, lo que estaría acercándolos a los intereses de la modelización. 

Para establecer el carácter y profundidad de los contenidos tratados en la resolución de 
problemas, analizamos los libros de texto oficiales de Honduras, para identificar 1. La 
perspectiva presente en ellos y 2. Las habilidades desarrolladas con base en esos materiales, por 
lo que podemos decir que los estudiantes de Honduras, a partir del uso de estos libros de texto 
han tenido algunas experiencias que les permitirían abordar los problemas haciendo uso de: 1. La 
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detección de los aspectos que son relevantes para la tarea, 2. El planteamiento e identificación de 
las estrategias idóneas para la solución de los problemas, 3. La organización de la información y 
4. En menor medida la adquisición de herramientas relacionadas con los procesos de validación 
y generalización, aspectos que consideramos particularmente provechosos para la creación de 
modelos. 

Marco Referencial 
En la propuesta de Schoenfeld (1985) identificamos la dimensión llamada de control, la cual 

hace referencia a las habilidades del estudiante para: darse cuenta de que su estrategia va en la 
dirección correcta o no y poder explicar sus resultados. Ambos puntos podrían colocar al 
estudiante en el terreno de la metacognición, que también se relaciona con el "seguimiento y 
control" (Schoenfeld, 2016, p.2), en dónde, si el estudiante toma el control de su proceso de 
solución, puede desarrollar una visión general de las actividades y las condiciones del problema, 
lo que le permite aumentar sus posibilidades para resolverlo adecuadamente.  

En nuestro trabajo, al incluir el desarrollo de procesos metacognitivos, pretendemos propiciar 
un posible y ligero cambio en el paradigma de la resolución de problemas, en dónde el objeto de 
estudio ya no se centra únicamente en el reconocimiento y uso de las estrategias para resolver los 
problemas, sino que se requiere de identificar las condiciones bajo las cuales es posible 
resolverlos.  

Para lograr este cambio de paradigma, se pueden incorporar aspectos que se relacionen con la 
toma de decisiones y la interpretación de la problemática, que incluye identificar las condiciones 
específicas de ésta y si a esto le sumamos el componente contextual realista, estaríamos 
acercándonos al terreno de la modelización matemática escolar, debido a que: “Los modelos 
matemáticos aparecen cuando se tiene la necesidad de responder preguntas específicas en 
situaciones reales, cuando se requiere tomar decisiones o cuando es imperativo hacer 
predicciones relacionadas con fenómenos naturales y sociales” (Trigueros, 2009, p. 76).  

En este trabajo vamos a considerar la modelización desde una perspectiva cognitiva, porque 
en particular: “ponen en primer plano la forma en que el pensamiento de los estudiantes conduce 
al modelo, al tiempo que sirven de base para los objetivos pedagógicos o curriculares” (Czocher, 
2018, p.138).  

El pensamiento de los estudiantes puede abstraerse e ilustrarse a través de las estructuras 
conocidas como ciclos de modelización, que establecen los puntos nodales del proceso. En 
particular, vamos a utilizar la propuesta de Blum y Borromeo Ferri (2009), la que es susceptible, 
a nuestro entender, de ser usada tanto en la resolución de problemas como en la modelización y 
que se plantea a partir de cuatro actividades: 1. Entendiendo la tarea, 2. Estableciendo el modelo, 
3. Usando matemáticas y 4. Explicando los resultados.  

Esta propuesta no declara actividades de validación, sin embargo, éstas se presentan por 
medio de la iteración del ciclo, lo cual indica que requiere de la validación para ser reiniciadas. 
Además, cuándo el estudiante está en condiciones de poder explicar sus resultados, también está 
desarrollando actividades de validación. 

Para poder lograr este cambio de paradigma en la resolución de problemas, consideramos la 
necesidad de centrarse en dos factores esenciales: 1. El desarrollo de los aspectos 
metacognitivos, que promuevan una reflexión sobre las condiciones bajo las cuales el problema 
puede ser resuelto y 2. El papel del profesor, que posibilita un mayor entendimiento de las 
relaciones e implicaciones del problema, lo que tiene como punto de inicio un reconocimiento de 
las condiciones contextuales, lo que podría dar como resultado una transición de una postura a 
otra. 
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Figura 1: Ciclo de Modelización de Blum y Borromeo Ferri (2009, p.54) 

De manera que, si consideramos a la definición de la competencia de la modelización como 
punto de partida para introducir su enseñanza, en este caso la propuesta por Niss et al. (2007) que 
se refiera a: 

La habilidad para identificar las cuestiones, variables, relaciones o supuestos relevantes en 
una situación del mundo real, traducirlos a las matemáticas e interpretar y validar la solución 
del problema matemático resultante en relación con la situación dada, así como la capacidad 
de analizar o comparar modelos. (p.12) 
Por ello, estamos interesados en analizar cómo los aspectos metacognitivos podrían estar 

promoviendo algunos de los requisitos mínimos para desarrollar actividades de modelización.  

Metodología 
Desarrollamos un estudio cualitativo interpretativo para conocer la forma cómo las 

competencias y habilidades sobre resolución de problemas impartidas, tanto curricularmente 
como extra curricularmente en Honduras, podrían servir como base para una introducción de la 
modelización matemática escolar y cómo es el proceso de tránsito desde una propuesta didáctica 
a la otra. Nuestra hipótesis de investigación es que tanto los estudiantes que han tenido 
instrucción regular, así como los que han adquirido una adicional sobre resolución de problemas, 
están en condiciones de transitar a una propuesta didáctica basada en la modelización, a través de 
problemas pertinentes y un trabajo colaborativo con el profesor que favorezca el uso de los 
procesos metacognitivos. 

El estudio se realizó en el marco de la pandemia por COVID-19 en el 2021. Participaron dos 
estudiantes hondureñas de excelencia académica, que al momento de la investigación cursaban el 
noveno grado y ambas tenían 15 años. La estudiante 1 (E1), cuenta con experiencia en 
olimpiadas de matemáticas, mientras que la estudiante 2 (E2) no tiene esta experiencia.  

El estudio se apoyó en: 1. Un cuestionario en línea que las estudiantes resolvieron de manera 
individual en la plataforma de GeoGebra y que consideró preguntas abiertas y llenado de tablas, 
y 2. En una entrevista-intervención en línea, luego de haber resuelto el cuestionario. 

A partir del cuestionario, detectamos el nivel de desarrollo de las habilidades sobre 
resolución de problemas a través de cuatro problemas y ambas estudiantes mostraron: detección 
de los aspectos relevantes en el problema, organización de la información, uso de estrategias 
adecuadas, así como del buen manejo de la matemática necesaria para resolverlos. 

En la entrevista-intervención, preguntamos a las estudiantes sobre sus procedimientos y 
resultados, para profundizar en las respuestas del cuestionario. También, se aprovecharon las 
preguntas incompletas o incorrectas, para conocer cómo las estudiantes enfrentaron los retos que 
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les plantearon las tareas, de manera que se provocara un trabajo de tipo metacognitivo para 
observar la posibilidad de ampliar su percepción sobre los requisitos del problema y así poder 
apoyarlas en el desarrollo de las actividades propuestas. 

La reflexión metacognitiva en estas actividades tiene dos funciones: La primera va en la 
dirección de lograr una explicación del procedimiento, lo puede provocar en los estudiantes una 
necesidad de certeza sobre los argumentos que ofrecen cuando comunican su solución y la 
segunda puede ser desarrollada por la necesidad de la validación. 

En el siguiente apartado, presentaremos el análisis y la discusión de los datos que se 
obtuvieron a partir de: 1. Las respuestas presentadas en el cuestionario, 2. El video de las 
entrevistas-intervención y 3. La transcripción del audio de estas. 

Resultados 
A continuación, presentamos los resultados de nuestro estudio sobre los elementos que 

podrían posibilitar el tránsito desde la resolución de problemas hacia la modelización. Esta 
discusión se organiza en dos momentos. En el primero, que es previo a la entrevista-
intervención, identificaremos: las habilidades sobre resolución de problemas que poseen las 
estudiantes y el tipo de producción que realizan de manera individual. En el segundo momento, 
estableceremos los elementos importantes identificados en la entrevista-intervención, para 
conocer de qué manera la producción conjunta con el investigador acercó a las estudiantes a la 
modelización.  

Presentaremos los resultados relativos a la actividad 2 del cuestionario, ya que consideramos 
que, recupera de maneral, el trabajo realizado por las estudiantes, la que mostramos enseguida:  

 

 
Figura 2: Actividad 2 

Previo a la entrevista-intervención 
En este momento nos interesa conocer las habilidades sobre resolución de problemas que 

utilizan las estudiantes para resolver la actividad de manera individual. En la siguiente tabla 
presentamos las respuestas de las estudiantes a la pregunta 1 de la actividad 2. 

 
Tabla 1: Respuestas de la pregunta 1 de la Actividad 2 

E1 

 
E2 

 
 

Podemos observar que E1 reconoce relaciones de proporcionalidad entre los objetos que 
aparecen en los combos, pero no rescata el valor total de cada uno, porque para ella en ese 
momento de la solución probablemente no sea importante hacerlo. Mientras que E2 se enfoca en 
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la composición de los combos y extrae toda la información numérica. Podemos decir que ambas 
estudiantes detectan la información relevante de la situación, pero con enfoques distintos, lo que 
parece estar ligado directamente con las posibles estrategias que utilizarán. Esto se verá reflejado 
en la manera cómo establecen los datos, lo que mostramos enseguida: 

 
Tabla 2: Respuestas de la pregunta 2 de la Actividad 2 

E1 

 
E2 

 
 

Con esta pregunta se pretende conocer cómo las estudiantes organizan la información que 
ofrece el problema. En esta tarea, E1 describe la composición de los combos incorporando las 
relaciones numéricas que aparecen en el problema, pero aún no muestra los elementos que nos 
permitan conocer cuál es la estrategia que utilizará, aunque en la respuesta a la pregunta 1 
identificó relaciones de compensación entre los objetos de los combos. Por su parte, E2 deja 
expresada su estrategia al organizar la información utilizando un sistema de ecuaciones lineales. 

Después de recuperar la información relevante del problema, en las preguntas 1 y 2, las 
estudiantes podrían estar en condiciones de encontrar el valor de una caja de palomitas y de un 
refresco, preguntas 3 y 4. Lo que mostramos en la figura 3. 

 

 
Figura 3: Solución de la Actividad 2 (preguntas 3 y 4) 

Los antecedentes de las estudiantes explican la diferencia de los enfoques utilizados. Cuando 
E1 identifica la relación de comparación por compensación, reconoce una heurística que consiste 
en duplicar el combo #1 para obtener el combo #2, dándose cuenta de que al hacer esto habrá un 
excedente, en este caso son dos refrescos. En sus palabras se refiere a: “el valor del Combo #2 – 
Dos veces el valor del Combo #1, para así encontrar el valor de un refresco”. Este 
reconocimiento le permite resolver la actividad utilizando una estrategia que no es enfatizada 
curricularmente y es más propio de una olimpiada matemática.  

Por otra parte, en el trabajo que realiza E2 reconocemos el uso de una estrategia que es 
enfatizada curricularmente, esta es construir un sistema de ecuaciones lineales, pero cuando la 
aplica no etiqueta adecuadamente las variables y esto no le permitió encontrar los valores 
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correctos. Este aspecto no tiene repercusión en la elección de la estrategia, pero si en los 
resultados, situación que se retoma y discute en la entrevista. 

Con la pregunta 5, pretendíamos identificar las actividades de metacognición que podrían 
estar realizando las estudiantes y que se relaciona con las sugerencias que le harían a otro 
estudiante para resolver esta actividad: 

 
Tabla 3: Respuestas de la pregunta 5 de la Actividad 2 

E1 

 
E2 

 
 

En esta etapa y previo a la entrevista, la sugerencia que ofrece E1 no proporciona los 
elementos claves para que otra persona pueda resolver el problema utilizando su estrategia, lo 
que pareciera mostrar una tendencia a hacer uso de una auto explicación, ya que para ella estos 
elementos ya están codificados y por tanto deberían ser entendidos por los demás. Por su parte, 
E2 propone un método para resolver el problema formulando un sistema de ecuaciones lineales, 
pero no explica cómo construir las ecuaciones de las que se obtiene la solución. Ambas 
explicaciones carecen de los puntos importantes que podrían ayudar a otra persona a replicar sus 
estrategias, lo que nos muestra que no estaban en condiciones de hacer un trabajo metacognitivo 
sobre sus soluciones.  

Los resultados del cuestionario muestran que las experiencias previas de las estudiantes 
condicionan el tipo de acercamiento a los problemas propuestos. E1, al tener antecedentes en 
olimpiadas matemáticas usa formas de pensamiento como las estrategias de compensación que le 
permiten entender y resolver el problema. Por su parte E2, al poseer como único recurso los 
elementos que se le han ofrecido a través de una instrucción regular, sus estrategias están 
limitadas por este aspecto, pero logra ponerlos en funcionamiento correctamente. 

Además, identificamos que las estudiantes poseen habilidades relacionadas con la detección 
de la información relevante del problema y con la organización de esta, pero observamos que de 
manera individual no están mostrando un uso de procesos metacognitivos, en lo relacionado con 
la explicación de los procedimientos y los resultados. 
Análisis de la entrevista-intervención 

A continuación, abordaremos los resultados obtenidos de las entrevistas-intervención que 
realizamos con las estudiantes, las que se apoyaron en las respuestas incompletas o incorrectas 
de la actividad 2 del cuestionario, para promover una reflexión. En particular, nuestro foco de 
atención estará en identificar las actividades que podrían ser reconocidas como un acercamiento 
a la modelización, además de mostrar cómo el investigador promovió la necesidad del desarrollo 
de procesos metacognitivos que les permitieran reflexionar sobre sus producciones. 

En el siguiente fragmento, que corresponde a la discusión de la actividad 2, se le pide a E1 
que explique ¿cómo es eso de completar?, a lo que ella responde: 

(172) E1: Es decir, el valor, pues, … de una caja de palomitas, que al duplicarlo ya me quedan 
dos cajas de palomitas y los refrescos, … me restarían dos refrescos del combo, se 
multiplica dos veces el combo, para ir como, no sé cómo explicarlo, a veces no entiendo a 
mi lógica, pero a veces me resulta pensar así 
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(173)  I: Yo la entiendo, vamos bien. 
(174) E1: Entonces, para completar más o menos, lo que era, más o menos, para lograr una 

igualdad entre el combo 1 y el combo 2. 
(175) I: Ok, Usted dice que duplicó el combo 1 y lo comparó con el combo 2. 
(176) E1: Sí y al restarlo, me quedaron los dos refrescos. 
(177) I: Le quedaban los refrescos, entonces al restarlo, ¿usted podría obtener qué…? 
(178) E1: El valor de un refresco, porque a lo que queda como al restarle, ya solo me quedaron 

dos refrescos y la respuesta que tenía sería dividirla entre 2, porque eran los dos refrescos 
que me sobraban. 

(179) I: Ok, Excelente, divide entre 2 porque eran los dos refrescos que le sobraban. Entonces, 
… ahora ya sabiendo eso, … ¿cómo le diría a un compañero suyo? Puedes pensar en esto, 
¿cómo lo haría? ¿En qué cosas le pediría que piense él para que pueda resolver la 
actividad? 

(180) E1: Que mire, … que intente comparar el combo 1 con el combo 2, para que pueda ver 
una relación entre el y hacer un procedimiento un poco ya más corto, intentar ya duplicar 
el combo 1 para poder encontrar ya la cantidad. 

(181) I: ¿Cual cantidad? 
(182) E1: La de los refrescos … para el caso que yo utilicé que, primero para poder encontrar el 

valor de las palomitas, primero tuve que encontrar el valor de refresco.  
De lo anterior, observamos que E1 se da cuenta de que: explicar su procedimiento puede ser 

una tarea compleja (línea 163 - E1) que implica ordenar sus ideas de manera que puedan ser 
transmitidas con claridad. A partir de las preguntas planteadas por el investigador: (¿podría 
obtener qué … ¿En qué cosas le pediría que piense él para que pueda resolver la actividad? … 
¿Cual cantidad?) empuja a E1 para que pueda aclarar sus ideas y sea capaz de poder explicar su 
enfoque. Este tipo de acercamientos, a través de un diálogo continuo con el profesor permite que 
los estudiantes desarrollen una autoexigencia sobre su producción, dónde podrían establecer un 
esquema mental que les sirva para ordenar sus ideas y explicar sus procedimientos y enfoque. 

Cuando discutimos esta actividad con E2, se le planteó la siguiente pregunta: ¿qué elementos 
del problema le permitieron pensar en un sistema de ecuaciones? ella respondió: 

(108) E2: Me di cuenta (de) que podíamos hacer un sistema de ecuaciones de 2 variables y 
resolverlo rápido… 

(109) E2: Me fijé que, … para empezar… que había dos situaciones… dos situaciones 
diferentes, pero que implicaban las mismas variables. Entonces, si nos organizamos por 
variables, tenemos a x por un lado y a y por el otro, entonces x podría representar una de 
las cosas que nos venden, en este caso, las palomitas, así como lo puse ahí y el otro sería 
la cantidad de refrescos … porque nos están vendiendo una cantidad determinada de cada 
cosa por un precio específico. Entonces, llegué … entonces, vi que se podían hacer dos… 
dos ecuaciones distintas y hacerlas en un sistema. 

En el diálogo que mostramos, observamos que E2 ya reconoce una estrategia de solución, la 
que es enfatizada curricularmente, esto le proporciona mucha seguridad sobre el enfoque que 
utiliza para resolver el problema, ya que anteriormente lo ha utilizado y sabe que funciona.  

Cuando el investigador le pide a E2 que explique la estrategia que utilizó para resolver la 
actividad, ella tiene un momento de duda y en el transcurso de su explicación, se da cuenta de 
que no había construido las ecuaciones en función de las etiquetas que había elegido para las 
variables (línea 150 – E2), como vemos en el siguiente diálogo: 
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(153) E2: Pero… ahora sí tengo una duda, no sé si lo resolví bien porque, es que dice que 38 
vendría siendo el precio de las palomitas porque… creo que las… las ecuaciones que hice 
si estaban bien, que serían 𝑥 + 𝑦 = 83 y tenemos que x son la cantidad de refrescos, un 
refresco y una palomita, es la primera. La segunda es 2𝑥 + 4𝑦 = 242. Estaría siendo la 
del segundo combo, 2… 𝑥… así, ahí está el error 

(154) I: Pero ¿cómo podríamos corregir ese error? 
(155) E2: Sería 4𝑥 + 2𝑦 

La incertidumbre en la explicación de E2 produjo la necesidad de verificar los 
procedimientos usados, permitiéndole tener un planteamiento consistente con la interpretación 
inicial (línea 152 – E2). 

De esto, podemos decir qué: colocar a los estudiantes en la situación donde deben de explicar 
sus procedimientos, podría provocar en ellos la necesidad de realizar tareas de validación para 
obtener respuestas que sean consistentes con sus estrategias, actividad propicia para el trabajo 
con modelos que pretenden justificar la estructura del problema. 

Además, podemos decir que el profesor, a partir del desarrollo de procesos metacognitivos y 
de las preguntas que realiza, puede propiciar en los estudiantes un diálogo que les permita 
superar su zona de desarrollo próximo particular, propiciando la creación de esquemas mentales 
adecuados para usar los recursos necesarios y ordenar sus ideas a través de la sugerencia de 
explicar sus procedimientos y enfoques, dándose cuenta de que, en algunos casos pueden realizar 
tareas de validación que van más allá de verificar sus resultados inmediatos, las que podrían 
ayudarles a mejorar la solución de los problemas y proporcionar una mirada más amplia sobre la 
variedad de problemas que se resuelven con los recursos presentes, lo que luego puede ser 
aplicado a la idea de modelo desde el punto de vista de su estructura general. 

Conclusiones 
Cómo se muestra en el estudio, identificamos que la reflexión metacognitiva estuvo 

cumpliendo dos funciones, una como medio de explicación de la solución y la otra como recurso 
de validación, lo que permitió que las estudiantes pudieran identificar las condiciones bajo las 
cuales fue resuelto el problema propuesto.  

En algunos casos, la certeza sobre un método puede provocar que el estudiante se resista al 
cambio o a dar una explicitación de su estrategia, como sucedió en el caso de E2, quien 
desarrolló un diálogo interno para establecer un proceso de validación más fino que el 
desarrollado inicialmente, debido a que el error que presentó se encontraba exclusivamente en el 
proceso de construcción de las ecuaciones y en la consistencia de las etiquetas que utilizó para 
las variables y no en el enfoque, ya que era correcto. 

Finalmente, en este trabajo podemos decir que las habilidades relacionadas con la detección 
de la información relevante y la organización de esta, como puntos de contacto entre estas 
propuestas, puede usarse como una condición necesaria para acercar a los estudiantes a la 
modelización, lo que permitió al investigador aprovechar estos recursos de las estudiantes para 
promover procesos metacognitivos, lo que les permitió poder analizar y explicar ordenadamente 
su solución y estrategia, así como identificar las condiciones bajo las cuales se resolvía el 
problema, que son actividades que van más allá  de los objetivos de la resolución de problemas, 
y que en particular estarían acercándose a los intereses de la modelización, en una aproximación 
elemental. 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

779



Agradecimientos 
A Conacyt y al Cinvestav-IPN por el financiamiento del proyecto de investigación. 

Referencias 
Blum, W. y Borromeo Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt?. Journal of 

mathematical modelling and application, 1(1), 45-58. 
Czocher, J. A. (2018). How does validating activity contribute to the modeling process?. Educational Studies in 

Mathematics, 99(2), 137-159. 
Niss, M., Blum, W., y Galbraith, P. (2007). Introduction. In W. Blum, P. Galbraith, H.-W. Henn, & M. Niss (Eds.), 

Modelling and applications in mathematics education (pp. 3–32). New York: Springer. 
PISA, O. (2015). Released Field Trial: Cognitive Items. 
Polya, G. (1989). Cómo plantear y resolver problemas (decimoquinta reimpresión). México: Editorial Trillas. 
Schoenfeld, A. H. (1985). Mathematical Problem Solving. Academic Press. INC. 
Schoenfeld, A. H. (2016). Learning to think mathematically: Problem solving, metacognition, and sense making in 

mathematics (Reprint). Journal of Education, 196(2), 1-38. 
Trigueros, M. (2009). El uso de la modelación en la enseñanza de las matemáticas. Innovación educativa, 9(46), 75-

87 
 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

780



USING STRUCTURE TO FIND THE DISTANCE ON AN EMPTY NUMBER LINE 

Laura Bofferding 
Purdue University 

LBofferd@Purdue.edu 

Mahtob Aqazade 
Rice University 

ma119@rice.edu 

Looking for and making use of structure along with using the mathematical tools (i.e., number 
line) are important mathematical practices. In this paper, we explore 32 first-grade and 36 third-
grade students’ noticing and making use of the structure of two identical number lines when 
determining the distance of a bunny’s jumps. The number lines represented a distance from 11 to 
27, and students could choose to jump to 20 (nearest multiple of ten), 21 (adding ten), or 15 
(nearest multiple of five). Choosing 21 (distance of 10) was the most frequent choice, and 
overall, 71% of third graders’ and 17% of first graders’ attempts showed a correct distance. 
However, less than one-third of students made connections between their two number lines and 
noticed their structure. This study informs the importance of number combination knowledge and 
highlighting structure in order to leverage efficient addition strategies. 

Keywords: Number Concepts and Operations, Elementary School Education, Problem Solving 

An important feature of number lines is that they are continuous representations of numbers that 
can represent distances.  Although object-based interpretations of quantity are prevalent when 
students first work with addition, connecting addition on number lines to distance is also 
important (National Research Council [NRC], 2001). Counting jumps can help children bridge 
between discrete situations and using distance, but they need to pay attention to the length of the 
jumps. In other words, students need to attend to structure, particularly that distance units can be 
combined or partitioned into larger or smaller units (National Governors Association Center for 
Best Practices & Council of Chief State School Officers [NGA & CCSSO], 2010; NRC, 2001). 
When adding on number lines, some students might count tick marks instead of spaces, resulting 
in answers that are off by one (Ernest, 1985).  Students might also count the number of jumps 
they take (or distance units they use), regardless of the distance of their jumps (or units; e.g., 
Saxe et al., 2010). 

Number lines can serve as important tools for helping students visualize and advance their 
thinking (i.e., moving from a model of thinking to a model for thinking; Gravemeijer, 1999; 
Klein et al., 1998) around addition (and other) problems, and can also reveal important 
connections between addition and measurement (NRC, 2001). Number lines align well with 
students’ counting strategies but also allow for more sophisticated jump strategies (Bobis, 2007; 
Klein et al., 1998). Further, multiple number lines can help students notice different 
combinations of jumps to get to the same number (e.g., see work on contrasting cases; Schwartz 
et al., 2016), highlighting the structure of numbers.  Looking for and making use of structure are 
characteristics of mathematically proficient students (NGA & CCSOO, 2010); “when young 
students use the relationships in and among mathematical content and processes, they advance 
their knowledge of mathematics and extend their ability to apply concepts and skill more 
effectively” (National Council of Teachers of Mathematics, 2000, p. 132).  For this study, we 
explore to what extent first and third graders notice and use the structure of two number lines 
(representing the same distance from 11 to 27) to solve a missing addend problem. 

Theoretical Framework 
In terms of finding the difference (or distance) between two numbers, missing addend 
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problems (e.g., 2 + __ = 5) can support a counting up strategy, which is often easier for students 
than counting down for corresponding subtraction problems (Fuson & Fuson, 1992). When 
finding the distance between two points on a number line, the distance can be broken up in ways 
that support students’ number sense (Cain et al., 2020). Therefore, when trying to find a missing 
addend, students might use different addition strategies. Two important addition strategies for 
students to learn are making 10’s and adding on 10’s. For example, if a student starts at 11 and is 
trying to figure out the distance to 27, they might use an add tens strategy (e.g., Fuson et al., 
1997) to get to 21 and then know that they need six more to get to 27, resulting in a distance (or 
missing addend) of 16.  On the other hand, they might use a make ten strategy (e.g., Fuson et al., 
1997) by adding 9 to get 20 and then know they need seven more to get to 27, resulting in the 
same distance of 16.  Less efficient strategies involve counting on from 11 by ones or drawing 
out jumps to represent the addends and counting the total (Fuson et al., 1997; Murata, 
2004).  Overall, students will use more efficient strategies as they become more comfortable with 
place value and as students receive support for using tens-based strategies (Fuson et al., 1997; 
Murata, 2004). 

Exploring how distances can be broken up in multiple ways can help students notice patterns 
and structure in numbers, such as with the compensation strategy or different combinations of 
numbers (see Bobis & Bobis, 2005). Take for instance a ten frame filled with seven yellow 
circles and three red circles to show 7 + 3 = 10.  If one yellow circle is flipped over to become a 
red circle (showing 6 + 4 = 10), students may notice that having one fewer yellow circle means 
one more red. Likewise, when jumping to ten on a number line, a jump of six is one less than 
seven, so the second jump of four is one more than a jump of three. During a number string math 
routine, teachers illustrate students’ strategies on a series of empty number lines, which could 
highlight how different sized jumps can lead to the same endpoints (Lambert et al., 
2017).  However, students may not pay attention to relations among jumps if they are not the 
ones they might make themselves. Having students try different jumps themselves might help 
them notice the structure of the jumps or use the structure of one to solve the other. In this study, 
we presented students with two number lines showing the same distance but asked them to break 
up the distance by making jumps in two different ways (i.e., creating two addition problems with 
the same answer). Through this task we hoped to gain insight into the following research 
questions: How do first and third graders make sense of the distance between numbers on 
number lines? (a) Are students more likely to jump to the nearest ten, make a jump of ten, or 
make a five? (b) How do students determine the distances of their jumps? (c) To what extent do 
they notice and use structure between the number lines in determining distances? 

Methods 
Participants and Design 

Participants included 32 first and 36 third graders from a public suburban elementary school 
in the midwestern US who completed the target item. The data from this paper came from a 
larger set of items exploring the relation between students’ explanations and debugging in 
programming and mathematics. This paper focuses on a mathematical explanation item that 
specifically targeted students’ noticing of the common structure between distances on two 
number lines. Although the first graders had likely been exposed to number lines, they were not a 
regular part of their instruction. We only presented the target numbers on the number lines, 
making them similar to students’ use of empty number lines.  Empty number lines only show the 
numbers being used (as opposed to labeling all whole numbers, for example), which reduces 
their passive use (Klein et al., 1998) and can also make it easier for students to focus on the 
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length of the jumps rather than just the number of jumps. Although we did not ask students to 
identify differences, we structured the two parts of the item to implicitly highlight a contrast in 
jumps on a number line as students solved each part (see Figure 1). During individual, video-
recorded interviews, we read the instructions to the students and helped record their jumps and 
answers. 

 

 
Figure 1. Mathematical Explanation Item - Bunny Hops (11 + __+ __ = 27) 

Analysis 
First, we recorded which apple they jumped to for their first (Figure 1, 2a) and second 

choices (Figure 1, 2b) to determine if they were more likely to choose 20 (the nearest ten), 
choose 21 (a jump of ten), or choose 15 (the nearest multiple of five). Then, we analyzed 
students’ distance strategies and noted their use of structure. 

Finding the distances. For each sub-item (2a and 2b in Figure 1), we coded their strategies 
for how they determined the length of each distance: (1) first jump from 11 to the apple, (2) 
second jump from the apple to 27, and (3) total. We coded students’ strategies as known fact if 
they answered quickly and were correct; we used guessing if they answered quickly but were 
incorrect. The guessing strategies included answers that were close to the correct distances, 
answers that were wildly off, and answers that resulted from students concatenating the numerals 
from the jumps (e.g., saying the jump from 11 to 20 is 1120). Counting strategies included 
counting in their head, counting all, or counting on, which often involved finger motions, 
drawing marks, or mouthed counting words. A couple students subtracted by counting or added 
in chunks to find the distances, which we also classified under counting.  After students found 
the distances on both number lines, we asked them which way they thought was better. 

Noticing and using structure. Across the two sub-items, we coded their strategies as using 
structure if they used knowledge of the other sub-item to determine the length of a jump (i.e., 
through compensation) or the total distance (i.e., indicated the answer would be the same 
because the rabbit starts and ends at the same points).  If students’ answers to the two sub-items 
did not align, we took this as further evidence that they did not notice the common structure 
between the two number lines. 
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Results 
Both first and third graders were least likely to choose 15 for their combined choices (the 

higher percentage on first graders’ first choice appeared to be for 15 because it was the first 
option for where to jump). First graders were most likely to choose 21 (a jump of ten) first, 
followed by 20 (a jump to the nearest ten); whereas, third graders were slightly more likely to 
choose 20 first then 21 (see Table 1). 
 

Table 1: Number of Students’ First and Second Choice for Where to Jump 
  Choose 15 Choose 20 Choose 21 
First choice    

First grade (n=32) 34% (n=11) 22% (n=7) 44% (n=14) 
Third grade (n=36) 19% (n=7) 33% (n=12) 47% (n=17) 

Second choice    
First grade (n=32) 13% (n=4) 44% (n=14) 44% (n=14) 
Third grade (n=36) 17% (n=6) 53% (n=19) 31% (n=11) 

Choices Combined    
First grade (n=32) 47% (n=15) 66% (n=21) 88% (n=28) 
Third grade (n=36) 36% (n=13) 86% (n=31) 78% (n=28) 

 
Twenty-eight students (nine first and 19 third graders) indicated that choosing 21 first was better 
than their other choices because it was faster, or they indicated that the addition problem 10 + 6 
was easier to solve than 9 + 7 or 4 + 12. A few students chose 21 as their favorite choice based 
on the jumping-bunny context.  For example, one student said, “Because you use a lot of energy 
and then just slow down,” hinting that the bunny would be tired after the first jump and would 
want a smaller jump. Choosing 20 first (i.e., making a ten) was a favorite of 17 students (eight 
first and nine third graders) who thought the numbers were easier or indicated that they liked 
jumping closer to the middle of the number line. Two of these students (one first and one third 
grader) also referred to the context and explained why choosing 21 was not good, “Because I 
think of this [pointing to the jump from 10 to 21], I don’t think anyone can jump ten meters 
(third grader)” and “You don't have a lot of energy, so you go a little [each time] (first grader).” 
Finding the Distances 

Regardless of their first jump, third graders correctly found the distance from 11 to 27 on 
71% of their attempts across both sub-items, and first graders correctly found the distance on 
17% of their attempts across both sub-items (see Table 2). 
 

Table 2: Percent of Students Showing the Correct Distances on Both Sub-items 
Bunny’s first jump First jump (from 11 

to chosen apple) 
Second jump (from 
chosen apple to 27) 

Total (overall distance 
from 11 to 27) 

Chooses 15     
First grade (n=15) 33% (n=5) 27% (n=4) 13% (n=2) 
Third grade (n=11) 82% (n=9) 64% (n=7) 73% (n=8) 

Chooses 20     
First grade (n=21) 19% (n=4) 24% (n=5) 24% (n=5) 
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Third grade (n=31) 71% (n=22) 81% (n=25) 68% (n=21) 

Chooses 21     
First grade (n=28) 21% (n=6) 32% (n=9) 14% (n=4) 
Third grade (n=28) 82% (n=23) 89% (n=25) 75% (n=21) 

 
For first graders, finding the distance of smaller jumps was easier (i.e., jump from 11 to 15 

and from 21 to 27, compared to 11 to 27; see Table 2).  Interestingly, when first graders chose 20 
first, they were slightly more likely to find the total distance correctly than when choosing 15 or 
21. Although third graders also did well on the small jumps, they had high performance when 
jumping ten (i.e., jumping from 11 to 21) and jumping from a ten (i.e., jumping from 20 to 27), 
suggesting they were better able to make use of place value (see Table 3). 
 

Table 3: Percent of Students’ Strategies When Finding Distances for Jumps and Total 
 Strategy 
 Guess Known Fact Counting Using 

Structure 
Choosing 15 first     

First grade (n=15) 33% 
(15/45 times a) 

11% 
(5/45 times) 

40% 
(18/45 times) 

2% 
(1/45 times) 

Third grade (n=11) 26% 
(10/39 times) 

36% 
(14/39 times) 

36% 
(14/39 times) 

3% 
(1/39 times) 

Choosing 20 first     

First grade (n=21) 57% 
(36/63 times) 

10% 
(6/63 times) 

22% 
(14/63 times) 

0% 
(0/63 times) 

Third grade (n=31) 25% 
(23/93 times) 

49% 
(46/93 times) 

23% 
(21/93 times) 

5% 
(5/93 times) 

Choosing 21 first     

First grade (n=28) 55% 
(49/84 times) 

11% 
(9/84 times) 

17% 
(14/84 times) 

2% 
(2/84 times) 

Third grade (n=28) 13% 
(11/84 times) 

57% 
(48/84 times) 

23% 
(19/84 times) 

7% 
(6/84 times) 

a For each sub-item, we coded three strategies per person. A total of 15 first graders chose to 
jump to 15 first, so there were 15 * 3 = 45 possible times for them to use a strategy. 
 

Students often provided their answers quickly. In the case of the first graders, over 75% of 
their quick answers (i.e., known facts and guessing) aligned with them incorrectly guessing what 
the answer would be. 

Guessing. Third graders were more accurate but still incorrectly guessed between 19%-42% 
of the time out of their quick answers. Students’ guesses sometimes indicated a focus on the 
endpoints of the jumps. For example, one third grader, when asked how long the jump from 11 to 
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21 is, said it was 21, even though he determined the following jump from 21 to 27 was six. One 
first grader concatenated the labeled points on the number; for example, when determining the 
distance from 11 to 20, he indicated the distance was “eleven twenty” or 1120. Another first 
grader added up the labeled numbers, getting 11 + 15 = 26 for the distance from 11 to 20 and 
then he took that 26 + 20 + 21 to get the distance from 20 to 27. 

Aside from endpoints, some students focused on the number of jumps rather than the 
distance of the jumps. In fact, several students at both grade levels interpreted each jump as a 
unit of movement rather than a distance. When asked what the distances from 11 to 21 and 21 to 
27 were, a third grader replied, “One and one.”  Likewise, he indicated that the total distance 
jumped was “Two.”  Using the apples as his unit of distance, another third grader (like many first 
graders) said the distance from 11 to 21 was “two” and from 21 to 27 was “one.”  When asked 
what the total distance was, he said, “Three” and then counted the three apples to double check. 

Known facts. First graders did not show much difference in their use of known facts across 
their attempts, suggesting the number choices did not affect them much. When identifying the 
length of the jump from 20 to 27, a first grader indicated that it was seven because it was “twenty 
and seven more” to 27. Third graders, on the other hand, were noticeably more likely to use 
known facts when jumping ten or making a multiple of ten than when jumping to and from 15. 

Counting. Students were mostly likely to count if they chose 15 first compared to choosing 
20 or 21; however, of the 18 times first graders counted, only five times (28%) were correct (five 
additional attempts were off by one). Third graders were more successful; of the 14 times they 
counted, nine times (64%) were correct (and three were off by one). Several students miscounted 
when trying to find the distance between two numbers or adding two jumps. For example, one 
third grader counted the distance from 15 to 27 as 13. Another third grader raised fingers to 
count from 15 to 27. At the end of her count she had two fingers up (after counting fingers on 
both hands), forgot how many hands she had counted before that, and reported the distance as 17 
instead of 12. Interestingly, when jumping to 20, another third grader used subtraction (i.e., 
solved 20 - 11), and one added up in chunks (11 + 4 = 15 and 15 + 5 = 20). 

Using structure. Only three first graders (9%) and eleven third graders (31%) explicitly 
referred (with or without prompting) to using the structure of one number line to help them solve 
one or more of the distances in the other number line. On the first sub-item, a third grader 
identified the jump from 11 to 21 as a jump of 10 and from 21 to 27 as a jump of 6. When 
determining the length of the jump from 11 to 20 on the next sub-item, he said, “That’s obvious, 
nine, since you’re just removing one from [that first jump].” Completing the same items in 
reverse order, a first grader found the distance from 11 to 20 as 9 on the first sub-item.  On the 
next sub-item, when determining the distance from 11 to 21 as 10, she said, “Last time there was 
nine, and there was just one more.” When another third grader went to find the total distance on 
the second sub-item, he said that he started to add the two jumps and then realized he could just 
use the ones from the first sub-item. Six additional first graders and five additional third graders 
noticed the totals were the same after answering or had reactions, such as laughing and quickly 
answering, that implied they noticed that the total distances were the same. 

Discussion 
Students’ more frequent choice to the jump of ten or to the next multiple of ten and their 

greater accuracy when doing so, reinforces the importance of helping students make use of 10-
based reasoning (Fuson et al., 1992; Murata, 2004). Students were also more likely to notice the 
structure between the number lines if they chose those jumps.  However, fewer than one-third of 
students used the common structure of the number lines to help them solve the problems, 
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suggesting an increased need to focus on the connections among number combinations.  Three 
factors appeared to detract students’ attention to the structure. First, the context may have been 
distracting for some students. For students who did not think it was feasible for a bunny to jump 
a certain distance, comparing distances between the two number lines may not have been likely. 
Interestingly, some students who talked about one choice being better than another did talk about 
jumps being longer or shorter, suggesting they did notice the differences between number lines 
to some extent and reinforcing that some contexts may work for some students and not for 
others. Second, and related to the first, the number line model was unfamiliar to some students, 
or they focused on the number of jumps instead of the distance of the jumps.  

While we maintain that the number line is an important model for students to interpret, we 
could explore additional ways of presenting the distances (perhaps as bars stretching from one 
point to the next instead of jumps) to support learners who are less familiar with these 
models.  Third, the difficulty of the numbers played a role in students’ attention to the structure. 
Students (typically third graders) with strong number sense did not necessarily benefit from 
noticing structure among the jumps; on the other hand, students (such as most of the first 
graders) who used more on guessing or had inaccurate counting were not likely to notice the 
structure. Therefore, to help students notice structure the specific numbers in the items need to be 
chosen carefully. For example, the first graders might have been more successful if the bunny 
was starting at 1 and jumping to either 5, 10, or 11 before jumping to 15. That said, encouraging 
reflection on the visuals of the jumps did promote some students’ curiosity about the relations 
between the two sub-items.  

Even if they did not use the structure of one number line to interpret distances on the second 
number line, students’ use of known facts without explanation provides some evidence that they 
noticed structure within the numbers presented (i.e., adding a ten or making a ten). Regarding 
those who did notice structure, their answers suggest that pairing problems with number lines in 
this way could help students check and reason about the accuracy of their answers and could help 
students think about the relation between number combinations, especially if paired with 
discussion.  Helping them make connections about common distances on the number line could 
later support a focus on distance when using rulers. 
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Interest-driven activities, such as mathematical play, can support student agency, motivation, 
and engagement, and can foster dispositions that reflect authentic disciplinary engagement. 
However, the bulk of research on mathematical play investigates the mathematics that emerges 
in young children’s natural play or in informal spaces such as video games. We introduce the 
term “playful math” to highlight the potential of playifying classroom-based activities, and we 
explore the nature of students’ activity when engaged in playful math tasks in a teaching 
experiment. Our findings show that playful math tasks increased students’ agency, authority, 
investment, and goal selection, as well as encouraged the development of creative, challenging 
ideas. We present a case of two students’ playful engagement in the form of an Explore-
Strategize Cycle and discuss implications of playful math for student engagement. 

Keywords: Algebra and Algebraic Thinking, Cognition, Problem-Based Learning 

Motivation and engagement are critical factors in supporting students’ abilities to understand 
and persist in mathematics (e.g., Durksen et al., 2017). Students’ experiences of self-efficacy can 
foster motivation, which in turn can predict persistence in STEM fields (Simon et al., 2015). 
There remain, however, ongoing challenges with student motivation and engagement in 
mathematics (Martin & Marsh, 2006). These challenges are particularly salient in algebra, which 
represents a critical transition to secondary mathematics, and can act as a gatekeeper, with 
algebra performance often serving as the main criterion to determine a student’s readiness for 
more advanced courses (Riegle-Crumb, 2006).  

One contributing factor to these challenges is that the mathematics taught in algebra can 
emphasize routinized procedures, resulting in students reporting decreased motivation and 
engagement (Herzig, 2004). In contrast, focus on interest-driven activities such as mathematical 
play invites student agency and can increase equitable access to algebra (Widman et al., 2019). 
In fact, much of authentic disciplinary engagement involves many of the same features as play 
(Gresalfi et al., 2018; Jasien & Horn, 2018), and professional mathematicians have been shown 
to engage in mathematical play as part of their disciplinary practice (Lockhart, 2009).  

Mathematical play has the potential to support a productive environment for conjecturing and 
exploring by centering student voices and by offering opportunities to investigate novel ideas 
(Gresalfi et al., 2018). It can also offer important engagement, motivation, and conceptual 
benefits, with studies suggesting positive effects for enjoyment, attitudes, and learning outcomes 
(e.g., Barab et al., 2010; Plass et al., 2013; Wager & Parks, 2014). However, the bulk of existing 
research on mathematical play is situated either in early childhood learning, or in informal spaces 
such as video games. Mathematical play can certainly occur in classroom settings, but less is 
understood about how to incorporate play into the school mathematics that students and teachers 
navigate in classroom settings, particularly for adolescents. Therefore, this study investigates 
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what occurs when incorporating play-based elements in algebra problem-solving tasks. We use 
the term “playful math”, rather than “mathematical play”, to highlight the potential of 
“playifying” classroom mathematical activity. In particular, we address the following research 
questions: (1) What characterizes students’ mathematical activity when investigating rates of 
change within play-based activities? (2) How does playifying mathematical tasks affect the 
nature of students’ engagement, if at all?  

Background Literature: The Potential Benefits of Playful Math 
Mathematics is an area for which interest-driven engagement is not always a consideration in 

pedagogical design, and yet, focus on interest-driven activities can invite student agency and 
create spaces for students to bring in more of their whole identities (Widman et al., 2019). 
Playful math can offer multiple points of access into mathematical ideas, providing opportunities 
for students to create new challenges for themselves and experiment with ideas that go beyond 
familiar operations and connections (Featherstone, 2000). Playful engagement can also free 
students from the stigma of traditional assessment, encouraging a disposition of exploration and 
innovation (Barab et al., 2010). Research investigating children’s and adolescents’ playful math 
suggests both affective and conceptual benefits. Playful math has been shown to support 
increased enjoyment (Plass et al., 2013), increased engagement (Barab et al., 2010), positive 
social interaction and communication (Edo et al., 2009), and to engender positive attitudes 
towards mathematics (Holton et al., 2001). Playful math has also been shown to offer some 
cognitive benefits, supporting children’s geometric thinking (Levine et al., 2005), spatial skills 
(Casey et al., 2008; Levine et al., 2012), and number development and numeracy (Siegler & 
Ramani, 2008; Wang & Hung, 2010). Some studies even suggest increased learning efficacy in 
play-based environments (Barab & Gresalif, 2010; Bodrova, 2008).  

Some benefits afforded by play may occur because playful math offers avenues for students 
to “conjecture and explore in disciplinarily authentic ways” (Jasien & Horn, 2018, p. 624). In 
fact, there are a number of features of play that mirror the forms of engagement seen in the work 
of mathematicians, including open exploration, the use of imagination, being voluntary, being 
ordered and rule governed, and exercising personal agency to determine and pursue goals 
(Gresalfi et al., 2018; Featherstone, 2000). These parallels point to the importance of intellectual 
play in learning mathematics, and suggest a need for research examining ways to make 
mathematics tasks more playful. In particular, the field needs more research exploring playful 
math with older students in middle-school, high-school, and college, particularly in terms of 
incorporating playful elements into classroom mathematics in critical domains such as algebra.  

Theoretical Frameworks: Defining Playful Math and Quantitative Reasoning 
Definitions of mathematical play vary, but all emphasize students’ agency in exploration, 

self-selection of goals, and self-direction in how to accomplish them (Jasien & Horn, 2018). For 
instance, Williams-Pierce (2019) defines mathematical play as “voluntary engagement in cycles 
of mathematical hypotheses with occurrences of failure” (p. 591), and Holton et al. (2001) 
describe mathematical play as the playful exploration that emerges when learners find 
themselves in mathematical contexts with an open goal. One challenge in characterizing play is 
that it describes both a form of activity (such as playing a video game) and a stance or orientation 
towards an activity (Malaby, 2009). We address the second aspect to define playful math as a 
particular form of engagement in mathematics, one that entails (a) agency in exploration, (b) 
self-selection or investment in mathematical goals, (c) self-direction in goal accomplishment, 
and (d) a state of immersion and/or enjoyment.  
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For the purposes of this study, we leveraged situations involving covarying quantities that 
students can manipulate and investigate in order to reason flexibly about function as a 
representation of dynamically changing events (Carlson et al., 2002). By quantities, we mean 
schemes composed of a person’s conception of an object or event, such as a rectangle; a quality 
of the object or event, such as the rectangle’s length or area; an appropriate unit, such as 
centimeters or square centimeters; and a process for assigning a numerical value to the quality 
(Thompson, 1994). By covariation, we refer to the visualization of two quantities’ values 
simultaneously, uniting the quantities’ magnitudes in order to understand that at every instance, 
both quantities have a corresponding value (Saldanha & Thompson, 1998; Thompson & Carlson, 
2017). Researchers argue that students naturally attend to coordinated changes (e.g., Blanton & 
Kaput, 2011), which is supported by studies showing that students typically first analyze 
functional situations from a coordinated change perspective (e.g., Confrey & Smith, 1995; 
Madison et al., 2015). Furthermore, we hypothesized that the visualization opportunities afforded 
by a covariation approach could potentially support the type of open exploration and agency that 
occurs in playful engagement. As we describe in the next section, we built on students’ natural 
ways of reasoning to modify a set of existing covariation activities in order to playify them.  

Methods 
Setting and Participants 

We conducted two teaching experiments (TEs) (Steffe & Thompson, 2000), which both met 
weekly for 60-75 minutes a session for 5 consecutive weeks. The first author was the teacher-
researcher (TR). Both teaching experiments were video and audio recorded, with the exception 
of Day 2 for each, when a technical error prevented video recording. After each session, we 
collected all student written work. The first teaching experiment was a paired TE with two rising 
7th-grade students, Stewie and GJ. The second TE was with three participants, Artemis (a rising 
7th-grade student) and Apollo and Francis (rising 6th grade students). (Participants chose their 
own pseudonyms.) Due to schooling interruptions from Covid-19, the students’ experiences with 
graphing and functions was largely limited to plotting points. The rising 7th graders also had 
some experience with graphing lines, but none of the students had experienced a unit on linear 
functions. For the purposes of this paper, we report on data from the first TE with Stewie and GJ. 
Task Design Principles 

Our aim was to playify existing covariation problems in order to investigate students’ 
mathematical activity when exploring rates of change within play-based tasks. By “playify”, we 
mean increasing the potential for playful math engagement, while also acknowledging that a task 
cannot dictate how students will engage with it. We drew on a set of established research-based 
activities to support understanding of linear and quadratic growth with continuously covarying 
quantities (Ellis et al., 2020; Matthews & Ellis, 2018). In these activities, students investigate 
dynamically growing shapes, determining the rate of change of a shape’s area compared to its 
changing length as it sweeps out from left to right, and then graph that relationship (Figure 1). 

 

 
Figure 1: Growing Rectangle, Stairstep, and Triangle 
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We followed four design principles to playify the tasks (Plaxco et al., 2021): (1) allow for 
free exploration within constraints; (2) allow the student to act as both designer and player; (3) 
engender anticipating within the task; and (4) provide a method for authentic feedback. These led 
to the Guess My Shape activity, in which the students created secret shapes of their choice 
(design principles #1, #2), constructed graphs comparing length and area (design principles #2, 
#3), and then challenged one another or the TR to determine the shape based on the graph alone 
(design principles #2, #3, #4). We hypothesized that the playified tasks would encourage playful 
engagement, without assuming that they would guarantee such engagement.  

For Session 1, we only used the extant covariation tasks (Figure 1), which we call standard 
tasks. For Sessions 2 - 5, we used both the standard tasks and the playified tasks. For each of 
those sessions, we spent the first two-thirds of the session working with the standard tasks and 
the last one-third implementing the playified tasks. Figure 2 shows an example of the types of 
shapes the students encountered and their associated graphs. 
 

 
Figure 2: Shapes and associated length-area graphs 

Analysis 
We employed retrospective analysis (Steffe & Thompson, 2000) in order to characterize the 

students’ conceptions throughout the teaching experiment. We first transcribed each session and 
then produced a set of enhanced transcripts that included verbal utterances, images of student 
work, and descriptions of non-verbal actions. We then analyzed the data with two lenses. With 
the first lens, we identified students’ conceptions of graphs, covariation, and rates of change, 
drawing on Thompson and Carlson’s (2017) framework of variational and covariational 
reasoning, Ellis et al.’s (in press) conceptual acts for constructing linear and quadratic growth 
through covariation, and Moore and colleagues’ graphing actions (Liang & Moore, 2020; Moore 
et al., 2019; Tasova & Moore, 2020). With the second lens, we identified aspects of playful 
mathematics, relying on a combination of a priori codes from our definition of playful math, as 
well as emergent codes that occurred during the coding process through the constant comparative 
method (Strauss & Corbin, 1990). For the purposes of this paper, we focus on the analysis 
conducted through the second lens of playful math, and we describe those codes in the next 
section. The first three authors coded each transcript independently, and then the project team 
met weekly to refine and adjust codes and resolve discrepancies; this iterative process continued 
through eight rounds of code adjustments, until all codes had stabilized.  

Results: The Explore / Strategize Cycle 
Recall that our second research question considered whether and how playifying tasks may 

affect the nature of students’ mathematical engagement. In addressing this question, we turned to 
our playful math codes to assess whether there was any difference in code frequencies across the 
two task types. We developed six playful math codes: (a) self-selection or investment in 
mathematical goals, (b) agency in exploration, (c) investment and/or enjoyment, (d) taking on 
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authority, (e) creative / unusual, and (f) harder math. The first three codes were drawn from our 
definition of mathematical play. Self-selection of goals occurred when students chose their own 
goals or showed evidence of being invested in a goal. Agency in exploration refers to instances 
of students demonstrating agency in how they explored a task or its goals, and investment and/or 
enjoyment occurred when students showed evidence of investment or immersion, and/or 
demonstrated enjoyment of their activity. The remaining three codes were emergent. Taking on 
authority refers to instances of students demonstrating mathematical authority with a task or in 
their engagement with the TR. Creative/unusual applies when students have developed an idea, 
representation, or task that we perceived as creative or novel, and harder math occurred when 
students created a goal or task that introduced challenging mathematics that surpassed the TR’s 
intended set of topics or concepts.  

Across the five sessions we implemented 18 standard and 5 playified tasks. In our initial 
rounds of coding, we applied the relevant code any time we observed a student demonstrating 
evidence of playful engagement, resulting in a total of 130 code occurrences. We then revisited 
the codes to determine how many times they occurred during the standard tasks compared to the 
playified math tasks. We found that our first three codes occurred across both tasks, but with 
greater frequency in the playified tasks, supporting our hypothesis that the playified tasks would 
in fact elicit more playful engagement. The last three codes only occurred during playified tasks 
(Figure 3). The difference in code frequencies is striking given that 78% of the tasks enacted 
during the teaching experiment were standard tasks. 

 

 
Figure 3: Playful math codes across standard and playified tasks 

The difference in code frequencies led us to consider in more detail the nature of students’ 
activity within the playified tasks, addressing our first research question. We found that during 
those tasks, the students demonstrated a novel form of engagement, which we call the Explore-
Strategize Cycle (Figure 4). Within this cycle, students shift back and forth between exploration 
and strategizing. Exploration occurs when students either (a) engage in an action with little or no 
anticipation of an associated outcome, or (b) notice properties of outcomes and wonder about the 
connection between those outcomes and the actions that led to them. For example, in the Guess 
My Shape game, students engaged in exploration when they invented new shapes or when they 
plotted points arbitrarily to try to develop an unusual graph. In contrast, strategizing occurs when 
students engage in actions tied to an anticipated outcome. This could include modifying a shape 
to create a graph that will have a specific property, such as symmetry, or recognizing that a 
particular shape will be difficult to graph. Once we identified the Explore-Strategize Cycle in 
students’ activity, we revisited the entire data corpus to determine whether this cycle occurred 
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across both task types. We found no instances of the cycle in the standard tasks; instead, during 
those tasks, students engaged in repeated acts of strategizing but without associated exploration. 

 

 
Figure 4: The Explore-Strategize Cycle for A Triangle with a Square Hole 

In order to exemplify the nature of students’ playful engagement, we present one Explore-
Strategize cycle, in which Stewie and GJ collaborated on the Guess My Shape game to create a 
task that would stump the TR. Within any cycle, there are both problem spaces and solution 
spaces. As students engage in exploring and strategizing, they narrow the problem space. For 
instance, when playing Guess My Shape, the set of possible problems are determined by the 
shapes that the students draw and graph. As they consider what shape to create and how to graph 
it, they progressively narrow the problem space by exploring characteristics of their invented 
shape (such as symmetry, the inclusion of a hole, and so forth), or by strategically selecting 
aspects of the graph or shape to examine. In doing so, the students exclude shapes that do not 
meet the desired criteria. This can be seen in Figure 4 in the narrowing of the initial problem 
space, “create a shape and associated graph”, down to the final problem they chose to solve, 
“graph the area and length of this right triangle with a square hole”. Once the students have 
narrowed down to the final problem, they shift into the solution space. 

 As GJ and Stewie narrowed the problem space, they set implicit and explicit goals to guide 
their actions. The first decision they had to make was whether to start with a shape or a graph. 
Stewie suggested that they begin with the graph, “because that would be harder”, but GJ wanted 
to begin by drawing the shape. Together, the students had an implicit goal of creating a shape 
that was both feasible for them to construct and still challenging for the TR. Stewie strategically 
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negotiated these goals by suggesting that they create the shape first but give the TR the graph. In 
doing so, he anticipated that determining the shape from the graph would be more difficult than 
determining the graph from the shape. From this strategizing action, the students have now 
narrowed the problem space to shapes within their ability to graph. 

GJ and Stewie then began to explore a series of potential shapes. Each time, their exploration 
phase was followed by a strategizing phase in which they tried to anticipate what the associated 
area-length graph would be. During this process, they rejected multiple shapes as being too 
difficult to graph, including a circle, composite shapes, and shapes with spaces. They also 
rejected shapes as being too simple, such as composite shapes that would have area-length 
graphs identical to trapezoids. GJ then suggested a square with a triangular hole. However, in 
shifting to considering the associated graph (strategizing phase), the students decided that it 
would be easier to graph a shape with a square hole. They then explored a triangle shape with a 
square hole, and then when strategizing how to graph it, anticipated that they could create a 
graph by partitioning their chosen shape into squares. In exploring final shape options, GJ and 
Stewie settled on a right triangle, similar to a prior shape they had graphed, but this time with a 
square hole.  

Once the students reached the solution space, they used two different strategies. Their first 
strategy was to modify a prior graph they had made of a similar triangle without a hole. Stewie 
said, referring to the constantly-increasing area, “It’s going to be a curved line the whole way, 
and the triangle, but then, what do you do?” Stewie was anticipating that the graph would look 
different where the hole occurred, but he trailed off, becoming uncertain about how to account 
for the hole. He then shifted to the second strategy, suggesting that they consider how the area 
and length change together. In doing so, he quantified the length and area segments, writing “4 
in.” for both the length and the height of the triangle. He then suggested they determine the area 
and its change for each unit of length: “At the first point, it was half, all right. For the second 
one, was one and a half.” As he spoke, Stewie began to graph a curve for the first two points. In 
determining the area from x = 2 in. to x = 3 in., the portion of the triangle with a 1-in.2 hole, both 
students decided that the area added would be the same as the area added for the prior increment, 
from x = 1 in. to x = 2 in: 

Stewie:    So, third one is the same as the second one pretty much.  
GJ:   It is. 
Stewie: So, so it would just be like, here. [Draws a horizontal line segment.] 
Stewie and GJ anticipated, incorrectly, that the graph would be horizontal if the amount of 

area added from x = 2 to x = 3 was the same as the amount of area added from x = 1 to x = 2. 
They were correct that the amount of area added was the same across the two increments, but 
they conflated total accumulated area with added area. When next considering the final 
increment, from x = 3 in. to x = 4 in., Stewie returned to a curve, recognizing that the amount of 
area constantly increased throughout the increment. It was later in their conversation with the TR 
that the students realized that the portion of the graph from x = 2 in. to x = 3 in. would be another 
curve, rather than a horizontal line segment.  

The students demonstrated all six playful math codes during this Explore/Strategize Cycle. 
They self-selected multiple goals in deciding what types of shapes to pursue, and they also 
demonstrated agency in exploring those shapes and their associated graphs, freely shifting across 
different potential shapes. In suggesting novel shapes such as circles, composite shapes, and 
shapes with spaces and holes, the students demonstrated ideas that were creative and unusual; 
many of their shapes were markedly different from those that had been previously introduced. 
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Furthermore, their decision to introduce a hole was not only creative, it also represented a new 
challenge (harder math), one that took the TR by surprise and brought up a set of mathematical 
ideas that the TR had not anticipated addressing. In particular, once holes are allowed, area-
length graphs no longer uniquely determine a shape, which raises new questions about the set of 
shapes with holes that can be determined by an area-length graph.  

The students also demonstrated immersion, investment, and enjoyment in the task. Their 
engagement was sustained; they spent 27 minutes on this task alone, and they considered and 
abandoned many shapes before ultimately settling on a final version. When bringing the TR in to 
determine the shape from their graph, they actually changed their minds about the accuracy of 
their graph in the moment. In doing so, the students decided to send the TR away again so that 
they could re-evaluate. Stewie told the TR, “I think I have an idea. I’m, I’m not totally confident. 
Yeah, go away.” In this moment, the students evidenced investment in their graph, as well as 
mathematical authority, deciding not only what the graph should be, but also dictating how the 
process of sharing their work should proceed.  

Discussion  
Playifying tasks did result in more playful engagement during those tasks; in fact, three 

forms of playful engagement (taking on authority, creative / unusual, and harder math) occurred 
only during the playified tasks. However, we still found evidence of playful engagement in the 
standard tasks, which underscores that playful math as a construct describes a form of 
engagement, rather than a type of task. Furthermore, although we only observed explore-
strategize cycles during the playified tasks, this may be due to the fact that the playified tasks 
were also more open-ended tasks. More research is needed to tease out the effects of playifying 
tasks that begin as open-ended tasks. The presence of playful engagement across all tasks 
suggests that playifying mathematics might support a more playful disposition in general. In our 
data, we found that one form of playful engagement, investment and/or enjoyment, increased 
throughout the sessions (occurring six times across the first two days, compared to 34 times on 
the last two days). It may be that sustained engagement in playful math supported students’ 
increased investment in subsequent tasks, regardless of their form.  

One affordance of playful math is that it has the potential to center student voices, 
particularly those voices less likely to be taken up in more traditional classroom settings. Two of 
our design principles were particularly important in this role: allow free exploration within 
constraints, and allow the student to act as both player and designer. By shifting the student’s 
role to designer and encouraging exploration in designing, we opened a space for students to 
introduce their own ideas in ways that were less constrained by pre-determined topics. Their 
resulting ideas were novel, creative, and mathematically challenging, and the students 
demonstrated autonomy and authority. We know that mathematicians, in their own disciplinary 
practice, also experience this type of autonomy and shift back and forth between exploration and 
strategizing in a manner similar to what we observed in our Explore / Strategize Cycles (e.g., 
Lockwood et al., 2016). By playifying mathematics, we set up spaces for more students to adopt 
productive mathematical dispositions. But more importantly, playful math has the potential to 
increase overall engagement and enjoyment of mathematics, particularly for students who may 
not experience traditional mathematics as engaging or enjoyable.  
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Despite significant research exploring students’ quantitative reasoning, few studies have 
explored the semiotic processes that mediate its development. In this report, we present a case 
study to show how one student constructed a semiotic chain for a quantity as he worked with a 
mathematical task. Importantly, we connect frameworks for quantitative reasoning and semiotics 
to make sense of this process. Our findings show how our case student constructed a sign for a 
chunk of change in a triangle to support his later construction of the quantity of amount of 
change of area. We also describe how the case student leveraged these signs to bolster his 
development of the quantity of total area. We emphasize the role of artifacts, such as physical 
manipulatives, a digital applet, and a diagram, in this process. Finally, we discuss the 
implications of this analysis for future studies that explore students’ constructions of quantity. 

Keywords: Algebra and Algebraic Thinking, Cognition, Mathematical Representations 

Students’ construction of quantities is a non-trivial process (Smith & Thompson, 2008; 
Thompson, 2011). According to Thompson (2011), “Too often quantities, such as area and 
volume, are taken as obvious, and hence there is no attention given to students’ construction of 
quantity through the dialectic object-attribute-quantification” (p. 34). In this paper, we seek to 
investigate this dialectic by bridging two perspectives—namely, quantitative reasoning and 
semiotics. Specifically, we investigate the following research question: What can a semiotics 
lens reveal about a learner's constructions of quantities? 

In this report, we first briefly present the frameworks of quantitative reasoning and semiotics, 
with attention to the ways we intend to use these perspectives concurrently. Then, we describe 
the method and findings from a revelatory case study (Yin, 2018) of one student’s construction 
of a semiotic chain related to the quantity of an amount of change in a dynamic task. We discuss 
the implications of these findings for researchers and practitioners intending to support students 
to engage in quantitative reasoning. 

Quantitative Reasoning and Semiotics 
We follow Smith and Thompson (2008) in conceptualizing quantities as mental constructions 

of measurable attributes of objects or phenomena. Quantities establish the “conceptual content” 
(Smith & Thompson, 2008, p. 10) students may represent mathematically (Paoletti & Moore, 
2017; Thompson, 1994). Quantitative reasoning, then, entails constructing and reasoning about 
relationships between conceived quantities. 

Individuals can conceive of a quantity that changes its measure (or varies). Consider, for 
instance, the quantity of changing area in a growing triangle (https://ggbm.at/t6d63cun). An 
individual may develop a smooth image of change for the area of the triangle such that it “[takes] 
on values in the continuous, experiential flow of time,” (Castillo-Garsow et al., 2013, p. 34). For 
instance, they can imagine an animation of the triangle growing continuously. An individual may 
also develop a chunky image of change, entailing a visualization of completed intervals without 
attending to variations within an interval. For example, one can imagine the triangle’s growth in 
snapshots over time. Although both smooth and chunky images are important for students to 
develop, chunky images of change can also enable the conceptualization of another important 
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quantity—an amount of change (hereafter AoC) between intervals (Carlson et al., 2002). 
Researchers have highlighted the importance of students’ constructing amounts of change, for 
example, to differentiate between linear and non-linear growth (Paoletti & Vishnubhotla, in 
press), conceive of rates of change (Carlson et al., 2002), and represent quadratic (Wilkie, 2019, 
2021) and trigonometric (Moore, 2014) relationships. 

Given the importance of imagery in conceptualizations of quantity, we conjecture that one’s 
mental representations necessarily meditate a student’s quantity construction and corresponding 
meanings. Presmeg’s (2006) model for semiotics in mathematics education (adapted from Peirce, 
1998) provides a way to describe this process. Presmeg argued that connecting ideas in 
mathematics involves the negotiation of signs, which is the focus of semiotics. Learners 
construct signs as they strive to make sense of relationships between representations and their 
associated objects, ultimately developing interpretations for the object and representation. 
Presmeg follows Peirce (1998) in identifying signs as composed of these three components—
object, representamen (or representation), and interpretant (or interpretation)—which operate 
together in triadic relationship as meaning is negotiated. Figure 1a shows a model for a sign. 

 

 

 
(a) (b) 

Figure 1: (a) The triadic relationship of a sign (Peirce, 1998) and (b) the process of semiotic 
chaining (Presmeg, 2006). 

To illustrate and define these terms, consider an animation of a continuously growing 
triangle. One may conceive of the changing triangle (i.e., the object, or what a sign could stand 
for) and construct this object in conjunction with a mental image of the changing triangle (i.e., 
their representamen of the object, or the perceivable part of a sign). In the process of relating 
object and representamen, they can interpret the changing triangle in relation to a quantifiable 
attribute such as its area. This would be regarded as an interpretant for the individual, which 
explains the relationship they constructed between the object and the representamen. This 
process of arriving at an interpretant is an act of meaning making for the individual. 

As individuals continue to engage with new ideas, they can call to mind their previous signs 
(i.e., triads of object-representamen-interpretant) and construct new ones. Once established, the 
whole of a sign can be regarded as an object onto which new representations and meanings can 
be built (e.g., Sfard, 1991). Presmeg (2006) refers to this process as semiotic chaining, whereby 
previous signs are nested within a new sign which “comprises everything in the entire chain to 
that point” (p. 169). Semiotic chains can thus explain how learners’ meanings are enriched as 
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they continuously connect the signs they make. We present a recreated visual of Presmeg’s 
conceptualization of this process in Figure 1b. 

As suggested in our example, objects, representations, and interpretations may be motivated 
by the artifacts with which one engages (e.g., animations, diagrams, manipulatives). As learners 
interact with and reconcile their interpretations of multiple artifacts, each artifact can add nuance 
to associated signs the learner possesses (Radford, 2010). Maffia and Maracci (2019) define this 
process as semiotic interference, which is “an enhancing of signs emerging from the contexts of 
use of different artifacts and referring one to the other” (p. 3-58). That is, as a learner engages a 
new artifact, they may translate their interpretations of “old” signs from one context in relation to 
new ones in another, furthering the development of meanings associated with the sign. In this 
way, semiotic interference describes how signs become decontextualized and generalized, and 
thereby more meaningful. 

Method 
We present a revelatory case study (Yin, 2018) to elucidate how one student’s quantitative 

reasoning developed through a process of semiotic chaining and semiotic inference. The case 
study was drawn from a larger teaching experiment (Steffe & Thompson, 2000), where a pair of 
students engaged several tasks designed to elicit and support their covariational reasoning, 
detailed in Paoletti and Vishnubhotla (in press). We chose to focus on the case of a single 
student’s activity in the beginning stages of one such task, as this account revealed how artifacts 
played a role in his development of meanings for a quantity via semiotic chaining. 
Participant, Context, and Task 

Our case student, Vicente, attended sixth grade at a public middle school in the Northeastern 
United States at the time of data collection. He engaged with the tasks of the teaching experiment 
with a partner, Lajos. One teacher-researcher (TR, second author on this paper) conducted the 
teaching experiment with the two students over 12 sessions. 

The students engaged the Growing Triangle Task, which asked them to consider the 
relationship between the length of the base segment and area of a growing triangle, presented to 
them through a dynamic applet (seen in Figure 2a). The ultimate goal of the Growing Triangle 
Task was for students to graph the covariational relationship between these two quantities. 
However, in the three 40-minute sessions that Vicente and Lajos spent working through the task, 
only about half of the time involved graphing activity. The TR first sought to develop students’ 
meanings for key quantities in the scenario (e.g., base segment length, total area, AoC of area). 
We focus this report on Vicente’s pre-graphical work as it allows us to provide evidence of his 
process of semiotic chaining as he constructed the AoC of area. 

To support the goals of developing meanings for situational quantities, the TR designed 
multiple artifacts to mediate students’ engagement with the task. Students had access to a digital 
applet that could change to display the triangle’s growth as smooth or chunky (Figure 2a). They 
also had access to physical manipulatives of instantiations of the growing triangle (Figure 2b) as 
well as trapezoidal pieces intended to represent the quantity of AoC of area between 
instantiations (Figure 2c). We note that, in addition to these prepared artifacts, the students and 
TR also generated artifacts (e.g., diagrams) in the moment to support their work. 
Data Collection and Analysis 

We audio- and video-recorded Vicente and Lajos’s activity using a free-standing camera and 
screen capturing software. We also collected and scanned written activity from each session. We 
then transcribed the recordings, including verbal utterances, gestures, and the artifacts students 
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engaged (both prepared and actor-generated) to support our investigation of the artifacts’ 
mediating role in Vicente’s construction of quantity.  

As we began to respond to our research question through our analysis of the data, we 
identified transcript segments of interest and the emerging meanings associated with them. First, 
to ensure we captured Vicente’s activity and signs related to AoC of area in their context, we 
organized our transcript into analytical units bounded by the TR’s central prompts (e.g., “How 
are they changing together?”). Then, through open and axial analysis (Corbin & Strauss, 2015), 
we examined the data for the types of meanings and related signs Vicente expressed around 
AoC. After this process, we analyzed each segment to consider how Vicente used or referenced 
artifacts in his expressions of meanings, allowing us to conjecture the occurrence of semiotic 
interference. We used these analyses to create models of Vicente’s semiotic chain related to AoC 
of area in connection with his engagement with artifacts. Throughout the analysis we maintained 
a chain of evidence connecting our findings to data to establish trustworthiness (Yin, 2018). 

 

   
(a) (b) (c) 

Figure 2: Prepared artifacts from the Growing Triangle Task. 

Results 
In this section, we highlight the development of Vicente’s semiotic chain involving the 

quantity AoC of area in the Growing Triangle Task. Vicente began his activity conceptualizing a 
chunk of change in the triangle (Sign 1). He built upon this sign to later elaborate this object as a 
quantity—an AoC of area (Sign 2). Finally, we show how Vicente connected these objects in his 
elaboration of the total area of the triangle (Sign 3). Throughout, Vicente’s activity promoted 
semiotic interference across artifacts, which functioned to trigger, enhance, and connect signs in 
his semiotic chain. 
Sign 1: Chunk of Change in Triangle 

The activity we present in this section shows how Vicente developed a sign for chunk of 
change in the triangle. This involved his understanding that a chunk could be added after an 
iteration of each triangle to reach the next (e.g., move from TA1 to TA2 in Figure 2b). This 
interpretant emerged through Vicente’s active meaning making as he negotiated the relationship 
between the growing triangle (an object) and the chunked compositions he came to see in that 
triangle (his representamen). Vicente enhanced his meanings for this sign through semiotic 
interference as he shifted across digital applet and physical manipulative artifacts. 

To begin the Growing Triangle Task, the TR displayed the initial applet (smoothly and then 
in chunks) to Vicente and Lajos. We posit Vicente established the growing triangle as a 
dynamically growing object in the context of the digital applet. Furthermore, the chunky 
representation introduced the possibility for Vicente to conceptualize another object—namely a 
chunk of change. 

The TR next introduced a new artifactual context to the students through physical 
manipulatives. He stacked two triangle manipulatives (e.g., TA1 and TA2 in Figure 2b) on top of 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

802



 

one another (see Figure 3a) and asked Vicente, “Alright so I’m going from this one [taps the 
smaller triangle] to this one [taps the larger triangle]. How much has the area changed by?” 
Initially, Vicente responded attempting to determine a value: “Maybe by 2…like 2 of these [taps 
smaller triangle twice].” To explore how Vicente was mentally representing a change in the 
triangle, the TR prompted Vicente to color in “how much the area changed by from the first to 
the second.” Vicente proceeded to shade the darker area in Figure 3a. For Vicente, this was an 
instance of semiotic interference; he reinterpreted his growing triangle object and representation 
of a chunked composition from the digital applet to the context of the physical manipulatives. 

 

   
(a) (b) (c) 

Figure 3: Displays of Growing Triangle Task in Vicente’s construction of chunk of change. 

Next, the TR prompted Vicente to consider his change in area meaning in the digital applet. 
The TR displayed the applet in chunks, showing the smallest triangle and then its second 
iteration (producing the same visual as Figure 3a, on a computer screen). He asked Vicente about 
“what shows the change in area,” and Vicente again pointed to the grey area in Figure 3a. Given 
the digital applet’s unique affordance for introducing a growing triangle object, we conjecture 
that this action may have supported Vicente to connect his representation of the chunked 
composition of the growing triangle with a notion of dynamic change. 

Indeed, Vicente’s subsequent activity indicated that he was beginning to develop a meaning 
for this change as a chunk added to previous instantiations of the triangle. Importantly, this 
became salient when the TR prompted him to again revisit the physical manipulatives, furthering 
the semiotic interference. The TR asked Vicente, “Do you see any pattern… with respect to how 
the changes in area are growing?” The TR arranged overlapping triangle manipulatives (e.g., 
TA1, TA2 and TA3 in Figure 2b) in a display like Figure 3b. Vicente’s explanation suggests that 
chunks of change emerged through additive operations. He stated:  

I think that it’s just, copying off each other… you can see if you counted like it, this [points 
to the darkest grey area in Figure 3b], this would be a bigger one, so you can just add it over 
[gestures back toward smallest triangle in Figure 3b]. 

As Vicente finished his explanation alluding to meanings for addition, Lajos picked up a new 
manipulative piece—a trapezoid, as shown in Figure 2c—and placed it against the longest side 
of the current display of stacked triangles. Vicente explained to the TR, “You can just add 
another one of the same size… you can kind of add that like there [in Figure 3c].” This 
interaction shows how the introduction of this new artifact (a trapezoidal manipulative) 
coincided with even greater emphasis on addition in Vicente’s language about the chunk of 
change. Taken together, this suggests that semiotic interference (across the digital applet, 
physical triangle manipulatives, and physical trapezoidal manipulatives) supported Vicente’s 
development of a sign for a chunk of change in the triangle: that is, a chunk of change had 
become a new object that could be added after an iteration of each triangle to reach the next. 
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Sign 2: Amount of Change (AoC) of Area 
As described above, Vicente had an interest in numerically describing the magnitude of the 

chunk of change object he was forming once he first characterized the object (e.g., “Maybe [the 
area changed] by 2 [of the smallest triangles]”). At the end of the first session, the pair returned 
to the physical manipulatives, stacking copies of the smallest triangle on top of the trapezoidal 
pieces (now representing chunks of change) to measure the chunks. They recorded their findings 
in a diagram (Figure 4a). Thus, Vicente established two artifacts that later became central to his 
semiotic interference in the development of an AoC of area in his semiotic chain: the physical 
manipulatives (both triangular and trapezoidal) and the diagram. 

 

 
 

(a) (b) 
Figure 4: Displays of Growing Triangle Task in Vicente’s construction of AoC of area. 

When the pair of students returned for the second day of the Growing Triangle Task, the TR 
intended to have them to renegotiate their sign for an AoC of area, and he employed both the 
physical and diagrammatic artifacts to do so. First, referring to their diagram (Figure 4a) the TR 
asked, “What were these numbers representing, what were you talking about with these?” As 
Vicente swiped his finger over each corresponding trapezoidal component in the diagram, he 
described that “in here you could fit 3, then here you could fit 5, then here you could 7… [of] the 
little triangles.” We interpret that Vicente understood the numeric values as representing 
measures of AoC of area in terms of the first triangle (e.g., AoC 1 in Figure 2c). Moreover, the 
diagrammatic artifact provided a recorded, concretized representation of chunks of change and 
their values he could draw upon in the construction of his sign for AoC of area. 

The TR, however, encouraged Vicente to extend his meanings back again to the physical 
manipulative context of the scenario. The manipulative context was important in Vicente’s sign 
for AoC of area due to its previous interference with the digital applet. Arranging the shapes as 
in Figure 4b, the TR asked Vicente, “So when you say what fits 3 of what?” Vicente at first 
picked up the larger triangle (i.e., TA2 in Figure 2b) and attempted to arrange copies of the 
smallest triangle on top. However, he quickly decided “not this one,” picked up the trapezoidal 
piece (i.e., AoC2 in Figure 2c), and began to arrange the small triangles on top of there. He was 
able to fit 3 small triangles and affirmed, “Yeah, this one.” We note that Vicente’s activity was 
effortful, indicative of the semiotic interference involved in his meaning making for AoC that 
extended across diagrammatic and manipulative contexts. Collectively, Vicente’s negotiations 
across artifacts indicate the development of a new sign in his semiotic chain: an AoC of area. For 
him, the AoC of area was an object with magnitude that could be determined using the small 
triangle’s area as a unit, establishing a quantity constructed from his sign for a chunk of change. 
Sign 3: Total Area of the Triangle 

Vicente’s chaining of signs for chunks of change and AoC of area supported him in 
developing new meanings for a related object: total area in the growing triangle. As described in 
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the previous section, the TR had now re-introduced total area manipulatives of the growing 
triangle (e.g., TA3 in Figure 2b). In this interaction, the TR arranged trapezoids and a triangle 
piece on the table in front of the two students (see Figure 5a). He asked the pair, “This [smallest 
triangle] is 1; how big is that [gesturing to large triangle displayed in Figure 5a]?” 

 

  
(a) (b) 

Figure 5: Displays of Growing Triangle Task in Vicente’s construction with total area. 

Vicente explained his reasoning to Lajos in a way that first expressed a meaning for the 
relationship he understood to exist between the largest triangle and trapezoidal pieces in the 
arrangement of Figure 5a. He argued that “this [tapping on the largest triangle in Figure 5a] is 
the same as that [gesturing to the trapezoids pushed together in Figure 5a].” He then picked up 
the largest triangle piece and placed it on top of the trapezoidal arrangement to show it “fits in 
perfectly.” We note Vicente’s argument established a sign for total area as an object related to 
artifacts that had established his sign for AoC, suggesting a new link in his semiotic chain. 

Vicente’s next statements demonstrated the salience of his sign for AoC of area as he found a 
measurement of total area. At first, he gestured to each progressively larger trapezoid in the 
manipulatives, declaring that they had values of 3 and 5, respectively. When explaining to Lajos, 
he revealed how his own meanings for the AoC object had been supported through the semiotic 
chaining he had established with the diagrammatic artifact. Specifically, Vicente explained, “this 
one [pointing to manipulatives as in Figure 5b(i)] is that [pointing to diagram as in Figure 
5b(ii)], so you can fit 3 [small triangles] in there.” Here, Vicente directly related the area of the 
trapezoidal physical manipulatives to the areas noted in their diagram. 

Finally, Vicente called upon his initial interpretations of chunks of change to determine the 
total area of the triangle. He concluded that “1 plus 3 is 4, and then… 4 plus 5 is 9,” identifying 
that 9 would be the total area of the given triangle. We note that, in this explanation, Vicente 
does not express his conclusion for total area as simply an addition of consecutive bands in the 
composite triangle (that is, 1 + 3 + 5 = 9). Instead, Vicente considers each intermediate total area 
in a way that might reflect an AoC of area as adding on to previous total areas in each step (i.e., 1 
+ 3 = 4, then 4 + 5 = 9). This further suggests the critical role of Vicente’s previously constructed 
signs in his reasoning. Viewing Vicente’s argument holistically, AoC of area (which was based 
on his sign for chunk of change) formed the basis of his exploration of magnitude with a related 
quantity (and sign) of total area. We summarize our hypothesis about Vicente’s enacted semiotic 
chain in Figure 6. This figure shows the process by which his sign (1) for a chunk of change in 
the triangle became an object for his sign (2) AoC of area, and then these subsequently became 
objects for a sign (3) for total area of the triangle. 
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Conclusion and Discussion 
In this paper, we brought together quantitative reasoning and semiotics frameworks to 

present a case study that highlighted the emergence of a semiotic chain (Presmeg, 2006) of a 
student’s construction of quantity through his engagement with multiple artifacts. Specifically, 
we anchored our analysis in Vicente’s development of signs related to the quantity of AoC of 
area. This included his initial constructions of a chunk of change in the triangle and his later 
connection to the total area of the triangle. Moreover, our evidence showed the processes of 
semiotic interference (Maffia & Maracci, 2019) that account for the enhancement of Vicente’s 
signs (e.g., building a sign for the quantity of AoC of area by connecting notation in a diagram to 
his work with physical manipulatives). Addressing our research question, a semiotic lens on 
Vicente’s quantitative reasoning helped us to make sense of the mediated processes that 
supported him as he developed associated meanings in conjunction with his representational 
activity through both the processes of semiotic interference and semiotic chaining. 

 

 
Figure 6: Model of Vicente’s construction of a semiotic chain involving AoC of area 

By identifying and describing the signs Vicente related to his sign for AoC of area, we 
charted how conceptualization of this specific quantity may develop. These findings suggest that 
scaffolded engagement with multiple artifacts such as applets, manipulatives, and diagrams may 
support learners’ development of AoC in other types of tasks, particularly those involving non-
linear relationships (e.g., Wilkie, 2021). They may also suggest features that could be productive 
to investigate beyond the scope of AoC (e.g., a quantity’s relationship within and across other 
quantities), thus contributing to new potential lines of inquiry in the field of quantitative 
reasoning (e.g., Smith & Thompson, 2008). 

Although not described in this paper, we also note that Vicente’s signs relating to AoC of 
area in the Growing Triangle Task did not end with the semiotic chain in Figure 6. In fact, he 
continued to engage with these signs and construct more sophisticated meanings as he interacted 
with new artifacts (e.g., constructing and interpreting graphs) and as he anticipated smooth 
change in area (see Paoletti & Vishnubhotla, in press). By maintaining a semiotic lens on 
Vicente’s activity, this work has offered new understandings of students’ images and meanings 
for changing quantities (Carlson et al., 2002; Castillo-Garsow et al., 2013). Through a combined 
focus on quantities, artifacts, and the meaning-making process that relates them, we intend for 
this work to open new directions for research into how multiple artifacts can support students’ 
conceptions of quantity. 
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PROBLEM SOLVING WITH UNDERSTANDING 
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It is not well understood when, how, or why students seek a deep understanding of the underlying 
mathematics relevant to the problems they try to solve. This study of five pairs of UC Berkeley 
students (undergraduate n=4, graduate n=6) solving challenging mathematics problems 
indicated consequential differences in the degree to which they worked to understand underlying 
principles. Drawing on Hiebert and Carpenter’s (1992) framework on understanding and 
Schoenfeld’s (2010) model of decision making, I developed an observation system with a coding 
scheme to investigate students’ orientations with respect to deep understanding. Preliminary 
results show that the system captures students’ divergent choices of moves and illuminates 
aspects of their understanding-related orientations that are not otherwise evident. This approach 
holds further potential as both a teaching and a learning tool in mathematics classrooms. 

Keywords: Problem Solving; Mathematical Processes and Practices; Measurement 

Helping students understand is one of the most important goals in mathematics education 
(Sierpinska, 1994; Duffin & Simpson, 2000; Common Core State Standards, 2010), as is 
problem solving (NCTM, 1980, 2014; Schoenfeld, 1992). Literature shows that understanding 
can be viewed as recognizing relationships and making connections between pieces of 
information (Davis, 1984; Greeno, 1977; Hiebert, 1986; Michener, 1978). According to Hiebert 
and Carpenter’s (1992) Representation and Connection framework, the degree of understanding 
is determined by the number, accuracy, and strength of connections, and that a richly connected 
network allows students to draw on and apply knowledge flexibly (Hiebert et al., 1997). But 
understanding “is not an all or none phenomenon” (Hiebert & Carpenter, 1992, p. 69); it can be 
rather limited if only some of the potentially-related ideas are connected, and that a deep 
understanding necessarily implies students’ rich, accurate, and robust networks of connections. 

For the purpose of this study, I define problems as unfamiliar, perplexing, and challenging 
tasks that one attempts to solve; they should be distinguished from routine exercises of which 
one knows the solution or with which one practices what has just been taught. Building on 
Schoenfeld’s (1985) framework of what and how factors affect problem-solving outcomes, this 
study contributes to the understanding of when, how, and why students seek a deep understanding 
of the underlying principles when they solve challenging mathematics problems. It might seem 
obvious that students should always try to understand the problem and the underlying 
mathematics when they solve a problem; yet according to my data, that practice does not seem 
natural — in fact, the first principle in Pólya’s (1945) groundbreaking book How to solve it is to 
understand the problem. Drawing from Schoenfeld’s model of how people think and act in goal-
oriented activities (2010), I hypothesize that an underlying major factor in successful problem 
solving is the extent to which students are oriented towards deep understanding. The main goal 
of this paper is to build an observation system with a coding scheme that captures students’ 
choices of moves and that sheds some light on their hidden orientations with respect to deep 
understanding. 

Methods 
Think-aloud protocols (Schoenfeld, 1985; Leighton, 2017) were the main data sources. Five 
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self-selected pairs of friends (defined by feeling comfortable discussing math together) from UC 
Berkeley participated in my study: two pairs were STEM undergraduates and three pairs were 
Education Ph.D. students. The pairs participated in the study sequentially at a reserved 
conference room at UC Berkeley, where I emphasized that the correctness of their solution was 
of no interest to the study; their thinking process was what mattered. To ease their anxiety, I gave 
them some warm-up exercises to practice thinking aloud and I stressed that the problem required 
nothing more than high-school knowledge. When they felt ready, I handed out the problem sheet 
with scratch paper and stood behind their seats to focus my camera on their writing. After each 
pair finished, I collected their writing artifacts and transcribed the videos. The problem-solving 
time ranged from 18 minutes to 77 minutes, with a median of 28 minutes. 

Problem-Solving Task. A teacher wrote a large number on the board and asked her 30 
students to tell about the divisors of the number. The 1st student said, “The number is divisible by 
2.” The 2nd student said, “The number is divisible by 3.” The 3rd student said, “the number is 
divisible by 4.” ... The 30th student said, “The number is divisible by 31.” The teacher then 
commented that exactly two students, who spoke consecutively, were wrong. Who was wrong? 

The Observation System. The goal of the observation system was to highlight when and 
how students showed evidence of working to develop a deep understanding of the underlying 
mathematics when they solved the given problem. In formulating the system, I reviewed the 
videos, developed transcripts, identified emerging themes, applied preliminary codes to the 
transcripts, and repeatedly reflected and revised the system. As shown in Figure 1, the current 
version highlights four different aspects of the students’ orientations with respect to deep 
understanding: Examine the Problem Statement (ES); Examine the Proposed Ideas (EI); Suggest 
Solving with Multiple Approaches (MA); and Problematize the Ongoing Work (PW). Figure 2 
provides descriptions and examples for each of the four dimensions of the observation system. 

 

 
Figure 1: Observation System 

Dimension Description  Examples 
ES: Examine 
the Problem 
Statement 

Clarify, reread, or 
rephrase the problem 
statement. 

(Pair #3) E: The teacher then commented that 
exactly two students, exactly, that means all the 
other students were right? 

EI: Examine 
the Proposed 

Ideas  

Explicitly engage with 
partners’ proposed ideas 
by (a) rephrasing what 
has just been said, (b) 

(Pair #2) S: I think that we can, because we use 
the 5 and the 4 thing. 
J: Okay, so we have to choose a pair that doesn’t 
overlap. 
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using their own 
reasoning to justify their 
partners’ ideas, (c) 
suggesting immediate 
consequences, or (d) 
asking follow-up 
questions that probe for 
further clarification or 
justification. 

(Pair #2) J: We can cross out 21. 
S: Oh yea, cuz 21, I mean this is the same as 3 
and 7, yeah. 
(Pair #4) N: 7, 14. And every... You are 
cross[ing] out every single... 
(Pair #3) E: Do you do 20 to 25, I’ll do 26 to 31? 
L: Do we, what do we do with the numbers? 
(Pair #2) S: Wait, hold on a second, tell me why? 
Cuz I thought 27 was a candidate. 

MA: Suggest 
Solving with 

Multiple 
Approaches  

Explicitly suggest 
solving the problem in 
more than one way. 

(Pair #2) S: So... Err, let’s do... We can maybe 
just solve using both ways. We can do your way 
first, and then if we have time, we can do my 
way. 

PW: 
Problematize 
the Ongoing 

Work  

Make problems of their 
ongoing work; suggest 
doing something more 
than finding the answer. 

(Pair #2) S: Yea I think it is [the answer], but I 
think we should just spend more time talking 
about why it is that 16, like why it is that the 
logic does work for 24 but doesn’t work for 16... 

Figure 2: Coding Scheme 

Results & Analysis 
Figure 3 summarizes (ES) when and how many times each pair examined the problem 

statement, (EI) how many times each pair examined the proposed ideas, (MA) how many times 
each pair suggested solving with multiple approaches, and (PW) how many times each pair 
problematized their ongoing work. 

 
Pair ES 

(Red arrows show when participants examined the problem) 
EI MA PW 

#1 
 

19 1 1 

#2 
 

34 1 2 

#3 
 

11 0 0 

#4 
 

16 0 0 

#5 
 

0 0 0 

Figure 3: Results 

Examine Problem Statement (ES) & Proposed Ideas (EI). Every pair examined the 
problem statement at some point. However, only pair #2 examined the problem constraints to 
their satisfaction at the beginning –– all other pairs went back and clarified the problem setup in 
the middle of their problem-solving process. Every pair except pair #5 examined the proposed 
ideas; one possible explanation is that a participant in pair #5 simply pursued his approach 
without any serious consultation with his partner, despite his partner showing clear evidence of 
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not being able to follow along. Unfortunately, the acts of ignorance and of murmuring without 
communication seemed to result in an unproductive joint problem-solving space and even the 
failure in pair #5’s problem solving.  

Suggest Multiple Approaches (MA) & Problematize Ongoing Work (PW). Only pairs #1 
and #2 showed evidence of attempting to solve in more than one way and problematizing 
established ideas or solutions; the other three pairs did not. Why did some students want to spend 
time doing extra things that were not expected from them and that would not earn them any 
external rewards, while others did not? It seemed plausible that their dominant goals were 
different: Some might aim for making more connections and developing a deeper understanding 
of the underlying principles, while others might have a stronger answer-getting motivation. On 
the assumption that orientations fundamentally shape the way students engage with problems, 
investigating the extent to which they work to develop a deep understanding sheds light on what 
and how much they gain from their problem-solving process. 

Discussion 
Pairs #1 and #2 showed much evidence along all four dimensions, suggesting that they were 

very likely to have a strong orientation towards deep understanding. This aligns well with my 
observation that they appeared to care much about connecting various ideas and developing 
deeper understandings of the underlying principles. In contrast, pair #5 showed evidence of only 
examining the problem statement. To the extent that the four proposed dimensions are sufficient 
to capture students’ attitudes, this result suggests that pair #5 were likely to have a weak 
orientation towards deep understanding. Pairs #3 and #4 seemed to be intermediate cases, 
showing evidence along the first two dimensions (only). 

These results give rise to clear profiles of the students’ orientations with respect to deep 
understanding, and appear to capture meaningful differences among groups that also align with 
my impressions as an observer. While much research is needed to test, refine, and problematize 
the proposed system, there is reason to believe that this is a step forward into highlighting and 
investing students’ understanding-related orientations in problem solving. Of course, some may 
argue that showing no evidence of exploring different approaches under this laboratory setting 
may not imply that the students were not oriented towards deep understanding; it could simply 
be that they were not aware of this expectation — and I agree. But what if we are in a classroom 
with a norm of challenging oneself to look for alternative solutions and respectfully discussing 
different approaches with others? The proposed observation system holds great potential as a 
teaching tool for teachers to diagnose students’ current states of orientations and model desirable 
problem-solving behaviors, and as a learning tool for students to self-evaluate and self-guide 
their development of productive mathematical practices.  
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MANIPULATIVES, AFFORDANCE AND THE LEARNING OF FRACTION: THE 
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This study investigates the use of manipulatives by elementary students working on a fraction 
task. Extending previous work on the role played by the manipulatives in students' activity, we 
aim at describing how the choices made for the task design disrupt students’ activity, creating 
opportunities to learn. The theoretical underpinnings allow envisioning the students’ activity 
through the concept of routine and the manipulatives through the concept of affordance. The 
analysis of the students' mathematical activity allows us to better understand how manipulatives 
can serve as breaching elements, leading students to modify their mathematical activity, and 
thus, creating opportunities to learn. 

Keywords: Elementary School Education, Rational Numbers, Instructional Activities and 
Practices, Mathematical Representation 

In this paper, we draw on our previous research (Jeannotte & Corriveau, 2020; Corriveau et 
al, forthcoming) about the role played by manipulatives in students’ activity when solving 
arithmetical tasks. More specifically, we are studying the relation between didactic choices 
linked to manipulatives and the students’ mathematical activities in a task about fractions. We 
aim to describe how those choices disrupt students’ activity, creating opportunities to learn. To 
do so, we first describe why it is still important to research the use of manipulative in 
mathematics classrooms. We then define mathematical activity from a commognitive 
perspective. The concepts of routines and affordance are theoretically explicated to frame our 
methodological and analytical work. The result section presents the main routines that emerged 
from our analysis of a mathematical task called the “Twelfth task”. We illustrate with examples 
how those routines are bound to the manipulatives used in this specific task and how different 
didactic choices may create different opportunities to learn.  

Manipulatives and Mathematical Learning 
The use of manipulatives for teaching arithmetic at the elementary level is encouraged and 

even prescribed by several curricula around the world (OCDE, 2019). Thus, it is often seen as an 
efficient teaching practice and is rarely questioned (authors, 2020). In particular, the learning of 
fractions, considered as one of the most difficult areas in elementary school mathematics, seems 
to benefit from this use (Carbonneau et al., 2013). However, research on manipulatives mainly 
focuses on whether manipulatives support student achievement in mathematics (e.g., Moyer, 
2001), without articulating the uses of manipulatives and the different choices made when 
designing the educational setting. Some research sheds light to a certain extent on some didactic 
variables. For example, the use of familiar manipulatives may mislead students (McNeil & 
Jarvin, 2007) or, for the same task, two different manipulatives can lead students to engage in 
different mathematical activities (Authors, 2020). Familiarity and types of manipulatives are two 
examples of variables among others that can shape the students’ mathematical activity. In this 
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paper, we present a fraction task that students solve using pattern blocks. We aim to show how 
different choices, especially the choice of limiting the number of Pattern blocks available to 
students, introduce breaching elements that can disrupt the students’ activity and thus create 
opportunities to learn. 

Conceptual Framework 
From a commognitive point of view, mathematics is defined as a particular form of 

communication, with its vocabulary, its visual mediators, its distinct routines, and its narratives 
generally accepted by a mathematical community (Sfard, 2008). By positioning ourselves in this 
sociocultural and non-mentalist perspective, manipulatives, and therefore their use, become part 
of the mathematical activity developed in the culture of the classroom. The use of manipulatives, 
when defined in commognitive terms, is viewed as participation in the mathematical discourse of 
the classroom through the manipulation of physical apparatus. In other words, using 
manipulatives is not a concrete version of mathematical activity, but a mathematical activity with 
its specific vocabulary, visual mediators, and narratives generally accepted by the classroom. For 
example, we often hear students say, “I am breaking down the tens into units” (referring to base-
ten blocks) instead of “I am dividing the tens into units.” 
The Concept of Routine 

Sfard (2008) defines a mathematical routine as a repetitive pattern of discourse discernable 
by the vocabulary and visual mediator used, and the narratives produced. Moreover, a routine is 
linked to the concept of ‘task situation.’ A task situation is “any setting in which a person 
considers herself bound to act—to do something” (Lavie et al., 2019, p. 159). For example, a 4th-
grade student may refer to number fact to calculate mentally twelve divided by three to answer 
the question: “What is the third of twelve?”. Another may draw a rectangle, divide the rectangle 
into four horizontal lines and three vertical lines to form twelve equal parts, and color four of 
them. Thus, “a routine performed in a given task situation by a given person is the task, as seen 
by the performer, together with the procedure she executed to perform the task” (Lavie et al., 
2019, p. 161, italic added). Manipulatives can play distinct roles in routines. We can recognize 
manipulatives through vocabulary. Indeed, when using Pattern blocks, students will refer to a 
kind of block by its color or its shape. We can also observe students act upon the manipulatives, 
by moving them, stacking them, regrouping them in certain ways. Manipulatives can also play 
the role of visual mediator, representing mathematical objects.  

Learning is defined as a change of discourse, and more specifically as a change of routine 
(Lavie et al., 2019). Discourse, therefore, progresses in an individualization-(re)communication 
direction (i.e., learning) through changes in routines, thus in vocabulary, visual mediators, and 
accepted narratives, what Lavie et al. (2019) name routinization. Therefore, because we aim to 
describe how manipulatives can create opportunities to learn, we are particularly interested in 
moments when routines seem disrupted, i.e., when students are bound to act differently.  
The Concept of Affordances 

We call affordances the relational properties of an object within a certain environment that 
are bonded to certain actions. “An affordance relates attributes of something in the environment 
to an interactive activity by an agent who has some ability, and an ability relates attributes of an 
agent to an interactive activity with something in the environment that has some affordance” 
(Greeno, 1994, p. 338). For example, a pen will generally be seen as an object to write with, but 
it could be seen as a tool to unlock a door. For some people with long and thick hair, it could be 
seen as an object to tie hair. Thus, “[w]hether or not the affordance is perceived or attended to 
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will change as the need of the observer changes, but being invariant, it is always there to be 
perceived” (Gibson, 1977, as cited in Brown et al., 2004, p. 120).  

In a given task situation, the use of manipulatives by students generates different affordances. 
In other words, the affordance realized in a task situation relies not only on the tool itself but 
rather on the interactions between the manipulatives, the students, and the teachers, in a 
particular educational setting (Drijvers, 2003, in Brown et al., 2004).  

To try to disrupt students’ routine, we can play with didactic variables to subtly change the 
affordance, thus the task situation by adding some breaching elements. Didactic variables are 
parameters, linked to the design of a teaching situation, which can vary according to the teacher's 
choices, and which can lead to a change in the students’ mathematical activity (Brousseau, 
1981). The concept of breaching (from ethnomethodology) refers to a subtle breakage of what is 
familiar. By varying several aspects related to the use of manipulatives, it is possible to place 
students in conditions familiar enough for them to engage in a  task but sufficiently unfamiliar 
that it resonates as a conflictual use of the manipulatives. In a way, it plays into how students 
perceive the affordances of the manipulative and leads them to explicit their usual routines and 
renew them. 

Methodology 
In collaboration with teachers from grades 4 to 6, we created a task (titled "Twelfth") that 

aims to develop different routines to represent and compare fractions using Pattern blocks. 
Pattern blocks were familiar manipulatives for the students as they already had worked with 
them before the experimentation. We experimented “Twelfth” into two fourth-, two fifth-, and 
one sixth-grade classes of about twenty students each. The task was implemented with different 
choices according to teachers’ rationales (mainly based on students’ abilities and familiarity with 
fractions) during a 60-minute period.  
The Task “Twelfth” and the Didactic Choices  

“Twelfth” is, at first sight, a common task in which students are asked to represent a certain 
fraction with pattern blocks. We chose to place students in pairs. Each pair received a kit of 
limited Pattern blocks (Figure 1) and were asked to do several subtasks. These can be divided 
into three categories:  

1. The given fraction is a twelfth and students must represent a third (the piece representing 
one-twelfth varies): e.g., the green triangle (blue rhombus, red trapezoid, etc.) is worth 
1/12, we want 1/3 of the same whole.  

2. The given fraction is one-twelfth and students must represent other varied fractions (unit 
and non-unit): e.g., the blue rhombus is worth 1/12, we want 1/24 of the same whole; the 
red trapezoid is worth 1/12, we want 5/6 of the same whole.  

3. The given fraction varies, and students must represent varied fractions: e.g., the yellow 
hexagon is worth 2/5, we want 1/15 of the same whole.  

  

Figure 1: kit of pattern blocks available to each pair of students 
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The subtasks were projected on the whiteboard, one or two at a time. There was a whole 
class discussion after each subtask. In the two 4th grade classes, the students were allowed to use 
scrap paper to take notes. In one 5th grade class, the students were not allowed to use any paper 
at all. In the two other classes (5th and 6th grade), the students were given a document to work on. 
On each sheet, they had two subtasks with a space to draw and record their answers. 
Data Analysis 

In each class, a camera with a primary focus on the front of the class filmed the whole group 
and other cameras filmed pairs of students with a primary focus on their hands (10 in 4th grade, 
14 in 5th grade, and 7 in 6th grade). For this paper, we focus our analysis on the resolution of the 
first subtask by the students working in pairs: “Find what is 1/3 of a whole, if the triangle is 
1/12.” Following Powell, Francisco, and Maher (2003), each video excerpt was watched multiple 
times and described; critical events were identified. We transcribed, coded, constructed the 
storyline, and composed the narratives. Descriptions of the videos and codes helped us compose 
the narrative to report the results. Conversely, composing the narrative forced us to revisit some 
critical events. Critical events are moments when students’ routines seem disrupted, i.e., when 
they seemed to doubt, when the routine implemented did not lead to solving the task and was 
challenged by someone, or when they suddenly changed their routines.  

Routines and Affordances 
By analyzing the data, we were able to highlight three intertwined routines that could be 

linked to the interpretation of the subtask: 1) ‘comparing-and-naming', 2) ‘forming and 
partitioning’ a whole, and 3) ‘covering’. Those routines had distinct functions throughout the 
resolution of the task but were all bound to certain affordances of the manipulatives in this 
specific setting.  
The Routine of Comparing-and-Naming 

Several pairs used a routine we called “comparing-and-naming” at different moments during 
their resolution. They attributed a name to each kind of block, or group of blocks by comparing 
pieces and relying on number facts. Some used fraction-names (e.g., a hexagon is ½ [of the 
whole], or a rhombus is 1/3 [of a hexagon]) and other whole number names (e.g., a rhombus is 2 
[triangles]). Adam and Phil, a pair of 4th graders in Heloise's class, help us illustrate how this 
“comparing-and-naming” routine was bound to the manipulatives, the didactic variables, and the 
students’ discourse. Right at the beginning, Adam associated some blocks with a fraction-name 
by referring to the given value of different blocks: “yellow is ½ because 6+6”, “red is ¼ because 
it’s  half of the half.” Like 1/3, those unit fractions are familiar to the students as they start 
working with them in 1st grade. However, because of our didactic choices, it was impossible to 
associate one and only one block to 1/3. Indeed, 6 triangles are equivalent to a hexagon and a 
hexagon to two trapezoids, but 4 triangles could not be replaced by a single block. Phil proposed 
to name the rhombus 1/3 of a hexagon. This proposition combined with the accepted narrative 
that the whole was not the hexagon led them to realize that more than one piece was requisite. If 
we had chosen 1/6 as the given value of the triangle, their routine could have led them to solve 
the subtask. Here, the given value combined with how the Patterns blocks are designed created a 
need to change the routine, and thus created an opportunity to develop a new discourse about 
fractions, that is to accept a visual mediator of a unit fraction composed of more than one piece, a 
necessary narrative to solve this task.  
The Routine of Forming-Then-Partitioning a Whole 

The routine of forming-then-partitioning a whole appeared in three different variations linked 
to the function of the routine: solving the subtask, validating the calculation, and justifying the 
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answer prompted by a request from an adult or a peer. This routine was recognizable by the 
action of composing a whole with a certain number of blocks followed by its partitioning in a 
certain number of equivalent (mostly identical) groups. In a way, this routine was the expected 
one. Indeed, the curriculum (MEQ, 2001) prescribes the learning of fractions through 
manipulatives and schemas use. Thus, we expected them to use this routine. The blocks available 
to students for this first subtask allowed them to compose a whole, but not with twelve identical 
blocks, leading to the impossibility to partition it into three identical groups of four triangles. 
Figure 2 presents possibilities of different wholes with their partitioning. Except for the last 
example (Figure 2d) where each group is formed of one rhombus and two triangles, the students 
needed to form three equivalent but not identical groups. The shape of the groups is the same, 
but neither the orientation nor the kind of blocks (colors and shapes) are the same. 

 

 

Figure 2: Partitioning of the whole with three equivalent groups   

Solving the subtask. John and Owen, a pair of 5th graders in Christophe’s class, engaged in 
the routine of forming-then partitioning the whole to solve the task, after reformulating the 
question as “1/3 of twelve is what?”: 

Owen: We say the whole is that [taking one hexagon in his hand] 
John: No, this is six! […] 
Owen: Oh, ok, so how many there are [counting the triangles]. Ok, six, so this [pointing a 

hexagon] is six. So, that [sliding two hexagons on the side], means, it’s our whole. And 
this [sliding a triangle beside the two hexagons, Figure 3a] is one-twelfth.  

John: No! This [the triangle] is one-sixth. We have to find out the  half of it. Impossible... 
Oh, wait, wait, I know what it is! Look, [regrouping six triangles] 

Owen: it’s the half.  
John: [regrouping a hexagon to the six triangles]. This is twelve. So, this [separating one 

triangle, Figure 3b] is one-twelfth.  
Owen: It’s what I’ve been saying since earlier! 
John: we’ve found the twelfth, we have to divide by four... by three. [Separating 3 triangles 

from the whole and covering it with a trapezoid, Figure 3c]. 

 

Figure 3: Forming-then-Partitioning a Whole 

In this short excerpt, we observe how Owen and John struggle to make sense of all the 
information with the manipulatives at their disposition, juggling between one hexagon as the 
whole/one triangle as one-sixth and two hexagons as the whole/one triangle as one-twelfth, 
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suggesting that the routine of “naming” interfered with the routine of “forming-then-partitioning" 
the whole. Moreover, after convincing themselves that they  succeeded at representing the whole, 
they intended to partition it. But the interpretation of the division led them to the wrong 
partitioning.  

Validating. Some pairs used manipulatives to validate an answer obtained through 
calculation. Indeed, some students interpreted the task as one of mental calculation. At some 
point, usually early in the resolution, they calculated 12 divided by 3 or searched for the number 
that multiplied by 3 gave 12. Tim and Nick, two 5th graders, used this method. Tim seemed to 
calculate mentally and then added two rhombi on top of the two hexagons. Nick wanted to 
validate. To do so, he counted “one-third, two-thirds, and three-thirds” pointing with his fingers 
holding imaginary blocks over the whole but without moving any pieces. Tim and Nick were 
able to perceive the twelve triangles inside the two hexagons and the three groups formed of four 
triangles. The Pattern Blocks design facilitated this identification for Tim and Nick.  

Justifying the answer. Adults and peers sometimes challenged an answer by asking why it 
was the good one. Tim and Nick had already found the solution through calculation and 
validated through forming-then-partitioning the whole. When an adult asked them to explain 
their solution, they argued that one-twelfth means there are twelve triangles in the whole. “The 
third of twelve is four.” Therefore, the answer is four triangles. Their explanation relied on 
calculation, but they also overlaid four triangles on top of the two hexagons (see Figure 4). They 
answered that four triangles “fit” three times in two hexagons. They completed their justification 
by effectively making three-thirds “fit” on top of the two hexagons pointing fingers to show the 
three distinct groups as Nick did when validating the answer earlier. For Tim and Nick, a 
calculation was not an acceptable justification. They used the manipulative to visually back their 
claim in the context of the task, showing the whole, the part, and the fact that it fits three times. 

 If the students did not use the wanted whole, the teacher could use the manipulatives to 
challenge not only the answer but the students’ routines. For example, Mike and Edith, two 5th 
graders, attributed the name 1/3 to the hexagon and then formed a whole with three of them. 
Incidentally, they had placed the manipulatives as positioned in figure 1 in front of them when 
they received the bag, the three hexagons were a bit separate from the other blocks. They 
reproduced three hexagons on a sheet of paper and wrote 1/3 in one of them. An adult asked 
them to explain their answer: “[After they answer that 1/3 was a hexagon]. Ok, if this [showing a 
triangle] is one twelfth, can you show me the whole in which this triangle represents one 
twelfth?” By reintroducing the triangle and its value in the conversation, the students were able 
to determine the wanted whole [two hexagons] and modified their routine accordingly: 

Mike: Look, it can be those two [touching two rhombi] 
Edith: Ha, yes, it works... mmm, but you cannot split it in three.  
… 
Mike: Yes, look in this [taking the two hexagons], there are six like that [covering the 

hexagons with two rhombi] 
Edith: but we are looking for the third 
Mike: exactly! [splitting the whole in three by pointing rhythmically]  
After the adult intervention, Mike and Edith were able to modify their routine by using new 

visual mediators (the whole and the part) that considered the given value of the triangle (one-
twelfth) and Mike convinced Edith that two rhombi were an adequate answer by simulating a 
partitioning through gesture.  
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The (Sub)-Routine of Covering.  
As illustrated in the examples presented above, we observed students in each grade using a 

“covering routine” (see Figure 4). This routine has at least two functions. First, it allows 
comparing blocks or groups of blocks to determine that they fit exactly on top of each other. For 
example, by covering the trapezoid with three triangles, we can figure out that a trapezoid is 
equivalent to three triangles. However, as said before, it was impossible to cover two hexagons 
with twelve triangles, forcing students to rely on imaginary blocks, as Tim and Nick did, or to 
use equivalent combinations as in Figure 2. The breaching element brought to bear by the limited 
manipulatives pushed the students to slightly modify their routine. 

Second, it allows showing not only the part representing one-third but the whole in which it 
represents one-third. This second function was used more in 5th and 6th-grade classes, leading us 
to hypothesize that it was part of the classes’ discursive rules, i.e., that, in those specific classes, 
students were expected to justify their answers. Indeed, to be able to judge the validity of the 
answer, you need to refer to the whole.  

 

 

Figure 4: Example of an answer obtained through the covering routine 

Interpretations 
Through the lens of routine and affordance, we aim to describe how different choices disrupt 

students’ activity, creating opportunities to learn. The analysis exposes how the students’ 
mathematical activity is bound to the manipulatives used in this task and how different didactic 
choices may create different opportunities to learn. First, we hypothesize that the manipulatives 
led students to different routines than a paper-and-pencil task would. With no manipulatives, 
students may have reproduced the triangle twelve times (as a set or a whole) and circled four of 
them, or circled three groups of four. The comparing-and-naming nor the covering routine would 
have been needed. 

Second, the limited quantity of pattern blocks is an important breaching element that created 
different opportunities to learn, here, through three routines. In this task situation, students were  
bound to represent different fractions with manipulatives. They could have represented the given 
fraction, the whole, the sought fraction, or other specific fractions. The ‘representation-able’ 
quality of the manipulative is linked to one of the main affordances. Indeed, the diverse ways 
that pattern blocks can be used as visual mediators  are specific to this type of manipulatives, 
leading to breaches of routines.  

A first breach was observed when students were not able to associate one-third to only one 
block, this permitted us to note a breach in their routine of ‘comparing-and-naming'. This choice 
of limiting the blocks used created an opportunity to enrich visual mediators associated with unit 
fractions and to challenge the rule that “a unit fraction should be represented by one and only one 
block.” A second breach was observed for the routine of ‘forming-then-partitioning' a whole. 
Students could not represent the whole with twelve triangles. They had to adapt their routine. 
One way to do so was to use two hexagons. This breaching element led to work on equivalent 
surfaces. The third breach is also linked to this routine and to the importance of equivalence. 
Indeed, using only one kind of block to represent a fraction was a common routine for students. 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

819



   
 

   
 

The limited manipulatives introduced a breaching element that  created opportunities to develop 
new narratives about partitioning a whole, focusing on equivalence rather than on the identity of 
the parts. A fourth breach was observed when students lost sight of the given value one-twelfth, 
leading them to associate the whole with one or three hexagons. In both cases, the manipulatives 
available led to the perception of a whole partitioned into three identical parts. Clearly for some 
students, in this task situation, one-third was associated with the narrative “one of three identical 
parts.” Thus, they were looking for a whole constituted of three identical parts.  

Even though it was not the focus, this analysis also put to light other affordances linked to the 
qualities of the manipulative. The ‘representation-able’ quality of the manipulatives did not only 
depend on the number of blocks available but on the design of the pattern blocks. Indeed, 
depending on the fraction given, Pattern blocks do not allow the representation of any fractions. 
A second affordance can be linked to the “move-able” quality of manipulatives. Students can 
move the blocks, stack them, group them, separate them. This quality helps students perceive and 
validate the equivalence of distinct groups, an element that cannot be avoided in this task partly 
because the manipulatives are limited. A third affordance can be linked to the “communication-
able” quality of Pattern Blocks. Indeed, these manipulatives are tied to certain keywords as each 
piece has a specific color and a specific form. Other layers of analysis are required to push 
further the interpretation here. 

Conclusion 
The limited manipulatives, as a breaching element, created opportunities to learn by 

introducing nuances in what is mathematically important when working with fractions (e.g., the 
use of identical parts when partitioning a whole to represent a fraction is not necessary, the use of 
equivalent parts is). The didactic choices made helped us identify shared narratives and routines 
in those specific communities of students and how those choices created opportunities to learn, 
i.e., created changes in routine. Referring to Nachlieli and Tabach (2019), we could define those 
opportunities to learn as exploration-requiring opportunities to learn, i.e., to complete the task or 
meet the teacher’s expectations, students cannot apply an already familiar single procedure. They 
needed to create a new combination of actions, a new routine. While Nachlieli and Tabach 
(2019) linked the creation of those opportunities to the kind of question asked (e.g., presenting 
request with words like what, why, find, explain), we add that those breaching elements can also 
play a key role. 

Those findings also point out some implications for the classroom. Because breaching 
elements are possible only when disrupting familiar ways of doing (Corriveau, 2013), 
introducing such elements in tasks is not trivial. To go further than the question of whether to use 
manipulatives or not, one must attend to the implicit culture of the class. In other words, it is to 
be able to realize what is usually taken for granted and articulate it with the targeted 
mathematical learning to make clever didactic choices. It also brings us back to the fact that the 
use of manipulatives is not a magic solution (Ball, 1992). 
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Using data from teaching experiments and theories from quantitative reasoning, we built 
second-order accounts of students’ mathematics with regards to how they conceived rate of 
change through operating on existing quantities. In this report, we explain three different ways 
STEM undergraduates structurally conceive rate of change as they constructed mathematical 
models for real-world scenarios. 

Keywords: Quantitative Reasoning, Mathematical Modeling, Rate of Change  

Understanding rate of change (RoC) is central to the understanding of mathematical concepts 
such as the fundamental theorem of calculus (Thompson, 1994b; Thompson, 2008), derivative 
(Zandieh, 2000), limits and function (Tall, 1986), and differential equations. Beyond 
mathematical concepts, an understanding of RoC is necessary to model dynamic situations (e.g., 
Arleback et al, 2013; Ellis, 2007). Generally, the main goal of studies surrounding RoC is to 
understand students’ mathematical conceptions of RoC. That is, the field is reporting accounts of 
students’ understanding of RoC as they are working on tasks that help them to understand RoC 
as a mathematical concept. We still need an account of how students are conceiving RoC as they 
are developing mathematical models for real world scenarios that aren’t necessarily set out teach 
the concept of RoC. This is important because educators of the field will get an idea of how 
students apply their understanding of RoC into practice. Accordingly, we ask: how do STEM 
undergraduates conceive RoC while constructing mathematical models for real-world scenarios? 

Theoretical Framing and Background 
Our research lies within the cognitive perspective of mathematical modeling (Kaiser, 2017). 

In this perspective, mathematical modeling is the cognitive processes involved in constructing a 
mathematical model for real-world scenarios. We define a mathematical model to be a 
representation of the relations among conceived quantities.  

A quantity is a mental construct of a measurable attribute of an object. It consists of three 
inter-dependent entities: an object, a measurable attribute, and a quantification. Quantification 
involves conceiving a measurable attribute of an object and a unit of measure and forming a 
proportional relationship between an attribute’s measure and the unit of measure (Thompson, 
2011). Quantification takes place in the mind of an individual and we can only use an 
individual’s externalized actions to infer whether she has quantified an attribute. Czocher & 
Hardison (2021) presented eight quantification criteria that can be taken as indication that a 
student has conceived measurement process for a measurable attribute of an object.  

Quantitative reasoning is the mental operations involved in conceiving a situation through 
quantities and relation among those conceived quantities (Thompson, 2011).  A relation among 
conceived quantities is established through operation on quantities. Thompson (1994) defines 
quantitative operation as the “mental operation by which one conceives a new quantity in 
relation to one or more already-conceived quantities” (p.10). As a result of a quantitative 
operation a relationship is created: the quantities operated upon along with the quantitative 
operation are in relation to the result of operating (Thompson, 1994). Examples of quantitative 
operations include combining two quantities additively or multiplicatively and comparing two 
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quantities additively or multiplicatively. A quantitative structure is a network of quantitative 
relationships (Thompson, 1990).  

Reasoning about quantities may also entail reasoning about how the quantities can vary. 
While variational reasoning involves reasoning about varying quantities independently 
(Thompson & Carlson, 2017), co-variational reasoning involves “coordinating two varying 
quantities while attending to the ways in which they change in relation to each other” (Carlson et 
al, 2002, p.354). Scholars have extended the work of covariational reasoning to multivariational 
reasoning, which is reasoning about more than two quantities changing in conjunction with each 
other (Jones 2018; Jones & Jeppson,2020). Recently, Ellis et al (2020) defined scaling 
continuous covariation as “imagining the continuum as infinitely zoomable, couple with the 
understanding that one can re-scale to any arbitrarily small increment for x and coordinate that 
scaling with associated values for y” (p. 88). When an individual engages in covariational 
reasoning she constructs a multiplicative object in her mind. Constructing a multiplicative object 
entails coupling of two quantities (Saldanha & Thompson, 1998) that yields a new conceptual 
object “formed by mentally uniting the attributes of two quantities, so that the new conceptual 
object is simultaneously one and the other” (Thompson & Carlson, 2017, p. 433). For example, 
the rate at which the size of a bank account changes with respect to time is a multiplicative object 
that may be formed by coupling change in size of the account and the length of time elapsed. 

Many scholars have posited ways in which students may develop a conceptual understanding 
of RoC based on rates. For example, using a quantitative reasoning orientation, Thompson 
(1994a) defined rate as a reflectively abstracted constant ratio, where a ratio is a result of 
comparing two quantities multiplicatively. Thompson (1994b) argued that developing images of 
rate starts with student imagining a change in some quantity, next coordinating the changes two 
quantities, and finally developing images of the two quantities covarying so that they remain in 
constant ratio. Confrey & Smith (1994) used a covariational reasoning approach as a way to 
learn the concept of function through exploring the concept of RoC. They discovered that 
students employed three different ways to describe RoC in the context of cell splitting: an 
additive RoC, a multiplicative RoC, and a ‘proportional new to old’ RoC. Through these 
investigations, they proposed an analytic approach to RoC as a “unit per unit comparison” (p. 37) 
where a unit is a “invariant relationship between a successor and its predecessor” (p. 142), as 
means to instill a multiplicative unit approach viewing RoC for exponential functions. Johnson 
(2015) investigated how students quantify rate through “forming and interpreting relationship 
between varying quantities” (p. 66). Johnson discovered that students quantified rate by 
associating amounts of change in extensive quantities, using a single extensive quantity that 
represents an association of two quantities, and coordination of intensive and extensive quantity 
through the quantitative operations coordination and comparison. Through coordination, rate is 
quantified as an intensive quantity and through comparison, rate is quantified as an extensive 
quantity. While Johnson reported distinct ways students quantify RoC, it excludes ways in which 
students may conceive RoC that do not necessarily involve quantitative operations as how 
Thompson defined.  We postulate one such operation in this report.  

Borrowing ideas from the aforementioned constructs we define structural conception of RoC 
as conceiving RoC as a measurable attribute of an object through forming a relation among 
constituent quantities (i.e., operating on quantities). We use the term operating on quantities to 
include Thompson’s quantitative operations, mental operations involved in reasoning about 
varying quantities, and other operations on quantities that could yield a new quantity. The 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

823



research question addressed in this report is: In what ways do STEM undergraduates structurally 
conceive RoC while constructing mathematical models for real-world scenarios?  

Methods 
We present data from a pair of 10hr individual teaching experiments (Steffe & Thompson, 

2000) conducted with undergraduate STEM majors at a large university. The overall goal of the 
teaching experiment was to investigate how students conceive real-world situations through 
quantities and relations among quantities. Our students, Szeth and Pai were both enrolled in 
differential equations at the time of the interviews. Throughout the teaching experiment, Pai and 
Szeth worked on 9 and 10 tasks, respectively, that were based on real-world scenarios. In this 
report we present data from the CI8 Account Task and The Cats & Birds Task. We focus on these 
tasks because they exemplify how Pai and Szeth operated differently on similar quantities, that 
they had previously constructed, to conceive RoC.  

CI8 Account: The competing Amtrak Trust has introduced a modification to City bank’s SI8, 
which they call the CI8 account. Like the SI8 account, the CI8 earns 8% of the “initial 
investment”. However, at the end of each year Amtrak Trust recalculates the “initial investment” 
of the CI8 account to include all the interest that the customer has earned up to that point. Create 
an expression that gives the value of the CI8 account at any time t (Castillo-Garsow, 2010). 

Cats & Birds: Cats, our most popular pet, are becoming our most embattled. A national 
debate has simmered since a 2013 study by the Smithsonian’s Migratory Bird Center and the 
U.S. Fish and Wildlife Service concluded that cats kill up to 3.7 billion birds and 20.7 billion 
small mammals annually in the United States. The study blamed feral “unowned” cats but noted 
that their domestic peers “still cause substantial wildlife mortality” (Raasch,2013). Consider a 
backyard habitat, where cats are the natural predators of birds. Model the rate of decrease of the 
population of birds due to predation by cats.  

The interviews were retrospectively analyzed to construct second-order accounts (Steffe & 
Thompson, 2000) of students’ reasonings via inferences made from students’ observable 
activities such as verbal descriptions, language, written work, discourse, and gestures. The 
retrospective analysis consisted of multiple passes of through the data to arrive at examples that 
illustrate the different ways Szeth and Pai structurally conceived RoC. First, we watched the 
videos in MAXQDA in chronological order and paraphrased each interview by chunks. Next, we 
created accounts of students’ mathematics and the reasons they attributed to their mathematics. 
Next, we went over the accounts we created and the videos at the same time and refined our 
accounts by adding details using quantitative and covariational reasoning lenses. We credited a 
student to have instantiated a quantity if we were able to infer from his reasonings that he had 
conceived an object, attribute, and a measurement process for the attribute. As evidence of 
student to have conceived a measurement process, we checked if at least one of the 
quantifications criteria (see Czocher&Hardison, 2021) was met. We used segments of transcripts, 
where the students engaged in quantitative reasoning along with inscriptions and gestures as 
evidence for our claims. Next, from these accounts, we selected instances where the students 
engaged in conceiving RoC. Next, while watching the videos and going over our accounts of 
students’ RoC, we further refined our accounts by adding details of how Pai and Szeth operated 
on constituent quantities to form a relation in order to conceive RoC. Next, we went through our 
accounts of Pai’s and Szeth’s conception of RoC and observed any patterns, in terms of 
operation on constituent quantities, that were consistent throughout the sessions. We made note 
of them by summarizing the pattern. We watched the videos in their entirety again and made sure 
all of the different ways of conceiving RoC were recorded and refined our second-order accounts 
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by seeking clarification on utterance and gestures to support our claims on Pai’s and Szeth’s 
structural conception of RoC. We present some of these second-order accounts below.  

Findings 
Pai and Szeth structurally conceived RoC in the following ways: (1) as how quickly change 

is happening, (2) as a multiplicative object, (3) as the derivative, (4) as the net change during a 
time interval, and (5) as the additive comparison of rate of increase and rate of decrease. Due to 
space constraints, we share examples only for (1)-(3).  
Rate of Change as How Quickly Change is Happening 

In the CI8 Account task, Szeth constructed the following models for the value of the account 
at the end of 1st, 2nd, and nth years: 𝑆1= 8

100
∙ 𝑆0 ∙ 𝑡 + 𝑆0; 𝑆2 =

8

100
∙ 𝑆1 ∙ 𝑡 + 𝑆1;𝑆𝑛 =

8

100
∙ 𝑆𝑛−1 ∙

𝑡 + 𝑆𝑛−1, where 𝑡 is the length of the compounding period. We then started to discuss how the 
account would grow when the compounding periods gets smaller. Szeth reasoned: 

Szeth: gut reaction is it [rate] should increase faster because the compounding is more 
frequent. Then giving it some thought, I'd agree. If we did one month, make this calculation 
[Figure 1], it's slightly less than like a year, but you're doing that calculation 12 times over 
the year. Yeah, yeah, if you decrease the time interval, your rate should increase quicker … I 
mean, the final amount of money in the account should increase quicker, which I guess 
means that our rate would be of a greater value over a shorter interval. Yeah, that makes 
sense.  
In the excerpt above Szeth was coordinating three inter-dependent quantities: the length of 

the time interval, the amount of money in the account, and the rate at which the account grows. 
Through coordinating the length of the time interval with the rate at which the account grows, 
Szeth was engaging in scaling continuous co-variation. When asked to elaborate further, Szeth 
coordinated the value of the account for compounding periods 1 year and 1 month (Figure 1). He 
started with $500 and showed how the value of the account would increase each compounding 
period when the length of the compounding period is 1 year. He indicated that the increase in the 
account’s value would be the difference between the sizes of the account for consecutive years. 
Next, he considered the increase in the size of the account when the compounding periods are of 
length 1 month. He reasoned: “Then actually they should all be the same numbers, but the point 
being that's one year… But that's one month” (Figure 1). Here Szeth is comparing the values of 
the account for compounding periods of different lengths to discuss how quickly the value of the 
account changes. We infer that, for Szeth, a bank account in which the size of the account 
changes over a small time period grows at a greater rate over time than one for which the same 
change in the size of the account happens over a larger time period.  In this scenario, Szeth 
constructed a mental image of how quickly the size of the account changes in order to reason 
about the rate at which the account would grow.  

 
Figure 1: Szeth evaluates the size of the account for different compounding periods  
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Rate of Change as a Multiplicative Object 
In the CI8 Account Task, Pai constructed the following models to indicate the size of the 

account at the end of 1, 2, and 3 years: 𝑆1 = 𝑆0 + 0.08(𝑆0)(𝑡); 𝑆2 = 𝑆1 + 0.08(𝑆1)(𝑡); 𝑆3 =
𝑆2 + 0.08(𝑆2)(𝑡) , were 𝑡 =  1 year. He drew the graph in Figure 2, and we proceeded have a 
discussion on how during each year the account grows linearly at a rate proportional to the size 
of the account at the beginning of that year.  

 

 
Figure 2. Pai’s graph of account value vs time in years 

We asked Pai if his expression for 𝑆𝑖 would work for any time period of length ∆𝑡 and not 
just 𝑡 = 1 year. Pai indicated that it would work as long as all of the 𝑆𝑖’s are the account’s value 
at the beginning of each of the compounding period. He rewrote the expression as 𝑆 = 𝑆0 +
(0.08)(𝑆0)(∆𝑡), where ∆𝑡 was the length of the compounding period and 𝑆0 was the size of the 
account at the beginning of the compounding period. We asked him to interpret his graph as ∆𝑡 
gets smaller. For example, when we discussed the possibility of having four compounding 
periods instead of one in a year, Pai gave the following reasoning: 

Pai: “It would change, not the overall direction, but it would change the number of straight 
pegs, I guess, straight increases, because there's now 16 compounded periods in our time 
period [4 years]. So it'd be more round, but still not perfectly round, but it'd be my thinking 
of a circle, circle has infinite edges. It would be like that [tracing a curve along his graph 
(Figure 3b)] …that’s what it would be. It’d be more like a curve” 

In the above excerpt, Pai was thinking of the graph taking a curve like shape as ∆𝑡 becomes 
smaller and smaller. We next asked Pai the effect smaller ∆𝑡s would have on the RoC of the 
account’s value, specifically its proportional relationship with the money at the beginning of the 
compounding period. During this discussion Pai reasoned: 

Pai: That should be proportional still. It's still proportional, but time is increasing so much 
that, or so fast, or the compounded periods are so small that it's going to change 
instantly…Like S is going to change. Like 𝑆0 is going to be extremely different than the 
first... 𝑆0 without… a very shortchange… like a very rapid change. It's still proportional to 
what was initially there, which just happening much, much faster because the t is much 
smaller than when we started” 
Pai thought the rate at which the account’s value changes would still be proportional to the 

account’s value at the beginning of the compounding period. However, this time, he argued that 
the account’s value at the beginning of the compounding period would change rapidly because 
∆𝑡 was much smaller. Pai was coordinating the quantities ∆𝑡, RoC of the account’s value, and 
account’s value at the beginning of the compounding period. We interpret Pai’s reasoning as 
indicative of Pai imagining the quantities change in the size of the account and ∆𝑡 to be 
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happening simultaneously. We infer that Pai formed a multiplicative object of (change in size of 
the account, length of time elapsed). We also infer that Pai’s formation of a multiplicative object 
had consequences beyond enabling him to coordinate the quantities change in size of the account 
and time taken for the change. He also used this imagery to help him in reasoning about the rate 
at which the size of the account changes. This was further evidenced when we asked him to write 
an expression for the RoC of the size of the account. Pai wrote 𝑑𝑆

𝑑𝑡
= 0.08(𝑆0), where 𝑆0 is the 

starting value at any compounding period. He reasoned as “[𝑆0] is just any starting period. Not 
just the literal start, but any starting period of these pegs, as t [∆𝑡] gets smaller, it's 0.08 of that 
starting period, so the derivative will change.” 

 

 
(a) 

 
(b) 

Figure 3: Pai’s graph for as Balance vs time as ∆𝒕 gets smaller 

Rate of Change as the Derivative 
In the Cats & Birds task, Pai and Szeth both conceived RoC as a measurable attribute that 

can be measured by taking the derivative of the function. For example, both Pai and Szeth 
conceived RoC of the bird population due to cats as a measurable attribute that could be 
measured by taking the derivative of the function bird population at time t.  

Taking the derivative. Szeth arrived at the expression the 𝐼(𝑡) = 𝛼 ∙ 𝛽 ∙ 𝐶(𝑡) ∙ 𝐵(𝑡) as the 
number of birds killed due to cat-bird interactions. We asked he could use the expression to 
model the rate of decrease of bird population due to predation by cats. Szeth Solved the above 
expression for 𝐵(𝑡) as 𝐵(𝑡) =

𝐼(𝑡)

𝛼∙𝛽∙𝐶(𝑡)
. Since he intended model the rate of decrease of the bird 

population, he mentioned that he first wanted to isolate 𝐵(𝑡) from the expression and thus solved 
for it. Szeth said, to find the rate he “would take the derivative [of 𝐵(𝑡)]”.  Even though we had 
asked him to construct an expression for the rate of decrease of bird population due to just cats, 
Szeth  tried to evaluate 𝐵’(𝑡) , which the RoC of bird population due to all causes, and not just 
cats - a different attribute of the object bird population. Szeth proceeded with taking the 
derivative of 𝐵(𝑡) using the quotient rule.  

 

 
Figure 4: Szeth takes the derivative of B(t)  

Imagining the slope of the tangent. In the Cats & Birds Task, After Pai constructed an 
expression for “the number of bird-cat interaction that resulted in a kill” (which for Pai, is also 
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the “number of birds dead at time 𝑡”) as 𝑓𝑘(𝑡) = [𝛼𝐵(𝑡)𝐶(𝑡)]𝛽, we asked what the rate of 
decrease of the bird population due to cat predation be. Pai’s first reaction to this prompt was to 
draw a graph of bird population vs time [Figure 5]., where he grossly coordinated the quantities 
the population of bird and time.  

 

 
(a) 

 
(b) 

Figure 5: (a) bird population vs time and (b) rate of decrease of bird population vs time 

According to the graph above, for Pai, as time goes on, the bird population decreases due to 
cat predation. After drawing the graph Pai reasoned: 

Pai: I think this question is trying to plot the function for the derivative of my model, because 
it wants the rate of decrease. I think we're asking for decrease in bird pop would be the y 
axis…over time t. The rate would be whatever this slope is [pointing at A], called, I don't 
know. Negative three. It would be like that [Figure 5b].  

We infer that Pai is imagining the slope of the tangent line at different points in time (𝑡 = 𝑡0, 𝑡 =
𝑡1, 𝑡 = 𝑡2), would give him the rate of decrease of bird due to cat predation. Here Pai, like Szeth, 
conceives the RoC of bird population due to cats  by considering the derivative of the bird 
population. However, he wasn’t very certain what the outcome of evaluating the slope of the 
tangent at different points in time would look like. Since Pai needed a “a model for the 
derivative” he thought 𝑓𝑘

′(𝑡) would represent the tangent lines in figure 5a. He proceeded to take 
the derivative of 𝑓𝑘(𝑡) using the product rule and arrived at 𝑓𝑘′(𝑡) = 𝛽𝛼[𝐵′(𝑡)𝐶(𝑡) −
𝐵(𝑡)𝐶′(𝑡)]. However, he expressed that the result didn’t make sense to him. When asked why it 
didn’t make sense, Pai reasoned: 

Pai: 𝐵(𝑡) is birds at time t. I don't really know what 𝐵′(𝑡) would be. The change in birds at 
time 𝑡? The increase or decrease of their population? That's just a fact of, for bird, 𝐵’(𝑡), the 
birds, for that specific case, it would just be change in the natural bird population, not due to 
cats killing them? Because the bird population is changing, decreasing, because cats are 
constant killing them. I guess birds are also just die. They're birds... So, 𝐵’ would be that 
change. Cats too, cats get run over and whatever, so it would be the change in their 
population [pointing at 𝐶′(𝑡)]. 
We believe the biggest reason it wasn’t making any sense to him was because he wasn’t sure 

how to distinguish among the quantities 𝑓𝑘
′(𝑡) and 𝐵′(𝑡).While reasoning out loud, he settled on 

𝑓𝑘
′(𝑡) as the rate of decrease of bird population due to predation by cats which he expressed in 

terms of 𝐵′(𝑡), where he attributed  𝐵′(𝑡)  as change in bird population due to all causes. Even 
though  𝑓𝑘 , for Pai, was “number of birds dead at time 𝑡”, Pai’s conception of RoC as a 
derivative was so strong, he overlooked the attribute 𝑓𝑘’ would be measuring.  

A 
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Discussion 
We presented three examples of differing ways that Pai and Szeth structurally conceived 

RoC in terms of operating on constituent quantities. Conceiving RoC as how quickly change is 
happening entails considering the differences in consecutive amount-values and coordinating it 
with the amount of time it took for the change to happen. Conceiving RoC as a multiplicative 
object entail uniting the attributes of two quantities so that their chnages both happen 
simultaneously. In both Pai’s and Szeth’s cases, conceiving RoC in these manners arose while 
they were both grappling with the thought: How would the account grow as the compounding 
periods get smaller? However, the ways in which they chose to operate on existing quantities 
differed. In Szeth’s case, he first engaged in the additive comparison of the quantities amount of 
money at 𝑡 + 1 and amount of money at 𝑡, and next considered how long it took for the change 
to happen. In Pai’s case, he coordinated the change in the amount of money in the account and 
length of time duration for the change and envisioned those changes to be happening at the same 
time.  

Conceiving RoC as a derivative entails considering the derivative of a function as a 
measurable attribute of an object. This way of conceiving the RoC is different from the first two 
examples presented here (and ways (4) and (5) not exemplified in this report). This is because 
envisioning the derivative or constructing an image of a derivative may or may not fall within the 
scope of quantitative operation. A derivative may be attributed as a quantitative operation if the 
meaning student has for derivative entailed the coordination of two quantities. For both students, 
there was no clear evidence that taking the derivative or envisioning the slope of the tangent 
carried situationally relevant quantitative meaning. Conceiving of RoC as the derivative might 
limit a modeler in terms of what he can model. For both students, the phrase RoC acted as a cue 
to take the derivative, dropping the situationally relevant meaning the derivative being taken on 
was measuring.  Both Szeth and Pai, produced quantities that weren’t measuring the attribute that 
was in question: RoC of bird population due to cats. However, for both students, considering 
derivative resulted in a quantified attribute, namely, the bird population.  That is, Both Pai and 
Szeth conceived RoC as a measurable attribute that can be measured by considering the 
derivative with respect to time of the function bird population. 

By adhering to the definition of quantitative operation and quantitative relation, instances 
like these, where a student may or may not have quantitative meanings for RoC as a derivative, 
would be missed. In our data, we found instances where the operation performed does not have 
clear evidence of a quantitative operation (as defined above), but the outcome of the operation is 
clearly a new quantity. We ask, where ought these borderline instances be placed? We do 
believe that even though taking the derivative in and of itself may not be credited as a 
quantitative operation, envisioning the derivative as yielding a new quantity is an image that is 
prevalent in undergraduate learners and the result of that action is often times useful for 
mathematical modeling. For example, in a simple interest context, Pai took the derivative of the 
size of the account at time 𝑡 to describe the behavior of the growth of the account. Although the 
field has reported on students’ conception of derivative through lenses of quantitative reasoning 
and covariational reasoning, we still need research on what it means when a student takes a 
derivative, as a procedure, through a quantity-oriented lens.  
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We report on a research study conducted within a transition-to-proof course for mathematics 
majors at a large public university. Within the course, students explored famously unproven 
conjectures and reflected on how their perspectives of mathematics changed through this 
exploration (if at all). In this report we share students’ takeaways from the project. For instance, 
some students experienced mathematics as a creative subject for the first time, as they tried their 
own methods to solve the conjectures; other students reflected on developing a greater 
understanding of the behind the scenes work of mathematicians that goes into mathematical 
creation. We also report on the subjective emotional experiences of the students, which ranged 
from frustration from being unable to find patterns to enjoyable exploration.  

Keywords: Affect, Emotion, Beliefs, and Attitudes; Reasoning and Proof; Undergraduate 
Education 

Within mathematics education scholarship, authors have lamented that students do not 
experience mathematics in ways similar to those experienced by practicing mathematicians 
(Boaler 2015; Lampert, 1990; Lockhart, 2009; Hersh, 1997). After describing the creative 
activity of research mathematicians, Boaler (2016) wrote, “I strongly believe that if school math 
classrooms presented the true nature of the discipline, we would not have this nationwide dislike 
of math and widespread math underachievement” (pp. 22-23). What can a mathematics instructor 
do so that students understand the nature of the discipline of mathematics that Boaler refers to?  

If mathematics classrooms are to provide a space for students to experience mathematics in 
ways similar to mathematicians, then mathematics teacher education programs must provide 
space for future teachers to experience mathematics in novel ways. But curriculum change is a 
slow-moving process—the curriculum of the undergraduate mathematics major has remained 
relatively constant for decades. Mathematics majors frequently take Calculus, Introduction-to-
Proof, Number Theory, Geometry, Abstract Algebra, Analysis, etc… How can we improve 
mathematics instruction in these existing courses so that future teachers are better prepared to 
support their students in engaging in authentic mathematical practices? One approach that has 
been used in content courses is to design novel curriculum so that future teachers can 
collaboratively develop their mathematical knowledge for teaching (Lischka, Lai, Strayer, & 
Anhalt, 2020). These approaches have been successful in courses for geometry, algebra, 
statistics, and modeling. But what about traditional proof courses? Inquiry-based and 
collaborative pedagogical approaches within proof courses are another way to provide future 
teachers opportunities to experience mathematics in ways more aligned to the discipline (Bleiler-
Baxter & Pair 2017, Bleiler-Baxter, Pair, & Reed 2021, Pair & Calva, 2021). In this paper we 
report on a new approach aimed at enriching students’ perspectives of mathematics within a 
transition-to-proof course—engaging students in the exploration of unsolved mathematical 
conjectures.   

Purpose 
Our goal for this research project was to engage students in a novel activity—the exploration 
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of unsolved mathematical conjectures. Unbeknownst to the general human population, 
mathematics is a dynamic field in which new results are constantly being discovered and 
reported (Pair, 2017). Unanswered questions and unsolved problems drive mathematical 
research. Two such unsolved problems, the Twin Primes Conjecture and the Collatz Conjecture 
have remained unsolved for decades (Bairrington & Okano, 2019; Rezgui, 2017). Our goal with 
this project was to expose these conjectures to students and provide them the opportunity to 
develop their own methods to try and prove the conjectures and then reflect on what they learned 
about mathematics through the activity. Our hypothesis was that engaging in these activities 
would provide the undergraduates novel opportunities to enrich their perspectives on the nature 
of mathematics. Our research question is: How are students’ perspectives on the nature of 
mathematics enriched through their exploration of unsolved conjectures (if at all)? 

Theoretical Perspective 
We designed the study and corresponding unsolved conjectures project in efforts to promote 

the humanistic vision of mathematics as captured by the four characteristics of mathematics as 
expressed in the IDEA Framework for the Nature of Mathematics (Pair, 2017). This framework 
was developed through a dissertation study that involved immersive experiences in mathematics 
(collaboration with a research mathematician, teaching a transition-to-proof course). The purpose 
of the framework is to  provide a list of possible goals for students’ understandings of the nature 
of mathematics. This framework posits that, in order for students to possess a refined humanistic 
view of mathematics, they should understand that:   

I - Mathematical ideas are part of our Identity.   
D - Mathematical knowledge is Dynamic and ever-changing.  
E - Doing mathematics involves an Emotional Exploration of ideas.  
A - Mathematical knowledge is socially validated through Argumentation.  

In order to foster an understanding of these characteristics of mathematics, students must be 
engaged in learning activities for which these characteristics of mathematics become apparent. 
We hypothesized that by engaging in an activity that research mathematicians also engage in 
(trying to prove an unsolved conjecture), students would have the opportunity to reflect on 
mathematics in ways that align with these four characteristics.  

Methods 
Participants, Context and Data Collection 

The research took place at a large public university in the United States. The university is a 
Hispanic-serving institution, and has very diverse student body. This diversity is represented in 
the students who participated in this study, which was approved by our university’s institutional 
review board. Participants included volunteers enrolled in a transition-to-proof course. There 
were 16 female participants and 9 male participants. All names in this paper are pseudonyms.  

As an added component of the course, students kept a mathematician’s notebook in which 
they were scaffolded into exploring unsolved conjectures and reflecting on the process. These 
notebooks served as the primary source of data for the project. This exploration was conducted 
through several assignments over the course of the semester. For the first assignment, students 
reflected on questions such as 1) What is mathematics all about? And 2) What is mathematical 
proof and how is it used by mathematicians? Students were then introduced to both the Twin 
Primes Conjectures and the Collatz Conjectures. After doing some relatively simple 
explorations, they described how the assignment was similar to or different from their previous 
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mathematical activity. For subsequent assignments, students were assigned to research teams to 
work on either conjecture according to their preferences. For the second assignment, students 
were scaffolded into relatively difficult tasks to explore the conjectures—for instance looking for 
patterns in the twin primes or Collatz sequences; or articulating what it would mean to attempt a 
proof by contradiction to prove the conjectures. For the third assignment, students invented their 
own methods and approaches to try and solve the conjectures; there was then time for in-class 
sharing of approaches and methods. For the fourth and final assignment, students continued to 
use their own invented approaches to try and prove the conjectures; they also watched videos in 
which mathematicians described their own work on the conjectures; and finally, they reflected 
upon the process—this reflection included revisiting the questions: 1) What is mathematics all 
about? And 2) What is mathematical proof and how is it used by mathematicians? Additionally, 
students also responded to two more questions: 3) How has your thinking regarding mathematics 
and mathematical proof developed and changed during this semester? Which changes were the 
result of studying the Twin Primes and Collatz conjectures? And 4) What were the challenges 
and successes of your experience with mathematical research this semester?  
Data Analysis 

The researchers analyzed the notebooks through a thematic analysis process (Ryan & 
Bernard, 2003). This analysis process took place through two main stages. During the first stage, 
two researchers individually read through each participants’ notebook, one at a time, making 
note of 1) Student quotations that aligned with the nature of mathematics as expressed in the 
IDEA framework1; 2) Evidence of change in perceptions of the nature of mathematics; 3) Other 
substantial reflections about mathematics and the research process; 4) Interesting mathematical 
ideas. Subsequently, the researcher’s discussed their findings from each notebook, describing 
their observations. After this task was completed for the individual student notebooks, each 
researcher created a holistic summary of what they saw as the major trends in student reflections. 
The researchers also used student quotations as evidence for the trends they observed. This 
process resulted in a list of several recurring themes in student reflections (e.g. seeing 
mathematics creatively for the first time; frustration in being unable to find patterns). During the 
second stage of analysis, the researchers took the list of recurring themes developed in phase 1, 
and then reviewed each notebook again, making note of which ideas were expressed by each 
individual student. We then tallied these recurrences, resulting in a quantitative summary of the 
ideas expressed by the students. For a more detailed description of the methodology, see (Pair & 
Calva, 2021). 

Results 
Overall, we found that exploring conjectures provided an opportunity for students to 

experience and see mathematics in new ways. Students recognized that they had the opportunity 
to engage in a process similar to mathematicians, and felt they had a better understanding of the 
process of how mathematical knowledge is developed. They also experienced first-hand the 
emotional aspects of mathematics, and recorded a wide variety of emotions from frustration to 
joy. We now present our results, generally organized according to the four categories of the 
IDEA Framework.  

                                                 
1 We also used de Villiers (1990) roles of proof framework in our analysis. Those results are shared in (Pair & 
Calva, 2020).  
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Identity 
In terms of identity, Figure 1 shows the tallies of students whose notebook reflections 

expressed related ideas. We identified ten total students whose reflections showed that they 
either took ownership of their ideas using personal (I/my) language, showed that they grew in 
their own mathematical identity, or identified with mathematicians to a greater degree than they 
did before (the total is more than ten as some students were categorized in more than one 
category).  

 

 
Figure 1: Recurring Themes Related to Identity 

For instance, we can see that Isabella uses the language “my work” and “things I figured out” in 
this excerpt from her notebook as she references a concept she invented, “pink numbers”: 

Overall, I liked this process of communicating with the class and working together. I got 
excited when I figured ‘the first pink number’ out […] I’m even more excited to figure stuff 
out, or simply just share my work with my classmates. My most important work are on pages 
12 and 18 because they show the 2 things I figured out.  

See Figure 2 for an image that shows an excerpt from Isabella’s work that she referred to:  
 

 
Figure 2: Excerpt from Isabella’s Notebook 

Four students grew in their mathematical identity as the conjecture exploration helped them see 
that they enjoyed proofs and/or mathematical research. For instance, Brent wrote, 

This notebook assignment has made me realize that even the simplest arithmetic can lead to 
problems that even modern mathematics isn’t ready for. But it’s also grown my passion for 

Identity  10 (total)

Take owernship of ideas (using I/my language) 9

Grew in own mathematical identity (right major choice). 4

Identify with mathematicians 4
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proofs and the subject itself. I want to dive deeper into this and see what I can learn! Oh, it 
also made me realize that I made the right choice in majoring in math since I love proofs so 
much . 

Four students wrote that they believed the assignment helped them to identify with 
mathematicians as they got to engage in the same activities as mathematicians. Vincent wrote, 

I had a lot of fun working on this second assignment because we are working on an unsolved 
proof like many other mathematicians. It is pretty cool to try and give one’s own spin and 
perspective on the twin primes conjecture and if not prove it, at least come to the 
understanding of the conjecture and have some hands-on experience. 

Dynamic 
In terms of the dynamic nature of mathematical knowledge, see Figure 2 for the tallies of 

how many students reflected upon a particular theme. We found that eleven students either 
described how they learned about conjectures for the first time, understood better how 
mathematical knowledge is built, conjectured that new mathematics may be required to solve 
conjectures, and/or referenced discovery (some students were identified for more than one 
category).  

 

 
Figure 3: Recurring Themes Related to Dynamic Nature of Mathematics 

Vanessa and at least four other students learned about conjectures for the first time through 
the assignments. Early in the semester she wrote, “I enjoyed learning about conjectures. I didn’t 
know what conjectures were, but now I do.” Near the end of the semester, after watching a video 
of a mathematician describing their work on their conjectures, Vanessa wrote “Mathematicians 
use these proofs to help prove other conjectures. As Maynard’s proof was influenced by Zhang’s 
proof. Eventually, Maynard’s proof will be used to help prove other conjectures.”  

We found that four students hypothesized that new mathematics may be required to solve the 
conjectures. Lorenzo wrote, “The Collatz conjecture is unprovable… for now. There has to be 
some future mathematics that will prove it. However right now, in 2019, the Collatz conjecture 
remains unsolved.”  Five students referenced mathematical discovery in their final reflections. 
Daniel concluded, “Proofs are used by mathematicians to assist them in creating other proofs to 
eventually have a breakthrough that is groundbreaking in mathematics as well as the world.”  
Emotional Exploration 

Almost every student in the course reflected on significant aspects of mathematical 
exploration. Five students experienced mathematics creatively for the first time and seven 
recognized the need to think outside the box in exploring the conjecture. Eight students reflected 
that the process allowed them to get a glimpse of the discipline of mathematics and what goes 
into the making of mathematics. Students also described a range of emotions from frustration to 
joy. We found that five students described frustrations but no positive emotions, 9 students 
described both frustration and positive emotions, whereas seven students described only positive 

Dynamic 11 (total)

Learning about conjectures for first time 5

Described building up of knowledge in mathematics 5

Believed new mathematics required to solve conjectures 4

Reference Discovery 6
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emotions. See Figure 4 for a summary of themes related to exploration (some students were 
counted for multiple categories).   

 

 
Figure 4: Recurring Themes Related to Exploration 

Students were frustrated when they could not find patterns, or when they were at a loss for 
how to proceed in working on the conjectures. For example, consider this excerpt from Charity: 
“I feel lost. Working on this assignment feels like a road with no end. I don’t feel confident in 
what I’m doing unlike when I’m working on what we’re working on in class.” Other students 
described similar challenges, as the assignment was different from their previous mathematical 
experiences. Cassandra found that she needed to look at math more creatively to meet the 
challenge of the assignment.  

My experience working on this conjecture thus far has been challenging. It is difficult to shift 
how you approach mathematics from just learning and applying formulas and theorems that 
define what you do to then try and figure it out yourself. This has made me look at math 
more creatively than I have before. This conjecture has also made me try and see more 
patterns in number sequences and how they relate to one another.  

After a period of frustration, most students productively engaged in the conjecture by trying a 
variety of approaches. The quote from Carlos below illustrates how he found enjoyment in the 
experience and also developed a new perspective on mathematics.   

For the most part, I was able to get a solid foundation about number theory, primes, “3n+1” 
and all its uses, and also going down the rabbit hole of several given solutions on Collatz or 
twin primes. This assignment was fun. Really fun. Being able to think of math in a more 
analytical sense was like a breath of fresh air. Being able to break down, and to be able to 
show each part of a statement to be true or false. It’s kind of eye opening that this is how to 
“read math” and “talk math.” 

In addition to considering how to read and talk math, other students described how they got a 
picture of what goes into the making of mathematical knowledge. Jennifer wrote,  

This assignment was very interesting to me because it had me learn more about why Collatz 
sequences have not been proven yet. This was a different experience for me compared to my 
prior mathematical experiences because usually I work with problems that have already been 
proven. So it was definitely interesting getting a glimpse of what professional 
mathematicians struggle with when trying to prove something for its first time. 

  

Exploration 24 (total)

View of Math as creative 5

Need to think outside the box or think critically 7

Looking at conjecture from different perspectives 5

Getting a glimpse of the discipline. 8

Contrasted conjectures with prior math experiences 11

Frustrated 14

Enjoyed/Excited/rewarding (positive emotions) 16
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Argumentation 
While we have evidence that students had opportunities to enrich their perspectives on the 

nature of mathematics in ways that aligned with the first three categories of the IDEA 
framework, we did not find much evidence that students reflected on the fourth category—
argumentation. Perhaps this is because the students only had one day in class for in-person 
sharing of our findings related to the conjecture. That day was a show and tell experience rather 
than a critiquing experience—the students did not have the opportunity for social validation of 
mathematical knowledge through the conjecture assignment.  

Discussion 
We are encouraged by the results of our study. We have some evidence that providing 

students a scaffolded opportunity to explore unsolved conjectures, and time to reflect on this 
activity, is a productive means to enrich students mathematical experiences/perspectives. While 
we chose the Twin Primes and Collatz conjectures due to our familiarity with them, we believe 
that any accessible conjecture could be used fruitfully with undergraduate students. This activity 
was implemented in a transition-to-proof course, but a similar activity could be used as a project 
in courses on analysis, number theory, abstract algebra, etc… It is especially important for future 
teachers in such courses to have opportunities to experience mathematics in non-traditional, 
collaborative activities that more closely align with the work of practicing mathematicians. By 
doing so, they will be better positioned to provide their future students with opportunities for 
authentic mathematical practice.  

In this exploratory study, we used the IDEA framework as a conceptual framework in data 
analysis for the first time. In our analysis, we carefully looked for student reflections that 
expressed ideas that aligned with the categories of the IDEA framework. This was a lengthy 
qualitative process. Future studies may improve upon this methodology, perhaps creating 
quantitative assessments that can be used to measure the changes in students’ perspectives of the 
nature of mathematics through novel classroom interventions.  

We note that of the four categories in the IDEA framework, students had the opportunity to 
learn about each aspect of the nature of mathematics except that mathematics is socially 
validated through Argumentation. Future research studies are needed to discover classroom 
interventions that help students experience and understand this aspect of the nature of 
mathematics. 
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Literature typically describes mathematization, the process of transforming a real-world 
situation into a mathematical model, in terms of desirable actions and behaviors students 
exhibit. We attended to STEM undergraduate students’ quantitative reasoning as they derived 
equations. Analysis of the meanings they held for arithmetic operations (+, −, ⋅, ÷) provided 
insight into how participants expressed real-world relationships among entities with arithmetic 
relationships among values. We extend the findings from K-12 literature (e.g., using 
multiplication to instantiate a rate) to STEM undergraduates and found evidence of new ways of 
justifying the usage of arithmetic operations (e.g., using multiplication to instantiate an amount).  

Keywords: Modeling, Undergraduate Education, Mathematical Representations  

Mathematical modeling (hereon called modeling) provides a venue within which to promote 
STEM education, a stance taken by the US government (Committee on STEM Education, 2018, 
p. 17; National Governors Association Center for Best Practices & Council of Chief State School 
Officers, 2010), and researchers alike. Modeling is typically defined as the cyclical process of 
taking a real-world phenomenon, transforming that phenomenon into a mathematical 
representation (called mathematizing), working with that mathematical representation, and 
interpreting that work back into the real-world. The idea to use modeling activities to enrich 
STEM education is well established. Modeling helps students develop general competences and 
attitudes towards creative problem-solving while building feelings of self-reliance and 
competence, prepare to live and act as informed socially conscious citizens, use math to describe 
extra-mathematical situations, see a richer more comprehensive picture of mathematics, and 
acquire, learn, and keep mathematical concepts by providing motivation for and relevance of 
mathematical studies (Blum & Niss, 1991).  

Literature on modeling competencies, and specifically mathematizing, typically frame the 
research as identifying some sort of “blockage” or that an action associated with a competency 
was “difficult” to perform (Brahmia, 2014; Galbraith & Stillman, 2006; Jankvist & Niss, 2020; 
Stillman & Brown, 2014). While these descriptive actions are an important step in fully 
understanding the complexity of mathematizing, we do not yet know why certain actions, such as 
writing an equation, is difficult for students. In particular, it is often unclear how or why a 
participant chooses to represent a real-world relationship with a given arithmetic operation (+, −,
⋅, ÷). Understanding the justifications students use when writing down their equations will 
inform facilitator scaffolding of mathematizing and may also provide insight into when and how 
students ensure their resulting equations are adequate. We target this one aspect of 
mathematizing in order to make strides towards developing rich, empirically- and theoretically-
grounded descriptions of students’ mathematical reasoning during mathematizing. 

Theoretical Framework  
Previous studies have indicated that quantitative reasoning promotes building of models 

(Ellis, 2007; Ellis, Ozgur, Kulow, Williams, & Amidon, 2012; Mkhatshwa, 2020) and is a lens 
with which to understand STEM undergraduates’ reasoning while mathematizing during a 
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modeling task (Carlson, Larsen, & Lesh, 2003; Czocher & Hardison, 2021; Larson, 2013). 
Czocher and Hardison (2019, 2021) reported findings of a task-based interview with a participant 
working on a modeling problem. Their retrospective analysis documented how the participant’s 
model changed through the course of the interview by attending to quantities imposed onto the 
task situation, the relationships among those quantities, mathematical inscriptions, and changes 
to each of those elements. An interesting implication of this analysis is that the models that 
students could potentially make during a modeling task depend on (and are constrained by), the 
quantities the participant imposes onto the situation. Given the arguments and implications of the 
literature above, it is appropriate to use quantitative reasoning as a lens to study students’ 
reasoning while mathematizing. 

In the remainder of this section, we put together the theoretical constructs from quantitative 
reasoning in order to describe the justifications students used for certain arithmetic operations 
(+, −, ⋅, ÷) when writing an equation during a modeling task. “Quantitative reasoning is the 
analysis of a situation into a quantitative structure- a network of quantities and quantitative 
relationships” (Thompson, 1993). A quantity is a mental construct, whose creation is (often) 
effortful (Thompson, 2011). That effort is characterized by the act of someone conceptualizing 
an object that has some attribute and intending to measure that attribute. (Thompson & Carlson, 
2017, p. 425). This means a quantity is a triple consisting of an object, attribute, and 
quantification (Thompson, 2011). Quantification in this instance means to conceptualize some 
object with an attribute that has a measure, and that measure has a proportional relationship with 
its unit (Thompson, 2011). Further, quantification can be operationalized as the set of operations 
an individual could enact on the attribute (Hardison, 2019). According to Ellis (2007), length, 
area, volume, cardinality, speed, temperature, and density are all attributes of some object that 
can undergo quantification. A quantity is made from an individual’s conceptions of objects 
within the situation, rather than the objects or situations themselves (Ellis, 2007), further, each 
individual could quantify an attribute using differing sets of operations, therefore a quantity is 
idiosyncratic to the individual. Because a quantity is idiosyncratic to the individual, quantities 
are (cognitively) distinct from (mathematical) variables.  

A quantitative operation is a conceptual operation where an individual creates a new quantity 
in relation to one (or more) already created quantities (Ellis, 2007; Thompson, 2011). Enacting a 
quantitative operation upon two quantities can be thought of as composing or combining two 
quantities (which could be denoted through arithmetic operations) to yield the new one. 
Thompson (2011) outlined the arithmetic operations associated with the quantitative operation as 
seen in his data with students k-12, see Error! Reference source not found.1. 
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Table 1 Arithmetic operations done to construct a new quantity (Thompson, 2011, p. 43). 
Structure Arithmetic Operation to Evaluate the 

Resultant Quantity 
A quantity is the result of an additive combination of two 
quantities 

Addition 

A quantity is the result of an additive comparison of two 
quantities 

Subtraction 

A quantity is the result of a multiplicative combination of 
two quantities 

Multiplication 

A quantity is the result of a multiplicative comparison of 
two quantities 

Division 

A quantity is the result of an instantiation of rate Multiplication 
A quantity is the result of a composition of ratios Multiplication 

 

The left side of Table 1 describes the type of relationships between two quantities that results 
in a new quantity. In other words, this left-hand side is the schema of action used to apply 
arithmetic operations to symbols that represent quantities. A schema of action is an organized 
pattern of thoughts or behaviors (actions) that can be applied to different cognitive objects in 
different situations (Nunes & Bryant, 2021). For example, in k-12 literature, two schemas of 
action for addition are: putting together (i.e., quantity is the result of additive combination), and 
part-whole relations (i.e., a comparison of two quantities) (Nunes & Bryant, 2021). Additionally, 
a schema of action for multiplicative relationships could be a one-to-many correspondence for 
quantities with a fixed ratio relationship (i.e., a multiplicative combination of two quantities).  
There might be other schemas of action participants are using to apply structure to a real-world 
phenomenon. Structure here is defined to be the schema of action, and the arithmetic operations 
are the result of the imposition of the schema of action in the mathematical representation.  

Research has shown that some schemas of action are not advantageous for combining 
quantities. As pointed out by Schwartz (1988), the notion of multiplication being a one-to-many 
correspondence does not work for cases such as (miles/hours * hours = miles), because iterating 
the relationship between miles and hours “number of hours times” cannot be done. Similarly, 
Brahmia (2014) argued that students who conceptualize multiplication as repeated addition are 
not prepared to conceptually understand products of quantities. Additionally, students who see 
division only as an operation that creates parts from a whole do not have the mental operations 
available to conceptualize ratio quantities (e.g., density, velocity). That is, students being able to 
effectively construct quantities in applied contexts must have strong conceptualizations of 
multiplication and division that differ from the schema of action of “repeated addition” and 
“creating parts from a whole” (Brahmia, 2014).  

In order to describe the justifications participants hold for the equations they write down, we 
address the question: What schema of action do STEM undergraduates use to justify their 
choices of arithmetic operations while mathematizing during a modeling task?   

Methods 
This study was part of a larger study of facilitator scaffolding moves that foster participants’ 

modeling competencies. For the present study, 11 STEM undergraduates participated in sets of 
individual cognitive task-based interviews through Zoom. Each participant saw at least six tasks 
over ten sessions. The tasks were modeling problems designed to scaffold participants’ modeling 
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activities by attending to quantitative reasoning and appealing to similarities in structures. We 
report findings from three participants’ work on the Cats and Birds task (see below). Pattern, 
Neturo, and Khriss were all enrolled in, or had already taken, differential equations (DE) at the 
time.  Pattern majored in civil engineering while both Neturo and Khriss majored in physics with 
a minor in mathematics. These three participants were chosen from the larger study to showcase 
schema of action that differ from those described in previous literature.    

Cats & Birds. Cats, our most popular pet, are becoming our most embattled. A national 
debate has simmered since a 2013 study by the Smithsonian’s Migratory Bird Center and the 
U.S. Fish and Wildlife Service (Raasch, 2013) concluded that cats kill up to 3.7 billion birds 
and 20.7 billion small mammals annually in the United States. The study blamed feral 
“unowned” cats but noted that their domestic peers “still cause substantial wildlife 
mortality.” In this problem, we will build a model (step-by-step) that predicts the species’ 
population dynamics, considering the interaction of the two species. 
 In this task, participants were asked to consider a back-yard habitat where birds are the 

primary prey for cats. The participants were then asked a series of questions with the aim of 
having them write an equation for the instantaneous rate of change of the bird and cat population. 
Here we report the students’ work to build a differential equation of the bird population due only 
to cat predation. It is appropriate to study students’ mathematization while modeling in dynamic 
tasks like Cats and Birds because dynamic tasks elicit dynamic reasoning, which is connected to 
quantitative reasoning (Keene, 2007).  

Data were analyzed in four phases. First, the transcripts and written work were segmented 
according to changes in discussion topic (e.g, the interviewer asked a new question). Second, we  
identified the quantities the participant imposed onto the task scenario by describing the object, 
attribute and how the participant exhibited quantification for that attribute according to the 
quantification criteria developed by Czocher and Hardison (2021). In phase three, we noted 
instances of arithmetic operations used on the quantities the participant constructed and 
documented the participants’ reason (or inferred reason when the participant’s reason was not 
stated) for using that specific arithmetic operation and if the instance is a quantitative operation, 
that is, the arithmetic operation is done to create a new quantity. In phase four, we compared the 
reason we inferred the participant was using to the schema of action documented in Thompson 
(2011) and Nunes and Bryant (2021) and noted if the schema of action matched previous 
literature or was not present in previous literature. For example, Neturo stated that he used 
multiplication because one cat will meet many birds. Neturo’s explanation was comparable to a 
one-to-many correspondence as described by Brahmia (2014) and Nunes and Bryant (2021).  

Results 
We report the schema of action participants employed when expressing arithmetic operations 

with the quantities they imposed onto the Cats and Birds task as they built their model for the 
rate of change of the bird population due only to cat predation. According to our theoretical 
perspective, arithmetic operations are the result of imposing the schema of action in the 
mathematical representation and thus tell us how the participant was justifying (either explicitly 
or implicitly) their usage of arithmetic operations.  First, we provide an overview of all of the 
inferred schema of action exhibited by our participants in Table 2. This table reports the 
quantities the participant combined, the resultant quantity, the inferred schema of action, and if 
this schema of action was present or not present in previous literature.  
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Table 2 Schema of action exhibited by all three participants 

Quantity 1 Quantity 2 Resultant quantity Schema of action In previous 
literature? 

Number of 
birds at time 𝑡  
 

Number of cats at 
time 𝑡 
 

Number of total 
possible cat-bird 
interactions that could 
occur in the back yard 
habitat.  
 

Multiplication- One-to-
many correspondence 
(Brahmia, 2014; Nunes 
and Bryant, 2021,) 

Yes 

Rate of 
encounters 
between cats 
and birds per 
time interval 
 

Number of total 
possible cat-bird 
interactions 
 

 Number of encounters 
per unit time  
 

Multiplication-
Instantiation of a rate. 
(Thompson, 2011) 

Yes 

Percentage of 
encounters that 
are realized 

Number of total 
possible cat-bird 
interactions 

Number of encounters 
that are realized 
 

Multiplication- 
Subsetting 

No 

Number of 
encounters that 
result in a death 

Duration of time Number of birds that 
die during Δ𝑡 

Multiplication- 
Instantiation of an 
amount. 

No 

Total 
accumulated 
dead birds 
during a time 
segment 

Total number of 
observations of 
the population 
made during a 
time segment 

 Average change in the 
bird population 
 

Division - Separating 
into equal parts. 
(Brahmia, 2014) 

Yes 

Change in the 
bird population 
due to cats 
 

Number of birds 
that die during Δ𝑡 

Change in the bird 
population due to cats 
per change in time 
 

Division - Evaluate a 
quantity that is an 
operand of a 
quantitative operation. 
(Thompson, 2011) 

Yes 

Number of 
birds present at 
the beginning 
of a time 
segment Δ𝑡 

Number of birds 
at the end of a 
time segment Δ𝑡 

Change in the bird 
population due to cats 
 

Subtraction - Additive 
comparison between 
two quantities 
(Thompson, 2011) 

Yes 
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Quantity 1 Quantity 2 Resultant quantity Schema of action In previous 
literature? 

Number of 
lethal 
encounters 
between a cat 
and a bird on 
day 𝑡1 

Number of 
lethal  
encounters 
 between a cat  
and a bird on  
day 𝑡𝑛 

Total accumulated dead 
birds during a time 
segment 

Addition - Additive 
combination of 
multiple quantities  

No 

 
Overall, our participants did exhibit schema of action described in previous literature. This 

indicates that schemas of action present in k-12 literature are also exhibited by undergraduate 
STEM students. We next illustrate the three schemas of action not present in the previous 
literature.  
Schema of action not present in the literature 

Additively combining multiple quantities. Khriss was asked how he could model the 
decrease in the bird population due to cats during some arbitrary passage of time Δτ. Khriss 
initally reponded by writing down the symbol Σ, indicating he was thinking of constructing some 
form of summation. The interviewer suggested he find the decrease in the bird population due to 
cats after five days, instead of an arbitrary duration of time. In Khriss’ reasoning, the number of 
birds dying each day was variable. He used 𝐿𝐸(𝑡) to represent the number of lethal encounters 
between a cat and a bird at a specific time 𝑡. In response to the prompt, Khriss wrote ∫ 𝐿𝐸(𝑡)𝑑𝑡

5

0
, 

denoting summation. Khriss understood the decrease in bird population during five days as an 
accumulation of the non-constant values of the number of lethal encountes on a specific day. 
Khriss used this schema of action again when he was asked to consider the average rate of 
change of the bird population during some number of days 𝐷. In reponce to this, Khriss labeled 
multiple instances of time that the number of lethal encounters were recorded that occured during 
the number of days 𝐷. He labeld these instances of time 𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛. Khriss then added the 
number of lethal encounters for each day to yeild the total accumulated dead birds during some 
number of days 𝐷. The equation written for this calculation was ∑ 𝐿𝐸(𝑡)𝑛

𝑡=1 . A snapshot of 
Khriss’s work is provided to showcase how Khriss thought of this sumation (see Figure 1), and 
below we provide a quote of Khriss explaning his summation.  

Khriss: So during a segment of time D, to find an average I guess we would need multiple 
readings of what the population is throughout that time. I guess we could we use 
𝑡1, 𝑡2, 𝑡3, 𝑡𝑛. Yeah, I guess that would be it. Just to make sure what question I'm 
answering here, I have lethal encounters at time t adding up all of those for each different 
t all the way to my last t and dividing that by the number of measurements gives me an 
average. So that gives me my average number of dead birds within t.  
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Figure 1: Average change in bird population over five days according to Khriss. 

His schema of action for both of these instances was additively combining multiple quantities 
to arrive at a new quantity. The schema of action described in Thompson (2011) occurs strictly 
between two quantities. Because Khriss is adding more than one quantity at a time, Khriss’ 
schema of action is different. We infer that Khriss’ schema of action is a step up in complexity 
from the schema described in Thomspon (2011), because Khriss is able to implicetly construct 
each measure of dead birds between 𝐿𝐸(𝑡1) and 𝐿𝐸(𝑡𝑛) in order to combine an unknown number 
of quantites additevely.  

Multiplication for subsetting. Pattern had previously constructed a quantity that represented 
the number of total encounters, which is calculated by 𝐵(𝑡) ⋅ 𝐶(𝑡). In order to account for the 
fact that not all birds encounter all cats, he constructed two new quantities.  The first quantity 
represented the percentage of encounters that are realized, labeled 𝛼, and the second quantity 
represented the number of encounters that are realized, calculated by 𝛼 ⋅ 𝐶(𝑡) ⋅ 𝐵(𝑡). Pattern said 
that he multiplied 𝛼 and 𝐶(𝑡) ⋅ 𝐵(𝑡) to take a percentage of the total possible encounters, 
indicating the schema of action for this instance of multiplication was different than a one-to-
many correspondence, and was more like subsetting from a larger amount.  

Pattern: Okay. So now that we have a percentage, then you just do 𝐶(𝑡) times 𝐵(𝑡) times 𝛼 
equals encounters. Because you're going to take… So this is the total possible encounters 
that could possibly happen if perfect conditions are met for each cat to meet each bird, 
and then you're going to take a percentage of that total, and that would be your total...  

Multiplication for instantiating an amount. Pattern had previously constructed a quantity 
that represents the number of birds that have died, calculated by  𝛽 ⋅ 𝐶(𝑡) ⋅ 𝐵(𝑡). Pattern then 
constructed a new quantity that represented the number of birds that die during Δ𝑡, labeled 𝐷𝑡, 
which was calculated by (𝐶(𝑡) ⋅ 𝐵(𝑡)) ⋅ 𝛽 ⋅ Δ𝑡.  Pattern multiplied the amount of birds that have 
died, which he did not view as connected to any specific duration of time, by some duration of 
time to yield the number of birds that have died during Δ𝑡. The schema of action used for 
multiplication was combining two quantities, however this was not a one-to-many 
correspondence and was also different from the subsetting schema of action. We infer that 
Pattern was multiplying by Δ𝑡 in order to instantiate the number of birds that have died 
specifically during Δ𝑡.  Pattern did not evidence multiplying a rate and a duration of time to yield 
an amount (per-time rate ⋅ Δ𝑡 = amount) because Pattern did not associate a duration of time 
with 𝛽 ⋅ 𝐶(𝑡) ⋅ 𝐵(𝑡). For Pattern, the quantity calculated by 𝛽 ⋅ 𝐶(𝑡) ⋅ 𝐵(𝑡) was an amount, not a 
rate. The quote below shows Pattern explaining that multiplying by Δ𝑡 transforms 𝛽 ⋅ 𝐶(𝑡) ⋅ 𝐵(𝑡) 
into the quantity that represents mortality (the number of birds that die) during Δ𝑡, 

Pattern: I honestly just know that I have to add [append] this Δ𝑡, and it kind of makes sense 
in my head because this mortality doesn't have a specific time attached to it. It (referring 
to 𝐶(𝑡) ⋅ 𝐵(𝑡)) has already the 𝑡, but that's just telling you the amount of cats and birds at 
that time. It doesn't tell you how much time has passed. So if you multiply all of that by 
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this number (pointing at Δ𝑡),… this is time that has passed….It's not encounters anymore, 
now it's.. What this is telling me the mortality during Δ𝑡. 

Discussion 
Collectively, our participants exhibited schema of action discussed previously in the 

literature. Pattern constructed a quantity by additively comparing between two quantities.  Khriss 
used division when finding the average by separating a quantity into equal parts. Pattern and 
Khriss used division to evaluate a quantity that is an operand of a quantitative operation. Neturo, 
Pattern, and Khriss used multiplication to combine to quantities in a one-to-many 
correspondence fashion. Lastly, Khriss used multiplication to instantiate a rate. All of these 
schemas of action are documented in previous literature (Brahmia, 2014; Nunes & Bryant, 2021; 
Thompson, 2011). Our participants also exhibited schema of action not present in the previous 
literature. Khriss used addition to additively combine multiple quantities instead of just two 
quantities. Neturo used a minus sign to indicate a negative magnitude for a quantity. Khriss 
showcased a new schema of action where he simultaneously additively combined multiple 
quantities in order to arrive at a new quantity. Khriss’ schema of action is a step up in complexity 
from the schema described in Thompson (2011) because Thompson’s definition is restricted to 
combining two quantities and Khriss is implicitly combining an unknown number of quantities. 
Pattern constructed a quantity that indicated a fraction or percentage and then multiplied by a 
quantity that represents an amount to gain some fraction of the original quantity. This schema of 
action does resemble the schema of action described in Thompson (2011) as a multiplicative 
combination of two quantities, however the schema of action for multiplication was different 
from a “one-to-many” correspondence described by Brahmia (2014) and Nunes and Bryant 
(2021). Pattern used multiplication in order to take a subset from a larger whole. Lastly, Pattern 
exhibited a new schema of action where multiplication was used to combine two quantities in 
order to instantiate an amount.  

Overall, our results document justifications STEM undergraduates used when carrying out 
arithmetic operations (+, −, ⋅, ÷) on the quantities while mathematizing that were not 
previously in the literature. We extended what is known about schema of action present in k-12 
literature by confirming the presence of schema of action already described, and by introducing 
three new schemas of action. We postulate that these new schemas of action were observable 
because our participants are working on a modeling task focused on a predator-prey relationship. 
This conjecture is based on findings that the models participants make depend on (and are 
constrained by), the quantities the participant imposes onto the situation (Czocher & Hardison, 
2019, 2021), which inherently impacts the types of relationships the participants were able to 
express using arithmetic operations. Attending to these new schemas of action reveals how 
students are expressing real-world relationships among entities with arithmetic relationships 
among quantities, specifically in a predator-prey context. We speculate additional schema of 
actions could be observed for arithmetic operations in other task scenarios that call for advanced 
mathematics. Once we know more about the justifications students use when utilizing arithmetic 
operations, we can then design task and scaffolding moves that directly address, preempt, or 
build upon, those justifications. 
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While the Common Core State Standards for Mathematical Practice are a focal point of K-12 
mathematics education, there is limited research examining how future teachers’ (e.g., 
undergraduate students, teacher candidates) develop their conceptions of these standards. We 
investigate how opportunities within a mathematics-focused bridge course within a teacher 
education program provided opportunities for undergraduate students to develop their 
conceptions of the Standards for Mathematical Practice. Specifically, we explore how 
undergraduate students drew upon the Common Core provided descriptions to describe key 
practice ideas. This study contributes to the scholarship on mathematics teacher education and 
how teacher educators can support students in developing their understanding of mathematical 
practice.   

Keywords: mathematical practices, mathematics teacher education 

 The Common Core State Standards for Mathematical Practice (SMPs) describe eight ways 
of thinking and doing mathematics that parallel the ways that mathematicians engage with 
mathematics (National Governors Association for Best Practices, 2010). These standards reflect 
a broader goal in K-12 mathematics education focused on moving beyond K-12 learners 
acquiring mathematical content knowledge, towards developing learners capable of actively 
doing something with mathematics (Kilpatrick et al., 2001; National Council of Teachers of 
Mathematics, 2018). Implicit in the creation and adoption of the SMPs is the assumption that if 
K-12 learners are to develop these skills and ways of thinking, their mathematics teachers should 
provide appropriate opportunities and support to develop and engage in these practices. 
 Initial teacher education offers a space where mathematics teacher educators can provide 
opportunities for undergraduate students to develop their conceptions about the SMPs including 
what they are (Bostic & Matney, 2014; Kruse et al., 2017), what doing an SMP looks like (Max 
& Welder, 2020), and how to support K-12 learners in doing them as well (Cheng, 2017; Gurl et 
al., 2016). While there are studies of how initial teacher education provides opportunities for 
undergraduate students to develop their conceptions of the SMPs, these studies are limited and 
there remain questions regarding these opportunities. In particular, because of the limited 
literature, it is unclear how different initial teacher education contexts (e.g., content courses, 
methods courses, bridge courses, student teaching) provide opportunities for undergraduate 
students to develop their conceptions of the SMPs. Understanding the differences, affordances, 
and limitations of the opportunities in these contexts is essential if teacher educators are to 
effectively support (future) teachers in providing K-12 learners with the appropriate 
opportunities and supports.  
 This paper shares how a mathematics-focused bridge course within a teacher education 
program provided opportunities for undergraduate students (hereto called ‘students') to develop 
their conceptions of the SMPs. We discuss how students described the SMPs, including what 
ideas from the Common Core SMP descriptions students attended to in their own descriptions. 
We then discuss questions for further research based on these findings. We add to the scholarship 
on mathematics teacher education and how teacher educators can support their students in 
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building their understanding of mathematical practices.  

Framework 
To understand how a bridge course provided opportunities for students to develop their 

conceptions of the SMPs, this study draws upon situative perspectives on learning (Greeno, 
1998; Peressini et al., 2004) and sensible belief systems (Hoyles, 1992; Leatham, 2006). 
Specifically, these perspectives are used to examine how course learning opportunities supported 
the development of students’ knowledge and beliefs about the SMPs. The following sections 
provide an overview of situative perspectives on learning, including situated knowledge and 
beliefs, as well as the notion of sensible belief systems. 
Situative perspectives on learning 

Situative perspectives conceptualize learning as both a social and individual process 
(Greeno, 1998; Peressini et al., 2004). Learning is social because one learns by actively 
participating within a context, and through this participation comes to learn the knowledge and 
accepted social practices of that context. Learning is also an individual process because it is 
changes in how an individual participates that indicate learning, as one’s actions begin to reflect 
the accepted ways of participating in a given context. Scholars such as Putnum and Borko have 
argued that due to the variety of contexts within which initial teacher education occurs (e.g., 
content courses, methods courses, bridge courses, student teaching), applying a situative 
perspective to teacher education of offers a way of, “disentangling – without isolating - the 
complex contributions of these various contexts to novice teachers’ development” (2000, p. 71).  

In addition to knowledge, teachers’ beliefs are also situated (Green, 1971; Hoyles, 1992; 
Leatham, 2006). In particular, the idea of clustering describes how beliefs can be connected to or 
isolated from one another based on the clusters within which they are held (Green, 1971), with 
clusters being based on the contexts within which the beliefs were formed. The idea of clustering 
is essential to making sense of beliefs because it describes how someone may hold beliefs that 
appear contradictory because they are held in different clusters. This clustering allows for the 
contextualization of beliefs where “a person may believe one thing in one instance and the 
opposite in another” (Leatham, 2006, p. 95) In other words, beliefs, like knowledge, are situated.  
Sensible Systems of Beliefs 

Due to the situated nature of beliefs, Leatham (2006) argues that how teachers’ beliefs 
(and actions) are positioned in the literature needs to shift. He argues that if beliefs are situated 
then teachers’ beliefs and actions are sensible with respect to the context within which they are 
working. Furthermore, any perceived ‘inconsistencies’ between teachers’ beliefs and actions are 
indications that there are other beliefs at play in that particular context that are taking precedent 
over others; these beliefs may be held consciously or unconsciously and may be difficult for 
teachers to articulate. However, regardless of whether a belief is made explicit or not, teachers’ 
actions are “fundamentally sensible” (Hoyles, 1992, p. 37) with respect to their beliefs. 

Applying a sensible systems lens to teachers’ beliefs pushes researchers to better 
understand the beliefs that are actually influencing teachers’ actions rather than what we want to 
be the influence (Leatham, 2006). By understanding the actual influences on teachers’ actions, 
teacher educators can better provide opportunities for students in teacher education courses to 
explore their beliefs, as well as provide learning opportunities that can shape students’ beliefs so 
that what is sensible reflects the broader goals of K-12 mathematics education policy.  
Conceptions 

Finally, while knowledge and beliefs can be discussed separately, some scholars use the 
notion of conceptions to capture knowledge and beliefs together (Lesseig & Hine, 2021; Philipp, 
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2007; Thompson, 1992). This is because while knowledge and beliefs can be considered two 
distinct ways of knowing (beliefs are held with varying degrees of conviction while knowledge is 
held with certainty), distinguishing between them can be difficult. For example, the level of 
conviction with which one holds beliefs and knowledge can vary between people (Philipp, 
2007). Moreover, what is considered knowledge to one person may be belief for another. 
Therefore, this study uses the notion of conception to capture students’ knowledge and beliefs 
about the SMPs without trying to disentangle them. More specifically, this study investigates 
how a bridge course within a teacher education program provided opportunities for 
undergraduate students to develop their conceptions of the SMPs.  

Context and Methods 
Data for this study were collected from two sections of a mathematics-focused bridge 

course focused on familiarizing undergraduate students interested in becoming teachers with K-
12 mathematics education policy. In five two-week modules, students in this course were 
introduced to the Common Core SMPs and content standards (NGA, 2010), the five strands of 
mathematical proficiency (Kilpatrick et al., 2001), and other key instructional ideas such as 
multiple representations or classroom discourse (see Table 1). To support students’ developing 
understanding of the SMPs, the course provided opportunities for students to solve mathematical 
tasks, analyze their own mathematical work and the work of others for evidence of the SMPs, 
and reflect on their growing understanding of the SMPs and their relation to other course topics. 
Through activities such as these, course learning opportunities acted as a bridge between 
students thinking about mathematics and thinking about teaching and learning mathematics.   
 

Table 1: Bridge Course Module Overview 
Module SMP Course Topic Strand of Proficiency 

1 CCSSM & SMP 
Overview 

Mathematical Identity Productive Disposition 

2 SMP 2: Reasoning 
SMP 6: Precision 

Multiple Representations Conceptual 
Understanding 

3 SMP 7: Structure 
SMP 8: Repeated 

reasoning 

Discourse Procedural Fluency 

4 SMP 3: Argumentation 
SMP 5: Tools 

Justification Adaptive Reasoning 

5 SMP 1: Problem-solving 
SMP 4: Modeling 

Cognitive Demand Strategic Competence 

 
Eight students consented to participate from the two sections of the course. Section one 

took place online, asynchronously during Winter 2021, with two of 12 enrolled students 
consenting to participate; Section two took place online, synchronously during Spring 2021 with 
six of 35 enrolled students consenting to participate. Of the eight participants, two expressed 
interest in becoming secondary mathematics teachers, five in becoming elementary teachers, and 
one a K-12 guidance counselor; one student was employed as an elementary classroom assistant 
while another was completing their elementary student teaching practicum. While limited, the 
consenting students capture the range of backgrounds and interests enrolled in this course. 
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Methodology 
The primary data sources for this study are two course assignments, one completed at the 

end of module 3 and another completed at the end of module 5 (n=16; two per student); these 
assignments were a part of the course and would have been completed irrespective of the study. 
Through assignment prompts, students were asked to describe and provide evidence of their 
developing understanding of the SMPs including a) how they would describe key SMP ideas, b) 
why the SMPs are important, c) connections between the SMPs and other course topics, d) 
examples of how they saw themselves or others doing the SMPs when completing mathematical 
tasks, e) how class activities have shifted their understanding of the SMPs, and f) remaining 
questions they had about the SMPs.  

To analyze these data, we first read through all student assignments and segmented the 
data by structural codes that corresponded to the assignment prompts (Saldaña, 2013). This first 
phase of segmenting and coding indicated that of the assignment prompts, students most 
frequently provided descriptions of key SMP ideas (65 of 231 coded segments). Based on these 
frequencies, second phase coding focused on the description text segments identified in phase 
one. Second phase coding used Toulmin’s model of argumentation (1958) and an adaptation of 
Nardi et al.’s (2012) classification of warrants to capture the sources students drew upon when 
describing the SMPs. Due to space, we only provide a brief overview of these frameworks and 
how they guided analysis; more detail will be provided in our presentation.    

Briefly, Toulmin’s model (1958) identifies six different components of an argument: 1) a 
conclusion/claim, 2) the data upon which the conclusion is based, 3) the warrant that connects 
the conclusion to the data, 4) a backing that further supports the warrant through additional 
reasoning or evidence, 5) qualifiers to express one’s confidence in the argument, and 6) rebuttals 
that address possible exceptions or refutations to the argument. While many scholars have used 
Toulmin’s model to analyze teachers’ and students’ mathematical and pedagogical arguments 
(Krummheuer, 2015; Steele, 2005; Yackel, 2001, 2002), this model also has limitations. In 
particular, while Toulmin offers a way to make sense of an argument’s structure, it does not 
offer a way to make sense of an argument’s quality. To address this, scholars have proposed 
classifying warrants to identify the sources of influence one may draw upon when making and 
supporting an argument (Freeman, 2005; Nardi et al., 2012). For example, Nardi and colleagues 
(2012) offer seven different types of warrants mathematics educators use in their arguments: 1) a 
priori epistemological, 2) a priori pedagogical, 3) institutional curricular, 4) institutional 
epistemological, 5) empirical personal, 6) empirical professional, and 7) evaluative. These 
categories capture the scope of influences on mathematics teachers’ arguments including their 
own personal or professional experiences (empirical), personal views or beliefs (evaluative), 
curricular resources (institutional curricular), shared disciplinary practices (institutional 
epistemological), and established definitions and pedagogical principles (a priori 
epistemological and pedagogical).  

This study uses an adaptation of Nardi et al’s (2012) warrant classification to which we 
added policy classifications to capture the influence of the CCSSM content standards (policy- 
content) and SMP descriptions (policy – SMP) (NGA, 2010), and the strands of mathematical 
proficiency (policy – strand) (Kilpatrick et al., 2001). These additional classifications were 
created to explicitly capture students’ attention to different K-12 mathematics education policies, 
as well as recognize the ongoing debate about the eight SMPs in the literature. Specifically, 
scholars have argued the SMPs provide an inaccurate picture of mathematical practices due to 
the methods used to identify them (e.g., self-reported autobiographical data) or because the wide 
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range of practices used by mathematicians cannot be captured in such a small number of 
standards (Moschkovich, 2013; Weber et al., 2020). Therefore, while institutional 
epistemological warrants refer to shared disciplinary practices, we determined it would be 
inappropriate to classify the SMPs as ‘shared’ due to the ongoing debate and created this new 
categorization. In using this adapted categorization of warrants to analyze students’ SMP 
descriptions, our analysis allowed us to see which sources students were drawing upon as they 
described the SMPs, including how they related to course learning opportunities and resources.  

Findings and Discussion 
Within the 65 text segments coded as description during first-phase coding, second-phase 

codes were applied to 165 smaller segments, with each segment representing a different idea 
within students’ SMP descriptions. As illustrated in Table 2, the CCSSM SMP descriptions were 
overwhelmingly the most frequent influence on students’ SMP descriptions (policy – SMP; 
n=114). As almost 70% of text segments were coded in this category, further analysis focused on 
which components or ideas from the CCSSM students drew upon in their descriptions.  
 

Table 2: Frequency of Second-Level Code Application 
Influence Frequency 

Policy – SMP 114 
Institutional Curricular 32 
Institutional Epistemological 7 
Evaluative 7 
A priori Pedagogical 3 
Policy – Content 1 
Empirical Personal 1 

  
Influence of the CCSSM 

Overall, students attended to a range of different ideas from the CCSSM when describing 
the SMPs, ranging from four different ideas for SMP 5: Tools to 15 different ideas for SMP 3: 
Argumentation. Closer analysis indicates that how students attended to these ideas differed 
across SMPs. Specifically, students’ descriptions of SMP 1: Problem-solving and SMP 4: 
Modeling focused on the overarching idea(s) of the SMP, with less attention given to specific 
actions related to doing the SMP. Alternatively, students’ descriptions of SMP 3: Argumentation 
and SMP 6: Precision focused on one particular way of doing these SMPs, even though the 
CCSSM describes each of these SMPs as involving multiple actions. Finally, descriptions of the 
remaining four SMPs generally focused on a smaller range of ideas, including overarching 
idea(s) as well as specific actions for doing the SMPs. 
 Overarching idea(s) 
 Table 3 illustrates the different ideas from the CCSSM descriptions of SMP 1: Problem-
solving and SMP 4: Modeling that were attended to in students’ descriptions. For SMP 1: 
Problem-solving, students most frequently attended to the overarching ideas of make sense of 
problems (n=7) and planning (n=7). The CCSSM description also includes how one may do this 
sense making, such as creating representations, considering analogous problems, or looking for 
entry points, however, these actions were some of the ideas least frequently included in students’ 
descriptions. This is similar to students’ descriptions of SMP 4: Modeling which primarily 
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focused on the overarching idea of connecting math and the real world (n=9), including solving 
real world problems (n=7) and using math in real world contexts (n=2). However, as with 
problem-solving, students attended less to the actions involved in carrying out this overarching 
idea, such as making assumptions or identifying important quantities. Taken together, these 
findings suggest students’ conceptions of SMPs 1 and 4 are largely focused on the overarching 
idea(s) of these SMPs, with less focus on specific actions involved in doing them.  
 

Table 3: Ideas from the CCSSM included in students’ SMP 1 and SMP 4 descriptions 
SMP 1: Problem-solving SMP 4: Modeling 

Make sense of problems                 7 
Planning                       7 
Evaluate own work                   6 
Revise/change plan                   3 
Create representation                                 2 
Look for entry points                      1 
Analogous problems                     1 
Persevere                    1 
 

Connecting math & the real world         9         
      Solve real world problems      7 
      Apply or use math in  
      real-world contexts                    2 
Create representation                    3 
Make assumptions                  2 
Interpret results with  
      respect to context                     1 
Identify quantities                     1 
Make sense of relationships  
      to draw conclusions       1 
Example of modeling                             1 

 
Specific actions 

Students’ descriptions of SMP 3: Argumentation and SMP 6: Precision primarily focused 
on particular ways of doing each of these SMPs. For example, the CCSSM describes SMP 3 as 
the ability to “construct viable arguments and critique the reasoning of others” (NGA, 2010). In 
other words, argumentation in mathematics includes both “give and take” where one builds and 
shares an argument but also makes sense of the arguments of others. From Table 4 we can see 
that students primarily focused on the “give” aspect of doing SMP 3, largely describing SMP 3 
as justifying one’s own solution and communicating that solution or justification to others; 
listening to, discussing, and critiquing the arguments of others were some of the least frequently 
raised ideas. Overall, these findings illustrate how students generally described SMP 3: 
Argumentation as one-directional, focusing on students constructing and sharing their own 
arguments. 

Students’ descriptions of SMP 6: Precision also focused on a particular way of doing this 
SMP. Students primarily described SMP 6 as precision with respect to communication, both in 
general and how definitions, mathematical language, labels, and calculations can support 
communication (see Table 4). Precise communication, including the formulation of clear 
explanations and use of definitions, are explicitly included in the CCSSM SMP 6 description. 
Interestingly, the CCSSM also describes SMP 6 as the ability to “calculate accurately and 
efficiently, express numerical answers with a degree of precision appropriate for the context of 
the problem” (NGA, 2010). Despite this explicit attention to precise calculations, only two 
students referred to calculations in their descriptions, with one student including accurate 
calculations as a component of communication. Furthermore, no students touched on the notion 
of the appropriateness of precision for the context of the problem. These findings suggest that 
students’ conceptions of SMP 6 are largely focused on precision with respect to communication 
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about mathematics, with less attention to precision when carrying out mathematical calculations 
or processes.  
 

Table 4: Ideas from the CCSSM included in students’ SMP 3 and SMP 6 descriptions 
SMP 3: Argumentation SMP 6: Precision 

Communicate solution or  
        justification to others                 11 
Grade-level appropriateness  
       of arguments      6 
Justify                     4 
Example of engagement               3 
      Concrete referents                                 2 
      Create diagrams                                 1 
Listen to other                  3 
Identify mistakes/flaws                         2 
Critique others’ ideas, solutions,  
or justifications                            2 
Compare arguments                     1 
Ask clarifying questions                1 
Make conjectures                    1 
Discuss others’ solutions or 
      justifications      1 
Use definitions and  
      established information                   1 
Analyze problem                   1 
Respond to others                 1 

Communication               14 
       Definitions       4  
       Mathematical language                  3  
         Explain reasoning    3  
         Examine claims                1  
         Correct calculations               1  
         Units                 1  
         General                 1  
Label graphs                 2  
Units                  2  
Correct calculations/answer               1 
Clear work                 1 
Contextual meaning                1  
 

 
Remaining SMPs 
 Students’ descriptions of SMP 2: Reasoning, SMP 5: Tools, SMP 7: Structure, and SMP 
8: Repeated reasoning included both overarching ideas and actions related to doing each SMP; 
these descriptions also generally focused on a smaller range of ideas overall. For example, while 
the average number of different SMP ideas raised throughout students’ assignments for SMPs 1, 
3, 4, and 6 was 9, students raised an average of 4.75 different ideas for SMPs 2, 5, 7, and 8. 
 When describing SMP 2: Reasoning, students’ descriptions included multiple ideas from 
the CCSSM including: contextualizing, decontextualizing, reasoning about quantitative 
relationships, and creating representations. Similarly, students’ descriptions of SMP 5: Tools 
included both the ability to use tools and the ability to determine which tools are available and 
appropriate for a given problem, with each of these ideas occurring almost equally in students’ 
descriptions (see Table 5).  

As previously discussed, students sometimes focused on a particular action in their 
descriptions even if multiple actions were included in the SMP title itself (e.g., SMP 3: 
Constructing and critiquing arguments). Interestingly, this was not the case for SMP 7: Structure 
or SMP 8: Repeated reasoning, which both include looking for and making use of structure/ 
repeated reasoning. While the “look for” aspect of SMPs 7 and 8 was the most frequently raised 
by students (see Table 5), students included how to “make use” almost as frequently. For 
example, students’ descriptions of SMP 7: Structure included identifying underlying structures 
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and patterns (n=5) and how to make use of this structure via the (de)composition of 
mathematical objects almost equally (n=4). This is similar to students’ descriptions of SMP 8: 
Repeated reasoning which focused on identifying patterns and repetition (n=10), as well as how 
to use that repetition to generalize (n=6) and determine shortcuts (n=2).  
 

Table 5: Ideas from the CCSSM included in students’ SMP 2, SMP 5, SMP 7, and SMP 8 
descriptions 

SMP 2: Reasoning SMP 5: Tools 
Decontextualize                4 
Contextualize                    3 
Make sense of quantitative  
      relationships     3 
Create representations                           3  
Units                     1 
Flexible use of operations               1 

Use tools              6 
Identify appropriate tools            5 
Examples of tools             4 
Purpose of tools             2 
 

SMP 7: Structure SMP 8: Repeated reasoning 
Identify underlying structures  
     or patterns                  5 
Examples of using structure                5 
(De)composition                 4 
Shift perspectives               2 
 

Identify patterns/repetition                 10 
Generalize                 6 
Reasonableness of results               3 
Examples of looking for or  
      using repeated reasoning               2 
Determining shortcuts                         2  

 
Interestingly, while students’ descriptions of both SMP 7: Structure and SMP 8: Repeated 

reasoning included the idea of patterns, the word ‘pattern’ is only included in the CCSSM 
description for SMP 7; SMP 8 refers to noticing repeated calculations or regularity. Therefore, 
while students’ descriptions suggest the CCSSM helped students understand what making use of 
structure and repeated reasoning entails, the frequent use of the word ‘pattern’ to describe both 
does raise questions about the similarity between SMPs 7 and 8.  

Conclusion 
 This study explores how a mathematics-focused bridge course provided opportunities for 
undergraduate students to develop their conceptions of the SMPs. The influence of the CCSSM 
on students’ descriptions suggests that course opportunities to read and discuss the CCSSM SMP 
descriptions supported students in developing their SMP conceptions. Furthermore, the ideas that 
students did include provides insight into which ideas students are holding onto and can act as a 
foundation upon which to build in future learning opportunities. In doing so, we hope this study 
will inform future research examining how different teacher education contexts provide learning 
opportunities for students to develop their SMP conceptions, as well as how later learning 
opportunities can build off conceptions established in previous courses.  
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In this paper, we offer a novel framework for analyzing the Opportunities for Reasoning-and-
Proving (ORP) in mathematical tasks. By drawing upon some tenets of the commognitive 
framework, we conceptualize learning and teaching mathematics via reasoning and proving both 
as enacting reasoning processes (e.g., conjecturing, justifying) in the curricular-based 
mathematical discourse and as participation in the meta-discourse about proof, which is focused 
on the aspects of deductive reasoning. By cluster analysis performed on 106 tasks designed by 
prospective secondary teachers, we identify four types of tasks corresponding to four types of 
ORP: limited ORP, curricular-based reasoning ORP, logic related ORP, and fully integrated 
ORP. We discuss these ORP and the contribution of this framework in light of preparing 
beginning teachers to integrate reasoning and proving in secondary mathematics classrooms.  

Keywords: Reasoning and Proof, Instructional Activities and Practices, Classroom Discourse, 
Preservice Teacher Education  

Introduction  
Reasoning and proving are mathematical processes such as identifying patterns, generalizing, 

conjecturing, and justifying, which are at the heart of mathematics (Ellis et al., 2012; Jeannotte & 
Kieran, 2017; Stylianides, 2008). The role of reasoning and proving in mathematics classrooms 
is to support students’ sense-making and meaningful learning of mathematics (Hanna & 
deVillers, 2012; NGA & CCSSO, 2010; NCTM, 2009; 2014). This emphasis is embodied in the 
notion of Proof-Based Teaching (Reid, 2011) and in Buchbinder & McCrone’s (in press) 
Teaching Mathematics via Reasoning and Proving (TMvRP) framework. The three guiding 
principles of TMvRP are: (a) integration of reasoning and proving within the mathematics 
curriculum; (b) emphasis on deductive reasoning for producing and validating mathematical 
results, and (c) use of precise mathematical language but within the conceptual reach of the 
students. These principles seem straightforward but require operationalizing. For example, how 
can reasoning and proving be integrated within the curriculum? And how an emphasis on 
deductive reasoning can look like in student learning? In particular, teaching mathematics via 
reasoning and proving requires instructional materials and tasks enabling teachers to engage 
students with reasoning and proving. Mathematical tasks constitute one of the main sources of 
student learning (Watson & Ohtani 2015). Teachers design learning opportunities for students by 
choosing, adapting, or creating mathematical tasks (Brown, 2009; Remillard, 2005), therefore 
opportunities for students to engage with reasoning and proving vary across tasks. This leads to a 
question: How can a task’s potential for engaging students with reasoning and proving be 
assessed and characterized? Studies that examined the opportunities for reasoning and proving in 
tasks tend to focus on the processes students can enact while engaging with the task, such as 
identifying patterns or making conjectures (Davis, 2012; Thompson et al., 2012). Jeannotte and 
Kieran (2017) systematized these mathematical reasoning processes (e.g., generalizing, 
validating, proving) into a taxonomy, carefully defining each concept. However, when 
considering how students engage with such processes, research has identified persistent 
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difficulties in understanding and applying deductive reasoning, which often deviates from 
reasoning outside mathematics (Harel & Sowder, 2007; Stylianides et al. 2017). Thus, it is 
important for teachers to expose students to deductive reasoning. This entails a different genre of 
mathematical tasks, whose learning opportunities for reasoning and proving are not captured by 
Jeannotte and Kieran’s (2017) framework. This different genre of tasks aligns with the 
Pedagogical Framework for Teaching Proof proposed by Cirillo and May (2020), which 
delineates logic-related processes that focus on the nature of proof, its structure, rules of logic, 
the structure of theorems and their use.  

These two frameworks provide valuable but different insights into important aspects of 
teaching mathematics via reasoning and proving, yet there seems to be no unified framework. 
Our objectives in this paper are two-fold. First, we offer a novel framework for analyzing, 
classifying, and characterizing tasks and the Opportunities for Reasoning-and-Proving (OPR) 
embedded in them. We rely on the tenets of the commognitive perspective (Sfard, 2008) to 
combine into a unifying ORP Task Analysis Framework the mathematical reasoning processes 
described by Jeannotte and Kieran (2017), and the logical aspects of deductive reasoning offered 
by Cirillo and May (2020). The discursive perspective of commognition allows characterizing 
ORP embedded in a task by identifying the type of discourse to which a task belongs: curricular-
based mathematical discourse or meta-discourse about proof. Second, we illustrate the utility of 
ORP Task Analysis Framework by analyzing a corpus of tasks designed by prospective 
secondary teachers (PSTs) enrolled in a capstone course Mathematical Reasoning and Proving 
for Secondary Teachers (Buchbinder & McCrone, 2020a). We show the variation in ORP 
afforded by different types of tasks and discuss its potential application to broader contexts.   

The Opportunities for Reasoning-and-Proving (ORP) Task Analysis Framework 
The commognitive framework views learning as participating in discourse while learners 

communicate about objects (Sfard, 2008). Working within the commognitive perspective, 
Jeannotte and Kieran (2017) developed a conceptual model of mathematical reasoning for school 
mathematics. The model describes nine mathematical reasoning processes such as identifying a 
pattern, generalizing, conjecturing, justifying, validating, and proving. These meta-discursive 
processes “derive narratives about mathematical objects or relations by exploring the relations 
between objects” (Jeannotte & Kieran, 2017, p. 9). For example, generalizing is “a process that 
infers narratives about a set of mathematical objects or a relation between objects of the set from 
a subset of this set” (Jeannotte & Kieran, 2017, p. 9). The mathematical reasoning processes can 
be enacted on mathematical objects (e.g., numbers, equations, geometric figures, etc.), which are 
at the core of various mathematical discourses. For example, tasks in which students are asked to 
solve an equation and explain their answer focus on algebraic expression mathematical object 
and thus belong to the discourse on algebra (Caspi & Sfard, 2012). The object at the core of a 
task can be identified by examining what the task is about and what the task asks to find. As 
students engage with the task they operate on mathematical objects and enact different types of 
processes (routines in Sfard’s terms), which are the “patterns of action that appear when people 
participate in discourse” (Lavie & Sfard, 2019, p. 6). For example, in the discourse on algebra, 
students formalize, distribute and group like terms. Identifying the objects at the core of a task 
and the processes students can enact while engaging with the task, can determine the discourses 
to which the task belongs. In this paper we define curricular-based mathematical discourse as a 
discourse that focuses on curricular-based mathematical objects. Students participating in a 
curricular-based mathematical discourse can engage with reasoning and proving by enacting 
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mathematical reasoning processes (e.g., conjecturing, justifying, validating) on the curricular-
based mathematical objects, such as linear functions or complementary angles.  

However, there are other ways to provide students ORP. Justifying, validating, and other 
mathematical reasoning processes are rooted in deductive reasoning, which poses multiple 
difficulties to students (Stylianides et al., 2017). Therefore, it is important to provide students 
with opportunities to engage with the important elements of deductive reasoning such as 
analyzing the structure of a theorem or a conjecture, or discussing the generality of proof. These 
can involve activities such as identifying the hypothesis and the conclusion of a conditional 
statement, writing the converse of a conditional statement, and identifying or constructing 
counterexamples (Buchbinder & McCrone, 2020b; Cirillo & May, 2020). Such logic-related 
processes are not captured by Jeannotte and Kieran's model of reasoning processes since they are 
not directly related to the deriving of a new mathematical narrative about mathematical objects. 
Rather, these logic-related processes are enacted on logic-related objects such as conditional 
statements that are at the core of what we define as meta-discourse about proof.  

The object at the core of the task and the processes students can enact while engaging with 
the task determine the type of discourse the task belongs to. By drawing upon the discourses to 
which the tasks belong, we conceptualize the ORP provided by the task. These ORP can be 
embedded in the meta-discourse about proof, where students can enact logic-related processes on 
logic-related objects, or in the curricular-based mathematical discourse, where students can enact 
mathematical reasoning processes. This classification is illustrated in Figure 1, which 
summarizes the ORP Task Analysis Framework. 
 

 
Curricular-based  

mathematical discourse 
 

 
Meta-discourse about proof  

Curricular-based 
mathematical object 

Curricular-based 
mathematical 

processes 
 

Logic-related 
processes 

Logic-related  
object 

OC: object-curricular 
 

PC: process-curricular PL: process-logic OL: object-logic 

The object at the core 
of the task is  

a curricular-based 
mathematical object 

The task provides 
students with 

opportunities to enact 
curricular-based 

mathematics processes 
 

The task provides 
students with 

opportunities to enact 
logic-related processes 

The object at the core 
of the task is  

a logic-related object 

Examples:  
linear function, 

triangles 

Examples: graphing, 
rotating, calculating, 
combining like terms 

Examples: identifying 
the hypothesis and 

conclusion, 
formulating the 

converse 
 

Examples: conditional 
statement, proof  
by contradiction 

Mathematical reasoning processes 
PR: process-reasoning 

The task provides students with opportunities to enact mathematical reasoning processes 
Examples: conjecturing, justifying, proving 

 
Figure 1: The OPR Task Analysis Framework 
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In what follows, we illustrate the application of the ORP Framework to identify types of ORP 
in tasks designed by prospective secondary teachers (PSTs) enrolled in a capstone course 
Mathematical Reasoning and Proving for Secondary Teachers. Our exploration was guided by 
the following research question: What types of ORP can be identified in tasks designed by PSTs 
who learn how to teach mathematics via reasoning and proving? 

Application of the ORP Framework 
Context: PSTs Learning to Teach Mathematics via Reasoning and Proving 

This study is part of a larger research project which investigates beginning teachers’ 
expertise to teach mathematics via reasoning and proving (Buchbinder & McCrone, in press). 
The first stage of this project focus on PSTs participating in a university-based capstone course: 
Mathematical Reasoning and Proving for Secondary Teachers. The course comprised four 
modules, which focused on: (1) direct proof and argument evaluation, (2) conditional statements, 
(3) roles of examples, and (4) indirect reasoning. Each module began with activities belonging to 
the meta-discourse about proof and contained activities engaging PSTs in integrating the proof 
themes with the regular curriculum. At the end of each module, each PST designed and taught in 
a local school a lesson that integrated a particular proof theme with the ongoing mathematical 
topic from the secondary school curriculum.   
Data Corpus and Analysis 

We analyzed 12 lesson plans designed by three PSTs who participated in the capstone course 
in 2021 Fall and consented to patriciate in the study. The analysis focused on mathematical tasks 
in these lesson plans. Since some tasks included one question while others had multiple 
questions, we chose the unit of analysis to be a single question – the smallest unit in which 
students were asked to come up with any type of answer. Overall, we analyzed 106 questions.  

The analysis proceeded in several stages. First, we identified the object at the core of the 
question – namely, what is the question about? Questions that focused on curricular-based 
mathematical objects (e.g., isosceles triangles) were coded as OC (object-curricular), and 
questions that focused on logic-related objects (e.g., a counterexample) were coded as OL 
(object-logic). Second, we identified the different types of processes afforded by the question: 
curricular-based processes, e.g., graphing, formulating an equation, rotating (PC - process-
curricular), logic-related processes, e.g., formulating the converse of a statement (PL - process-
logic), and mathematical reasoning processes, e.g., justifying, conjecturing (PR - process-
reasoning). For each question, we recorded its core object and the specific process.  

We performed cluster analysis on the five variables: OC, OL, PC, PL, PR to identify types of 
opportunities for reasoning and proving. Cluster analysis is a statistical algorithm that groups a 
set of objects by identifying similar patterns, which are examined by the distance of the object 
from each other (Kaufman & Rousseeuw, 2009; Weingarden & Heyd-Metzuyanim, in press). 
Cluster analysis allowed us to identify similar patterns in the way questions were characterized 
by logic-related objects and processes, curricular-based mathematical objects and processes, and 
mathematical reasoning processes. 

Types of ORP in Mathematical Tasks 
The analysis revealed four clusters, which differ in the combinations of the five variables that 

characterize the questions designed by the PSTs. Table 1 describes the four clusters, the number 
of questions in each cluster and the frequencies of each variable in the cluster. The quality of this 
clustering according to Silhouette measure of cohesion and separation (Sarstedt & Mooi, 2014) 
was found to be good (between 0.5 to 1). In addition, a Chi-Square test between each of the five 
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variables and the four clusters showed that there is a significant difference between the clusters 
(OC, OL, PL, PR: χ2(3,106) = 106, p<0.001. PC: χ2(3,106) = 81.042, p<0.001). The identified 
clusters correspond to four types of ORP that characterize the PSTs’ questions (Table 1). In what 
follows, we describe these types of ORP, by depicting questions from each cluster. 

 
Table 1: The four clusters describing the four types of ORPs 

Variables Cluster 1:  
Curricular-based 

mathematical 
discourse 
(OC-PC) 

Cluster 2:  
Reasoning processes in 

the curricular-based 
mathematical discourse 

(OC-PC-PR) 

Cluster 3:  
Meta-discourse 

about proof 
(OL-PL) 

Cluster 4:  
Integrated curricular-

based and logic-related 
discourse 

(OC-PC-PR-OL-PL) 
 N = 37 N = 12 N = 36 N = 21 
OC 100% 100% 0% 100% 
PC 100% 75% 0% 76.2% 
PR 0% 100% 0% 100% 
OL 0% 0% 100% 100% 
PL 0% 0% 100% 100% 

Note. OC: Object-Curricular, PC: Process-Curricular, PR: Process-Reasoning, OL: Object-Logic, 
PL: Process-Logic 
   
Cluster 1: Curricular-based Mathematical Discourse (OC-PC)  

The first cluster includes questions belonging to a curricular-based mathematical discourse 
where both the object at the core of the question and the processes students can enact while 
engaging with the question are purely curricular-based.  

 
During this activity, use the given quadrilateral and steps to reflect, rotate, or 
translate on the grid area. 

1. Label the starting quadrilateral P 
2. Rotate P’’ 90 degrees clockwise about any corner, label your final shape P’’’ 
3. Translate P’, 2 inches in any direction, label the new shape P’’ 
4. Reflect over line the x-axis, label the shape P’ 

 

Figure 2: Questions that belong to curricular-based mathematical discourse 

Figure 2 shows four questions from this cluster. The curricular-based mathematical object is 
geometrical shapes and the processes students are expected to perform are rotating, reflecting, 
and translating. These types of questions, as all questions in this cluster, provide only limited 
opportunities, if at all, for students to engage with reasoning and proving. 
Cluster 2: Reasoning Processes in Curricular-based Mathematical Discourse (OC-PC-PR) 

The second type of ORPs includes questions that belong to the curricular-based mathematical 
discourse but, in contrast to the questions in cluster 1, the questions in cluster 2 also involve 
mathematical reasoning processes (See Figure 3 for an example).  

 
Create an equation that one can use to find the 
dimensions, area, number of smaller triangles for any 
given number triangle. 

 

Figure 3: A question involving reasoning processes in a curricular-based mathematical 
discourse 
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Figure 3 shows the last question in a task which had students explore the growth of a 
triangular pattern. The four preceding questions were: (1) what would the next triangle look like? 
(2) What would its dimensions be? (3) How many triangles would be in the larger triangle? and 
(4) how many sticks would the next triangle be made up of? These questions belong to the 
curricular-based mathematical discourse (cluster 1) since the processes involved are drawing and 
counting sides and triangles, which are performed on the growing series of figures (mathematical 
objects). The last question of this task (Figure 3) involved curricular-based processes – creating 
an equation that describes the growing series of figures. However, this question also involved 
mathematical reasoning processes of identifying a pattern, generalizing, and conjecturing. 
Although the first four questions of this task provide limited ORP, they can be seen as 
scaffolding toward the last question (Figure 3), and specifically for the reasoning processes of 
identifying a pattern and generalizing.  
Cluster 3: Meta-Discourse about Proof (OL-PL) 

In contrast to the first two types of ORP that include questions that belong to the curricular-
based mathematical discourse, the third type of ORP includes questions that belong to the meta-
discourse about proof. Both the object at the core of the question and the potential processes 
provided are logic-related. Figure 4 presents two questions from this cluster.  

 
Using the given conditional statements, circle the given and underline the conclusion. At the end, write 
the form of these statements in terms of P and Q (These statements are in the form If P, then Q): 

• Tim knows that if he misses the practice before the game, then he will not be able to be a 
starting player in the game.  

• If a shape has 4 right angles, then it is a square. 
Figure 4: Questions characterized by OPR in the meta-discourse about proof 

The logic-related object of these questions is a conditional statement, where the logic-related 
processes embedded in these questions are identifying the hypothesis and conclusion in the 
conditional statement and writing a conditional statement in the form of “if-then.” Such 
questions focus on the nature and the logical aspects of proof. Note that although the second 
question relates to squares and angels, in contrast to the first question that does not refer to 
mathematical objects at all, both questions focus on conditional statements and their structure 
rather than the content of the statements.          
Cluster 4: Integrated Curricular-based and Logic-related discourse (OC-PC-PR-OL-PL)   

The fourth type of ORP includes questions characterized both by opportunities for enacting 
reasoning processes in the curricular-based mathematical discourse (similar to cluster 2) and by 
logic-related objects and processes (as cluster 3).  

 
Now, let’s make a conditional statement about this [an acute triangles that students were asked to 
construct in the former section] and equilateral triangles. (You can look back at your previous drawing 
for reference). Discuss with your partner what claim could be made that relates an equilateral triangle to 
an acute triangle. 

Figure 5: A question characterized by curricular-based reasoning and logic-related ORP 

As such, these types of questions provide rich opportunities for students to engage with 
reasoning and proving. See Figure 5 for an example. This question belongs to the meta-discourse 
about proof since it deals with a logic-related object – conditional statement (“let’s make a 
conditional statement”) and a logic-related process: writing a conditional statement. In addition, 
this question involves curricular-based mathematical objects – equilateral and acute triangles, 
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and curricular-based processes, such as drawing triangles and recognizing the properties of 
different triangles. By integrating the two types of discourses, this question, like the other 
questions in cluster 4, provides students opportunities both to derive narratives about curricular-
based mathematical objects, that of isosceles and equilateral triangles, while using mathematical 
reasoning processes such as conjecturing, and to deepen their deductive thinking about logic-
related objects of conditional statements.  

Discussion and Contributions of this Study 
In this theoretical paper we offer a novel framework – Opportunities for Reasoning-and-

Proving (ORP) Task Analysis Framework, for examining, characterizing, and classifying 
mathematical tasks according to the ORP provided by them. Cluster analysis performed on 106 
questions revealed four different clusters corresponding to different types of ORP.  

The first type represents limited OPR, as it corresponds to types of tasks focused solely on 
mathematical objects and includes curricular-based processes, as illustrated in Figure 2. These 
tasks belong to the curricular-based mathematical discourse without any specific demands on 
students to enact reasoning processes, such as conjecturing, justifying, or proving.  

In contrast, curricular-based reasoning ORP corresponds to tasks that involve the enactment 
of reasoning processes on curricular-based mathematical objects (see example in Figure 3). 
Tasks characterized by this type of ORP are underrepresented in mathematical textbooks (Davis, 
2012; Stylianides, 2009; Thompson et al., 2012), even in high-school geometry (Otten et al., 
2014). However, curricular-based reasoning ORP are essential for supporting students' 
mathematical sense-making (Ellis et al., 2012) and for teaching mathematics via reasoning and 
proving (Buchbinder & McCrone, in press). Thus, teachers have an important role in designing 
tasks with curricular-based reasoning ORP, and teacher educators have an important role in 
preparing PSTs to design such tasks for students (Arbaugh et al., 2018; NCTM, 2014).  

The third type of ORP – logic related ORP – appears in tasks characterized by logic-related 
objects (e.g., conditional statement) and can engage students with logic-related processes, such 
as identifying the hypothesis and conclusion, determining what needs to be done for proving or 
refuting a statement (see example in Figure 4). These types of tasks rarely occur outside high-
school geometry chapter on proof (Otten et al., 2014), but they are essential for student 
engagement with reasoning and proving due to their focus on the nature of proof, the logical 
structure of theorems and how they are written and used (Cirillo & May, 2020).  

The fourth type of ORP– fully integrated ORP – involves opportunities to enact reasoning 
processes on the curricular-based mathematical object with participating in the meta-discourse 
about proof. This type of task engages students with deductive reasoning and logical inferences, 
which are fundamental for learning mathematics (Harel & Sowder, 2007) while operating with 
mathematical objects (Figure 5). The fully integrated ORP can be contrasted with the 3rd cluster 
questions with logic related ORP where the mathematical objects often serve as a mere 
background for logic-related processes, such as identifying the structure of statements (see 
Figure 4 for an example). Tasks with fully integrated ORP require students to apply the logic-
related processes on the mathematical objects. The questions in this cluster sensibly integrated 
both objects – the curricular and logic, so that students must operate on both, applying two types 
of processes: curricular-based and logic-related. 

The four types of ORP described above came out of analyzing a specific corpus of data based 
on 12 lesson plans of three PSTs participating in a university-based course. Despite this 
methodological limitation of our study and the need to further validate its outcomes, our study 
offers several theoretical and practical contributions.  
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First, the ORP Framework combines two fundamental perspectives underlying learning and 
teaching mathematics via reasoning and proving (Buchbinder & McCrone, in press). One 
perspective focuses on reasoning and proving as a set of processes, such as identifying a pattern, 
conjecturing, and proving involved in deriving narratives about mathematical objects (Ellis et al., 
2012; Jeannotte & Kieran, 2017; Stylianides, 2008). The second perspective focuses on the 
structure of theorems and the logical aspect of proof (Cirillo & May, 2020). The establishment of 
the ORP Framework strengthens previous studies that pursue the importance of engaging 
students with reasoning and proving and provides a unique tool for examining various discourses 
– curriculum-based and meta-discourse about proof – within a unified framework.  

The second contribution of our study is identifying the four types of ORPs. While theoretical 
considerations suggest two types of objects at the core of the task and three types of processes 
(Figure 1), only some combinations of the five variables showed up empirically. Moreover, only 
two clusters, curricular-based mathematical discourse and meta-discourse about proof (clusters 1 
and 3), contain tasks that fall under a single object-process characterization. Clusters 2 and 4 
comprise tasks with multiple characterizations (Table 1).  

Collectively, the ORP Framework and the OPR identified in this study contribute to further 
conceptualizing and operationalizing the notion of learning and teaching mathematics via 
reasoning and proof. While Buchbinder and McCrone (in press) suggested principles for 
teaching mathematics via reasoning and proving, we maintain that learning mathematics via 
reasoning and proving can be conceptualized discursively (Sfard, 2008) as students participating 
in the meta-discourse about proof and in a curricular-based mathematical discourse while 
enacting mathematical reasoning processes. This operationalization can also be used in the 
context of preparing PSTs to teach mathematics via reasoning and proving. PSTs need to 
develop expertise both in the logical aspect of proof (i.e. different types of proofs, valid and 
invalid modes of reasoning, the roles of examples in proving, logical relations), and in the 
pedagogical aspect of integrating reasoning and proof in curricular-based materials (Buchbinder 
& McCrone, 2020a). The ORP Framework can be used by teacher educators as a pedagogical 
learning tool for teachers, both to design tasks with various types of ORP and to discuss the 
potential of mathematical tasks in engaging students with reasoning and proving. The framework 
can enable teacher educators and PSTs to communicate about these OPR by operating with 
definite characteristics such as objects and processes. This may contribute to more explicit, and 
unambiguous communication among teachers and teacher educators about mathematical and 
pedagogical ideas (Weingarden, 2021). 

In addition, the ORP Framework can be applied to various research settings which examine 
tasks and the ORP provided by them. These may include tasks designed by PSTs, beginning 
teachers, in-service teachers who participate in a professional development program, or tasks that 
appear in textbooks and other resources. In a related, ongoing study, we use the ORP Framework 
to examine how beginning teachers who participated in the capstone course integrate reasoning 
and proving in the tasks they design in their classroom. By promoting teacher competencies in 
designing tasks that embed rich ORP, teacher educators can contribute to the goal defined by 
NCTM (2014) as creating “systemic excellence” and providing “mathematics education that 
supports the learning of all students at the highest possible level” (NCTM, 2014, p. 2).  
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A number of factors contribute to vaccine hesitancy including citizens’ determination of the risks 
and benefits of vaccination. In this study, we use interviews and surveys to understand how 
United States and South Korean citizens quantify the risks of COVID-19 infection and 
vaccination. Many citizens used benchmark values such as 0%, 50%, 100% to estimate their 
risks of COVID-19 infection and COVID-19 vaccination. Although neither infection nor 
vaccination has a 50% risk of severe outcome, the citizens’ thinking is consistent with the 
outcome approach described by Konold (1989, 1991). In his work, a 50% risk often implied 
uncertainty about if an outcome would happen in a single trial. It is important to support 
citizens’ understanding of risk because in our sample the citizens who thought COVID-19 
vaccination was riskier than COVID-19 infection were often unvaccinated.  

Keywords: Probability, Vaccine Hesitancy, Outcome Approach, Cognition 

Introduction  
The development of the COVID-19 vaccine has been a critical strategy to battle the 

pandemic. To mitigate the economic and personal impacts of COVID-19, sufficient population 
vaccination is critical. However, even vaccine availability does not directly lead to a higher 
vaccination rate because of pervasive COVID-19 vaccine hesitancy across the world (Troiano & 
Nardi, 2021). The WHO identified vaccine hesitancy as one of the top 10 global health threats in 
2019 (World Health Organization, 2019). Many people have concerns over the safety and 
efficacy of COVID-19 vaccines (Callaghan et al., 2020).   

COVID-19 vaccines are widely recommended because the risks of side effects are smaller 
compared to the reduction in personal and collective risk from COVID-19 infection (World 
Health Organization, 2020). However, many citizens are unwilling to take a new vaccination 
solely because authorities recommend it, and they want to understand the risks and benefits for 
themselves first (Machingaidze & Wiysonge, 2021). Weighing the risks and benefits of 
vaccination involves comparing percentages less than one, analysis of data from clinical trials, 
computing expected values, mathematical modeling of measuring quantities such as infection 
fatality rates, and more (Tenforde, 2021). Given that much of the mathematics and statistics 
involved in forming recommendations for vaccination is beyond that commonly taught in 
secondary or tertiary education (Kollosche & Meyerhöfer, 2021), it is important to understand 
how citizens are making sense of vaccination and infection risks. Prior studies argue the 
necessity of evidence-based vaccine education campaigns (Chou & Budenz, 2020; Dror et al., 
2020; Loomba et al., 2021), and building a successful education campaign is contingent on 
understanding citizens’ thinking about vaccination risks and benefits. We look for harmony 
between vaccine hesitancy research to understand the dissonant perspectives on COVID-19 
vaccines. 
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We use constructs from mathematics education research on probabilistic thinking to model 
how citizens quantify the risk of COVID-19 infection and COVID-19 vaccination. Thus, we 
investigate the questions:  

1. How do citizens estimate their risk of the COVID-19 infection and vaccination? 
2. How do citizens’ estimates of the relative risk of COVID-19 infection and vaccination 
correlate to their vaccination status? 

Many citizens estimated risks using reasoning that is consistent with the outcome approach, 
so we focus on our answer to question one using that construct (Konold, 1989, 1991).  

COVID-19 Vaccine Hesitancy  
Vaccine hesitancy refers to delay in acceptance or refusal of vaccination despite the 

availability of vaccination services (MacDonald, 2015). Vaccine hesitancy is not a new issue 
globally and many researchers are interested in understanding “the reasons why a considerable 
number of people do not receive recommended vaccinations” for the purpose of designing 
interventions to increase vaccine acceptance (Betsch et. al, 2018, p. 1). A common cause of 
general vaccine hesitancy is a lack of confidence in the safety and efficacy of vaccines and the 
systems that deliver them (Betsch et. al, 2018). Other important factors identified in the literature 
include “complacency (not perceiving diseases as high risk), constraints (structural and 
psychological barriers), calculation (engagement in extensive information searching), and 
aspects pertaining to collective responsibility (willingness to protect others)” (Betsch et. al, 2018, 
p. 1).  

COVID-19 specific vaccine hesitancy has also arisen because of the vaccine’s novelty 
(Callaghan et al., 2020; Machingaidze & Wiysonge, 2021; Schwarzinger et al., 2021; Ward et 
al., 2020) even though recent studies show COVID-19 vaccines have similar safety and efficacy 
with other previously approved vaccines (Polack et al., 2020). Many think the vaccine 
development and production have occurred too quickly (Troiano & Nardi, 2021).  

Incorrect or misleading information about COVID-19 vaccines also lowers citizens’ intent to 
be vaccinated (Loomba et al., 2021). Information such as, “Vaccine trial participants have died 
after taking a candidate COVID-19 vaccine” (p.337), contributes to people’s fears, doubts, or 
cynicism over new COVID-19 vaccines. Even among medical staff, there is vaccine skepticism 
due to fears of the safety and rapid development of vaccines (Dror et al., 2020). 
Modeling thinking related to vaccination is complex because it involves social, emotional, 
scientific, statistical, and mathematical thinking. Despite our acknowledgment that approaching 
the problem from a mathematics education lens will miss other important factors contributing to 
vaccine hesitancy, we want to do our part to understand this global issue. Mathematics educators 
are positioned to model citizens’ understandings of the risk of COVID-19 infection (which is 
related to complacency), and their understandings of the risks and benefits of vaccination (which 
is related to confidence in safety and efficacy).  

Theoretical Perspectives on Probabilistic Thinking 
The probability of an event occurring can be understood in multiple ways. Konold (1991) 

describes both formal theories and beliefs of probability that are held by experts such as 
classical, frequentist, and subjectivist, and informal theories which are the ways that people 
actually think about and make sense of probabilities. Our focus is on an informal theory: the 
outcome approach (Konold, 1989, 1991). 
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Konold (1989, 1991) introduced the outcome approach construct as an informal model of 
probability for binary decisions. People using the outcome approach interpret probability as 
predicting the outcome of the next trial and often evaluate their prediction as being correct or 
incorrect after one trial. In interpreting probabilities with an outcome approach, Konold (1989, 
1991) found that students often use benchmark values of 0%, 50%, and 100% to represent “No, 
it will not occur”, “I don’t know if it will occur”, and “Yes, it will occur”, respectively. These 
three benchmark percentages help someone decide what will happen given a probability to 
interpret. When Konold (1989, 1991) asked students to explain a weather prediction of 70% 
chance of rain tomorrow, the students using the outcome approach interpreted this to mean that it 
will rain tomorrow since 70% is close to their 100% benchmark. A 30% chance of an event 
occurring could be interpreted similarly to 0% meaning its likelihood of occurrence is low 
(Konold, 1989). When using an outcome approach people interpret 50% as an indicator that 
“anything could happen” instead of that it on average happens 5 times out of 10 trials. This is 
because 50% is the mid-point of the decision continuum and implicates equally possible results 
of yes or no. In general, people using an outcome approach often ignore frequency information 
and instead focus on other features such as causality and physical features when interpreting 
probability (Konold, 1991).  

Methods 
We use Zoom interviews and an online survey to understand how U.S. and South Korean 

citizens quantify their risk of COVID-19 infection and vaccination. We do not analyze the 
interviews in depth in this study and instead explain how they served as inspiration for the online 
survey. We conducted task-based clinical interviews with 11 U.S. and 7 SK citizens between Oct 
26th, 2020 and May 19th, 2021. Each interview lasted approximately one hour and included one 
researcher and one citizen. Interviews were recorded using Zoom and we paid participants 50 
dollars per hour. We intentionally recruited a diverse group of citizens with respect to race, 
education level, political beliefs, geographic location, and views toward COVID-19 and 
vaccination. During the interviews, we asked citizens to estimate risks associated with COVID-
19 infection for themselves and well-known public figures, asked for their opinions about 
COVID-19 vaccination, and asked them to interpret the Relative Risk Tool (Joshua et al., 2022). 
We noticed that interview participants (even those with an advanced mathematics background) 
gave surprisingly high estimates of the risk of COVID-19 infection. This is consistent with other 
surveys of US citizens’ assessment of COVID-19 hospitalization risk. Rothwell and Witters 
(2021) reported that 41% of Democrats and 22% of Republicans estimated the risk of 
hospitalization for an unvaccinated person as 50% or higher. Further, interview participants were 
more worried about side effects of vaccination than many of their everyday activities that had 
greater risk such as driving. We noticed that the way many interview participants responded was 
consistent with the outcome approach described by Konold (1989, 1991), and decided to survey 
a random sample of U.S. citizens to investigate this idea. 

We conducted a survey with a random sample of 151 U.S. adults between Jan 31st, 2022 and 
Feb 8th, 2022 using CloudResearch Prime Panel formerly known as TurkPrime (CloudResearch, 
2022). CloudResearch supports collecting random human subjects data in multiple fields, 
including social and behavioral sciences (Chandler et al., 2019; Litman et al., 2017). Using 
CloudResearch allowed us to obtain a diverse and random sample. All participants were 
informed of the goals of the study and consented to be involved in research before completing 
the survey.  
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Survey questions included:1) Have you had a COVID-19 vaccine?; 2) If you were infected 
with COVID-19, what do you think your percent risk of dying from COVID-19 would be? (Enter 
number between 0 and 100 without % sign.) Why?; 3) If you receive a COVID-19 vaccine in the 
future, what do you think your percent risks of a serious adverse reaction would be? An example 
of a serious adverse reaction is an allergic reaction requiring treatment in a hospital. Do not 
include your risk of common side effects such as fatigue. Why?; and 4) In your opinion, is 
COVID-19 infection or a COVID-19 vaccination more risky for you? We included other 
questions not reported in this paper such as demographic information, items from prior risk 
literacy studies (Lipkus et al., 2001), and their reasons for choosing or delaying vaccination.  

Results 
Our goal is to understand citizens’ decisions regarding vaccines by using the outcome 

approach, so we focus on citizens’ use of benchmark values (0%, 50%, 100%) when estimating 
their risks of COVID-19 infection and vaccination. We then discuss the relationships between 
citizens’ estimates of risk and vaccination status. 
COVID-19 Death Risk Estimates and Risk of COVID-19 Vaccination Estimates 

COVID-19 death risk estimates in interviews. We first present the interviews because they 
inspired the online survey. Minji, a 32-year-old South Korean who holds an undergraduate 
degree in mathematics education, was interviewed on May 19th, 2021. She said that she wanted 
to receive either Pfizer or Moderna vaccines instead of AstraZeneca vaccine. Other Korean 
citizens also had negative perceptions of AstraZeneca’s COVID-19 vaccines due to its side 
effects, especially of blood clotting (Seo, 2021). In May 2021, COVID-19 vaccine refusal rate in 
South Korea had reached 33% among citizens who were eligible for COVID-19 vaccination (Lee 
et al., 2021). When Minji was asked about her estimate of her COVID-19 death risk, she said 
“honestly, it is really hard for me to predict it, the death risk.” The interviewer encouraged her to 
give a rough estimate and she said: 

Minji:   Rough estimate of the death risk… it’s 50% though. I think it’s about 50%? 
Because I’ve never had the virus before, I cannot say for sure whether I would die 
or not from COVID-19. I don’t have any numerical information that allows me to 
think about how sick I will be. 

The excerpt shows that Minji did not know whether she would die from COVID-19 or not, so 
she estimated her risk of dying from COVID-19 was roughly 50% which is consistent with the 
outcome approach because she used 50% to indicate uncertainty. We hypothesize Minji did not 
want to give a value above or below 50% because that would indicate a prediction of what would 
happen that she did not feel comfortable making. 

Ian, a 27-year-old U.S. citizen who holds a PhD in chemistry, was interviewed on October 
26th, 2020. He estimated that his risk of death due to COVID-19 infection was less than 1% for a 
variety of reasons. For example, he said “I have a balanced micronutrient and macronutrient 
intake and I also exercise regularly with both resistance training and cardiovascular training.” 
We asked him to estimate Donald Trump’s risk of dying from COVID-19 on the day he was 
diagnosed. Ian said “50 percent. Yeah, based off his risk factors”. Ian did not seem to be 
attending to frequencies of infections and deaths in his estimate of 50% for Trump. We knew Ian 
was capable of estimating how many citizens would die if large numbers of people similar to 
Trump were infected. Many others picked values close to 0% to estimate risk for a young, 
healthy person and values greater than or equal to 50% to estimate the risk of an older person. 
The outcome approach construct is a plausible explanation for why citizens might pick widely 
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spaced risk estimates for young and old. They are trying to convey the outcome for a young 
person will likely be good and the outcome for an old person will likely be bad.  

Across many other interviews, citizens gave surprisingly high estimates for the risk of 
COVID-19 infection and also expressed substantial concern about extremely rare side effects of 
vaccination. Many responses made more sense when we interpreted the numbers as predictions 
of the single next outcome as opposed to citizens’ thinking about frequencies.  

COVID-19 infection death risk estimates in the online survey. The mean of the survey 
participants' ages is 45.13 and its standard deviation is 14.93. In our sample, there were 52 
citizens who had not received a COVID-19 vaccine, 14 citizens who were partially vaccinated 
for COVID-19 (one dose of Pfizer or Moderna), 30 citizens who were fully vaccinated for 
COVID-19 (two-dose of Pfizer of Moderna, or single dose of J&J vaccine) without a booster 
shot, and 55 citizens who were fully vaccinated for COVID-19 with a booster shot.  

We first present the results from citizens’ estimates of percent risks of dying from COVID-19 
infection and discuss the difference between citizens who received no vaccine and citizens who 
received at least one vaccine (Figure 1). There are 52 citizens who received no vaccine and 99 
citizens who received at least one vaccine.  

 

 
Figure 1. Citizens’ estimates of COVID-19 death risk by vaccination status.  

In Figure 1, citizens’ estimated values of 0 are graphed above the number 0, estimated values 
that are greater than 0 and less than or equal to 5 are graphed above the number 5, estimated 
values that are greater than 5 and less than or equal to 10 are graphed above the number 10, etc. 
The red and blue outline bars above 50% represent the number of citizens that estimated their 
risk as greater than 45% and less than or equal to 50%. The red and blue solid bars represent the 
number of citizens who estimated their risk at exactly 50%. Among unvaccinated citizens, these 
counts were the same, but for the citizens receiving at least one vaccine, the counts differ (one 
citizen estimated their risk at 49% and so 25 out of 26 citizens estimated their risk at exactly 
50%). Both citizens who received no vaccine and citizens who received at least one vaccine 
overestimated their risks of dying from COVID-19 infection. Figure 1 shows that about 38% (58 
of 151) citizens estimated their death risk from COVID-19 at exactly the benchmark values of 
0% and 50%. 

Approximately 35% of citizens (18 of 52) who received no vaccine used 0% as a benchmark 
value. Many, but not all of the explanations associated with 0%, conveyed that the person was 
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sure that he or she would not die from COVID-19 and associated the number 0% with something 
that is not likely to happen. Examples include, “I am healthy and take vitamins”, “I can fight it 
off”, and “COVID-19 is nothing but a common cold”. Some citizens wrote “I never had 
symptoms” and “I personally know no one that died from it”.  

About 25% of citizens (25 of 99) who received at least one dose of the vaccine, estimated 
their risk of death as 50%. Many but not all of the explanations associated with 50% conveyed 
that the person was uncertain about what would happen and associated the number 50% with 
uncertainty. Examples include, “Because I think it’s something you can never know”, “Do not 
know until I get it”, and “I don’t know either way.” Another wrote, “I have a really good 
immune system but I have heart failure so it’s a gamble.” Some citizens did not mention 
uncertainty in their responses and instead wrote about personal risk factors. For example, “I am a 
smoker and a little overweight” or “because I’m 76 yrs old.” It is possible that citizens who 
wrote about their personal risk factors are reasoning using the outcome approach, but the 
evidence is inconclusive. 

The citizens who had not received a COVID-19 vaccine (mean 16.73%) gave lower estimates 
of COVID-19 death risk compared to citizens with at least one vaccine (mean 33.78%). Citizens 
who received no vaccine tended to use 0% as a benchmark value whereas citizens who received 
at least one dose of the vaccine tended to use 50% as a benchmark value when estimating their 
risk of COVID-19 infection death. 

Many citizens who estimated their risks between 0% and 50% also appeared to be using the 
outcome approach instead of focusing on frequencies of outcomes. For example, 12 out of 41 
citizens who estimated their risk of death between 10% and 25% said they were “somewhat” or 
“moderately concerned” about COVID-19 infection. If they are considering 10% as meaning that 
the next time they are infected they will not die, this makes sense. Based on interviews, we do 
not think that the citizens who said they were slightly concerned about a 10% risk of death are 
focused on frequencies. In interviews, once citizens computed 1% of 50 million (as an example) 
they started to think of 1% risk of death as substantial.   

Risks of COVID-19 vaccination estimates in the online survey. We report the results from 
citizens’ estimates of percent risks of severe adverse reactions to COVID-19 vaccination and 
discuss the difference between vaccinated and unvaccinated citizens’ estimates. Again, we 
identify two clusters in 0% (43 of 151) and 50% (27 of 151) that could be explained by the 
citizens’ use of the outcome approach. 
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Figure 2. Citizens’ estimates of COVID-19 vaccination risk by vaccination status 

A number of people who estimated 0% risk had already been vaccinated without an allergic 
reaction or had no history of allergies. Their estimate of 0% could be explained with the outcome 
approach because their prediction of the outcome of a single next trial is that they would not 
have a reaction. The estimates of 0% are also consistent with more normative ways of thinking 
about probability. The general risk of severe allergic reaction is around four in 1.8 million (CDC, 
2021), and the risk is likely even lower for people who have already been vaccinated with no 
reactions. The citizens’ estimates are close to the actual risk. There is a wide variety of ways of 
thinking that could result in those values including normative probabilistic thinking. Even 
vaccinated citizens tended to dramatically overestimate the risks of vaccination. We found in 
interviews that people who had been vaccinated were often still frightened of vaccination 
because they thought there was substantial potential for long-term side-effects. 

The majority of citizens who estimated a risk of 50% of severe side effects indicated 
uncertainty in their explanations of their risk. For example, they wrote “because I'm not sure 
what's in this vaccine”, “It effects everyone different and you don't know until you have a 
reaction”, and “Do not know until it happens.” One citizen estimated at a 50% risk for all 
questions in the survey including a question about getting in a serious car accident over the 
course of one year. He explained, “because like I said always a 50/50 chance.” The citizens with 
at least one vaccine typed lower numbers compared to unvaccinated citizens. Unvaccinated 
citizens often used 50% (17 of 52) as a benchmark value and citizens with at least one vaccine 
often used 0% (30 of 99).  
Relationship between Estimates of Risk and Vaccination Status 

Thinking about estimates of risk using the outcome approach is a viable strategy for many 
areas of life. For example, if someone interprets a 50% chance of rain as meaning that the 
weatherman does not really have information about whether or not it will rain, they might make 
a reasonable decision to bring an umbrella. In our interviews, we found that citizens who 
overestimated their risk of COVID-19 infection were not necessarily constrained by their 
estimates. Many who overestimated their risks were not stopping their lives due to fear of 
COVID-19 and were still socializing but just taking precautions such as wearing masks. We are 
concerned that using the outcome approach is not adequate to weigh the relative risk of COVID-
19 infection and COVID-19 vaccination. It is more important to think about the relative risk of 
infection and vaccination than to focus on the uncertainty of any medical outcome. In fact, 
medical professionals compare risks and benefits to decide whether or not to approve a 
vaccination. If citizens estimate the risk of both infection and vaccination at 50% because they 
are uncertain of the outcome of either event, it does not help them make a productive decision 
about the benefits of vaccination. In fact, we found that citizens who are unsure about the relative 
risk of infection and vaccination are less likely to be vaccinated (See Table 1). 

 
Table 1. The relative risk of infection and vaccination by vaccine status 

 No vaccine Partially 
vaccinated 

Fully 
vaccinated 

Fully vaccinated 
with a booster shot 

Total 

Equally risky1 19 4 12 6 41 
Vaccine risky2 30 2 2 3 37 
Infection risky3 3 8 16 46 73 

Total 52 14 30 55 151 
1COVID-19 infection is equally risky as a COVID-19 vaccination for me. 
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2COVID-19 infection is less risky than a COVID-19 vaccination for me. 
3COVID-19 infection is more risky than a COVID-19 vaccination for me. 
 
Table 1 shows that about 46% (19 of 41) people who think COVID-19 infection is equally risky 
as a COVID-19 vaccination for them did not receive a vaccine. Table 1 also demonstrates that 
people who think COVID-19 infection is less risky than a COVID-19 vaccination for them 
tended not to receive a vaccine (30 of 37). If a person thinks COVID-19 infection is riskier than 
a COVID-19 vaccination for them, the person tended to be either boosted or fully vaccinated (62 
of 73). The relationship between a citizens’ response about risk and vaccination status is 
statistically significant 2(6,151) = 78.9, p < .001.  
 We also noticed that many vaccinated citizens without a booster (partially and fully 
vaccinated) are often unsure about whether or not infection or vaccination is riskier. We were 
somewhat surprised by the number of citizens who received a vaccine despite thinking 
vaccination might be as risky as COVID-19 infection. We acknowledge again that there are a 
number of factors such as social or emotional thinking influencing people’s decisions to be 
vaccinated beyond their assessments of risks. We think that our part is to use a mathematics 
education lens to model citizens’ thinking about COVID-19 infection and vaccination risks. 

Discussion 
The results demonstrated that using Konold’s outcome approach can provide plausible 

explanations for citizens’ thinking about their estimates of COVID-19 risks. Many citizens used 
benchmark values “0%” to represent “I will not die from COVID-19” and “50%” to represent “I 
don’t know if I will die from COVID-19 or not”. Citizens who have at least one COVID-19 
vaccine showed a tendency to use “50%” as their estimate of COVID-19 death risk and “0%” as 
their estimate of COVID-19 vaccination risk. Citizens without a COVID-19 vaccine tended to 
use “0%” as their estimate of COVID-19 death risk and “50%” as their estimate of COVID-19 
vaccination risk. As in Konold’s (1991) data, citizens appeared to move up or down from 
benchmark values to indicate varying degrees of certainty. For example, many citizens who were 
somewhat concerned about COVID-19 infection listed a death risk of 10%. We think that 
mathematics educators could help students develop formal interpretations of probability such as 
understanding percent risks based on the relative frequency of outcomes. 

Variations in citizens’ estimates of risk explain a fair amount of variation in vaccination 
status. Of course, many other factors are also involved, but convincing citizens that vaccination 
is less risky than infection seems like a potentially important target for public health education. 
Many vaccinated citizens who do not yet have a booster are unsure about whether or not 
infection is riskier than vaccination and might be reassured by well-crafted messaging about 
relative risks. Kollosche and Meyerhöfer (2021) argue that mathematics related to COVID-19 is 
more complicated than what is commonly taught in school, and mathematics education could 
help a layperson understand health recommendations. Our results show that it is important to 
support citizens in understanding their risk of COVID-19 infection and vaccination. We think 
giving citizens opportunities to see their risks based on their ages would help them make 
informed decisions regarding COVID-19. We designed the Relative Risk Tool 
(https://www.covidtaser.com/relativerisk) to help citizens easily compare the relative risk of 
COVID-19 infection and COVID-19 vaccination without needing sophisticated mathematical or 
statistical knowledge (Joshua et al., 2022; Lipkus et al., 2001; Wong & Yang, 2021).  
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In academia, mathematicians frequently engage in solving difficult mathematical problems. 
For these mathematicians, these problems often involve highly formal and abstract concepts. 
Still, professional mathematicians are successful at completing new mathematical research and 
“understanding” new abstract mathematical concepts that they encounter. This theoretical poster 
aims to present the beginnings of a theoretical framework addressing this phenomenon, which 
grates against commonly held beliefs in the mathematics education literature. 

Various process-object theories have been developed to help explain mathematical 
understanding and thinking. Davis et al (1997) summarize these various theories of 
encapsulation and reification, which includes the building blocks of APOS theory. A 
commonplace of most of these theories is that an individual often (or must) progress from 
process-level to object-level understanding. Dubinsky and McDonald (2001) state about the four 
components of APOS theory, “each conception in the list must be constructed before the next 
step is possible” (p. 277). In the literature, having less than a process-object-level understanding 
is often considered unvaluable. Related to this, syntactic proof strategies, namely strategies 
involving symbol-pushing and unpacking definitions, are often seen as unproductive. Weber 
(2001) mentions these strategies “are not capable at solving complex problems” (p. 114). 

Sfard (1992) defines a pseudostructural conception as an object that is not conceptualized as 
a process, which will be referred to as a pseudo-object following Zandieh (2000). Though a full 
process-object-level understanding is preferable, I argue that a pseudo-object-level understanding 
can be a productive place to operate, and hypothesize that, for a time, mathematicians likely 
function with that level of understanding when encountering new advanced concepts. It is also 
plausible that mathematicians may not have the time to always develop a process-object-level 
understanding for the new concepts they encounter, yet they still productively do mathematics 
with these concepts. To share a personal example, when first encountering inverse limits of 
modules in commutative algebra, I successfully used the inverse limit as a pseudo-object to learn 
subsequent material and write proofs (sometimes with syntactic proof strategies) but did not fully 
understand the underlying process other than the mathematical objects it consisted of. Only after 
revisiting the concept about a year later, did I begin to gain a process-level understanding too. 

In support of this viewpoint, Weber and Alcock (2004) state that syntactic proof strategies 
are valuable and can be used to build intuition about a concept. Additionally, Weber (2019) 
provides evidence that set theorists can gain epistemic benefits from just knowing syntactic 
representations of concepts, rather than knowing the full derivation. This aligns closely with the 
belief that mathematicians may be content and successful with only having a pseudo-object-level 
understanding of certain concepts. If this hypothesis is accurate, then it would have significant 
implications for the teaching of advanced mathematics. If mathematicians often productively 
leverage a pseudo-object-level understanding, then teachers should not be quick to discount the 
value of the learning and progress that can take place in students with this level of understanding, 
when encountering new mathematics, especially at a more advanced mathematical level. 
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Introduction 
When technology supports problem-solving activities, it promotes strategy implementation 

and heuristics extension (Santos-Trigo, 2014), it also can influence the development of certain 
aspects of the mathematical thinking, such as the way information is represented and the way the 
results are communicated by the students (Barrera-Mora & Reyes-Rodríguez, 2018).  

The informal fitting of the line is considered to be an educational experience towards 
understanding the linear regression model (Bargagliotti et al., 2012 cited in (Casey, 2015)). This 
study examines the mathematical thinking developed by a group of students taking a Statistics 
course, in a problem-solving activity about linear regression and using the Rossman/Chance 
applet “Two Quantitative Variables” (Chance & Rossman, 2015). 

Methods 
A qualitative panel study was carried out in a group of 19 students from the Logistics and 

Transportation Engineering program at University of Guadalajara, all the students were 20 years 
old. After receiving instruction about the topic, the small-group problem-solving activity was 
worked over a hybrid session, due to COVID-19 restrictions. The data about the student’s work 
was collected with Google Forms questionnaires and Google Meet recordings. 

The context of the problem-solving activity was automated warehouses, the data provided 
had 11 entries and two variables: Number of vehicles and Time Spent in Congestion (in 
seconds). Using the data, the students were asked to propose “the best line” that better represents 
the relationship between variables using the movable line from the applet which also provides 
the line’s algebraic representation.  

Results 
As students were exploring possible lines, questions about the intercept and the slope, in the 

context of the problem, arose among the teams. By answering these questions, the students were 
able to give meaning to the model’s coefficients after placing different lines over the scatterplot. 
For the role of the intercept, they were able to communicate that it made no sense to have a time 
different than zero, if no vehicles were operating. This led some students to propose a model 
with no intercept. It was later shown in class that the intercept of the linear regression model for 
the data was not significant, and thus the best model had no intercept. 
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We investigate the following problem: How does students’ covariational reasoning 
(Carlson et al., 2002; Thompson & Carlson, 2017) relate to their graph selection on a fully online 
assessment? In particular, we focus on students’ distinction between linear and nonlinear graphs 
representing the same direction of change in variables. Figure 1 shows two such graphs.  
 

 
Figure 1: Two graphs relating diameter and height for a fishbowl filling with water 

When a student engages in covariational reasoning, they can conceive of relationships 
between attributes that they view to be capable of varying and possible to measure (Carlson et 
al., 2002; Thompson & Carlson, 2017). Per the framework from Thompson and Carlson (2017) 
an early level of covariational reasoning is the “gross coordination of values,” which refers to a 
loose connection between the direction of change in attributes. For either graph in Figure 1, a 
student reasoning this way can conceive of the diameter increasing then decreasing while the 
height continues to increase (see Figure 1).  

We situate this case study (Stake, 1994) in a larger interview-based validation study of a 
fully online covariation assessment (Johnson et al., 2021). The assessment contains six items; 
students view a video animation, then select one of four graphs that best represents a relationship 
between variables. We report on a case of an early undergraduate student, Maya, who 
spontaneously wondered how to select between graphs such as the ones shown in Figure 1.  

On three items, Maya’s covariational reasoning was at least at a level of gross coordination 
of values, as evidenced by her explanations. Appealing to the direction of change in attributes or 
a value of an attribute at a single instance, Maya narrowed down the graphs to two choices. Both 
represented the same direction of change in related attributes. She then selected a graph based on 
physical aspects of the situation (e.g., “the motion of the cone seems more linear than, than like a 
wave”). For Maya, either graph was satisfactory. The assessment forced her to make a choice. 

Maya’s case illustrates how students’ covariational reasoning can intertwine with their 
interpretation of physical aspects of the situation. She demonstrates how students can engage in 
both figurative and operative thinking (Moore et al., 2019) when interpreting graphs, in ways 
that are compatible from a student perspective. 
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El sentido numérico ha sido estudiado desde diferentes perspectivas. Definirlo no ha sido una 
tarea sencilla y la mayoría de las definiciones que existen en la literatura versan sobre los 
números naturales, enteros y racionales. En esta comunicación se dan a conocer los avances de 
un estudio cuyo objetivo es caracterizar el sentido numérico acerca de los números reales. A 
partir de la revisión de la literatura se propusieron 15 habilidades, éstas se consideraron como 
indicadores del uso de un buen sentido numérico acerca de los números reales. Los indicadores 
fueron puestos a prueba al analizar las respuestas a preguntas de un cuestionario. Con el mismo 
test fue posible observar dificultades que enfrentan los estudiantes al usar tales números, y cómo 
en este estudio, el uso de la calculadora no fue determinante para valorar aspectos relacionados 
con el sentido numérico.  

Palabras clave: High School Education, Number Concepts and Operations 

En los Estándares Curriculares y de Evaluación para la Educación Matemática de los Estados 
Unidos (NCTM, 1989) se menciona que la expresión sentido numérico se refiere a la 
comprensión general que tiene una persona sobre los números, junto con la habilidad de usarla 
de forma flexible para hacer juicios matemáticos e implementar estrategias numéricas. 
Desarrollar un buen sentido numérico implica entender el sistema decimal, ser consciente de las 
múltiples relaciones que se dan entre los números (tanto gráficas, como simbólicas), reconocer 
su magnitud relativa, considerar el efecto relativo de las operaciones numéricas y disponer de 
puntos de referencia para las mediciones de objetos comunes y situaciones en el entorno.  

Psicólogos e investigadores de educación matemática han propuesto definiciones de sentido 
numérico de acuerdo con el contexto y época en la que desarrollaron su investigación. Whitacre, 
Hening y Atabaş (2017) hicieron un estudio teórico en el que revisaron 124 artículos y 
argumentaron que las complicaciones o inconsistencias para definir el sentido numérico se 
originan porque se trata de un caso de polisemia, se usa la misma palabra para tres constructos: 
sentido numérico innato (innate number sense), sentido numérico temprano (early number sense) 
y sentido numérico maduro (mature number sense). Es decir, algunos investigadores reportan 
hallazgos sobre un constructo y otros sobre uno distinto usando el mismo término; esto genera 
una confusión acerca de lo que se va a entender por sentido numérico. Así que es necesario 
aclarar que en la investigación de la que forma parte este informe la expresión sentido numérico 
se considera como el constructo sentido numérico maduro (mature number sense) que se refiere 
a algo que no es innato y se puede desarrollar mediante la enseñanza en grados intermedios o 
posteriores a la educación básica. 

Greeno, en 1991, afirmó que el sentido numérico es para la aritmética como el alfabeto para 
la escritura, por lo que promover su desarrollo en los primeros años escolares es indispensable. 
Sin embargo, Nguyen (2016) y Salinas (1985) pusieron de manifiesto que no sólo en la 
educación básica se requiere de una buena comprensión de los números, pues estos objetos 
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matemáticos van cambiando y siendo más complejos a medida que se avanza en la educación 
posterior.  

El desarrollo del sentido numérico ha sido estudiado en diferentes países, la mayoría de las 
investigaciones se han llevado a cabo con estudiantes de educación básica –de 5 a 14 años de 
edad– (ver, por ejemplo, Reys y Yang, 1998; Alajmi, 2009; Corso y Dorneles, 2017; Long y 
Melnikova, 2019). Los sistemas numéricos estudiados en este nivel educativo son los números 
naturales, enteros y racionales. Sin embargo, en el nivel medio superior –alumnos de 15 a 18 
años de edad– además del dominio de esos sistemas numéricos, también se requiere emplear los 
números irracionales. En otras palabras, esos estudiantes necesitan usar los números reales, pero 
¿han construido los conocimientos y desarrollado las habilidades necesarias para usar esos 
números con suficiente flexibilidad?  Scalia (2000) y Castañeda (2011) dan un panorama sobre la 
respuesta a esta pregunta, pues documentaron dificultades que enfrentan alumnos de esas edades 
para comparar, ordenar y hacer operaciones con los números reales. 

La investigación descrita en este documento forma parte de un estudio más amplio, en el cual 
se pretende desarrollar el sentido numérico de estudiantes del nivel medio superior acerca de los 
números reales y fortalecer aquel relacionado con los otros sistemas numéricos. Para ello es 
necesario analizar y reflexionar sobre semejanzas y diferencias que existen entre el sentido 
numérico definido por otros investigadores y el sentido numérico que se define en esta 
investigación. En este informe, se expone un primer acercamiento para responder la pregunta 
¿Cómo caracterizar el sentido numérico acerca de los números reales? y el objetivo es determinar 
si dicha caracterización permite obtener evidencias de cómo usan el sentido numérico aquellos 
estudiantes que recién ingresaron al bachillerato. 

Marco de referencia 
Varios investigadores han propuesto definiciones que fueron modificadas por otros con la 

intención de esclarecer qué se debe entender por sentido numérico. Aun cuando tenían diferentes 
perspectivas, todos coinciden en la importancia de desarrollar un ‘buen sentido numérico’. 

Greeno (1991) lo definió como una ‘expertez’ cognitiva, es decir, como el conocimiento que 
resulta de una actividad extensa a través de la cual las personas aprenden a interactuar exitosamente 
en diversos dominios conceptuales. Él describe al sentido numérico como un conocimiento situado 
dentro de un dominio conceptual y plantea metáforas con las cuáles es posible entender que el 
sentido numérico es diferente a los temas que regularmente se enseñan; pertenece a otra dimensión, 
si se imagina que las operaciones básicas están en un plano, el sentido numérico debería estar en 
una tercera dimensión; como un dron desde el cual se pueden ver y seleccionar las operaciones 
más convenientes para lograr un propósito. 

A su vez Sowder (1992a) define el sentido numérico como una red conceptual bien organizada 
que le permite a uno relacionar las propiedades de los números y las operaciones, así como resolver 
problemas numéricos de formas flexibles y creativas. Para Marshall (1989), el sentido numérico 
es la riqueza de conexiones del conocimiento matemático.  

Las tres definiciones anteriores en su momento tuvieron gran aceptación por parte de la 
comunidad científica, empero son muy generales. Un investigador puede imaginar la ‘expertez’, 
la red conceptual o la riqueza de conexiones; pero observar ese tipo de cosas en el aula no es tarea 
fácil, por ello las autoras de esta investigación decidieron buscar más definiciones o características 
que permitieran notar el sentido numérico que han desarrollado los estudiantes.   

Como resultado de esa búsqueda se observó que el sentido numérico había sido definido de 
muchas formas (ver Reys y Barger, 1991; Reys, 1994; Löwenhielm, Marschall, Sayers y Andrews, 
2017) pero invariablemente se identificaba la presencia de dos componentes: conocimientos y 
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habilidades. Los conocimientos comprenden la información que se va a usar para desarrollar 
habilidades y ambos, en conjunto dan origen al sentido numérico. 

Para caracterizar el sentido numérico acerca de los números reales, se analizó si alguna de las 
definiciones planteadas en estudios previos se adecuaba a las necesidades de la investigación 
global que lleva a cabo. La conclusión fue que lo más conveniente era formular otra definición que 
permitiera incluir actividades en las que se requirieran números reales, la propuesta es la siguiente:   

El sentido numérico es el conjunto de conocimientos y habilidades acerca de los números 
reales que usa una persona para hacer juicios matemáticos y desarrollar estrategias numéricas 
al resolver problemas. 
Como la investigación es sobre el sentido numérico acerca de los números reales, los 

conocimientos son las propiedades de dicho sistema numérico y las habilidades son sobre su uso 
y las diferentes formas de representarlos. A continuación, se enlistan las habilidades que se han 
propuesto para la investigación que se lleva a cabo:  

1. Habilidad para componer, descomponer y recomponer números 
2. Habilidad para identificar cuál representación de un número es más conveniente que otra 
3. Habilidad para comparar números 
4. Habilidad para ordenar números 
5. Habilidad para lidiar con el orden de magnitud de un número en situaciones concretas 
6. Habilidad para usar puntos de referencia 
7. Habilidad para vincular símbolos de operación y relación de manera significativa 
8. Habilidad para reconocer los efectos de las operaciones en los números 
9. Habilidad para hacer cálculos mentales mediante estrategias propias 
10. Habilidad para hacer estimaciones 
11. Habilidad para asociar los números con el contexto en el que aparecen 
12. Habilidad para localizar números en la recta numérica 
13. Habilidad para reconocer hechos dados 
14. Habilidad para distinguir diferencias y semejanzas entre los sistemas numéricos 
15. Habilidad para autorregularse 

Las primeras diez habilidades tienen como base los comportamientos que demuestran la 
presencia del sentido numérico sugeridos por Sowder (1992b). Las siguientes cuatro habilidades 
fueron propuestas por las autoras de esta comunicación y están relacionadas con conocimientos 
específicos de los números reales, tales como la densidad, el proceso de racionalización y la 
potenciación que tienen características distintas a las de los otros sistemas numéricos. La última 
habilidad fue propuesta por Resnick (1989), se refiere a que una persona debe reconocer cuando 
en un procedimiento es mejor detenerse e iniciar otro camino para encontrar la solución de algo. 

Las habilidades anteriores se pueden considerar como indicadores que permiten valorar el 
uso del sentido numérico por parte de los estudiantes. Para verificar si todas las habilidades 
propuestas son necesarias o si se requiere de alguna otra, se aplicó un test que se describe en la 
sección de método. 

Método 
Participantes. Fueron 56 estudiantes mexicanos, cuya edad oscila entre 15 y 16 años. En 

agosto de 2021 iniciaron su educación media superior en una institución pública ubicada en una 
zona rural.  
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Recolección de los datos. Los datos se obtuvieron a través de un cuestionario inicial. Para 
diseñar el test se tomaron en cuenta ítems sobre sentido numérico usados en otras investigaciones 
con adaptaciones y preguntas construidas exprofeso. Después de una validación con pares y un 
estudio piloto, el instrumento para la toma de datos quedó compuesto por 16 preguntas, de las 
cuales 8 son de elaboración propia. Además, se especificó cuáles habilidades y conocimientos 
que forman parte del sentido numérico están relacionadas con cada ítem. En la Tabla 1 se 
muestran dos ejemplos. 

 
Tabla 1: Ejemplos de habilidades y conocimientos relacionadas con cada ítem 

Ítem Habilidad Conocimiento Intención 
 

6. ¿Cómo se puede usar el 
resultado 156 − 100 para 

calcular 156 − 99?  
Adaptado de Hope (1989) 

 

Habilidad para 
hacer cálculos 

mentales mediante 
estrategias propias. 

Valor posicional 
de los números. 

Observar la 
flexibilidad 

al hacer operaciones. 

8.  En la recta ubica los 
números −0.85,
−

11

8
, −

9

8
, −√2 

 

Habilidad para 
localizar números 

en la recta 
numérica. 

 

Los números 
racionales tienen 

dos 
representaciones: 

una decimal y 
otra fraccionaria. 

Los números 
irracionales se 

pueden aproximar 
con números 
decimales. 

Observar si las 
estrategias usadas 
para ubicar a los 

números positivos son 
congruentes al 

localizar números 
negativos 

 
La aplicación del cuestionario inicial se llevó a cabo de forma presencial en octubre de 2021 

en dos sesiones, en días diferentes pero consecutivos durante el horario de la asignatura Álgebra. 
Los estudiantes previamente fueron notificados de las fechas para este cuestionario y el material 
que necesitarían: papel, lápiz, colores y calculadora. Aunque el tiempo planeado para contestar 
cada parte del test era de 60 minutos no se dio esta información a los alumnos para reducir la 
presión o angustia. La mayoría lo entregó a los 50 minutos, en la última hoja del instrumento se 
anotó el tiempo de entrega de cada uno.  

Los estudiantes estaban separados en dos grupos de 28 alumnos; a un grupo se le permitió el 
uso de calculadora y al otro no. Esta variante se propuso porque en investigaciones como las de 
Bobis (1991), Alajmi (2009) y Lyublinskay (2009) se plantea la posibilidad de usar recursos 
tecnológicos para desarrollar el sentido numérico. Se decidió iniciar la exploración con la 
calculadora por ser un recurso de fácil acceso. 

Con previa autorización de los tutores de los alumnos, se grabó un video de la sesión del 
grupo que usó calculadora. Como no fue posible enfocar la cámara y grabar qué tecleaban o qué 
cálculos hacían los estudiantes con ella, al final se les pidió que en la mitad de una hoja blanca 
escribieran cómo usaron la calculadora y qué tipo de operaciones habían hecho con ella. 
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Análisis de los datos. El análisis de los datos se llevó a cabo en dos etapas, en la primera se 
hizo una distinción sobre cuáles fueron las preguntas en las que se tuvo mayor o menor éxito. En 
la Tabla 2 se muestra un ejemplo de este análisis. 

 
Tabla 2: Análisis de la pregunta 1 

      

Número de 
estudiantes 

Con 
calculadora 17 Contestaron 17 Correctamente 9 

Incorrectamente 8 
No contestaron 0   

Sin 
calculadora 39 Contestaron 37 Correctamente 0 

Incorrectamente 37 
No contestaron 2   

 
Dado que cada pregunta estaba relacionada con al menos una de las habilidades sobre el uso 

de los números reales y las diferentes formas de representarlos, en la segunda etapa se analizó la 
pertinencia de los indicadores propuestos. Durante este análisis, surgió la oportunidad de 
identificar algunas dificultades que tenían los estudiantes al emplear estos números. Por 
cuestiones de espacio, sólo se explican las observaciones hechas para los ítems 1 y 3. 

Con respecto al ítem 1, que está relacionado con la habilidad para componer, descomponer y 
recomponer números. La pregunta fue si √40 era igual a 2√10, esperando que los estudiantes se 
percataran que √40 se puede descomponer como √4(10) además de tomar en cuenta que la raíz 
cuadrada de un producto es el producto de las raíces, es decir, √4(10) = √4√10 = 2√10. En la 
Figura 1 se puede notar que algunos estudiantes por el hecho de ver números distintos aseguran 
que las expresiones numéricas son diferentes, no recurren a la descomposición del número. 
Entonces la habilidad para componer, descomponer y recomponer números es necesaria para 
desarrollar estrategias numéricas. Buscar comportamientos asociados a esta habilidad permitirá 
encontrar evidencias sobre el uso del sentido numérico por parte de los estudiantes. Por otro 
lado, el que no desarrollen esta habilidad provoca que tengan dificultades para escribir los 
números reales de diferentes formas. 

 

 
Figura 1. Respuestas al ítem 1, dadas por estudiantes sin uso de calculadora 

 
El grupo de estudiantes que usó calculadora hizo las operaciones correspondientes y un poco 

más de la mitad dio una respuesta correcta, aunque no hubo evidencia de que los estudiantes 
usaran la habilidad para componer, descomponer y recomponer números, ver Figura 2. 
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Figura 2. Respuesta al ítem 1, un estudiante con uso de calculadora 

 
El ítem 3 (ver Figura 3) fue adaptado de Reys y Yang (1998), el propósito de la pregunta 

original era evaluar el conocimiento que tenían los estudiantes sobre la densidad de los números 
decimales. En este caso el ítem está relacionado con la habilidad para distinguir diferencias y 
semejanzas entre los sistemas numéricos. Es posible que en la educación básica los estudiantes 
no hayan tenido la necesidad de distinguir a qué sistema numérico pertenecían los números que 
estaban usando; sin embargo, en bachillerato hay asignaturas como cálculo diferencial, cálculo 
integral y probabilidad en las cuáles se requiere considerar las propiedades de los números que se 
están empleando (ver Secretaría de Educación Media Superior, 2022). 

En la Figura 3 se puede ver como los estudiantes hacen referencia a una característica de los 
números naturales sin percatarse de que la pregunta involucra dos números irracionales. Los 
alumnos que podían utilizar la calculadora tampoco reflexionaron sobre las propiedades de los 
números que usaron porque aun cuando tenían la aproximación en decimales de los números √2 
y √3 no lograron pensar en 3 números entre los extremos del intervalo, ver Figura 4. 

 

 
Figura 3. Respuestas al ítem 3, dadas por estudiantes sin uso de calculadora 

 

 
Figura 4. Respuesta al ítem 3, dada por un estudiante con uso de calculadora  

 
El que para los estudiantes pasen desapercibidas las propiedades de los sistemas numéricos 

repercute en cómo hacen juicios matemáticos; por lo tanto, se puede asegurar que la habilidad 
para distinguir diferencias y semejanzas entre los sistemas numéricos es un indicador del uso de 
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sentido numérico por parte de los estudiantes. El no haber desarrollado esta habilidad, puede 
estar relacionada con la dificultad que enfrentan los estudiantes al calcular la raíz cuadrada de un 
número o el que no se den cuenta que 0.3 no está entre los números 1.4 y 1.7 como lo asegura el 
estudiante con uso de calculadora, ver Figura 4.  

Un análisis similar se hizo con las respuestas a cada ítem del cuestionario inicial, buscando 
evidencia sobre la pertinencia de los indicadores propuestos e identificando las dificultades que 
enfrentaban los estudiantes. En la sección de resultados se enuncian los hallazgos más 
importantes.  

Resultados 
Existen tres vertientes para los resultados: 1) sobre la pertinencia de los indicadores, 2) sobre 

el uso de la calculadora, y 3) con respecto a las dificultades que enfrentan los alumnos al ingresar 
al nivel medio superior. 

Las habilidades que permiten analizar el desarrollo del sentido numérico propuestas por 
Sowder (1992b), que al parecer sólo se habían considerado para números naturales, enteros y 
racionales, también parecen servir como indicadores para evaluar el sentido numérico acerca de 
los números reales. Por ejemplo: la habilidad para usar puntos de referencia es necesaria para 
aproximar números reales, decidir qué valor es más grande 𝑠𝑒𝑛(60°) = √3

2
 o cos(45°) = √2

2
. 

Por otro lado, los indicadores que se agregaron tienen pertinencia. La habilidad para ubicar 
números en la recta podría ser una herramienta para que los estudiantes comparen y ordenen 
números; la habilidad para lidiar con el orden de magnitud de un número en situaciones concretas 
ayudaría a que juzguen la razonabilidad de sus respuestas, es decir, reflexionen sobre la relación 
entre números y cantidades.  

En el cuestionario inicial se planteó un ítem para validar la habilidad 15; sin embargo, la 
actuación asociada a dicha habilidad no es fácil de observar ya que está relacionada con funciones 
ejecutivas superiores. Por lo que será necesario analizar la pertinencia de esta habilidad o una 
mejor manera de valorarla. Un indicador que no estaba considerado, pero que parece ser necesario 
es la habilidad para reconocer patrones; en un ítem del cuestionario, para encontrar la solución, 
los estudiantes deberían notar que la suma de un número par de números nones es par, en otras 
palabras, reconocer un patrón. Aunque en el ítem la habilidad se observó para números naturales, 
ésta también podría ser un indicador del desarrollo del sentido numérico acerca de los números 
reales por parte de los estudiantes, pues les permitiría reconocer que si 𝜋 es un número irracional, 
los números como −2𝜋, 3𝜋, 𝜋

4
 también lo son. 

Sobre el uso de calculadora, no hubo una diferencia significativa en las respuestas correctas e 
incorrectas dadas por los estudiantes (ver Tabla 2). Esto pudo haber sucedido porque 
previamente no se dio una instrucción sobre el funcionamiento o ventajas que ofrecía este 
artefacto, ya que en bachillerato sólo en temas específicos se permite el uso de la calculadora 
(Figueras, Valenzuela y Martínez, 2021). Por otro lado, se puede asegurar que el uso de la 
calculadora no sesga la información sobre el sentido numérico que han desarrollado los 
estudiantes porque habilidades como descomponer, componer y recomponer números o 
distinguir diferencias y semejanzas entre los sistemas numéricos deberían poderse observar con 
o sin calculadora. De hecho, si vemos el sentido numérico como una red conceptual con la que se 
entretejen conocimientos matemáticos como propuso Sowder (1992a), dentro de estos 
conocimientos pudiera estar el uso inteligente de la calculadora. 

Con respecto a las dificultades que enfrentan los estudiantes al ingresar al bachillerato, al 
analizar sus respuestas se identificó que se les complica leer expresiones numéricas, escribir 
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números de diferentes formas, compararlos, ordenarlos, usar puntos de referencia, hacer 
estimaciones y cálculos de forma flexible, así como identificar a qué sistema numérico 
pertenecen los números que están usando.   

El que los estudiantes tengan las dificultades mencionadas en el párrafo anterior genera una 
disonancia crítica. Los profesores de educación media superior, inmersos en los tiempos y 
contenidos marcados en los planes y programas de estudio, asumen que los alumnos conocen y 
pueden usar los números reales sin complicaciones así que continúan con las actividades 
correspondientes a los temas del curso; mientras que algunos estudiantes no logran entender por 
qué una expresión numérica es igual a otra o siguen pensando que entre dos números decimales 
no hay otros números. Esto pone en desventaja a muchos jóvenes, que de acuerdo con Nguyen 
(2016) al no desarrollar un buen sentido numérico su desempeño en matemáticas se ve 
disminuido. 

Una de las autoras es profesora en la institución educativa en la que se lleva a cabo la 
investigación y durante varios años ha observado como esta disonancia crítica abre una brecha 
entre los estudiantes que han desarrollado un buen sentido numérico y los que no. Fortalecer el 
sentido numérico de los estudiantes contribuye a que todos tengan mejores oportunidades para 
concluir el bachillerato, incluso de seguir su preparación académica ya que en los exámenes de 
admisión a la universidad casi el 40% de los reactivos son de matemáticas.  

A manera de conclusión, la caracterización del sentido numérico acerca de los números 
reales se hizo a través de un conjunto de habilidades y conocimientos para que fuera operativa y 
de esta manera poder valorar el sentido numérico que los estudiantes han desarrollado. Las 
dificultades identificadas alertan sobre focos de atención para diseñar actividades que coadyuven 
al desarrollo del sentido numérico, una segunda fase de la investigación que se está llevando a 
cabo. 
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NUMBER SENSE ABOUT REAL NUMBERS: 

AN INITIAL STUDY WITH STUDENTS AGED 15-16 
 

Number sense has been studied from different perspectives. Defining it has not been an easy task 
and most of the definitions that exist in the literature deal with natural, integer and rational 
numbers. In this communication, the advances of a study whose objective is to characterize the 
number sense about real numbers are disclosed. From the review of the literature, 15 skills were 
proposed, these were considered as indicators of the use of a good number sense about real 
numbers. The indicators were put to the test by analyzing the responses to questions in a 
questionnaire. With the same test it was possible to observe difficulties that students face when 
using such numbers, and how in this study, the use of the calculator was not decisive to assess 
aspects related to number sense. 
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In this report, we present an advance of doctoral research. We explore teaching alternatives that 
promote proportional reasoning in Mexican students between 14 and 15 years old with the 
support of digital technology. We designed a sequence of activities that pretends to signify the 
concepts of ratio and proportion in their diverse representations and from the perspective of 
linear functions. For the design of the tasks, elements of the Realistic Mathematics Education 
framework and Cuevas-Pluvinage Didactics were used. The learning objectives and proposed 
activities were organized through a hypothetical learning trajectory. Subject to presenting the 
group results, we randomly selected a student to present the analysis of the results achieved. We 
found that the tasks promoted proportional reasoning. 

Keywords: High School Education, Technology, Rational Numbers & Proportional Reasoning 

Introduction 
The concepts associated with proportional reasoning, such as fraction, ratio, and proportion, 

are essential in mathematics education at basic levels since they are pillars of higher mathematics 
because their application is transversal to other disciplines (Lamon, 2007). Given the importance 
of the problem, we agree with several studies (Lesh et al., 1988; Adjiage & Pluvinage, 2007) that 
the lack of success in the handling of ratios and proportions is caused by poor development of 
proportional skills, as well as an excessive arithmetization of the processes involved. As a 
consequence of the lack of sense in dealing with proportional situations in the classroom, a 
tendency of students to apply the proportional model in situations where it is not applicable has 
been observed, which has been called the illusion of linearity (De Book et al., 2002). 

The problem facing the community is how to teach students to reason proportionally. The 
most frequent school approach to proportionality is from an arithmetic perspective, separating it 
from its links with functional relationships and their multiple representations. In our proposal, we 
rescue the results of research in this line and test a teaching design based on a functional 
approach through realistic contexts and supported by digital technology, with which we hope to 
obtain ideas that contribute to the design of activities that promote proportional reasoning. 

Theoretical framework 
The Realistic Mathematics Education (RME) teaching approach emphasizes that real 

situations are fundamental for learning mathematics since mathematics is part of a historical and 
cultural construction (Freudenthal, 2002). In this current, students are active participants in 
developing their learning and constructing models that mathematize reality from an everyday 
context (Gravemeijer, 2004). In RME, two types of mathematization are identified: horizontal 
mathematization, where students move from the real to the symbolic of responding to problems 
in their context; and vertical mathematization, where students make conceptual connections and 
create strategies to solve problems within the mathematical system, which may or may not refer 
to the initial context. That is, they detach from the context towards the path of abstraction and 
generalization (Van den Heuvel-Panhuizen & Drijvers, 2020). 
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As for proportional reasoning, we start from the definition of Lesh et al. (1988): 
Proportional reasoning is a form of mathematical reasoning that involves a sense of co-
variation and of multiple comparisons, and the ability to mentally store and process several 
pieces of information. Proportional reasoning is very much concerned with inference and 
prediction and involves both qualitative and quantitative methods of thought. (p. 93) 
According to this rationale, we assume as valid the proportional reasoning model proposed 

by Modestou & Gagatsis (2010) and recognize the need for research invoked by the studies on 
the illusion of linearity by De Bock et al. (2002). In our study, we identify proportional skills as 
those faculties considered necessary for a person to possess sound proportional reasoning. 
Lobato et al. (2010) and Weiland et al. (2021) indicate that these skills should include: 1) 
Attending to and coordinating two quantities that vary dependently, 2) Recognizing and using 
the structures of proportional situations (unit ratio, constant of proportionality, linearity), 3) 
Identifying the invariant in a proportion, 4) Understanding proportionality from multiple 
representations, 5) Distinguishing linear from nonlinear situations. We consider these five skills 
as key to our study, and they are the ones we invoke with the term proportional skills. 

To encompass the theoretical framework and structure of the intervention, we rely on the 
Design-Based Research (DBR) approach proposed by Bakker (2018). Since DBR design and 
innovation in the classroom are vital aspects, digital technology is proposed to allow students to 
interact with multiple representations, facilitate the simulation of realistic situations, and test 
their results in Virtual Interactive Didactic Scenarios (VIDS).  

To organize the design of the tasks that guide students in the mathematization process, we 
rely on the Hypothetical Learning Trajectory (HLT) (Simon, 1995). For the design of the 
activities that integrate each task, we rely on the Cuevas-Pluvinage didactic framework, which 
provides didactic engineering that rescues several didactic principles of the active school and 
Piaget and adapts them to mathematics education (Cuevas & Pluvinage, 2003). 

We agree with Sierpinska (2004) that "reporting tasks is necessary to probe the effectiveness 
of the teaching approach" (p. 13). According to the author, the problematization, justification, 
and discussion of the tasks begin with the a priori analysis of the design. However, the 
problematization is even more substantial and fruitful in the a posteriori analysis, that is, after the 
experimentation in the classroom. In this order of ideas, in this report, we show the 
problematization both in the design phase and the retrospective analysis phase since it provides 
guidelines for redesigning our tasks. 

One of the most complex tasks for a teacher is implementing constructivist didactic 
principles in a traditional classroom with the usual elements. For example, introducing a 
mathematical concept through the problematization of an everyday situation in a conventional 
classroom is almost impossible. A possible solution is to have a virtual scenario that simulates a 
real phenomenon, in which students can interact with various contexts dynamically, and, in 
addition, its use allows the construction of mathematical knowledge (Moyer et al., 2016). In this 
way, students are endowed with the opportunity for action, where each student can learn at their 
own pace. Digital technology provides the student and the teacher with a portable laboratory 
using various devices, such as cell phones, tablets, or computers. 

The above considerations lead us to the research question: How to design a didactic 
sequence, in realistic contexts mediated by technology, that helps students to develop their 
proportional reasoning and allows them to progress in the mathematical levels of RME? 
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Methodology 
Based on our methodological framework, the DBR approach consists of the following 

phases: preparation and design, teaching experiment, and retrospective analysis. 
Preparation and design phase 

The following were designed and developed in this phase: 1) A pretest to collect students' 
prior knowledge. 2) A HLT who leads the teaching process and sets the learning objectives. 3) 
Three sequences of didactic activities with their respective VIDS: "Naranjada", "Zoom Totoro" 
and "Autos". 4) A survey to inquire about the students' perspectives on their experience using the 
VIDS and the Guided Learning and Exploration Sheets (GLES) activities. The pretest and final 
survey were hosted on Google forms to answer at home to save classroom time. 

 

 
Figure 1: Design of the didactic pathway guiding the instructional sequence 

Task 1. The task's context is to compare proposals for mixing orange juice and water (see 
Figures 2a and 2b). The objective is for students to learn: to pose, compare and determine 
equivalence between ratios, as well as to generate tables of equivalent ratios and identify the 
constant of proportionality. Finally, an extra activity is performed to apply the knowledge 
learned in a different context. The activities are: 1) Expressing a ratio in different notations, e.g., 
three glasses of juice for every five glasses of water: 3 to 5, 3:5 and 3/5. 2) Coordinate the 
covariation between two variables; given a ratio of A glasses of orange to every B glasses of 
water, the taste is more intense orange if A increases or B decreases. 3) Comparison of two 
ratios, given two random orangeade proposals with orange to water ratios A:B and C:D, 
determine which will have an intense orange flavor. 

Task 2. The task consists of performing a "zoom" effect to reduce or increase an image of 
Totoro figures according to a similarity ratio entered in an input box (see Figure 2c). The 
objective is for students to perform similarity activities using the constant of proportionality. 
Also, it is intended to address the problem of the illusion of linearity by tabulating and graphing 
the ratio-perimeter (linear) and ratio-area (quadratic) relationships to lead students to compare 
both models. 

Task 3. The task's context is to visualize a car moving at a constant speed above the allowed 
limit and a patrol car initiating a chase with constant acceleration as the car passes (see Figure 
2d). The objective is for students to interact with the VIDS as they describe, analyze, and 
compare the characteristics of the two motions, i.e., uniform rectilinear motion (URM) and 
uniformly accelerated rectilinear motion (UARM). Students must identify the models present 
(linear and quadratic) and compare them as they transit between their representations. 
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Figure 2. VIDS used in the teaching sequence 

Teaching experiment phase 
The study was performed through a face-to-face intervention in two groups in a secondary 

school in Mexico. Thirty-five students (14-15 years old) participated in the study in the winter of 
2021. The instruction was divided into three 90-minute sessions in a computer room at the 
school. Each student had a personal computer that had VIDS preloaded, and each student had 
their respective GLES. The first author conducted the intervention, supported by the group's 
teacher and a research assistant. During the sessions, collaborative learning was promoted, and 
the answers were discussed as a group. 

Results and retrospective analysis 
According to Freudenthal (2002), the context and didactic design should allow students to 

move from horizontal mathematization to vertical mathematization. Gravemeijer (2004) 
identifies four levels towards vertical mathematization: N1) Situational level. Reality is 
interpreted and organized through informal and context-dependent mathematical reasoning 
(horizontal mathematization). N2) Referential level. Schemes and models that make sense within 
the initial context are created, and vertical mathematization begins with the emergence of 
"models of...". N3) General level. Concepts are related, strategies separated from the context are 
generated, reasoning occurs in the mathematical world, and "models for..." emerge. N4) Formal 
level. Concepts are understood by employing their mathematical symbolism, support from a real 
context is no longer needed, and reflection has moved to the mathematical world. 

Subject to presenting the whole group's results, we randomly selected one student, whom we 
will call Lucy. Based on this student's findings, we will present a detailed analysis of the results 
of the tasks and the evaluation of the levels of vertical mathematization proposed in the RME. 
Results of Task 1. "Naranjada" 

Lucy uses her previous knowledge to perform the activities, i.e., the activities lead her to a 
horizontal mathematization, correctly assimilating the three notations for ratio. In addition, she 
found that in a random proposal of orange and water mixture, the intensity of flavor depends on a 
covariation process. At this stage, Lucy is at the situational level because she moves within the 
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numerical world only to interpret the context and make a judgment. The horizontal 
mathematization is coming and going from the context to the mathematical world. 

One finding occurred when the virtual scenario showed Lucy the following pair of orange to 
water ratios: 2:7 and 3:8 (see Figure 4a). Lucy mentally performed a 1-to-1 bijection between the 
glasses of orange and the glasses of water. Once the bijection was done, when the same number 
of glasses of water remained unassociated in both scenarios, Lucy intuitively responded that the 
two have the same taste, i.e., the same ratio. This erroneous way of comparing ratios, analogous 
to the erroneous additive principle, she extended to all situations, and it worked for her when the 
remaining glasses of water were different. However, when the remaining glasses of water were 
the same, the virtual scenario pointed out the error, which was incomprehensible to Lucy. At the 
close of the session, through group discussion, methods for comparing ratios were specified, and 
it was found that most students adopted the reasoning described. Some students were even 
surprised that the method failed. Since this exact situation was present in most students, we will 
call it a "proportionality illusion". 

 

 
Figure 3. Evidence of the activities corresponding to Task 1. 

The activity of completing tables of equivalent ratios is subject to the context (orange-water 
mixtures in the same proportion), but the multiplicative pattern that Lucy uses to fill the table is 
given in the mathematical domain; it is also observed that at the beginning, the additive 
reasoning persists (see Figure 3b). One way to compare equivalent ratios in the tables is to 
consider pairs of ratios that have equal numerators or denominators, and Lucy uses that fact (see 
Figure 3c) to make numerical judgments and gives a covariation argument based on the 
denominator of the ratios, so a referential level is evident. 

Lucy uses the unit ratio method in application exercises in a context other than mixtures. 
Figure 3d shows a ratio ordering exercise (adapted from Lamon, 2020), which consists of 
ordering a set of animals about their weight. Lucy applies the unit ratio method to solve these 
problems. It is inferred that she has acquired a "model for" and progress from the referential level 
to the general level is glimpsed. 

In this task, Lucy shows skills in posing ratios in different notations, comparing ratios, 
applying the multiplicative principle to obtain equivalent ratios, and using the unit ratio method 
to solve practical problems. At this level, students already possess proportional reasoning skills. 
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However, the data show that Lucy had a rootedness in additive reasoning in her knowledge 
structure, which she managed to modify and even consolidate the unit ratio method. 
Results of task 2. "Zoom Totoro" 

In the initial stage, processes of observation, measurement, and multiplicative principle are 
involved. The activity of calculating the dimensions of the image for different ratios is anchored 
to the context (situational level); however, following the pattern marks the way to the referential 
level since Lucy notices that to obtain the measurements of the replicated image, the 
measurements of the original image are multiplied by the similarity ratio (see table in Figure 4a). 

 

 
Figure 4. Evidence of the activities corresponding to Task 2. 

In the table for calculating the perimeter of magnified images according to a similarity ratio, 
Lucy relies on the dimensions table. She departs from the context because the initial concept is 
related, in the first instance with the perimeter and the second with the area. Lucy calculates the 
perimeters for the proposed ratios by following the initial example in the table until she arrives at 
the linear expression P=9x and applies the "model of" found (see Figure 4a). To plot the ratio-
perimeter relationship, Lucy transits between the tabular-graphical representations and manages 
to see the linear variation (see Figure 4b). As for the ratio-area relationship, she completes the 
table and makes the graph, describing it as curved (see Figure 4c). However, she does not 
conclude in the "model of" sought (a quadratic relationship) and does not get to the contrast 
between perimeter and area.  

In performing this task, Lucy showed the ability to move between tabular, graphical and 
algebraic representations of proportionality; identifying the value of the constant of 
proportionality in the case of perimeter, and also obtaining a model that describes the particular 
case. However, Lucy is not able to arrive at a general model.  
Results of task 3. “Autos” 

Initially, the activities in this VIDS, are of instrumentation and contextualization. Lucy 
identifies the characteristics of movements, both at a constant speed and constant acceleration. 
Her previous and informal ideas about such concepts were modified after interacting with the 
VIDS and observing the change in the variables, their relationship, and numerical observations. 

As shown in Figure 5c, Lucy transitions correctly between tabular and graphical 
representations and identifies linear and nonlinear features in both the graph and tables. In this 
task, Lucy sees relationships between variables that go beyond the initial context by identifying a 
"model of", using it, and concluding that the variation is proportional (in the car) and quadratic 
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(in the patrol car); also, she distinguishes linear and nonlinear behaviors in the representations. 
However, Lucy failed to propose a model for constant acceleration. 

 

 
Figure 5. Evidence from Task 3 activities. 

By visualizing and comparing the graphs of the movements for various parameters of speed 
and acceleration, Lucy interprets growth and variation, arguing: "if equal distances are traveled 
in equal times, distance and time have a constant relationship", and that the growth of 
acceleration will always exceed that of speed because "the speed of the car does not change and 
that of the patrol car is constantly increasing" (see Figure 5d). In Lucy's reasoning, we observe a 
conceptual enrichment that transcends the context, and although they are not numerical or 
algebraic manipulations, they are of a general nature. They are general reasonings that apply to 
any URM and UARM context. In the words of Freudental (2002), "The relationship between 
constant ratio and linearity is a feat of vertical mathematization" (p.43). 

In performing this task, Lucy shows the ability to distinguish a linear situation from a 
nonlinear situation and identify the distinctive features of each in different representations. Thus, 
she shows clear progress in her proportional reasoning. 

Discussion and conclusion 
In Task 1, Lucy had difficulties comparing two ratios whose difference between numerator 

and denominator was the same, 2/7 and 3/8; that idea changed with the task. We infer that there 
are difficulties in students' understanding that emerge with this activity. According to Sierpinska 
(2004), "tasks should be able to reveal students' most hidden misconceptions" (p. 14). In Task 2, 
the objective is to confront the illusion of linearity regarding the confusion students present when 
assuming that area and volume have a linear relationship with the similarity ratio. However, the 
activities do not prove to be sufficient and should be redesigned. It is necessary to add geometric 
figures so that students distinguish the linear relationship of the perimeter with the quadratic 
relationship of the area and the cubic relationship of volume in a more playful geometric way. In 
Task 3, the detailed analysis of Lucy's responses sets the tone for more in-depth activities that 
bring out the "models for" and generalization. 

The detailed analysis of Lucy's answers in each task shows us the learning she acquires to 
work with ratios, move between proportional representations and contrast them with non-linear 
phenomena in different contexts. The above gives us elements to answer our research question 
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and gives us sufficient guidelines for redesigning the activities organized by the HLT. On the 
other hand, it provides us with enough evidence to discern which of the tasks should be deepened 
in order to achieve that students show better progress in the levels of vertical mathematization. 
That is to say, the diversity of contexts favors horizontal mathematization. Considering the times 
in the curriculum, the designers of didactic sequences must discern what is most convenient in 
each situation since reducing the number of contexts could increase the opportunity to achieve 
greater depth in the mathematization process. In this sense, we consider that there is also a need 
for fully mathematized activities without reference to any context that deals with the formal 
level. 

In this development research, we try to find teaching ways to address the concepts involved 
in proportional reasoning through approaches to linear functions and their representations 
(symbolic, tabular, and graphical). In this sense, the first axis of the proposal is to prioritize the 
concept of ratio as a precursor to accessing equivalence, comparison, and ratio tables, which 
leads inexorably towards linear functions; the second axis is that the student faces diverse 
contexts to explore proportional situations in their different representations and the third axis 
consists of considering the phenomenon of the illusion of linearity. It is intended that students 
experience realistic situations, both linear and nonlinear, and question linearity (or the absence of 
it) each time they face a problem, reacting in a reasoned manner according to the characteristics 
of the situation.  

Concerning the influence of technology in the study, it is clear that its use makes it possible 
to simulate and replicate everyday situations that can be problematized and provide pragmatic 
and epistemic advantages. For example, the use of VIDS makes it possible to present random 
data to the student, interact with contexts dynamically, show mathematical objects in different 
representations and validate results. As described in the analysis, the students' experience with 
VIDS made it possible to observe misconceptions that would go unnoticed, probably in 
traditional forms of teaching. On the other hand, interacting with the VIDS provoked an interest 
that went beyond the mathematical context posed, involving them with problems derived from 
the tasks. 

The results are not conclusive; however, they encourage us to continue this work. It is 
necessary to mention that we had an external variable to consider since the students were 
returning to face-to-face classes after a long pandemic period. 
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En este artículo presentamos un avance de investigación doctoral en donde exploramos formas 
alternativas de enseñanza que promuevan el razonamiento proporcional en estudiantes 
mexicanos entre 14 y 15 años, con apoyo de la tecnología digital. Diseñamos una secuencia de 
actividades que pretende significar los conceptos de razón y proporción, en sus diversas 
representaciones y desde la perspectiva de las funciones lineales. Para el diseño de tareas se 
emplearon elementos del marco de la Educación Matemática Realista y de la Didáctica de 
Cuevas-Pluvinage. Los objetivos de aprendizaje y las actividades propuestas fueron organizadas 
mediante una trayectoria hipotética de aprendizaje. A reserva de presentar los resultados del 
grupo, seleccionamos aleatoriamente a una estudiante para presentar el análisis de los 
resultados obtenidos. Encontramos que las tareas promovieron un razonamiento proporcional. 

Palabras clave: Educación secundaria, tecnología, números racionales y razonamiento 
proporcional 

Introducción 
Los conceptos asociados al razonamiento proporcional, tales como fracción, razón y 

proporción son clave en la educación matemática en los niveles básicos, ya que son pilares de las 
matemáticas superiores y su aplicación es transversal a otras disciplinas (Lamon, 2007). Dada la 
importancia de la problemática, coincidimos con diversos trabajos (Lesh et al., 1988; Adjiage y 
Pluvinage, 2007), en que la falta de éxito en el manejo de las razones y proporciones es causada 
por un pobre desarrollo de las habilidades proporcionales, así como una excesiva aritmetización 
de los procesos involucrados. Como consecuencia a la carencia de sentido al abordar situaciones 
proporcionales en el aula, se ha observado una tendencia de los estudiantes a aplicar el modelo 
proporcional en situaciones donde no es aplicable, lo que se ha denominado ilusión de la 
linealidad (De Book et al., 2002).  

El problema al que se enfrenta la comunidad es cómo enseñar a los estudiantes a razonar 
proporcionalmente. El acercamiento escolar más frecuente hacia la proporcionalidad se da desde 
una perspectiva aritmética, separándola de sus vínculos con las relaciones funcionales y sus 
múltiples representaciones. En nuestra propuesta rescatamos los resultados de investigación en 
esta línea y ponemos a prueba un diseño de enseñanza basado en un acercamiento funcional 
mediante contextos realistas y apoyado en la tecnología digital; con lo cual, se espera obtener 
ideas que aporten al diseño de actividades que promuevan el razonamiento proporcional  

Marco teórico 
El enfoque de enseñanza de la Educación Matemática Realista (EMR) destaca que las 

situaciones realistas son fundamentales para el aprendizaje de las matemáticas, ya que las 
matemáticas son parte de una construcción histórica y cultural (Freudenthal, 2002).  En esta 
corriente, los estudiantes son participantes activos en el desarrollo de su propio aprendizaje y en 
la construcción de modelos que matematizan la realidad a partir de un contexto cotidiano 
(Gravemeijer, 2004). En la EMR se identifican dos tipos de matematización: la matematización 
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horizontal, donde los estudiantes transitan de lo real a lo simbólico para dar respuesta a 
problemas del propio contexto; y la matematización vertical, donde los estudiantes realizan 
conexiones conceptuales y crean estrategias para resolver problemas dentro del sistema 
matemático, que pueden o no referirse al contexto inicial. Es decir, se separan del contexto hacia 
el camino de la abstracción y la generalización (Van den Heuvel-Panhuizen y Drijvers, 2020). 

En cuanto al razonamiento proporcional, partimos de la definición de Lesh et al. (1988): 
El razonamiento proporcional es la habilidad que permite trabajar con situaciones que 
impliquen variación, cambio, sentido de covariación y comparación múltiple, además de la 
capacidad de procesar y almacenar mentalmente varias piezas de información; también está 
ligado a la inferencia y a la predicción e involucra tanto métodos cualitativos como 
cuantitativos. (p. 93) 
Acorde a este fundamento, asumimos como válido el modelo de razonamiento proporcional 

propuesto por Modestou y Gagatsis (2010) y reconocemos la necesidad de investigación a la que 
invocan los estudios sobre la ilusión de la linealidad de De Bock et al. (2002). En nuestro estudio 
identificamos a las habilidades proporcionales como aquellas facultades que son consideradas 
necesarias para que una persona posea un razonamiento proporcional sólido. Lobato et al. (2010) 
y Weiland et al. (2021) indican que esas habilidades deben incluir: 1) Atender y coordinar dos 
cantidades que varían de forma dependiente, 2) Reconocer y utilizar las estructuras de las 
situaciones proporcionales (razón unitaria, constante de proporcionalidad, linealidad), 3) 
Identificar el invariante en una proporción, 4) Comprender la proporcionalidad desde múltiples 
representaciones, 5) Distinguir las situaciones lineales de las no lineales. Consideramos a estas 
cinco habilidades como clave para nuestro estudio y son las que invocamos con el término 
habilidades proporcionales. 

Para englobar el marco teórico y estructurar la intervención nos apoyamos del enfoque de 
Investigación Basada en Diseño (IBD) propuesto por Bakker (2018). Dado que en la IBD el 
diseño y la innovación en el aula son aspectos clave, se propone el uso de tecnología digital 
como medio que permita a los estudiantes interactuar con múltiples representaciones, facilitar la 
simulación de situaciones realistas y comprobar sus propios resultados en Entornos Didácticos 
Virtuales Interactivos (EDVI).  

Para organizar el diseño de las tareas que guían a los estudiantes en el proceso de 
matematización, nos basamos en la Trayectoria Hipotética de Aprendizaje (THA) (Simon, 1995). 
Para el diseño de las actividades que integra cada tarea nos apoyamos del marco didáctico 
Cuevas-Pluvinage, que aporta una ingeniería didáctica que rescata principios didácticos de la 
escuela activa y Piaget adaptados a la educación matemática (Cuevas y Pluvinage, 2003). 

Coincidimos con Sierpinska (2004) en que “reportar las tareas es necesario para probar la 
eficacia del enfoque de enseñanza” (p. 13). Según la autora, la problematización, justificación y 
discusión de las tareas inicia con el análisis a priori del diseño, sin embargo, la problematización 
es aún más sustancial y fructífera en el análisis a posteriori; es decir, después de la 
experimentación en el aula. En este orden de ideas, en este informe mostramos la 
problematización tanto en la fase de diseño como en la fase de análisis retrospectivo, ya que da 
pautas para el rediseño de nuestras tareas. 

Una de las labores más complejas para un docente es tratar de implementar principios de una 
didáctica de corte constructivista en un aula tradicional con los elementos usuales. Por ejemplo, 
introducir un concepto matemático mediante la problematización de una situación cotidiana, en 
un aula tradicional, resulta casi imposible. Una posible solución es contar con un escenario 
virtual que simule un fenómeno real, en el que los estudiantes puedan interactuar con diversos 
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contextos de forma dinámica y, además, su uso permita la construcción de conocimiento 
matemático (Moyer et al., 2016). De este modo, se dota a los estudiantes de la oportunidad de 
acción, en donde cada estudiante puede aprender a su propio ritmo. La tecnología digital brinda 
al estudiante y al profesor de una especie de laboratorio portátil, al utilizar diversos dispositivos, 
como móviles, tabletas, etc. 

Las consideraciones anteriores nos conducen a la pregunta de investigación: ¿Cómo diseñar 
una secuencia didáctica, en contextos realistas mediados por la tecnología, que ayude a los 
estudiantes a desarrollar su razonamiento proporcional y les permita progresar en los niveles de 
matematización de la EMR? 

Metodología 
Con base en nuestro marco metodológico, el enfoque de IBD utilizado consta de las 

siguientes fases: preparación y diseño, experimento de enseñanza y análisis retrospectivo. 
Fase de preparación y diseño 

En esta fase se diseñaron y desarrollaron: 1) Un pretest para recabar conocimientos previos 
de los estudiantes. 2) Una THA que guía el proceso de enseñanza y marca los objetivos de 
aprendizaje. 3) Tres secuencias de actividades didácticas con sus respectivos EDVI “Naranjada”, 
“Zoom Totoro” y “Autos”. 4) Una encuesta para indagar acerca de la perspectiva de los 
estudiantes en su experiencia con el uso de los EDVI y las actividades de las hojas de 
exploración y aprendizaje guiado (HEAG). El pretest y la encuesta final se alojaron en 
formularios de Google para responder en casa con el fin de ahorrar tiempo de aula. 

 

 

Figura 1: Diseño de la ruta didáctica que guía la secuencia de instrucción 

Tarea 1. El contexto de la tarea consiste en comparar propuestas de mezcla de zumo de 
naranja y agua (ver figura 2a y 2b). El objetivo es que los estudiantes aprendan: a plantear, 
comparar y determinar equivalencia, entre razones; así como generar tablas de razones 
equivalentes e identificar la constante de proporcionalidad. Finalmente se realiza una actividad 
extra para aplicar el conocimiento aprendido en un contexto diferente. Las actividades que se 
realizan son: expresar una razón en notaciones diferentes, por ejemplo, 3 vasos de jugo por cada 
5 de agua: 3 a 5, 3:5 y 3/5). 2) Coordinar la covariación entre dos variables, dada una razón de A 
vasos de naranja por cada B de agua, el sabor es más intenso a naranja si A aumenta o si B 
disminuye. 3) Comparación de dos razones. Dadas dos propuestas aleatorias de naranjada con 
razones de naranja en agua A:B y C:D, determinar cuál tendrá un mayor sabor a naranja. 

Tarea 2. La tarea consiste en realizar un efecto “zoom” para reducir o aumentar una imagen 
de figuras Totoro acorde con una razón de semejanza que se introduce en una casilla de entrada 
(ver figura 2c). El objetivo es que los estudiantes realicen actividades de semejanza utilizando la 
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constante de proporcionalidad. También, se pretende afrontar el problema de la ilusión de la 
linealidad al, tabular y graficar, las relaciones razón-perímetro (lineal) y razón-área (cuadrática), 
con el fin de conducir a los estudiantes hacia la comparación de ambos modelos. 

Tarea 3. El contexto de la tarea consiste en visualizar un auto que se mueve a una velocidad 
constante superior al límite permitido y una patrulla que inicia una persecución con aceleración 
constante en el momento que el auto pasa a su lado (ver figura 2d). El objetivo es que los 
estudiantes interactúen con el EDVI mientras describen, analizan y comparan las características 
y las representaciones de los dos movimientos, es decir, el movimiento rectilíneo uniforme 
(MRU) y el movimiento rectilíneo uniformemente acelerado (MRUA). De este modo, los 
estudiantes deben identificar los modelos presentes (lineal y cuadrático) para comparar ambos 
comportamientos y transitar en sus representaciones. 

 

 
Figura 2. EDVI´s utilizados en la secuencia de enseñanza 

Fase de experimento de enseñanza 
El estudio se realizó mediante una intervención presencial en dos grupos de una Escuela 

Secundaria en México. Participaron en el estudio 35 estudiantes (14-15 años) en el invierno de 
2021. La instrucción se dividió en tres sesiones de 90 minutos en un salón de cómputo de la 
escuela. Cada estudiante contaba con una computadora personal que tenía precargados los EDVI, 
también cada estudiante contaba con sus respectivas HEAG. La intervención estuvo a cargo del 
primer autor, apoyado por el profesor del grupo y un asistente de investigación. En las sesiones 
se promovió un aprendizaje colaborativo y se discutieron las respuestas en grupo. 

Resultados y análisis retrospectivo 
De acuerdo con Freudenthal (2002), el contexto y el diseño didáctico deben permitir a los 

estudiantes transitar de la matematización horizontal hacia la matematización vertical. 
Gravemeijer (2004) identifica cuatro niveles hacia la matematización vertical: N1) Nivel 
situacional. Se interpreta y organiza la realidad mediante razonamientos matemáticos informales 
y dependientes del contexto (matematización horizontal). N2) Nivel referencial. Se crean 
esquemas y modelos que tienen sentido dentro del contexto inicial, inicia la matematización 
vertical al surgir “modelos de...”. N3) Nivel general. Se relacionan los conceptos, se generan 
estrategias que se separan del contexto, el razonamiento se da en el mundo matemático y surgen 
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“modelos para...”. N4) Nivel formal. Se comprenden los conceptos mediante su simbolismo 
matemático, ya no se necesita apoyo de algún contexto real, la reflexión ha transitado al mundo 
matemático y se puede prescindir de los modelos. 

A reserva de presentar los resultados del grupo, seleccionamos aleatoriamente a una 
estudiante, que llamaremos Lucy, para presentar un análisis detallado de los resultados de las 
tareas y su evaluación mediante los niveles de matematización vertical propuestos en la EMR. 
Resultados de la Tarea 1. “Naranjada” 

Para realizar las actividades de la naranjada, Lucy utiliza sus conocimientos previos, es decir, 
las actividades la conducen a una matematización horizontal, asimilando correctamente las tres 
notaciones para razón. Además, encontró que a una propuesta aleatoria de naranjada la 
intensidad de sabor depende de un proceso de covariación. En esta fase Lucy se encuentra en el 
nivel situacional, porque se mueve dentro del mundo numérico solo para interpretar el contexto y 
emitir un juicio, la matematización horizontal es un ir y venir del contexto al mundo matemático. 

Un hallazgo se dio cuando el EDVI mostró a Lucy el siguiente par de razones de naranja a 
agua: 2:7 y 3:8 (ver figura 4a), Lucy Realizó mentalmente una biyección 1 a 1 entre los vasos de 
naranja y los vasos de agua. Una vez hecha la biyección, cuando en ambos escenarios quedó el 
mismo número de vasos de agua sin asociar, Lucy respondió, intuitivamente, que las dos tienen 
el mismo sabor, es decir, la misma proporción. Esta forma errónea de comparar razones, análoga 
al erróneo principio aditivo, la extendió a todas las situaciones, y le funcionó cuando los vasos 
restantes de agua fueron distintos. No obstante, cuando los vasos restantes de agua fueron iguales 
el EDVI señaló un error, incomprensible para Lucy. Al cierre de la sesión, mediante discusión 
grupal, se precisaron métodos para comparar razones y se comprobó que la mayoría de los 
estudiantes adoptaba el razonamiento descrito, e incluso algunos estudiantes se mostraron 
sorprendidos de que el método fallara. Como esta misma situación se presentó en la mayoría de 
los estudiantes la llamaremos “ilusión de la proporcionalidad”. 

 

 
Figura 3. Evidencia de las actividades correspondientes a la Tarea 1 

La actividad de completar tablas de razones equivalentes está sujeto al contexto (mezclas 
naranja-agua en la misma proporción), pero el patrón multiplicativo que Lucy usa para llenar la 
tabla se da en el ámbito matemático, también se observa que al inicio persiste el razonamiento 
aditivo (Ver figura 3b). Una manera de comparar las razones equivalentes de las tablas es 
considerar pares de razones que tengan numeradores o denominadores iguales, Lucy se vale de 
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ese hecho (ver figura 3c) para hacer juicios numéricos y da un argumento de covariación basado 
en el denominador de las razones, por lo que es claro un nivel referencial. 

En los ejercicios de aplicación, posteriores a la actividad con el EDVI, Lucy utiliza 
eficientemente el método de la razón unitaria. En la figura 3d se muestra un ejercicio de 
ordenamiento de razones (adaptado de Lamon, 2020), que consiste en ordenar a un conjunto de 
animales en relación con su peso. Lucy aplica el método de la razón unitaria para resolver 
problemas en contextos diferentes, se infiere que ha adquirido un “modelo para” y se vislumbra 
un progreso del nivel referencial al nivel general. 

En esta tarea, Lucy muestra habilidades para plantear razones en distintas notaciones, 
comparar razones, aplicar el principio multiplicativo para obtener razones equivalentes y utilizar 
el método de la razón unitaria para resolver problemas prácticos. En este nivel, los estudiantes ya 
poseen habilidades de razonamiento proporcional. Sin embargo, los datos muestran que Lucy 
tenía, en su estructura de conocimientos un arraigo en el razonamiento aditivo; el cual se logró 
modificar, e incluso se consolidó el método de la razón unitaria. 
Resultados de la tarea 2. “Zoom Totoro” 

En la etapa inicial se involucran procesos de observación, medida y principio multiplicativo. 
La actividad de calcular las dimensiones de la imagen para distintas razones está anclado al 
contexto (nivel situacional), sin embargo, al seguir el patrón se marca el camino al nivel 
referencial, ya que Lucy nota que para obtener las medidas de la imagen replicada se multiplican 
las medidas de la imagen original por la razón de semejanza (ver tabla en la figura 4a). 

 

 
Figura 4. Evidencia de las actividades correspondientes a la Tarea 2 

En la tabla para calcular el perímetro de imágenes aumentadas según una razón de 
semejanza, Lucy se basa en la tabla de dimensiones y se aleja del contexto debido a que el 
concepto inicial se relaciona, en primera instancia con el perímetro, y en segunda con el área. 
Lucy calcula los perímetros para las razones propuestas siguiendo el ejemplo inicial de la tabla 
hasta llegar a la expresión lineal P=9x y aplica el “modelo de” encontrado (ver figura 4a). Para 
graficar la relación razón-perímetro, Lucy transita entre las representaciones tabular-gráfica y 
logra ver la variación lineal (ver figura 4b). En cuanto a la relación razón-área, completa la tabla 
y realiza la gráfica, describiendo que es curva (ver figura 4c). Sin embargo, no concluye en el 
“modelo de” buscado (relación cuadrática) y no se llega a contrastar entre perímetro y área.  

Al realizar esta tarea, Lucy mostró la habilidad para transitar entre las representaciones 
tabular, gráfica y algebraica de la proporcionalidad; identificando el valor de la constante de 
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proporcionalidad en el caso del perímetro, y además obteniendo un modelo que describe el caso 
particular. Sin embargo, no se logra avanzar hacia el nivel general. 
Resultados de la tarea 3. “Autos” 

De inicio, las actividades en este EDVI, son de instrumentación y contextualización. Lucy 
identifica las características de los movimientos, tanto a velocidad constante como a aceleración 
constante. Sus ideas previas e informales sobre tales conceptos se modificaron después de 
interactuar con el EDVI y observar el cambio en las variables, su relación y al realizar 
observaciones numéricas. 

Como se puede observar en la figura 5c, Lucy transita correctamente entre las 
representaciones tabulares y gráficas, y también identifica características lineales y no lineales, 
tanto en la gráfica como en las tablas. En esta tarea Lucy ve relaciones entre las variables que 
van más allá del contexto inicial, al identificar un “modelo de”, utilizarlo y concluir que la 
variación es proporcional (en el auto) y cuadrático (en la patrulla); también, distingue los 
comportamientos lineales y no lineales en las representaciones. Sin embargo, Lucy no logró 
proponer un modelo para la aceleración constante. 

 

 

Figura 5. Evidencia de las actividades correspondientes a la Tarea 3 

Al visualizar y comparar las gráficas de los movimientos para diversos parámetros de 
velocidad y aceleración, Lucy interpreta el crecimiento y la variación, al argumentar: “si se 
recorren distancias iguales en tiempos iguales, distancia y tiempo tienen una relación constante”, 
y que el crecimiento de la aceleración siempre superará al de la velocidad porque “la velocidad 
del auto no cambia y la de la patrulla aumenta constantemente” (ver figura 5d). En los 
razonamientos de Lucy se observa un enriquecimiento conceptual que trasciende al contexto y, 
aunque no son manipulaciones numéricas o algebraicas, son de carácter general. Es decir, son 
razonamientos generales que aplican para cualquier contexto de MRU y MRUA. En palabras de 
Freudental (2002), “La relación entre la razón constante y la linealidad es una hazaña de 
matematización vertical” (p.43). 

Al realizar esta tarea, Lucy muestra la habilidad de distinguir una situación lineal de una 
situación no lineal, e identificando los rasgos distintivos de cada una en distintas 
representaciones. Con lo cual, muestra claros progresos en su razonamiento proporcional. 
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Discusión y conclusión 
En la Tarea 1 Lucy tuvo dificultades para comparar dos razones cuya diferencia entre 

numerador y denominador era la misma, 2/7 y 3/8, esa idea cambió con la tarea, inferimos que 
hay dificultades en la comprensión de los estudiantes que emergen con esta actividad, de acuerdo 
con Sierpinska (2004), “las tareas deben ser capaces de revelar las concepciones erróneas más 
ocultas de los estudiantes” (p. 14). En la Tarea 2 el objetivo es confrontar la ilusión de la 
linealidad, respecto a la confusión que presentan los estudiantes al suponer que el área y el 
volumen guardan una relación lineal con la razón de semejanza. Sin embargo, las actividades no 
dan muestra de ser suficientes por lo que deben rediseñarse. Es necesario añadir figuras 
geométricas, para que los estudiantes distingan la relación lineal del perímetro con la cuadrática 
del área y la cúbica del volumen, de una manera geométrica más activa. En la Tarea 3, el análisis 
detallado sobre las respuestas de Lucy nos marca la pauta para profundizar en las actividades que 
hagan surgir los “modelos para” y se logre la generalización. 

El análisis detallado de las respuestas de Lucy en cada tarea da muestras del aprendizaje que 
adquiere para trabajar con razones, transitar en representaciones proporcionales y contrastarlas 
con fenómenos no lineales en diferentes contextos. Lo anterior nos da elementos para responder 
nuestra pregunta de investigación y nos da pautas suficientes para el rediseño de las actividades 
que organiza la THA en cada una de las tareas propuestas. También, nos aporta evidencia 
suficiente para discernir en cuál de las tareas, y de qué forma, se debe profundizar para lograr 
que los estudiantes muestren mejores progresos en los niveles de matematización vertical. Es 
decir, la diversidad de contextos favorece la matematización horizontal (nivel situacional), en 
consecuencia, considerando los tiempos en el currículo, los diseñadores de secuencias didácticas 
debemos discernir qué es lo más conveniente en cada situación, ya que al reducir el número de 
contextos podría aumentar la oportunidad de lograr mayor profundidad en el proceso de 
matematización. En este sentido, consideramos que también son necesarias actividades 
totalmente matematizadas sin referencia a ningún contexto que den cuenta del nivel formal. 

En esta investigación en desarrollo, tratamos de encontrar vías de enseñanza para abordar los 
conceptos involucrados en el razonamiento proporcional. Primero con acercamientos hacia la 
razón y la proporción con las funciones lineales y sus representaciones (simbólica, tabular y 
gráfica). En este sentido, un primer eje de la propuesta es priorizar el concepto de razón como 
precursor para acceder a la equivalencia, la comparación y las tablas de razones, lo cual conduce 
inexorablemente hacia las funciones lineales; un segundo eje es que el estudiante se enfrente a 
diversos contextos para explorar situaciones proporcionales en sus distintas representaciones y el 
tercer eje consiste en considerar el fenómeno de la ilusión de la linealidad. Se intenta que los 
estudiantes experimenten situaciones realistas tanto lineales como no lineales y cuestionen la 
linealidad (o la ausencia de ella) cada vez que se enfrenten a un problema, reaccionando de 
manera razonada de acuerdo con las características de la situación.  

En cuanto a la influencia de la tecnología en el estudio, es claro que su uso permite simular y 
replicar situaciones cotidianas susceptibles de problematizarse, además de brindar ventajas 
pragmáticas y epistémicas. Por ejemplo, el uso de EDVI posibilita: presentar al estudiante datos 
aleatorios, interactuar con los contextos de forma dinámica, mostrar los objetos matemáticos en 
distintas representaciones y validar los resultados. Como se ha descrito en el análisis, la 
experiencia de los estudiantes con los EDVI permitió observar concepciones erróneas que, 
probablemente en formas de enseñanza tradicionales, pasarían inadvertidas. Por otro lado, 
interactuar con los EDVI provocó en los estudiantes un interés que iba más allá del contexto 
matemático planteado, involucrándose con problemas que se derivaban de las tareas. 
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Students exhibiting mature number sense make sense of numbers and operations, use reasoning 
to notice patterns, and flexibly select the most effective and efficient problem-solving strategies 
(McIntosh et al., 1997; Reys et al., 1999; Yang, 2005). Despite being highlighted in national 
standards and policy documents (CCSS, 2010; NCTM, 2000, 2014), students’ mature number 
sense and its nomological network are not yet well specified. For example, how does students’ 
mature number sense relate to their knowledge of fractions and their grade-level mathematics 
achievement? We analyzed 129 middle school students’ scores on measures of mature number 
sense, fraction and decimal computation, and grade-level mathematics achievement. We found 
mature number sense to be measurably distinct from their fraction and decimal knowledge and 
uniquely associated with students’ grade-level mathematics achievement.  

Keywords: Number Concepts and Operations; Cognition; Assessment; Rational Numbers  

Over the last three decades, “number sense” has emerged as a central goal of mathematics 
education. While high quality mathematics teachers were certainly already teaching in ways that 
helped students make sense of number and operations before then, “number sense” was not yet a 
commonly used term in mathematics education. In the late 1980’s, government commissioned 
reports (e.g., National Research Council, 1989) and national curriculum frameworks (e.g., 
National Council of Teachers of Mathematics (NCTM), 1989) highlighted “number sense” as a 
core objective of K-12 mathematics education. Students showing strong mature number sense 
exhibit the disposition to make sense of numerical situations and use a rich conceptual 
understanding of number and operations to flexibly solve problems.  

Despite being a central objective in mathematics education, there is little evidence in the 
literature on how students’ mature number sense relates to other important psychological 
constructs in mathematics education. For example, how do students’ levels of mature number 
sense relate to their grade-level mathematics achievement or their understanding of fractions? 
Without an understanding of the nomological network, it is harder for researchers to explain how 
students construct mature number sense, leaving educators without rigorous evidence on how 
best to address it within their own classrooms. In this study, we aimed to begin to address this 
gap in the literature by examining how middle school students’ mature number sense relates to 
other theoretically related constructs, testing the hypothesis that mature number sense is both 
distinct from fraction and decimal computation and grade-level mathematics achievement and 
uniquely associated with students’ grade-level mathematics achievement.  
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Background and Theoretical Framework 
Number sense is a difficult construct to define (e.g., Berch, 2005). How the construct is 

operationalized and assessed looks very different across the disciplines of cognitive and 
developmental psychology, mathematics education, and special education (summarized in 
Whitacre et al., 2020). In this project, our construct of interest is what Whitacre et al. (2020) 
have termed mature number sense, which we define in line with McIntosh et al. (1992) as “a 
person’s general understanding of number and operations along with the ability and inclination 
to use this understanding in flexible ways.” This focus is distinct from research on approximate 
number sense (e.g., Dehaene, 2001) or early number sense (e.g., Jordan et al., 2009).  

Perhaps to help facilitate operationalizing it in empirical research, mature number sense has 
often been subdivided into components (McIntosh et al., 1997; NCTM, 1989; Reys et al., 1999; 
Yang & Lin, 2015). Building from this prior work and in consultation with expert mathematics 
teachers, teacher educators, and mathematics education researchers, we specified a four-
component framework of mature number sense (Kirkland et al., under review) as follows:  

1. Understanding the effect of operations on numbers: Students demonstrating strong 
mature number sense recognize how the four core operations affect whole numbers as 
well as fractions and decimals. They understand that patterns observed with operations 
with whole numbers may not hold true for fractions and decimals between 0 and 1. 
Students use this understanding to efficiently estimate computational results and ensure 
the results make sense given the relationship between operations and rational numbers.  

2. Using multiple representations of a number: Students demonstrating strong mature 
number sense are able to translate among multiple representations of rational numbers 
efficiently and flexibly to solve problems. Students recognize that fractions are numbers, 
for example, rather than separately perceiving the numerator and denominator. Students 
are able to use this understanding to translate between representations to make sense of 
numerical situations.  

3. Understanding mathematical equivalence: Students demonstrating strong mature number 
sense understand the equal sign as a relational symbol, reflecting that the two sides of an 
equation are equal and interchangeable. Rather than approaching equations with an 
“operational” approach, students understanding equivalence recognize patterns across the 
equal sign and use this relational thinking to flexibly solve problems (c.f. Jacobs et al., 
2007).  

4. Understanding basic number concepts and number magnitude: Students demonstrating 
strong mature number sense have a rich conceptual understanding of fractions, decimals, 
and whole numbers. Students use their understanding of place value and rational number 
magnitude to efficiently estimate results using concepts such as unit fractions.  

We hypothesized, similar to Yang (2019), that mature number sense would be an overarching 
hierarchical latent construct, with the four components each theoretically related to mature 
number sense. That is, a student’s understanding of the effect of operations on a number reflects 
their mature number sense as well as a more specific understanding of how operations affect 
computational results. In our initial development of a brief assessment of mature number sense 
(Kirkland et al., under review), the structure of the response data reflected this hypothesized 
framework. A bifactor model with each component as a specific factor best fit the response data 
over other theoretically related models. We now aimed to use this brief assessment to further 
knowledge about mature number sense’s nomological network, including other important 
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psychological constructs in mathematics education.  

Rationale for Current Study 
Mature number sense has been measured and studied internationally over the last twenty-five 

years (summarized in Whitacre et al., 2020), most frequently in a single time point. Most of these 
studies comment on the “low” levels of students’ mature number sense observed. However, few 
studies have analyzed its potential overlap with other related psychological constructs in 
mathematics education. Understanding how mature number sense fits together with constructs 
such as fraction computation and school mathematics achievement is important for establishing 
the construct validity of measures of mature number sense (Cronbach & Meehl, 1955). 
Throughout the literature, mature number sense is often contrasted with standardized school 
mathematics achievement and the algorithmic, overly procedural mathematics instruction 
common in schools (Whitacre et al., 2020). On the other hand, it is reasonable to hypothesize 
that students with strong mature number sense are flexible problem solvers with a deep 
understanding of number and operation and, thus, that they might do well on more “traditional” 
school assessments. Yang et al. (2008) is the only study we are aware of that examined this 
association. They found 5th grade Taiwanese students’ number sense were positively associated 
with school achievement, but there was no detail on how math achievement was measured (e.g., 
school grades, standardized tests, etc.). In addition, given Taiwanese students’ strong 
performance on international standardized mathematics tests (ranked 5th in world in PISA 2018) 
and its centralized education system (Lin et al., 2021), Taiwan may be a unique context to 
compare students’ mature number sense and school math achievement. 

To begin to address this gap in the literature, we aimed to study how US middle school 
students’ mature number sense related to their grade-level mathematics achievement, controlling 
for a variety of other potentially related factors, including fraction knowledge and addition 
fluency. Our research questions were as follows: 1) Is the mature number sense of middle school 
students measurably distinct from their fraction and decimal computation skills as well as their 
grade-level mathematics achievement? and 2) Is mature number sense uniquely associated with 
students’ standardized grade-level mathematics achievement, even after controlling for their 
fraction and decimal computation?   

Methods 
Participants 

One hundred twenty-nine middle school (6th-8th grade) students from schools surrounding a 
university in the midwestern United States participated (45% identified as female; 67% identified 
as White, 13% Multiracial, 8% Black, and 4% Hispanic). Sessions took place after school hours 
in a local middle school (N = 36) or university building (N = 93). Students were participants in 
timepoint 1 of a larger (still ongoing) longitudinal study. They completed eight measures over 
the course of two 45-minute sessions, scheduled about a week apart (median of 7 days between 
sessions). For this analysis, we focused on the four measures described below, but note that the 
results reported hold up to robustness checks that include the additional measures. 
Measures and Procedure 

Brief Assessment of Mature Number Sense (Kirkland et al., under review). This is an 
electronic, 24 item multiple-choice test of students’ mature number sense, aligned with our 
theoretical framework detailed above. Items differ from a traditional curriculum and are designed 
to specially assess students’ number sense. Each item has a time limit of 60 seconds and students 
are not allowed to use paper and pencil to discourage the use of traditional algorithms. Student’s 
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total sum score is used in the analyses. Figure 1 includes an example item for each of the four 
components in our mature number sense framework. In the validation analysis (Kirkland et al., 
under review), student scores on the brief assessment were reliable over time (r = 0.83) and had 
evidence from expert reviews, factor analyses, student think-alouds, and item response theory 
analyses to support our validity argument.  

Massachusetts Comprehensive Assessment System (MCAS) Grade-Level Mathematics 
Test (2019). Students completed the released 2019 MCAS paper test appropriate for their grade 
level. This is a freely available standardized test designed to assess student proficiency with 
grade-level mathematics standards. Student scores are converted to percent correct because the 
maximum possible correct differs by grade level. Students had no time limit to complete each 
section of the test and could use scratch paper but not calculators. 

Rational Numbers Measure  (Powell, 2014). This is a 35-item paper and pencil test of 
students’ computational skills with fractions, decimals, and percent. Students are asked to 
perform the four operations with both fractions and decimals, find common denominators of 
fractions, generate equivalent fractions, and connect representations of fractions, decimals, and 
percent (e.g., “Convert 2.08 to a percentage”). Students had 20 minutes to work. They could use 
scratch paper but not calculators. Students received 1 point for each correct response. 

Addition Fluency Task (Geary et al., 1996). This measure includes all combinations of 
randomly presented single digit addition facts with the numbers 1-9. Students were tasked with 
solving as many correctly as they could in 1 minute. The order of the facts was predetermined 
randomly and then kept standard for all participants. Students received 1 point for each correct 
response. 

 
Understanding the Effect of Operations 

on Numbers 
Number Concepts and Magnitude 

  

Multiple Representations of a Number Mathematical Equivalence 

  

Figure 1: Sample Items Assessing Mature Number Sense Organized by Component 
 

Data Analyses 
To address the research question on whether mature number sense is measurably distinct 

from students’ general mathematics achievement, we first calculated the zero-order correlations 
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between the constructs. We predicted mature number sense to be most closely related to 
students’ grade-level math achievement on the MCAS and scores on the Rational Numbers 
Measure. We expected mature number sense to be least closely related to addition fluency. We 
then ran a series of partial correlation analyses. We analyzed the correlation between mature 
number sense and both other constructs after controlling for students’ addition fluency scores. 
We then analyzed the associations between students’ grade-level math achievement, fraction and 
decimal computation, and mature number sense, controlling for each in turn. In each case, we 
predict the relationship between mature number sense and the other construct to remain 
significant, even after controlling for a strongly related third variable.  

For additional evidence that mature number sense and fraction and decimal computation are 
distinct, we then conducted a series of factor analyses (Shaffer et al., 2016). We used a common 
method where we tested a constrained model with 2 latent factors set with a covariance equal to 
1 and an unconstrainted model where the 2 latent factors are allowed to freely covary with each 
other. If the unconstrained model provides a better fit through a RMSEA test that is significant, 
then the two measures of interest can be said to be distinct. We tested these two models using a 
chi-squared, χ2, difference test. Due to each grade’s different test for the MCAS, we are unable 
to perform this same analysis on grade-level mathematics achievement.  

To address research question 2, we ran a partial correlation test on the relationship between 
grade-level mathematics achievement and fraction and decimal computation, controlling for 
mature number sense. We then ran a linear regression model, regressing mature number sense 
and other predictors measured in the study on students’ grade-level mathematics achievement.   

Findings 
We first begin with the overall student performance on the measures in the study. Students 

solved on average 14.3 (60%) items correctly on our brief assessment of mature number sense 
(SD = 5.65). Overall, students performed slightly better on the brief assessment than in the 
original validation study (M = 56% correct). Across the three grade levels, students solved on 
average 50% of the items correctly on the MCAS. Out of a maximum possible of 35 correct, 
students answered on average 9.74 items correct on the Rational Numbers measure. While this 
number may appear very low as a percentage correct (28%), this measure was designed by 
Powell to include many problems to help differentiate students’ fraction and decimal 
computation up to the college level. Finally, on average, students answered correctly 19.48 (SD 
= 6.72) single-digit addition problems on the addition fluency task.  

To begin to address research question 1, the zero-order correlations between the measured 
constructs are summarized in Table 1. As predicted, students’ mature number sense scores 
correlated very highly with their fraction and decimal computation skills (r = 0.80) and grade-
level mathematics achievement (r = 0.76), and this was significantly higher than the correlation 
with addition fluency (r = 0.49). 

 
Table 1: Correlation Between Measures in Study 

Construct M SD 1 2 3 4 
1. Mature Number Sense 14.34 5.65 -    
2. MCAS – Grade-Level Achievement 50.00% 24% 0.76 -   
3. Fraction and Decimal Computation 9.74 7.21 0.80 0.66 -  
4. Addition Fluency 19.48 6.72 0.49 0.36 0.53 - 
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Controlling for students’ addition fluency scores, students’ mature number sense still 

correlated highly with their grade-level mathematics achievement (r =0.72, t(126) = 11.52, p < 
.001) and their fraction and decimal computation (r =0.73, t(126) = 11.90, p < .001). We then 
further examined the associations between each pair of these three mathematics-specific 
constructs. Controlling for students’ fraction and decimal computation, their mature number 
sense scores still were significantly positively related with their grade-level achievement (r 
=0.52, t(126) = 6.77, p < .001). The same was true when controlling for grade-level achievement 
and examining mature number sense’s relationship with fraction and decimal computation (r 
=0.61, t(126) = 8.59, p < .001). We would predict that if mature number sense and grade-level 
mathematics achievement are redundant constructs, this relationship would no longer be 
significant. Together, this all provides initial evidence that mature number sense is distinct from 
their grade-level mathematics achievement.  

As discussed above, we then ran a series of confirmatory factor analyses for evidence on if 
mature number sense and fraction and decimal computation are distinct (Shaffer et al., 2016). 
These analyses provided evidence that the Rational Numbers Measure and the Brief Assessment 
of Mature Number Sense measure distinct constructs, 𝜒2 difference = 56.65, p < 0.001; CIF 
difference = 0.02 compared to benchmark of 0.002. This suggests the constructs, as measured in 
this study, are highly related, but not redundant. 

To further examine the unique importance of mature number sense, we first tested the partial 
correlation between fraction and decimal computation and grade-level achievement. 
Interestingly, when controlling for students’ mature number sense, there is no longer a 
significant correlation between the two other constructs (r =0.13, t(126) = 1.51, p =0.13). We 
then ran a linear regression on students’ grade-level mathematics achievement (Model 𝑅2 =
0.59). Results from the model are summarized in Table 2. Students’ mature number sense was 
significantly positively related (𝐵𝑁𝑆 = 0.03, p < .001) to students’ grade-level mathematics 
achievement. However, students’ fraction and decimal computation (𝐵𝑅𝑁 = 0.005, p =0.11) and 
addition fluency (𝐵𝐴𝑑𝑑 = −0.002, p =0.54) were not significantly related to achievement. To 
compare the relative importance of each regressor, we examined the semipartial correlation of 
each predictor in the model (Darlington & Hayes, 2016; Hayes & Rockwood, 2017). The 
semipartial correlation coefficient for mature number sense was significant (sr = 0.39, t(126) = 
4.74, p < .001). However, the semipartial correlation for fraction and decimal knowledge (sr = 
0.09, t(126) = 0.98, p = 0.33) was not significant. We can interpret the ratio of the two 
semipartial correlations (0.39/0.09 = 4.33) as a measure of the relative importance of each in 
explaining students’ grade-level achievement. As another way to quantify mature number sense’s 
importance, we ran an additional linear regression model with mature number sense removed 
from the model. The model 𝑅2 dropped from 0.59 to 0.43 (adjusted 𝑅2 from 0.58 to 0.42).  

 
Table 2: Summary of Regression Model Predicting Grade-Level Mathematics Achievement 

Variable B SE t p 
(Intercept) 0.08 0.051 1.645 0.103 

Mature Number Sense 0.03 0.004 6.78 <0.001 
Fraction and Decimal Computation 0.005 0.003 1.61 0.11 

Addition Fluency -0.002 0.002 -0.62 0.54 
 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

916



Discussion and Implications 
From the evidence presented here, students’ mature number sense is distinct from their 

general grade-level mathematics achievement and fraction and decimal computation skills. It is 
not the same to say, for example, that a student has “strong number sense” and is “good with 
fraction operations.” We also found students’ mature number sense to be predictive of their 
mathematics achievement, above and beyond their computation skills with fractions and 
decimals. Mature number sense explained a significant portion of that association, suggesting 
that mature number sense is uniquely associated with students’ math achievement.  

It is perhaps surprising that mature number sense was a stronger predictor of grade level 
mathematics achievement than students’ fraction and decimal computation, given the 
significance fraction knowledge in particular has been shown to play in students’ mathematics 
achievement (e.g., Barbieri et al., 2021; Booth et al., 2014; Booth & Newton, 2012; Siegler et al., 
2013). Fractions are often seen as a “gatekeeper” to success in algebra or later mathematics 
courses (e.g., Powell et al., 2019; Siegler & Pyke, 2013). However, we see in this study that 
middle school students’ mature number sense was a more important factor than their knowledge 
of fractions and decimals. Perhaps students’ ability to make sense of numbers and operations and 
use that knowledge flexibly to solve problems is a better indicator of future mathematics 
achievement than fraction or decimal computation skills. Further research is needed to 
understand the nomological network more fully, especially in a longitudinal setting where the 
potential mediating role of mature number sense can be accurately tested.  

In reviewing the item level data from the brief assessment of mature number sense, students 
performed better overall on whole number items than those involving fractions and decimals. For 
example, 79% of students solved this whole number distributive property item (4 x 36 = 4 x (___ 
+ 6)) correctly. However, only 36% of students correctly identified that the answer to 12 ÷ 

1

5
 

would be greater than 12 whereas 50% of students said it would be less than 12. Across this and 
other items, students struggled estimating the effect of operations on fractions and decimals less 
than one, displaying a continued bias toward “rules” learned with whole number operations, such 
as multiplication always makes the answer bigger, division makes the answer smaller, and each 
number has a unique predecessor and successor (Fazio et al., 2016; Siegler, 2016). Greater 
attention is required to address these misconceptions that are often learned as “rules” in early 
elementary classrooms (Karp et al., 2015). Encouragingly, a greater number of students 
displayed accurate understanding of fraction and decimal magnitude. For example, 72% of 
students correctly identified 5

6
 as the largest among the following fractions: 

5

6
,

5

7
,

5

8
,

5

9
. Such 

“common numerator” problems have been shown to be significantly more difficult for students 
than the much more frequently seen “common denominator” comparisons (Fazio et al., 2016).  

Overall, we have initial evidence here to start to build a nomological network for mature 
number sense and its associated psychological constructs in mathematics education. This is an 
important step forward to future research more fully examining how mature number sense might 
lay a foundation for future mathematics achievement or whether improving mature number sense 
might be a more important target for instruction than, say, computational skills with fractions. 
This is, however, only one initial study with a sample of students that may not be wholly 
representative of middle school students more broadly. In addition, we only have evidence from 
a single time-point rather than longitudinal data to test if mature number sense precedes and 
predicts grade level mathematics achievement. By continuing to characterize mature number 
sense’s nomological network, researchers can more fully explain how students develop 
understanding of important psychological constructs in mathematics education and provide 
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rigorous evidence to educators on how to help ensure all students have the disposition to make 
sense of numerical situations.  
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This paper frames children’s mathematics as mathematics. Specifically, it draws upon our 
knowledge of children’s mathematics and applies it to understanding the prime number theorem. 
Elementary school arithmetic emphasizes two principal operations: addition and multiplication. 
Through their units coordination activity, children construct two mathematical worlds: an 
additive world and a multiplicative world. Understanding how children might map between their 
additive and multiplicative worlds provides insights into the prime number theorem. It also helps 
us appreciate the power of children’s mathematics, constructed through the coordination of their 
own mental actions.  

Keywords: Cognition; Elementary School Education; Learning Theory; Number Concepts and 
Operations 

Prime numbers fascinate mathematicians of all ages. When we learn to count, we learn that 
we can build numbers additively, without end, by continuing an iteration of 1s (e.g., 6 as 
1+1+1+1+1+1). With prime numbers, we can build those same numbers multiplicatively, as a 
product of primes (e.g., 6 as 2×3). Confrey and Smith (1995) have described these constructions 
as two different worlds: an additive world and a multiplicative world. The prime number 
theorem relates those two worlds in a surprisingly simple way. It states that the number of primes 
less than or equal to any natural number, n, is approximately n/ln(n). In this way, the theorem 
relates the additive building blocks of number (n 1s) to its multiplicative building blocks (the 
π(n) prime numbers less than or equal to n). It states π(n)≈n/ln(n).  

Aside from its simplicity, the prime number theorem is surprising in that it describes the 
relative distribution of primes without discerning a pattern of primes. Attempts to generate 
primes algorithmically have never failed to fail (e.g., the first five Fermat numbers are prime but, 
as far as we know, none of the others are). In fact, our national security depends on such failures 
(though quantum computing might change the game). Moreover, simple conjectures about 
primes, such as whether every even number can be written as the sum of two primes (e.g., 
24=11+13; Goldbach’s conjecture), remain unproved.  

The prime number theorem is also surprising because, in spite of the simplicity of the 
theorem itself, its proofs are notoriously complex. Attempts to understand the distribution of 
primes and prove the prime number theorem led to the invention of the Riemann zeta function—
a function defined through an infinite sum of complex-valued terms. Indeed most proofs of the 
prime number theorem rely on that function. The apparent disconnect between the simplicity of 
the theorem and its proofs led mathematicians like Atle Selberg (1949) and Paul Erdös (1949) to 
generate “elementary proofs.” Clever as they may be, these proofs are at least as convoluted as 
the complex ones, but we cannot blame them for trying. After all, prime numbers are natural 
numbers, and their definition relies on a sieving process that remains contained within the natural 
numbers. So, why should investigations of prime numbers appeal to complex numbers? One clue 
appears in the theorem itself, in the form of the natural logarithm. 

Confrey and Smith (1995) framed logarithms as mappings between multiplicative and 
additive worlds. Logarithmic functions convert the formal operation of multiplication into one of 
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addition, thus potentially transforming multiplicative building blocks into additive ones. Indeed, 
that’s precisely what the prime number theorem implies. Formally, this implication appears in 
the claim (equivalent to the prime number theorem) that the second Chebyshev function—the psi 
function—approaches n asymptotically. We return to this function later. 

Although this paper ostensibly concerns the prime number theorem, it is fundamentally about 
the nature of mathematics itself: an epistemology of mathematics that we can learn through 
interactions with children. In tracing the roots of mathematics to a coordination of actions, we 
can find in children’s actions the primary source of all mathematics. We can learn mathematics 
from children, not only as a source of content knowledge for improving our instruction (Ball, 
Thames, & Phelps, 2008), but also as a trace of the historical development of formal 
mathematics. In the case of the prime number theorem, research on children’s numerical 
development teaches us how mathematicians construct additive and multiplicative worlds and 
how they might navigate between those two worlds. This perspective stands in contrast to 
Platonist views that have become crystallized in formal mathematics (Lakatos, 1976). As such, 
this theoretical paper addresses three questions raised in this year’s conference theme: 

1. How does your work improve learning conditions for each and every mathematics 
learner?  

2. How does your work challenge a settled mathematics learning status quo? 
3. Whose voice does your work center in the mathematics learning process? What can be 

learned from reflecting on this question?  

The purpose of this paper is to review research on the additive and multiplicative worlds that 
children construct and to theorize how our understanding of children’s mathematics elucidates 
our understanding of mathematics as a whole. Along the way, the paper also theorizes why 
addition and multiplication appear as the two principal operations in formal arithmetic. The 
paper frames children’s arithmetic as the construction, transformation, and coordination of units. 
In doing so, it privileges students’ units coordinating activity as the psychological basis for 
formal arithmetic, complex analysis, and the prime number theorem. In addition to the framing 
offered by Confrey and Smith’s (1995) mapping between worlds, the paper draws heavily from 
Ulrich’s (2015, 2016) framing of additive and multiplicative units coordination, as well as 
Boulet’s (1998) characterizations of multiplicative reasoning as a transformation of units.  

Preserving Units in the Additive World 
Researchers who build models of students’ mathematics privilege students’ mathematics over 

school mathematics. They explicitly recognize students’ ways of operating as the focus of 
mathematics education: “If, as teachers, we want to foster understanding, we will have a better 
chance of success once we have more reliable models of students’ conceptual structures, because 
it is precisely those structures upon which we hope to have some effect.” (von Glasersfeld & 
Steffe, 1991, p. 102). Specifically, Steffe and colleagues began a research program to build 
models of the ways that students construct and transform units to solve arithmetic problems. 
These ways of operating become the basis for counting and arithmetic. Ulrich (2015, 2016) has 
exquisitely synthesized this knowledge gained from children in a pair of articles published in For 
the Learning of Mathematics.  

According to Euclid, “a unit is that by virtue of which each of the things that exist is called 
one” (Elements, Book VII). This definition fits well enough but overlooks the human activity 
that goes into constructing units of 1. Children begin to construct units through their counting 
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activity. At first, they count by pointing to figurative items (e.g., chips), building a one-to-one 
correspondence between their number words and their acts of pointing. A number word, say 
“five,” might then stand in place of that activity (Steffe, 1992).  

Arithmetic units emerge from the child’s reflection on such activity, when they can take any 
of the counting acts as an identical unit of 1 (Steffe, 1992). The child can then iterate that unit of 
1 to produce collections of 1’s, such as a 5. This 5 might then become a composite unit, 
composed of five 1s, as well as a unit in itself (one 5). Reasoning additively amounts to 
partitioning composite units into other units—ultimately units of 1—and continuing an iteration 
of those units. This activity produces nested sequences of numbers (e.g., the explicitly nested 
number sequence; Steffe, 1992), wherein 5 contains 4, 4 contains 3, and so on.  

Since Plato, Western philosophers have marveled at the absolute truth of mathematical 
equalities, such as 2+2=4. However, if we appreciate the human activity of constructing 
mathematical objects, like 2 and 4, the mystery fades away. If 2 is two iterations of 1, the 
addition of another 2 continues the iteration of identical units of 1, so that we have 1+1+1+1, 
also known as 4. One, two, and four do not have an existence apart from such activity, and that 
same activity establishes their various relationships. In the case of addition, we continue the 
iteration of a common unit.   

Addition preserves units. If a and b are natural numbers, defined by the iteration of a unit of 
1, then a+b is defined through the iteration of that same unit of 1. However, if a and b are 
fractions, we have to find a common unit for measuring each of them. Usually we refer to a 
common denominator, but implicitly this refers to a unit fraction that we could iterate to produce 
both a and b (Steffe, 2003). Moreover, the result, a+b, is expressed as an iteration of this same 
unit fraction; again, units are preserved.   

Now consider the case of repeated addition, say determining the value of 4×5 through the 
addition 5+5+5+5. In this case, we have four composite units of 5, and we can think about the 
product as four iterations of an identical unit of 5. Alternatively, we can think about each 5 as 
five 1s, so that 4×5 becomes (1+1+1+1+1)+(1+1+1+1+1)+(1+1+1+1+1)+(1+1+1+1+1)=20. 
Either way, units (5s and 1s) are preserved. Ostensibly, we have completed a multiplication task 
via addition: four 5s is twenty 1s. However, multiplicative reasoning does not operate like 
additive reasoning. It does not preserve units; it transforms them. As we will see, additive and 
multiplicative reasoning are distinct, though related through units coordinating activity (Ulrich, 
2015, 2016). 

Transforming Units in the Multiplicative World 
In another article published in For the Learning of Mathematics, Boulet (1998) set out to 

“formulate a uniform concept of multiplication that is not simply another arithmetical operation 
in disguise” (i.e. repeated addition; p. 12). Her approach stands in contrast to that of Vergnaud 
(1983) who required three subtypes to address multiplication across the domains of natural 
numbers, integers, and fractions. Following Davydov (1992), Boulet (1998) promoted 
multiplicative reasoning as a transformation of units. Boulet extended this perspective to include 
the multiplication of negative numbers, fractions, and irrational numbers. Consider the example 
illustrated in Figure 1. 
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Figure 1: Multiplication as a Transformation of Units 

 
When assimilated as a multiplicative task, 4×5 does not represent the repeated addition of 5s 

but, rather, a transformation from units of 5 to units of 1 (or vice versa). The product 4 times 5 
generates a quantity that measures four units of 5, but we want to know its measure in units of 1, 
so we project five units of 1 into each unit of 5, transforming each unit of 5 into five units of 1. 
In terms of units coordination, we have distributed five units of 1 into each of the four composite 
units of 5 (Steffe, 1992). We could compute the result by counting by 5s (as in repeated 
addition), but the transformation itself produces the product. Rather than working within a single 
number sequence, we have transformed numbers across two number sequences: one measured in 
units of 1 and the other measured in units of 5, with a 5-to-1 transformation between those units.  

Boulet’s (1998) framing of multiplication places special emphasis on the distinction between 
roles of multiplicand and multiplier. The multiplicand is the composite unit; it is related to the 
unit of 1 through a unit transformation (i.e., a distribution of units). The multiplier describes the 
number of iterations of that unit. With repeated addition, we would take the composite unit (the 
multiplicand, say 5) and iterate it (say four times). With multiplicative reasoning, we take the 
four units of 5 and transform them into 20 units of 1, all at once, even if we have to determine 
their numerosity through skip counting. The focus of activity is on the multiplicand instead of the 
multiplier.  

From this perspective, the fundamental theorem of arithmetic states that we can uniquely 
produce every natural number in either of two ways: through the iteration of units (a multiplier 
applied to a multiplicand), or through a transformation of units (transforming the multiplicand). 
The atoms of addition are units of 1; the atoms for multiplication are primes. Prime factorization 
of a number, then, represents a sequence of transformations of units, from units of 1, to units of 
n, where n=p1

R1p2
R2…pk

Rk. This idea is generalized in linear algebra, wherein vectors represent 
units, scalars represent iterations of a unit, and matrices represent unit transformations, 
transforming vectors (including the basis for a vector space) into other vectors. Additionally, 
matrix multiplication allows for a recursive transformation of units M×M without reference to 
any particular scalar (multiplier) or any particular unit (vector). In this way, we can understand 
the product (-1)×(-1) as a transformation from units of 1 to units -1, and back (as if composing 
two reflections; Norton, 2022).   

Mapping between Worlds 
Buttressed by a four-year longitudinal study of upper elementary school students, Lamon 

(2007) produced the most comprehensive review of literature regarding advanced numerical 
reasoning. Lamon concluded her report with a list of outstanding questions, beginning with the 
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following: “what are the links between additive and multiplicative structures?” Ulirch (2015, 
2016) responded in terms of composite units and ways that students operate with those units: 
iterating composite units, disembedding units from a composite unit, distributing the units of one 
composite unit across the units of another composite unit. Essentially, both additive reasoning 
and multiplicative reasoning rely on the construction of composite units, so they have a common 
cognitive basis, but as we have seen, students operate on composite units differently in additive 
and multiplicative reasoning. Specifically, we have made a distinction between ways students 
preserve (composite) units when engaged in additive reasoning, and ways they transform units 
when engaged in multiplicative reasoning. 

Lamon’s (2007) review included Confrey’s (1994) concept of a split, through which students 
might transform a unit of 1 into a unit of n. Steffe (2002) proposed a similar concept, describing 
ways students could partition a whole into five equal parts and, reversibly, reconstruct the whole 
by iterating any one of those parts five times. For both Confrey and Steffe, splitting describes a 
multiplicative way of operating. However, in anticipating a mapping between additive and 
multiplicative worlds, Confrey (with Smith, 1995) included the possibility of recursive splits.  

Confrey and Smith (1995) used “basic splits” to refer to splits by prime numbers (e.g., a one-
to-seven split). They used basic splits recursively to consider how students might map between 
additive and multiplicative worlds. In the additive world, we begin at 0 and iterate by units of 1 
to produce other natural numbers. In the multiplicative world, we being at 1 and perform basic 
splits to produce those same numbers. To map between the worlds, we rely on logarithms and 
exponential functions. 

We can define exponential and logarithmic functions as mappings between additive and 
multiplicative structures. Formally, we say they are isomorphisms between the group of integers 
under the operation of addition, and the group of positive real numbers, under multiplication 
(e.g., log2(1/4×8)=-2+3). Pedagogically, they relate children’s counting activity to their splitting 
activity. Following Confrey and Smith (1995), we can use the activity of paper folding to 
exemplify. In the example of log2(1/4×8) we might say that, starting from a folded sheet of 
paper, if we fold it in half twice more (-2; or 1/4) and then unfold it three times (+3, or ×8), we 
end up with a sheet that has twice the area we started with (+1, or 1/4×8).  

Proofs of the Prime Number Theorem 
Two and a half millennia after Plato, Platonist views of mathematics still dominate the field 

(Lakatos, 1976). When we make and prove conjectures about prime numbers, we tend to think 
about those numbers as pre-existing, lying in wait for their discovery; this despite the fact that 
Eratosthenes demonstrated, through his sieve, that prime numbers are the result of a process of 
filtering out multiples of units, beginning with multiples of 2. Indeed, the clearest existing 
explanation of the prime number theorem follows quickly from the fact that, to find primes up to 
n, we need only apply the sieving process up to the square root of n (Marshall & Smith, 2017). 
However, this proof is not generally accepted as rigorous because it relies on what professional 
mathematicians consider to be probabilistic arguments about the density of prime numbers. 
Neither will professional mathematicians trust empirical arguments, and rightly so, but again, 
such arguments suggest that the prime number theorem is not about prime numbers at all. 
Specifically, in computer simulations where a random sieve is applied to the natural numbers 
(randomly eliminating half of the numbers, taking the smallest remaining number, k, and 
randomly removing 1/k of the remaining numbers, and so on) the distribution of these “random 
primes” behaves the same way (Brown, 1978, citing a study by Hawkins, 1958). There are 
approximately n/ln(n) of them less than or equal to n, as n gets large. 
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To prove the prime number theorem, mathematicians are more comfortable moving into the 
complex plane, which comes complete with a geometry of numbers and all kinds of 
computational power, including infinite sums, complex roots, and calculus. The first proofs of 
the prime number theorem relied on the Riemann zeta function. Interestingly, and in line with 
more intuitive arguments introduced here, the infinite sum that defines the zeta function can also 
be expressed as an infinite product of terms involving distinct primes. However, the complexity 
of existing proofs has left mathematicians wondering whether a simpler proof could be found. 
After all, and to echo a question first raised by David Hilbert (Kreisel, 1984), why should the 
proof of a theorem about natural numbers rely on complex analysis?   

Driven by such questions, Selberg (1949) and Erdös (1949) developed proofs that relied only 
on arithmetic functions. Paul Erdös was a Hungarian mathematician and a prolific mathematical 
collaborator. The subject of The Man Who Loved Only Numbers (Hoffman, 1998), Erdös 
believed in a Book of perfect proofs held by the supreme fascist (i.e., God), who withholds from 
us knowledge of the Platonic realm. No doubt, the convoluted proofs that he and Selberg 
developed—though clever—are not in the book. Without the computational power of complex 
analysis, they relied on several specialized functions, such as the Chebyshev functions, which 
were designed to investigate prime numbers. For example, Chebyshev’s psi function (ψ(n)) takes 
a natural number, n, and produces the sum of natural logarithms of new prime factors introduced 
by numbers less than or equal to n (e.g., ψ(6)=0+ln(2)+ln(3)+ln(2)+ln(5)+0). Note that the value 
for the fourth term in the sum is ln(2) because 4 introduces a second 2 in its prime factorization; 
and the value for the sixth term is zero because both prime factors of 6 (2 and 3) were introduced 
earlier in the sum. 

Learning Mathematics from Children 
Children have a lot to teach us, especially if we want to teach them. For teachers, learning 

from children is critical because, if the goal is to promote the development of students’ 
mathematical structures, we must first understand how their mathematical structures operate. 
Hackenberg (2010) has framed the issue as one of “mathematical caring relations.” Children feel 
cared for when we attempt to harmonize with their thinking. Beyond teaching and learning, the 
present focus is on an epistemology of mathematics and what children might teach us about 
mathematics itself. 

Consider the prime number theorem in light of what we know about the additive and 
multiplicative worlds that children construct. In the additive world, children produce natural 
numbers, starting from 0, through an iteration of 1s. When 1s become iterable for the child, each 
number contains all the numbers that precede it, as a nested sequence (e.g., as five units of 1, 5 
contains 4, which contains, 3, and so on). In the multiplicative world, children produce numbers, 
starting from 1, through a transformation of units. As the multiplicative analogue of a nested 
sequence, the least common multiple of a sequence of numbers contains all the numbers that 
precede it. For example, 60 is the least common multiple of 2, 3, 4, and 5, and contains each of 
those numbers within its prime factorization: 60=22×3×5.  

As Confrey and Smith (1995) suggested, we can understand logarithms and exponentials as 
mappings between those additive and multiplicative worlds. The prime number theorem pertains 
to such a mapping, so we should not be surprised at the appearance of a logarithm within it. Still, 
we might wonder why it is the natural logarithm, in particular, that appears. The natural number, 
e, is defined by a limit. Corresponding to this limit, ex is defined as follows, and from this 
definition, we can derive a definition for its inverse function, ln(x): 
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Thinking about units and unit transformations, we can read a lot into this definition of the 
natural logarithm. We have a multiplier, n, applied to the difference of two units: the nth root of 
x, and 1. In an additive world, we would produce n through n iterations of the unit of 1. In a 
multiplicative world, we would produce x through a sequence of n unit transformations, each 
with the nth root of x as its ratio.  

Now consider what happens when x is the least common multiple of the first k natural 
numbers. The prime factorization of x would be the union of the prime factors of 1, 2, 3, …, k 
(including multiples of the same prime factor), and ln(x) would be the sum of the logarithms of 
those prime factors. Because the logarithm function maps multiplicative worlds to additive 
worlds, we should expect this sum to be k: the multiplicative world containing the numbers 1 
through k would get mapped to the additive world containing the numbers 1 through k. In fact, 
that is exactly what the natural logarithm function does as k gets large, and that fact is equivalent 
to the prime number theorem.  

The least common multiple of the first k numbers is the product of the union of prime factors 
up to k. So, the natural logarithm of this least common multiple is the sum of the natural 
logarithms of those prime factors. This sum is Chebyshev’s psi function, as Table 1 illustrates.  

Table 1: The Prime Number Theorem 
Iterations  

of 1 
 
k 

Product  
of Primes 

New Unit 
Transformations 

New Terms  
in Sum 

Value  
of Sum 

+1 1 p0 ×1 0 0 
+1 2 p1 ×p1 +log(p1) 0.693 
+1 3 p2 ×p2 +log(p2) 1.792 
+1 4 p1

2 ×p1 +log(p1) 2.485 
+1 5 p3 ×p3 +log(p3) 4.094 
+1 6 p1p2 ×1 +0 4.094 
+1 7 p4 ×p4 +log(p4) 6.040 
+1 8 p1

3 ×p1 +log(p1) 6.733 
+1 9 p2

2 ×p2 +log(p2) 7.832 
+1 10 p1p3 ×1 +0 7.832 
+1 11 p5 ×p5 +log(p5) 10.300 

   (p1
R1)…(pπ(k)

Rπ(k)) ψ(k)log(k)π(k) k 
 

The left two columns in Table 1 show the production of natural numbers, k, through the 
iteration of a unit of 1, beginning from 0. The third column shows the production of each of 
those natural numbers through a transformation of units (a product of primes), beginning from 1. 
The fourth column shows new prime numbers introduced in the prime factorization of each 
natural number (×1 indicates no new primes). The fifth column shows the natural logarithms of 
new prime factors, which are the terms in the sum that define Chebyshev’s psi function. The 
rightmost column shows this sum, up to each k. Note that because the iteration of 1s begins at 0 
and the sequence of unit transformations begin at 1, the value in this right column would better 
approximate k if we added 1 to it. 
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The bottom line is that each number, from 1 to k, can be expressed as the product of primes 
contained within the least common multiple of those numbers. This is expressed in the bottom 
row of the third column as (p1

R1)(p2
R2)…(pπ(k)

Rπ(k)), where Ri is the highest power to which each 
prime pi can be raised without exceeding n. Note that there are π(k) factors, pi

Ri, and as k gets 
large, each of the factors approximates k. So, the entire product is approximately k raised to the 
π(k). Correspondingly, ψ(k) is approximately π(k)×ln(k). As suggested by the definition of 
natural logarithm given above (as a mapping from nested products to nested sums), and as shown 
in the right column, ψ(k) is also approximately k, which implies the prime number theorem. 
Moreover, this definition of natural logarithm, along with the prime number theorem, suggests an 
alternate definition of e. As proved below, we can define e as the nth root of the least common 
multiple of the first n natural numbers, as n gets large: 

● Ψ(𝑘) = ln(lcm(1, 2, … , 𝑘)) = lim
𝑛→∞

𝑛(√lcm(1, 2, … , 𝑘)
𝑛

− 1) 

● In units of k, lim
𝑛→∞

𝑛𝑘( √lcm(1, 2, … , 𝑘)𝑛𝑘 − 1)= lim
𝑛→∞

𝑛𝑘(√lcm(1, 2, … , 𝑘)1/𝑘
𝑛

− 1)  

● So, Ψ(𝑘)
𝑘

= lim
𝑛→∞

𝑛(√lcm(1, 2, … , 𝑘)1/𝑘
𝑛

− 1) = ln√lcm(1, 2, … , 𝑘)𝑘  

● Because Ψ(𝑘)
𝑘

→ 1, √lcm(1, 2, … , 𝑘)𝑘 → 𝑒, so 𝑒 = lim
𝑛→∞

√lcm(1, 2, … , 𝑛)𝑛 . 

Summary 
To summarize the heuristic argument about the prime number theorem, if we knew that the 

natural logarithm mapped the nested product of the first n natural numbers (their least common 
multiple) to their nested sum (n), the prime number theorem would follow. The ideas of nested 
number sequences and logarithms as maps between multiplicative worlds were informed by 
research on children’s mathematics (e.g., Steffe, 1992; Ulrich, 2015a, 2015b). Related 
constructs, such as units and unit transformations, provide additional insights into why we might 
call the natural logarithm natural.  

Aside from arguments about the prime number theorem, this paper makes an argument about 
the epistemology of mathematics, particularly regarding questions related to the conference 
theme. The first question asks about improving learning conditions for all children. In response, 
we frame children’s mathematics as genuine mathematics. This mathematics is important to 
teachers as they support children’s continued development as mathematicians. This idea is in line 
with calls for teachers to develop pedagogical content knowledge (e.g., Ball, Thames, & Phelps, 
2008), as well as Hackenberg’s (2010) descriptions of mathematical caring relations as 
“harmonizing with students’ schemes” (p. 242). Additionally, we argue that children’s 
mathematics is mathematics that can inform research in mathematics, even at advanced levels. 

In framing children’s mathematics as mathematics, we answer the second question (regarding 
the status quo) by challenging Platonist perspectives that still the dominate the field. For 
instance, there is a tendency to think about prime numbers as pre-existing as if the prime number 
theorem pertains to discovering some kind of pattern in the fabric of the universe. However, our 
heuristic argument buttresses prior arguments (e.g., investigations of random primes; Hawkins, 
1958) that suggest that the theorem pertains to processes of producing prime factors (e.g., 
sieving) and has little to do with a pre-determined subset of the natural numbers. In response to 
the third question, we privilege the voices of children, from whom we have much more to learn. 
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DIFFERENT WAYS OF LEARNING NUMBER DENSITY: A HYPOTHETICAL 
TRAJECTORY WITH HIGH SCHOOL STUDENTS 
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HIPOTÉTICA CON ESTUDIANTES DE BACHILLERATO 
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We present a study where we designed a Hypothetical Learning Trajectory (HLT) for promoting 
the learning of the property of numerical density in high-school students. The tasks of the HLT 
used various school mathematics topics that can provide opportunities for thinking about that 
property and were framed in several contexts and semiotic representation registers. We present 
the sequence of the HLT, as well as some results of its implementation with four high-school 
students. We analyze the participants’ data in terms of their thinking regarding discreteness and 
density. We observed that at the end of the HLT tasks, the participants recognized more easily an 
infinite quantity of intermediate rational or real numbers in an interval, although they didn’t 
fully comprehend that only natural numbers have successors. 

Keywords: Learning trajectories and progressions, mathematical representations, number 
concepts and operations, rational numbers 

Introduction and Research Questions 
In many countries, it is common for high school students to learn about representations of 

numbers on the number line, classes of intervals, as well as the continuity of real numbers, but 
not about the property of density (Vamvakoussi & Vosniadou, 2010; McMullen & Van Hoof, 
2020). The density property of a number set is defined as that given any two numbers in that set, 
there is a number between them. If a number set satisfies this property, it implies that, in that set: 
1) No number can have an (immediate) successor; 2) Any interval contains an infinity of 
numbers. Likewise, a completely dense set is not discrete, understanding discrete, as stated by 
Vamvakoussi and Vosniadou (2010), in terms of order relations. 

Some students arrive at the university level education, with poor conceptions about this 
property. Among the difficulties that are observed are the misconceptions that: 1) In any number 
set, beyond the sets of natural or integers, a successor exists for any number; and 2) there is a 
finite quantity of numbers in an interval of the rational numbers. For example, the second 
misconception was observed with preservice teachers in Israel by Tirosh et al., (1999). Also, 
Merenluoto and Lehtinen (2004) observed that 10% of students studying Mathematics at a 
university in Finland believed that there was a finite number of rational numbers in an interval. 
Likewise, discrete thinking stemming from thinking related to natural numbers is problematic: 
Vamvakoussi and Vosniadou (2010), in a study in Greece, found that the idea of the discrete was 
dominant in their observed students and that the symbolic representation of the extremes of the 
interval had an effect in their judgments regarding, not only the number of intermediate numbers 
in an interval, but also what kinds of numbers are in it (i.e., some of these students considered 
that there can only be decimals in an interval whose endpoints are decimal numbers, but there 
cannot be fractions). 

Based on the above and on the difficulties that students have to learn and understand the 
property of number density, in the research presented here, we developed a Hypothetical 
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Learning Trajectory (HLT), as part of a design-based research (Cobb and Gravemeijer, 2008), 
with the aim of promoting the learning of this property in high school students. In the HLT, we 
use different contexts, situations and representations, inspired by McMullen and Van Hoof 
(2020), who indicate that there are moments in school mathematics that can provide, with 
additional instruction, opportunities to reason about number density. 

This report is an extension of the research study carried out by Suárez-Rodríguez and 
Sacristán (2021), where we addressed the following research questions : 

a) How can we design a sequence of tasks with a specified HLT, to promote the learning of 
the density property in the set of real numbers? 

b) How do high school students understand the property of density in real numbers using 
semiotic representations produced during our proposed tasks? 

Theoretical and Methodological Frameworks 
Thinking about the discrete and the dense 

As Vamvakoussi and Vosniadou (2004, 2010) indicate, the properties of natural numbers 
tend to be transferred to other number sets and this affects students' conceptions of the property 
of density. These authors (Vamvakoussi and Vosniadou, 2004) defined certain categories of 
thinking about the discrete, the dense and its relationship with the number of numbers in an 
interval, to identify ways of reasoning in students (Table 1 shows a reinterpretation by us of 
these categories).  

Natural numbers, unlike real numbers, have the property of discreteness as established in the 
Peano axioms where it is stated that between a natural number and the following one, there is no 
other number (Ni and Zhou, 2005). Furthermore, all natural numbers have a successor (Ni and 
Zhou, 2005) – since it is a well-ordered set. 

Thus, from the study of natural numbers, a thinking linked to the discrete is formed. 
Vamvakoussi and Vosniadou (2004) used the term naive, coined by Carey (1987) to define two 
of their categories of thinking that refer to “naive ideas”(see Table 1): The category naive 
thinking about the discrete refers to a "naive idea" that rational numbers are consecutive. 
Likewise, naive thinking about the dense is when it is considered that there is an infinity of 
numbers in an interval, but it is not possible to justify why the existence of this infinity. 
Contrasting these naive thinking are the categories of forward thinking: The category of discrete 
forward thinking is when it is believed that there are a finite number of numbers in an interval; 
while in the category sophisticated thinking about the dense, the formal definition of density is 
understood. 

 
Table 1: Categories of thinking about the discrete and the dense 

Naive discreteness 
[Naive thinking about 
the discrete] 

The thinking is that there is no number between two consecutive false rational 
numbers. Vamvakoussi and Vosniadou (2004) coined this expression to refer to 
the idea that a successor of a rational number exists. 

Advanced discreteness 
[Advanced thinking 
about the discrete]  

The thinking is that there is a finite quantity of numbers between two consecutive 
false rational numbers. 

Discreteness–density 
[Mixed thinking 
between discrete and 
dense]  

In some cases, the thinking is that between two rational numbers there is an 
infinity of numbers; and in other cases, that there is a finite number. 
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Naive density 
[Naive thinking about 
density]  

There is an understanding that there is an infinity of numbers in an interval, but 
this situation is not justified by using the density property. The symbolic 
representation of the extremes of an interval influences this way of thinking; it is 
believed there can only be an infinite number of decimal numbers between 
decimals and an infinity of fractions between fractions, but not an infinity of 
fractions between decimals or otherwise. 

Sophisticated density 
[Advanced thinking 
about density] 

There is a sophisticated understanding of the density property; that is, it is 
understood that there is an infinite number of numbers between two rational 
numbers, regardless of their symbolic representation and this is justified through 
the use of the density property. 

Description of a Hypothetical Learning Trajectory (HLT) 
Simon and Tzur (2004) define a HLT as a series or sequence of teaching activities that 

comprise conjectures or hypotheses about how the student can learn certain mathematical 
concepts. Thus, a HLT is a prediction of a learning path that includes didactic interventions 
through the sequence of activities (Simon, 1995). Thus, in a THA it is essential to develop and 
propose hypotheses on how to support the student in the construction of new knowledge (Simon, 
1995). In fact, Simon (1995) establishes three components in the design of a HLT: 1) The 
learning goal that defines the direction of the HLT so that the student builds new knowledge; 
2) the learning activities that follow a sequence; and 3) the hypothetical learning process, where 
a prediction is made of how the students' thinking and understanding will evolve, and that 
defines how to support their learning process. During the activities, the researcher (or teacher) 
observes how the student is learning in the scenarios proposed in the HLT to determine if the 
design is adequate and changes need to be made (Simon, 1995). 
Semiotic registers of representation 

One way that we consider important to support the learning of the property of density is the 
use of several registers of representation. Mathematics deals with different registers of 
representation –be it geometric, algebraic (symbolic expressions), arithmetic, even colloquial 
language (linguistic expressions)– and each of these registers constitutes a different semiotic 
form (Duval, 1995/2004); that is, it communicates meaning differently. Semiotic representations 
are fundamental for the development of mathematical activity itself, which depends on a writing 
system (decimal, fractional, binary, etc.) (Duval, 1995/2004). This is also particularly relevant 
because when working with real numbers (as is our case), it is necessary to take into account that 
the real number has different representations (Apostol, 1976/2006). 

Methodology 
Design and development of the HLT activities 

As we already mentioned, in our research we developed a HLT according to the guidelines of 
design-based research (Cobb and Gravemeijer, 2008), a methodological approach in which a 
researcher carries out a detailed analysis of how to test and improve the conjectures that are 
outlined. Cobb and Gravemeijer (2008) recommend the design and elaboration of more than one 
cycle of activities in order to refine or modify the conjectures raised during the first cycle. In our 
research, two cycles of activities were planned; in this report, we present some results from the 
first cycle, from data by four students from Colombia, between 15 and 17 years of age: Angie, 
Paola and Néstor (pseudonyms), who were high-school students; and Violeta (pseudonym), who 
was in her last year of middle-school. These students solved some tasks proposed by the HLT in 
person, while other tasks were carried out online, due to the COVID-19 pandemic. 

The preparation and implementation of the first cycle of the HLT activities consisted of three 
phases. The first phase was the application of a questionnaire as a pre-test; in the second, the 
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activities of the HLT were carried out; and in the last phase, the questionnaire was applied again 
as a post-test. We describe below the phases of the HLT, then we present some results of the first 
two phases and give an example of what happened in the last phase. 

First and third phase. Pre-test and post-test. The same questionnaire (to be answered in 
approximately 30 min) was used for the pre- and post-tests, in order to determine the possible 
evolution of the students' thinking. The questionnaire consists of four questions related to the 
number of intermediate numbers in an interval –those questions were based on those by Suárez-
Rodríguez and Figueras (2020), as well as others by Vamvakoussi and Vosniadou (2004). The 
aim of the questionnaire was to find out how much the participants knew about the property of 
number density; the answers were classified according to the categories proposed by 
Vamvakoussi and Vosniadou (2004) (see Table 1). The questions included in the test are: How 
many numbers are there between 0 and 1? Can you find decimal numbers and/or fractions 
between 0.49 and 1/2? How many numbers are there between 0.899 and 0.90? In the fourth 
question, the following situation was presented: 

Pedro wants to draw a line where he can place decimal numbers. He starts with the number 0.1. Then 
he places 0.2. At that point, Laura interrupts him and says that the number, “next” to 0.1, is 0.11. Who 
is right, Pedro or Laura? Or neither? Or both? 

Second phase. Implementation of the HLT activities. The HLT was designed to be carried 
out in four activity sessions, each with a corresponding learning hypothesis (see Table 2; similar 
to the one that appears in Suárez-Rodríguez and Sacristán, 2021, p. 1223). The hypotheses were 
defined taking into account various topics of school mathematics that we supposed can guide the 
student to a learning and understanding of the property of density. It is not necessary for the 
student to follow the sequence of the sessions, although a first approach to density is through 
decimal numbers, and the sequence ends with irrational numbers. Each session lasted about 
1h30’. 

Table 2: HLT sessions with their corresponding hypotheses 
Levels Hypotheses 

Level 1. Initial approaches to number 
density. 

From two situations: one related to everyday life and the other 
related to a hypothetical scenario, it is thought that the student can 
have his first approaches to the property of density. 

Level 2. Approach to number density 
through the similarity of triangles. 

It is considered that by using triangle similarity students can learn 
about the density property of rational numbers. 

Level 3. Approach to number density 
through arithmetic progressions and 
geometric progressions. 

It is possible that by finding arithmetic and geometric halves in an 
interval, students can understand the density property of rational 
numbers in the set of real numbers. 

Level 4. Approach to numerical 
density through the property of 
continuity. 

Using the continuity property, students are believed to understand 
the density property of irrational numbers in the set of real 
numbers. 

 
Through this HLT students are expected to achieve a metaconceptual awareness, realizing 

that their suppositions and beliefs are not unquestionable and that they constrain the way in 
which new knowledge is acquired (Vosniadou, 1994). At the end of the HLT activities, students 
are expected to be able to distinguish between a discrete set and a dense set. 

Results 
The categories of Vamvakoussi and Vosniadou (2004) (Table 1) were used for the analysis of 

the responses to the questionnaire, as well as for the data from the HLT activities. 
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Pre-test results (phase 1) 
Figure 1 shows Angie's response to the question about the quantity of numbers between 

0.899 and 0.90: "[t]here is only one, because it is in the middle of the two and because it leads to 
the next number". A naive thinking about the discrete in Angie, that comes from her knowledge 
that the natural numbers are discrete, is inferred when she says that “there is only one” and that, 
for her, a decimal number has a successor (“it leads to the next number”). 

 

 
Figure 1: Example of naive thinking about the discrete (Angie – pre-test) 

 
In Figure 2, we observe that the answers of Violeta, Angie and Néstor to the question of 

whether there is a number that follows 0.1, all coincide in that 0.2 is the number that follows 0.1. 
In Paola's answer: “Yes, there is a number that follows 0.1[:] 0.11, 0.111, 0.111...,” we observe 
that although, in her colloquial language, she affirms the existence of a successor, and names 
several: “0.11, 0.111, 0.111[1]…”, for her, the fact of adding the number 1 each time in the 
decimal part of the number, indicates that there are more “successors” for 0.1. We consider that 
these four students exhibited in this question, a naive thinking about the discrete since, 
apparently, they believe that, for decimals, there exists a successor (or several in Paola's case). 

 
4. b. Is there a number that follows 0.1? If your answer is yes, write the number that you think follows 
0.1. But if your answer is not affirmative, explain why. 

Angie’s response 

 
0.1 follows 0.2 

Violeta’s response 

 
Yes, it exists; it is 0.2 and so on with the others 

Néstor’s response

 
For me I think it's 0.2 

Paola’s response 

 
Yes, there is a number that follows 0.1, 0.11, 0.111, 0.111… 

Figure 2: Other examples of naive thinking about the discrete (Pre-test) 
 

Results of the HLT activities (phase 2) 
We present some results from the four students’ data during the development of the HLT. 
Session 1. In the first session, the students solved two learning activities that were meant as a 

first approach to density. The second of those activities involved the following: 
Imagine that you see that a frog starts to jump from point A and tries to reach point B in the following 
way: 1st step: The frog jumps half the distance [from A to B]. 2nd step: It then jumps half the 
distance that remains. 3rd step: Again, it jumps half of what remains. And so on.  
1. After imagining the situation, now describe it, or explain it... 
2. How many times will the frog jump between points A and B? Explain your answer. 

In solving this activity, we consider that Angie, Violeta and Paola (see Figure 3) are 
approaching advanced thinking about the discrete, when they indicate that the frog has jumped a 
finite number of times and use as a representation a segment of points in a graphic log. On the 

 
There is only one, because it is in the middle of the two and because it leads to the next number 
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other hand, Néstor says “The Frog is going to jump successively until it reaches point B; […] it 
will reach its destination, jumping each [time] halves”; one might think that he conceives of a 
potential infinity of jumps (also in the previous activity he had said that there were “infinite 
numbers” between two decimal places); we could say that he shows a naive thinking about the 
dense. 

 
Angie’s response 

 
It jumped twice 

Paola’s response 

 
4 times, since it jumps half of a half, taking 4 steps 

Violeta’s response 

 
It would jump 2 times 

Néstor’s response 

 
The frog will jump successively, until reaching point B; 

and the frog will reach its destination, jumping over 
each [time] halves [between the]rocks. 

Figure 3: Responses of the four students in the activity “Frog Jumps” (Session 1) 
 
Session 2. The activity of this session is based on tasks done by Tovar (2011). The 

hypothesis is that the density property of fractions and decimals can be learned by working with 
constructions of similar triangles using the number line, both in GeoGebra (geometric register) 
and with paper and pencil (arithmetic or algebraic register). Students are asked to locate the 
points A = 0 and B = 1 on the line and construct a triangle ABD. Then they are asked to create 
another similar triangle AXC, with C as midpoint of 𝐴𝐷̅̅ ̅̅  (Figure 4). They then have to find the 
numerical value corresponding to X. Figure 5a shows that Angie found X = 0.5 by applying 
proportions. They then repeat the process for a third similar triangle AGF, with F as midpoint of 
𝐴𝐶̅̅ ̅̅  (Figure 4), and find the numerical value corresponding to G. Figure 5b shows that Angie 
found G = 0.25 applying again proportions. So, Angie found the numbers 0.25 and 0.5 between 0 
and 1, using semiotic representations in an algebraic register, writing fractions and decimals. 

 

a. Using triangle 
similarity find the 
intersection point (x) 

b. Do the same procedure for the interval 
between 0 and 1/2. What number did you 
get between 0 and 1/2? 

 

 
0,25← the number I got between 0 and 1 

Figure 4: Angie's graph in 
GeoGebra, locating points between 

A=0 and B=1 using similar 
triangles (Session 2) 

Figure 5: Answers from Angie (Session 2) for: 
a. finding the value of point x between 0 and 1 

b. finding the number between 0 and 1/2 

 

C 
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Subsequently, the students have to find another point between 0 and 1, such as 3/4 (0.75), 
and they are asked: What happens if you continue to carry out the same procedure between 3/4 
and 1? And so on, successively? How many rational numbers would be obtained? Figure 6 
shows the responses of the four students to these questions. Angie and Néstor seem to show 
advanced discrete thinking because they refer to a finite number of numbers (they say that there 
are “several” rational numbers between 3/4 and 1, and that more can be obtained). On the other 
hand, Violeta's response (“the number of numbers continues to increase; many rational numbers 
will be obtained”) could perhaps indicate a potential infinity, which would correspond to a naive 
thinking about the dense. As for Paola, she says: “We would continue to obtain half between 3/4 
and 1 and so on”, which may indicate that she considers a potential infinity of rational numbers, 
which would correspond to a sophisticated thinking about the dense, since she justifies it with 
the process of removing halves successively. 

 

Angie  
You can see more than one rational number because, if there are several from 0 to 1, 
from 3/4 to 1 there would be more. 

Néstor  
You can get multiple rational numbers, but you can't go past 1. 

Violeta 
  

Numbers keep increasing. Many rational numbers would be obtained 

Paola  
You would still get half between 3/4 and 1 and so on. Infinite. 

Figure 6: Responses of the four students in the activity on proportions (S2) 
 
Session 3. In this session, three activities related to arithmetic progressions and geometric 

progressions were carried out so that students could see another way of finding numbers in an 
interval (in order to learn about the density of rationals in the real number set). Initially, students 
had to find five arithmetic means between 4 and 22 using the nth term of a sequence: 
u = a + (n – 1)d, where a is the first term, n the number of terms, and d the difference between 
one term and another. They were then asked what the new arithmetic means would be if the 
difference, d, were halved (see Figure 7, Violeta). 

If d were halved, that is, d=1.5, or d=3/2, what would be the new 
arithmetic means between 4 and 22?

 

Can you find more numbers between 4 
and 22 (other than the numbers found in the 
previous questions)? How many? Explain 

your answer

 
The answer is, they are infinite. 

Figure 7: Violeta's Response (Session 3) Figure 8: Néstor's response (S3) 
 
Figure 7 shows how Violeta finds the new arithmetic means –5.5, 7, 8.5, 10, 11.5, 13, 14.5, 

16, 17.5, 19, 20.5–, and answers the question of whether more numbers can be found between 4 
and 22 (different from the numbers found in the previous questions of the activity), how many 
and why. She replies that “10 can be found” (although it was 11 that she found), that is, a finite 
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quantity of numbers between 4 and 22, so she shows advanced discrete thinking. Violeta uses 
decimal writing as a representation and adds to an arithmetic register. Néstor (Figure 8) exhibits 
a naive thinking about the dense, when he affirms that an infinity of numbers can be found. 

Session 4. In this session, another activity based on exercises proposed by Tovar (2011) was 
used. The hypothesis is that students can learn about the density of the irrational numbers in the 
real numbers, through the continuity of the line in relation to the non-correspondence between 
rational numbers and the points on the line. They were asked to trace a square of side 1, in the 
cartesian plane, with a vertex on the origin, and rotate its diagonal so that it would lie on the line 
of the x-axis (see segment 𝐷𝐹̅̅ ̅̅  in Figure 9 –Angie's example). Students noted that the “right 
endpoint” of the diagonal did not coincide with any rational number on the line when they 
zoomed in several times with GeoGebra. They wrote then various intervals that would enclose 
that point: Figure 10a shows two intervals given by Néstor that contain the point. Paola (Figure 
10b) gave four increasingly smaller intervals. With this, the students could note that between two 
real numbers, an irrational number can be found (here, √2). No further analysis was done here.  

 

 

a. Néstor´s response b. Paola’s response 

 

 

Figure 9: Angie's 
graph in GeoGebra (S4) 

Figure 10: Intervals written by Néstor and Paola that 
enclose the value of the point corresponding to the length 

of the square’s diagonal (S4) 
 
Post-test results (phase 3) 

In their responses to the post-test, the students showed evidence of having changed their 
thinking in their answers to the questions related to the quantity of numbers in an interval, with 
respect to those given in the pre-test (phase 1). For example, for the question Can you find 
decimal numbers or fractions between 0.49 and 1/2? How many numbers? Néstor changed from 
naive thinking about discreteness in the pre-test (when he said: “1/2 = 0.5 follows 0.49; there 
are no [numbers]”) to naive thinking about dense (when, in the post-test, he said: “there are 
infinite numbers”). 

Concluding remarks 
The activities proposed in the HLT aimed for students to learn about the property of number 

density when solving tasks in various contexts and semiotic registers. Topics such as 
constructions of similar triangles using the number line, arithmetic and geometric progressions, 
the property of continuity, make it easy to find different ways to locate numbers in an interval. 
Likewise, the students had the opportunity to use several semiotic registers of representation, 
such as the algebraic and the geometric, using fractional and decimal writing, as well as 
colloquial language to express their ideas during the implementation of the HLT. In some 
situations, the students were able to understand that there was an infinity of numbers in an 
interval in the reals. In others, however, they could not overcome the belief that any number has 
a successor (or perhaps they understand “successor” to refer to any number that is greater). 
Therefore, we suggest to develop activities focused on overcoming this difficulty. 
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DIFERENTES FORMAS DE APRENDER LA DENSIDAD NUMÉRICA: UNA 
TRAYECTORIA HIPOTÉTICA CON ESTUDIANTES DE BACHILLERATO 

DIFFERENT WAYS OF LEARNING NUMBER DENSITY: A HYPOTHETICAL TRAJECTORY WITH 
HIGH SCHOOL STUDENTS 
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Se presenta un estudio donde se diseñó una Trayectoria Hipotética de Aprendizaje (THA) para 
promover el aprendizaje de la propiedad de densidad numérica en estudiantes de bachillerato. 
Las actividades de la THA se inspiraron en varios temas de la matemática escolar que se pueden 
aprovechar para hablar de esta propiedad y se enmarcan en diversos contextos y registros 
semióticos. Mostramos la secuencia de la THA y algunos resultados de una implementación de 
esta con cuatro estudiantes de bachillerato. Se analiza el pensamiento de los participantes en 
términos de sus pensamientos sobre lo discreto y lo denso. Se observa que al final de la THA se 
acercan a reconocer una infinidad de números racionales o reales intermedios en un intervalo, 
aunque no logran comprender del todo que solamente los números naturales tienen sucesores. 

Palabras clave: Trayectorias de aprendizaje y progresiones, representaciones matemáticas, 
conceptos y operaciones numéricas, números racionales 

Introducción y Preguntas de Investigación 
En muchos países es común que estudiantes de bachillerato aprendan sobre representaciones 

de números en la recta numérica, clases de intervalos, así como la continuidad de los reales, pero 
no la propiedad de densidad (Vamvakoussi y Vosniadou, 2010; McMullen y Van Hoof, 2020). 
La propiedad de densidad de un conjunto numérico es que dados cualesquiera dos números de 
ese conjunto, existe un número entre ellos. Si un conjunto numérico cumple dicha propiedad eso 
implica que, en ese conjunto: 1) ningún número puede tener un sucesor (inmediato); 2) cualquier 
intervalo contiene una infinidad de números. Asimismo, un conjunto completamente denso no es 
discreto, entendiendo discreto, en palabras de Vamvakoussi y Vosniadou (2010), en términos de 
relaciones de orden. 

Algunos estudiantes llegan al nivel de educación superior (universidad), con concepciones 
deficientes sobre esta propiedad. Entre las dificultades que se observan están las creencias 
érroneas de que: 1) la existencia de un sucesor en cualquier conjunto de números, más allá de los 
conjuntos de los naturales o enteros; y 2) hay una cantidad finita de números en un intervalo de 
números racionales. Por ejemplo, la segunda creencia fue observada con profesores en formación 
en Israel por Tirosh et al., (1999). Por su parte, Merenluoto y Lehtinen (2004) observaron que 
10% de los estudiantes que estudiaban la carrera de Matemáticas en una universidad en Finlandia 
creía que había una cantidad finita de números racionales en un intervalo. Asimismo, el 
pensamiento discreto proveniente del pensamiento relacionado con los números naturales es 
problemático: Vamvakoussi y Vosniadou (2010), en un estudio en Grecia encontraron que la 
idea de lo discreto era dominante en los estudiantes observados y la representación simbólica de 
los extremos del intervalo afectaba para decidir no solamente la cantidad de números intermedios 
en un intervalo, sino también qué tipo de números se encuentran en él (i.e., algunos de esos 
estudiantes consideraban que solo puede haber decimales en un intervalo cuyos extremos son 
números decimales, pero no puede haber fracciones).  
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Con base en lo expuesto anteriormente y las dificultades que tienen los estudiantes para 
aprender y comprender la propiedad de densidad numérica, en la investigación que aquí 
presentamos, elaboramos una Trayectoria Hipotética de Aprendizaje (THA), como parte de una 
investigación basada en diseño (Cobb y Gravemeijer, 2008), con el objetivo de promover el 
aprendizaje de esa propiedad en estudiantes de bachillerato. Para la THA tomamos diferentes 
contextos, situaciones y representaciones, inspiradas en McMullen y Van Hoof (2020) quienes 
indican que hay momentos de la matemática escolar que, con instrucción adicional, pueden 
proporcionar oportunidades para razonar sobre la densidad numérica.  

El presente informe es una extensión del estudio de investigación hecho por Suárez-
Rodríguez y Sacristán (2021) donde se plantearon dos preguntas de investigación: 

1. ¿Cómo diseñar una secuencia de actividades con una THA para para promover el 
aprendizaje de la propiedad de densidad en el conjunto de los números reales? 

2. ¿Cómo estudiantes de bachillerato comprenden la propiedad de densidad en los números 
reales usando representaciones semióticas generadas durante la secuencia propuesta?   

Marcos Teórico y Metodológico 
Pensamiento sobre lo discreto y lo denso 

Como señalan Vamvakoussi y Vosniadou (2004, 2010), las propiedades de los números 
naturales se tienden a transferir a otros conjuntos numéricos y esto afecta las concepciones de los 
alumnos en relación con la propiedad de densidad. Estas autoras (Vamvakoussi y Vosniadou, 
2004) definieron ciertas categorías de pensamiento sobre lo discreto, lo denso y su relación con 
la cantidad de números en un intervalo, para identificar formas de razonar en los alumnos (la 
Tabla 1 muestra una reinterpretación de esas categorías explicadas por nosotras).  

Los números naturales, a diferencia de los números reales, tienen la propiedad de lo discreto 
como se establece en los axiomas de Peano cuando se define que entre un número natural y el 
que sigue no existe otro número (Ni y Zhou, 2005). Más aún, todos los números naturales tienen 
sucesor (Ni y Zhou, 2005) –es un conjunto bien ordenado.  

Así, a partir del estudio de los números naturales, se va formando un pensamiento vinculado 
con lo discreto. Vamvakoussi y Vosniadou (2004) usaron el término ingenuo, acuñado por Carey 
(1987) al referirse a “ideas ingenuas”, para definir dos de sus categorías de pensamiento (ver 
Tabla 1): La categoría pensamiento ingenuo sobre lo discreto se refiere a una “idea ingenua” de 
que los números racionales son consecutivos. Asimismo, el pensamiento ingenuo sobre lo denso 
es cuando se considera que sí existe una infinidad de números en un intervalo, pero no se logra 
justificar por qué la existencia de esta infinidad. En contraposición a esos pensamientos 
ingenuos, están las categorías de pensamiento avanzado: La categoría pensamiento avanzado 
sobre lo discreto es cuando se cree que hay una cantidad finita de números en un intervalo; 
mientras que en la categoría pensamiento sofísticado sobre lo denso, se comprende la definición 
formal de la densidad. 

 
Tabla 1: Categorías de pensamiento sobre lo discreto y lo denso 

Pensamiento ingenuo 
sobre lo discreto 

Se considera que no hay otro número entre dos números racionales 
consecutivos falsos (expresión acuñada por Vamvakoussi y Vosniadou, 2004, 
para decir que existe un sucesor en los números racionales.) 

Pensamiento avanzado 
sobre lo discreto 

Se cree que hay un número finito de números intermedios entre dos números 
racionales consecutivos falsos. 

Pensamiento entre lo 
discreto y lo denso 

En algunas situaciones se piensa que entre dos números racionales hay una 
cantidad infinita de números, y en otros, que hay una cantidad finita. 
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Pensamiento ingenuo 
sobre lo denso 

Se contempla que hay una infinidad de números en un intervalo, pero no se 
justifica la situación usando la propiedad de densidad. La representación 
simbólica de los extremos de un intervalo influye en la forma de pensar; se 
cree que solo puede haber una infinidad de decimales entre decimales, pero 
no fracciones; de igual modo sucede con fracciones entre fracciones. 

Pensamiento sofísticado 
sobre lo denso 

Hay una comprensión bastante sofisticada de la propiedad de densidad, es 
decir, se pone de manifiesto que se entiende que entre dos números 
racionales hay una infinidad de números, independientemente de su 
representación simbólica, y se justifica con la propiedad de la densidad. 

 
Descripción de una Trayectoria Hipotética de Aprendizaje (THA) 

Simon y Tzur (2004) definen una THA como una serie o secuencia de actividades de 
enseñanza que comprenden unas conjeturas o hipótesis de cómo el estudiante puede aprender 
ciertos conceptos matemáticos. Así, una THA es una predicción de una ruta de aprendizaje que 
incluye intervenciones didácticas por medio de la secuencia de actividades (Simon, 1995). Así, 
en una THA es fundamental la elaboración y planteamiento de hipótesis de cómo apoyar al 
estudiante en la construcción de conocimientos nuevos (Simon, 1995). De hecho, Simon (1995) 
establece tres elementos fundamentales para el diseño de una THA: 1) los objetivos, entendidos 
como los propósitos que se quiere lograr para que el estudiante construya nuevos conocimientos, 
2) la ruta de aprendizaje, que se conforma de actividades instruccionales siguiendo una 
secuencia, y 3) planteamiento de hipótesis, en el que el investigador elabora conjeturas para 
apoyar el proceso de aprendizaje del estudiante. Durante las actividades, el investigador (o 
profesor) observa cómo va aprendiendo el estudiante en los escenarios propuestos en la THA 
para determinar si el diseño es el adecuado y cambios a realizar (Simon, 1995).  
Registros semióticos de representación 

Una manera que consideramos importante para apoyar el aprendizaje de la propiedad de 
densidad es el uso de varios registros de representación. La matemática trata con diferentes 
registros de representación –ya sea el geométrico, el algebraico (expresiones simbólicas), el 
aritmético, incluso el lenguaje coloquial (expresiones lingüísticas) – y cada uno de estos registros 
constituye una forma semiótica diferente (Duval, 1995/2004); es decir, comunica el significado 
de manera diferente. Las representaciones semióticas son fundamentales para el desarrollo de la 
actividad matemática misma que dependen de un sistema de escritura (decimal, fraccionaria, 
binaria, etc.) (Duval, 1995/2004). Esto además es particularmente relevante porque cuando se 
trabaja con números reales (como es nuestro caso), es necesario tener en cuenta que el número 
real tiene diversas representaciones (Apostol, 1976/2006).  

Metodología 
Diseño y elaboración de las actividades de la THA 

Como ya mencionamos, en nuestra investigación trazamos una THA de acuerdo con los 
lineamientos de una investigación basada en diseño (Cobb y Gravemeijer, 2008), un enfoque 
metodológico en el que un investigador realiza un análisis minucioso de cómo probar y mejorar 
las conjeturas que se bosquejan. Cobb y Gravemeijer (2008) recomiendan el diseño y 
elaboración de más de un ciclo de actividades con el fin de refinar o modificar las conjeturas 
planteadas durante primer ciclo. Para esta investigación se contemplaron dos ciclos de 
actividades, y en el presente informe documentaremos algunos resultados del primer ciclo por 
cuatro estudiantes de Colombia, de entre 15 y 17 años de edad: Angie, Paola y Néstor 
(pseudónimos), quienes cursaban en su momento la educación media (bachillerato); y Violeta 
(pseudónimo), quien cursaba el último año de educación básica (secundaria). Estos estudiantes 
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resolvieron algunas tareas propuestas de la THA de manera presencial, mientras que otras fueron 
desarrolladas de manera virtual, debido a la pandemia causada por el COVID-19.  

La elaboración e implementación del primer ciclo de las actividades de la THA se conforma 
de tres fases. La primera fase corresponde a la aplicación de un cuestionario como pretest, la 
segunda corresponde a las actividades de la THA, y en la última se vuelve aplicar el cuestionario 
como postest. A continuación describimos las fases de la THA, luego presentamos resultados de 
las dos primeras fases y damos un ejemplo de lo ocurrido en la última fase.  

Primera y tercera fase. Pretest y postest. Se utilizó el mismo cuestionario  para el pre- y 
postest (con duración aproximada de 30 min), para observar la posible evolución del 
pensamiento de los alumnos. El cuestionario se conforma de cuatro ítems de preguntas 
vinculadas con la cantidad de números intermedios en un intervalo –preguntas inspiradas en las 
hechas por Suárez-Rodríguez y Figueras (2020), así como en otras planteadas por Vamvakoussi 
y Vosniadou (2004). La finalidad del cuestionario es conocer qué tanto saben los participantes 
respecto a la propiedad de densidad numérica, clasificando las respuestas de acuerdo a las 
categorías (ver Tabla 1) de Vamvakoussi y Vosniadou (2004). Las preguntas incluidas en el 
cuestionario son: ¿Cuántos números hay entre 0 y 1?, ¿Puedes encontrar números decimales y/o 
fracciones entre 0.49 y 1/2?, ¿Cuántos números hay entre 0.899 y 0.90? En el cuarto ítem se 
presentó la siguiente situación: 

Pedro quiere dibujar una línea donde pueda ubicar números decimales. Inicia con el número 0.1. 
Después coloca el 0.2. En ese momento, Laura lo interrumpe y dice que el número que “sigue” de 0.1 
es 0.11. ¿Quién tiene la razón, Pedro o Laura?, o ¿ninguno de los dos?, o ¿ambos?  

Segunda fase. La implementación de las actividades de la THA. La THA se diseñó para 
llevarse a cabo en cuatro sesiones de actividades (ver Tabla 2; parecida a la que aparece en 
Suárez-Rodríguez y Sacristán, 2021, p. 1223), cada una con una hipótesis de aprendizaje 
correspondiente. Las hipótesis se definieron teniendo en cuenta varios temas de la matemática 
escolar que supusimos pueden guiar al estudiante a un aprendizaje y comprensión de la 
propiedad de densidad. No es necesario que el estudiante siga la secuencia de las sesiones, 
aunque se hace un primer acercamiento a la densidad con la de los números decimales, y se 
finaliza con los números irracionales. Cada sesión tuvo una duración de alrededor de 1h30’. 

Tabla 2: Sesiones de la THA con sus hipótesis correspondientes 
Sesión Hipótesis 

Sesión 1. Primeros acercamientos a la 
propiedad de densidad. 

A partir de dos situaciones: una relacionada con la cotidianidad y 
otra vinculada con un escenario hipotético, se piensa que el 
estudiante puede tener sus primeros acercamientos a la propiedad de 
densidad. 

Sesión 2. Acercamiento a la propiedad 
de densidad a través de la semejanza 
de triángulos. 

Se contempla que usando semejanza de triángulos los estudiantes 
puedan aprender sobre la propiedad de densidad de los números 
racionales.  

Sesión 3. Aproximación a la propiedad 
de densidad a partir de progresiones 
aritméticas y progresiones 
geométricas. 

Es posible que hallando medios aritméticos y geométricos en un 
intervalo el estudiante comprenda la propiedad de densidad de los 
números racionales en el conjunto de los reales. 

Sesión 4. Aproximación a la propiedad 
de densidad por medio de la propiedad 
de continuidad. 

Se cree que usando la propiedad de continuidad los estudiantes 
comprenden la propiedad de densidad de los números irracionales 
en el conjunto de los reales. 

Mediante esta THA se busca que los estudiantes logren una conciencia metaconceptual, al 
percatarse que sus concepciones no son incuestionables y que restringen la manera en que se 
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adquiere un nuevo conocimiento (Vosniadou, 1994). Al final de las actividades de la THA se 
espera que el estudiante pueda distinguir entre un conjunto discreto y uno denso.  

Resultados 
Se usaron las categorías de Vamvakoussi y Vosniadou (2004) (Tabla 1) para el análisis de las 

respuestas del cuestionario, así como también de las respuestas en las actividades de la THA.  
Resultados del pretest (primera fase) 

La Figura 1 muestra la respuesta de Angie a la pregunta sobre la cantidad de números entre 
0.899 y 0.90: “solo [h]ay uno, porque está en la mitad de los dos y porque da paso al siguiente 
número”. Se deduce un pensamiento ingenuo sobre lo discreto en Angie derivado de sus 
conocimientos de los números naturales que son discretos, al decir “sólo hay uno” y que para ella 
un número decimal tiene sucesor (“da paso al siguiente número”).  

  

 
Figura 1: Ejemplo de pensamiento ingenuo sobre lo discreto (Angie en pretest) 

En la Figura 2 observamos que las respuestas de Violeta, Angie y Néstor a la pregunta de si 
existe un número que le sigue a 0.1, coinciden en que 0.2 es el número que le sigue a 0.1. En la 
respuesta de Paola: “Sí existe un número que le sigue a 0.1[:] 0.11, 0.111, 0.111…,” observamos 
que aunque, en su lenguaje coloquial, afirma la existencia de un sucesor, y nombra varios: “0.11, 
0.111, 0.111[1]…”, para ella, el hecho de añadir cada vez el número 1 en la parte decimal del 
número, le indica que existen más “sucesores” para 0.1. Consideramos que esos cuatro 
estudiantes exhibían allí un pensamiento ingenuo sobre lo discreto ya que, al parecer, creen en la 
existencia de un sucesor (o varios en el caso de Paola) en los decimales. 

 
 

4. b. ¿Existe un número que le sigue a 0.1? Si tu respuesta es afirmativa, escribe el número que crees 
que sigue a 0.1. Pero si tu respuesta no es afirmativa explica por qué. 

Respuesta de Angie 

 

Respuesta de Violeta 

 

Respuesta de Néstor 

 

Respuesta de Paola 

 
Figura 2: Otros ejemplos de pensamiento ingenuo sobre lo discreto (Pretest) 

 
Resultados de las actividades de la THA (segunda fase) 

Se narran algunas actuaciones de los cuatro estudiantes durante el desarrollo de la THA. 
Sesión 1. En la primera sesión los estudiantes resolvieron dos actividades de aprendizaje para 

tener un primer acercamiento a la densidad. En la segunda actividad se planteaba lo siguiente:  
Imagina que puedes observar a una rana que empieza a saltar desde el punto A y trata de llegar al 
punto B de la siguiente forma: 1er paso: La rana salta a la mitad. 2do paso: Luego salta a la mitad de 
lo que le quedó. 3er paso: Nuevamente, salta la mitad de lo que quedó, y así sucesivamente.  
1. Después de que hayas imaginado la situación, ahora descríbela, o explícala… 
2. ¿Cuántas veces saltará la rana entre los puntos A y B? Explica tu respuesta. 

Al resolver esta actividad, consideramos que Angie, Violeta y Paola (ver Figura 3) se acercan 
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a un pensamiento avanzado sobre lo discreto, cuando indican que la rana ha saltado una cantidad 
finita de veces, y usan como representación un segmento de puntos en un registro gráfico. Por 
otro lado, Néstor dice “La Rana va a saltar sucesivamente hasta llega al punto B; […] va a 
llegar a su destino, saltando cada [vez] mitades”; se podría pensar que concibe una infinidad 
potencial de saltos (también en la actividad previa había dicho que había “infinitos números” 
entre dos decimales); podría decirse que allí exhibe un pensamiento ingenuo sobre lo denso.  

 
Respuesta de Angie 

 

Respuesta de Paola 

 
Respuesta de Violeta 

 

Respuesta de Néstor 

 

Figura 3: Respuestas de los cuatro estudiantes en la actividad “Saltos de Rana” (Sesión 1) 
 
Sesión 2. La actividad de esta sesión se basa en tareas hechas por Tovar (2011). Se plantea la 

hipótesis de que se puede aprender sobre la propiedad de densidad de fracciones y decimales al 
trabajar con construcciones de triángulos semejantes sobre la recta numérica, tanto en GeoGebra 
(registro geométrico) como con lápiz y papel (registro aritmético o algebraico). Se pide ubicar 
los puntos A = 0 y B = 1 en la recta y construir un triángulo ABD. Luego se pide construir otro 
triángulo semejante AXC, con C punto medio de 𝐴𝐷̅̅ ̅̅  (Figura 4). Se pide hallar el valor numérico 
correspondiente a X. En la Figura 5a se observa que Angie halla X = 0.5 aplicando proporciones. 
Después se pide repetir el proceso para un tercer triángulo semejante AGF, con F punto medio de 
𝐴𝐶̅̅ ̅̅  (Figura 4), y hallar el valor numérico correspondiente a G. En la Figura 5b se observa que 
Angie halla G = 0.25 aplicando nuevamente proporciones. Así Angie halla los números 0.25 y 
0.5 entre 0 y 1, empleando representaciones semióticas en un registro algebraico como las 
escrituras fraccionaria y decimal. 

 

a. Usando semejanza 
de triángulos halla el 
punto de corte (x) 

b. Realiza el mismo procedimiento 
para el intervalo entre 0 y 1/2. ¿Qué 
número obtuviste entre 0 y 1/2? 

  

Figura 4: Gráfica de Angie en 
GeoGebra, localizando puntos entre 
A=0 y B=1 mediante semejanza de 

triángulos (Sesión 2) 

Figura 5: Respuestas de Angie (S2) para:   
a. encontrar el valor del punto x entre 0 y 1 

b. encontrar el número entre 0 y 1/2  

C 
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Posteriormente, los estudiantes hallan otro punto entre 0 y 1 como es el 3/4 (0.75), y se les 
pregunta: ¿Qué sucede si continúas realizando el mismo procedimiento entre 3/4 y 1?,¿y así, en 
forma sucesiva?, ¿Cuántos números racionales se obtendrían? La Figura 6 muestra las 
respuestas de los cuatro estudiantes a estas preguntas. Se puede pensar que Angie y Néstor 
exhiben un pensamiento avanzado sobre lo discreto porque hacen referencia a una cantidad de 
números finita (dicen que hay “varios” números racionales entre 3/4 y 1, y que se pueden obtener 
más). Por otro lado, la respuesta de Violeta (“siguen aumentando la cantidad de números; se 
obtendrán muchos números racionales”) podría tal vez indicar un infinito potencial, lo que 
correspondería a un pensamiento ingenuo sobre lo denso. En cuanto a Paola, ella dice: “Se 
seguiría obteniendo la mitad entre 3/4 y 1 y así sucesivamente”, lo que puede indicar que 
considera una infinidad potencial de números racionales, lo que correspondería a un pensamiento 
sofisticado sobre lo denso, ya que lo justifica con el proceso de sacar mitades en forma sucesiva.  

 

Angie 
 

 

Néstor  
 

Violeta 
 

Paola 
 

Figura 6: Respuestas de los cuatro estudiantes en la actividad sobre proporciones (S2) 
 
Sesión 3. En esta sesión se llevaron a cabo tres actividades relacionadas con progresiones 

aritméticas y progresiones geométricas para que el estudiante pudiera ver otra forma de encontrar 
números en un intervalo (para aprender sobre la densidad de los racionales en los reales). 
Inicialmente, los estudiantes debían hallar cinco medios aritméticos entre 4 y 22 utilizando el 
término n-ésimo de una sucesión: u = a + (n – 1)d, donde a es el primer término, n el número de 
términos y d la diferencia entre un término y otro. Después se les preguntó cuáles serían los 
nuevos medios aritméticos si la diferencia, d, se redujera a la mitad (ver Figura 7, Violeta).  

 
Si d se redujera a la mitad, es decir, d=1.5, o d=3/2, ¿cuáles serían 

los nuevos medios aritméticos entre 4 y 22? 

 

¿Puedes hallar más números entre 4 y 22 
(diferentes a los números hallados en las 
anteriores preguntas)? ¿Cuántos? Explica tu 
respuesta 

 

Figura 7: Respuesta de Violeta (Sesión 3)  Figura 8: Respuesta de Néstor (S3) 
 
La Figura 7 muestra cómo Violeta halla los nuevos medios aritméticos –5.5, 7, 8.5, 10, 11.5, 

13, 14.5, 16, 17.5, 19, 20.5–, y responde a la pregunta de si se pueden hallar más números entre 4 
y 22 (diferentes a los números hallados en las preguntas anteriores de la actividad), cuántos y por 
qué. Ella responde que “se pueden encontrar 10” (aunque fueron 11 los que halló), es decir, una 
cantidad finita de números entre 4 y 22, por lo que exhibe un pensamiento avanzado sobre lo 
discreto. Violeta usa la escritura decimal como representación y realiza adiciones en un registro 
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aritmético. Néstor (ver Figura 8) exhibe un pensamiento ingenuo sobre lo denso, cuando afirma 
que se puede hallar una infinidad de números.  

Sesión 4. En esta sesión se utilizó otra actividad basada en ejercicios propuestos por Tovar 
(2011). La hipótesis es que el estudiante puede aprender sobre la densidad de los irracionales en 
los reales, a partir de la continuidad de la recta con relación a la no correspondencia entre los 
números racionales y los puntos de la recta. Se pedía construir un cuadrado de lado 1, en el plano 
cartesiano, con un vértice en el origen, y rotar la diagonal del cuadrado para quedar sobre la recta 
del eje horizontal (ver el segmento 𝐷𝐹̅̅ ̅̅  en la Figura 9 – ejemplo de Angie). Los estudiantes 
observaron que el “extremo derecho” del segmento de la diagonal no coincidía con ningún 
número racional de la recta cuando realizaban varios zooms en GeoGebra. Luego ellos 
escribieron varios intervalos que encerraran a ese punto: la Figura 10a muestran dos intervalos 
dados por Néstor que contienen a ese punto. Paola (ver Figura 10b) dio cuatro intervalos cada 
vez más pequeños. Con esto los estudiantes observaron que entre dos números reales se puede 
hallar un número irracional (en este caso √2). Aquí no se hizo un análisis de los pensamientos. 

 

 

a. Respuesta de Néstor b. Respuesta de Paola 

 

 

Figura 9: Gráfica de 
Angie en GeoGebra (S4)  

Figura 10: Intervalos escritos por Néstor y Paola que 
encierran al punto cuyo valor corresponde a la longitud de la 

diagonal del cuadrado (Sesión 4) 
Resultados del postest (tercera fase) 

En sus respuestas al postest, los estudiantes mostraron evidencia de haber cambiado sus 
formas de pensamiento en sus respuestas a las preguntas relacionadas con la cantidad de números 
en un intervalo con respecto a las dadas en el pretest (primera fase). Por ejemplo, para la 
pregunta ¿Puedes encontrar números decimales o fracciones entre 0.49 y 1/2? ¿cuántos 
números? Néstor cambia de un pensamiento ingenuo sobre lo discreto en el pretest (donde él 
dice: “1/2 = 0.5 sigue a 0.49. No hay [números]”) a un pensamiento ingenuo sobre lo denso 
(cuando en el postest cuando dice: “hay infinitos números”). 

Conclusiones 
Las actividades propuestas en la THA tenían como objetivo que los estudiantes aprendieran 

sobre la propiedad de densidad numérica al resolver tareas en diversos contextos y registros 
semióticos. Temas como construcciones de triángulos semejantes sobre la recta numérica, 
progresiones aritméticas y geométricas, propiedad de continuidad, facilitan el encontrar 
diferentes formas de hallar números en un intervalo. Asimismo, los estudiantes tuvieron la 
oportunidad de usar varios registros semióticos de representación, como el algebraico y el 
geométrico, empleando las escrituras fraccionaria y decimal; incluso el lenguaje coloquial para 
expresar sus ideas durante la puesta en marcha de la THA. En algunas situaciones los estudiantes 
lograron comprender que existe una infinitud de números en un intervalo real. Sin embargo, en 
otras, no pudieron superar la creencia de que cualquier número tiene un sucesor (o tal vez 
entienden por “sucesor” a cualquier número mayor).  Por ello, se sugiere la realización de 
actividades enfocadas a superar de esta dificultad. 
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Through a constructivist teaching experiment, we studied how a 6th-grade student (Adam, 
pseudonym) struggling in mathematics may reorganize his available additive scheme (count-up-
to) into a more advanced scheme involving the decomposition of composite units (break-apart-
make-ten, or BAMT). First, we posed a task that led us to infer Adam was yet to construct the 
BAMT scheme at the anticipatory stage (solving a task without prompting). We thus turned to 
promote reorganization of his anticipatory, count-up-to scheme used to solve missing-addend 
tasks. Through reflection on the relationships between his goal, count-up-to actions, and effect of 
those actions, Adam independently brought forth what he called “easy number-pairs” (i.e., 
10+X = X-teen). This seemed to afford his reorganization of count-up-to into the BAMT scheme. 
We discuss implications of this reorganization for theory building and practice. 

Keywords: conceptual reorganization, concept of number, struggling student 

We address the research question: How may a child, who constructed count-on for adding or 
count-up-to for solving a missing addend task (see Fuson, 1982, 1986) at the anticipatory stage 
(see below), advance to constructing the break-apart-make-ten (BAMT) strategy? The former 
two strategies indicate a concept of number that does not yet include disembedding units, 
whereas the latter does (Ulrich, 2015; see next section). Addressing this question is important in 
two ways. First, in additive reasoning, count-on (e.g., 8 + 5 = ?) and count-up-to (e.g., 8 + ? = 
13) involve (a) recognition of the first addend as a unit of its own right and (b) operating on 1s of 
the second addend. In count-on, the child may use a sequential activity of concurrently uttering a 
number while putting up a finger for it (e.g., 8; 9-10-11-12-13). For count-up-to, the child may 
use a sequential activity of concurrently uttering numbers with fingers and stopping at the given 
total, then looking at their finger pattern to determine the answer. Critically, decomposing units 
by disembedding a part without “losing sight of a given total” is needed for subtraction to 
become the opposite of addition. For example, 13 is recognized as a unit made of two sub-units, 
8 and 5, that could compose 13 or one unit be disembedded from 13 to figure out the other unit 
as the difference. Such a concept serves as a foundation for BAMT (e.g., 10 = 8 + 2 and 5 = 3 + 
2, so “I can give 2 (from 5) to 8 to make a ten, then add the remaining 3 to 10). 

Second, recent studies relating children’s spontaneous additive strategies to multiplicative 
reasoning demonstrated that BAMT provides a stronger conceptual basis for the latter (Tzur et 
al., 2021; Zwanch & Wilkins, 2020). We further explain this linkage in the next section. Here, 
we only note that, to us, BAMT constitutes a direly needed ‘conceptual key’ to open the ‘gate’ 
for advancing any student, let alone those struggling in mathematics, to multiplicative reasoning. 
A study of how a child may construct BAMT as reorganization in their less advanced additive 
schemes can contribute to explaining, as well as promoting, this advance. 
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Conceptual Framework 
Our study is informed by general and content specific notions of a constructivist theory. The 

former derive from Glasersfeld’s (1995) scheme theory, which portrays the cognitive ‘apparatus’ 
a child uses in assimilation of mathematical problem situations (tasks). Drawing on the 3-part 
definition of a scheme (goal –> activity –> result/effect), Tzur & Simon (2004) postulated two 
stages in which a new scheme is being constructed. The first, participatory stage, is marked by 
the learner needing prompts to regenerate and use abstractions they have constructed. Without 
prompts, the learner brings forth and uses schemes available to them that are less advanced than 
the evolving (prompt-dependent) scheme. Available schemes are those at the anticipatory stage, 
which are marked by a learner’s spontaneous use of those schemes to make sense of and solve 
given tasks (Tzur et al., 2021). To articulate how a learner reorganizes available schemes into 
more advanced ones we draw on Simon’s (1995) notion of hypothetical learning trajectory 
(HLT). That is, we link goals specified for learners’ construction with a hypothesized change 
process they may go through and with tasks that may foster that change process. 

The content specific constructs revolve around Steffe and Cobb’s (1988) core notion of 
number as a composite unit. They postulated a progression of schemes in children’s numerical 
development. In the first, Initial Number Sequence (INS), a child anticipates a number to be the 
result of counting activities. The INS affords count-on because a child takes for granted both the 
first addend (e.g., uttering “8”) and the second addend as shown in keeping track and anticipating 
where to stop the count (e.g., 9-10-11-12-13). However, a child reasoning with the INS is limited 
to operating on 1s and is yet to consider the nested nature of numbers – a scheme that evolves 
with the Tacitly Nested Number Sequence (TNS). Here, in activities that involve counting of 1s, 
a child can implicitly think of a given number (e.g., 8) as nested (embedded) within 9, or within 
10, or within 13, etc. Whereas the TNS affords using count-up-to for solving missing addend 
tasks, a child reasoning with the TNS is yet to disembed composite units from a given number 
(e.g., 10) – a more advanced scheme known as the Explicitly Nested Number Sequence (ENS). 
Here, in situations that involve operating on 1s and composite units, a child can intentionally 
decompose given numbers into smaller numbers without losing sight of the given number. Thus, 
the ENS affords a child’s use of BAMT, which requires intentionally decomposing the second 
addend in a way suitable for composing 10 with the first addend, then going back to the 
remaining part of the second addend (as explained in the previous section). Due to the new 
ability for composing/decomposing units at will, the child can also coordinate count-on and 
count-up-to with the use of “easy number pairs” in the second decade (i.e., 10 + 3 = 13). 

Methodology: A Constructivist Teaching Experiment 
This study was part of a larger research and professional development project, focusing on 

teaching mathematics conceptually (grades K-8) and funded by a small school district in the 
USA southwest region (see Acknowledgment). We conducted a teaching experiment (Cobb & 
Steffe, 1983) with seven of the nine, struggling grade-6 students at the school who provided 
parent consent and a student assent. A teaching experiment is a qualitative methodology 
designed to build models of how learners construct (reorganize) schemes.  
Participant and Context 

Two main reasons led us to focus on Adam (pseudonym, age 11, grade 6, identified by 
teachers as struggling in mathematics), who worked with a partner (Gary). First, at the study 
start, Adam demonstrated spontaneous use of count-on and count-up-to (INS and TNS, 
respectively) considered a conceptual basis for constructing the BAMT strategy and thus 
advance to the ENS scheme. Second, despite our repeated efforts to promote BAMT during the 
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first four episodes, using a task and manipulatives (see Double Decker Bus below) designed and 
successfully used in prior research, Adam was yet to construct BAMT. As our data show, BAMT 
was not yet available to Adam (or Gary) at the start of the episode reported in this study.  

Accordingly, Adam can serve as a case for articulating an HLT from his anticipatory 
schemes to BAMT (and ENS). Consistent with literature on case studies (Creswell, 2013), we 
stress that the case is not Adam but rather the process of change we could infer from our work 
with him. That is, we designed our study to provide an explanatory account of the conceptual 
change process – not to demonstrate the extent to which it characterizes (many) other children’s 
learning. We thus contend that the HLT explained here is likely to apply to other children who 
have an anticipatory count-up-strategy and spontaneously use “easy number pairs” as did Adam. 
Data Collection 

In a teaching experiment researchers serve as teachers of students whose schemes they intend 
to model. The lead researchers (denoted R1 and R2) conducted weekly teaching episodes with 
Adam and Gary, 20-40 minutes each, because they seemed conceptually near to one another. 
Due to the COVID-19 pandemic, we conducted the video recorded teaching episodes in a hybrid 
mode. R2 worked with the students on site. R1 participated virtually (Zoom) and created a back-
up recording on that software. Our work required that we all wear masks, which limited the 
ability to observe the child’s lip movements when operating silently. The presence of R2 allowed 
her to hear nearly everything the students whispered. To ascertain validity of our data, we thus 
constantly asked the students to first solve tasks as they wanted, then – using what we could 
observe – either repeat their work out loud or tell if a researcher’s account of it is accurate. 

In teaching Adam and Gary, we used a game called the Double-Decker Bus (DDB). The first 
author designed DDB to promote an advance to BAMT in children inferred to have an 
anticipatory stage of count-on or count-up-to. The students are introduced to the game with a 
picture of a double-decker bus and a rule made to constrain their operations on units so 10 
becomes a special anchor. Each deck on the DDB has 10 seats; the rule is that all seats on the 
lower-deck must be filled before passengers can move to the upper-deck. In each round of the 
game, a task is posed using the following story line. The bus leaves main station empty, then a 
few passengers get on it at the first stop (e.g., 9) and at the second stop (e.g., 4). The child’s goal 
is to figure out the total number of passengers on the DDB after the second stop.  

To support the child’s reasoning and reflection on their goal-directed activities, a two-row 
rekenrek, with 10 beads each (grouped by color as 5 + 5), is provided for them to use as they 
deem appropriate. In our example, a typical solution both Adam and Gary initially used was to 
move 5 + 4 beads on the lower-deck for 9 passengers, then count-on to add 1 more bead to that 
deck and up to the given four (hence, 3) to the upper deck. Then, they glean the answer from the 
manipulative as 10 + 3 = 13. The DDB can foster reflection on the decomposition of 10 into 9 + 
1 as a step in the child’s activity to find the total. For example, the researcher may ask students: 
“I asked you to add 4, so why are there only 3 on the upper-deck?” We note that numbers used in 
those tasks typically begin with 9 + x. Because 10 is the number after 9 (Baroody, 1995), a child 
is hypothesized to focus on decomposing just one unit of 1. Then, game variations proceed to 8 + 
x and to 7 + x. Children can reflect on their operation across different tasks (e.g., 9 + 3, 9 + 6, 9 + 
4) to abstract the intended, invariant anticipation known as BAMT. 
Data Analysis 

To analyze our video records and field notes from each episode, we used three iterations. 
First, after each episode, we held an ongoing analysis (debrief) to discuss major events. These 
debriefs led to planning next episode tasks. Second, team members created and read transcripts 
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of the episode on which we focus in this paper and the episode just prior to it, highlighting 
segments with critical events (Powell et al., 2003), such as changes in a student’s strategy, or 
beneficial teaching moves. This iteration included hypotheses we raised about why Adam 
behaved in the ways he did. Third, we discussed (while re-observing) the highlighted segments 
to identify compelling evidence for our inferences and conceptual claims. We organized all 
segments in a story line (next section) that conveys the HLT from count-up-to into BAMT. 

Results 
We begin with data analysis indicating that, at the start of the episode in which Adam 

reorganized his concept of number, he was still using an anticipatory scheme involving count-up-
to, that is, a concept of number characteristic of TNS students. Next, we shift to data analysis 
indicating his advance from that early numerical way of operating to the more sophisticated way 
of BAMT, characteristic of ENS students. 
Adam’s Anticipatory Count-Up-To Scheme (TNS) 

During the first four episodes with Adam and Gary, they both appeared to use the count-on 
strategy spontaneously and independently. For example, when asked how many total candies 
they would have if adding 8 and 5, they both used their fingers to keep track of the second 
addend items (8; 9-10-11-12-13). During the episode prior to the one focused on in this paper, 
they also solved missing addend tasks using the count-up-to strategy (e.g., to solve how many 
more cubes are needed to create a tower of 12 if you already have 9 cubes, they both counted on 
their fingers: 9; 10-11-12 and then looked at the fingers they raised and respond, “3”). 

During those four episodes, we engaged Adam and Gary in solving Double Decker Bus 
(DDB) tasks. Using the manipulatives in activity, they showed some initial progress toward 
BAMT. For example, to add 9+4 they first moved one bead on the lower deck to complete the 
required number of 10 passengers. Then, they moved 3 more beads to complete the task and 
responded: “13” (pointing to 10+3 as the two “adjusted” addends). Furthermore, in reflection on 
their activity, they explained why the upper deck has only 3 passengers whereas the problem 
asked about 4 passengers added to 9 and responded: “Because you have to put 1 passenger here 
[lower deck] and 4 minus 1 is 3.” In fact, at the fourth episode they also began solving tasks 
asking about 8 + 5 passengers (e.g., “we put 2 more on the bottom and 3 go here [upper deck]”). 
However, critically, when we presented a task at the start of each episode without any hints (e.g., 
How many in all are 9 cubes and 4 more cubes?), they reverted to spontaneously and 
independently using count-on to solve it.  

After the 1.5-month winter break, we again presented a missing addend task for them to 
solve – not in the DDB context but rather in a context (towers and cubes) we never used with 
them before: “Pretend you made a tower of 9 cubes. Write 9 on your paper so you remember ... 
If I wanted to make the tower taller and have 16 cubes, how many more cubes would each of you 
need?” Excerpt 1 shows how Adam solved this task (R1 and R2 stand for the researchers). 

Excerpt 1: Anticipatory count-up-to 
R1:  (After Gary explained his answer of 7) Adam, how did you get it? 
Adam:   I counted on my fingers; because 9; [then] 10 (puts up thumb on left hand), 11 

(puts up index finger), 12 (puts up middle finger), 13 (puts up ring finger), 14 (puts up 
pinky), 15 (puts up thumb on right hand), 16 (puts up index finger; shows a full hand plus 
two more fingers). That's 7, so I know there's 7 [cubes needed]. 

Excerpt 1 indicates that, at the episode start, Adam has independently and spontaneously 
used the count-up-to strategy. As Tzur et al. (2021) explained, a spontaneous strategy for a task 
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involving no hints serves as an indicator of a child’s anticipatory scheme and, likely, the most 
advanced strategy (and concept) the child has available at the time. Because count-up-to involves 
operating on 1s while reasoning numerically about the missing addend, but not yet disembedding 
a composite unit, we attributed to them the TNS stage. We thus turned to further attempts of 
fostering their use of BAMT. Excerpt 2 presents a segment of those attempts. We emphasize that 
Adam’s use of count-up-to was used as his answer-checking strategy, whereas his explanation of 
how he solved the task indicated a shift to BAMT. 

Excerpt 2: Adam’s shift to BAMT 
R1:  Now, you still have the tower of 9. [But] I said, you know what, 16 is too tall of a 

tower. I only want you to have 14. You already have 9, but you want to have 14, not 16. 
How many cubes would you need to ask for? 

Adam:  (First, immediately and with no indication of using his fingers, writes down “5” 
on the page. Then, seemingly to check his answer, he quietly uses count-up-to on his left-
hand fingers, putting them up one at a time. After three times of checking his answer, he 
raises his hand to indicate, “I am done.”) 

R1:  What is the answer?  
Adam:  Five (5). 
R1:  How did you get it? 
A:   I got it by taking away; because 9 + 1 is 10, then all you have to do is add 4 to it.  
R1:  This is really cool. I like it. (Turns to Gary) Did you understand what Adam said, 

or would you like him to repeat [his explanation]? 
Gary:  (To Adam) Could you repeat it? 
Adam: I added 1 to 9, then I had 4 left; so, 14. [It is another] easy number-pair.  
R1:  Here's what I heard Adam say. I am at 9. I only need 1 more to make 10. Is that 

correct so far? 
Adam:  Yes. 
R1:  Now, if I take one to make 10, and I need 14, to get from 10 to 14, I need 4 more. 

Is that correct Adam? 
Adam:  Yes. 
R1:  Then, if I need to take 1 to make 10, and 4 more to make 14, the 1 and the 4, 

make 5. Adam, is that what you did? 
Adam:  (Nods head, “yes.”) 
R1:  Adam, I then saw you also using your fingers like you did before. Did you do that 

to check? 
Adam:  (Nods head, “yes”) Mm-hmm. 
R1:  So, first you did the 9+1 and 4 more, then you checked with your fingers? 
Adam: (Nods head, “yes.”) 
R2:  (A bit later) Adam, you said, “easy number-pair.” Can you tell me what you mean 

by that? 
Adam: Like 10+4, 10+3, 4+4, and different numbers like that. 
R2:  So, are you saying they're like easy numbers to add? 
Adam: Yes. 
R2:  You're trying to create an easy number [to] add by making the 9 [into] a 10? 
Adam: Yes. 
R1:  (A little later, asking about other easy number pairs) What if I wanted 19? 
Adam: 10 + 9. Anything in the teens can be paired up with a 10. 
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R1:  What about 13? 
Adam:  10 + 3. 
Excerpt 2 indicates the first time we witnessed Adam’s use of BAMT independently, 

spontaneously, and not in the DDB context. Importantly, we neither taught Adam about “easy 
number pairs” nor have knowledge when and how he was taught to use it. Key here, however, is 
that for the first time he independently and spontaneously brought forth this idea in what, for 
him, seemed a novel situation. We explain his shift to BAMT as rooted in reflecting on his 
count-up-to strategy and its effect after solving the first task (9 + ? = 16).  

Specifically, when solving and then explaining that first task, Adam repeatedly showed how 
he raised his thumb for 1 item added while uttering 10 as the number after 9. Upon completion of 
the count, he held up and looked at 7 fingers while uttering “16.” We infer he noticed the effect 
of his count-up-to as a number in the teens, which brought forth his notion of easy number pairs. 
In turn, he likely also coordinated “6” in the easy number pair (10 + 6) as being 1 less than 7 
given to him by the second addend (which he showed on his fingers). Our explanation resonates 
with how Adam explained to Gary why this (BAMT) strategy worked for finding how many 
more cubes were needed to make a tower of 14 cubes (“I added 1 to 9, then I had 4 left; so, 14. 
[Another] easy number-pair.”). It was further corroborated by Adam’s response (“Yes”) to R2’s 
question, “You're trying to create an easy number [to] add by making the 9 [into] a 10?” and to 
R1’s follow-up question about 19: “10 + 9. Anything in the teens can be paired up with a 10.” 

We emphasize that Adam’s work led us to explain his shift to BAMT differently than what 
would be a trajectory from count-on to BAMT. In such a typical shift, a child would have to first 
notice the need to decompose the second addend into two numbers, 1 and the number before the 
second addend (e.g., to add 9 + 7 they would decompose 7 into 6 + 1, then add 1 to 9 to make 10, 
and complete with adding 6). Adam’s case presents a somewhat reversed order of the reflective 
process. That is, he did not begin by decomposing 7 into 6 + 1. Rather, he first reflected on his 
work to solve a missing addend task by noticing that a total in the teens (e.g., 16) could be 
thought of (decomposed) into 10 and another number in the easy pair (e.g., 6). In turn, this 
reflection seemed to lead to his consideration of that easy number pair addend as a constituent of 
the task’s second addend (here, 7), which led to decomposing that given second addend (e.g., 7 = 
6 + 1, and that 1 is used to “make 9 [into] a 10.”) We contemplate that Adam’s shift might be a 
more accessible one for students than the one requiring decomposing of the second addend 
because such a shift requires setting a sub-goal of disembedding 9 from 10 as a strategic first 
step (sub-goal) for a yet-to-be-foreseen decomposition of the second addend. 

Following this realization of Adam’s shift to BAMT, to further promote his and Gary’s 
decomposition of 10 into composite units, we engaged them in creating a tower of 10 (each). 
Then, we asked one of them to “chop off” a few cubes and write an equation for their quantities. 
For example, we asked Adam to take the top 2 cubes and place them near the tower. To 
symbolize this situation involving his and Gary’s cubes, he wrote: “10 = 8 + 2.” Similarly, after 
Gary chopped off 3 from his tower of 10 cubes, Adam wrote the equation: “10 = 7 + 3.” It is in 
those tasks that we realized the difference in the two students’ reasoning. For Gary, writing an 
equation proved to be a tremendous challenge, mostly done after hearing Adam’s explanation. 
For Adam, writing an equation symbolizing his decomposition activity seemed straightforward. 
We emphasize that his equations did not show an addition problem on the left and an answer on 
the right but rather what seemed to be an equivalence of the two quantities. At this point, we 
decided to turn back to tasks presented in the DDB context. The first task involved figuring out 
how many passengers need to get on the bus in the second bus-stop if there were already 9 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

952



  

passengers on it and no one went to the upper deck. Adam knew, and explained to Gary, why 
just 1 passenger would get on the bus at the second stop. We followed this task with one 
requiring to go beyond 10 passengers on the bus in all (Excerpt 3). 

Excerpt 3: Adam’s transfer of BAMT to the DDB context 
R1:  Let's go back to the start. First stop, 9 people get on the bus. Now, I want you to 

find the number of people who will get on at the second stop so in the end we will have 
12 people on the bus in all. How many people should get on at the second stop, so we 
have 12 people? 

Adam: (Immediately and with no hesitation uses the rekenrek to add 1 more bead to the 
lower level and 2 more to the upper level.) 

R1:  Adam, tell us how many you had to put in order to get to where you are. 
Adam:  Three (3), because there is one in the bottom deck. That makes 10, then 2 up here 

(points to the upper deck), makes 12. 
R1:  Why is it 3? 
Adam: There's a rule saying the bottom deck has to be full before you go to the top one. 

So, 1 (shows moving again one bead on the lower level), 2 (moves a bead over on the top 
deck), 3 (moves another bead over on the top deck). 

Excerpt 3 indicates that, in this new missing addend task, Adam transferred his evolving 
anticipation of the goal-directed activity in the towers and cubes context to a context (DDB) in 
which we never saw him using BAMT on his own. From his immediate actions we inferred that 
at this point he anticipated the activity sequence of first using an easy number-pair (12 = 10 + 2), 
leading to then concluding that 3 passengers would be added to 9 for that total to be 
accomplished because, for him, 1 would be necessary to compose 10 as the start of the easy 
number-pair. Based on this transfer, and on the fact that Adam spontaneously brought forth the 
easy number pair component of a BAMT strategy, we conjectured that he had constructed an 
anticipatory stage of an ENS concept of number, indicated by disembedding and decomposing 
two addends (i.e., 10 + x = x-teen and 10 = 9 + 1). We tested this conjecture with a no-hint task 
at the start of the following week’s episode. It turned out we preemptively attributed the 
anticipatory stage to Adam. For example, he used count-on to solve the task: How many cookies 
are there in all if a baker placed 9 in one pan and 7 in another pan. We thus attributed to Adam 
an initial abstraction of BAMT at the participatory stage. 

Discussion 
In this study, we articulated an advance in a child’s concept of number as a composite unit, 

from count-up-to (TNS) to the BAMT strategy (ENS). Being a case study of the phenomenon of 
such a conceptual advance, we contend that the reorganization articulated here is likely to pertain 
to other students at different ages, grade-bands, or mathematical aptitudes. In and of itself, this 
reorganization is key to the child’s additive reasoning, that is, to decomposing and disembedding 
numbers as composite units when adding or subtracting whole numbers. For example, Adam’s 
BAMT indicated he thought of 12 as a unit that could be decomposed in two related ways: (a) 
into 10+2 and (b) into 9+x, with x being composed of 1+(x-1). Such an understanding underlies 
thinking of “fact-families” (e.g., 9+3=12, 3+9-12, 12-3=9, and 12-9=3). Just as important, this 
conceptual advance opens the way to developing multiplicative reasoning with whole numbers, 
which are highly limited or impossible for INS or TNS students (Steffe & Cobb, 1988). 

For research and theory, this study contributes a plausible HLT for advancing to BAMT. 
Importantly, the advance we studied did not begin with a child’s use of the anticipatory count-on 
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strategy (INS) and a corresponding attempt to promote decomposition of the second addend. In 
fact, our data indicated that this path, used with Adam and Gary during the first four episodes, 
failed to promote BAMT. Instead, capitalizing on what Adam taught us, our HLT builds on the 
child’s count-up-to strategy (TNS) and focuses on disembedding and decomposing two addends 
that make up an “easy number-pair” in the second decade, or “x-teens” (e.g., 14 = 10 + 4). In 
cases of adding 9 + x (or 8 + x), the child would then bring forth a decomposition of 10 into 9 + 
1 (or 8 + 2) and learn to use it strategically by subtracting the needed complement-to-10 (e.g., 1) 
from the given second addend (e.g., 4 – 1 = 3). In turn, the child would complete the process by 
adding that decomposed/disembedded unit to 10 (e.g., 3; so, 13).  

For practice, our study can inform teachers’ efforts to effectively foster what, arguably, is the 
most foundational concept in mathematics, namely, number as composite unit (Steffe & Cobb, 
1988). The HLT we proposed would likely support children’s construction of addition and 
subtraction of whole numbers as two sides of the same coin. Said differently, someone who can 
compose and decompose given units at will, could come to “see” that any whole number (e.g., 
14) may be constituted as a part-part-whole relationships (14 = 10 + 4 = 9 + 5, etc.). Thus, this 
study supports a way of thinking about and carrying out teaching of BAMT to students, a 
concept that proved an asset in students’ learning to reason multiplicatively (Tzur et al., 2021). 
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Proportional reasoning is a key concept in school mathematics. However, research on the 
teaching and learning of proportional reasoning is still lacking (Lamon, 2007). There has been 
wider recognition recently of the importance of proportional reasoning and new frameworks 
have emerged to help researchers make sense of how teachers draw upon their own knowledge 
of proportional reasoning when responding to classroom tasks about the subject. Among these is 
the Framework for Teachers’ Robust Understanding of Proportional Reasoning for Teaching 
(Weiland, et al., 2020). This framework consists of 19 knowledge resources teachers could draw 
upon in responding to proportional reasoning tasks. Although, these resources are a contribution 
to the field of mathematics education, they are presented as a list, without structure, hierarchy, or 
relation, calling to question the relation between the knowledge resources.  

In our recent use of this framework to code beginning teacher proportional reasoning 
responses (Glassmeyer et al., 2021), the research team documented patterns in coding which 
caused us to look beyond individual categories. We turned our attention to look for relationships 
that might exist, and if there was a hidden structure among these 19 knowledge resources that 
could emerge to help us make better sense of the framework. We began a process of grouping 
knowledge resources by topic and theme, noting that all the categories seemed to exist on a 
spectrum of proportional reasoning. Some knowledge resources put a primary focus on an 
individual ratio (e.g. creating the ratio, identifying the quantities within the ratio, abstracting a 
measure that the ratio described). Other knowledge resources put their focus on proportions that 
are created (e.g. equivalence, covariance, and preventing distortion). Between these tentpoles, 
other knowledge resources focused on the altering of a ratio into something equivalent, setting 
the stage for the creation of a proportion. Knowledge resources were placed along the spectrum 
in groupings with other related categories. A couple knowledge resources were broad in their 
description and covered a greater portion of the spectrum. The end result was an organized 
framework that delineates how the original knowledge resources (Weiland et al., 2020) coexist in 
relation to one another. To factcheck our framework, we sought the input of Weiland et al. 
(2020), who agreed that we maintained the original integrity of the knowledge resources. 

This poster presents the visual organization resulting from the work done classifying and 
sorting the 19 knowledge resources of the Framework for Teachers’ Robust Understanding of 
Proportional Reasoning for Teaching. We show how this visual organization, our revised 
framework, was used to help in the coding of proportional reasoning data. Additionally, we also 
show how the idea of the groupings along the spectrum allowed for new patterns to emerge when 
trying to make sense of coding results and how this may inform both researchers and teacher 
educators as they conceptualize how to support students with learning proportional reasoning. 
This poster would be helpful not just for those focused on proportional reasoning, but also for 
those looking to add new layers of understanding to existing frameworks in use. 
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Teacher leadership is essential to meet the needs of students, teachers, and schools in an 
effective way. To provide a better support system in high-need schools, the Rice University 
Robert Noyce Master Teaching Fellowship (RU-MTF) program further developed and supported 
14 secondary mathematics teacher leaders. In this paper, we described two of the master 
teaching fellows’ (MTF) reflections on and perceptions of teaching mathematics in high-need 
schools and teacher leadership throughout this program. To do so, we applied a deductive 
approach in thematic data analysis and relied on conceptual framework of teacher leadership 
and domains of teacher leader model standards. The emerged themes reflected the ways in which 
these two MTFs attempted to (a) promote student success, (b) address concerns around diversity 
and equity, and (c) facilitate uncertain challenges during COVID-19 pandemic.   

Keywords: Instructional Leadership, Professional Development, Teacher Beliefs, Equity, 
Inclusion, and Diversity.  

Teacher shortage and turnover have been a continuous concern in the United States 
particularly for mathematics teachers and in high-poverty and high-need schools (Carver-
Thomas & Darling-Hammond, 2019). Effective teacher leadership can support developing and 
sustaining highly qualified teachers in the profession and positively affect student achievement 
(Darling-Hammond, 1998; Elmore, 2002; York-Barr & Duke, 2004). Thus, developing K-12 
mathematics teacher leaders can support a system for teachers’ persistence and retention (Green 
& Kent, 2016). Over a five-year period, Rice University Robert Noyce Master Teaching 
Fellowship (RU-MTF) program developed secondary mathematics teacher leaders with 
mathematical content and research-based pedagogical knowledge, leadership, and mathematics 
advocacy skills. As a part of exploring the effects of the RU-MTF program, in this paper, we 
describe two master teaching fellows’ (MTF) perceptions of teaching mathematics in high-need 
schools and teacher leadership throughout this program.   

Teacher Leadership  
Over the past few decades, many constructs of teacher leadership have been discussed in 

which teachers play a central role in ways schools operate and in the core functions of teaching 
and learning (Danielson, 2007; York-Barr & Duke, 2004). Leadership by teachers is essential to 
serving the needs of students, schools, and the teaching profession (Teacher Leadership 
Exploratory Consortium [TLEC], 2011). Teacher leadership may be broadly defined as the active 
involvement of teachers in the improvement of school culture and instruction and ultimately 
student learning through their participation in school-wide decision-making, and promotion of 
their teaching and learning expertise (York-Barr & Duke, 2004). According to York-Barr and 
Duke (2004), the dimensions of teacher leaders’ practices include coordination and management; 
district or school curriculum work; professional development of teacher peers; participation in 
school improvement efforts; parent and community involvement; professional contributions; and 
building partnerships with pre-service teacher education programs. Similar to these dimensions, 
the teacher leader model standards present seven domains: “fostering a collaborative culture to 
support educator development student learning;” “assessing and using research to improve 
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practice and student learning;” “promoting professional learning for continuous improvement;” 
facilitating improvements in instruction and student learning;” “promoting the use of 
assessments and data for school and district improvement;” “improving outreach and 
collaboration with families and community;” and “advocating for student learning and the 
profession” (TLEC, 2011, p. 9).  

To address the critical need for recruiting and supporting teachers to become teacher leaders 
in high-need schools as set forth by National Science Foundation’s (2021) Robert Noyce 
Program and to build upon prior efforts for developing teacher leadership practices (e.g., York-
Barr & Duke, 2004), RU-MTF aimed to engage MTFs in customized professional learning 
experiences that include university graduate-level mathematics coursework and Advancement 
Via Individual Determination (AVID) Path Training. In this paper, we focused on two MTFs and 
reported on their reflections and perceptions of teaching mathematics in high-need schools and 
teacher leadership within the RU-MTF program. 

Methods  
MTFs and Context 

Fourteen secondary mathematics teachers (seven female and seven male) with exceptional 
academic merit reflecting the diversity of the student population and teachers (seven White, three 
Hispanic, two African American, and two Asian) from high-need schools in Houston 
Independence School District were selected as MTFs to participate in the five-year (2016-2021) 
RU-MTF program. In 2016, MTFs’ teaching experience ranged from four to 40 years.  
RU-MTF 

In the first two years of the program, MTFs completed two one-week long summer courses in 
contemporary topics in secondary mathematics (e.g., equity, content, pedagogy, leadership skills 
in mathematics teaching) and two one-week long AVID Path Trainings to advance culturally 
relevant teaching practices for both educators and students. In addition, MTFs got involved in 
leadership activities (e.g., plan and co-teach with other mathematics teachers, work with 
colleagues to enhance students’ self-efficacy, support and collaborate other MTFs, etc.) in their 
schools, school district, and at Rice University. Throughout each school year, MTFs also 
attended meetings to discuss the goals and expectations of their leadership work.  
Data Sources and Analysis  

In each year of the program, MTFs wrote their reflections for the Summer, Fall, and Spring 
semesters. In this paper, we focused on only two MTFs’ reflections about teaching mathematics 
in high-need schools and teacher leadership. We chose Chad and Mark (pseudonyms) because as 
two high-school mathematics teachers with different years of teaching experience (17 and four 
respectively at the beginning of the RU-MTF program) and with different ethnic and educational 
backgrounds, these two teachers provided the most insightful reflections that are also 
representative of the whole group. We analyzed Chad’s and Mark’s written reflections (15 
reflections in total per person and 2–5 pages each reflection) by applying a deductive approach in 
thematic data analysis (Saldana, 2013) and using York-Barr and Duke’s (2004) conceptual 
framework of teacher leadership and domains of teacher leader model standards (TLEC, 2011).  

Findings and Discussion 
Before the RU-MTF program, Mark described “mentoring new teachers,” serving as “content 

lead,” and “shared decision-making committee” and Chad identified “unofficial mentor[ing] for 
several teachers” as part of their leadership, mentoring, and adult education. Across the five-year 
RU-MTF program, Chad’s and Mark’s reflections encompassed challenges and successes of 
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teaching mathematics in high-need schools as well as ways of incorporating and sustaining 
leadership roles to: (a) promote student success, (b) address issues concerning diversity and 
equity; and (c) facilitate uncertainties during times like the COVID-19 pandemic. These emerged 
themes highlighted important components of York-Barr and Duke’s (2004) conceptual 
framework such as “supportive culture,” “supportive principal and colleagues,” “resources,” and 
“establish trusting and constructive relationship” (p. 289). Looking at these themes in-depth also 
illuminated domains of teacher leadership within teacher leader model standards (TLEC, 2011). 
To Mark, an effective mathematics instruction that prepares high-school students for college 
“involves gradually giving the student more autonomy.” Chad’s perspective is to prepare 
students to “become more capable of thinking abstractly…and model real-life phenomena.” 
Providing a Path to Student Success 

“I’m frustrated with the inflexibility of our public school system… I’m concerned about kids 
that don’t succeed in our very inflexible system.” 

Improving student success within the current school system, unsurprisingly, was one of the 
most common topics discussed in both Chad’s and Mark’s reflections, which involved the roles 
of school culture, administrations and colleagues, and testing.  

School culture. Chad described his school culture as “a culture of teachers giving the 
students assignments, and the students complying with the assignments” and he wanted to 
introduce some of his teachings: “I simply cannot teach math as a set of rules to be followed, and 
for the students to believe those rules because I, the authority, told them so.” Thus, Chad took the 
lead of the pre-calculus team to implement some of his visions. However, he continuously faced 
challenges because of the testing priority, school inflexibility, and unproductive collaboration.   

The reason that this isn’t a HUGE problem is that [my school] has this high achievement 
culture where students are expected to memorize, memorize, memorize. So, they do. And 
they pass the tests. I’m really the only one that has a problem with it (well, me and the kids 
who don’t memorize so well). My problem is that I feel we are missing the spirit of math. 
Chad’s challenge reflects the importance of establishing a school culture that advocates for 

collaboration, “shared leadership, differentiated roles for teachers, and mutual accountability for 
student learning” (TLEC, 2011, p. 28).  

Administration and colleagues. Although Chad’s department chair supported him to 
implement the changes in the pre-calculus course as a teacher leader, “[my] teammates basically 
withdrew from me, and became extremely critical of anything that I had to offer.” As team 
members developed a climate of trust and critical reflection, their meetings became more 
collaborative and drew from backward lesson planning. Mark also encountered “a lot of 
skepticism and pushback from my appraiser” when incorporating technology into his teaching.  

There is a lot of pushback with this because there is an unrealistic expectation from 
administers to focus solely on specific objectives and not on the skills necessary to achieve 
those objectives…It’s very frustrating to deal with this mentality and complete lack of 
understanding about the situation that we are dealing with at our campus.   

In line with these examples are facilitating “skills to create trust among colleagues” and using 
“knowledge of existing and emerging technologies to guide colleagues in helping students 
skillfully and appropriately” from teacher leader model standards (TLEC, 2011, p. 16).  

Testing. Mark alluded to “don’t teach to those tests” in relation to student success:  
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With administrators often only concerned with testing results or data, many teachers often 
panic and fall to pressure to push our kids on something that they can’t easily fix. This 
creates a source of friction and to some degree distrust and resentment between those 
teachers and their students.  

Although teaching for testing is not a path to student success, teachers and teacher leaders can 
work “individually and collaboratively to examine test and other performance data to understand 
each learner’s progress” (TLEC, 2011, p. 53)—a crucial step in data-driven changes in school 
culture and “promoting the use of assessments and data for schools and district improvement” 
(TLEC, 2011, p. 18). 
Diversity and Equity  

As a white middle-class teacher in a predominately African American school, Chad 
discussed the “systemic racism and white supremacy” in the school culture.  

White teachers trying to “save” the minority students by getting them to buy into our culture 
instead of the culture of their family and their neighborhoods…I didn’t realize at the time 
was that school culture wasn’t just middle class, it was white middle class…I get very 
uncomfortable when I see us educators pushing particular values on students…I want to open 
people’s minds and...teach students to think logically and rationally. 

As Mark emphasized “that different cultures have conventions that are very different from 
American conventions,” prompting instructional strategies that address diversity and equity 
issues (TLEC, 2011) is central to leadership standards.  
The Good and Bad of the COVID-19 Pandemic  

“Especially with everything that has been going on in this country, we have to set formulas 
and calculators aside sometimes, and reach their hearts if we want to reach their minds.” 

In the last two years of the program, MTFs shared lessons learned from transitioning to 
remote learning during the pandemic and leadership roles they took to facilitate this transition. 
Their leadership roles become even more critical as the uncertain condition called for 
“supportive culture,” “resources,” and “supportive principal and colleagues” (York-Barr & 
Duke, 2004, p. 289). Chad perceived both the good and bad of the pandemic:  

The main problem I have with online teaching and online meetings is just how tired they 
make me feel afterward… [during RU-MTF summer professional development], we had 
quite the international group. Not only were the facilitators from points scattered all over the 
globe, but the participants as well…It was interesting to hear people talk about the math 
education that they had on the other side of the world. 

Mark shared how online teaching encouraged some of his students to participate more in classes 
but overall “a very low level of participation, and a large amount of inflation by teachers and 
administration.” Acknowledging the limits, a virtual format contains, Mark’s experiences with 
virtual professional development were overall positive, “I feel that many people felt more 
comfortable sharing in a virtual format, than in an in-person.” These positive experiences with 
virtual professional development opportunities are important to consider even post-pandemic.  
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Mathematics specialists are prominent figures in calls to advance the teaching and learning of 
mathematics. While the calls for mathematics specialists have gone on for decades, research in 
this area of study is still emerging. Because of this, there is a need for the field of mathematics 
education to better understand the research that has been conducted to move the field forward. 
As such, we present preliminary findings of a literature synthesis investigating the ways in which 
mathematics specialists are studied within empirical research between the years 1981 and 2018. 
Our findings document the quality of the research, the research methods used, and the journal 
outlets research is disseminated around mathematics specialists, as well as discussion and 
implications based on our results.  

Keywords: instructional leadership, research methods 

In the United States, a call for mathematics specialists (MS) has been prominent over several 
decades, with a rise in this call and research related to mathematics specialists occurring since 
the late 2000s (Baker et al., 2022; Fennell, 2017). However, despite this increase in research, in 
general, MS are still under-investigated (e.g., Herbst et al., 2021; Hjalmarson & Baker, 2020), 
leading to policy decisions being made without ample evidence. MS are considered “an 
important lever” for advancing teacher learning (Marshall & Buenrostro, 2021, p. 8) by 
supporting teacher development and facilitating district efforts (Cobb et al., 2018; NCTM, 2020), 
we believe it is imperative for the field of mathematics education to better understand the 
research situated around MS to advance this work.  

Mathematics Specialists 
MS are instructional leaders who work to advance effective mathematics instruction and 

student learning through their work with teachers (McGatha & Rigelman, 2017). MS often take 
on many roles within a school or district and may have various responsibilities depending on the 
context of their work (Baker et al., 2022; Harbour et al., 2021; McGatha & Rigelman, 2017). MS 
may be charged with facilitating the implementation of school, district, or state initiatives, the 
integration of research-based practices and curriculum materials, and the use of assessment data 
(e.g., Campbell & Malkus, 2011; Fennell, 2017). MS may also model lessons and instructional 
strategies, as well as provide professional development (e.g., Chval et al., 2010; Fennell, 2017; 
Polly et al., 2013). While the roles and responsibilities of MS vary, the ways in which these 
supports are provided also varies. MS may work on school-level initiatives (e.g., Cobb et al., 
2018) or work with small groups of teachers (e.g., Livers, 2019; Lesseig et al., 2016). MS may 
also work with individuals or pairs of teachers (e.g., Saclarides & Harbour, 2020). 

Purpose 
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Because of the need to understand prior research to know what future research is needed, the 
purpose of our work is to synthesize existing research, through 1981-2018, to develop an 
understanding of the methodological considerations around MS. Our goal is to present 
preliminary findings to raise questions around methodological decisions and dissemination of 
existing research. We first extend prior synthesis work around MS (Baker et al., 2022; 
Hjalmarson et al., 2020) by evaluating the quality of each published article using an established 
criterion, an important step in a literature synthesis (Cooper et al., 2019). Following the 
application of the appraisal, or quality, criteria, we then sought to answer the following research 
questions: (a) what type of overarching methodology are researchers using when studying MS; 
and (b) how are researchers who study MS disseminating their empirical work (i.e., peer-
reviewed articles)?  

Methods 
We draw upon earlier work (Baker et al., 2022), wherein we explored empirical research to 

examine the positioning of MS (see Baker et al., 2022 for a detailed process of inclusion and 
exclusion criteria). The researchers employed in vivo coding (Saldaña, 2021) across 130 research 
articles in a three-layer process. First, the population in which the MS engaged with was 
determined (e.g., in-service teachers, pre-service teachers). Next, building upon McGatha and 
Rigleman’s (2017) positions for MS (coach, teacher leader, interventionist) were assigned. As 
codes were applied, new positioning of MS emerged, resulting in six distinct positionings, 
wherein three were previously defined (McGatha & Rigelman, 2017) and three newly emerged: 
(1) coach, (2) teacher, (3) interventionist, (4) university stakeholder, (5) other P-12 stakeholder, 
and (6) learner. Lastly, a layer of coding allowed for specificity of context (i.e., school or district 
levels), thus providing positionings such as MS as Coach: District-Level.  

For the present study, we homed in on six unique positionings of MS whose primary 
audience was in-service to pilot our exploration (see Table 1, initial frequency). As our goals 
were to extend previous work and to develop an understanding of the methodological 
considerations around MS, we engaged in three types of analysis: (a) article quality evaluation, 
(b) methodological approaches, and (b) journal outlets. The methodology we used, results, and 
implications follows. Articles may have included more than one role. 

 
Table 1: Mathematics Specialists Positioning 

Positioning Initial Frequency Final Frequency 
Inservice: MS as Math Coach: School-level 26 23 
Inservice: MS as Math Coach: District-level 1 1 
Inservice: MS as Instructional Coach: School-level 6 4 
Inservice: MS as Teacher Leader 21 15 
Inservice: MS as Learner 10 6 

 
Article Quality Evaluation 

To evaluate the quality of the studies meeting inclusion and exclusion criteria, we used the 
appraisal criteria of Risko et al. (2008). This evaluation tool has seven quality criteria and has 
been applied in previous research (e.g., Miller et al., 2015). Unlike criteria which only address 
one methodology (e.g., Thunder & Berry, 2016), Risko and colleagues’ (2008) criteria enables 
the appraisal of articles from various methodologies. Paralleling the process established (Risko et 
al, 2008), articles that received a score of 7 (i.e., meet all criteria), were used in analyses.  
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We coded 65 articles which prominently featured MS. Three researchers coded 23 articles to 
establish reliability with the rubric, and then pairs of those researchers coded the remaining 42. 
In reaching consensus of 0 or 1 scores for each criteria indicator, we approached the subjective 
terms in the descriptions (e.g., the term several) with leniency. For instance, rather than articles 
needing all listed descriptors in the indicator, if the article had 50% of them, we scored the 
indicator as a 1. Of the 65 articles, 47 met all the criteria (i.e., 73%; see Table 1, final frequency). 
This inclusion rate is higher than the 35% inclusion rate reported in Risko et al. (2008). We also 
identified five tool development papers that we only include in the analysis of journal outlets. 
We did not score these 5 papers using the Risko et al. (2008) criteria because those articles were 
not structured in a way that fit the criteria’s goals or purpose. 
Methodology Approach Coding 

To determine the overarching methodological approach used in each of the 47 articles that 
meet quality criteria (e.g., using Risko et al., 2008), a team of three researchers distributed the 
articles to where two researchers coded the methodology for each article and the third researcher 
was used, as needed, to reach 100% consensus. We coded articles in one of three ways: (a) 
Qualitative, (b) Quantitative, or (c) Mixed Methods. We then determined the frequency in which 
each of the overarching methodological approaches appeared.  
Dissemination of Research: Journal Outlet 

To determine how research around MS was disseminated, we collected where each article 
was published, determined the frequency count for each journal, followed by applying a code of 
“math” or “general” to each journal to determine the type of journals that were publishing 
research involving MS.  

Results 
Research Question 1: Methodologic Approaches  

The 47 articles that met all the quality criteria (Risko et al., 2008) included 26 qualitative 
studies, 8 quantitative studies, and 13 mixed methods studies. We are still analyzing the methods 
in more detail (e.g., HLM, case study, social network analysis). Notably, there are a significant 
number of qualitative case studies (e.g., of specialists as individuals) within the 47 articles. Data 
gathered often includes interviews, observations of classroom or professional development, 
surveys, and other artifacts (e.g., lesson plans, student work). There are also assessments of 
teacher knowledge and beliefs. The quantitative work included studies linking mathematics 
coaching and student outcomes (e.g., Campbell & Malkus, 2011) and studies of the influence of 
math coaching (e.g., Sun et al., 2014). Mixed methods studies often included qualitative 
evidence coupled with interviews or surveys. For instance, Hopkins et al., 2017 was coded as 
mixed methods as it employed social network analysis along with analysis of interviews.  
Research Question 2: Dissemination of Work 

To describe dissemination efforts, we included the 47 research articles and 5 articles on tool 
development. The tool development studies were primarily about mathematics coaching or 
leadership, however, were not written in a way that aligned well with the Risko et al. (2008) 
appraisal criteria. However, to represent the landscape of outlets that are publishing work about 
MS, we included the five tool development articles in this portion of the analysis. We found 
there were 30 peer-reviewed journals represented in our data set of 52 articles. For brevity, we 
coded them as mathematics journals if the title indicated either a singular focus on mathematics 
or a dual focus of mathematics and science or general journals if they focused on other more 
general education topics (e.g., teacher education). Twenty-six articles were published in 
mathematics focused journals, and twenty-seven were published in general journals. The top five 
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journals where MS research was disseminated were The Journal of Mathematical Behavior 
(n=7), Journal of Mathematics Teacher Education (n=6), ZDM Mathematics Education (n=4), 
and The Elementary School Journal (n=4). We note that six of the JMB articles appeared in a 
special issue. 

Discussion 
As we sought to develop an understanding of the quality of research, methodological 

considerations, and dissemination of work around MS, some interesting findings emerged that 
necessitate discussion and hopefully implications on future research involving MS.  

First, using the appraisal criteria of Risko et al. (2008) to determine the quality of empirical 
research, we found most articles in our data set met criteria at a much higher rate reported by the 
authors. We find this a promising, indicating high-quality research is being conducted related to 
MS. Of importance for future research, most of the articles were eliminated due to 
methodological issues; specifically, around following three indicators: (a) “Ensures that methods 
are presented in sufficient detail and clarity to visualize procedures”, (b), “Relies on 
measurements or observational methods that provide reliability, credibility, and trustworthiness”, 
and (c) “Describes participants” (Risko et al., 2008, p. 256). Within the Risko et al. (2008) 
criteria, more information is provided for each indicator (shortened for brevity here). Many 
articles not meeting criteria were often scored lowest in participant description. This makes sense 
within the MS research as there are often blurred lines in their positioning and definition of who 
is a mathematics specialist (National Mathematics Advisory Panel, 2008). However, as previous 
work has now provided a framework of positionings (Baker et al., 2022), we hope that future 
research can employ this positioning and provide more details on the participants of studies.  

Second, as we explored the methodological approaches used to study MS, we see the 
majority of published, empirical work employs qualitative methods. By no means are we 
suggesting that qualitative methodological approaches should not continue; however, we do 
believe it is important to note this uneven approach among qualitative and quantitative 
methodologies. Quantitative methodologies are important within research involving MS to 
determine causal links and provide evidence that is generalizable on a larger scale.  

Third, we find the lack of a particular journal that represents a “home” for MS research both 
encouraging and problematic. It is encouraging to see there is MS research being published in 
mathematics education, teacher education, education leadership, and other domains. However, 
there is a need for studies about the preparation, practice, and impact of MS on teaching and 
learning. We also find the lack of focus in premiere mathematics education journals troubling. 
For example, the only article in this collection focused on MS published in the Journal of 
Research in Mathematics Education was a highly influential tool development study by Munter 
(2014). Outside of the special issue in JMB, other mathematics education journals only published 
1-2 articles across this long period of time (i.e., 1981-2018).  

Conclusion 
While there has been growth in research about MS as leaders of teacher learning and 

professional development, there is clearly more work to be done. There are many lenses and 
bodies of existing research that can inform studies of MS, and there are clearly different 
educational arenas that are beginning to examine MS as part of the educational system. We 
encourage the field to continue these investigations and continue expanding the methods and 
theories that are used in these studies.  
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Discussion is a practice used in mathematics methods courses to support prospective teachers’ 
pedagogical ideas. Underexamined but central to the development of instructional activities, 
including discussions of teaching, are mathematics teacher educators’ (MTEs’) tacit and explicit 
theories of learning and teaching. We report findings from a self-study of three MTEs’ 
discussion practice in methods courses. Data sources include transcripts of MTEs’ dialogic 
analysis of their discussion practice and evidentiary maps based on instructional artifacts. We 
argue that whole-class scaffolding serves as a tacit theory informing MTE discussion practice. 
We support this argument using evidence that our discussion practice was driven by prospective 
teachers’ move toward independence and by layering instructional activities.  

Keywords: Discussion, Preservice Teacher Education, Teacher Educators 

Learning theories (Casey et al., 2018) and professional experiences (Leikin, 2020) have been 
shown to inform mathematics teacher educator (MTE) practices. Furthermore, professional 
practices shape the “learning potential” (Grossman et al., 2009, p. 2090) of instructional 
activities. These findings link theories and experiences of MTEs to learning opportunities 
provided to prospective mathematics teachers (PTs). Calls for the study of MTE work (Grossman 
et al., 2009; Lee & Mewborn, 2009) have resulted in descriptions of MTE practices (e.g., van Es 
et al., 2014), instructional activities (e.g., Tyminski et al., 2021), and MTE knowledge (e.g., 
Beswick & Goos, 2018) with a few studies exploring MTEs’ professional growth (Krainer et al., 
2021). In this paper we address MTEs’ professional growth of discussion practice, providing an 
example of how the learning potential of discussions of teaching are developed. Beyond 
providing descriptions of discussion practice as useful models for MTEs, unpacking theories that 
inform such practice links MTEs’ learning to teach about teaching to PTs’ opportunities to learn 
mathematics teaching. 

 In this paper we use self-study methodology to identify tacit theory that informs the 
discussion practice of three white MTEs’ teaching mathematics methods at different institutions 
to elementary and secondary PTs. The three MTEs’ are relational (Kitchen, 2005) constructive 
teachers (Steffe & D’Ambrosio, 1995) of mathematics teaching who utilize relationships with 
PTs and evidence of their pedagogical concepts to inform instructional decisions. Relational 
teacher educators view relationships as central to creating opportunities to learn about teaching. 
Constructivist teachers view learning as an intersubjective activity that includes learner 
discussions in a collaborative community (Kastberg, 2014; Steffe & D’Ambrosio, 1995). Taken 
together relational constructivist MTEs view whole class discussions of teaching as opportunities 
to theorize about teaching and problems from experience.  

As relational constructivist MTEs, we use whole class discussions to support PTs’ teaching 
practices. Self-study of our discussion practice resulted in new approaches to posing discussion 
questions (Kastberg et al., 2019) and creating phenomenological conditions (Lischka et al., 2020) 
supportive of discussions of teaching. Yet we continued to struggle to facilitate discussions with 
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PTs, instead often creating recitations during which PTs’ shared ideas without addressing the 
ideas of others. To expand the domain of potential action (Brown & Coles, 2020) available in 
planning and facilitating discussions of teaching in mathematics methods courses we were 
guided by the question: What tacit theories inform mathematics teacher educators’ discussion 
practice in mathematics methods courses?  

Background and Literature 
 Loughran (2014) defines pedagogy as “two complementary aspects of knowledge and 

practice: teaching about teaching and learning about teaching” (p. 275) kept in relation. 
Loughran’s definition situates pedagogy as a theory that maintains a relationship between 
teaching about teaching and learning about teaching. Such theories in mathematics teacher 
education have been used to design and implement instructional activities for PTs (Kastberg et 
al., 2018). Making theories that inform MTEs’ practice explicit (Mewborn & Stanulis, 2000) is 
essential to expanding possibilities for instructional choices and engaging in discussions of those 
choices beyond simply modeling practices (Teuscher, et al., 2016). In this paper we focus on 
tacit theories that inform MTEs’ whole class discussions of teaching.  

Discussion is defined as human interaction to address “a question of common concern” 
(Dillon, 1994, p. 8) through an exchange of ideas (Alexander, 2019) and an examination of 
differing viewpoints (Kim & Wilkinson, 2019). Discussion differs from recitation in that 
recitation involves sharing ideas without engaging others in those ideas while discussion 
involves a sharing of ideas in which others take up those ideas and add to or counter them 
(Dillon, 1994). We define discussion as a talk strategy MTEs use to support development of PTs’ 
pedagogical concepts (Simon, 2008). MTEs’ use of discussion practice is informed by their 
“knowledge, theories, and understandings” (Pinnegar & Hamilton, 2009, p. 16) to develop 
“knowledge from practice” (Pinnegar & Hamilton, 2009, p. 17) as a way of “knowing to” (p. 18) 
engage PTs in a given practice.  

Existing reports of MTEs’ facilitation of discussions have identified practices associated 
online discussions (McDuffy & Slavit, 2002), ambitious teaching (Kazemi et al., 2016) and 
teaching videos (van Es et al, 2014). MTEs’ facilitation of pedagogical discussions (Lischka et 
al., 2020; Kastberg et al., 2021) is also informed by phenomenological factors (Dillon, 1994) 
such as a sense of community and relevant common experiences. MTEs’ discussion practices, 
including posing discussion questions, and supporting interpretation of the question, impacts the 
form (i.e., IRE, recitation, discussion) and content of the PTs’ talk (Kastberg et al., 2021). 
Evidence teachers use to support claims made during discussions of teaching informs MTEs’ 
discussion practice, yet findings are mixed. Steele (2005) identified teachers’ use of experience 
to support claims in discussions of mathematics teaching while Dick et al. (2018) suggested 
teachers did not provide evidentiary support for claims made during discussions of their 
mathematics teaching. Such research illustrates that teachers’ address of discussion prompts 
focused on teaching are conditional and respectful of the authority of experience (Munby & 
Russell, 1994), thus raising questions about how MTEs’ can initiate and sustain discussions of 
teaching that move beyond sharing ideas to taking up and countering the ideas of others. 

One theory that may support MTE’s discussion practice draws from linking whole-class 
scaffolding and dialogic teaching (Bakker et al., 2015) including discussion. Smit et al. (2013) 
asserts that whole-class scaffolding involves interpreting and responding to learners’ 
understandings and needs while fostering independence (Visnovska & Cobb, 2015). Whole-class 
scaffolding is “layered, distributed and cumulative” (Smit et al., 2013, p. 829) and takes place 
before, during, and after whole-class interactions. Bakker et al. (2015) illustrates ways whole-
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class scaffolding can inform dialogic teaching including discussions. Keys to whole-class 
scaffolding include understanding that instructional activities produce layers of opportunities for 
developing concepts while supporting movement toward engaging in activities independently. 
These two key components of whole-class scaffolding align with the existing reports of MTE 
work that illustrate the importance of PTs’ movement toward independent teaching (Grossman et 
al., 2009) and the need to use pedagogies of practice in concert (Ghousseini & Herbst, 2016). 

Methodology and Methods 
Self-study methodology is a form of empirical practitioner research focused on improving 

practice in context. As practitioner research (Borko et al., 2007), self-study methodology 
supports inquiry into pedagogy of practice. Self-study is self-initiated, improvement-aimed, 
interactive, uses qualitative methods, and defines validity as based in trustworthiness (LaBoskey, 
2007). Our study of tacit theories that inform discussion practices was initiated to inquire into 
how we planned for and enacted discussions of teaching in mathematics methods with a focus on 
improving our discussion practices. Beginning in 2015, our collaboration has included weekly 
meetings to discuss the development of instructional activities and practices. As a collaborative 
self-study group of MTEs from three different US institutions, we are critical friends (Schuck & 
Russell, 2005) who undertake scholarly inquiry (Lee & Mewborn, 2009) of our practices.  

Our institutional missions range from teaching-focused to research-intensive and our 
program foci span elementary to secondary teacher certification. Signe’s discussion study was 
guided by the question: How do children learn mathematics? Alyson’s discussion study was 
guided by the question: What is the role of mathematics teachers related to social justice and 
equity? Susan’s discussion study was guided by the question: How does cognitive demand of 
tasks and knowledge of children’s mathematical thinking inform planning instruction? Studying 
our practice, we identify “living contradictions” (Whitehead, 1989, 41) between our intended and 
working models of practice. 

Critical friendships serve as dialogic communities where dialogue serves as a process of 
coming to know. Pinnegar and Hamilton (2009) align the scientific method, action research cycle 
and dialogue as processes of coming to know in different methodologies. In self-study 
methodology dialogue involves expressing ideas in conversations to be “accepted and elaborated 
or rejected, rephrased, questioned, or ignored” (p. 87). Participants in the dialogue “may provide 
evidence, examples, representations, metaphors, or analogies in support of or opposition to the 
idea or as a way to synthesize and integrate the idea with others” (p. 87). Such dialogues in 
mathematics teacher education produce “theorizing” about MTE practice that “extends the range 
of possible behaviors, by dwelling in the details of the experience of teaching and considering 
the details on a more general level” (Brown & Coles, 2020 p. 99). Assessing the trustworthiness 
or quality of qualitative research (Grant & Lincoln, 2021) involves planning for and committing 
to making transparent authenticities that emerge in the study. In the case of self-study, 
ontological authenticity is central as researchers gather evidence of knowledge of self that 
illustrates what is learned through dialogic analysis and other analytical methods.  

Within the methodology of self-study we used three qualitative analytic methods: analytical 
dialogues (Guilfoyle et al., 2007), evidentiary maps, and descriptive coding (Saldana, 2016).  
(1) We engaged in 8 analytic dialogues of our discussion practice in fall 2020 (Covid-19 hyflex 
teaching). Conversations focused on “coming to know” how we used discussion in our teaching 
that served as the basis for “action” (Guilfoyle et al., 2007, p. 1111) in our ongoing discussion 
practice. At the conclusion of this period we had formed a collection of categories that informed 
our discussion practices. (2) In spring 2021 we used course artifacts (recordings of whole class 
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discussions, class summaries, assignments, and PT work samples) to create evidentiary maps 
(see Table 1 for an excerpt) of the “structure of events” (Jordan & Henderson, 1995, p. 57) in our 
fall 2020 discussion practice. Each map was analyzed using categories from the dialogic 
analysis. Confirming or contradicting evidence from the dialogic analysis was identified. (3) 
Descriptive coding (Saldana, 2016) of transcripts from analytical dialogues was used to 
triangulate results from analytic dialogues and evidentiary maps by linking the findings from the 
analytic dialogues to evidence in the transcripts of our dialogues. Analysis revealed evidence of 
commonalities across three MTEs’ discussion practices. Movement in these analytical methods 
proceeded from dialogue to course artifacts and back to dialogue. These three analytic methods 
created an evidentiary basis for findings common across three MTEs’ discussion practice and 
related contexts.  

Findings  
This section describes two components of whole-class scaffolding (Smit et al., 2013) that 

influenced our discussion practice: (1) the move toward independence in mathematics methods 
courses, and (2) layering learning activities driven by the move toward independence. Data from 
the three authors’ practices were used to derive the findings. This paper uses examples from 
Susan’s pedagogy of discussion practice drawn from transcripts of dialogic conversations and 
evidentiary maps to illustrate our findings for the research question: What tacit theories inform 
MTEs’ discussion practice in mathematics methods courses? The findings are structured to first 
present an integrated view of Susan’s practice in the form of a vignette. Based on the vignette 
and with example from our critical friend conversations we highlight each component of 
scaffolding, beginning with layering of instructional activities and turning to the move toward 
independence.  
Susan’s Vignette  

One learning goal in Susan’s elementary mathematics methods course was to understand 
cognitive demand of tasks to support PTs’ lesson planning. She reasoned that distinguishing 
between demands of tasks, such as those focused on producing answers and those focused on 
sense-making, would support PTs’ design of problem-based lessons. Susan planned for a 
discussion on cognitive demand of mathematics tasks for the third class.  

The day before Susan’s first class, Alyson identified the importance of anticipating in 
planning for discussions of teaching, just as we would for teaching mathematics. 

Alyson: So you are seeing these different perspectives that might come out from the PTs. 
Would it help if you thought through those different perspectives, and have some ideas of 
what you might want to draw out or probe a little more deeply? . . . It’s like anticipating 
different directions that the discussion might go and being ok with different outcomes 
based on what they’re bringing to the table. (Conversation 08-31-2020)   

 As a result, Susan considered how her first day activities, including eliciting PTs’ memories of 
mathematics tasks, might inform the planned whole class discussion of cognitive demand (Table 
1, Class 3). How might PTs associate tasks with children’s mathematical thinking? Susan 
anticipated experiences PTs might share, and purposely planned instructional activities for the 
first two classes (Table 1) and the autobiography assignment to elicit PTs’ ideas about tasks and 
mathematical thinking. As planned, PTs’ shared experiences and perspectives on types of 
thinking involved in learning mathematics. Some were expected, such as timed facts tests 
associated with memorization. Others were unexpected necessitating modifications to support 
connections between PTs’ experiences with mathematics tasks and mathematics learning. 
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Table 1: Excerpts from Evidentiary Map 

Date   Event   Description   
Sep 1   Class 1   

Online   
Think-Pair-Share: What are your memories of learning mathematics? 
First assignment: mathematics autobiography due two days later.   

Sep 3   Class 2   
In-Person   

Small group activity: Examine K-5 mathematics curriculum 
standards.  List verbs; classify levels and types of thinking. 

Sep 15   Class 3   
Online   

From memories: identify thinking involved in learning mathematics. 
Introduce the Cognitive Demand framework (Smith et al., 1998). Small 
groups: examine tasks using the framework; whole class: share a claim 
about a task and discuss level of cognitive demand.   

Sep 17  Class 4   
In-Person    

Reviewed verbs from Class 2 and mathematics tasks from Class 3. 
Small groups: What helps determine if a task involves lower- or 
higher- cognitive demand? Individual reflection prompt.  

Sep 22   Class 5    
Online   

Revisit tasks from Class 3: Describe cognitive demand. Follow-up: 
choose a task and make a video explaining the cognitive demand.  

Sep 23 – 
Nov 24   

Individual 
Conferences  

Consultations with PTs on lesson plans with attention to cognitive 
demand of tasks. 

  
During Class 3 Susan initiated a discussion on cognitive demand of tasks by asking groups of 

PTs to make claims about a small collection of tasks. She knew this was risky given the limited 
time for the development of phenomenological characteristics (Dillon, 1994) needed for 
productive discussions. PTs shared claims about the cognitive demand of different tasks, but 
little evidence was offered. No PT challenged another PT’s claim, a move that might have 
sparked a discussion. Instead, the PTs took turns sharing. Susan described the class activity as a 
recitation and turned to redesigning instructional activities for Class 4.  

Our conversations focused on benefits and limitations of introducing PTs to professional 
language such as “cognitive demand.” Alyson described the importance of introducing 
professional vocabulary, like cognitive demand, to support PTs’ descriptions of teaching. 

Alyson: I still think that we share some of the best practices in different ways. As part of 
building that common experience and building opportunities for [PTs] to have language 
like the cognitive demand idea puts words to descriptions that they can then think about . 
. . I guess I feel like we are spending a lot of time developing that language.  

Susan: This whole thing about language and cognitive demand, . . . I don’t think they [PTs] 
have thought about it [cognitive demand] even though I know they are introduced to 
levels of thinking [in previous classes] but when they come to math methods it’s 
[cognitive demand of tasks] not connected to that [prior experience with levels of 
thinking]. I’m trying to connect to language other classes have been using. (Conversation, 
09-21-20)  

Susan describes her effort to connect language from other courses to cognitive demand. 
Susan re-designed her instructional activity for Class 4 in response to PTs’ association of 

mathematical tasks and cognitive demand. Susan had hoped to create a discussion of cognitive 
demand during Class 3 that would connect cognitive demand of tasks and student thinking. 
Instead PTs’ shared tasks with rationales that exhibited limited understanding of the elements of 
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cognitive demand. Susan adapted her next instructional activity to provide PTs with 
opportunities to explicitly describe task characteristics in relation to specific elements of 
cognitive demand. 

Susan’s initial lessons were designed to gather evidence of PTs’ experiences and views of 
teaching and learning mathematics. Subsequent instructional activities were designed to support 
PTs to connect their experiences, cognitive demand of tasks, and types of thinking the tasks 
might elicit from children. Although Susan planned a discussion of cognitive demand of 
mathematics tasks for Class 3, the PTs had not yet developed connections between their 
experiences, demand of tasks, and opportunities for children’s mathematical thinking. The PTs’ 
responses allowed Susan to make sense of their ideas about cognitive demand. Susan used the 
PTs’ ideas to re-design subsequent instructional activities to focus on connecting cognitive 
demand and task characteristics (Table 1). Susan did not intend the Class 3 discussion of 
cognitive demand to result in associating a level of cognitive demand for each task, but to relate 
levels of cognitive demand to task features and opportunities for children’s mathematical 
thinking. Susan viewed these connections as essential in PTs’ lesson planning later in the 
semester. 
Moving Toward Independence    

Our conversations about how to provide learning opportunities to support discussion focused 
on the importance of modeling PTs’ ideas and designing instructional activities that would 
prepare PTs for planned discussions. We focused on developing meanings for key terms in the 
discussion questions and the significance of such questions in learning to teach. We reasoned 
from our experiences teaching mathematics, that we could use models of PTs’ ideas about 
teaching (cognitive demand, learning, and social justice) to design instructional activities. 
Further, using PTs’ ideas, we could facilitate the development of connections among ideas about 
teaching mathematics. This idea is illustrated as Signe describes her movement to using PTs’ 
vocabulary, “way of talking,” in instructional activities and discussions. 

Signe: When I finally did use the PTs’ way of talking, they had something to say, and they 
knew they were going to be attended to when they were talking about it, because it was a 
significant idea. And, it matters when you're trying to do your planning for discussion. 
(Conversation 11-10-2020)    

As we supported PTs to link their “way of talking” to key terms in mathematics teaching, such as 
cognitive demand in Susan’s case, we noticed our assumptions about discussions and PTs’ move 
toward independence. Signe described the need to move on to teaching other concepts, but our 
awareness that PTs would need to apply learned concepts in their teaching remained.  

Signe: For a while, it [conceptual understanding] was kind of a mystery, like they kind of 
used some of the words that I used ... but then the rubber meets the road and you get to 
the final discussion. . . . only that's not the final word, because I have their lesson plans, I 
have their concept summary . . . So there's not an end, because they're going to do more 
stuff with that idea, but I'm not going to focus on it anymore. I felt like I got to where I 
needed to get to, to be able to help them with facilitation of their lessons. (Conversation 
11-10-2020)  

Our conversations continued to focus on how layers of instructional activity related to 
planned discussion questions and supporting PTs’ planning and teaching of mathematics lessons. 
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Layering to Support Discussions  
Central in our conversations was how we could provide multiple opportunities for PTs to 

connect their knowledge and experience to key ideas during discussions of teaching. Susan’s 
constructivist pedagogy informed her design and re-design of layers of instructional activity to 
support PTs’ ideas about cognitive demand. Susan provided opportunities for PTs to create ideas 
about cognitive demand of mathematics tasks and opportunities for learners of mathematics from 
PTs’ experiences. As she created models of PTs’ ideas about cognitive demand, Susan designed 
layers of activity for PTs’ to use their ideas in examining mathematics tasks.   

Susan, Signe, and Alyson began the semester with dates for discussions on the syllabus. As 
these dates came, all three MTEs identified the need to build understanding of the concepts so 
that PTs could meaningfully engage in discussions of the concepts. Our conversations revealed 
how initial target dates for discussions were shifted back repeatedly to accommodate layering. 
Signe described trying to find the parameters for the discussion and understandings needed.  

Signe: The first stage of a discussion is to understand everyone's experience and futz around 
with the parameters of the discussion. Maybe I can't have ‘where does knowledge for 
mathematics teaching come from’ until they go into the field. But I can ‘have how do 
students learn math’ before that because they've been working on it.     

Alyson: moving that to the end, you'll have more shared experience to have that 
conversation, by the end of the semester. (Conversation 09-07-2020)  

PTs needed time to build their ideas about key concepts through experiences with layers of 
instructional activities provided. We realized that often we planned whole class discussions too 
early before the PTs had developed ideas about teaching. Our premature rush to discuss as in 
Susan’s Class 3 effort to connect experiences, task characteristics, cognitive demand, and 
children’s mathematical thinking, positioned PTs as experts with knowledge of pedagogical 
concepts and ways to describe that knowledge. As Susan’s evidentiary map illustrates, layers of 
instructional activities are created as MTEs’ gather evidence of PTs sense making and re-design 
subsequent activities. These layers provide opportunities for PTs, but also suggest that MTEs’ 
discussion practice is informed by the interpretation of PTs’ pedagogical concepts.  

Discussion  
Findings confirm that components of whole-class scaffolding (Bakker et al., 2015; Smit et 

al., 2013), including movement toward independence and layering of instructional activities, 
informed our discussion practice. The significance of this finding lies in the potential of MTE 
theories (Casey et al., 2018), professional experiences (Leiken, 2020), and practices (Grossman 
et al., 2009) to shape the “learning potential” (p. 2090) of instructional activities. Explicit 
knowing of theories that inform discussion practice expands the possibility space (Brown & 
Coles, 2020) for MTE’s decisions in planning and facilitating discussions of teaching. Findings 
from self-study of teaching provide evidence beyond descriptions of practice that serve as 
models of scholarly practice (Lee & Mewborn, 2009) to identify and describe factors that 
influence MTE’s professional growth (Krainer et al., 2021). 

Existing research exploring teacher discussions of practice provides evidence of the 
challenges MTEs’ face in facilitating discussions. Of significance is whether (Dick et al, 2018) 
and how (Steele, 2005) teachers support claims about teaching during whole class discussions. 
This illustrates a central challenge in facilitating discussions where talk moves beyond sharing 
ideas to the consideration of those ideas by others who add to or counter them. Susan’s effort to 
initiate a discussion of cognitive demand illustrates how two interrelated components of whole-
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class scaffolding informed her discussion practices. First, efforts to engage the class in 
discussions of cognitive demand were informed by the need for PTs to plan and teach lessons at 
the end of the term. In the practical work of methods teaching, dates for field experience and 
practicum are fixed in the schedule. PTs must be able to function independently when those dates 
arrive. This practical consideration in methods teaching informs decisions about when PTs must 
use ideas about teaching relevant to planning mathematics lessons. Susan knew that she needed 
to prepare the PTs to plan lessons (Table 1, Individual Conferences). Second and related to this 
practical press toward independence, is the layering of instructional activities as informed by 
evidence of PTs’ pedagogical concepts. Susan knew almost immediately during the discussion of 
tasks and cognitive demand in Class 3 that a discussion would not be possible. PTs did as she 
asked and shared tasks and levels of cognitive demand, but there was no adding on or countering 
of PTs’ claims. The evidence of PTs’ sense making informed a redesign of instructional 
activities for Class 4 (Table 1) to provide additional opportunities for the development of 
connections between tasks, cognitive demand, and opportunities for children’s mathematics 
thinking. Susan’s discussion practice illustrates the interconnected nature of components of MTE 
discussion practice informed by whole-class scaffolding. Movement toward independence drives 
the development of instructional activities, yet evidence of PTs’ thinking encourages MTEs to 
redesign instructional activities creating layers that provide opportunities for PTs to develop new 
versions of pedagogical concepts like cognitive demand of mathematics tasks.  

Findings from our self-study support the claim that characteristics of whole-class scaffolding, 
including move toward independence and layering of instructional activities, were embedded in 
our planning for and facilitation of discussions. We do not claim that we use these components in 
particular ways or at particular times in our discussion practice. In addition, we do not make 
claims about coordination of whole-class scaffolding and other theories (e.g., Kitchen, 2005; 
Steffe & D’Ambrosio, 1995) used explicitly in planning for and implementing discussions of 
teaching. Instead, we claim that in the development of discussion practice, we attended to the 
practical work of teaching about teaching by providing opportunities for PTs’ to learn about 
teaching. Additional work is needed to address how MTEs’ use theories in concert in planning 
for and facilitating whole class discussions. For example, how do Susan’s explicit theories of 
relational teacher education (Kitchen, 2005) and constructivist teaching (Kastberg, 2014; Steffe 
& D’Ambrosio, 1995) support and inform her development of instructional activities that would 
support PTs’ concept of cognitive demand? Questions like this assume that theories are used in 
concert, but perhaps some theories or components of theories are used for planning, while others 
are used to facilitate PTs’ discussions of teaching.  

The two components of whole-class scaffolding, move toward independence and layering 
instructional activities, illustrate one tacit theory which informed our discussion practice. We 
claim these components contribute to the integrative concept of whole-class scaffolding (Bakker 
et al., 2015) that helps us maintain the complementarity between teaching and learning 
(Loughran, 2014) while informing our discussion practice. Structured this way, MTEs’ 
discussion practice is informed by components of whole-class scaffolding (Bakker et al., 2015). 
Although we do not claim that all MTEs build discussions on a theory of whole-class 
scaffolding, we do claim that unpacking explicit and tacit theories that inform MTEs’ discussion 
practice will contribute new knowledge of MTE growth of professional practice called for by 
Krainer et al. (2021). Findings from such studies have the potential to support MTEs beyond 
providing models of instructional activities described in studies of professional practice 
(Tyminski et al., 2021) to understanding the diversity of knowledge and experience that drives 
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the decisions involved in professional practices. Such findings address in part how MTEs’ tacit 
theories play a key role in the “learning potential” (Grossman et al., 2009, p. 2089) of 
instructional activities used in professional practice, while providing evidence of the “integration 
between knowledge and practice” (Krainer et al., 2021, p. S11). 
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Education policies and innovations that aim to improve instructional quality often fail to 
produce any meaningful or sustained changes to teaching when implemented at scale because of 
the significant learning demands they place on the individuals, groups, and organizations that 
comprise an educational system. In this paper, we describe an implementation resource 
developed to promote professional learning and cross role discussions about new state 
mathematics standards and report on the ways educators at different levels of the state system 
used them. Results demonstrate how implementation resources designed to be a boundary object 
for educators at multiple levels of an educational system have the potential to support learning 
and create systemic conditions conducive of change. 

Keywords: Policy, Systemic Change, Standards, Professional Development 

In the US, education legislation, innovations, or policies aimed at improving instruction and 
student learning at scale have seldom led to even modest lasting improvements to teaching 
(Coburn et al., 2016). Critical scholars, policy researchers, and implementation scientists have 
offered various explanations for why large-scale educational reform remains elusive, one of the 
main ones being that it requires significant individual and organizational learning (Fullan & 
Pomfret, 1977). Initiatives are often implemented quickly, ignoring the time, structures, and 
resources needed to support the significant shifts required of teachers and teacher leaders. When 
working with smaller scale initiatives, teachers, curriculum leaders and/or mathematics teacher 
educators can come together and engage in professional learning experiences over time and in 
context. In contrast, when working with sweeping changes at scale we need to consider what 
structures and resources can support professional learning across all roles in ways that are 
aligned with what we know about effective professional learning experiences (PD).  

In the context of this study, our focus was on the state-wide implementation of new high 
school mathematics standards. The State Board of Education adopted the standards in June with 
implementation expected in August. In response, our partnership of state and district leaders, 
mathematics education researchers, and classroom teachers quickly went to work designing 
structures and resources for state-wide, cross-role, professional learning experiences to support 
all stakeholders during the implementation. One of the key messages that accompanied the roll-
out of the new standards was that they were based on research on teaching and learning. Through 
formal and informal feedback, stakeholders expressed that they wanted to know more about the 
research in which the standards were grounded. To address this need, a new set of resources were 
created and included in a multi-pronged professional learning structure—a collection of 20 two-
page Research-Practice Briefs (R-P Briefs). These R-P Briefs were widely accessed and 
referenced by our stakeholders which left us wondering how the purposeful design of the R-P 
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Briefs contributed to their widespread use and in what ways the design features supported our 
stakeholders as they implemented the new standards.   

Background 
Much research has been done concerning the core features of effective professional learning 

experiences for teachers (e.g., Wei et al., 2009). Whether in person or online, effective PD 
provides opportunities that are responsive to the needs of participants, of sufficient duration, 
content focused, include active learning, driven by teachers’ work with students, while also being 
focused around communities of practice and connected to solving a problem of practice (e.g., 
Desminone, 2009; Mantranga & Silverman, 2020; Wei et al., 2009). Implicit in these 
descriptions is that effective PD needs to be guided by research on teaching and learning 
(Loucks-Horsey et al., 2009). For example, PD focused on supporting students’ developing 
number sense might be grounded in research on cognitively guided instruction (e.g., Carpenter et 
al., 2015) and learning trajectories (e.g., Clements & Sarama, 2009). While PD focused on 
supporting teachers’ facilitation of whole class mathematical discussions might be grounded in 
the research on noticing mathematically significant pedagogical opportunities (Leatham et al., 
2015; Stockero & VanZoest, 2013). Further, participants benefit from opportunities to interact 
with research through discussion, productive debate, and social interactions because research and 
its use are a social process (e.g., Nutley et al., 2007; Tseng, 2012). However, engaging with 
research in these ways is challenging as there are many barriers that make such engagement 
difficult to bring to fruition, especially in the context of addressing fast paced initiatives. Such 
barriers include addressing structural issues of access, time, and designing for engagement. 

One of the most basic barriers to interacting around research is access (e.g., Hemsley-Brown 
& Sharp, 2003; Shkedi,1998). Since much research is hidden behind paywalls and protected by 
copyright laws, addressing a state-wide interaction around research is complicated by the reality 
that many stakeholders cannot access it (Shkedi, 1998). Even if it was accessible, there is the 
reality of the time it would take to read and make sense of primary resources (e.g., Behrstock et 
al., 2009; Hemsley-Brown & Sharp, 2003). It is widely acknowledged that the current structure 
of teachers’ work day does not provide sufficient time for the everyday work of teaching, let 
alone time for professional learning. To address these concerns, researchers have created open-
access research briefs as a way to disseminate research (Anderson et al., 2019); the idea being to 
present research in a format that is widely accessible, synthesized around a narrow topic, and 
easy to read in a short amount of time. The potential of this format to address accessibility led us 
to wonder how we might leverage it as a resource to support professional learning. To do so 
would not only require that we align its contents with the features of effective PD, but also that 
we consider how its design might encourage and support interactions around it.  

Context & Theoretical Perspectives  
This study took place in the context of a statewide research-practice partnership (Penuel et 

al., 2015) that focused on a shared problem of practice − improving the implementation process 
for new high school mathematics standards. Our first goal was to co-design and study a statewide 
professional learning initiative to support implementation efforts. Our co-design efforts follow 
from a theoretical perspective of communities of practice (Lave & Wenger, 1991; Wenger, 
1998). Because practice is a defining characteristic of a community, communities are formed by 
collaboratively engaging with common resources toward a common goal. Though boundaries of 
practice distinguish communities across the social landscape, they are also a source of new 
learning. Boundary encounters allow for members of distinct communities to jointly negotiate 
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meaning around boundary objects—artifacts that carry meaning in multiple communities and 
support the coordination of practices across them (Star & Griesemer, 1989; Wenger, 1998). 

Many resources were co-developed in support of the partnership initiative and were intended 
to act as boundary objects. These included (but were not limited to) online PD modules, 
instructional frameworks, and the collection of R-P Briefs. Our hope was that each of the 
resources would become a boundary object, in that they would support knowledge exchange 
across the many different communities in our partnership (e.g., teachers, math leaders). The 
design principles for the R-P Briefs were initially informed by the literature on effective PD and 
refined over time through feedback from the statewide co-design network via surveys and focus 
group interviews. Ultimately, 20 R-P Briefs were developed, one for each unit of instruction 
across three different high school mathematics courses. Each R-P Brief was exactly 2 pages long 
and included: explanation of vertical alignment of the mathematics in the unit (both within the 
course and across courses), description of why the mathematics concepts included are important, 
at least one example task, research on students’ mathematical thinking and learning related to the 
big mathematical ideas in the unit, research on effective pedagogy specific to the unit, explicit 
attention to connections to the Standards for Mathematical Practice (SMPs), and discussion 
questions to consider with colleagues.  

The R-P Briefs were disseminated within online PD modules, on the partnership’s website, 
and in many state, regional, and local meetings (e.g., sessions at state affiliate NCTM 
conferences). The number of downloads for each R-P Brief at the time of this study from just the 
online PD modules, are shown in Table 1. The download data, coupled with the other ways we 
were aware they were being accessed, indicated that the briefs were widely used, which 
prompted us to wonder if our intentional design played out like we expected—to support teacher 
and teacher leader learning about the standards themselves and the research that informed them, 
as well as their implementation of the standards.   

 
Table 1: Number of Canvas Downloads as of July 2018 

Math 1 Briefs 
(n=6) 

Number of 
Downloads 

Math 2 Briefs 
(n=6) 

Number of 
Downloads 

Math 3 Briefs 
(n=8) 

Number of 
Downloads 

1.1 416 2.1 593 3.1 693 
1.2 455 2.2 105 3.2 152 
1.3 111 2.3 302 3.3 212 
1.4 82 2.4 84 3.4 72 
1.5 262 2.5 30 3.5 218 
1.6 68 2.6 9 3.6 45 

    3.7 84 
    3.8 78 

Total 1394  1123  1554 

Methods 
This study used survey methods to build an understanding of how the R-P Briefs supported 

teacher learning about the implementation of new mathematics standards. To that end we aimed 
to address the following research questions: What aspects of the R-P Briefs do math teachers and 
math leaders say are helpful?; How do math teachers and math leaders say they use the R-P 
Briefs?; and What actions do math teachers and math leaders that use the R-P Briefs say they 
take as a result of reading them?  

The partnership developed and administered a survey in Spring 2018 to inform its ongoing 
efforts to support standards implementation. Respondents were assigned to sets of questions 
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specifically addressing the partnership’s implementation resources and supports developed for 
their grade band. In this report, we focus on the set of questions addressing the R-P Briefs which 
was assigned to those identifying they worked in the high school grade bands.  

The survey was distributed through the state agency’s listservs to approximately 20,000 
mathematics teachers, school administrators, and district mathematics leaders. A total of 1,768 
educators from 96% of the state school districts accessed and completed at least 80% of the 
survey. Here, we report on responses from the 346 educators from 85 of 115 school districts who 
had an opportunity to respond to the set of questions focused on the R-P Briefs. The questions in 
this block asked participants if they were aware of the R-P Briefs. The numbers were about 
evenly split with 184 people (53%) said they were aware and 162 (47%) said they were not 
aware. The remaining analysis is based on the 184 people who were aware of the R-P Briefs. 
This includes responses to three survey items. The first two asked about how participants used 
the R-P Briefs and which aspects of them they found helpful. These were both “select all that 
apply” items. The third was an open response item that asked, “What are some of the actions you 
have taken (if any) after engaging in the research-practice briefs?”  

The responses to the first two questions were analyzed by determining frequencies and 
percentages for each response option and then disaggregated by role group (e.g., teacher, math 
leader–i.e., school-based coaches, district curriculum leaders, school administrators). To analyze 
the responses to the open-ended, all members of the research team first read all of the responses 
to become familiar with their contents, making memos of common themes that emerged. This 
process and the ensuing team discussion led to the generation of five codes that captured the 
range of participants’ actions with the R-P Briefs. Using our set of codes (e.g., planning, 
learning/reflection, shared with others, lead PD, guide curriculum decisions), each team member 
individually coded the participants’ responses. Any coding disagreements were reconciled 
through group discussion. In the following sections we report the results of our analysis with 
respect to each of the research questions.  

Findings 
 Useful Features of the R-P Briefs  

The survey question that asked about the usefulness of particular features of the R-P Briefs 
was multiple response in format with answer choices aligned with the 7 design principles for the 
R-P Briefs described above. The design features that were selected as useful by more than half of 
the respondents were vertical alignment and tasks (51% and 53% respectively), with the 
description of why the topic is important being the least useful (9%). Disaggregating the data, 
revealed teachers and math leaders find some features similarly helpful, but respond quite 
differently to others. For example, while 48% of math leaders indicated that the discussion 
questions to consider with colleagues were useful, only 13% of the teachers selected this feature. 
While not as dichotomous, there are similar results for the research features and the SMPs. Such 
results suggest that usefulness of features may be aligned with how they are connected to one’s 
daily work responsibilities as teachers and math leaders, while both are responsible for the 
implementation of the standards, they each have different roles in the implementation process.  

 
Table 2: I find the following aspects of the R-P briefs useful [Select all that apply] 

 All Participants 
(n=184) 

Teachers 
(n=138) 

Math Leaders 
(n=46) 

Vertical alignment (grade/course distinctions) 51% 47% 63% 
Description of why a topic is important 9% 9% 7% 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

982



 
 

Tasks/Examples 53% 52% 57% 
Discussion questions to consider with colleagues 22% 13% 48% 

Research on students’ mathematical thinking and learning 29% 22% 52% 
Research on effective mathematics pedagogy 27% 17% 57% 

Explicit attention to the Standards of Mathematical 
Practice 

27% 23% 37% 

Other 2% 2% 0% 
 
How the R-P Briefs are Being Used  

The survey question that asked about how the R-P Briefs are being used was multiple 
response in format with answer choices that were aligned with not only the design elements of 
the R-P Briefs, but also the intention of sharing related research on teaching and learning in a 
usable way (See Table 3). High response rates on learning more about the mathematics of 
courses taught (54%), supporting instructional decisions (43%), and gaining more resources for 
instruction (57%) speak to the immediate needs of teachers in their daily work, but also indicate 
a valuing of what research says about teaching and learning by the teacher respondents. Math 
leaders also found the R-P Briefs useful for instructional decision making and resources (43% 
and 59%, respectively). This shows that as a boundary object, the two communities found 
common purpose for the R-P Briefs in addressing the overlapping aspects of the work of the two 
communities−supporting and implementing mathematics instruction. 

Table 3: I use the R-P Briefs to … [Select all that apply] 
 All Participants 

(n=184) 
Teachers 
(n=138) 

Math 
Leaders 
(n=46) 

Learn about content for the math courses I teach 49% 54% 35% 
Learn about pedagogy for the math courses I teach 36% 36% 35% 
Learn about vertical alignment from previous math 

courses 
42% 46% 30% 

Participate in discussions with colleagues in informal 
settings 

19% 15% 30% 

Participate in discussions with colleagues in formal 
settings 

32% 25% 52% 

Support my instructional decisions 43% 43% 43% 
Share information with my principal, colleagues, or 

district level personnel 
16% 8% 41% 

Get instructional resources 58% 57% 59% 
I am familiar with the [blinded] briefs, but I do not find 

them useful 
4% 5% 0% 

Item left Blank 21% 21% 20% 

 
Stark differences in the ways these two communities (i.e., teachers and math leaders) say 

they use the R-P Briefs appear in the collaboration-related response choices and vertical 
alignment. While some teachers used the R-P Briefs in formal or informal discussions with 
colleagues, a larger proportion of math leaders responded with the use of the R-P Briefs in this 
way. In particular over half of the math leaders responded that they use the R-P Briefs in formal 
settings. Further, only 8% of teachers indicated that they shared the tool with colleagues, 
compared with 41% of math leaders who reported that they had shared the R-P Briefs. Another 
distinction in how the tool was used by the different communities appeared when considering the 
learning about mathematics content choice alongside the vertical alignment choice. These 
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response options speak to the usefulness of the R-P Briefs for teachers in situating these new 
courses within the K-12 continuum, an aspect also valued by math leaders but to a lesser extent.  
Actions Taken as a Result of Engaging with the R-P Briefs 

Of the 184 people that responded to the R-P Briefs question block, 107 of them (76 
classroom teachers, 31 math leaders) responded to the open-ended item asking them to describe 
some of the actions they have taken (if any) after engaging with the R-P briefs. The results 
suggest that actions tended to be related to classroom level lesson planning, personal learning or 
reflection, sharing the R-P Briefs with others, using them when leading professional 
development, and using them to guide school or district-level curriculum decisions (see Table 4). 
In essence, this question ended up providing an opportunity for people to provide further detail 
regarding how they are using the R-P Briefs.  

 
Table 4: Percent of Participants that Noted an Action by Theme 

 Planning Learning and/or 
Reflection 

Shared with 
Others 

Lead PD Guide 
Curriculum 
Decisions 

Teachers 70% 37% 20% 3% 4% 
Math Leaders 1% 23% 52% 26% 13% 

Total 52% 33% 29% ~1% ~1% 
 

The most common actions described by teachers were different from those described by math 
leaders. Teachers overwhelmingly noted that they used what they gleaned from the R-P Briefs to 
inform their lesson planning and/or to reflect on their own learning. In contrast, math leaders 
most commonly noted they physically shared the R-P Briefs with others and/or used them when 
leading professional development. In the sections that follow we provide further description of 
the actions described in each of these categories.  

Classroom level lesson planning. As we saw earlier, many respondents noted they used the 
R-P Briefs to support their instructional decisions and to get instructional resources. Consistent 
with that finding, almost three-quarters of the teachers that responded to this item described the 
ways they adjusted their classroom level lesson plans based on what they learned from the R-P 
Briefs. For example, T47 noted “I adjusted my lessons based on the research”, and T49 wrote “I 
have implemented some of the tasks suggested”. One of the most common planning actions was 
related to adjusting instructional emphasis based on the vertical alignment feature. For example, 
T22 wrote “Used for adjusting my instruction to better meet the curriculum without going too 
far”, T33 wrote, “Tweaked emphasis on units, placing less emphasis on some topics and 
increasing others.”, and T74 wrote, “Honing in on the exact type problems my students will have 
to pass. In the past it has been too broad and this helps streamline materials.” In fact, with the 
exception of the “discuss with your colleagues” feature, all of the R-P Brief features emerged as 
being used to inform classroom level planning in some way.  

Personal learning or reflection. From the previous question, we know that teachers and 
math leaders used the R-P Briefs to learn about content, pedagogy, and vertical alignment. The 
open-ended responses that were focused on personal learning or reflection add to this picture 
because they highlighted participants’ attention to research on student thinking or pedagogy. For 
example, T16 notes using the R-P Briefs toward “Trying to better understand how students’ 
think”, and T43 noted “I have used these to gain a deeper understanding of what my students 
need to engage them in the mathematics outside of everyday calculations.” The most referenced 
aspect of the R-P Briefs was the vertical alignment of content. This seemed to support teachers 
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and math leaders in understanding how the standards are situated both within and across courses. 
For example, T11 noted:  

For me, the briefs give me a better understanding of the depth of understanding the course is 
expected to achieve. In the past, I always went way too deep and students and parents would 
come back and say the student learned nothing in the next course or two that the learner took 
because too much had been covered. Knowing when to stop was a major challenge in the 
past. I can now see more clearly and confidently that concepts will be covered in due course 
and I did not have to feel responsible for getting the learners through too much material. 
These responses indicate that not only did the teachers and math leaders go to the R-P Briefs 

with the intention to learn and reflect, but also that they found the features related to vertical 
alignment and research on teaching/learning to be the most impactful when they took this action.  

Sharing the R-P Briefs with others. Across all roles, participants acted by sharing and 
discussing the R-P Briefs with others. There are examples of sharing and discussing the R-P 
Briefs with peers, administrators, and even parents. In some instances, it is unclear if sharing 
simply means giving the R-P Brief to someone else with no additional interaction (e.g., “Shared 
briefs with preservice teachers”, T48). In other instances, it is clear that the sharing included 
interacting with each other around the R-P Brief in a meaningful way. For example, T46 
responded, “I have had numerous planning meetings with the math 2/3 teacher at our small 
school to ensure we are using similar research based practices for teaching.” and TL87 wrote, 
“Sharing information from the briefs with administrators and teachers. Encouraging use in Math 
PLCs.” These responses give us a sense of how the R-P Briefs might land in the hands of people 
that might not have otherwise seen them and they illustrate how various communities (e.g., 
departments, professional learning teams, friendly colleagues) might be interacting around them.  

Leading professional development. While we know the R-P Briefs are being shared and 
discussed, there is also evidence that math leaders are using them in their professional 
development work. This includes both formal professional development sessions and one-on-one 
coaching. For example, TL96 noted, “I have used them in PD with my district to try to get buy-in 
for using tasks on a regular basis.” While TL103 explained, “I use them in facilitating discussion 
with the teachers I coach.” These actions suggest that the briefs enabled connections between 
communities and were helpful in making meaning across boundaries. 

Guide school or district level curriculum decisions. Among the many ways that 
participants said they acted on the R-P Briefs were actions to guide both school level and district 
level curriculum decisions. For example, TL85 noted,  

The briefs were used in each Math 1 and Math 2 Professional Learning session to discuss the 
vertical alignment of the mathematics and to understand the focus of the content for the unit 
for the course. The briefs are a part of the Math 1 Unit Framework that is currently being 
developed in our district.  
Similarly, TL92 responded “Curriculum decisions - pacing, order of content, etc. for district-

level documents.” These actions are different from classroom level planning noted above in that 
such decisions affect teachers and students across a system.  

Discussion & Conclusion  
    This study was motivated by a need for designed structures and resources that supported 

professional learning related to the implementation of large-scale educational innovations. In our 
case, this was the implementation of new state math standards. Given that our theory of learning 
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is grounded in communities of practice (Wenger, 1998), any resources we designed were 
intended to be boundary objects–spanning the boundaries of the multiple communities of 
stakeholders in the system. Our findings suggest that the R-P Briefs not only supported 
professional learning as intended, but also acted as a boundary object in ways beyond those for 
which it was originally designed.  

Our design principles were informed by the research on effective PD. Findings suggest that 
all but one of these features was seen as useful to at least 20% of the respondents, the only 
exception being the explanation of the usefulness of the mathematical concept. This exception is 
likely explained by the fact that the participants already know why the content is useful (they are 
math folks). Thinking about the R-P Briefs as both a resource to support learning and as a 
boundary object, the findings shed interesting light. First, there is evidence that the R-P Briefs 
physically crossed community boundaries. They were shared and/or discussed in communities of 
teachers, communities of math leaders, communities of teachers and math leaders together in a 
school, and even communities of teachers, parents, and students in a single class.  

Second, Star & Greisemer (1989) describe boundary objects as, “objects which are both 
plastic enough to adapt to local needs and constraints of the several parties employing them, yet 
robust enough to maintain a common identity across sites” (p. 393). Looking at the two 
communities of focus, teachers and math leaders, the findings indicate that some of the R-P Brief 
features were found equally useful within each community, suggesting that these features mean 
something to both. Yet there were other features that seemed more useful to one community than 
the other. This coupled with the finding that different communities are using the resources in 
different ways, suggest that an important design feature of the R-P Briefs was including content 
that was recognizable and meaningful to both communities yet presented in a way that it was 
malleable enough to be used by the different communities in different ways. Ultimately, we 
designed the R-P Briefs to be boundary objects, and the findings indicate that they in fact are.  

For others considering how such a resource might support work in a different context, our 
findings suggest that in addition to designing based on what is known about effective PD, design 
should attend to the needs of the communities you hope to span. Specifically, design principles 
should include some features that are recognizable and important to multiple communities to 
support the development of a common language and an avenue for important boundary 
encounters, while also including features directly connected to the work of the individual 
communities. At the same time, we caution you to be careful about what is and is not included in 
the design and content. Findings here suggest that when a resource travels across boundaries in a 
large system, it develops power and could be used in ways that were not originally intended.  

To date, over 10,000 R-P Briefs have been downloaded, and we know from the results here 
that people are accessing them in other ways as well. We have come to see the R-P Briefs as one 
example of a group of designs that our partnership developed to support systemic coherence in 
the implementation of new innovations. Like the briefs, other implementation resources were 
also grounded in research on teacher and student learning, instruction, and implementation. 
Collectively they provide access to safe professional learning opportunities and represent the 
expertise of a diverse set of educators within the system. Our hope is that findings from studies 
like this one can support others in designing implementation resources as boundary objects that 
support professional learning in the context of implementing educational innovations at scale.  
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In this brief research report, we share our preliminary findings from a collaborative analytic 
autoethnography investigating our co-teaching across the disciplines of mathematics and 
mathematics education. We used identity to investigate sources of conflict and found that even 
successful interdisciplinary collaborations can give rise to conflict. This conflict may be 
attributable to contestation of identities stemming from disciplinary cultural differences.  

Keywords: Teacher Educators; Professional Development; Autoethnography; Collaboration  

The growing desire for interdisciplinary collaboration and the promise of its benefits are 
often blunted by fear of working beyond one's own familiar disciplinary community or even of 
conflict. What role does identity play in conflict that arises in interdisciplinary collaboration? 
Through this autoethnographic study, we illustrate how story as identity makes visible: 1) the 
causes of conflict in interdisciplinary collaboration, 2) the relation of conflict to identity, and 3) 
how understanding these aspects can make conflict resolution possible. These understandings 
provide interdisciplinary collaborators with both a language and means for minimizing conflict 
and resolving it as it arises. This study is a brief report on the emergent findings of a larger, on-
going analytic autoethnography.  

The need for collaboration between mathematicians and mathematics educators, particularly 
regarding the education of prospective mathematics teachers, has been well-documented (CBMS 
2001, 2012; Graham & Fennell, 2001). This type of collaboration has taken many forms, 
including collaborative teaching partnerships between mathematicians and mathematics 
educators (Bleiler, 2015; Grassl & Mingus, 2007; Thompson et al., 2012). Co-teaching 
arrangements are often complicated by differences between the two fields in conventions, 
beliefs, language, and both research and instructional methods (Fried, 2014; Sultan & Artzt, 
2005). While difficulty in overcoming these differences can result in either conflict or a passive 
collaboration, in which labor is distributed more than shared (Friend & Cook, 1993), there are 
examples of long-standing, successful teaching collaborations between mathematicians and 
mathematics educators (Bass & Ball, 2014; Goos & Bennison, 2018; Heaton & Lewis, 2011). 

Arbaugh, McGraw, and Patterson (2019) note that the differences between mathematicians’ 
and mathematics educators’ disciplines can most accurately be understood as cultural 
differences. They suggest that co-teaching in which “members of different cultures and 
communities come together to design and implement experiences for teachers that are more 
impactful” are more successful than in which the groups designed and implemented them 
separately (p. 160). They also contend that a necessary condition for successful collaboration is 
that “the members of a collaborative mathematics teacher education team have an ethnorelative 
cultural sensitivity” (p. 163, italics in original). Differences in disciplinary culture can also 
produce conflict, and part of successful collaboration is working through that conflict by way of 
mutual cultural understanding. 

We sought to better understand how conflict can arise in collaborations between a 
mathematician and mathematics educator (even long-standing, successful ones) and how identity 
as members in the respective disciplinary cultures contributes to this conflict. 
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Theoretical Frames 
Autoethnography, our methodology for this study, is often employed to create meaningful 

research that is grounded in personal experience and has been used to speak to issues of identity 
(Ellis et al., 2011). It provides teacher educators “a means to understand themselves and enhance 
their practice” (Chapman et al., 2020) and has been used in education research as an insightful 
way to connect the personal to the cultural (Dyson, 2007). Guyotte and Sochacka (2016) found 
collaborative autoethnography to be particularly useful in investigating their own 
interdisciplinary collaborative teaching. This method of research can create empathy across 
different groups and thus, is pertinent to investigating interdisciplinary collaboration. 

While there exist critiques of autoethnography as atheoretical or “navel-gazing” (Marshall & 
Rossman, 2016), it is notable that there is a range of approaches and analytic autoethnography is 
one that is rooted in traditional symbolic interactionism (Anderson, 2006a). Analytic 
autoethnography is ethnography in which the researcher: 1) is a full member of the research 
setting, 2) makes this membership visible in publication, and 3) uses an analytic framework 
focused on improving theoretical understandings of the broader phenomenon under study. 

Sfard and Prusak (2005) define identity as a set of stories that are socially constructed (i.e., 
these stories can be told by others about the subject or by the subject themselves). Since identity 
is storied, it is not fixed but is continuously told and re-told through interactions with others and 
the self. Further, some of the “most significant stories are often those that imply one’s 
memberships in, or exclusions from, various communities” (p. 17). When combined with 
analytic collaborative autoethnography, identity as story creates a powerful framework through 
which to investigate conflict in successful interdisciplinary collaboration, allowing us to consider 
both identity and cultural aspects of the conflict.  

Methods 
Participants and Context 

We are positioned as both researchers and participants in this study. As a math education 
researcher, Aubrey’s primary area of expertise is teaching mathematics; as a research 
mathematician, Scott’s primary area of expertise is mathematics. Each has worked in their 
respective fields for over a decade. However, our expertise does overlap, as Aubrey’s secondary 
area of expertise is mathematics and Scott’s secondary area of expertise is teaching mathematics. 
As a person with expertise in teaching mathematics, Aubrey identifies as a supportive co-teacher; 
similarly, Scott identities as a good teacher of mathematics. 

We have collaborated many times over the last eight years, from grant writing to research to 
professional development for both teachers and higher education faculty. We have served as 
references and letter writers for one another for professional advancement. We also reach out to 
each other for advice on working with and in one another’s respective disciplines. We both view 
our various collaborations as successful and appreciate the professional insights of one another. 

In the summer of 2018, we co-taught a two-week, 80-hour intensive mathematics content 
professional development program for practicing K-8 teachers. The program called for the 
course to be co-taught by a mathematician and mathematics educator and set the sequence of 
topics and tasks. This was the fourth consecutive summer that we co-taught this course but the 
first time at that location. 
Data Collection and Analyses 

During the professional development, we recorded audio of daily debriefing conversations. 
From nine separate sessions, there was a total of nearly four and a half hours of audio. Data 
analysis was conducted in four stages. First, we summarized the content of the recordings. Then 
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using these summaries, we identified areas where conflict was a topic of discussion. Next, we 
reduced the data to one instance of conflict that was particularly compelling and clear. We then 
transcribed this section by hand and collaboratively hand coded it for themes (Guest et al., 2011; 
Saldaña, 2016). Last, we analyzed the data for identity (Sfard & Prusak, 2005), understood as a 
set of stories, and threats to identity. 

We were intentional about two aspects of our data analyses: timing and co-construction. We 
allowed time to lapse between the data collection and the analysis of these data. This allowed us 
space to create distinction between ourselves as participants and ourselves as researchers. A year 
passed between recording the data and the summary analysis; another between the summary 
analysis and the data reduction to moments of conflict. 

Co-construction was also an important aspect of our analyses, as it ensured that we created 
meaning from the data dialogically (Anderson, 2006b), and were in essence using member 
checking to ensure validity (Creswell, 2014). 

Findings 
The findings fall into two areas: evidence of the success of our collaboration and how 

identity contributed to conflict. First, the collaboration was largely successful and harmonious, 
and conflict was rare. This was seen in both early analysis (summaries) and in the identity 
analysis. The summaries showed that the content of the debriefs included multiple topics 
indicating the success of the collaboration (e.g., joint classroom management; victories and 
challenges; distribution of work; strategies for supporting learners). While our investigation here 
undertakes one of the conflicts experienced within our collaboration, it is worth noting that in 
general, conflict was only one of many topics and could not be said to characterize the debrief 
data overall. Further, in the later identity analysis of the conflict under investigation, there are 
multiple instances of endorsing one another’s stories and of working through contested stories to 
find a story both could endorse. 

Second, we found that in the specific instance of conflict under investigation here, the 
conflict arose when one of our stories threatened the other’s identity. Further, the conflict arose 
when a particular interaction gave rise to multiple stories that were then contested. The 
resolution came from understanding 1) that identity was threatened by an interaction, 2) this 
caused the story to be contested, and 3) why it is important in the respective disciplinary culture. 
We use the following vignette to illustrate this phenomenon. 
Treating for Mathematical Status and Hand Raising Protocols 

In general, both of us recognize that within a teacher professional development course on 
mathematics content, there will be status differentials among the teachers, and that as the 
instructors, it is our responsibility to treat for status.1 In the past, we have agreed to establish a 
hand-raising protocol early in the course to ensure that participation is more equitably distributed 
and that all the teachers have sufficient time to process and formulate responses when questions 
are posed to the group.  

On the first day of the course when Scott taught, he did not initiate this hand raising protocol. 
He had an alternate plan for treating for status—to allow the over-participators to attempt to 
answer the posed question, but to focus on a lower status teacher when they notice the intended 
aspect(s) of the task at hand, thereby assigning competence to the lower status teacher. 

Aubrey noticed that Scott had not initiated the hand-raising protocol. She knew that when he 
teaches undergraduate mathematics courses, he doesn’t rely as heavily on this type of tool, 

                                                 
1 See Cohen & Lotan, 2014. 
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preferring to instead develop a learning community with freely exchanged academic ideas and 
that he treats for status in alternate ways over the semester. Aubrey contemplated signaling to 
him to suggest initiating the hand-raising protocol, but instead decided to bring it up later, 
assuming that he had just forgotten and was using his usual techniques. When she did bring it up, 
she asked Scott if he had forgotten about the hand raising protocol.  Scott interpreted this 
question as a judgment on his teaching and responded by asking whether Aubrey trusted him to 
make pedagogical decisions. Later, they were able to talk through this experience and understand 
one another’s perspective and how their meanings were intended and misunderstood. 
Contested Narratives and Threats to Identity 

While the vignette above is brief, it provides an opportunity to consider how the stories from 
the interaction—and their contestation—explain the source of the conflict. In the vignette, there 
is an endorsed story shared by both Aubrey and Scott—that treating for status differentials in a 
mathematics class is important. This shared and endorsed story identified both Aubrey and Scott 
as “good mathematics teachers” in the sense that their teaching is informed by research on 
equitable mathematics teaching. 

When Scott made an in-the-moment decision to treat for status in a different way, Aubrey 
assumed that he had forgotten the usual strategy and asked if he forgot. This event is where their 
individual stories (and the associated identities) diverge. Aubrey characterized that move as a 
reminder, thereby identifying herself as a supportive collaborator. Scott characterized that move 
as questioning his pedagogical acumen and thereby calling his identity as a “good mathematics 
teacher” into question. Scott’s response, questioning whether Aubrey trusted him to make 
instructional choices, further clarifies that he is contesting the story that identified him as “not a 
good mathematics teacher.” His response not only contests the story that he is not a good 
mathematics teacher, it also contests Aubrey’s story that she is a supportive co-teacher. The 
resolution of the conflict comes only when these perspectives and cultural misunderstanding are 
made clear to one another. 

Discussion and Conclusions 
On the surface, this vignette displays a disagreement about how to best address status 

differentials in a mathematics professional development course. We found that an underlying 
source of tension is the way in which our identities are contested by one another, whether 
intentionally or not. Aubrey called Scott’s identity as a “good teacher of mathematics” into 
question when she attempted to remind him of their usual pedagogical choice. Scott called 
Aubrey’s identity as a “supportive co-teacher” into question when he questioned whether she 
trusted his choices. However, the conflict arose (and escalated) because of how these stories 
about pedagogical choices and trust signal something deeper about how we each identify the 
other in relation to our own primary expertise. This significance is compounded by the fact that 
in each case, one's primary expertise is the other's secondary expertise. 

Owning to complementary expertise and disciplinary cultural differences, there is still 
opportunity for conflict.  Despite the many years of collaboration across multiple aspects of our 
professional lives, and mutual respect for one another, we still find that conflicts arise. It seems 
unlikely that in our collaborations, we will be able to eliminate conflict completely, given that 
we are each firmly established in our respective disciplinary cultures. However, by identifying 
and managing the underlying causes–identity and disciplinary cultural differences–we are able to 
see what gives rise to conflicts, resolve them, and learn from them.  
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Mathematics education researchers (MERs) engage in interdisciplinary collaborations that 
contribute to the mathematics education discipline. MERs' learned forms of work and discourse, 
i.e., practices, are particular to their mathematics education discipline and might not align with 
practices needed to conduct interdisciplinary work. We interviewed four MERs who were leaders 
of interdisciplinary groups to learn about practices they reported using while collaborating with 
their groups. Using qualitative content analysis, we describe five practices commonly reported 
by the four MERs. We argue that these five practices are central ways of knowing and doing for 
MERs when working in interdisciplinary groups. Our study contributes to the mathematics 
education discipline by unpacking practices MERs use to engage in interdisciplinary groups that 
are influenced by interpersonal relationships. 

Keywords: Mathematics education, interdisciplinary collaborations, practices, disciplines.  

Mathematics Education Discipline and Work 
Disciplines are defined by Williams et al. (2016) as a "phenomenon" involving 

"specialization" of work and discourse (p. 4). Disciplines are constantly evolving while 
increasing their specialization and differentiation. For instance, mathematics education as a 
discipline has evolved from being informed by the disciplines of psychology and mathematics 
(Kilpatrick, 2014; Stinson & Walshaw, 2017) to embracing disciplines such as neuroscience 
(e.g., Norton et al., 2019), science education (e.g., de Freitas & Palmer, 2016), and anthropology 
(González et al., 2001; Gutiérrez, 2013). Disciplinary practitioners are introduced to disciplinary 
ways of knowing and doing in their training programs. Mathematics Education Researchers 
(MERs) develop their professional identity by learning research practices within the discipline of 
mathematics education. In their career, practitioners gain status in their discipline by engaging in 
disciplinary forms of discourse. MERs further interact with practitioners from other disciplines 
and collaborate in interdisciplinary groups.  

MERs have engaged in interdisciplinary work to address complex problems. For instance, 
Civil joined González from anthropology to explore funds of knowledge (González et al., 2001). 
Norton joined colleagues from computer science to develop software systems (Jones et al., 2015) 
and neuroscience to explore students' anxiety (Norton et al., 2019). Davis joined colleagues from 
various disciplines to explore spatial reasoning (Bruce et al., 2017). We can learn about MERs' 
interdisciplinary collaborations from publications, but because the collaborations are not the 
focus of the publications, descriptions about the process of interdisciplinary work are thin. Schön 
(1992) stated that practitioners of a discipline do their work by using more than "research-based 
technique" (p. 54). Conducting work involves aspects such as interpersonal relationships where 
people act and work towards solving important problems and finding common ground (Fletcher, 
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1998). Interpersonal relationships involve social exchanges that welcome and lift people 
involved academically and emotionally. We argue that working in interdisciplinary groups is 
more than contributing discipline specific expertise, it involves the negotiation of disciplinarity 
through interpersonal relationships. This includes paying attention to ways of being, interacting 
and doing within the groups. It also includes identifying disciplinary-based practices that are 
essential, can be modified or compromised, or do not align with the interdisciplinary work.  

Because members of interdisciplinary groups have been trained in their respective 
disciplinary ways of knowing, communication and representation differences might emerge 
when coming together. Bruce et al. (2017) reported that members of an interdisciplinary group 
need to study "discipline-specific vocabularies and methodologies" and articulate problems so 
that all members can "identify and situate themselves" (p. 158). Goos and Bennison (2018) 
described the value of disciplinary knowledge to interdisciplinary team members. In addition, 
team members felt threatened when their disciplinary knowledge and ways of operating were not 
recognized professionally when "working outside their discipline" (p. 267). 

Disciplinary ways of knowing and doing work are called practices (Hyland, 2004; Williams 
et al., 2016). In this paper, practices and practice categories are italicized to help the reader 
recognize when words or phrases are being used to describe practices. Building from existing 
research (e.g., Cobb & Yackel, 1996; MacIntyre, 1984; Schön, 1983, Wenger, 1998), Suazo-
Flores et al. (2021a, para. 4) defined practices as "established ways of being, operating, and 
interacting with others." Suazo-Flores et al. (2021a, para. 9) found that in interdisciplinary 
groups, MERs engage in practices such as working towards research interests, cultivating trust 
and open-mindedness, and understanding of institutional support. Building from this work, we 
interviewed MERs who worked in interdisciplinary groups. Our initial analysis resulted in a 
revision of the categories of our definition of practices, where: 

Being […] refers to MERs describing their view of themselves and others in the 
interdisciplinary group including specific roles taken on by group members. Operating […] 
means members' ways of doing in the interdisciplinary group and acknowledging 
institutional policies and actions in order to complete the work. Interacting is […] developing 
communication standards, negotiating the meaning of ideas that allows the group to 
collaborate, and explaining work to people outside of the group. (Suazo-Flores et al., 2021b, 
p. 827, italics added) 

With this revised definition, we conducted further research to address the question: What 
practices did MERs commonly report using in interdisciplinary research groups? 

Methods and Analysis 
This research is part of a larger project focused on describing MERs' lived experiences of 

working in interdisciplinary groups (Suazo-Flores, et al., 2021b; Suazo-Flores, et al., 2021c). 
Four MERs from three different projects who identified themselves as members of 
interdisciplinary research groups volunteered to participate in this research: Amelia, Ian and 
Alexis, and Iris (pseudonyms). Amelia was a faculty member as well as a primary developer and 
leader of her interdisciplinary project. Her project involved improving curriculum and pedagogy 
for university pre-service mathematics education programs. Ian and Alexis collaborated on a 
project to create engineering tasks that would allow students to learn new mathematics content. 
Ian was a graduate student and Alexis was a faculty member and Ian's advisor. Iris was a faculty 
member and leader of a project between mathematicians and mathematics teacher educators. The 
project developed curricular modules to help students learn mathematics content. We conducted 
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three semi-structured interviews (Kvale, 1996) with the four MERs (Ian and Alexis were 
interviewed together) focused on practices that developed and were used in the interdisciplinary 
groups. MERs shared the story of the interdisciplinary group, ways of doing in the group, and 
reflections as a member of the group. For example, we asked MERs to describe situations when 
working in the group was an asset or a constraint. 

To create codes and definitions for the categories of practices and to identify examples, we 
used grounded theory (Charmaz, 2005) to code Amelia's transcript (Suazo-Flores, et al., 2021b). 
Each practice was categorized as being, operating, or interacting and assigned a short descriptive 
phrase. Three phases of analysis resulted in a codebook with definitions of the practice 
categories, descriptions, and examples of different practices. For example, the following excerpt 
was coded as the practice acknowledging a personal view of self within the being category. 

Amelia: For me, it's been a wonderful growing experience. So, I don't feel like I've lost 
anything because I still have my life in my discipline, and I have a much enriched and 
expanded life as well by having these experiences that I didn't realize I was going to get. 

Amelia referred to her personal view of self as an MER noting, "I still have my life in my 
discipline." She also recognized that her work in the interdisciplinary group had "enriched and 
expanded" her life. We identified this as a way of being because it provided evidence of her 
evolving identity as an MER through her work with people from other disciplines. 

We then used the codebook to code all three interviews. Evidence of practices reported by 
the four participants in the form of interview transcripts constitutes our data. A deductive 
approach using the codebook allowed for analysis of the transcript data consistent with 
qualitative content analysis, such that the coding and analysis included two steps: "the first is a 
qualitative-interpretative step following a hermeneutical logic in assigning categories to text 
passages; the second is a quantitative analysis of frequencies of those assignments" (Mayring, 
2015, p. 366).  

For reliability, each transcript was coded by a member of the research team using the 
codebook and then checked by a second member of the research team. When coding differences 
between researchers were found, the coded practices were discussed by the entire research team 
to share reasoning and clarify codes. Once agreement was reached regarding the use of a code or 
its definition, the codebook was updated. Once this qualitative-interpretive step was completed, 
the codebook was updated and the coded items in each of the transcripts were reviewed for 
alignment with the updated codebook (c.f., Mayring, 2015).  

Following the final coding of the three transcripts, frequency tables were created to identify 
how often each practice occurred in the data. Table 1 is the frequency table for the five practices 
described in this paper. The frequencies of the coded practices were disaggregated by project and 
show the amount of evidence from each of the projects used to make a claim. For example, there 
were 22 instances where the being practice acknowledging a personal view of others' roles was 
coded across three interview transcripts. Disaggregation showed that 6 of these codes were from 
Amelia's transcript, 9 of these codes were from Ian and Alexis' transcript, and 7 of these codes 
were from Iris’s transcript. The frequency tables allowed for the identification of practices that 
were common between all of the participants. This research presents the five practices that were 
reported in each of the three transcripts at least three times. 
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Table 1: Frequency Table for Common Practices 
Category Practice Amelia Ian 

and 
Alexis 

Iris Total 

Being Acknowledging a personal view of self 4 6 20 30 

Being Acknowledging a personal view of others 6 9 7 22 

Interacting Developing ideas between partners 6 7 3 16 

Operating Working towards common goals 9 5 5 19 

Operating Using ways of working together 4 3 4 10 

 

Findings 
Our analysis identified five practices MERs commonly reported using in their 

interdisciplinary groups: acknowledging a personal view of self, acknowledging a personal view 
of others, developing ideas between partners, working towards common goals, and using ways of 
working together. The first two practices are in the being category, the third practice is in the 
interacting category, and the last two practices are in the operating category. Below, we describe 
each practice and use examples from the data to illustrate the category.  
Being: Acknowledging a Personal View of Self 

Acknowledging a personal view of self was coded as a type of being practice. This practice 
involved MERs using individual identity, including their dispositions, interests, sense of 
efficacy, and roles to engage with others in the group's work. Our participants showed evidence 
of recognizing their roles and dispositions in their interdisciplinary groups. For example, Ian 
indicated, he "was the central person" who at the beginning of the project "was trying to meet the 
needs of so many people," which we interpreted as him acknowledging his role in the group and 
others' expertise. In Iris' research group, she described how she was "not a mathematician," but 
brought her vast teacher education background to the project, "I have lots of experience in 
working with teachers." 
Being: Acknowledging a Personal View of Others 

Acknowledging a personal view of others was classified as a being practice because 
participants described how they perceived others as part of the interdisciplinary group. The code 
acknowledging a personal view of others was used when participants described other group 
members as members of a discipline, as taking on special roles in the group, or as influential 
members due to the added diversity of knowledge/experience. For instance, Iris described a 
member of her interdisciplinary group as having a "very strong mathematics background" with 
experience in the "high tech industry" and "a high school teacher." Iris acknowledged the 
member's expertise and experiences and appreciated that both were committed to "narrowing the 
gap between school mathematics and contemporary mathematics," which was the main goal of 
the interdisciplinary project. As a member of Ian's interdisciplinary group, Alexis described how 
she recognized roles and expertise in her colleagues. Alexis stated, "the primary role that the 
team members play was to bring their expertise to the table," and she noted that "Ian really was 
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the lead in designing the material or coming up with the context and coming up with the 
activities." 
Interacting: Developing Ideas Between Partners 

Developing ideas between partners was coded as an interacting practice because MERs 
reported how group members negotiated the meaning of ideas, representations, or frameworks. 
When MERs described developing understandings and common definitions that allowed 
members of the group to collaborate and communicate to external audiences, we coded those 
instances as developing ideas between partners. For example, Iris indicated that she and a group 
member who was a mathematician had "arguments on the buildup, on the things that [the 
mathematician] thought would be very accessible." Iris and the mathematician had discussions 
regarding unpacking the mathematics content and making it accessible to students. She explained 
that such discussions allowed them to develop new ways to represent mathematics to external 
audiences. "I don't think I would be able to do it on my own, and I don't think he [the 
mathematician] would be able to do it on his own." In another example, Amelia indicated how it 
was important for the interdisciplinary group members to develop ways of communicating. 
Amelia described that given the different disciplinary expertise, people in the group needed "to 
be good listeners and very respectful and making it possible for questions to be asked and to be 
able to respond to those questions in a way that's serious and takes things seriously." 
Operating: Working towards Common Goals 

Working towards common goals was classified as an operating practice because the use of 
common goals was a factor in "ways of doing" for the groups. This practice was described by the 
participants when they shared purposes or common goals used by the group to focus the work 
being done. There were also times when MERs described working with the interdisciplinary 
group to develop common goals. Such instances were classified as an interacting practice like 
developing ideas between partners (see above) because developing goals involved exchanging 
ideas to build shared understandings. Working towards common goals was coded when (1) the 
group goals were described by a participant, (2) it was clear that the goals were established, and 
(3) it was clear that the goals were used to focus the work being done. For instance, Amelia's 
articulation of the initial purpose of her interdisciplinary group is that "it was a funded project" 
and that "the central purpose kept [them] together. So those two goals were always there." Ian 
described how the group's purpose was to create a curriculum for the "learning of new 
mathematics and new engineering at the same time." 
Operating: Using Ways of Working Together 

Similar to working towards common goals, using ways of working together is classified as an 
operating practice because it represents "ways of doing" for a group. Using ways of working 
together is how an interdisciplinary group worked as a team or a process that the group used to 
get work done. Iris described her work as "a true teamwork." She encouraged the mathematician 
to "set up a storyboard, so to speak," to tell the story around the targeted mathematics concept. 
Later, they worked together to add the "know-how" pieces. This is how the new story around the 
targeted mathematics concept began "with a question instead of starting with declarations." In 
Amelia's research group, she described how different group members already had different 
systems in place. The group shared these other systems, which created a menu of items, "and 
then we each picked something from that menu that we decided to try this approach next year, 
and then we swapped and learned from each other." The group developed a way of working 
together to learn from each other by picking different approaches from the menu. 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

998



Discussion 
We have described five practices MERs commonly reported using in their interdisciplinary 

groups. Two practices are in the being category, one in the interacting category, and two in the 
operating category, respectively: acknowledging a personal view of self, acknowledging a 
personal view of others, developing ideas between partners, working towards common goals, 
and using ways of working together.  

The practices identified in this research provide evidence that conducting interdisciplinary 
work is more than contributing disciplinary expertise, as asserted by Schön (1992). MERs used 
the being, interacting, and operating practices to navigate interpersonal relationships and 
conduct interdisciplinary work. The being types of practices reflect how MERs saw themselves 
in relation to others and how they perceived others in their groups. The practices of 
acknowledging a personal view of self and others allowed MERs to acknowledge disciplinary 
expertise and navigate work with others by finding common ground and contributing to the 
interdisciplinary group work. The interacting practice, developing ideas between partners, 
identifies the development and use of discourse norms within interdisciplinary groups to 
understand, listen to each other's perspectives, and build common understandings. The operating 
practices of working towards common goals and using ways of working together describe "ways 
of doing" in interdisciplinary groups. Members of interdisciplinary groups worked towards goals 
that met their interests and the interdisciplinary project; they also developed work systems that 
built from each other's expertise and backgrounds.  

Because the members of interdisciplinary research projects come from different disciplines, 
that have different practices (Williams et al., 2016), MERs need to use interacting practices, 
which allow the group to negotiate and develop a common language among themselves and for 
external audiences. MERs in our study had discussions of meanings within the groups to conduct 
the interdisciplinary work and communicate the product of the collaboration to external 
audiences. For instance, Ian described how he acknowledged different peoples' expertise and 
then realized that his role and other team members' roles allowed the project to be more 
successful. Iris described the integral role of diversity in her team, highlighting the need to 
discuss ideas with colleagues from different disciplinary backgrounds to construct new 
knowledge. Amelia's description of team members' approach to interactions as "good listeners 
and very respectful" aligns with descriptions of dispositions of team members provided by Bruce 
et al. (2017). We also noted that the common language the members of the interdisciplinary 
group developed was unique to the members of the group and the project's final product. For 
instance, Iris reflected that it took many discussions for the group to narrow down ways of 
representing the product of their work to others. Iris' interaction with her colleagues and the 
consideration of how external audiences would use the project was instrumental in developing a 
way of communicating the work. Iris recognized that this important goal could not have been 
realized without each team member's contributions and expertise.  

Once the group members have used interacting practices to cultivate a common language and 
framework, operating practices develop. We identified two operating practices: working towards 
common goals and using ways of working together. For instance, Iris and her group used the 
story system to start with the pure mathematics content to add know-how prompts that would 
allow the audience to have entry points to engage. Amelia and her group built from each of their 
experiences in teacher education to learn from each other instead of using mandating systems.  

Our study exemplifies Williams et al.'s (2016) definition of disciplines for mathematics 
education. Mathematics education as a discipline has evolving forms of discourse and work. As 
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MERs are being asked to join interdisciplinary groups to expand the boundaries of mathematics 
education research (Cai et al., 2020), we advocate for professional development spaces where 
MERs reflect on ways of being, interacting, and operating in such groups. MERs need to learn 
how to productively work outside of their discipline and, with that, expand their expertise. MERs 
need to consider their role in the project and their personal goals in relationship to the project's 
goals and the group members from other disciplines. MERs also need to create spaces where 
members of interdisciplinary groups can openly discuss ideas. In such discussions, MERs need 
to acknowledge their colleagues' expertise and recognize that as a group in dialogue, new ideas 
will emerge that inform the final product of the interdisciplinary work.  

The results of this research are influenced by the fact that each of our participants were 
leaders of their interdisciplinary groups. MERs as members of interdisciplinary groups led by 
others may contain practices not captured here. Similarly, more studies are needed to explore 
how power relationships influence work in interdisciplinary groups that include a MER. The 
study reported here did not capture the breadth of experiences that members of the research team 
have experienced as MERs on interdisciplinary projects, suggesting that additional work is 
needed. Similarly, studies on how MERs' race and ethnicity backgrounds influence their 
interpersonal relationships and practices in interdisciplinary groups are also needed. 
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The Rice University Robert Noyce Master Teaching Fellowship (RU-MTF) was a five-year 
program designed to develop 14 exemplary secondary mathematics teachers into mathematics 
teacher leaders who are deeply grounded in sound mathematics content, pedagogical content 
knowledge (Hill et al., 2008), teacher leadership (York-Barr & Duke, 2004), adult education, and 
culturally relevant teaching (Ladson-Billings, 1994). RU-MTF’s goals were to create an 
innovative, multi-faceted research-informed model for identifying, developing, and supporting 
mathematics leaders that can be replicated for different grade bands and in urban, suburban, and 
rural school districts.  

In this paper, we report on lessons learned from implementing RU-MTF, particularly during 
COVID-19, and RU-MTF’s impact on master teaching fellows’ (MTF) leadership skills, 
mathematical knowledge for teaching (MKT), and diversity dispositions. Leadership skills (Mills 
et al., 2014) and diversity dispositions (i.e., Schulte et al., 2008) are measured through self-
reported 5-point Likert-scale items. MKT is measured through learning mathematics for teaching 
assessment (Hill et al., 2008). We further highlight MTFs’ focus group conversations and open-
ended responses to, for example, their perceptions of effective mathematics instruction, effects of 
RU-MTF on beliefs about equity, and complications caused by the pandemic.  

The COVID-19 pandemic created complications for teachers including “exacerbated learning 
gaps,” “weakened community connections,” “obstructed feedback cycles for colleagues,” and 
“worsened social interactions.”  MTFs’ perceptions of remote education during COVID-19 
revealed the importance of developing equipped and energized teacher leaders who are devoted 
to improving mathematics instruction by supporting K-12 teachers, students, and parents. During 
this time of uncertainty, MTFs realized, even more than ever, the value of “community 
connections” and “leadership engagement.” The quantitative data indicated that MTFs’ 
leadership skills, MKT, and beliefs about diversity in education significantly improved from the 
onset to the end of RU-MTF. MTFs highlighted “student engagement,” “hands-on learning,” 
“learning by discovery,” and “communication in flexible and variety of ways” as important parts 
of effective mathematics instruction. However, their concerns disrupting such approaches in 
effective teaching of mathematics included “tests being perceived as the most important 
element” and the “deficit understanding of effective math instruction.” As MTFs’ perspective of 
leadership roles “changed from individual to collaborative style” and their beliefs about equity in 
mathematics “evolved in to having a wider scope,” we can argue that RU-MTF served as an 
effective model for developing teacher leaders. 

Results include implications for both research and practice fields regarding teacher leader 
development (including whys and hows) and effective characteristics of a teacher leader 
development program.  
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Mathematics and science teacher turnover is a great and consistent problem in the U.S., 
particularly in high-need, high-minority, and urban schools (Cross, 2017). Most teachers leave 
the profession because of dissatisfaction, lack of support, lack of autonomy, and lack of 
collaboration opportunities (Carver-Thomas & Darling-Hammond, 2019). Thus, it is essential to 
understand the motivational, school-environmental, and social networking factors in relation to 
teacher retention. For instance, teachers’ self-efficacy beliefs are important in fostering 
constructivist learning, student motivation, and higher academic performance, which impact job 
satisfaction and retention or attrition in the profession (Yost, 2006). Further, opportunities to 
develop leadership skills and engage in a collaborative school-work environment to improve 
school culture and instruction can support and sustain high-qualified teachers (Dauksas & White, 
2010). Some features of teachers’ social networks (e.g., density) support their persistence and are 
correlated with their self-efficacy (Polizzi et al., 2021). Lastly, positive diversity dispositions are 
associated with persisting in teaching in high-need schools (Williams et al., 2016).  

In this paper, we explored the extent to which teachers’ self-efficacy for teaching, leadership 
skills, diversity dispositions, school-work environment, and social network are related to their 
retention. From the Greater Houston area, about 250 teachers (27% male and 73% female; 30% 
elementary and 70% secondary teachers; 65% White and 35% from minoritized backgrounds) 
with, on average, 14 years of teaching experience (SD = 8.70) completed a survey responding to 
questions related to teaching, self-efficacy (Klassen et al., 2009), teacher leadership skills (Watt 
et al., 2010), person-organization fit (Pogodzinski et al., 2013), principal autonomy support 
(Baard et al., 2004), diversity dispositions (Schulte et al., 2009), and social network (e.g., size; 
Polizzi et al., 2021). Among these teachers, 14 were identified as shifters (who shifted to a 
leadership position) and 18 as leavers (who left or retired from K-12 teaching/education).  

We conducted multinomial logistics regression analyses with retention as a three-level 
nominal outcome (Mayer et al., 2017). Findings indicated that secondary teachers were more 
likely to shift to a non-teaching position compared to stayers. The higher level of teacher 
leadership skills and lower degrees of person-organization fit were associated with shifting to a 
leadership position. Lastly, a higher level of teaching self-efficacy was observed in leavers 
compared to stayers. Reasons for shifting included teaching burnout, better pay, and having 
greater impact. Reasons for leaving included the pandemic, retirement, family, stress, and 
burnout. There are implications for practitioners, researchers, and administrators for supporting 
teachers to persist in teaching or shifting to a leadership position where they can have a greater 
impact for educational outcomes.  
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When trying to achieve instructional improvement, principal leadership plays a significant 
role in changing teachers' instructional practices (Supovitz et al., 2010). This study is part of a 
larger project, a research-practice partnership (RPP) with a school district that aims to develop 
school principals' instructional leadership practices so they can support their teachers in creating 
more socially just mathematics classrooms for their predominantly Latinx population. 

We report on work conducted by our RPP team (district leaders, six school principals, and 
three researchers) towards one of the collaboratively defined goals for the 2021-2022 school 
year: building a shared vision of high-quality math instruction. We designed a learning 
experience inspired by Math Labs (Kazemi et al., 2018), consisting of five monthly visits to a 
fourth-grade math class to engage in observation and debriefing with the teacher on instructional 
practices and classroom interactions. In this context, our research examined in detail principals’ 
learning process as they are involved in practice-based professional development. We attended to 
the following questions: How does the principals' noticing of student mathematical thinking 
evolve over the visits?; How is the noticing of each principal related to their instructional vision 
of high-quality mathematics instruction?  

A vision of high-quality mathematics instruction involves the discourse that principals use to 
describe ideal classroom practices that are not necessarily mastered yet (Munter, 2014)--a first 
step for them to then support their teachers' learning effectively. High-quality mathematics 
teaching practices have been widely researched in mathematics education. We draw on 
observation tools that systematize them in specific dimensions that encompass rich and 
meaningful mathematics, ambitious practices (Boston, 2012), and culturally responsive teaching 
(Aguirre et al., 2013). We also draw on the construct of teacher noticing (Sherin et al., 2011) and 
hypothesize that developing the skills of attending to specific aspects of mathematics instruction, 
reasoning about them using frames of reference that characterize high-quality practices, and 
discussing the teacher's instructional decisions, will support principals in developing a shared 
vision of high-quality mathematics instruction. In this way, we seek to contribute to the limited 
existing research on principals' noticing and on how noticing relates to the development of a 
vision for high-quality math instruction. We collected data from four sources: audio transcripts 
of the sessions, a noticing task at the end of each session, field notes, and a final individual 
interview. Using dimensions from existing research (Aguirre et al., 2013; Boston, 2012; Munter, 
2014), we developed a coding system to analyze and triangulate data, allowing emerging codes 
during the coding process. 

Initial findings suggest that principals' noticing became more sophisticated, evolving from 
attention to general aspects of the lesson toward noticing specific elements of students' 
mathematical thinking and the instructional moves that led to and supported them. The data 
obtained in the final interview about the participants' vision will be analyzed alongside responses 
to the noticing task to examine relationships between the two constructs.  
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Principals influence student achievement through setting school-wide goals, engaging in 
instructionally focused conversations with teachers, and providing opportunities for professional 
development and collaboration (Grissom et al., 2021; Supovitz & Sirinides, 2010). A well-
developed vision of high-quality instruction will inform each of these activities. Further, in the 
context of district-wide instructional improvement, a shared vision will support coherence across 
professional development initiatives (Cobb et al., 2020). In this study, we explored how a shared 
instructional vision can be developed among district and school leaders in a research practice 
partnership (RPP) focused on improving elementary school students’ mathematics learning, and 
in particular, the achievement of Latinx students within a district. 

Through a collaborative process, RPP members (six principals, three district leaders, a 
mathematics coordinator and three university researchers) identified developing a shared vision 
as a key goal of improvement efforts. In service of this goal, RPP members participated in four 
Math Labs in a 4th grade classroom. The design of each Math Lab emphasized school leader 
learning in practice and was inspired by previous Math Labs designed by Kazemi et al. (2018). 
The Math Labs provided a context for district and school leaders to co-enact instructionally 
focused conversations with the teacher. In this study, we asked: how do Math Labs support the 
development of a shared vision of high-quality and equitable mathematics instruction?  

Munter (2014) describes vision as an image of what is possible in a classroom space, 
though may not currently be enacted. He characterizes individual trajectories of a vision of high-
quality mathematics instruction across four dimensions: mathematical tasks, the role of the 
teacher, classroom discourse, and student engagement. We extend this work in two ways. First, 
we explicitly integrate equitable practices as described by Aguirre et al., (2013) within a vision 
of high-quality instruction. Further, drawing from Goodwin’s (1994) description of professional 
vision, we situate school and district leaders’ vision of high-quality instruction within the shared 
discursive practices used to see and understand a classroom space. While elements of high-
quality instruction can be observed during the Math Labs, how district and school leaders 
ultimately see those practices is informed by their roles within the context and larger society.   

Transcripts of discussions and participant interviews and field notes from Math Labs and 
design sessions were coded by the team of researchers. Artifacts generated from the Math Labs 
were included in the data analysis. We explored the process by which a shared vision begins to 
take shape. Initial findings suggest that a shared experience, immersed in a classroom setting, 
provides a rich opportunity to make sense of aspects of high-quality and equitable instruction and 
to develop a shared discourse around teacher professional identity. Yet, we identified moments 
when what is seen is mediated by participant roles, suggesting how professional vision reflects 
and influences the image of high-quality instruction. Our study expands current literature on 
contexts that contribute to development of shared vision of high-quality mathematics instruction 
for school leaders. 
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Graduate student peer-mentoring programs benefit participants by providing unique 
academic, social, psychological, and career development opportunities (Lorenzatti et al., 2019). 
However, the positive effects of research-oriented peer-mentoring programs are much better 
understood than teaching-oriented ones. In our poster, we consider mentees and mentors’ 
perceptions of effective mentoring in a teaching-oriented peer mentorship program.  

Previous research provides possible frameworks regarding mentee-mentor interactions. Rose 
(2003) designed the Ideal Mentor Scale for doctoral students to consider the qualities they value 
most in a faculty mentor: integrity, guidance, and relationship. With regard to school-based 
youth mentoring, Brodeur et al. (2015) identified the dimensions of structure, engagement, 
autonomy, and competency support that governed mentee and mentor impressions of mentor 
behaviors. However, no existing theoretical or empirical framework could be identified to 
address the unique nuance of peer GTA teaching mentoring relationships. 

As part of a multi-component program, Promoting Success in Undergraduate Mathematics 
Through Graduate Teaching Assistant Training (PSUM-GTT; Harrell-Williams et al., 2020), 
GTAs participated in a peer teaching mentoring program. This study focuses on two research 
questions: What are mentees and mentors’ conceptualizations of “effective” peer teaching 
mentors? How do mentors’ views of themselves compare to their conceptualizations?  

Survey data was collected from mentees and mentors, with Likert-type and open-ended items 
relating to each groups’ conceptualization of an effective mentor. For example, we asked 
mentors where they saw a mentor on a continuum of an authority figure (scored as “1”) to a 
collaborator (scored as “5”) and compared this to how they saw themselves as mentors using the 
same scale. According to a contingency table analysis, 10 of 15 mentors rated themselves as 
more collaborative (more “4”s or “5”s) than they imagine a mentor in general should be (more 
“2”s and “3”s). According to a psycholinguistic analysis in Linguistic Inquiry and Word Count 
(LIWC) 2022 (Boyd et al., 2022), 11 of the 15 mentors felt more confident, according to the 
LIWC clout score, when reporting about the nature of an ideal mentor than when they wrote 
about their own role as a mentor. Taken together, this suggests that our peer mentors didn’t see 
themselves as being as much of an “authority” as they would like to in their new roles. Further 
results concerning mentees and mentors’ conceptualizations and their alignment in 
conceptualizations will be presented in our poster.  
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This project aims to test the conjecture that developing a shared vision of high quality 
mathematics instruction (HQMI) is foundational to the successful implementation of STEM 
education innovations. Since 2016, our research practice partnership (RPP) of state, district, and 
school-based leaders, mathematics teachers, and researchers have engaged in design-based 
implementation research (Fishman, Penuel, Allen, Cheng, & Sabelli, 2013) to iteratively co-
design instructional resources that promote a shared, state-wide vision of HQMI. We aim to 
build upon this work by investigating the visions of HQMI held by educators at different levels 
of a state educational system, the extent to which those visions are shared, and how the visions 
mediate and are mediated by the co-design and uptake of implementation resources.  

HQMI aims for teachers to be intentional in supporting students, for example, by 
problematizing ideas (Munter, 2014), supporting students in developing mathematical authority 
(Lampert, 1990), and scaffolding classroom discussions in ways that formalize learning goals for 
students (Smith & Stein, 2011). Established and emerging research suggests that sharing a vision 
of HQMI can support successful implementation of new programs or policies (Gamoran, 2003), 
relates to improved instructional quality (Munter & Correnti, 2017), and can lead to 
improvements in students’ academic outcomes (Chance & Segura, 2009). In addition, research 
points to the ways in which educators' visions are shaped by participating in different social 
contexts (Munter & Wilhelm, 2021) and informed by different or conflicting messages from both 
inside and outside schools (Ticknor & Schwartz, 2017). Teacher collaboration, PD, and 
productive collaborations across educator roles are rarely effective unless they are tied to a 
shared vision of instruction (Peterson et al., 1996).  

     Using a mixed methods design we are studying our design process with a goal of 
understanding the ways in which vision of HQMI and implementation resources interact across a 
state educational system and the extent to which a shared vision of HQMI leads to coherence. 
Our poster presentation will describe the project as a whole, share the initial iteration of our 
framework design, and report our initial findings.  
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School administrators play an important role in influencing instruction (Nelson and Sassi, 
2000) and building organizational capacity for equity (Galloway and Ishamaru, 2020). Previous 
research has focused separately on administrator content knowledge (Steele et al., 2015) and 
perceptions of equity (Nadelson et al., 2020). However, limited research details how 
administrators think about equity within the context of math instruction. Meanwhile, studies of 
teachers have shown a connection between their visions and their instructional practice (Munter 
& Correnti, 2017). Therefore, administrators' visions of equitable instruction may also affect 
math teaching and learning. This study examines this relationship, asking: How do district 
administrators characterize their visions of equitable math instruction? 

Methods  
This study is situated within a multi-year design-based implementation research initiative: 

the CASPIR Math Project. Leaders from two districts (Elm, n = 6; Maple, n = 5) were 
interviewed using the visions of high-quality mathematics instruction instrument (Munter, 2014) 
with the added question: What would you look for to determine whether instruction is equitable? 
The National Council of Teachers of Mathematics (NCTM) equity position statement (2014) 
provided an instruction-centered framework for coding, which included the following topics: 
access, students, curriculum, teachers, differentiation, progress monitoring, accommodations, 
and remediation/additional challenge. Authors looked for patterns within and across districts.  

Initial Findings and Implications 
No two individuals expressed the same vision. However, three categories emerged revealing 

patterns in how administrators spoke about equitable instruction: methods to achieve equitable 
math instruction, perception of students, and challenges to implementation. Administrators from 
Maple tended to mention grouping as the main form of differentiation, referring to students in 
three leveled groups. In contrast, Elm administrators mentioned more specific and varied forms 
of differentiation focusing on lesson planning and task modification, whilst maintaining high 
cognitive demand. They also tended to discuss students through a more individualized lens. On 
the other hand, challenges to equitable instruction in both districts were discussed and included 
teachers' ability and mindset, curriculum, and family support. These findings, while preliminary, 
have implications for researchers and practitioners. Alignment in visions cannot be assumed 
among administrators. Thus, conversations about what equitable mathematics instruction is, who 
should be working towards it, how it should be achieved, and for what reasons may be required 
to move towards a more common understanding.  
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La pregunta es: ¿Cómo razonan los estudiantes de ingeniería que han llevado un curso 
tradicional de cálculo ante problemas simples de flujo de líquido en los que el proceso de 
solución involucra el teorema fundamental del cálculo? Un cuestionario de tres preguntas se 
administró a 18 estudiantes de ingeniería de una universidad de la ciudad de México que habían 
llevado un curso ordinario de Cálculo. Desde una perspectiva de Teoría Fundamentada se 
codificaron sus respuestas y se generaron tres categorías generales que hemos denominado 
razonamientos procedimental, transicional o conceptual. Los resultados, al igual que estudios 
previos, muestran que la mayoría de los estudiantes utilizan un razonamiento procedimental, no 
obstante, el análisis permite proponer rasgos que indican la transición hacia un razonamiento 
conceptual. Además, se propone un marco para analizar el razonamiento de los estudiantes. 

Palabras clave: Teorema Fundamental del Cálculo, Razonamiento procedimental, transicional y 
conceptual. 

Thompson (1994, p. 142) se refiere al Teorema Fundamental del Cálculo (TFC) como “uno 
de los sellos intelectuales en el desarrollo del cálculo” y, por tanto, es uno de los objetivos 
importantes de aprendizaje de un curso anual de cálculo. El TFC conecta los dos grandes temas 
clásicos del cálculo: derivación e integración. En la enseñanza inicial y tradicional del cálculo 
cada uno de estos temas tiene un desarrollo propio y se motivan con modelos intuitivos 
(Fischbein, 1977) que no tienen que ver uno con el otro: por un lado, la pendiente de una línea 
tangente a la función que se deriva, por otro, el área bajo la curva de la función que se integra. 
No obstante, el curso anual de cálculo de una escuela de ingeniería suele incluir el TFC, ¿cómo 
lo procesan los estudiantes? En la investigación en educación matemática se han identificado las 
dificultades para entender el TFC y se han propuesto alternativas para superarlas, por ejemplo, el 
apoyo de modelos geométrico-visuales (Kirsch, 1976, 2014) o el modelo de la integral como 
acumulación asociada al modelo de derivada como razón de cambio (Thompson, 1994). 
Teniendo en perspectiva este modelo, nosotros nos preguntamos ¿Cómo razonan los estudiantes 
de ingeniería que han llevado un curso tradicional de cálculo ante problemas simples de flujo de 
líquido en los que el proceso de solución involucra del TFC? Responder a esta pregunta daría 
información sobre las tendencias de razonamiento hacia el TFC de los estudiantes actuales de 
ingeniería, al menos de la escuela en la que se hizo la investigación, y permitiría diseñar los 
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cambios graduales del enfoque en los cursos de cálculo tradicionales sobre la base de dicha 
información y las nuevas propuestas que la investigación sugiere. 

Marco conceptual 
Se entiende por razonamiento a los procesos para obtener y verificar proposiciones 

(conclusiones) sobre la base de la evidencia o de conocimientos establecidos (teoremas) o 
suposiciones. El razonamiento puede tomar muchas formas que van desde argumentaciones 
informales hasta demostraciones deductivas (Mahir, 2009). Cuando los estudiantes responden a 
la pregunta ¿Por qué…?, ellos muestran aspectos importantes de su razonamiento. Las respuestas 
de los estudiantes las clasificamos en los siguientes tres niveles de acuerdo con el razonamiento 
que reflejan.  

Razonamiento procedimental. Consiste en aplicar algoritmos o procedimientos típicos para 
responder a la pregunta sin utilizar los teoremas pertinentes para simplificar o evitar operaciones 
y llegar a la solución.  

Razonamiento transicional. Ocurre cuando se identifican teoremas que permiten encontrar 
relaciones pertinentes para responder a la pregunta, pero tienen dificultades para su 
instrumentación. 

Razonamiento conceptual. Consiste en utilizar una red de relaciones. Se identifican los 
teoremas pertinentes y se encuentran las relaciones con los datos del problema, los 
procedimientos y el uso de la notación simbólica. 

Sfard (1991) desarrolló la idea de que la naturaleza de las entidades matemáticas es dual: se 
presentan como procesos y como objetos. Estas formas suelen captarse por los estudiantes en ese 
orden, primero como procesos y luego como objetos, aunque en ciertos casos pueden captarse a 
la inversa. Sfard señala que en la literatura se han formulado varias dicotomías que buscan dar 
cuenta de la naturaleza dual del conocimiento/pensamiento/comprensión matemática, por 
ejemplo, abstractas y algorítmicas (Halmos, 1985), declarativas y procedimentales (Anderson, 
1976), proceso y producto (Kaput, 1979; Davis, 1975). En esta misma clase de dicotomías está la 
clásica distinción de Skemp (1976) de entendimiento procedimental y relacional. 

En nuestro caso, en lugar de que el objeto de estudio sean las entidades matemáticas, el 
pensamiento o la comprensión hemos preferido elegir el razonamiento; este tiene la ventaja de 
que su calidad se puede evaluar en las respuestas de los estudiantes en las que intentan justificar 
un resultado. Por otro lado, a la dualidad procedimental-conceptual agregamos la categoría 
intermedia de razonamiento transicional que da cuenta de que el paso de uno a otro tiene rasgos 
que combina un cierto grado de desarrollo del primero y rasgos incipientes del segundo. 

Antecedentes 
Dos estados del arte recientes sobre aprendizaje y enseñanza del cálculo incluyen un 

panorama de la investigación en los temas de integral y TFC, estos son Bressoud (2016) y Larsen 
et al. (2018). En estas reseñas encontramos referencias que se relacionan con ideas de la presente 
investigación. Por ejemplo, Mahir (2009) y Rasslan y Tall (2002) sostienen que la mayoría de los 
estudiantes que han completado un curso del cálculo tienen una visión procedimental de la 
integración y son incapaces de interpretarla en otros contextos. Por otro lado, los estudios que 
tienden a enfatizar aspectos conceptuales de integración proponen introducir la integral con 
sumas de Riemann (Sealey, 2014) o desde el modelo de acumulación (Thompson, 1994); esto 
ayudaría a superar el enfoque puramente procedimental. Thompson y Silverman (2008) 
afirmaron que la noción de acumulación es sencilla en el sentido de que la mayoría de las 
personas entienden la idea de "acumular una cantidad a medida que obtenemos más" (p. 43). Un 
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problema de estos acercamientos alternativos cuyo objetivo es destacar el aspecto conceptual de 
la integral es que no ponen énfasis en las relaciones de la integral con los procedimientos de 
integración y el manejo de la notación simbólica.  

Varios autores han enfatizado en que el conocimiento conceptual puede visualizarse como 
una red de relaciones interconectadas (Skemp, 1978, Miller y Hudson, 2007; Rittle-Johnson y 
Schneider, 2015). Las conexiones de la integral, por ejemplo, abarcan la definición, la notación y 
los teoremas, además, por supuesto, su relación con las sumas de Riemann y los modelos de 
áreas y de acumulación. Es por esto que, en este trabajo, se exploran y caracterizan las relaciones 
que los estudiantes logran ver y utilizar exitosamente o no. 

Método 
El presente estudio explora el razonamiento que reflejan las respuestas de los estudiantes a 

los problemas del instrumento. Este se creó de manera que se relacionaran con el TFC y se 
planteara una situación de flujos. Las respuestas de los estudiantes se codificaron y se 
organizaron en los tipos de razonamiento presentados en el marco conceptual. Este análisis 
estuvo inspirado en los procedimientos de la teoría fundamentada (Birks y Mills, 2015).  
Participantes 

Dieciocho estudiantes de ingeniería (entre 18 y 21 años) de una universidad privada ubicada 
en la ciudad de México resolvieron individualmente los problemas diseñados para el presente 
estudio. Ellos habían finalizado su primer curso de cálculo antes de la aplicación del instrumento.  
Instrumento 

Consistió en tres problemas elaborados por los autores, dos ubicados en el contexto de flujos 
de agua y otro abstracto. La idea de los problemas es que pudieran resolverse con el TFC en un 
contexto en el que la derivada se interpreta como razón de cambio y la integral como 
acumulación. Otro rasgo de los problemas es que se pueden resolver mediante procedimientos 
algorítmicos, pero interpretando el TFC. Los problemas del instrumento se muestran en la figura 
1. 

 
1. Por un grifo sale agua a una razón variable 𝑞(𝑡) =

1

10
√𝑡 + 4 −

2

10
  (dada en 

litros/segundo) que es colectada en un contenedor. 𝑉(𝑥) representa el agua que se ha 
colectado desde que se abre el grifo (𝑡 = 0) hasta el tiempo 𝑡 = 𝑥 
1.1. ¿Cuál es la razón de cambio del volumen 𝑉(𝑥) respecto al tiempo, en los tiempos 𝑡 =

5 𝑠,  𝑡 = 21 𝑠 y 𝑡 = 32 𝑠? 
1.2. Obtenga una expresión para: 𝑉(𝑥) 
1.3. 𝑉𝑎(𝑥) representa el volumen que se ha almacenado desde 𝑡 = 𝑎 hasta 𝑡 = 𝑥 (𝑥 > 𝑎). 

Obtenga una expression para: 𝑉𝑎(𝑥) 
1.4. Obtenga 𝑑𝑉𝑎(𝑥)

𝑑𝑥
 

2. Se tiene un depósito de forma cilíndrica cuyo radio de la base es 𝑟 y altura 𝐻; el depósito 
contiene agua hasta una altura ℎ. 𝑉(𝑥) representa el volumen de agua contenido en tal 
depósito cuando ℎ toma el valor 𝑥.  
2.1 Exprese 𝑉(ℎ) como una integral 
2.2 Obtenga 𝑑𝑉(𝑥)

𝑑𝑥
 

3. Si 𝐹(𝑥) = ∫ 𝑓(𝑡)
𝑥

𝑎
𝑑𝑡, obtenga 𝐹´(𝑥), justifique su respuesta 

Figura 1: Problemas del instrumento 
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Con relación al problema 1 anterior, consideramos que el razonamiento procedimental se 

presenta cuando se llevan a cabo las operaciones que indican las expresiones: 𝑞’(𝑡) y 
∫ 𝑞(𝑡)𝑑𝑡. En cambio, el razonamiento conceptual se expresa cuando se plantea la expresión 
𝑉(𝑥) = ∫ 𝑞(𝑡)𝑑𝑡,

𝑥

0
  y se obtienen las consecuencias del TFC sin necesariamente realizar muchas 

operaciones; es decir, se debe saber que si 𝑞(𝑥) es una función continua entonces V(x) es 
derivable y V’(x) = q(x). Como el flujo es continuo no se requieren otras versiones más 
generales del TFC.  
Procedimiento 

El profesor titular del grupo colaboró con los autores para aplicar el instrumento en su grupo; 
los estudiantes que accedieron a resolver los problemas lo hicieron voluntariamente a invitación 
expresa de su profesor. En una sesión de 45 minutos los estudiantes resolvieron sólo con lápiz y 
papel los problemas. Se les pidió que explicaran lo mejor posible y por escrito sus soluciones.  
Procedimiento de análisis  

Se codificaron las respuestas de los estudiantes mediante las comparaciones de unas con 
otras para determinar patrones de razonamiento que, mediante un proceso de abstracción, 
subsumimos en las categorías que se presentan en el marco conceptual. Cabe mencionar que 
tales categorías fueron emergentes del análisis y que no se tenían presentes antes de llevarlo a 
cabo. 

Resultados 
Las respuestas escritas que los estudiantes dieron a los problemas se analizaron, se 

codificaron y se agruparon en los tres tipos de razonamiento definidos en el marco. La tabla 1 
muestra las frecuencias de respuestas a las preguntas 1.1, 1.2, 1.3, 1.4, 2.2 y 3 que cayeron en 
cada categoría. Después de la tabla se mostrarán ejemplos de soluciones de cada tipo de 
razonamiento. 

 
Tabla 1: Frecuencia de respuestas por tipo de razonamiento 

Tipo de respuesta 
Problemas 

1.1 1.2 1.3 1.4 2.2 3 Total 
1. Procedimental 11 15 14 10 13 0 63 
2. Transicional 5 0 3 1 0 8 17 
3. Conceptual 1 0 0 1 0 7 9 
4. Sin respuesta 1 3 1 6 5 3 19 

 
Como se puede observar en la tabla 1, el razonamiento procedimental es el que predominó en 

las soluciones que propusieron los estudiantes en el problema 1 y en el 2.2. La solución que se 
esperaba en el problema 1.2 era la expresión: 𝑉(𝑥) = ∫ 𝑞(𝑡)𝑑𝑡

𝑥

0
, sustituyendo 𝑞(𝑡) por la 

expresión que la define. No obstante, la totalidad de los estudiantes que respondieron no se 
conforman con lo anterior y entienden que deben llevar a cabo todos los cálculos. Por ejemplo, 
en la figura 2 se exhibe la solución de un estudiante al problema 1.2; al final de su solución el 
estudiante omite un exponente. 

Dentro de las respuestas que reflejan un razonamiento procedimental, se observa la tendencia 
a creer que las respuestas a los problemas implican necesariamente llevar a cabo un 
procedimiento, sin imaginar que se les pide sólo indicar una relación pertinente. Por ejemplo, en 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1020



el problema 1.4, que pedía sólo que se identificara que 𝑑𝑉(𝑥)

𝑑𝑥
= 𝑞(𝑥), la mitad de los estudiantes 

respondieron derivando q(x), probablemente porque era la única función explícita que podían 
derivar. En la figura 3 se ilustra la respuesta de un estudiante.  

 

 

" 
1

10
√𝑡 + 4 −

2

10
 

=
1

10
∫ (𝑡 + 4)

1
2 −

2

10
𝑑𝑡

𝑥

0

 

=
1

10
(

2

3
(𝑡 + 4)

3
2 −

2

10
𝑡)|

0

𝑥

 

2

30
(𝑥 + 4)

3
2 −

2

30
4

3
2 −

2

10
𝑥 

 

Figura 2: Razonamiento procedimental. Respuesta al problema 1.2 
 
 

 

“𝑞(𝑡) =
1

10
√𝑡 + 4 −

2

10
 

1.2) 𝑞′(𝑡) =
1

10
(

1

2
) (𝑡 + 4)

−1
2⁄ = 𝑉(𝑥)” 

Figura 3: Razonamiento procedimental. Respuesta a la pregunta 1.4 
 

Un razonamiento transicional lo detectamos con mucho menos frecuencia, del total de las 
108 respuestas, clasificamos en transicional cerca del 16%. El estudiante 3, propone la respuesta 
de la figura 4. Este estudiante tiene una noción del TFC, no obstante, en varios aspectos 
importantes falla. 

 

 

“F(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 

F´(𝑥) = ∫
𝑑

𝑑𝑥
𝑓(𝑡)

𝑥

𝑎

𝑑𝑡  

F´(𝑥) = 𝑓(𝑡)𝑑𝑡 
Debido a que la integral se cancela por el 
TFC: 
F´(𝑥) = 𝑓(𝑡)𝑑𝑡” 

Figura 4: Razonamiento transicional. Respuesta de un estudiante al problema 3 
 

Los estudiantes que manifiestan un razonamiento transicional en sus respuestas tratan de 
relacionar los problemas con el TFC, pero varios de ellos tienen una concepción imprecisa del él. 
Por ejemplo, algunos creen que la relación del TFC es la siguiente: 𝑓(𝑥) = ∫

𝑑

𝑑𝑥
𝑓(𝑥)𝑑𝑥

𝑥

𝑎
, la 

cual, de hecho, es falsa. Conviene observar en la respuesta al problema 3, cómo el estudiante en 
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el segundo paso pretende haber obtenido esta expresión. Tampoco supo manejar la notación, 
manteniendo la variable muda 𝑡 y el signo del diferencial 𝑑𝑡.  

En la figura 5, vemos una respuesta al problema 1.3, que también clasificamos como 
transicional porque aparentemente se utiliza el TFC. En efecto, se puede notar que trató de 
reproducir la ecuación: ∫ 𝑑

𝑑𝑡
𝑞(𝑡)𝑑𝑡

𝑥

𝑎
= 𝑞(𝑥) − 𝑞(𝑎). No obstante, en lugar de considerar que la 

integral indefinida del integrando es una constante cualquiera, utilizó 2/10; aunque este error 
intermedio al final no afecta. El problema es que no consideró que el flujo q(x) ya es una 
derivada y que la derivada de este flujo no es pertinente al problema.  

 

 
“∫

1

20√𝑥+4
𝑑𝑥

𝑥

𝑎
=

1

10
√𝑥 + 4 −

2

10
|

𝑎

𝑥

=
1

10
√𝑥 + 4 −

2

10
− [

1

10
√𝑎 + 4 −

2

10
] 

=
1

10
(√𝑥 + 4 − √𝑎 + 4)” 

Figura 5: Razonamiento transicional. Respuesta de un estudiante al problema 1.3 
 

Finalmente, con relación al razonamiento conceptual, sólo 8% del total de las respuestas 
reflejaron este tipo de razonamiento. Un ejemplo es la respuesta del problema 1.4 de la figura 6, 
en la simpleza de dicha respuesta se esconden varias decisiones que el estudiante debió realizar, 
a saber, ha aplicado el modelo de acumulación al definir el volumen en términos de la integral de 
la función de flujo. Luego, sin apresurarse a calcular esta integral, deriva ambas partes de la 
ecuación integral que define el volumen, observando que al derivar una integral definida puede 
aplicar el TFC, menciona que se cancela las operaciones de derivada e integral, pero tiene el 
cuidado de sustituir la variable muda t, por la variable x (que representa el tiempo). Estas 
decisiones implican el conocimiento y coordinación de varias relaciones, por lo tanto, no se 
puede creer que es un procedimiento rutinario, sino que reflejan un nivel de razonamiento 
conceptual.  

 

 

“𝑑𝑉𝑎(𝑥)

𝑑𝑥
=

𝑑

𝑑𝑥
∫

1

10
√𝑡 + 4 −

2

10
𝑑𝑡

𝑥

𝑎
 =

1

10
√𝑥 + 4 −

2

10
  

Por el TFC se cancela la integral y la derivada” 

Figura 6: Razonamiento conceptual. Respuesta a la pregunta 1.4 
 

Conviene aclarar que los 7 estudiantes cuyas respuestas se clasificaron como conceptuales en 
el problema 3 (abstracto), no necesariamente aplicaron el mismo tipo de razonamiento en los 
problemas en contexto, sino que en algunos casos sus respuestas fueron transicionales y en otros 
incluso procedimentales, por ejemplo, en las respuestas al problema 1.2.  
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Discusión y conclusiones 
Es conocido que los estudiantes de ingeniería, en contraste con estudiantes de matemáticas, 

tienden a interesarse por los conocimientos que ellos creen que son prácticos, y evitan 
involucrarse con aquellos que consideran teóricos. El razonamiento procedimental se asocia más 
al conocimiento práctico, mientras que se piensa que el razonamiento conceptual es más afín al 
conocimiento teórico. Con esta tendencia, enfocan su conocimiento de los teoremas más en sus 
posibilidades de aplicación para fortalecer las herramientas prácticas, que en su función 
explicativa; por ejemplo, para ellos, suele no ser muy relevante la prueba de un teorema. No es 
sorprendente entonces verificar que la mayoría de los estudiantes del presente estudio reflejen en 
sus respuestas un razonamiento procedimental. 

Un rasgo importante de las dos primeras situaciones/problema es que las funciones se 
presentaron en el contexto de flujos de agua; este contexto remite al modelo intuitivo de la 
integral como acumulación. En este sentido, cabe señalar, que en la mayoría de los casos los 
estudiantes no tuvieron dificultades para representar a la función volumen como una integral 
definida. Una vez identificado esto, la mayoría echaron mano de los procedimientos de 
derivación e integración para responder las preguntas. Sólo algunos estudiantes lograron percibir 
que el TFC podría ser utilizado para evitar procedimientos laboriosos y, de estos, sólo dos 
lograron tener control suficiente de la notación simbólica involucrada. 

De manera más general, lo anterior nos lleva a reflexionar de que los teoremas permiten 
hacer más eficaces a los procedimientos, como lo ilustra claramente el TFC, pues sin él resulta 
muy laborioso el cálculo de integrales. Entonces el desarrollo de un razonamiento procedimental 
no es ajeno a un razonamiento conceptual. La interpretación y uso de los teoremas y el control de 
la simbología que implican requiere del dominio de muchas relaciones. En las respuestas que se 
clasificaron en transicional se puede ver que, aunque los estudiantes entienden que pueden 
aplicar el TFC, aparte de que requieren interpretar de manera adecuada éste, deben relacionarlo 
con los datos de la situación/problemas y con la notación simbólica correspondiente. Como 
conclusión, proponemos un marco para analizar el desarrollo del razonamiento conceptual en 
tareas de Cálculo de los estudiantes. Este consiste en las relaciones entre los siguientes cinco 
términos: 1) Situación/problema, 2) Modelo intuitivo, 3) Procedimientos, 4) Teoremas, 5) 
Notación simbólica.  

En este modelo, el razonamiento procedimental es sólo uno de los términos de las relaciones 
que contiene el razonamiento conceptual, pues este requiere de la incorporación de otras 
relaciones. Los modelos intuitivos como el área bajo la curva, o las situaciones de acumulación 
para la integral, también representa un término de las múltiples relaciones que se requieren 
dominar. Pero lo anterior debe ser consistente con los teoremas que, aunque los estudiantes de 
ingeniería no los tengan que demostrar, los tienen que interpretar y usar para sus fines. 
Finalmente, el proceso del dominio de las anteriores relaciones debe ir en paralelo con el 
desarrollo del lenguaje matemáticos, que se refleja en el control de la notación simbólica. Este 
modelo puede servir para orientar la enseñanza del cálculo para desarrollar el razonamiento 
conceptual de los estudiantes de ingeniería sin que crean que es un enfoque muy teórico en 
detrimento de sus expectativas por un conocimiento práctico. 
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Este artículo tiene como objetivo presentar el diseño de una descomposición genética del 
concepto de dependencia lineal a partir del análisis de los libros de textos, de investigaciones 
anteriores relacionadas con el concepto y de los resultados de una intervención con estudiantes 
de álgebra lineal de una universidad pública en Colombia. En donde se busca tener un modelo 
cognitivo que sea el resultado de la primera fase de la metodología propuesta por APOE. 

Palabras clave: Educación superior, Álgebra y Pensamiento Algebraico.  

Objetivos del estudio 
El concepto de dependencia lineal se considera como un objeto abstracto en la asignatura de 

álgebra lineal. Saldanha (1995) menciona que comprender el concepto de dependencia lineal a 
partir de diferentes enfoques es difícil para el estudiante y por eso no solo se necesita de 
actividades que motiven su aprendizaje sino también que promuevan acciones mentales que 
pueden potenciar su construcción.  

Trigueros y Possani (2013) por ejemplo, mencionan que es un concepto nuevo que se ve en 
un primer curso de álgebra lineal, con el cual los estudiantes no se han encontrado en años 
anteriores; además indican que, a pesar de ello, el concepto de dependencia lineal es un concepto 
básico para entender temas más avanzados del álgebra lineal (Trigueros y Possani, 2013). Otros 
investigadores como Stewart y Thomas (2010) dan cuenta de las dificultades que tienen los 
estudiantes al trabajar con el concepto de dependencia lineal. Los resultados muestran que un 
énfasis en los procesos matriciales no ayuda al estudiante a entender el concepto, es decir, se 
necesita además reflexionar sobre ellos.  

Con base en lo anterior, las siguientes preguntas planteadas guían esta investigación:   
¿Qué estructuras y mecanismos mentales desarrollan estudiantes de álgebra lineal cuando 

abordan el concepto de dependencia lineal desde su representación numérica, geométrica, y 
algebraica?   

¿Qué mecanismos mentales evidencian estudiantes de álgebra lineal I de una universidad 
pública de Colombia cuando estructuran el concepto de dependencia lineal desde de sus 
interpretaciones concretas y abstractas?  

Así, el objetivo general de esta investigación es:  
Diseñar una descomposición genética validada del concepto de dependencia lineal que parta 

de la aplicación de Acciones sobre objetos concretos para la construcción de Objetos abstractos.    

Marco teórico 
La construcción de un concepto matemático, según la teoría APOE, consiste en la 

construcción de estructuras mentales necesarias para comprender ese concepto. Cada estructura 
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mental se construye a través de un mecanismo mental o también llamado abstracción reflexiva, 
según Piaget.  

En la tabla 1, se muestra cómo están clasificadas las estructuras y los mecanismos mentales.  
 

Tabla 1: Estructuras y mecanismos mentales (Síntesis de Arnon, et al., 2014) 
Estructuras mentales Mecanismos mentales 

Acción 
Proceso 

Interiorización 
Reversión 

Objeto Encapsulación 

Esquema Coordinación 

 
 
 

Inversión 
Des-encapsulación 
Generalización 
 

 

A continuación, se describen las cuatro estructuras mentales y como están relacionadas con 
los mecanismos, descritos anteriormente.   

Acción:  Se define como la transformación que se aplica a un Objeto, sin reflexionar sobre él.  
Dubinsky (1997) considera que la Acción que es realizada por un sujeto es externa a él.  En este 
sentido, se puede considerar como una Acción, por ejemplo: una operación o un algoritmo 
matemático que se realiza de manera mecánica sin omitir pasos.   

Proceso: Es una comprensión de las acciones aplicadas a un objeto. En términos de Asiala et 
al., (1996) cuando se repite una Acción, y el individuo reflexiona sobre ella, puede ser 
interiorizada como un Proceso. En este sentido, se puede considerar que un estudiante ha 
construido un Proceso, cuando omite pasos al realizar un algoritmo o no necesita del algoritmo 
para inferir sobre el resultado de una operación, como consecuencia de una reflexión de sus 
procedimientos. Un Proceso puede ser revertido para construir otro Proceso. 

También dos Procesos pueden ser coordinados respectivamente y este resultado encapsulado 
para formar un nuevo Objeto. Cuando un Proceso ha sido encapsulado en un Objeto, puede 
volver a des-encapsularse cuando sea necesario.  

Objeto: Se define como una estructura estática que fue transformada (encapsulada) de una 
estructura dinámica (Proceso) sobre la que el estudiante puede aplicar nuevas Acciones.   

Esquema: Se define como una colección de Acciones, Procesos y Objetos y otros Esquemas    
que utiliza un individuo para resolver determinado problema.  

En la figura 1 se sintetiza lo mencionado anteriormente, donde a partir de un Objeto (por 
ejemplo, dos vectores en ℝ2) sobre el cual se le aplican Acciones (hallar el determinante) que se 
pueden entender como transformaciones sobre el objeto, en las cuales no se reflexiona, es decir, 
como aplicar un algoritmo sin interpretar el resultado (en el caso del determinante) se puede, por 
medio de interiorizaciones acerca dichas Acciones, llegar a una estructura mental Proceso (en 
donde el estudiante relaciona que si el determinante es cero es porque los vectores son 
linealmente dependientes), el cual se puede ver como un objeto dinámico que está en constante 
evolución, ya que se pueden generar nuevos Procesos por el mecanismo de coordinación y por 
medio del mecanismo de encapsulación puede ser transformado a una estructura mental  Objeto, 
en donde ya se vuelve un objeto estático, el cual se puede utilizar para construir un nuevo 
concepto, como el concepto de base o transformación lineal.  
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El mecanismo de desencapsulación se utiliza cuando se necesita volver del Objeto al Proceso 
del cual dio origen. 

 

 
Figura 1: Estructuras y mecanismos mentales para la construcción del conocimiento 

matemático (Arnon et. al., 2014, p. 18) 

Métodos de investigación 
Contexto y participantes: 

Este estudio fue realizado con un grupo de 28 estudiantes de álgebra lineal de primer 
semestre, de la carrera de Ingeniería Electrónica, en una universidad pública de Colombia. 

Se realizaron 4 sesiones de clase donde se abordaron 17 problemas. Además se diseñó y 
realizó una entrevista didáctica, según Oktaç (2019) “didactic interviews give detailed 
information about the learning process” (p. 3), para lograr un análisis más fino de las estructuras 
y/o mecnaismos mentales, que los estudiantes lograron evidenciar en su razonamiento. Cuando 
se realiza la entrevista con el estudiante se pueden dar pistas o hacer preguntas a partir de las 
respuestas, para motivar razonamientos que el estudiante no ha realizado de manera previa.  
Análisis Teórico:  

A continuación, se presenta el modelo cognitivo propuesto para describir las estructuras y 
mecanismos mentales que a nuestro criterio, un estudiante necesita para construir el concepto de 
dependencia lineal a partir de la aplicación de Acciones sobre Objetos concretos que pueden dar 
paso a la construcción de Objetos abstractos.  
Descomposición genética del concepto de dependencia lineal 

Para iniciar un estudiante puede determinar las características de un conjunto de vectores 
representado geométricamente, esto es, pude encontrar cuándo son colineales o coplanares. Para 
esta investigación esto obedece a los Objetos concretos de los cuales partimos para construir el 
concepto de dependencia lineal. Entonces a partir de una gráfica como la que aparece a 
continuación (ver figura 2), el estudiante debe aplicar Acciones específicas que le permitan 
garantizar que los vectores colineales o coplanar. 
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Figura 1: Estructuras y mecanismos en la construcción del concepto de dependencia lineal: 

Descomposición genética inicial 
 

Las interpretaciones geométricas deben estar acompañadas de un análisis numérico que 
permita argumentar que los vectores son colineales más allá de la persepción visual del indivudo 
que observa la gráfica. Esto es una evidencia de que las Acciones que se aplican inicialmente 
sobre un Objeto concreto se están interiorizando en un Proceso abstracto. 

Esto está determinado por la búsqueda del escalar, que permiten dado un vector 𝑢 y a partir 
del producto por un escalar ∝ 𝑢, detetminar qué valor de ∝ alarga, encoge o rota el vector 𝑢. 
Ahora la pregunta es: 

¿Qué relación puede definirse entre los vectores 𝑢 y ∝ 𝑢? 
A partir de una exploración sobre dichos vectores los estudiantes pueden empezar a construir 

el concepto de dependencia lineal, el vector ∝ 𝑢 depende de 𝑢. Por tanto los vectores 𝑢 y ∝ 𝑢 
son linealmente dependientes. Así la aplicaciones de Acciones para determinar si dos o más 
vectores son linealmente dependientes están asociadas a determinar cuándo uno de ellos es 
múltiplo escalar de otro o combinación lineal de otros vectores del conjunto.   

Mediante la reflexión de las Acciones descritas anteriormente, el estudiante puede 
interiorizar dichas Acciones para describir de manera general el comportamiento de los vectores; 
es decir qué relación existen entre las interpretaciones algebraicas, geométricas y numéricas de 
los vectores, que dan cuenta de las características que tiene un conjunto de vectores linealmente 
dependiente.  
Concepción Proceso: Para tener una concepción Proceso del concepto de dependencia lineal, un 
estudiante necesita una concepción Proceso de combinación lineal, para poder ver un vector en 
términos de uno o más vectores.  También debe tener una concepción Objeto de conjunto solución 
de una ecuación, para considerar el conjunto de todas las posibles soluciones de un sistema de 
ecuaciones lineales. Mediante el mecanismo de coordinación el estudiante puede determinar todas 
las soluciones de las combinaciones lineales que dan el vector cero. En este caso el estudiante 
puede identificar que si la solución no es única entonces el conjunto es linealmente dependiente. 
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Concepción Objeto: Un estudiante evidencia una concepción Objeto, cuando ha encapsulado el 
Proceso de dependencia lineal, es decir, cuando realiza Acciones sobre el Objeto de un conjunto 
de vectores linealmente dependiente. También un estudiante da evidencia de una concepción 
Objeto, cuando puede desencapsular el Objeto para volver al Proceso del cual dio origen. 

Resultados 
A continuación, se presenta el análisis de un Caso de Estudio que llamamos Camilo. Camilo 

es un estudiante de ingeniería electrónica, que hace parte de un curso de álgebra lineal de 
estudiantes de ingeniería de primer año. Se propone a Camilo como caso de estudio ya que 
durante el desarrollo de las actividades (talleres y entrevista) realizadas en diferentes sesiones de 
clase, da evidencias de haber construido el concepto de dependencia lineal. A continuación, se 
presenta con detalle los razonamientos realizados por Camilo, analizados a la luz de la 
descomposición genética.  

Aplicación de Acciones sobre Objetos concretos: El análisis de los procedimientos 
realizados por Camilo, evidencia la aplicación de Acciones sobre vectores como Objetos 
concretos, que representa de manera geométrica o que transforma en su mente a través de 
“movimientos” que relaciona con un vector y sus múltiplos escalares. Esto como se señala más 
adelante, no está determinado por la representación de los vectores en el enunciado del problema, 
sino que emerge como una manera de acceder a formas más abstractas relacionadas con el 
concepto de dependencia lineal.  

Los procedimientos evidenciados por Camilo muestran que constantemente usa 
interpretaciones que abstrae de representaciones geométricas y/o numéricas, relacionadas con la 
colinealidad de los vectores y la relación múltiplo escalar, respectivamente. Por ejemplo, durante 
el taller se pide a Camilo trabajar con un conjunto de vectores definidos sobre un plano 
representado en GeoGebra (Tabla 2).  

 
 Tabla 2: Pregunta 5 taller 1 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Pregunta 5 - Taller 1 

 

Representación de los vectores 
dado en un archivo en GeoGebra 

 
Los vectores 𝑢 = (1, −1, 1), 𝑣 = (2, 0, 2) y 

𝑤 = (−1, 3, −1) están sobre un mismo plano. 
¿Existen 𝛼, 𝛽 ∈  ℝ tales que 𝑤 =  𝛼𝑢 +  𝛽𝑣? 
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 A partir de la interpretación que Camilo estructura de la representación gráfica responde: 
“Si, ya que w puede ser combinación lineal de u, v. Esto por que están en el mismo plano y u y v 
son L.I. entre ellos” [esto es, u y v son Linealmente Independientes]. Es importante resaltar que a 
partir de la representación gráfica de los vectores Camilo puede determinar que los vectores u y 
v son linealmente independientes, ya que no están sobre una misma recta. De la actividad 
generada en el desarrollo del taller, se deduce que el razonamiento de Camilo está considerando 
que los vectores u y v generan cualquier vector sobre el plano y por lo tanto generan a w. Esto 
muestra que Camilo está interiorizando las Acciones que aplica sobre Objetos concretos en un 
Proceso abstracto que relaciona con la combinación lineal como una estructura dinámica. Para el 
problema presentado en la Tabla 2, Camilo no necesita determinar ∝ y β de manera específica 
para aceptar que existen. 

Interiorización de Acciones en un Proceso: Durante el trabajo de Camilo en el Taller 2 
sigue dando evidencias de que ha logrado una concepción Proceso de la dependencia lineal. 
Frente al problema que aparece en la Tabla 3, Camilo determina a partir de su interpretación 
geométrica, que, si tiene 3 vectores en ℝ2, necesariamente son linealmente dependientes. Camilo 
escribe: “El conjunto de vectores {𝑢, 𝑣, 𝑤} son linealmente dependientes ya que puedo formar 
alguno con combinaciones lineales de los otros”.  

 
Tabla 3: Pregunta 1 taller 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Como se señaló en la descomposición genética de la sección anterior, el concepto de 
combinación lineal juega un rol fundamental en la construcción de la dependencia lineal. Los 
argumentos de Camilo a partir de la colinealidad (Acción sobre Objetos concretos) son 
reestructurados por medio de la combinación lineal. Esta estructura le permite reflexionar sobre 
dichas relación entre los vectores, sin pensar en sus coordenadas o en escalares específicos que 
determinan la combinación lineal.  

 

Pregunta 1 - Taller 2 

Representación de los vectores dado en un archivo en 
GeoGebra 

 
¿Los vectores 𝑢, 𝑣 y 𝑤 

son linealmente dependientes 
o independientes?  
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Conclusiones 
La presentación de las conclusiones las realizamos en tres secciones; i) Reflexiones sobre los 

resultados encontrados; ii) recomendaciones didácticas. 
Reflexiones sobre los resultados encontrados 

Consideramos que un primer curso de álgebra lineal debe tener una parte geométrica, ya que 
interpretar un concepto del álgebra abstracta de manera geométrica y algebraica ayuda al 
estudiante a comprender el concepto en cuestión, ya que le da herramientas para argumentar sus 
ideas, que posteriormente podrá generalizar. 

A pesar de que en la mayoría de los libros de texto que se trabajan en algebra lineal se define 
la independencia lineal a partir de la dependencia lineal, creemos al igual que Mares (2016) que 
el tener la definición de dependencia lineal, no implica tener la definición de independencia 
lineal, por eso se deben definir por separado, para que un estudiante puede comprender las 
características que diferencia un concepto del otro. 
Recomendaciones didácticas  

El rediseño de la descomposición genética propuesta en esta investigación es una herramienta 
para profesores de álgebra lineal, ya que sirve de guía para la enseñanza del concepto de 
dependencia lineal, teniendo en cuenta los pre saberes que necesitan los estudiantes para 
construir el concepto. También en la forma como se desarrolla el concepto, ya que en la 
descomposición genética proponemos dos enfoques: algebraicos y geométricos. En este sentido, 
se vuelve indispensable realizar actividades que fomenten distintos tipos de Acciones y Procesos 
de forma tanto algebraica como geométrica. 
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UNDERSTANDING LINEAR DEPENDENCE: A PERSPECTIVE OF MENTAL 

STRUCTURES AND MECHANISMS WITH UNIVERSITY STUDENTS 

This article aims to present the design of a genetic decomposition of the concept of linear 
dependence based on the analysis of textbooks, previous research related to the concept and the 
results of an intervention with students of linear algebra from the public university in Colombia. 
It is sought to have a cognitive model that is the result of the first phase of the methodology 
proposed by APOE. 
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This paper describes our work to determine the naturalistic images that first-time second-
semester university calculus students possess for series convergence. We found that the students 
we interviewed most frequently determined whether a series converged by imagining a process 
of appending summands into a running total and examining whether this running total appeared 
to approach an asymptotic value. We provide examples and three corresponding implications of 
this “asymptotic running total” that informed students’ actions while determining series 
convergence or the value of convergence. Our paper adds to the research literature by 
confirming students’ meanings for limits reported for other topics (e.g., limit of sequence, 
function, Taylor series) apply to infinite series and proposing relationships between previously 
reported meanings for series convergence. 

Keywords: Calculus, Cognition, Undergraduate Education, Advanced Mathematical Thinking 

Introduction and Literature Review 
Infinite series convergence is a central mathematical topic applied across many branches of 

mathematics and other disciplines such as physics and engineering (Azevedo, 2021). The topic 
of infinite series also incorporates many other pivotal topics in advanced mathematics, such as 
sequence, limit, and infinity (Martin, 2013). Research related to infinite series has focused on the 
state of curricula and instruction (e.g., González-Martín et al., 2011; Lindaman & Gay, 2012); 
effective interventions to promote productive student thinking about limit or convergence 
(Martin et al., 2011; Roh, 2008, 2010b, 2010a; Swinyard & Larsen, 2012); and how students 
conceive of series convergence, the sequence of partial sums or the symbolic forms of 
representation students utilize to express series (Barahmand, 2021; Eckman & Roh, accepted; 
Kidron, 2002; Kidron & Vinner, 1983; Martin, 2013; Martínez-Planell et al., 2012; Strand et al., 
2012; Strand & Larsen, 2013).  

Most of the reports about students’ meanings for infinite series describe students who have 
previously received (or are currently receiving) instruction on this topic. The purpose of this 
study is to examine how first-time university second-semester calculus students consider the 
concept of series convergence before receiving formal instruction on sequences and series. 
Documenting students’ naturalistic images for infinite series before they receive formal 
instruction can (1) assist instructors in better anticipating students’ initial perceptions of series 
convergence and (2) help researchers better describe students’ acquisition of rigorous and 
productive meanings for convergence. We summarize the goals of this study with the following 
research questions: (1) What meanings for series convergence do first-time university calculus 
students conceive before receiving formal instruction on infinite series? (2) How do the 
implications of these students’ meanings for convergence inform their actions for determining 
whether a series converges and the value to which a convergent series converges? 

Theoretical Perspective 
In this study, we attempt to describe individual students’ meanings for series convergence 

and their utilization of these meanings to reason about various series. We adopt a radical 
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constructivist (Glasersfeld, 1995; Thompson et al., 2014) approach for the term meaning. 
Thompson et al. (2014) described a meaning as the space of implications resulting from 
assimilating a situation. We consider assimilation, in this case, to refer to an individual’s ability 
to consider her situation as analogous to previous experience (Glasersfeld, 1995) such that her 
subsequent actions are selected from the implications elicited by the meaning in her mind.  

The concept of meaning can effectively describe student thinking and actions for reasoning 
about series convergence. Suppose that a student, while examining the series 1 +

1

2
+

1

4
+ ⋯ +

1

2𝑛−1 + ⋯, conceives a dynamic image of adding consecutive summands and decides to track the 
value of the “moving sum” generated through this process. We call this “moving sum” a running 
total. An implication of the student’s evoked meaning for the series might involve a belief that if 
the running total approaches a particular value, then the series converges. An alternative 
implication of the meaning might include the notion that if the running total does not approach 
an asymptotic value, the series does not converge. The student’s subsequent actions to determine 
whether the running total approaches an asymptotic value are grounded in the implication 
evoked as part of the student’s meaning for series convergence. In the results section, we propose 
an overarching meaning for series that the students in this study appeared to possess and the 
implications that informed the students’ actions to determine convergence.  

Research Methodology 
In this report, we detail the meanings and implications that students exhibited for series 

convergence during a set of individual 90-minute clinical interviews (Clement, 2000) that 
simultaneously functioned as a selection and pre-test interview for a constructivist teaching 
experiment (Steffe & Thompson, 2000). The purpose of the teaching experiment was to offer 
calculus students specific tasks designed for developing productive meanings for series 
convergence while documenting the evolution of their corresponding symbolization for series 
convergence. The virtual clinical interviews were conducted during the Fall 2021 semester, prior 
to formal coursework on sequences and series, at a large public university in the United States. 
Our analysis and results focus on two students, Monica and Sylvia (pseudonyms), who were 
first-time second-semester calculus enrollees at the university level. 

 We presented the students with six infinite series in expanded form (see Table 1). We 
chose not to present infinite series using summation notation to mitigate students’ potential 
difficulties interpreting this notation (Strand et al., 2012; Strand & Larsen, 2013). Series 1-4 
reflect various behaviors of sequences of partial sums (i.e., monotone convergent, monotone 
divergent, oscillating convergent, oscillating divergent). Series 5-6 reflect series types that have 
been reported as problematic for students, such as the decimal expansion of an irrational number 
(Kidron, 2002; Kidron & Vinner, 1983) and variations of Grandi’s series (Bagni, 2005; 
Martínez-Planell et al., 2012). 

For each series, we asked the student two questions adopted from the sequences and series 
unit in Larson and Edwards (2015): (1) Does the series converge? and (2) If the series 
converges, what value does the series converge to? After the student responded to the two 
questions for each series, we presented each question in a generalized form to determine what 
students believed about convergence and the value of convergence for any series. 

After compiling and transcribing the interviews, we identified and analyzed individual 
moments of the interviews in the spirit of grounded theory (Strauss & Corbin, 1998). We 
considered a new moment to begin when a student either (1) encountered a new series, (2) 
changed their thinking about whether a series converged, or (3) proposed a particular value to 
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which they believed the series converged. For each moment, we recorded whether a student 
believed the series converged, the convergent value (if applicable), the meaning that students 
appeared to exhibit for series convergence, and how the students’ actions to determine series 
convergence might be viewed as implications of their meaning. We found that the two students 
reported in this study appeared to have a similar meaning for series convergence and that three 
distinct implications of this meaning emerged as the students interacted with various series. 

 
Table 1: The six series presented to students during the interviews 

Series  Rule Expanded Form Series type Sequence of 
Partial Sums 

Value of 
Convergence 

1 ∑
3

√𝑛

∞

𝑛=0

 
3

√1
+

3

√2
+

3

√3
+ ⋯ p-series 

(0 < 𝑝 < 1) 

Monotone 
increasing 
divergent 

 

2 ∑
2(−1)𝑛−1

𝑛5

∞

𝑛=1

 2

15 −
2

25 +
2

35 − ⋯ 
Alternating 

p-series 
(𝑝 > 1) 

Oscillating 
convergent ≈ 1.94 

3 
∑ ∑[10−2𝑛−1 − 10−2(𝑛+1)−1𝑖]

99

𝑖=1

∞

𝑛=1

  

= ∑
495

10000
(

1

100
)

𝑘∞

𝑘=0

 

99

103 +
98

103 + ⋯ +
1

103 +  
99

105 + ⋯ +
1

105 +  
99

107 + ⋯ +
1

107 + ⋯  

Geometric 
Monotone 
increasing 
convergent 

1

20
 

4 ∑
(200 − 2𝑛)(−1)𝑛

𝑛 + 1

∞

𝑛=0

 200

1
−

198

2
+

196

3
− ⋯ Alternating 

series 
Oscillating 
divergent  

5 
∑ 𝑎𝑖

∞

𝑖=0

 

(where 𝑎𝑖 corresponds to the 𝑖𝑡ℎ 
decimal place of 𝜋 and 𝑎0 = 3.) 

3 + .1 + .04 + ⋯ 

Decimal 
expansion of 

irrational 
number 

Monotone 
increasing 
convergent 

𝜋 

6 ∑(.07) ∙ (−1)𝑛

∞

𝑛=0

 . 07 − .07 + .07 − ⋯ 
Alternating 

series 
(Grandi’s) 

Oscillating 
divergent  

Results 
The results comprise two sections. The first section explains the students’ meaning of series 

convergence as analogous to a running total approaching an asymptotic value. The second 
section describes three distinct implications of this meaning that informed the students’ actions 
to determine the convergence and convergence value of various types of series. We reflect on 
potential relationships between the implications in the discussion section.  

 
Table 2: The evolution of students’ responses to the question “Does the series converge?” 
 Series 1 Series 2 Series 3 Series 4 Series 5 Series 6 

Monica 
Converge Y N Y N Y Y Y Y Y N 
Value Unsure  Unsure  0 𝜋 4 3.2 

and 4 
Any upper 

bound 
 

Sylvia 

Converge Y N Y N Y N Y Y Y N 
Value 4  Unknown 

value 
larger 
than 4 

 2  200 𝜋 0  
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Students’ Meaning for Convergence as a Running Total Approaching an Asymptotic Value 
Monica provided normative final responses for each series’ convergence except series 3 and 

4, while Sylvia provided normative responses for series 2, 5, and 6 (see Table 2; “Y” and “N” 
stand for “Yes” and “No”). However, in instances where both students believed that the series 
converged (i.e., series 2, series 4, series 5), the students proposed differing convergence values. 

Both students exhibited similar meanings for series convergence, which appeared to involve 
imagining a dynamic running total approaching an asymptotic value as additional summands are 
calculated into the running total. We call this meaning an asymptotic running total meaning. 
Monica’s response to the final interview question regarding general series convergence provides 
an image of her asymptotic running total meaning. Note that in each of the following transcripts, 
the ellipses (…) refer to omitted text. 

Monica: OK. So for the first question [How can I tell whether a series converges?]. The 
first thing I thought of was, kind of like with the limits thing, where are we approaching 
with every new, like, next iteration of this series? Are we approaching a value or 
infinity?... [In] the one where we were adding and subtracting and then adding and 
subtracting [series 4], but the numbers were decreasing, you still saw like a general trend 
towards, a number, which in that case was zero. So that’s what I would say when I’m 
thinking about, how can I tell whether [the] series converges… Like I’m interested in, 
what it’s approaching [i.e., the running total] and how adding on each next piece of the 
series is getting it closer to that value. 

Int:   OK. 
Monica: So then the last one [series 6] where it [i.e., subsequent summand] was like 

essentially undoing what the previous one had done. That was why I said it [series 6] 
wasn’t converging. Because there was not like one overall direction it was going. 

Int:   OK. Now, when you say one direction “it” was going. Just to clarify, what do you 
mean by the “it” that’s going somewhere? 

Monica: The series as a whole, or like the sum of the series as a whole [i.e., running total]. 
So like, if I were to take…like one plus two plus three plus four. And on this like, huge 
number line and I just go up all the way to like a very large number, and that number that 
was getting big, closer and closer to infinity. And then I went to the 200th part of that 
series. I can be like, Yeah, that’s still getting close to infinity, and I could go to the 
1000th part and it would be like, yeah, it still goes to infinity. 

In Monica’s initial comment she states that a convergent series will exhibit a “general trend” or 
“overall direction” towards a particular value. When the interviewer asked Monica to clarify the 
“it” moving towards the asymptotic value, Monica stated that she envisioned instantiations of the 
running total after summing various numbers of summands (i.e., 200 or 1000 summands). 
However, there is no indication that Monica coordinated these instantiations of the running total 
with an index to form the sequence of partial sums. For this reason, we use the terminology 
summand and running total in place of normative terminology (e.g., term, partial sum, sequence 
of partial sums) to make clear that we do not consider either student to have constructed explicit 
sequences through their reasoning about series convergence.  
Implications of Asymptotic Running Total Meaning for Determining Series Convergence 

In this section, we report three distinctive implications of the students’ asymptotic running 
total meaning which contextualize students’ actions while determining series convergence. The 
three implications we describe are decreasing summands convergence, monotone running total 
divergence, and running total recreation through grouping. 
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Implication 1: Decreasing summands convergence. One implication of an asymptotic 
running total meaning is that a student might believe that if each consecutive summand in an 
infinite series is smaller than the previous summand, the running total will eventually trend 
toward one specific value, suggesting that the series will converge. We call this implication 
decreasing summands convergence. In conventional mathematics, the notion of decreasing 
summands is a necessary but insufficient property of a convergent series (the most famous 
example of this principle is the harmonic series, ∑ 1

𝑛
∞
𝑛=1 ).  

Both students’ actions in various moments related to series 1 appeared to align with the 
decreasing summands convergence implication of the asymptotic running total meaning. We 
constructed series 1 to reflect a divergent p-series with a monotone increasing sequence of partial 
sums (see Table 1). We provide an example from Sylvia’s reasoning about series 1 as evidence 
of the decreasing summands convergence implication. 

Sylvia: OK, now I’m thinking that the series doesn’t converge and like it [i.e., running total] 
keeps adding up and getting bigger and approaches like infinity or something like that. 

Int:  OK. 
Sylvia: Wait… 
Int:  OK… can you say a little bit more about any of the stuff that you’re thinking? 
Sylvia: Um…if you picture like a perfect square root like three over the square root of nine is 

three over three, and that’s one [ 3

√9
=

3

3
= 1]. But then if you had like three over the 

square root of 81, that’s one-third [ 3

√81
=

1

3
]. So…each item in a series that you’re adding 

on [brings up hand and mimics placing summands of series sequentially] is getting 
smaller. Yes, it is getting smaller. So it’s going to… converge to something, but it’s not 
going to be four. [brief pause] Yes, that’s my view. 

In Sylvia’s initial conception of the convergence of series 1, she argued that series 1 does not 
converge because the running total will perpetually increase. She later determined that each 
subsequent summand is smaller than the previous summands, which lead to her declaration that 
the series converges to an unknown value. In this moment, Sylvia’s asymptotic running total 
meaning implies that decreasing summands suggest convergence. However, we note that the 
decreasing summands convergence implication was insufficient for Sylvia to make a substantive 
claim regarding the value to which series 1 might converge.  

Implication 2: Monotone running total divergence. Another implication of an asymptotic 
running total meaning is that a student might believe that since the running total perpetually 
increases (or decreases) in a monotone series, the running total will eventually surpass every 
potential upper bound (i.e., asymptotic value) that might indicate convergence. We call this 
implication monotone running total divergence.  

Both students’ actions in various moments related to series 3 aligned with the monotone 
running total divergence implication (Monica’s actions related to series 1 also aligned with this 
meaning during certain moments). The authors constructed series 3, a convergent geometric 
series, by expanding each summand of the original geometric series into a finite arithmetic series 
that summed to the summand in the geometric series. Consequently, the expanded form of series 
3 resembled a double summation (see Table 1). We provide an instance of Monica’s reasoning 
about series 3 as an instance of the monotone running total divergence implication. 
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Monica: Um. [pause] So. In this case… we’re adding very, very, very small fractions [i.e., 
summands], but they’re always going to be positive numbers and then we’re adding all of 
them together. This one [series 3]…the rate of growth would be significantly slower. 

Int:   OK. 
Monica: But it would still, if you just did this forever [makes a gesture to the right 

indicating extending series indefinitely]…it [i.e., the running total] would just continue to 
increase. 

Int:   OK. So if I’m just summarizing what you’ve said, you’re saying that this third 
series does not converge. And the reason why is once again, similar to the first series, all 
of the fractions [i.e., summands] are positive, they’re all being added together. And so 
therefore, our value [i.e., running total] will never stop growing. And so as we continue 
on indefinitely, we’ll approach infinity. 

Monica: Right. 
In Monica’s comments, she noted that all of the summands in series 3 are positive and that 
although the rate at which the running total will grow is slow, the running total will never stop 
increasing. The interviewer then rephrased Monica’s comment to determine whether Monica 
imagined that a monotone running total implies non-convergence, which Monica confirmed. In 
Sylvia’s case, she recognized that although the summands for series 1 and series 3 both decrease 
in value, she claimed that series 1 converged and series 3 did not. Sylvia acknowledged the 
apparent contradiction in her reasoning but was unable to reconcile the issue.  

Implication 3: Running total recreation through grouping. A final implication of an 
asymptotic running total meaning is that a student might believe that if she groups the terms in 
an alternating series to construct a uni-directional running total, the series will converge. We call 
this implication running total recreation through grouping.  

Both students’ actions related to various moments related to series 4 appeared to align with 
the running total recreation through grouping implication (Sylvia’s actions related to series 2 
were nearly identical to her actions for series 4). We constructed series 4 to reflect an alternating 
divergent series with a linearly decreasing numerator and linearly increasing denominator (see 
Table 1). Monica tenuously claimed that series 4 converged to zero and Sylvia confidently 
claimed the series converged to 200 (the value of the initial summand). 

 We provide Monica’s rationale for claiming that series 4 converges to zero in the 
transcript below.  

Monica: I think that if I were to say that it [series 4] does converge, then I would also say 
that it converges to zero. 

Int:   OK. Can you say a little bit more about that? 
Monica: …So in this case, instead of seeing like each individual adding on a fraction is one 

thing [places hands close together with small space between], I’m kind of grouping them 
together, where we are subtracting and adding and that, I’m grouping that together in my 
head. 

Int:   OK, could you could you like, mark on the screen what it is that you’re grouping 
together just so that I’m sure that I know? 

Monica:  Yes. So I would put these together [draws a bracket above second and third 
summand] and then I would put these together [draws a bracket above the fourth and fifth 
summand]… and I take the number 200 and I, do these two things do it [cursor indicates 
second and third summands], I’m going to have a number here [moves cursor between 
third summand and minus sign separating third and fourth summand] that’s less than 
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200, but still very close to it. So basically, what I’ve decided is if you were to sum these 
two values [moves cursor back to indicate second and third summands], you would have 
a very small number and you subtract those… So that, that’s what makes me think that 
this [i.e., the running total] is getting smaller and smaller and smaller and smaller. 

In her response, Monica envisioned a running total that started at 200 (the value of the first 
summand) and noticed that by grouping each pair of consecutive summands after the first 
summand, she could construct a new series that had a distinctive pattern of 200 +
(small negative value) + (small negative value) + ⋯. Based upon her reconstruction of series 
4 by grouping, Monica perceived a running total that approached an asymptotic value of zero.  

 In the transcript below, we provide Sylvia’s rationale for claiming that series 4 converged 
to 200, which involved a different grouping action than Monica. 

Sylvia: So I’m going to say that this one [series 4] converges. And I think I’m going to follow 
the same logic that I did with [series 2,] that it kind of…drops some and increases a little 
bit less than it dropped [draws concave-up curve starting from (0, 200) that stops before 
reaching 𝑦 = 200], if that makes sense. And then it, like each wave gets smaller [draws 
more waves with decreasing amplitudes that progressively move closer and closer to 
horizontal line at y = 200]. And I would say my guess is that it converges to 200. 

[omitted dialogue] 
Int:  So, can you explain a little bit more to me about how you’re…seeing that come about 

[convergence to 200]? 
Sylvia: So I guess like, if we start at 200, we subtract 99, we’ll get 101, and then you add one 

ninety-six over three [196

3
], and that number is smaller than 99. Yes. And so you’re going 

to go back up and essentially cancel out some of the, the subtraction that you did. But not 
like all the way, like you’re not going to get back up to 200. 

Int:  OK. 
Sylvia: And then you’re going to go down a little bit more, but not as great as just went up. 

And then, like, follow that pattern. 
Int:  So there. So it’s like you’re imagining that every time we jump up, we’re jumping up 

farther than we drop down. And so over time, we’re slowly moving back up towards 200. 
Sylvia: Yes. 

In her response, Sylvia’s stated that the running total begins at 200, drops to 101, and then 
begins to move back toward 200 in progressively smaller “waves.” Sylvia constructed her 
“waves” by recognizing that the sum of the third and fourth summand would be a positive value, 
and every subsequent pair of summands would yield positive—albeit decreasing—values. Sylvia 
then reconstructed series 4 as 101 + (small positive value) + (small positive value) + ⋯ and 
envisioned that the running total would eventually approach the asymptotic value of 200, the 
initial summand of the series.  

Discussion and Conclusion 
Our findings provide unique and relevant contributions to the mathematics education 

literature. For instance, our description of the asymptotic running total meaning provides 
valuable insight into how students might initially perceive series convergence in university 
calculus courses. The three implications we described both emerge from and deepen the 
explanatory power of the asymptotic running total meaning. The first implication, decreasing 
summands convergence, emerges from an asymptotic running total meaning when a student 
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imagines that if the summands in a series tend toward zero, the running total will eventually 
stabilize around a particular value. The second implication, monotone running total divergence, 
emerges when a student envisions that a never-ending string of non-zero summands imply that 
the running total will perpetually increase and eventually surpass all potential asymptotic values. 
The third implication, running total recreation through grouping, emerges when a student 
considers that she can regroup the terms in an alternating series to create a uni-directional 
running total. For the students in our study, recreating the series resulted in not only a uni-
directional running total, but a plausible (in the students’ minds) candidate for the asymptotic 
value to which the recreated running total might converge. In this manner, the three implications 
provide a connection between students’ actions while considering the convergence of individual 
series and their overarching image of convergence as a running total approaching an asymptote.  

Our findings both complement and extend work done by previous researchers. For example, 
the asymptotic running total meaning indicates that students consider series convergence as a 
dynamic process of approaching an asymptote, which has been previously reported about 
students’ meanings for the limit of sequences (e.g., Roh, 2008) and functions (e.g., Swinyard & 
Larsen, 2012). Our findings also provide analogous results and additional insight into Martin’s 
(2013) report on students’ thinking for Taylor series convergence. For instance, Martin’s (2013) 
dynamic partial sum image in the Taylor series case is analogous to the asymptotic running total 
meaning for the infinite series case. However, our report extends the findings of Martin (2013) 
by reporting new implications of the asymptotic running total meaning (e.g., running total 
recreation through grouping) and providing a meaning-implication relationship between images 
that were previously reported distinctly (i.e., dynamic partial sum and termwise).    

Our data did not provide sufficient evidence to make rigorous claims about relationships 
between the three implications described in the results section. Still, we make two anecdotal 
comments about potential relationships. First, both students’ actions tended to align with the 
decreasing summands convergence implication after constructing and reasoning about closed-
form rules for the general summand in a series. In contrast, the monotone running total 
divergence implication often emerged during moments when the students could not construct a 
closed-form rule for the general summand or reasoned about the running total without 
referencing a closed-form rule for summand values. Second, the monotone running total 
divergence implication did not emerge during moments after students regrouped an alternating 
series. Rather, the students’ responses indicated that although the regrouped series’ running total 
would perpetually increase or decrease, the inherent oscillation of the original running total was 
sufficient to render the monotone running total divergence implication irrelevant. 

We anticipate that our ongoing analysis of the teaching experiment data from which this 
report emerged will provide insight into effective instructional interventions to foster productive 
student meanings for series convergence. In particular, we hope to discern how to leverage 
students’ naturalistic images of a series as a running total to construct a productive meaning for 
the sequence of partial sums, which Martínez-Planell et al. (2012) stated is pivotal to 
comprehending the formal definition of a series as the limit of its sequence of partial sums. We 
also hope to investigate possible relationships between the three implications we have described 
and uncover additional meanings and implications that first-time second-semester calculus 
students possess for series convergence. 
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The constitution of a mental object in a student implies their competence to perform an adequate 
reading and execute processes in the different contexts in which it is possible to find that related 
concept. As part of the constitution of the mental object system of linear equations, we consider 
that pre-university students must be competent in the use of a resolution method that allows 
recognizing a system of equations as a mathematical object and identifying the nature of its 
solution set. In addition, we consider necessary the competence to identify the elements of 
systems of linear equations in different mathematical sign systems. 

Keywords: Cognition, Mathematical representations, Modeling, Problem solving. 

The mastery of systems of linear equations (SLE) is fundamental in the learning of some 
disciplines in higher education (Oktaç & Trigueros, 2010). There is evidence that many 
university students are not competent in solving SLEs and working with their different forms of 
representation, as well as in understanding concepts such as the equivalence of SLEs and the 
existence of SLEs with no solution or with infinite solutions (DeVries & Arnon, 2004; 
Manzanero, 2007; Mares, 2016; Oktaç, 2018; Parraguez & Bozt, 2012). In learning linear 
algebra, university students have to understand a large number of concepts that do not seem to be 
related to previous mathematical knowledge (Mares, 2016). Students face problems with respect 
to learning SLE-related concepts and processes from the basic level (Filloy, Rojano & Solares, 
2010) that are replicated at later levels. We consider the study of systems of linear equations at 
the pre-university level as an opportunity to detect and overcome students' difficulties in 
understanding and solving SLEs. 

Purposes of the study 
The objective of the study is to propose, analyze and interpret teaching activities focused 

on promoting the sense production of pre-university students around the concept of SLE and to 
strengthen the related mental object. Our hypothesis is that the systematic use of systems of 
equivalent equations mediated by the Gaussian elimination method favors the understanding of 
systems of equations as a mathematical object and allows determining and interpreting the 
nature of their solution. Through an intertextual analysis we seek to identify elements that 
allow students to acquire competence in modeling, solving and interpreting SLE solutions.  

Theoretical framework 
For the analysis of the development of competence in students we consider the concept of 

intertextuality. The concept of intertextuality is developed in contrast to the idea that the reading 
process is the extraction of a unique meaning deposited in a text by its author; it is considered 
that, in the search for meaning, a reader is immersed in a network of relationships between an 
infinite number of texts that are part of their previous experiences, which generates a unique and 
personal meaning of the text (Allen, 2011). 

Rojano, Filloy and Puig (2014) point out that learning algebra is done by reading texts that 
are related to other texts and that, when reading, students are immersed in a network of 
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intertextual relationships derived from their pool of linguistic and mathematical experiences. 
Once the student brings their intertextual network into play read or produce meaning, they 
generate a new text that will become part of their intertextuality. The tendencies, allusions or 
references in the students' productions allow us to observe in what ways their intertextuality 
facilitates or hinders the reading and production of texts. The use of the notion of intertextuality 
in this report is focused on the analysis and description of the development of student 
competencies in SLEs learning. 

According to Puig (1997), when a person can correctly interpret the use of a mathematical 
object according to its context, they do not need its encyclopedic meaning, but their own 
personal semantic field, which is the result of the meanings they have managed to construct 
through the senses production. Hence the importance of ensuring that the students' semantic field 
is so rich that it allows them to adequately interpret mathematical objects in all possible 
situations. The objective is to build a personal intertextuality in mathematics composed of the 
concepts and mental objects related to that concept that allow the student to perform adequate 
readings and execute processes competently. 

Methods 
The experiment was carried out with three pre-university students whose real names have 

been protected. The data analyzed were obtained from the recordings of interviews with didactic 
intervention carried out on a videoconferencing platform. The analysis included the students' 
productions in worksheets and in a digital whiteboard application. The interviews were intended 
to promote discussion, reflection and the use of mathematical discourse. In some of the sessions, 
the dynamic geometry software (DGS) GeoGebra was used for the analysis of SLE 
representations in the plane and space of coordinate axes and in the tabular representation. This 
report presents the results of eight activities that made up the experimental phase. This is 
intended to exemplify some changes in the students' intertextuality in relation to SLEs. The 
activities began with the linear equation with one and more variables, analytical work for 
statement problems, and representations of SLEs. It concludes with the resolution of statement 
problems by applying the Gauss's method to the algebraic models proposed by the students.  

Data Analysis and Findings 
Given that one of the difficulties detected in high school students is the assumption that 

for each variable in a SLE there is a solution, we proposed in the third activity the numerical 
analysis of a problem statement divided into two conditions with two unknown quantities. 
Condition 1: There are two trucks. Truck A with a capacity of two tons and truck B with a 
capacity of four tons. You want to know how many trips each truck made given that 20 tons 
of material were transported to a construction site and that no truck traveled with less than its 
capacity, how many and which solutions are there? Condition 2: If it is known that for each 
trip of truck A the company charges 2 thousand pesos and for each trip of truck B 3 thousand 
pesos and the payment for the trips was 18 thousand pesos, what would the solution be?  

From this activity we identify sense production with respect to the fact that the solution of an 
SLE can be a set of values and that at least two conditions are required to find two unknown 
quantities (Figure 1).  
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Figure 1: Vanessa´s numerical analysis of the statement problem 

 
Before the didactic intervention, we identified that the concept of equivalent equation was 

not part of the students' intertextuality. During the development of the activity, there was 
evidence of the sense production with respect to the recognition of some of the transformations 
to obtain equivalent SLE. We observed evidence of competence in the use of the Gauss' method 
once the students incorporated the concept of equivalent scaled SLE into their intertextuality. A 
part of the activity for the use of Gaussian method was developed with the support of the DGS. 
The work that the students carried out was the identification of the operations per line necessary 
to find an equivalent scaled SLE and the analysis of the results obtained (Figure 2). 

 

 
Figure 2: Solving a SEL using GeoGebra by Ana 

 
The use of the DGS made it possible to complement the algebraic transformations and the 

results obtained with the visualization of the representation of SLEs and their transformations in 
graphical form and to produce meaning with respect to SLEs with no solution, with one and with 
infinite solutions. For example, by observing the SLE (Figure 3) the student identifies that it has 
infinite solutions. 

 

 
Figure 3. Representations of a SEL in interaction with Gabriel 
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With respect to solving word problems, students were competent in identifying unknown 

quantities and relating them to literals for their algebraic treatment. They also expressed the 
solution or results in terms of the problem. One of the major difficulties for the students was 
modeling the problem conditions in equations. However, through the use of concrete values, 
students were able to make sense of the relationships between known and unknown 
quantities, either to reflect and propose an equation or to revise their inferences (Figure 4). 

 

 
Figure 4: Interaction with Gabriel doing scans with specific values 

 
Once the activities were carried out, the construction that the students achieved of the SLE 

mental object was influenced by the students' own intertextuality as related to first-degree 
equations with one unknown and the transformations necessary to solve them, as well as by the 
way the teaching situations were approached. 

Discussion 
There are significant differences in the students' personal intertextuality, which determines 

the senses production and competencies, not only before, but also during and after the 
development of the activities. However, we identified some coincidences in the constitution of 
mental objects. The students were able to incorporate elements to their intertextuality that 
allowed them to competently read systems of up to three equations with three unknowns 
without solution, with one or with infinite solutions in the plane, in the corresponding tables of 
numerical values and in algebraic form.  

Some difficulties were encountered with systems of equations with three unknowns. The 
analysis in its different representations by means of the DGS was important for their 
understanding. The incorporation in the students' intertextuality of the equivalent SLE 
mathematical object and the recognition of the transformations to obtain them was evidenced, as 
well as the advantage of having a stepwise SLE to find their solution. Students showed 
competence in identifying unknown quantities and relating them to literals for their algebraic 
treatment. Finally, they showed difficulties in modeling problem conditions in equations that 
they overcame by using concrete values. 
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Access to free, high-quality, institutionally provided tutoring services can be critical to the 
success of university students. When the pandemic forced university tutoring operations to close 
or move online, many chose to move operations online. The Fall 2021 semester saw the return of 
in-person tutoring at many institutions; however, online options remained in place to serve 
students who may not be able to participate in-person. This created more equitable access to a 
critical student support. We collected data on which format students chose at two research-
focused institutions. At one institution, visits were split at 47% online and 53% in-person. In 
contrast, visits at the other institution were split at 5% online, and 95% in-person. We will 
discuss the courses with the highest usage in each format and explore why students may be 
choosing one format over the other.     

Keywords: Undergraduate education; Instructional Activities and Practices; Online and Distance 
Education; Equity, Inclusion, and Diversity 

Tutoring services supply essential support for students, helping them to succeed in college 
mathematics classes. Although professional tutoring is available outside of the university, such 
services are not financially accessible to all students. University-based tutoring centers offer 
services to students at no additional cost. Access to high-quality online tutoring services can be 
critical to the success of students, especially those who are first-generation, are from low-
socioeconomic backgrounds, or are facing other challenges to making in-person meetings. In this 
paper, we discuss students’ usage of in-person and online tutoring options at two large research-
focused institutions. Further, we will examine how this data may inform future tutoring 
structures.   

Background 
Institution-based mathematics tutoring services play a necessary role in preserving equitable 

access to resources among students. Student use of tutoring resources has been correlated with an 
increase in final course grades (Byerley et al., 2018; Rickard & Mills, 2018; Xu et al., 2001) and 
with improvements in persistence, retention, and degree completion (Astin, 1993; Pascarella & 
Terenzini, 1991, 2005; Rheinheimer et al., 2010; Rheinheimer & Mann, 2000; Rouche & Snow, 
1977).  First-generation college graduates have reported needing to work harder than their peers 
to attain the same level of achievement, and minoritized students have reported that lacking a 
sense of belonging presented a significant challenge to persistence in college (Richardson & 
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Skinner, 1992). Mathematics tutoring centers act as an academic scaffold for struggling students, 
allowing instruction to be tailored to the needs of the individual students (Anghileri, 2006) while 
also helping students develop their mathematical identities through social interaction (Bjorkman 
& Nickerson, 2019). Access to quality tutoring services is likely to play a significant role in 
student achievement in the coming years, as it is projected that secondary school students’ 
performance in reading and mathematics will suffer as a result of interrupted instruction due to 
school closures (e.g., related to the pandemic or weather events), particularly in less affluent 
areas (Chetty et al., 2020; Kuhfeld et al., 2020). 

Existing research points to the importance of tutor training both for in-person and online 
tutoring (Fitzmaurice et al., 2016; Johns & Mills, 2021; Simão et al., 2008; Turrentine & 
MacDonald, 2006). Lepper and Woolverton (2002), in a comparison of the practices of expert 
tutors, identified characteristics of and techniques used by those tutors during tutoring sessions. 
The behaviors identified in these expert tutors include cognitive, metacognitive, and affective 
pedagogical strategies and considerations which focus not only on the academic content under 
consideration but also emphasize the importance of study skills and student mindsets. Research 
on students’ success in school (Blackwell et al., 2007; Boaler, 2013; Cohen & Sherman, 2014; 
Dweck, 2007; Good et al., 2003; Moser et al., 2011) has shown that non-cognitive or 
motivational factors including students’ mindsets and beliefs about themselves as learners, their 
feelings about school, and their ability to self-regulate “can matter even more than cognitive 
factors for students’ academic performance” (Dweck et al., 2014, p. 2). Students who work with 
a tutor tend to use prior knowledge, monitor their progress, utilize effective learning strategies, 
and seek help more often than those who do not – practices which lead to improved performance 
on assessments and development of mental models (Azevedo et al., 2008). The role played by 
tutors is much more than simple presentation of content; effective tutors also provide emotional 
support and help students learn how to self-regulate and develop productive mindsets about 
themselves as learners. Tutoring practices, like those discussed above, are known to be effective 
in the traditional, face-to-face tutoring environment, but in light of the COVID-19 pandemic, 
many tutoring centers moved operations online and will likely continue to provide their services 
either entirely or partially in an online environment to meet the needs of their students.   

Theoretical Framing 
We view tutoring from the perspective of Weisbord’s Six-Box Model of how organizations 

function (Weisbord, 1976). The six boxes are: 1) Purpose, 2) Structure, 3) Relationships, 4) 
Rewards, 5) Leadership, and 6) Helpful Mechanisms. For this report, we focus on the dimensions 
of purpose, what “business” we are in, and structure, how we divide up the work. The purpose of 
our university tutoring centers is to provide students access to free, high-quality tutoring, and our 
structure consists of dividing the work between in-person and online offerings. Each of these 
dimensions is influenced by the environment (i.e., forces from the outside that cannot be 
controlled) in which it exists.  

Weisbord suggested collecting data through observations, surveys, interviews, and readings 
(of written records) to assist in determining discrepancies between what people say and what 
people do as well as how the organization exists and how it ought to exist.    

An organization should have helpful mechanisms that monitor, identify and revise any of the 
other boxes in Weisbord’s model, as needed, to make the organization more effective. In this 
study, we report on the deliberate use of institutional data to study the university students’ usage 
of and satisfaction with their mathematics tutoring centers in a pandemic era. We will consider if 
using this data is a helpful mechanism to identify how university tutoring centers might 
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optimally fulfill their purposes considering structural changes implemented to benefit students. 
In terms of Weisbord’s model, our research question is: How might student attendance at in-
person and online tutoring sessions be used as a helpful mechanism to support the purposes and 
structures of tutoring centers? We then speculate on other mechanisms that would be helpful in 
determining the optimal structures that might help two different universities achieve their 
organizational purposes.  

Context and Data Collection 
The data presented here is part of a larger project examining the online tutoring experience. 

As part of this larger study, training materials for online tutors are being developed and tested 
with the goal of providing an online tutoring experience that is more comparable to in-person 
tutoring. Here, we are examining how students’ choices of tutoring experience (in-person or 
online) may inform an institution of how well their structures are fulfilling their purposes with 
respect to tutoring offerings. Data for this paper include the number of visits to in-person and 
online tutoring sessions and a student experience satisfaction survey sent to those who attended 
online sessions.  

We tracked the number of student visits to tutoring services provided by the mathematics 
departments at two large, research-focused universities, U1 and U2, during the Fall 2021 
semester. Student visits to the mathematics tutoring centers were tracked via EAB’s Navigate 
and TutorTrac, respectively, for U1 and U2. For in-person visits, students’ university ID cards 
were swiped when they entered and exited to capture information about the mathematics course 
in which they were enrolled, and the time spent in the tutoring center. Online visits captured this 
data through a manual entering of the student’s ID number by the tutor on duty. At the 
conclusion of the semester, data were downloaded, summarized, and analyzed.  

It should be noted that students who attend in-person tutoring are not necessarily working 
with a tutor for the entirety of their visit. It is common for students to sit in the tutoring center 
working on problems independently and only work with a tutor as questions arise. In contrast, in 
the online environment, students are more likely to be working with a tutor for the duration of 
their tutoring center visits. Hence, while time spent in the tutoring center (in-person and online) 
is tracked, we only consider the number of visits in our analysis here. Tracking time spent in the 
tutoring center is valuable for determining operating hours and physical space considerations.          

All online tutors were provided with a Samsung Galaxy Tab S6 Lite tablet to use for their 
tutoring sessions. Students who used the online tutoring services at U1 and U2 received a 3-
question satisfaction survey. Students were asked: 1) Please rate the overall quality of your 
tutoring session (on a scale of 1 to 5), 2) Please indicate whether the technology allowed for 
effective interactions with your tutor (on a scale of 1 to 5), and 3) Is there anything else we 
should know to help serve you better in the future? 

The satisfaction survey was sent only to users of the online tutoring services. In-person 
tutoring has a proven track-record of helping students succeed, and large numbers of students at 
U1 and U2 used these services pre-pandemic. The purpose of the current study was to determine 
how the online tutoring environment differed from the in-person, with a focus on how 
technology facilitates tutor-student interactions.     
U1 Context 

U1 is a research-focused institution in the mid-Atlantic region of the U.S. with a total 
enrollment of about 21,000 undergraduate students. It is approximately 50% residential, with 
mostly freshmen living on campus. U1 has two campuses, Campus A and Campus B, about 2 
miles apart. The mathematics tutoring center is located on Campus A in the same building as the 
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mathematics department and offers drop-in in-person tutoring. Although most math courses are 
offered on Campus A, only about 9% attend their mathematics class in the same building as the 
mathematics tutoring center and 25% of students enrolled in a math class attend their class on 
Campus B.   

Most tutors were undergraduate students. All tutors (in-person and online) participated in 
tutor training with sessions occurring both synchronously and asynchronously online. This 
training consisted of an initial one-on-one meeting with the tutor coordinator to discuss tutoring 
basics, regular written self-reflections on the tutor’s own practice, and the analysis of recorded 
mock tutoring sessions. Online tutors were encouraged to enroll in a separate one-credit hour 
course so that those who were working in the online environment received additional training on 
how to tutor online and how to effectively use technology to facilitate interactions between 
students and tutors.  

At U1, in-person and online tutoring was offered throughout the semester. In-person tutoring 
was offered all semester, Monday – Friday from 10am-3pm for a total of 375 hours (63% of 
available tutoring hours). Online tutoring was offered all semester Sunday – Thursday from 6pm-
9pm for 225 total hours (38% of available tutoring hours). Online tutoring sessions were 
conducted via Zoom. All students, regardless of whether they were enrolled in in-person or 
online classes, could attend either in-person or online tutoring. 
U2 Context 

U2 is a research-focused institution in the southwest region of the U.S. with a total 
enrollment of about 23,000 undergraduates. It is 29% residential, with most freshmen residing on 
campus. U2’s mathematics tutoring center offers drop-in tutoring. U2’s in-person tutoring center 
is located on the main floor of the building where about 75% of its math classes are offered and 
where all mathematics instructors’ offices are located.  

The tutors are a mix of faculty, graduate students, and undergraduate students. The graduate 
and undergraduate tutors undergo training. All tutors attend 6 hours of general training on 
tutoring prior to their first semester, of which 1 hour is dedicated to online tutoring. Graduate 
students take 30 hours of content training throughout their first year to qualify to tutor for the 
different courses served by U2’s center. The graduate student tutors have an opportunity at the 
beginning of the year to reduce the number of hours of training if they pass one or more of the 
content exams. Undergraduate tutors earn raises for each additional content training they attend 
and exam they pass. U2’s online tutors were selected from experienced undergraduate tutors who 
were also working, or had worked before, as in-person tutors. Online tutors receive additional 
training on how to tutor online, including how to use digital devices to display written or digital 
renderings of graphs, equations, tables, and writing for students to see. 

Like U1, U2 offered both in-person and online tutoring options throughout the semester. At 
U2, in-person tutoring was offered on weekdays (Monday-Thursday, 10am-5pm and Fridays, 
10am-2pm) for 479 hours (67% of available tutoring hours) during the semester while online 
tutoring was offered on weekday evenings (Monday-Thursday, 5pm-9pm) and Sunday 
afternoons (3pm-7pm) for 232 hours (33% of available tutoring hours). Online tutoring sessions 
were conducted via Zoom. All students, regardless of whether they were enrolled in in-person or 
online classes, could attend either in-person or online tutoring. 

It should be noted that during the first year of the pandemic, when tutoring was only offered 
online, both U1 and U2 saw a significant decrease in the number of students seeking university 
provided tutoring services. Johns and Mills (2021) reported a similar phenomenon at 25 other 
universities. 
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Findings  
We report on student enrollment and tutoring usage for the courses in two tracks: STEM 

intending and non-STEM intending. Within these tracks, we examine the data for the course of: 
College Algebra (STEM vs. non-STEM), Precalculus/Trigonometry, Calculus I, Calculus II, 
Calculus III, and Applied Calculus. While the general student populations at the two campuses 
are very similar, they make different choices regarding how they attend tutoring.  
In-person Versus Online Usage 

Table 1 displays the number of students enrolled in each course and the number of tutoring 
visits by course and modality. Note that the number of students enrolled in the courses under 
consideration at U1 (3,986) is almost twice as many as the number of students enrolled in those 
same courses at U2 (2,171). We observe that even though U2 has fewer students enrolled in 
these courses, the number of tutoring visits is significantly higher than those of U1. This equates 
to about 0.5 visits per student at U1, and 2.3 visits per student at U2. Further, we observe that the 
number of in-person tutoring visits at U1 (1,084) is approximately one-fourth that at U2 (4,679). 
For online tutoring visits, U1 had about two-and-a-half times as many visits (969) as U2 (372). 
Hence, we see that U2’s students more frequently availed themselves of tutoring services and 
students heavily favored the in-person tutoring experience. In contrast, U1’s students did not use 
tutoring services as often but used online and in-person tutoring services almost equally.  

      
Table 1: Population and Tutoring Attendance for Algebra, Precalculus/Trigonometry and 

Calculus Courses 

Track Course 

U1 U2 
Course Population Tutoring Visits Course Population Tutoring Visits 

in-
person 

online in-
person 

online in-
person 

online in- 
person 

online 
 

n=3535 n=451 n=1084 n=969 n=1950 n=221 n=4679 n=372 

STEM 

Coll Algebra 466 14 44 118 344 31 551 43 
Precalc/Trig 159 75 136 24 421 23 1020 61 
Calculus I 731 118 187 282  542 57 2028 143 
Calculus II 240 50 120 89 194 63 678  87 
Calculus III 368 39 29 36 449 47 402  38 

Non-
STEM 

(Applied) 

Coll Algebra 589 35 471 264 * * * * 

Calculus 982 120 42 44 * * * * 

*Since U2 had no regular online offerings for non-STEM classes; such data were not considered.  
 
Table 2 shows the percentages of students enrolled in each course modality and the 

percentage of tutoring visits utilized by those students. The majority of U1’s students (88.7%) 
were taking math courses in person, and the majority (62.5% of possible hours) of U1’s tutoring 
was offered in-person, while U1’s in-person tutoring accounted for about half (52.8%) of its 
tutoring attendance. 

The majority of U2’s students (89.8%) were taking College Algebra, 
Precalculus/Trigonometry, and Calculus courses in person, and the majority (67.4% of possible 
hours) of U2’s tutoring was offered in-person, while U2’s in-person tutoring accounted for 
92.6% of its normal tutoring attendance.  

  
Table 2: Percentage of Tutoring Visits by Population for Algebra, 

Precalculus/Trigonometry and Calculus Courses 
Track Course U1 U2 
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Course Population Tutoring Visits Course Population Tutoring Visits 
in-

person 
online in-

person 
online in-

person 
online in- 

person 
online 

 
n=3535 n=451 n=1084 n=969 n=1950 n=221 n=4679 n=372 

STEM 

Coll Algebra 13.2 3.1 4.1 12.2 17.6 14.0 11.8 11.6 
Precalc/Trig 4.5 16.6 12.5 2.5 21.6 10.4 21.8 16.4 
Calculus I 20.7 26.1 17.3 29.1  27.8 25.8 43.3 38.4 
Calculus II 6.8 11.1 11.1 9.2 9.9 28.5 14.5 23.4 
Calculus III 10.4 8.6 2.7 3.7 23.0 21.3 8.6 10.2 

Non-
STEM 

(Applied) 

Coll Algebra 16.7 7.7 43.5 27.2 * * * * 

Calculus 27.8 26.6 3.8 4.5 * * * * 

 
U2 also offered special tutoring opportunities either one or two evenings before coordinated 

exams (for both STEM and non-STEM mathematics classes). For each exam, there were two 
types of review opportunities: an online evening facilitator-centered review session that was 
followed by an in-person “After Dark” tutoring session. Over the course of the Fall 2021 
semester, the online review sessions were offered for 20 hours, and the After Dark in-person 
tutoring was offered for 30 hours. The attendance at these review opportunities (which is in 
addition to the numbers for regular tutoring provided in Table 1) was 1,058 for the online 
reviews and 1,507 for the in-person tutoring. The majority of U2’s review opportunities (60% of 
possible hours) was offered in-person and accounted for 58.8% of the student visits to special 
tutoring opportunities. U2’s online reviews accounted for 41.2% of its attendance at review 
opportunities and accounted for 40% of the possible hours to special tutoring opportunities. 
Satisfaction Survey 

We received 130 responses to the satisfaction survey, over 90% of which were from U1. The 
results of the survey suggest that students were generally pleased with their online tutoring 
experiences. Overall, 79% (24% and 55%, respectively) of survey responses rated the tutoring 
session as “very effective” or “extremely effective.” 86% (24% and 62%, respectively) of survey 
responses indicated that their tutor’s available technology “very effectively” or “extremely 
effectively” facilitated their interactions in the online tutoring environment.  

In line with the numerical results of the survey, when students provided comments, they were 
often positive, though students also left negative feedback. Among the positive comments, 
students complimented their tutors: “[My tutor] was incredibly helpful”; “My tutor was 
FANTASTIC and incredibly helpful.” Others mentioned specific teaching strategies employed 
by their tutors: “She asked me to re-explain the problem to her, which helped me really 
understand the concept.” Within the negative comments, students cited errors made by their 
tutor: “Tutor didn’t do the problem right, misled me for my homework.” and a desire for longer 
sessions and more one-on-one tutoring (as opposed to small groups), as well as factors beyond 
the tutors’ control (“Internet connection was terrible.”, “…a way to have multiple people sharing 
screens in zoom”). Students also sometimes requested that the tutoring center hire additional 
tutors for specific courses.  

Discussion 
As Weisbord (1976) noted, helpful mechanisms should exist to monitor, identify, and inform 

revision of the other boxes in the Six-Box model. The attendance and survey data we collected 
serves as a helpful mechanism, providing feedback on the purposes and structures of the tutoring 
centers at U1 and U2. These data allowed us to monitor and identify what format students chose 
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when seeking tutoring. We acknowledge that during some of these visits, particularly in-person 
centers, students may spend minimal time interacting with tutors and are using the space to study 
and work independently, knowing help is near. The data from U1 highlights that their students 
use the two tutoring structures (in-person and online) almost equally. In contrast, the data from 
U2 shows that their students are much more likely to attend in-person tutoring. Furthermore, the 
survey data collected suggests that students who utilized the university’s online mathematics 
tutoring services largely found their experiences beneficial. For those students who did not find 
their experiences as fulfilling, the reasons they cited were mostly beyond the tutors’ control. 

Students at the different sites used the in-person and online environments in very different 
proportions. The locations of U1’s and U2’s mathematics tutor centers may help explain 
students’ choices of tutoring modality. Though U1 has a larger number of residential students 
than U2, it witnessed a significantly higher rate of online tutoring attendance than U2. We 
hypothesize that this disparity may be due to U1 being split across two campuses. The tutoring 
center at U1 is located on Campus A, but many students live and take classes on Campus B, 
which sits approximately 2 miles away, making it difficult to visit the tutoring center in person 
for some students. For these students, online tutoring provides an option to receive help between 
classes on Campus B or during other times when reaching Campus A may be challenging or 
inconvenient. Even though the number of U2 residential students is lower than U1’s, the number 
of students who live close to campus, either as part of the Greek system or in off campus 
apartments, is quite large. So, almost all undergraduate students walk or drive to campus then 
stay on campus for their classes. 

Data from the satisfaction survey serves as a helpful mechanism by identifying components 
of the tutoring structures that students appreciated as well as others they would like to see 
changed. Some of the feedback provided by students about online tutoring is reminiscent of 
feedback often received about in-person tutoring; sometimes tutors are fantastic, and sometimes 
tutors make mistakes. Focusing on novel feedback, we were able to distinguish between aspects 
of the online tutoring experience that are within the control of tutors and tutoring centers and 
those that are beyond our control. For example, students’ access to quality internet is beyond the 
control of tutors and tutoring centers. However, tutoring centers can place an emphasis on 
ensuring that tutors are provided with appropriate equipment (e.g., pen-enabled tablets) and 
ensuring that there are sufficient numbers of tutors for courses with particularly high demand for 
tutoring. In our future work, we will investigate the specific ways in which the use of appropriate 
equipment fosters online tutoring interactions. 

The purpose of the tutoring centers at U1 and U2 is to provide access to free, high-quality 
tutoring. Our data suggest that students do find value in attending, as both institutions have many 
repeat users of their tutoring services, and those who completed the satisfaction survey largely 
rated their experiences positively. For students at U1, it appears that both the in-person and 
online tutoring options are equally valuable, as they use these services more or less equally. As 
mentioned above, this could be due to the difficulty in traveling between campuses at U1. We 
also believe U1 and U2 are offering a better online experience than 6 - 12 months ago. Although 
our initial implementation of online tutoring saw significantly diminished usage, we have seen 
higher traffic in recent months. In our future research, we will continue the use of the satisfaction 
survey.  

In sum, we found that students valued the online option equally with the in-person option at 
U1, while students at U2 clearly favored the in-person option for regular tutoring but attended 
the in-person and online evening review sessions prior to exams in the same proportions the 
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hours were offered. This data allows each institution to examine the modalities of their tutoring 
services and adjust to better suit their student populations.  
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Isomorphism and homomorphism are central concepts in abstract algebra, but their 
interrelatedness provokes questions about which should be taught first. This study investigates 
instructors’ pedagogical preferences and rationales for their ordering of the concepts and 
compares them to textbooks that they use. We found that for a third of participants, there was a 
lack of alignment between preferences and textbooks. Additionally, the metaphors used in 
support of a homomorphism-first approach centered on the idea of formal definition, while those 
used in support of an isomorphism-first approach focused on sameness.  

Keywords: Undergraduate Education, Advanced Mathematical Thinking, Curriculum. 

Isomorphism and homomorphism are central concepts in abstract algebra. There are multiple 
ways to view isomorphism and homomorphism as being related, two of which are opposite sides 
of the same coin. On one side, an isomorphism can be viewed as a specific type of 
homomorphism (bijective). On the other side, we have the notion that homomorphism can be 
viewed as a generalization or abstraction of isomorphism. While the four most commonly-used 
(Melhuish, 2015) introductory abstract algebra textbooks in the United States (Fraleigh, 2003; 
Gallian, 2009; Gilbert & Gilbert, 2008; Hungerford, 2012) all introduce isomorphism first (Mirin 
& Rupnow, in press), there are some other, more advanced, texts that introduce homomorphism 
first (e.g., Dummit & Foote, 2004; Lang, 2002). Our work addresses the following questions: (1) 
To what extent do the participants and their chosen textbooks have aligned ordering? (2) What 
conceptual metaphors about isomorphism and homomorphism did the participants use to 
describe, justify, or explain their ordering?  

Background and Literature  
There is a variety of mathematics education work on isomorphism and homomorphism 

(Dubinsky et al., 1994; Hausberger, 2017; Larsen, 2013; Leron et al., 1995; Melhuish, 2018; 
Melhuish et al., 2020; Rupnow, 2021). Although not focused specifically on the ordering of 
isomorphism and homomorphism, some work provides insight into instructors’ ordering 
preferences. For example, in their work on instructors’ goals when assigning homework, 
Rupnow et al. (2021) found that some instructors would prefer to teach homomorphism first, 
despite being given a textbook introducing isomorphism first. In contrast, other instructors do 
choose to teach isomorphism first, both in following Larsen’s Teaching Abstract Algebra for 
Understanding materials (Larsen, 2013) and in making their own decisions (Rupnow, 2021). 

Gilbert and Gilbert (2008) point to a tension between generalization (isomorphism first) and 
specification (homomorphism first) by stating, “Isomorphism is a special case of 
homomorphism, while homomorphism is a generalization of isomorphism. Isomorphisms were 
placed first in this book with the thought that ‘same structure’ is the simpler idea” (p.137). It 
seems that, while Gilbert and Gilbert acknowledge a dilemma between generalization and 
specification, they eventually decide that isomorphism is an easier concept to introduce than 
homomorphism. This can be viewed as starting with what is conceptually simpler, even if the 
definition of homomorphism is more concise and with fewer conditions. We investigate the order 
in which instructors introduce these concepts and their rationales. Note that the notion of 
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generalization starting with a simpler or more accessible concept is not unique to isomorphism 
versus homomorphism. For example, Tall (1991) explains that mathematically one must learn 
the notion of limit before learning the derivative. However, he points out that this instructional 
sequencing might result in students seeing limits as unmotivated, and that purely “logical” 
sequencing can be “blinkered and limiting” (p.18).  

We use the notion of conceptual metaphors (Lakoff & Núñez, 1997) as a framework, in 
which a metaphor is viewed as a relationship between a source domain and a target domain. 
While these domains can inform each other, the source domain is generally intended to provide 
insight into the target domain. For example, “An isomorphism is a special homomorphism” can 
be viewed as a metaphor in which isomorphism is the target domain, and homomorphism is a 
source domain that provides insight into the nature of isomorphism.  

Methods 
Participants were selected from a subset of mathematicians who were research-active in an 

algebra-related field and provided clear responses to a survey about sameness. Nine (labeled here 
as A, B, C, D, E, F, G, H, and J) who had taught abstract algebra at least once, participated in an 
interview. The interview questions centered on how the participants describe and characterize 
isomorphism and homomorphism in a variety of contexts. Here, we concern ourselves only with 
the data pertinent to our research questions about ordering and rationales for ordering. For eight 
of the nine participants, this amounts to examining their responses to the question, “do you teach 
isomorphism or homomorphism first, and what is your rationale?”. One participant, E, addressed 
the question in response to an earlier question and was not explicitly asked about ordering.  

We collaboratively coded to consensus using thematic analysis (Braun & Clarke, 2006). 
Specifically, for each participant, we catalogued and analyzed (1) the ordering preference of 
isomorphism and homomorphism, (2) how they used metaphors in their rationale for the ordering 
preference, and (3) any rationale given for an ordering that was not their stated preference. In 
doing so, we utilized the metaphors delineated in Rupnow and Randazzo (this volume) to see 
which metaphors surrounding isomorphism and homomorphism the participants used as warrants 
or explanations for each ordering. While Rupnow and Randazzo (this volume) note seven 
metaphor clusters, all metaphors in this paper relate to four clusters: sameness, 
sameness/mapping, sameness/formal definition, and formal definition. 

Results 
Six of the nine participants stated that they teach homomorphism first, and three stated that 

they teach isomorphism first. While the course textbooks were known for only six of the 
participants (B refused to state their textbook but had one in mind; C did not have a particular 
textbook in mind and talked about adjusting to whatever text they were given; E “hardly ever 
crack[s] open the textbook”), we nonetheless examine the alignment between the participants’ 
instructional sequencing and that of their adopted textbooks. Three participants (A, F, and G) use 
textbooks in which isomorphism is introduced first yet teach homomorphism first. The other 
three participants are consistent: two use a text in which homomorphism is introduced first 
(Dummit & Foote, 2004) and do indeed teach homomorphism first, while one uses a text 
(Hungerford, 2012) in which isomorphism is introduced first and does indeed introduce 
isomorphism first. To summarize, of the six participants whose textbooks are known, half teach 
isomorphism and homomorphism in an order that aligns with their textbook, while the other half 
teach homomorphism first despite having textbooks that introduce isomorphism first. The 
ordering preferences and alignment with textbooks are summarized below (Table 1). 
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(Participants generally stated an author for their text; here we cite the most recent edition by the 
author(s).) 

Table 1: Textbook Ordering and Instructional Ordering 

 
The reason for teaching homomorphism first was consistent across participants; all justified 

this ordering in a way that employed the metaphors capturing the notion that an isomorphism is a 
special type of homomorphism. This came in two distinct (targets and sources flipped) but 
related metaphors from the formal definition cluster: special homomorphism and isomorphism 
without bijectivity. For example, one participant (D) mentioned “convenience” of communication 
as a reason for introducing homomorphism first: “it’s convenient if students already know the 
definition of homomorphism and are comfortable with this before defining isomorphism…I 
would like to be able to give the definition of isomorphism in a nice, condensed manner”. 
Participant A, although not mentioning convenience explicitly, hinted at the idea: “we inherit the 
theory from homomorphism (when studying isomorphism)”. Participant E even suggested that 
homomorphism might be “easier…from a logical point of view” due to not having to “worry” 
about bijectivity. Yet another participant (F) described homomorphism as “simpler”. Despite 
these variations, we understand these notions of “simplicity”, “convenience” and “easiness” as 
instances of the same core metaphor, stated by all participants who endorsed the homomorphism-
first approach and by some who rationalized why homomorphism might be taught first (despite 
preferring isomorphism first): isomorphism is a special homomorphism. 

The notion of isomorphism as an instance of homomorphism was not explicitly used in 
support of an isomorphism-first approach. Instead, participants primarily justified that approach 
with metaphors from sameness-based clusters. They contrasted the sameness of isomorphism 
with the more complicated nature of homomorphism. For example, J used sameness metaphors 
for both isomorphism and homomorphism to explain that isomorphism should be taught first 
because isomorphism sameness is more intuitive than homomorphism sameness:  

Are these objects actually the same? So that, I think, motivates the isomorphism question and 
the definition of isomorphism. But I feel like homomorphism needs to come a little later 
because homomorphism really is not talking about exact copies, it’s talking about, there’s 
kind of lots of different ways the homomorphism can manifest as I said, with collapsing or 
exact copies. And so there, it’s a little bit fuzzier of a notion and of comparing two objects. 
While there was consistency in the use of sameness-based metaphors for justifying 

isomorphism-first, the particular choices of metaphors varied. The most commonly used 
metaphor was generic sameness (a sameness-cluster metaphor); this was used by C and J (quoted 
above) to justify why they used an isomorphism-first approach, and it was additionally used by 
homomorphism-first participants (A, B, H) to characterize an isomorphism-first approach. Other 
sameness-related metaphors used to explain an isomorphism-first approach included matching (a 
sameness/mapping-cluster metaphor, used by J), renaming/relabeling (a sameness/mapping-

 Isomorphism first in text Homomorphism first in text Unknown 
text 

Homomorphism 
first teaching 

A (Judson, 2019),  F 
(Armstrong, 1997), G 

(Fraleigh, 2003) 

D and H (both Dummit & 
Foote, 2004) 

B 

Isomorphism first 
teaching 

J (Hungerford, 2012)  C, E 
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cluster metaphor, used by E and C), classification (a sameness-cluster metaphor, used by G), 
logical equivalence (a sameness-cluster metaphor, used by G), and structure preservation (a 
sameness/formal definition-cluster metaphor, used by C). For example, C explained: “I think it’s 
easier to think about sort of we’re preserving all the structure, and isomorphism is in a sense just 
a relabeling, if you’re in the context of group theory. Just relabeling the elements but it ends up 
being the same group or something”.  

In summary, while there was only the formal definition cluster of metaphors used to justify a 
homomorphism-first approach (special homomorphism and isomorphism without bijectivity), 
there were varied metaphors from all three sameness clusters (sameness, sameness/mapping, 
sameness/formal definition) justifying an isomorphism-first approach.  

Discussion 
Prior metaphor-focused work with isomorphism and homomorphism has separately focused 

on ways people think or on textbooks (Melhuish et al., 2020; Mirin & Rupnow, in press; 
Rupnow, 2021). Our research expands this work by using metaphors to interpret the instructional 
decision making of research-active algebraists. One possible direction for future research is to 
examine mathematics education researchers’ views on this topic to determine whether their 
views align with isomorphism first (like textbooks) or homomorphism first (like some of the 
mathematicians) and see if there are, in fact, differences between these populations’ views.  

With respect to ordering, while there was some alignment between mathematicians’ 
textbooks and descriptions of instruction, our work demonstrates that this alignment should not 
be assumed. These particular participants were research-active faculty with experience in algebra 
beyond their coursework; potentially the text could be more impactful on those who are not 
research-active in these areas. Nevertheless, this study raises questions about the extent to which 
upper-level undergraduate textbooks should be viewed as the “intended curriculum” (Fan, 2013; 
Zhu & Fan, 2006) as opposed to a secondary resource for reexamining material from another 
perspective. Furthermore, while some research has begun examining how students use dynamic 
textbooks in upper-level courses (Mesa & Mali, 2020), how faculty want upper-level 
undergraduate students to engage with textbooks remains understudied. 

With respect to rationales, we saw dominant metaphor clusters for each ordering. Those who 
preferred to teach homomorphism first referred to the logic-based relationship between 
isomorphism and homomorphism encoded in their formal definitions (special homomorphism 
and isomorphism without bijectivity metaphors) for justification. In contrast, those who preferred 
to teach isomorphism first drew on sameness-based metaphors such as generic sameness, 
matching, renaming/relabeling, classification, logical equivalence, and structure-preservation, 
which together relate to all three sameness-based clusters. Thus, despite differences of opinion 
on which ordering is best, the participants displayed consistency in the rationale for each choice. 
While we acknowledge that choosing participants from respondents to a survey about sameness 
might lead to expectations that they would talk about sameness to justify their thinking, we note 
that not all participants spoke about sameness, and none used it to justify homomorphism-first. 
Future research should examine the extent to which these findings generalize. 
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Flipped instruction has been flaunted as a pedagogical strategy that supports improved learning 
and retentive abilities of students. Nevertheless, one of the twin challenges reported in the 
literature, students’ failing to complete preparatory work, impedes the efficacy of the model. 
Thus, learners’ motivation and attitude to work are essential for the successful implementation of 
the constructivist learning-centric approach. Yet very few studies have examined the connections 
between students’ motivation and achievement goals in flipped instruction. To address the 
current gap, this study investigated the relationship between students’ motivation beliefs, flipped 
method, and achievement in precalculus using pre- and post-course surveys collected from 32 
undergraduates. Both motivation beliefs and flipped instruction influenced academic 
achievement positively in the course and were moderated by students’ efforts. 

Keywords: Flipped instruction, precalculus, motivation beliefs,  

The literature on undergraduate education in science, technology, engineering, and 
mathematics (STEM) indicated that mathematics, especially, calculus prevents many students 
from pursuing a career in STEM (Almeida, Queiruga-Dios, & Cáceres, 2021; Bressoud, 2015; 
Rasmussen et al., 2019; Sande & Reiser, 2018). Prior research faulted inadequate preparation at 
high school (Bressoud, Camp, & Teague, 2017; Sadler & Sonnert, 2016) and subpar teaching 
methods (Gilboy, Heinerichs, & Pazzaglia, 2015; Rasmussen et al., 2019). Thus, educators 
continue to explore active learner-centered strategies to provide individualized instructions for 
each student (Blumberg, 2008; Weimer, 2012). The flipped instruction method embodies this 
description.  

The current study investigated the contributions of the flipped strategy on students’ 
perceived motivation to learn precalculus, an extensive and rather demanding course with a high 
failure rate but required for success in calculus (Bressoud, 2021). Many of the students enrolled 
in the college precalculus have taken the course in high school, but often struggle to comprehend 
the course content and become unmotivated to pursue success (Bressoud et al., 2017; Sadler & 
Sonnert, 2016). Comparative studies have been conducted on the efficacy of flipped instruction 
in secondary and postsecondary courses by comparing students’ performances in courses taught 
using flipped instruction with the same taught using the lecture method (Love, Hodge, 
Grandgenett, & Swift, 2014; Pattanaphanchai, 2019). However, research on the flipped strategy 
remained underexplored; particularly, the role of motivation on achievement goals in a flipped 
instruction setting. We aimed to contribute to the literature by examining the relationship 
between the components of motivation beliefs. We also examined how preference for flipped 
instruction affected students’ cognitive processes and learning achievement in the course. The 
following research questions are used in this study: 
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1. What are the relationships between the components of students’ motivation beliefs 
including expectancy beliefs, perceived value, the cost of and preference for learning 
precalculus in a flipped instruction?  

2. To what extent do effort, motivation beliefs and preference for the flipped instructional 
method contribute to students’ overall academic success in a flipped college precalculus 
course?  

Research on Flipped Instruction  
Flipped instruction is a constructivist learning-centric approach (Araujo, Otten, & Birisci, 

2017; Gilboy et al., 2015) that provides learners the opportunities to construct knowledge of 
content independently and through collaborative efforts for effective learning, increased 
engagement, improved academic performance, and better retention (Araujo et al., 2017; Clark, 
2015; Graziano & Hall, 2017; Love et al., 2014). The model involves moving all or part of 
content delivery outside of the classroom by having students watch video lectures and/or read 
assigned texts at home, while class time is used for discussions and problem-solving to promote 
conceptual understanding (Nielsen, Bean, & Larsen, 2018). The didactic approach promotes 
effective learning through the construction and reconstruction of content knowledge (Gilboy et 
al., 2015; Love et al., 2015). This is to say students have two attempts at learning concepts: first, 
independently before class, and again during class under the tutelage of the teachers and through 
collaborative learning with peers. However, motivation is crucial for academic success in a 
flipped instruction setting (Huang & Hong, 2016; Zainuddin, 2018), where the onus of learning 
is more student-centered. Yet, limited studies explored the direct connection between students’ 
motivation (Zainuddin, 2018), including their ability beliefs, expectancy for success, interest and 
perceived value of learning, and the effort needed to succeed (Barron & Hulleman, 2015) in a 
flipped instruction. 

Despite the enumerated benefits, a commonly reported limitation in the literature is 
inadequate pre-class preparations, especially failing to watch lecture videos (Araujo et al., 2017). 
Others are resistance to change due to increased student and teacher workload, time constraint 
(Araujo et al., 2017), difficulty of learning tasks (Clark, 2015; Graziano & Hall, 2017), and 
inability for students to receive immediate feedback during out-of-class activities (Chen, Wang, 
Kinhuk, & Chen, 2014). Empirical data revealed that curriculum, task difficulty, and test anxiety, 
correlate with students’ effort and perceived beliefs of their ability to successfully complete a 
task (Almeida et al., 2021; Barron & Hulleman, 2015; Wigfield, 1994). Although the flipped 
instruction method is supportive of multiple higher-order-thinking learning strategies (Akçayır & 
Akçayır, 2018), the same could lead to an increased psychological state of the student and 
impede their academic success rather than improve it (Barron & Hulleman, 2015; Flake, Barron, 
Hulleman, McCoach, & Welsh, 2015). Consequently, learning achievement is dependent on the 
extent to which students can relate novel situations to prior learning (Dawson, Meadows, & 
Haffie, 2010), motivation, and the effort committed to learning content. 

Several studies revealed that students have positive attitudes toward the flipped 
instruction approach (Clark, 2015; Graziano & Hall, 2017; Pattanaphanchai, 2019). Nonetheless, 
their positive perceptions about the model did not necessarily translate into learning gains. This 
is an indication that other factors may be influencing the achievement of desired outcomes. Thus, 
this study examined the role of student’s motivation beliefs and commitment to learning 
achievement regardless of challenges experienced. While several studies have used qualitative 
research approaches to explore the efficacy of flipped instruction, the current study utilized 
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quantitative method to investigate the relationship between components of undergraduates’ 
motivation beliefs and efforts to learn content in a flipped college precalculus course. 

Theoretical Framework: Expectancy-Value-Cost Theory 
Achievement theorists postulated that individual’s actions and inactions, including their 

decisions and determinations to succeed, are driven by subjective beliefs about their abilities, 
expectancies for success, interest, and perceived value of the desired outcome, and preferences 
(Wigfield & Eccles, 2000). The Expectancy-Value-Cost (EVC) theory of motivation (Barron & 
Hulleman, 2015) is an extension of the Expectancy-Value (EV) theory, which has been reviewed 
extensively by theorists in the achievement traditions (Barron & Hulleman, 2015; Getty et al., 
2017). However, the cost component of the EVC model is a relatively novel field of study 
(Barron & Hulleman, 2015; Getty et al., 2017). The component exists because of the limitation 
of the EV theory at explaining why an individual with excellent expectancy and a strong 
perception of the utility of certain tasks, would fall short of achievement. It was inferred that 
other factors like the difficulty of the task, discouragement, embarrassment, related and unrelated 
efforts required for success were not accounted for by the EV theory (Barron & Hulleman, 2015; 
Flake, Barron, Hulleman, McCoach, & Welsh, 2015). 

Cost, deemed as the forgotten component of the EV theory (Flake et al., 2015), was 
originally introduced as a subcomponent of the value component (Wigfield, 1994; Wigfield & 
Eccles, 2000) and was hypothesized to moderate the effect of the value component on an 
individual’s motivation beliefs and achievement goals (Barron &Hulleman, 2015; Flake et al., 
2015; Wigfield & Eccles, 2000). Cost, a barrier-related construct, is multi-dimensional and 
focuses on what an individual must sacrifice to achieve success (Wigfield, 1994). The construct 
elucidates negative appraisal of time and effort related to the task, outside of task effort, loss of 
valued alternatives, and emotional cost of success (Flake et al., 2015). Thus, the cost component 
is a negative predictor of success and mitigates the effect of both expectancy and value.  

Eccles and colleagues (1983) (cited in Wigfield & Eccles, 2000) postulate the expectancy 
component as a two-dimension construct comprised of ability beliefs and expectancies for 
success (Wigfield, 1994; Wigfield & Eccles, 2000). Ability beliefs pertain to what the student 
perceives he or she can do now, while expectancy beliefs are apropos for the future. In this study, 
we focus on students’ perception of their present ability to succeed at learning precalculus in a 
flipped classroom. Because passing the course and retention in college are utmost for first-year 
students who already viewed the remedial course as a setback (Kane et al., 2020). 

The value component focuses on students’ beliefs about the importance and interest of 
the task and provides answers to the questions: “Do I want to do this task?” and “Why am I 
doing this task?” (Barron &Hulleman, 2015). The component is described as having four 
subcomponents including intrinsic value, (student enjoys watching lecture videos because it is 
fun and interesting), utility value (actively learning precalculus because it is required for desired 
major), attainment value (passing the course allow students to move to Calculus I and be on track 
for timely graduation) and cost a negative predictor of the overall value of tasks. The same has 
now become the third component of the EVC theory (Barron & Hulleman, 2015; Getty et al., 
2017). In this study, the EVC theory as defined by Barron and Hulleman (2015) was used to 
explain and interpret the data collected about the effect of students’ expectancies, perceived 
values, and cost implications, as well as preference for the flipped instructional approach on their 
academic success. 
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Methods 
The current study used observational methodology to examine students’ expectancy beliefs, 
perceived values, and the cost of learning the content in a flipped college precalculus course. The 
cross-sectional study utilized data from self-reported surveys. 
Participants and Data Collection 
Data was collected in a flipped college Precalculus course in a four-year college in the 
Midwestern region of the United States during the fall 2019 semester using motivation scale. 
Thirty-two students (7 females and 25 males) representing 71% of the students taught that 
semester using the flipped method participated in the study. The participants self-registered for 
the course, although they are unaware of the teacher’s planned teaching method. Most of the 
participants (82%) took Precalculus in High School and 49% reported taking Calculus. All 
participants indicated interest in pursuing a major in STEM-related disciplines. 
Research Instrument  

Students responded to two online surveys (pre-course and post-course) during the first 
and last week of the semester, respectively. The main component of the surveys consisted of 
eight motivation-related items adapted from Expectancy-Value-Cost Scale (EVC-S) (Getty et al., 
2017; Kosovich, Hulleman, Barron, & Getty, 2015), and four researchers-created items to 
measure students’ perceived liking for flipped instruction. The 12 ordinal items were theorized to 
measure motivation beliefs and likability for the flipped instructional strategy.  

EVC-S, which was developed, field-tested, and validated is novel and had reliable 
psychometric properties (Getty et al., 2017; Kosovich et al., 2015). For example, a rapid version 
of the scale consisted of three subscales with three items measuring Expectancy (𝛼𝛼 = 𝜔𝜔 = 0.82), 
three measuring Value (𝛼𝛼 = 𝜔𝜔 = 0.84, and four items to measure the cost (𝛼𝛼 = 𝜔𝜔 = 0.83) 
subscale (Getty et al., 2017). To keep our instrument short, we dropped two of the original items, 
one from expectancy, and reworded a statement to combine two items from the cost subscale into 
one while still preserving the intended meaning of both constructs. The adapted research 
instrument was validated to ensure its consistency with the original EVC-scale and to determine 
the reliability and validity of the additional items. The following constructs were addressed. 

Expectancy. This subscale focused on self-confidence, that is, the importance of 
believing in one’s ability to succeed on a task (Barron & Hulleman, 2015; Kosovich et al., 2015; 
Wigfield & Eccles, 2000). Expectancy included two items (I am sure, I can learn the material 
for Precalculus; and I am confident that I can do well in Precalculus this semester) with a 
reliability coefficient of α = 0.89. 

Value. The value subscale addressed the reasons why the students would want to engage 
in certain actions or achieve academic success. The value subscale contained three items focused 
on understanding students’ perceptions of the importance and personal interest for learning 
Precalculus, (e.g., “Precalculus is an interesting course,” “Precalculus is useful to me,” etc.). 
The value subscale had a reliability of 0.77. 

Cost. The cost subscale addressed “what is invested, required, or forgone engaging in a 
task” (Flake et al., 2017; p.235). The construct was hypothesized to influence motivation through 
effort and time related and unrelated to the task, the loss of valued alternative, and negative 
effect (Barron & Hulleman, 2015; Flake et al., 2017; Getty et al., 2017). There were three cost 
items including, I have to sacrifice too many things to do well in Precalculus, etc. with a 
reliability of α = 0.88. 

 Preference for Flipped Method Subscale. The remaining four were researcher-created 
items to measure students’ preference for the flipped method. This was based on a study by 
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Sahin, Cavlazoglu, & Zeytuncu (2015) with calculus students. The authors investigated students’ 
views and experience in flipped courses, and the impacts on their academic achievement, when 
compared with non-flipped classes. Sahin and colleagues found that students preferred watching 
class videos to reading their textbook and preferred courses with lecture videos. On this premise, 
we developed the following four questions to verify the validity of their claims. Q9-I am sure I 
will learn more in a flipped instruction; Q10-I prefer a course with video lessons to a course 
without video lessons; Q11-I like the flexibility of choosing how I learn the course content in this 
course; and Q12- the syllabus helped me understand the goals and expectations of this course. 
The last question was later dropped due to low factor loading. The subscale had a reliability of 
0.92. 

All responses were rated on a 5-point scale where 1 = strongly agree and 5 = strongly 
disagree. We recoded positively worded statements. Overall, there were 57 (pre-course = 29 and 
post-course = 28) usable survey data from both surveys before multiple imputations. 
Data Analysis 

Based on the EVC theoretical perspective as well as a review of relevant studies, the 
study utilized structural equation modeling (SEM) (Schumacker & Lomax, 2016) to examine the 
relationship between components of students’ motivation and to determine predictive abilities of 
effort, flipped instruction method, and motivation beliefs on academic success in Precalculus.  

A two-steps full-SEM (Anderson & Gerbing, 1988) in Lisrel 11 software (Jöreskog & 
Sörbom, 2021) is used to analyze the predictive abilities of motivation beliefs and preference for 
flipped instruction on academic success in a college Precalculus course. The statistical technique 
which combines both measurement and path analyses was selected because of its ability to 
explain the causal relationships between and among the latent and observed variables 
(Schumacker & Lomax, 2016). The measurement part was used to verify the existence of the 
study’s latent variables (expectancy, value, cost, preference, effort, and success) and to 
determine whether the latent variables can be explained by the observed variables (using 
responses from the self-reported questionnaires). The structural model postulates the 
relationships between the variables, including the strength and direction of the causal 
relationships as follows. Effort was measured by the number of time students logged in to watch 
lecture videos (Watch-Video) is theorized to explained academic success (Dweck & Yeager, 
2019; Flake et al., 2017). We hypothesized that the observed variables would measure 
expectancy, value, cost, and preference for the flipped method. Then expectancy, value, and cost 
were conjectured to measure motivation beliefs (Getty et al., 2017), and preference measured the 
use of the flipped method (Sahin et al., 2015). Both second-order factors would then have 
positive effects on academic success (measured by grades) and moderated by effort as shown in 
figure 1, the hypothetical model.  

Considering our sample size, we generated values in LISREL for the first order latent 
variables and used them in higher-order analysis, thereby reducing the number of estimated 
parameters. 

Several fit indices were used to assess the adequacy of the proposed model based on 
recommendations of Schumacker and Lomax (2016). The model was evaluated using the 
following indices: (a) Comparative Fit Index (CFI), (b) Goodness of Fit Index (GFI), (c) Normed 
Fit Index (NFI), (d) the Root Mean Square of Approximation (RMSEA), and (e) Chi-square test 
(𝜒𝜒2). The recommended cut-off that indicates a good fit for CFI, GFI, and NFI is 0.90 or higher. 
A non-significant chi-square is desired indicating a close fit and RMSEA values less 0.08 
represents a good fit (Hu & Bentler, 1999; Schumacker & Lomax, 2016). 
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Figure 1: Research Model 

Results 
This study examined whether college students who report high expectancies and values 

for success would also report a higher preference for the flipped method. Using confirmatory 
factor analysis (CFA), we also tested whether there is a direct effect of students’ motivation 
beliefs and flipped instruction on success moderated by students’ efforts (measured by the 
number of logins to watch prerecorded lecture videos). Table 1 presents the direct, indirect, and 
total effects between motivation beliefs, preference for the flipped instructional method and 
students’ overall academic success in a flipped college precalculus course. Figure 2 specifically 
shows direct effect of students’ motivation beliefs (expectancy, subjective values, and cost 
beliefs) and flipped instruction (high preference for the method) on success (grades) moderated 
by students’ efforts (measured by the number of logins to watch prerecorded lecture videos). 

 
Table 1: Direct, indirect, and total effects of variables on Academic Success  

Variable Direct effect Indirect effect Total effect 
Motivation Beliefs 0.126 -0.022 0.105 
Method 0.085 -0.059 0.026 
Effort -0.220   -0.220 

 
First, it was revealed that students who reported high expectancy for success also reported 

high value and are favorably disposed to learning in a flipped instruction (see Table 1). However, 
effort had a negative influence on success in the course, thereby moderating the effect of 
motivation and method on achievement as theorized.  

Next, to determine the strengths and directions of each factor in relation to learning 
achievement, we further analyzed how well the hypothesized model fit our data. Figure 2 shows 
that the collected data supported a four-factors solution, which validates and extends the EVC 
theory to include preference for specific cause, in this case, flipped method. 
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Figure 2: Analytical Model 

The correlations between the factors ranges from moderate to strong positive relationship 
except the connection between Grades and Watch-Videos (r = -0.017, p >0.05). There is a direct 
effect of students’ motivation beliefs (expectancy, subjective values, and cost beliefs) and flipped 
instruction (high preference for the method) on success (grades) moderated by students’ efforts 
(measured by the number of logins to watch prerecorded lecture videos). As shown in Figure 2, 
the measurement model fits the data well showing that all indicator variables each explained only 
one latent variable as hypothesized. All the fit indices except RMSEA were within acceptable 
ranges (𝜒𝜒2(3) = 5.29,  𝑝𝑝 > 0.05, RMSEA = 0.11, NFI = 0.94, and CFI =0.97, GFI = 0.97). Both 
motivation beliefs and flipped method contributed positively to success, although the 
significance of the paths could not be determined. The fit indices remained unchanged with the 
addition of the structural paths. The findings show that a combination of preferred method and 
motivation would lead to academic success by jointly explaining about 11% of the variations in 
success and 33% of students’ effort. Conversely, students’ commitment to learning (Effort) 
contributed negatively to success. Possible explanations may include poor learning retentions, or 
students may be watching the lecture just to check boxes and could become overconfident since 
the content is somewhat familiar. The significant error variances of Watvideo and Grades are 
indications that the latent variables were influenced by other confounding variables than the 
hypothesized indicators. 
Discussion and Conclusion 

We found that students who reported high expectancy for success also reported high 
value and are favorably disposed to learning in a flipped instruction. This finding can be 
supported by prior research studies (e.g., Kosovich et al., 2015; Getty et al., 2017). Yet, different 
from Barron and Hulleman (2015), we found positive, and significant relationships between cost 
and both expectancy and value. Furthermore, students’ preference toward flipped method was an 
excellent indicator for the effective implementation of flipped instruction. We noted that a direct 
relationship existed between motivation and success and between flipped method and success. 
This may not be surprising, because motivation plays a significant role in human’s achievement 
of desirable goals (Dweck & Yeager, 2019). Several studies found flipped instruction useful for 
promoting deep learning (Akçayır & Akçayır, 2018; Araujo et al., 2017; Graziano & Hall, 2017; 
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Huang & Hong, 2016; Zainuddin, 2018); but none considered the effect of personal preference 
for the model. This study shows that a combination of preferred method and motivation jointly 
explained about 11% of the variations in success and 33% of students’ effort. Conversely, 
students’ commitment to learn (Effort) contributed negatively to success needing further 
research.  

Considering students’ motivation and preference when selecting teaching methods could 
improve learning and achievement, the findings of this study provide teachers with tools to 
educate, inspire, and involve students in how they learn (e.g., freedom to choose based on 
personal preference). This study also addresses research gaps on motivation and effectiveness of 
flipped instruction. A few limitations should be noted, such as the small sample size, lack of 
diversity of instructors, subjects, and learner groups. More research and replications are needed 
to substantiate the study’s findings. 
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This study examined the beliefs that teaching assistants (TAs) of an introductory proof course 
had about their students, about how their students learned, about their teaching, and about 
mathematics. We sought to examine TAs’ beliefs and better understand their approaches to 
teaching and instruction. Five mathematics TAs participated in the study and we qualitatively 
analyzed their responses to semi-structured interviews. We found that TAs understood that their 
students learned in various ways and they believed they should be able to support students’ 
multiple ways of engaging with proofs. They also understood that introductory proof courses 
necessitate higher levels of cognitive demand and that many students struggle in these courses. 
Our preliminary findings can inform future efforts that more critically examine the beliefs of 
mathematics teaching assistants.  

Keywords: Beliefs, Values, Teaching Assistants, Higher Education, Proof Courses 

Introduction 
Mathematics teachers’ beliefs about their students, how their students learn, the mathematics 

content they are teaching, and their roles in engaging students in learning experiences are 
fundamental to shaping their instructional practices (e.g., Pajares, 1992; Wilkins, 2008; Goldin et 
al., 2009). However, there is still limited work that examines the beliefs of the individuals 
involved in undergraduate mathematics education - particularly, those of mathematics graduate 
students who serve as teaching assistants (TAs). What graduate students believe about students, 
learning, and the teaching of mathematics not only impacts their current roles as TAs, but are 
foundational to many continuing on to be mathematics faculty. In this exploratory study, we 
examined the beliefs of teaching assistants of an introductory proof course called Math A. 
Introductory proof courses mark a critical junction in the mathematical trajectories of many 
students. Proof-construction poses significant challenges for many students (Weber, 2001), 
because the problem-solving experiences and sensemaking demands associated with proof-
construction are unlike those of courses such as calculus and linear algebra. Thus, TAs play 
important roles in supporting student learning and understanding as they transition to upper 
division mathematics courses that heavily rely on proof-construction competencies. It is 
important that we better understand what mathematics TAs believe about students, learning, and 
teaching at this important junction as it can inform how higher education institutions and 
mathematics departments can better support graduate students’ pedagogies. The research 
question that guided this study was: How did mathematics teaching assistants reflect on their 
beliefs about students, learning, teaching, and mathematics in an introductory proof course? 

Literature Review and Framing 
Research on teachers’ beliefs has evolved over the past decades. From behaviorism to 

cognitive science, research has investigated teachers’ behaviors and the ways in which teachers 
think, perceive, and analyze their practices (Calderhead, 1996). While their subject matter 
knowledge, specialized content knowledge and pedagogical content knowledge are important 
aspects of teaching (Ball et al., 2008), what teachers believe about mathematics, teaching, and 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1070



learning may have a greater influence on their instructional practices (Bryan, 2012). Research 
has illuminated that the knowledge teachers view as important and appropriate is impacted and 
molded by their beliefs (Pajares, 1992). Additionally, prior scholars have suggested that 
exploring beliefs can be a tool to understand how teachers make choices (Ernest, 1989) and how 
they filter new knowledge (Fives & Buehl, 2010). We take up beliefs to be the conceptions, 
convictions, and values that can shape and impact how one teaches and learns (Thompson, 1984; 
Thompson, 1992). 

In this study, we adapted the work of Speer (2001) that connected teaching assistants’ beliefs 
to their teaching practices in reform-oriented calculus courses. Speer (2001) described teaching 
assistants’ belief profiles to encompass what the teaching assistants believed about their students 
(e.g., “Students should be independent.”), what they believed about teaching (e.g., “Teachers 
should be guides who ask students questions.”), what they believed about learning (e.g., 
“Learning is making something your own.”), and what they believed about mathematics (e.g., 
“Calculus entails learning to think and acquiring skills but does not showcase the beauty of 
mathematics.”). We situate this framework in the context of introductory proof courses to better 
understand what TAs believe about students and their pedagogical practices at this important 
mathematical junction.  

Method 
This study was conducted within a larger project at a Minority-Serving Institution in 

California about transfer students’ experiences in a set of mathematics courses designed to 
develop proof-construction competencies and support their transition to a four-year university. 
Purposeful sampling (Creswell, 2013) was used to select five graduate students who were 
teaching assistants for an introductory proof course, Math A, that was part of this set of courses. 
The participants were 2nd- and 3rd- year doctoral students in the mathematics department and all 
had prior experiences as teaching assistants. We use the pseudonyms Federico, Nestor, Wyatt, 
Kaitlyn, and Lisa to refer to the five TAs interviewed for this research project. We qualitatively 
analyzed their responses to semi-structured interviews (Rubin & Rubin, 2011). We used the 
following a priori codes (Miles et al., 2020) derived from the work of Speer (2001) to categorize 
their beliefs: (1) beliefs about students, (2) beliefs about how students learn, (3) beliefs about 
how they should teach and engage students in mathematics, and (4) beliefs about mathematics. 
This last code encompassed their beliefs about mathematics in general and their beliefs related to 
introductory-proof-courses. The research team wrote memos and discussed important themes in 
the TAs reflections. 

Findings 
We present preliminary findings that highlight the four dimensions of the TAs’ belief 

profiles. Broadly, TAs believed that students learn in various ways and that collaborative work in 
safe learning environments supports student learning. We observed a range of TAs’ beliefs from 
positioning students as competent and capable to having some deficit perspectives about their 
engagement. They also expressed certain beliefs unique to the context of and circumstances 
around introductory-proof courses (e.g., it is a course mainly for mathematics majors, it is the 
gatekeeper to upper division courses, etc.).  
TAs’ Beliefs About Students 

The TAs revealed a multitude of beliefs about their students broadly centering around 
students’ capabilities and their backgrounds. For example, Wyatt noticed the diversity of 
students in Math A, noting: “I can tell you from my experience with teaching Math A, they're 
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[students of color] equally capable, equally hard working.” Wyatt held the belief that all students 
are equally capable of succeeding in Math A. This view of students contrasted Nestor’s view that 
“if you have someone from a different culture, you know, like especially Chinese students, if you 
pair them up with American students, maybe it's going to be hard for them to engage.” Nestor 
believed that students from different cultures may struggle to engage and work collaboratively 
with students in the dominant population, which reflects a deficit perspective of the minority 
students. We acknowledge that TAs may not be regularly engaging in critical reflections of their 
beliefs about students, but it is important to explore these beliefs, identify deficit perspectives, 
and then work to reframe these beliefs. 
TAs’ Beliefs About How Students Learn 

TAs’ beliefs about how students learn were related to their beliefs about pedagogical 
practices and departmental logistics. Firstly, TAs’ expressed the belief that students are unique 
learners and that they engage in mathematics differently. Regarding the content students are 
presented with, Lisa mentioned, “student[s] won’t get a deep understanding unless there's like 
this, you know, do the easy examples, try to do a hard interesting example.” This illustrates 
Lisa’s belief about the importance of giving students problems with varying levels of cognitive 
demand. She also described the value of contextualizing problems so that students can better 
engage with the material they are learning. Additionally, Wyatt expressed his belief about 
student learning when he said, “I think that the undergraduate students are better served when the 
class sizes are smaller.” He explained that students work best in small class sizes as well as 
collaborative work environments. Wyatt highlighted his belief that group work was crucial in 
helping students learn and understand the material. We observed numerous instances of TAs 
indicating that students learn best in community and in safe environments, as well as the belief 
that students benefit from contextualized, cognitively demanding tasks. 
TAs’ Beliefs About Teaching 

Broadly, the participants believed that their pedagogical practices should be responsive to the 
various ways their students learned. Wyatt mentioned, “As a TA, you have to put students 
first…You have to accommodate multiple ways of thinking.” Here, we not only observe a 
student-centered approach to pedagogy but also an attention to the idea that there is not one set 
way to learn mathematics. We also found that TAs believed that qualities such as flexibility, 
personability, and approachability should guide their interactions with students. Creating a 
comfortable learning environment was especially important for the participants and many 
described efforts to create this comfortable learning environment during their sections. Kaitlyn 
said, “You don't want anybody to feel like they, you know, can't ask something or stupid 
questions or whatever. You want them to feel comfortable.” Furthermore, Kaitlyn and Nestor 
identified that using judgmental and derogatory language to respond to students’ questions is one 
way that can disrupt a safe and comfortable learning environment. Overall, participants’ beliefs 
about teaching centered on attending to students’ different ways of learning mathematics and 
ensuring that students feel comfortable and safe to take intellectual risks. 
TAs’ Beliefs About Mathematics  

The TAs believed that the content of introductory proof courses necessitate higher levels of 
cognitive demand that may be unfamiliar to students and that these courses not only delineate 
lower division and upper division courses, but also distinguish mathematics majors from non-
mathematics majors. Kaitlyn said, “There's also an intensity that comes with Math A that maybe 
make students feel a little bit more, I don't know, fearful about doing perfect in the class or 
whatever.” She illustrated the frequently held belief amongst the participants that Math A is 
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extremely challenging and intimidating for students. Federico explicitly understood introductory 
proof courses to be junctions that mark mathematics majors continuing to upper division courses 
and he mentioned enjoying opportunities to interact and engage with these students because he 
can provide them with advice relevant to their academic trajectories. Lastly, regarding overall 
beliefs about mathematics, the participants understood mathematics to be a creative discipline. 
Wyatt said, “If you want people to enjoy, you gotta have them recognize it's extremely creative 
and there are many, many ways to get to the destination.” Wyatt contended the commonly held 
notion of mathematics as a rigid and overly procedural discipline and instead, upholds a belief 
that mathematics is creative and more open-ended.  

Discussion and Conclusion 
Consistent with the literature (e.g., Pajares, 1992), we found connections between TAs’ 

beliefs about students, how students learn, and their understanding of pedagogy. TAs understood 
that students learn in distinct ways and that they should be responsive to these differences. 
Furthermore, they believed that fostering a safe learning community affords intellectual risk 
taking. They recognized that introductory proof courses mark a distinction in the cognitive 
demands of the content as well as in the demographics of students in subsequent courses. It is 
imperative to highlight that some TAs held deficit views of students and these may have 
subconsciously shaped their instructional practices. With teacher beliefs informing pedagogical 
practices (e.g., Ernest, 1989; Speer, 2001), we argue that TAs of introductory proof courses need 
to be more reflective of their beliefs as they support students at this significant mathematical 
junction. Limitations of this study include the limited number of participants and a more general  
conception of beliefs. Future research should more closely examine TAs’ beliefs through a 
critical lens - focusing on dimensions of their beliefs that intersect with important critical, 
transformative frameworks (e.g., critical race theories, antiracist education, queer theories, 
gender theories, etc.). Our findings shed light on the diversity of TAs’ beliefs and their 
approaches to pedagogy, and this can inform institutions about more equity-centered and social 
justice-oriented professional development opportunities for graduate students. 
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Graduate Teaching Assistants (TAs) play an important role in undergraduate students’ learning 
of mathematics, especially Calculus, and spend significant time evaluating students’ work. This 
study examined TAs’ engagement of students’ errors by following the process of their identifying 
students’ errors, planning to address them, and implementing the plans in teaching. Our results 
showed that (a) TAs only identified a small portion of errors that students made, (b) errors TAs 
identified often did not include the ones made most frequently by their students, (c) many errors 
that TAs identify were procedural in nature and addressed with plans to provide the “correct” 
procedure, (d) the levels of specific details of students’ errors dropped from identifying, to 
planning, to teaching, and (e) even with drops, in many cases, the levels of details of students’ 
errors involved in TAs’ identifying was the same as the levels of their planning and teaching.  

Keywords: Calculus, Undergraduate Education, Professional Development  

Graduate Teaching Assistants (TAs) play crucial roles in teaching and learning of entry-level 
undergraduate mathematics including Calculus (American Association for the Advancement of 
Science (AAAS), 2019). In many U.S. universities, TAs directly impact students’ learning of 
Calculus (Ellis, 2014) through their class, office hours, and tutoring centers. However, our 
knowledge about TAs and their teaching is still limited (AAAS, 2019). Given that TAs usually 
spent a large amount of time grading students’ written work, we investigated if and how they 
engage with students’ errors in various phases of teaching. We followed the process of TAs’ 
identifying of students’ errors, planning how to address them, and implementing the plans in 
class to address the following research questions: (a) To what extent do TAs identify students’ 
errors while grading students’ work on problems? (b) To what extent are the specifics of 
students’ errors used in TAs’ plans to address them and their teaching of the problems in class?  

In this study we analyzed the levels of specific details of students’ errors that TAs engaged 
with in their identifying, planning, and teaching. Our analysis shows the types of errors that TAs 
identified from students’ work, and how they used them in planning and classroom teaching.  

Theoretical Background 
Using students’ errors in teaching has been studied mainly at K-12 levels, but also at the 

college level. Those studies examined the attributes and the quality of teachers’ response to 
errors (Bray, 2011; Santagana & Bray, 2016); various ways of engaging with students’ errors 
(e.g., Ingram et al., 2015; Tulis, 2013); impact of error-handling PD on teachers’ view of using 
students’ errors (Brodie, 2014); teachers’ in-the-moment error handling (e.g., Ingram et al., 2015; 
Schleppenbach et al., 2007). In this study, we view students’ errors as sources of difficulty 
students experience in their learning of mathematics, that are systematic and persistent, (Brodie, 
2014) which may not be quickly corrected (Ingram et al., 2015). Addressing errors in teaching is 
important because errors can offer students opportunities to view questions from different angles, 
allow teachers to reflect on their students’ thinking, and emphasize mathematical aspects related 
to the errors (Santagana & Bray, 2016; Van de Pol et al., 2011). This study represents beginning 
efforts to understand TAs’ engagement with student error throughout several phases of teaching 
by exposing TAs to students’ difficulties about the content before they teach students. Several 
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studies suggested, in general, three steps that teachers go through while dealing with students’ 
errors: perceiving errors (identifying), looking for reasons for errors (interpreting), and planning 
instructional approaches to help students “overcome the misconception” regarding errors 
(planning) (Heinrichs & Kaiser, 2008, p. 84). Those studies emphasized the use of specifics of 
students’ errors and making instructional plans to address students’ errors (Biza, et al., 2018; 
Heinrichs & Kaiser, 2008). Building on these studies, we analyzed TAs’ engagement with errors 
regarding the levels of specificity in identifying, planning, and classroom teaching. Given that 
TAs often have little teaching-related background, we did not include “interpreting” as part of 
our design, but we added their classroom teaching to observe how they implemented their plans.  

Research Design 
Participants 

Our study was conducted in a single-variable calculus course at a large public university in 
the U.S. The course is offered as coordinated lectures taught by faculty instructors for 100-150 
students with discussion sections taught by TAs for 25-30 students. In the discussion sections, 
TAs mainly solve problems from the textbooks and review the concepts that were covered in 
lectures. All five TAs who taught the discussion sections voluntarily participated in this study. 
All TAs had one semester of experience teaching discussion sections before participating in the 
study, but two of them taught the course before as an instructor of record before they joined the 
mathematics PhD program at the institution. Prior to our study, they received general instructions 
about their teaching responsibility, did a 5-minute teaching demo, and received feedback from 
faculty, but had not received any training on how to use students’ work or errors in teaching.  
Problem Development and Analysis of Students’ Responses 

The author with extensive research experience in teaching and learning of Calculus, who has 
been working on PD for TAs at their institution by incorporating what they learned from the 
national effort to improve PD for TAs (e.g., MAA, 2022), conducted the study in collaboration 
with other mathematicians and graduate students. We developed 8 calculus problems from online 
resources (CLEAR Calculus, 2021; The Better File Cabinet, n.d.) and widely-used textbooks 
(Bressoud et al., 2013). We collected students’ responses on the problems from the TAs’ classes. 
We identified the errors in student responses and grouped them into error types (i.e., codes) 
regarding mathematical components such as functions, limit, and derivative. For each problem, 
we used a table to record the number of codes we identified from each TA’s classroom and the 
number of corresponding errors for each of the codes. We also grouped the codes regarding their 
nature: (a) How to compute or graph (How to), (b) Meaning of mathematical objects or their 
relationships (Meaning or Relationship), and (c) Missing mathematical components or properties 
(Missing Component). For each problem, we used a table to record the number of codes from 
each TAs’ classroom that belonged to each nature and the number of corresponding errors.  
Data Collection on TAs’ Identifying, Planning, and Teaching 

For each problem, we ask TAs to grade their students’ responses, and record students’ 
difficulties that they identified and plans to address them in a Google Docs shared with the 
researchers. Although there might in principle be differences between what TAs considered as 
students’ difficulties and what the researchers considered as error types, most difficulties that the 
TAs identified easily matched with the codes we developed. We also video-recorded TAs’ 
teaching of the problems. 
Analysis of TAs’ identifying, Planning, Teaching 

We first identified codes matched with students’ difficulties that TAs submitted. For each 
problem we recorded the number of those codes and the number of errors corresponding to each 
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of the codes. We then computed the percentages of those numbers in comparison to the number 
of codes and the number of errors that we identified from the TA’s student responses. We did the 
same computation of the percentages in terms of the three natures of error types described above.  

We then analyzed the level at which TAs used students’ error types (codes) in their 
identifying according to the specific details of the error type that were involved as following:  

 Robust: Identifying error types with specific mathematical aspects they are regarding.  
 Limited: Stating general categories of error types regarding derivative components or 

their nature without to student work or mentioning they saw students’ work in class.   
 No-Data: TA does not fill out Google Docs or no mention of students’ error in class 

For planning, we used the following levels: 
 Robust: Incorporating students’ work in their plan suggesting extra representations/ 

problems, or alternative approaches, and revisit mathematical aspects of the errors.  
 Limited: Planning to address limited aspects of student errors with extra examples/ 

representations or by providing correct statements/answers that student work violated.   
 No-data: TA does not fill out Google Docs 

For teaching, we used the same levels that we used with planning with additional subcategories 
for the limited level such as pointing out the part of students’ solution that was incorrect, or 
explaining what students should or should not do in terms of solving the problem.  

Results 
 TAs’ Identifying Students’ Errors 

We made several important observations from the types of errors TAs identified. First, the 
average percentage of error types that each TA identified relative to what we, the researchers, 
identified ranged from 10~33%, and the average percentage of corresponding errors relative to 
what we identified ranged from 7~25%. A closer look at TAs’ identifying shows that the error 
types that they identified are limited in terms of frequencies and the natures. Regarding the 
frequency, the error types that they identified are often made by only 1 or 2 students in their class 
where there were other error types made by 3 or more students (frequent error types) that they 
did not identify. The average percentage of each TA identifying frequent error types ranged from 
8%~44% across the 8 problems. This means that 56%~92% of the frequent error types were not 
identified by TAs, thus not addressed in class. Moreover, among 39 TA-problem combinations 
(5 TAs and 8 problems except one due to missing data), only in 14 combinations, did TAs 
identify the most frequent error type that their students made. Among the other 25 combinations 
where TAs missed such error types, in 18 combinations the most frequent error types were found 
in 5 or more students’ work, and in 14 combinations, they were found in 7 or more students’ 
work. Regarding the natures of error types, we found that many error types that TAs identified 
were procedural in nature. Compared to what we identified, we found that they identified How-to 
error types and the corresponding errors (about 60% in both) much more frequently then 
Meaning-or-Relationship (about 30% in both) or Missing-Component (about 10% in both) types.   
Levels TAs’ Identifying, Planning, and Teaching 

As a total of 58 error types that the TAs identified, 37 were at the robust level and 21 were at 
the limited level. When we look at the combination of identifying levels with the natures of error 
types, the prevalence of How-to error types become more obvious. Among 39 How-to error 
types that they identified, 27 (about 70%) were at the robust level, but less than half Meaning-
and-Relationship error types (7 among 15) were at the robust level.  
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 Among 56 TAs’ submitted plans, 24 were at the robust level and 32 were at the limited level. 
The most common robust planning categories were providing extra examples/representations that 
address mathematical aspects of error types, and most common limited plans were providing 
correct answers/statements students’ solutions violated. We also found that most of identifying-
playing pairs have the same levels. 22 identifying-planning pairs were both at the robust level, 
and 18 identifying-planning pairs were both at the limited level. However, we observed a 
noticeable drop in the details of students’ errors used from identifying to planning. There were 
14 robust-identifying and limited-planning pairs. Most of those cases involved How-to error 
types and TAs’ plan to address them with the correct procedures or mathematical statements.  
 Among 58 error types that TAs identified, 41 were used in their teaching. Among 41, 23 were 
used at the robust level, and 18 were used at the limited level. We observed that a large number of 
TAs’ identifying-and-planning pairs were at the same level. Similarly, a large number of their 
identifying and teaching pairs was at the same level. However, we also noticed that there were 16 
error types that TAs identified and planned to address, but did not address in their classroom 
teaching. Most of those error types were procedural (How-to) in nature, which the TAs planned to 
address by providing the correct procedures. In such cases, TAs teaching was similar to a solution 
that one may find in a solution manure without any evidence that they used students’ errors.  

Discussion and Conclusions 
Our results indicate important considerations for professional development (PD) for TAs. 

First, we observed that the TAs’ identifying of students’ errors could improve; the error types 
they identified were a relatively small portion of what the researchers identified from their 
students work, and in most problems, they missed the error types that were made by most 
students in their class. There may be various reasons for this, such as what TAs consider 
important in teaching mathematics or previous student work that they encountered. However, 
TAs’ focusing on not-frequent error types means TAs are potentially spending time on content 
that is not helping many students in their class, and suggests that PD could address why focusing 
on certain errors and possible students’ ideas behind them is important in class. Also, a large 
portion of errors that they identified were procedural in nature. This may be associated with the 
belief that their primary role is to “work problems so students know how to do them” as some 
calculus instructors or TAs indicated in Ellis (2014a, p. 94), or with what they believe a goal of 
teaching calculus to be (e.g., teaching students patterns of how to solve problems) as some U.S. 
TAs indicated in Kim (2014). However, given that students also made a significant number of 
errors of other natures, such as “mathematical meanings and relationships”, future PD should 
provide opportunities for TAs to attend to and engage with these types of errors as well. 

 Second, we observed that the levels of details of student errors involved in identifying, 
planning, and teaching in general were same although there were a significant number of drops 
in level. These observations suggest that their ability to identify students’ errors needs more 
attention than their ability to plan and implement the plans to address errors that they identified, 
but there is room for improvement in all the aspects. Explicitly asking TAs to identify prominent 
errors from student work may help them to focus on those errors. PD could help them understand 
errors from students’ point of view and engage with errors of various natures throughout several 
phase of teaching to reduce drops in levels.  These suggestions are aligned with other suggestions 
that PD for TAs should emphasize. The nationally held MAA (2022) workshop for improving 
PD for TAs included intensive discussions and practices on understanding and interpreting 
student work including systematic errors. Our aim is to help TAs engage with student errors to 
provide responsive teaching to students’ mathematical needs in their learning.  
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We consider how the existence of different signifiers for mathematical objects in different 
languages manifests in discourse about those objects. Based on the observation that there is a 
common signifier “derivative” in English used for both the derivative at a point and the 
derivative function and two phonetically and semantically different signifiers for those objects in 
Korean, we explore the differences between one Korean teacher’s discourse and one American 
teacher’s discourse about the derivative. Our analysis uncovered differences in metarules 
regarding the use of signifiers, as well as differences in possible connections to colloquial 
discourse. Additionally, we found that, after both objects are defined, the American teacher’s 
discourse shifts in a way that precludes the simultaneous use of the common signifier for both 
objects whereas, in the Korean teacher’s discourse, there was no similar shift.  

Keywords: commognition, derivative, calculus, mathematical object, realization tree 

Recently, the impact of the language in which mathematics is practiced on mathematical 
discourse has been emphasized. Examining students’ or teachers’ uses of mathematical words is 
an important part in this literature (e.g., Kim et al., 2012; Han & Ginsburg, 2001). Our study 
examines uses of terms in mathematical discourse in different languages in an effort to 
understand the language-dependent nature of the discourse. We focused on the discourse about 
the derivative in Korean and American English (English, here after), which provides a useful 
context for the study.  The derivative is a crucial concept in Calculus and needed for multiple 
disciplines. Commonly, within introductory calculus, derivatives can be separated into the 
derivative at a point and the derivative function. By “the derivative function” we mean a function 
obtained by differentiating another function. Studies have addressed challenges students face 
distinguishing or relating these objects (Font & Contreras, 2008; Font et al., 2007; Park, 2013).  

We take a commognitive perspective (Sfard, 2008) to examine discourse on the derivative at 
a point, the derivative function, and the narratives connecting these objects. In the commognitive 
approach to mathematics education, “learning mathematics is the process in which students 
extends their discursive repertoire by individualizing the historically established discourse called 
mathematics” (Sfard, 2018, p. 222). Individualizing a discourse essentially means developing 
one’s ability to communicate with others and oneself according to the rules of the discourse.  In 
each language, we will refer to the historically established discourse called mathematics as the 
canonic discourse. As Kim et al. (2012) noted, from the commognitive perspective, one should 
not expect mathematical discourse in different languages to be homeomorphic. Thus, one should 
expect differences in the canonic discourses in different languages.  From this perspective, 
differences in canonic discourses are differences in what students are trying to individualize. 

The motivation for our study is the observation that in English, the word “derivative” is 
included in “the derivative at a point” and “the derivative function” and the word “derivative” 
alone is often used for these objects, while in Korean the phonetically and semantically different 
terms “mi-bun-gye-su” and “do-ham-su” are used respectively for the corresponding objects and 
there is no common term like “derivative” that can be used for either object. Thus, this difference 
between English and Korean is a difference in the canonic discourses of the two languages.   
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While the non-homeomorphic nature of mathematical discourse in different languages has 
been investigated from the student perspective, to our knowledge, our study is the first to focus 
on differences caused by differences within the canonic discourses.  In contrast to previous 
studies that focus on aspects of students’ discourse that one would expect students to outgrow as 
they attain proficiency (e.g., Favilli et al., 2013; Han & Ginsburg, 2001; Kim et al., 2012; Miller 
& Stigler, 1987; Paik & Mix, 2003), we consider a different aspect of language-dependency in 
which one language has a common term for two different but related objects and the other does 
not, which results in a difference in the mathematics that students in each language are trying to 
learn.  This is an important difference to investigate because several researchers have suggested 
that one term/notation being used for multiple objects creates challenges for teaching and 
learning about those objects in different mathematical discourses (e.g., inverse in algebra or 
discrete mathematics, Thompson & Rubenstein, 2000; tangent line in geometry and analysis, 
Biza & Zachariades, 2010). Especially, multiple uses of one term in the same discourse are hard 
to communicate with students (e.g., limit as a number and limit as a process in (Güçler, 2013)).  

To investigate the differences in the canonic discourses, we examined one Korean 
mathematics teacher’s classroom discourse and one American teacher’s classroom discourse 
considering those teachers as participants in the canonic discourse in Korean and English, 
respectively, and addressed the following research question: What are the differences between 
canonic discourse in English and Korean that can be observed based on an American 
mathematics teacher’s discourse involving a common word “derivative” and a Korean 
mathematics teacher’s discourse involving two words “mi-bun-gye-su” and “do-ham-su”? 

Based on the comparison between two teachers’ discursive characteristics, we learned about 
the differences between canonic discourse in each language regarding metarules about word use, 
in relationships between canonic discourse and colloquial discourse, and in ways mathematical 
objects were connected. We adopted a case study approach because it allows researchers to 
“closely examine the data in a specific context” (Zainal, 2007, p. 1) and many recent 
mathematics education studies that examine teachers’ discursive characteristics through in-depth 
analysis adopted a case study approach (e.g., González, 2015; Kontorovich, 2021). A limitation 
of our approach is that it may not find all of the differences between the canonic discourses or 
identify which differences would be most commonly observed in a large sample of classrooms. 
However, in-depth engagement with one teacher’s discourse involving the specific terminologies 
of interest in each language, which a case study allows, was needed for researchers to explore 
mathematical discourse in each language “in action” and compare potential differences. To make 
our inference about differences in the canonic discourses in each language valid we followed 
case study design guidelines from Check and Schutt (2017), Rubin and Rubin (1995 & 2005), 
and Zainal (2007). We carefully chose teachers whose discourse would allow us to learn about 
differences in canonic discourse in each language and collected data that would enlighten us 
about the connections between mathematical objects made within the canonic discourse and its 
connection with colloquial discourse in each language. We then produced a chain of evidence 
about the differences in the canonic discourses in each language based on our analysis of the data 
from holistic point of view by examining their discourse following commognitive research 
guidelines from e.g., Kontorovich (2021), Nachlieli & Tabach (2012) and Sfard (2008 & 2012).   

Theoretical Background 
Prior Work on Differences in Mathematical Discourses in Different Languages  

The commognitive framework has been used in several settings to examine the dependence 
of mathematical discourse on language.  This conceptual and discourse-analysis framework 
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combines cognition and communication. It asserts that thinking is communicating with oneself 
and views mathematics as a type of discourse. Commognition makes the language-dependent 
nature of mathematics almost self-evident because languages are the medium for communicating 
(Kim et al., 2012), which makes it a natural framework for studying such dependence.   

Language studies using the commognitive framework have focused on the discourse of 
students.  For example, Kim et al. (2012) used this framework to study differences between 
students’ discourses about infinity in Korean and English based on phonetic and semantic 
disconnections between “Korean formal mathematical discourse in infinity and its informal, 
colloquial predecessor” and “the cohesiveness of the infinity discourse” in colloquial and formal 
discourse in English (p. 95). Ní Ríordáin (2013) adopts the commognitive framework, discussing 
how, theoretically, the syntactical structures of Irish “lend itself to easier interpretation of 
mathematical meaning in comparison to English” (pp. 1581-1582), which was supported 
empirically by the later study (Ní Ríordáin & Flanagan, 2020).  

Outside of the commognitive literature, if one views the ability to correctly solve problems as 
a proxy for fluency in a discourse, there is a long history of investigating phenomena similar to 
what Ní Ríordáin and Flanagan (2020) investigated.  For example, some of these studies 
considered the feature of Asian language terms stating mathematical concepts clearly, such as 
part-whole relations in fraction words, which is not a feature in other languages (e.g., English) as 
an explanation for Asian-language speaking students’ higher performance regarding those 
concepts (Han & Ginsburg, 2001; Miller & Stigler, 1987; Miura, 1987; Miura et al., 1999).  

Most of these studies focus on, or give insight into, phenomena within student discourse that 
students are intended to outgrow as they become proficient participants in the canonic discourse.  
In contrast, our study considers differences within the canonic discourses, which therefore will 
become present and persist after students become fluent in the canonic discourse. 
 Canonic and Teacher Discourse 

From the commognitive perspective, a discourse is a “special type of communication made 
distinct by its repertoire of admissible actions and the way these actions are paired with re-
actions” (Sfard, 2008, p. 297). Canonic discourse can be difficult to identify in general because it 
is historically established by practice. Thus, we grounded our identification of canonic discourse 
in content that has broad, objectively observable acceptance. In particular, we decided to use 
widely accepted curricula as the basis for identifying the canonic discourse in Korea and the 
United States.  In Korea calculus is part of the national high school mathematics curriculum set 
by the Korean government (Ministry of Education, 2020), which also reviews and approves high 
school textbooks.  In the United States there is no similar nationally controlled curriculum for 
calculus.  Rather, there is the Advanced Placement Calculus AB curriculum set by the College 
Board (2020), which is a private company.  Although privately set, Advanced Placement (AP) 
Calculus courses are taught in many high schools (public and private) and high school students 
may receive college credit at many colleges (including highly ranked ones like Harvard 
University) by scoring well on the standardized AP Calculus AB Exam at the end of each year.  
From this, we conclude that the AP Calculus curriculum is broadly accepted in the United States.  
We consider certified teachers who teach these curricula to be among the participants in the 
canonic discourse of their country and selected our participants from among this group. 

Within the commognitive framework, teaching can be defined as “the communicational 
activity the motive of which is to bring the learners’ discourse closer to a canonic discourse” 
(Tabach & Nachlieli, 2016, p.303). This view is consistent with other discursive approaches. For 
example, as reviewed in Schutte (2018), Pimm (1987) sees learning mathematics as similar to 
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learning a foreign language, which is both written and spoken language which has to be used 
extensively within the mathematics classroom, and views the teacher as similar to a “native 
speaker” in a new language (p. 26).  Therefore, the mathematical discourse of qualified teachers 
teaching courses that follow broadly accepted curricula is likely to provide examples of canonic 
discourse, with the understanding that teachers may occasionally include non-canonic discourse 
through making mistakes or adopting idiosyncratic discourse in the process of trying to bring 
students’ discourse closer to the canonic discourse.  In practice, this essentially means that, with 
the exception of occasional mistakes or adoptions of idiosyncratic discourse, we treat the 
mathematical statements endorsed as correct by qualified teachers as though they would be 
endorsed as correct by other qualified teachers and others who have mastered the content of the 
broadly accepted curriculum.  We remark that the discourse of different participants in the 
canonic discourse may vary dramatically, see e.g. Moschkovich (2007) about the differences 
between academic and school discourse, but the hallmark of discourse being canonic is that it 
would be endorsed as correct by other participants in the canonic discourse.   

Methods 
This study uses teachers’ discourse in each language to learn about canonic calculus 

discourse in English and Korean. As noted in the introduction, we adopted a case study approach 
to conduct an in-depth analysis. This section details the research design with our rationale to 
produce valid conclusions through our selection of participants, data collection, and analysis.  
Participants 

To ensure the validity of our choice of teachers in terms of addressing our research question, 
our recruiting of teachers was guided by strategies for purposive sampling in which participants 
are selected for a purpose (Rubin & Rubin, 1995, as cited in Check & Schutt, 2017), such as 
“knowledgeable about…the situation…being studied,” and “willing to talk” with “a range of” 
view points” (p. 20). In selecting the American teacher, we discussed our study with faculty at a 
midsized U.S. university, who work at a center that organizes professional development (PD) for 
mathematics teachers. Of the teachers they recommended, William was recommended as the best 
“potential” participant given that William has taught Calculus multiple times, been engaged in 
PD for mathematics education, and participated in the design of the state-wide mathematics tests.  
William was also “willing to talk” about the subject of our study and to open their classroom 
being observed. We operationalized “the range of points of view” as using various 
communicational means in their teaching, especially including a range of representations and 
terminology in the mathematical context of our study. William described how they usually teach 
the topic of the study with the intention of using mathematical terms and concepts rigorously, as 
well as utilizing a variety of real-life contexts and mathematical representations (e.g. graphical 
and symbolic), which fit our operationalization of the third point. In selecting the Korean 
teacher, we considered Korean mathematics teachers from mathematics education master’s 
programs at highly regarded universities in Korea and also considered Korean high school 
teachers who attended calculus related talks at the International Congress on Mathematical 
Education that happened in South Korea. Kim was an experienced high school mathematics 
teacher, who passed a highly competitive national test to become a secondary public school 
teacher, taught Calculus over several years, and was also a master’s student in mathematics 
education. Kim also engaged in PD and taught in a mathematics program for gifted students.  

Aligned with our conception of canonic discourse, the class we observed William teaching 
was an AP Calculus AB course in a public high school in the U.S.  The Korean class we 
observed was a public high school course in Korea that followed the national curriculum. 
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Students in both classes were native speakers of the language of instruction. In general, the 
teachers organized their class with explanations of key words, solving examples on the board,  
students’ individual work on problems, and then whole class discussions about the problems the 
they had solved. The teachers’ discourse observed in their explanations and their interaction with 
students helped us understand how the key words of our interest were used in each language.  
Data Collection 

Class observations occurred at the beginning of the derivative unit before the class 
concentrated on computing the derivative.  This part of their class was chosen to collect the 
relevant data for the teacher’s discourse where we could potentially observe two uses of the 
“derivative” in English, where “mi-bun-gye-su” and “do-ham-su” were defined and connected to 
each other in Korean, and where other related words and real-life phenomena were discussed.  

The first author video-recorded seven 50-minute lessons from Kim’s class and six 90-minute 
lessons from William’s class from the back of the classroom. There is a difference in length of 
the video-recorded lessons. Kim’s discourse stayed related to the mathematical objects of the 
lesson whereas William’s class included various non-mathematical discourses (e.g., information 
about AP exams) and reviewing of topics irrelevant to this study (e.g., computing limits), for 
which we did not find direct connections to our study. We included all derivative-related talk, 
and approximately, 400 minutes of relevant discourse were recorded in William’s class.  

Once the recording was completed, the first author (who is fluent in English and Korean), 
one Korean-speaking research assistant, and one English-speaking research assistant transcribed 
the videos focusing on what is said as well as what is done (non-verbal communication) 
following the guidelines from Sfard (2008) for transcribing the recorded data. Once the data was 
transcribed, the first author translated the Korean transcripts into English.  A sample from the 
translations was checked by another mathematics education researcher who is fluent in English 
and Korean.  Both authors reviewed the transcripts to check the match between the video data 
and the transcripts and added screen shots from the videos to complement “what is done”.  
Analysis 

Our analysis of the teachers’ discourse was guided by the principles of commognitive 
research (Kontorovich, 2021; Nachlieli& Tabach, 2012; Sfard, 2008 & 2012). In our analysis, we 
treated the totality of each teacher’s discourse, collected over multiple days, as our unit of 
analysis. However, we separated lessons into several episodes to see how words were used in 
different contexts. Episodes were defined by each teacher’s different teaching activities. 
Specifically, each episode was determined by completing a mathematical task, defining a new 
mathematical term, providing a story involving a real-life object prior to defining a mathematical 
term, making connections between a newly defined term and previously defined terms, or 
making connections between a newly defined term and a real-life object.  Episodes were defined 
this way because changes in teaching activities correspond to changes in the context of discourse 
and, therefore, to potential changes in usage of words whose meaning is context-dependent (Biza 
& Zachariades, 2010; Thompson & Rubenstein, 2000), like “derivative” in English.  Following 
this definition, we identified 57 episodes in Kim’s class and 54 episodes in William’s class.   

With our interest in linguistic differences related to the signifiers “derivative” in English and 
“mi-bun-gye-su” and “do-ham-su” in Korean, we needed to identify the mathematical objects 
that these signifiers signified in each teachers’ discourse.  It was done based on the formalization 
of the derivative as a mathematical object in the commognitive framework as in (Park, 2016).  
After this, we examined the coded data focusing on how the derivative at a point and the 
derivative function were connected.  Once the objects in each teacher’s individualized discourse 
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were identified, we coded each episode according to the objects and primary signifiers used to 
determined which objects appeared in each episode regarding how those language-specific terms 
were used.  For example, for William’s episodes, we distinguished (a) episodes in which 
“derivative” is used as (or as part of) a signifier for those two objects (showing the common use 
of the “derivative” for the two objects) from (b) episodes in which both objects signified by 
“derivative” appeared but in which “derivative” was only used as (or as part of) a signifier for at 
most one of these objects (not showing the common use of the “derivative”).  Each author 
individually coded each of William’s uses of “derivative” as described above. The coding 
originally matched, except for 2 episodes which were discussed until agreement was reached. 
The English translation of the Korean data was reviewed by another Korean and English 
speaking commognitive researcher, and the English-translated Korean data and English data 
were analyzed through discussions among the authors, one of whom is a native English speaker.  

Results 
Our analysis leads to three main results.  First, the canonic discourse in English (AMD) 

contains metarules for distinguishing whether the signifier “derivative” is being used for the 
derivative at a point or the derivative function that has no analogue in the canonic discourse in 
Korean (KMD).  On four occasions William provided the following rule for distinguishing the 
two uses of derivative: If context shows the object signified by “derivative” is a number, 
“derivative” is signifying the derivative at a point, and if context shows the object signified by 
“derivative” is a function, “derivative” is signifying the derivative function. He said, for example 

This idea of, well the derivative can be thought of as a number, which represents the slope of 
the tangent line at a point. But, notice that I can talk about slope of the function at every point 
along this curve…the slope is always changing. Now, what we get then, is a function that 
represents the slope of the tangent line at any point on here, as a function of 𝑥…That's called 
the derivative too. From the context, you understand what I'm talking about…just remember 
now we're talking about numbers and we're talking about functions, and we have to keep 
them straight. Then we get into the other half of Calc 1 and talk about integrals. There will be 
the same thing. There will be some integrals that are numbers, some integrals that are 
functions. We use the same words because the concepts are related (Day 2, 6 minutes)  
One would expect that participants in AMD have some way for distinguishing between the 

two uses of “derivative”. Thus, the existence of such metarules is not surprising, but their 
existence shows that the differences between AMD and KMD extend beyond simply having a 
different signifier structure. We concluded that this rule is part of the canonic discourse, in 
addition to William being a participant in the canonic discourse, because it combines two 
statements from the canonic discourse (that the derivative at a point is a number and that the 
derivative function is a function) with the generally applicable rule that one can try to use context 
to infer the meaning of a word that potentially has multiple meanings.  We thus believe that this 
metarule would be endorsed by the other participants in the canonic discourse. This metarule of 
AMD has no counterpart in KMD because there is no signifier in KMD whose use must be 
distinguished.  

Second, when teaching in English, one can use the fact that “derivative” is a signifier of two 
objects in AMD to make connections to the colloquial discourse in English for which there are 
no analogous connections between KMD and colloquial discourse in Korean.  For example, 
William used “speed” in colloquial stories about reading changing numbers on a speedometer to 
motivate the construction of the derivative function as follows,   

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1085



 

 

As I start out on my trip, how fast am I going?...Pretty fast!…As I travel along, what is 
happening to the slope or my instantaneous velocity sort of thing, instantaneous rate of 
change? It is going down right?… I have a whole succession of changing speeds or changing 
rate of changes…Let's say…I have a flea, following this line and the flea has a rate of change 
meter on. It's the speedometer! So, he's traveling along the line, this number is changing all 
the time. Now, I- (Slamming hands against the board) squash the flea at one point. That 
number is frozen…That number I'm gonna use as the slope, and that line (drawing the 
tangent line at the point)…that's what we call the tangent line…that keeps visible that slope 
or that instantaneous rate of change at that point (Day 1, 37 minutes)  
In colloquial discourse (in both Korean and English), “speed” behaves like “derivative” in 

AMD in the sense that it can be used as a number or as an (informal) function of time. Thus, in 
an English-speaking class, a teacher could explicitly recall this dual use of speed and then 
explain that “derivative” works in the same way students are familiar with “speed” working and, 
from context, one can determine if it is being used as a number or a changing quantity. 

Our third result is that William’s use of “derivative” shifted after he introduced the derivative 
function.  Specifically, in episodes that only involve the derivative at a point, “derivative” was 
the dominant signifier used by William for this object.  However, in episodes that involved both 
the derivative at a point and the derivative function, William dominantly used “derivative” as a 
signifier for the derivative function (56 out of 70 uses) and “slope of the tangent line” as a 
signifier for the derivative at a point. We did not observe any such shift in Kim’s discourse.  
Rather, Kim routinely used the term “mi-bun-gye-su” to refer to the result of evaluating the “do-
ham-su” at a point. Unlike our first two results, which are results about AMD and KMD, this 
shift depends on William’s didactic choices, in particular the choice to primarily use “slope of 
the tangent line” to signify the result of evaluating the derivative function, and other teachers’ 
discourse may not include such a shift. For example, one could use “derivative” assuming what it 
is used for would be obvious to students or always use “the derivative at a point” and “the 
derivative function” to avoid confusion. However, we decided that it is interesting to report 
because, assuming that people naturally tend to try to communicate clearly, we conjecture that 
not using one term for different objects in the same context is common in AMD.  Similarly, we 
conjecture that such shifts are uncommon in KMD.       

Discussion and Conclusion 
In our results, we showed that the differences between the canonic mathematical discourse in 

English (AMD) and the canonic mathematical discourse in Korean (KMD) extend beyond the 
fact that AMD has a signifier “derivative” that can be used for two objects while KMD does not 
have common signifier for both objects.  Specifically, we argued that AMD also has metarules 
for using context to determine which object “derivative” is signifying based on whether the 
object is a number or a function.  Although not every instructor in AMD will necessarily include 
this metarule in their classroom discourse, we argued that this metarule is part of the canonic 
discourse, i.e. would be endorsed as correct by other qualified teachers and participants in the 
canonic discourse, because it combines a statement from the canonic discourse about the 
difference between the derivative at a point and the derivative function with the general rule that 
context can be used to determine the meaning of words that have multiple uses.  Indeed, it has 
been found in other contexts that preservice mathematics teachers use context to explain the uses 
of other mathematical symbols that have multiple meanings (Zazkis & Kontorovich, 2016).  Our 
result further confirms the hypothesis that Kim et al. (2012) put forward that mathematical 
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discourse in different languages is not necessarily homeomorphic. They supported this claim by 
observing differences in student discourse about infinity, but we have shown differences in both 
the signifier structure and metarules of the canonic discourses themselves.  In addition to adding 
to our theoretical understanding of the relationships between canonic discourses in different 
languages, we believe that this has some practical instructional consequences.  For example, 
there are many students from Korea and Japan (signifiers for derivatives in Japanese and Korean 
are homeomorphic) who go to the U.S. for graduate school and teach calculus.  These students 
may not be expected to know elements of AMD that do not exist in the canonic discourses of 
their native languages and may not be able to teach these elements to their students.  

In addition to providing the metarule for distinguishing the uses of “derivative”, William’s 
first quote in Results includes a noteworthy discussion of integrals. The metarule that William 
provided for the use of “derivative” can be used as an analogy to explain the metarules around 
the use the signifier “integral” later in the course. In KMD, the terminology around integrals is 
similar to AMD, there is a signifier for “definite integrals” and signifier for “indefinite integrals” 
and a signifier like “integral” that can be used for either. However, it cannot be explained by 
analogy with the use of signifiers around derivatives. This further supports the conclusion of 
Kim et al. (2012) that “teachers need to be cognizant of those language-specific features of the 
discourse that may support learning and of those that may hinder successful participation” (p. 
106).  Because this result pertains only to the existence of certain language-specific features, 
whose existence we have just demonstrated, it is not limited by our case study methodology. 

The discursive shift we observed in William’s class, but not in Kim’s leads to a theoretical 
hypothesis about students’ learning.  From commognitive theory, within higher-mathematics, 
which features extreme objectification and rigor that is often unfamiliar to students, new 
students’ learning “begins with an exposure to” instructors’ discursive practices (Sfard, 2014, p. 
202). Then, students start “collaborating across communicational conflict” due to the differences 
between this new discourse and their old discourse “by observing, and then imitating, the 
expert’s moves while also trying to figure out the reasons”, which might be the only way 
students “come to grips with the objects” at the abstract level (Sfard, 2014, p. 202).  A 
consequence of this is that as students start learning higher-mathematics, their discourse will 
include imitations of experts’ discursive moves and, just as importantly, will not include moves 
from the canonical discourse that they have not observed (e.g, from their instructor, textbook or 
other resources).  This leads to the hypothesis that students in courses featuring discursive shifts 
as in William’s will initially connect evaluating the “derivative function” with obtaining “the 
slope of the tangent line” rather than “the derivative at a point”, while students in courses like 
Kim’s that do not feature such a shift will initially connect evaluating the “do-ham-su” with 
obtaining the “mi-bun-gye-su”.  It would be interesting to investigate whether discursive shifts as 
in William’s class are common and to investigate the effects such shifts have on student learning. 

This would be particularly interesting because the literature has shown that the connection 
between the derivative at a point and the derivative function can be challenging for students 
(Font & Contreras, 2008; Park, 2013) and implicit shifts in instructor discourse have been tied to 
student difficulties (Güçler, 2013). Although derivatives have been intensely studied in the 
literature, we have not seen shifts like the one we discuss documented before.  Note, however, 
that the instructors in (Park, 2015) also dominantly connected “derivative function” to “slope of 
the of the tangent line” and this leads us to conjecture that this shift may be widespread, but not 
documented because previous analyses were not looking for such large-scale discursive patterns.   
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The purpose of this paper is to highlight issues related to students' personal inferences that arise 
when students verbally explain their justification for calculus statements. We conducted clinical 
interviews with three undergraduate students who had taken first-semester calculus but had not 
yet been exposed to formal proof writing activities through undergraduate mathematics courses. 
We analyzed these students' verbal justification of four statements, each of which described a 
different relationship between two quantified variables in calculus contexts. In this paper, we 
document students' personal inferences that were evoked in their justifications and discuss how 
they are similar to or different from the logical inferences that have been accepted and practiced 
by the mathematics community for mathematical arguments.  

Keywords: Calculus, reasoning and arguments, inferences, Toulmin's model of argumentation.  

Reasoning and arguments are foundational aspects of mathematics. NCTM (2000) and 
Common Core State Standards (2010) have emphasized teaching students in all age groups to 
develop, evaluate, and use various types of reasoning and methods of mathematical arguments. 
On the other hand, research in undergraduate mathematics education has reported that students 
frequently make their arguments on empirical bases (Shipman & Shipman, 2013). Students often 
believed that examining a few cases would be sufficient as a justification in mathematics (Harel 
& Sowder, 1998) or stated that both example-based proofs and formal deductive proofs are 
equally valid (Martin & Harel, 1989). In addition, when reading an argument, students often 
accept it by ignoring, or without attending to, inferences inherent in the argument (Alcock & 
Weber, 2005). Dawkins and Zazkis (2021) reported that some students with no experience in 
mathematical proof construction did not envision proof as an unbroken chain of implications 
leading from the first line to the last line of an argument. Stylianides et al.'s (2004) study also 
documented that even undergraduate students who studied mathematics did not accept or use the 
equivalence between a conditional statement and its contrapositive. A similar phenomenon was 
also reported in Dawkins et al.'s (2021) study in which students did not conceive of an inference 
from the contrapositive equivalence in reading an argument and believed that a proof of the 
contrapositive of a conditional statement would not prove the original conditional statement. 
Instead, these students accepted an argument directly proving the converse of a conditional 
statement as a proof of the original conditional statement.  

Likewise, we see some gap between students' personal inferences, as utilized in their proof-
writing or validating others' arguments, and logical inferences, as accepted and practiced by the 
mathematics community. In this paper, we examine if such a gap still exists when students 
verbally express their arguments. Focusing on three undergraduate students who had not yet 
taken proof-oriented mathematics courses at university levels, we address the following research 
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question: What are the types of personal inferences that students naturally use, and how do they 
use their personal inferences as warrants to support their claims in calculus contexts? 

Theoretical Perspective 
By personal inference, we mean an act or process that an individual draws to make a claim 

from things that are known to him or her. We consider students' personal inferences through the 
lens of radical constructivism (Glasersfeld, 1995). From this perspective, we assume that 
students' inferences consist of sets of action schemes which are built and refined through their 
experience. Students' inferences are personal, in this view, as their unique experiences have 
shaped the ways they support arguments. Even if students have not yet experienced reading or 
constructing formal mathematical proofs, they would have made inferences for their arguments 
through their experience. These personal inferences may or may not align with what the 
mathematics community considers conventional valid logical inference rules such as modus 
ponens, modus tollens, or various syllogisms. Additionally, from this perspective, we as 
researchers are limited to what we can access about students' personal inferences. At best, we can 
only hope to model students' personal inferences. Further, we acknowledge that the tasks used in 
this study may have evoked only some of the ways in which students may use personal inference 
to support their claims when making arguments. In other words, we do not intend to document 
all of a student's personal inferences. Rather, in this paper, we highlight the students' personal 
inferences that were evoked by the context and task. 

We also adopt Toulmin's (2003) model of argumentation to further refine our consideration 
of students' personal inferences. Toulmin's (2003) model, shown in Figure 1, includes data, a  
claim, and warrants. In his model of argumentation, an individual perceives data, and formulates 
a claim, which is a conclusion made based on data. The warrant refers to the justification that the 
individual uses to explain how the data support the claim. In this paper, we focus on students' 
personal inferences as warrant types. These personal inferences (warrants) are embedded in their 
arguments as they justify their own data-based claims. 

Figure 1: Toulmin's model of argumentation (2003) 

Research Methodology 
The data for this paper are from a more extensive study (e.g., David et al., 2019, 2020; 

Sellers et al., 2021). In that study, we conducted individual clinical interviews (Clement, 2000) 
with nine students at a large public university in the USA. This paper focuses on three students, 
Marie, Zack, and Hannah (pseudonyms), who had completed a first-semester calculus course but 
had not yet taken any proof-oriented mathematics courses. Each author of this paper served as an 
interviewer, witness, or researcher analyzing these students' personal inferences from their verbal 
justification of statements in a calculus context.  

The main tasks implemented during the clinical interviews and relevant to this paper are 
about four statements as follows:  

S1: Suppose 𝑓 is a continuous function on the closed interval [𝑎, 𝑏], where 𝑓(𝑎) ≠ 𝑓(𝑏). 
Then for all real numbers 𝑐 in (𝑎, 𝑏), there exists a real number 𝑁 between 𝑓(𝑎) and 
𝑓(𝑏) such that 𝑓(𝑐) = 𝑁. 
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S2: Suppose 𝑓 is a continuous function on the closed interval [𝑎, 𝑏], where 𝑓(𝑎) ≠ 𝑓(𝑏). 
Then for all real numbers 𝑁 between 𝑓(𝑎) and 𝑓(𝑏), there exists a real number 𝑐 in 
(𝑎, 𝑏) such that 𝑓(𝑐) = 𝑁. 

S3: Suppose 𝑓 is a continuous function on the closed interval [𝑎, 𝑏], where 𝑓(𝑎) ≠ 𝑓(𝑏). 
Then there exists a real number 𝑁 between 𝑓(𝑎) and 𝑓(𝑏) such that for all real numbers 
𝑐 in (𝑎, 𝑏), 𝑓(𝑐) = 𝑁. 

S4: Suppose 𝑓 is a continuous function on the closed interval [𝑎, 𝑏], where 𝑓(𝑎) ≠ 𝑓(𝑏). 
Then there exists a real number 𝑐 in (𝑎, 𝑏) such that for all real numbers 𝑁 between 𝑓(𝑎) 
and 𝑓(𝑏),  𝑓(𝑐) = 𝑁. 

These four statements are similar in that they are all conditional statements with the same 
premise, and their conclusions describe a relationship between two quantified variables, c and N. 
On the other hand, each of their conclusions represents different relationships between the two 
quantified variables. The S2 (a version of the Intermediate Value Theorem, ITV) is the only true 
statement among the four statements. 

Without informing the students that S2 is the IVT statement, the interviewer first showed one 
statement at a time. Each student was then asked to interpret each statement in their own words, 
evaluate whether it is true or false, and explain how they could tell. Grid paper was also provided 
for those who wanted to sketch their example functions during the interviews. Once a student 
completed his/her evaluation of the four statements, the interviewer showed all four statements 
together and asked to compare and review their evaluations of these statements altogether.   

Based on the students' utterances, gestures, and diagrams that they produced to explain their 
reasoning, we modeled students' arguments regarding how they would tell whether the given 
statements are true or false. In particular, we used Toulmin's (2003) framework to identify what 
students perceive (data) from the statement, their evaluation of the truth-value of the statement 
(claim), and how they support their claims from their data (warrants). Two types of warrants 
emerged from our process of analyzing students’ responses to the interviewer’s question about 
how they could determine the truth-value of the statement. One type of warrants that we found 
was related to students’ meaning or construal of calculus concepts or their properties. Their 
reference to a working definition for functions and continuous functions is an example that we 
classified as this type of meaning-based warrants. On the other hand, the other warrants were not 
content-specific and were rather general rules or principles that students could apply to any 
content area in moving from data to claim in their arguments. In this paper, we focus on the 
second type of warrants, i.e., students’ personal inferences that these students used as warrant 
types in their arguments.   

Results 
While some of the students changed their evaluation of the statements, all three students 

determined S1-S4 as true statements in their final evaluation. Thus, we identified the claims in 
these students' arguments as identical to "the statement is true" across all four statements. On the 
other hand, there were differences in what constituted data of each student argument as they 
perceived different things from the given statements. There were also differences in their 
personal inferences as ways in which they justified their claims about the statements' truth. In the 
following subsections, we present these differences in the students' data and detail personal 
inferences that the students utilized as warrants in their arguments.  
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Marie's Use of Biconditional Elimination and Generalization from a Particular 
To support her claim that S1 is true, Marie drew a graph of a function f (see Fig. 2). She then 

explained that her function 𝑓 is continuous on [𝑎, 𝑏] because of no holes or jumps on the graph 
of 𝑓. She also explained 𝑓(𝑎) ≠ 𝑓(𝑏)  because 𝑓(𝑎) < 0 and 𝑓(𝑏) > 0. She then picked a value 
of 𝑐 between 𝑎 and 𝑏 (𝑎 < 𝑏) on the 𝑥-axis and then confirmed that its corresponding function 
value  𝑓(𝑐) is between 𝑓(𝑎) and 𝑓(𝑏) and thus N is between 𝑓(𝑎) and 𝑓(𝑏), which seemed 
sufficient for her to conclude S1 is true. Referring to the same graph, Marie described her 
reasoning about the other three statements, S2-S4, in a similar way. For instance, explaining her  
reasoning about S2, she said, "So 𝑁 is gonna be in between here [𝑓(𝑎)] and here [𝑓(𝑏)]. And 
then 𝑐 is gonna be in between 𝑎 and 𝑏. (long pause) Okay, so 𝑁 is in between 𝑓(𝑏) and 𝑓(𝑎), 
and because it's continuous, 𝑐 is gonna be in between a and b." Here, we found what she 
perceived from the given statements was her graph of a continuous function 𝑓 where 𝑓(𝑎) ≠
𝑓(𝑏). Thus, we identified her graph as data in her arguments. 
 

Marie mainly used two inferences to support her claims. Her first personal inference is what 
is called biconditional elimination, [(𝑝 ⟷ 𝑝′) ∧ 𝑝′] → 𝑝, in the conventional logic. Her use of  
this inference appeared when she replaced or substituted the premise and conclusion of the given 
statement to her own interpretation of them, respectively. In the case of S2, Marie interpreted the 
premise of the statement as a description of a function with no holes or jumps on its graph, and 
the conclusion as a description of the input of the function to be between a and b and the output 
of the function to be between 𝑓(𝑎) and 𝑓(𝑏). At the moment when she substituted the conclusion 
to these two conditions about where the input and outputs are contained, Marie neglected the 
quantifier words 'there exists' and 'for all.' Consequently, her interpretation of the conclusion of 
all four statements S1-S4 became the same. Although Marie used normatively biconditional 
elimination as her personal inference, her reasoning entailed invalid arguments as her evoked 
meaning from the given statements was not equivalent to the conclusions.  

There was another inference Marie used across her arguments during the interview, which is 
what we refer to as a generalization from a particular1, 𝑃(𝑥𝑜) → (∀𝑥, 𝑃(𝑥)). Her function 𝑓 
(Fig. 2) was merely an example that satisfied her evoked meaning of the given statements. 
However, she drew a claim that the statements are true from this particular example. 
Generalization from a particular is not a valid inference in conventional mathematical logic. 

                                                           
1 We detailed in Sellers et al. (2021) that generalization from a particular may be connected to students’ 
quantifications. 

Figure 2: Marie's graph 
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Zack's Use of Conjunction Elimination, Existential Instantiation, & Hypothetical Syllogism 
During Zack's interpretation of S1, the interviewer recommended that he draw a graph of a 

function. In response, Zack drew a graph of a linear function with a positive slope (see Fig. 3) 
because the graph "is just simple so I can imagine myself." However, Zack described that "f will 
be anything, any type of a graph." In fact, he did not make his arguments based on this particular 
graph. His way of using a graph for illustration purposes was thus distinct from Marie's use of a 
graph for generalization from a particular.  

Zack repeatedly pointed out a functional relationship between inputs and their corresponding 
outputs. Specifically, he started with a, b, and c as inputs and then described 𝑓(𝑎), 𝑓(𝑏), 𝑓(𝑐) as 
the corresponding outputs of a function, respectively. Zack's action-related explanation indicates 
that he mainly focused on the functional relationship between c and N. We thus identify his 
construal of such a functional relationship as data of his arguments. See the transcript below for 
his focus on the functional relationship. 

Zack on S1: When I put 𝑓(𝑎), we get that here (marks 𝑓(𝑎) on the graph) […] 𝑓(𝑏) 
somewhere here (marks 𝑓(𝑏) on the graph). And then, […] I would show it [c] over here 
(between a and b on the x-axis). I would hope it [𝑓(𝑐)] would be on the same line in 
between the interval from 𝑎 to 𝑏 (𝑓(𝑎) and 𝑓(𝑏) in his graph, Fig. 3). That [𝑓(𝑐)] is a 
real number and exists right here (between 𝑓(𝑎) and 𝑓(𝑏)). Now it [𝑓(𝑐)] will be like 𝑁.  

We noticed that Zack leveraged the functional relationship that he was envisioning (i.e., 
data) to claim that the truth value for S1 and S2 are the same. Zack attended to the quantifier 
words such as "for all" and "there exists" and the order differences between quantified variables 
𝑐 and 𝑁 in each statement. However, his attendance to such syntactic differences between the 
given statements was insufficient to evoke a different construal from each statement. For 
instance, he explained that "this one [S2] is almost a converse statement of the previous [S1]. I 
think the previous [S1] was asking if 𝑁 existed, and this one [S2] is asking if 𝑐 existed. So, I will 
say this statement 2 is true." His wording here also supports our model of data in his arguments 
that he perceived the functional relationship between c and N. 

Zack used several inferences to warrant his arguments to his claims that all four statements 
are true, and they were often compatible with normative inferences. First, he examined only the 
functional relationship but excluded the other conditions from the premise of the statements, 
such as f being continuous and 𝑓(𝑎) ≠ 𝑓(𝑏)2. We consider he subconsciously used what is 
called conjunction elimination (𝑝 ∧ 𝑞 → 𝑝) in conventional logic. His use of this inference 

                                                           
2 David et al. (2019) documented Zack’s ways of thinking about the outputs of a function as spatial locations in grid 
paper, which explains why he excluded the condition 𝑓(𝑎) ≠ 𝑓(𝑏) from his interpretation of the premise because to 
him it is always the case for all functions. 

Figure 3: Zack's graph 
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differed from Marie's use of biconditional elimination: Marie replaced or substituted a condition 
to another as she treated them as equivalent, whereas Zack excluded some conditions from the 
given statement.   

We also noted from Zack's explanation on S1 that he did not treat N as another label for an 
output 𝑓(𝑐), or use N to refer to the output value 𝑓(𝑐), until he checked that 𝑓(𝑐) is between 
𝑓(𝑎) and 𝑓(𝑏). He said, "That [𝑓(𝑐)] is a real number and exists right here (between 𝑓(𝑎) and 
𝑓(𝑏)). Now it [𝑓(𝑐)] will be like 𝑁." Zack's wording here indicates that he labeled the output 
value 𝑓(𝑐) as 𝑁 as a way to justify the existence of N. Once Zack showed the existence of N 
from his work on S1, he used both 𝑓(𝑐) and 𝑁 to refer to the output value for the specific input 
value c in explaining S2-S4. We consider his labeling of N here as evidence of his use of what is 
called existential instantiation in conventional logic, i.e., (𝑥0 ∈ 𝑋 ∧ 𝑃(𝑥0))⟹ (∃𝑥 ∈ 𝑋(𝑃(𝑥)). 
This inference is one of the conventional logical rules that are predominantly used in 
mathematics as a warrant while proving an existentially quantified statement. However, such an 
inference will unlikely be students’ personal inference if they do not attend to the existential 
quantifier, as shown in Marie's case. Thus, it is noteworthy that Zack exhibited existential 
instantiation as his personal inference in his arguments.  

Finally, we found that Zack used a chain of inferences when he used his evaluation of S1 to 
determine the other three statements S2-S4 to be true: He first compared the conclusion of S1 
with the conclusion of S2 and insisted that if the conclusion of S1 is true, then the conclusion of 
S2 is true. Using his earlier justification regarding the conclusion of S1 to be true, he contended 
that the conclusion of S2 is also true. We consider it as an example of his use of a logical 
syllogism ([(𝑝 → 𝑞) ∧ (𝑞 → 𝑟)] → (𝑝 → 𝑟)) in a normative way. On the other hand, he did not 
provide any further warrant to support his first inference between the conclusions of S1 and S2. 
He just said "there is no logical reasoning behind" in his action of choosing N first and then 
choosing c when thinking about the conclusion of S2, and he could do the other way "choosing c 
first and then choosing N" as he was thinking about the conclusion of S1. To him, the 
conclusions of all four statements represent the same functional relationship in which 𝑐 is an 
input and 𝑓(𝑐), or 𝑁, is its corresponding output. Consequently, while Zack used conventional 
inferences normatively in his arguments, his arguments were often invalid because he construed 
only the functional relationship from all four statements. 
Hannah's Use of Universal Generalization, Modus Ponens, & Modus Inverse 

When the interviewer asked Hannah to evaluate S1, she drew a graph of a function as an 
example of a continuous function (Fig. 4, left). Hannah also drew two more graphs for 
discontinuous functions, which contained either a hole or a jump (Fig. 4, right). She used both 
graph types to explain her reasoning behind her evaluation. Although she drew these specific 
example graphs for continuous or discontinuous functions, she said that "[it] doesn't matter what 
it [the graph of a function] looks like." It is thus likely that what Hannah perceived from the 
given statements are generic functions satisfying or failing to satisfy the premise. We thus her 
generic examples as data in her arguments.   

Figure 4: Hannah's graph 
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Hannah on S1: Because there is [are] no breaks, […] if you have this graph and there is a 
hole in it (Fig. 4, right), then that won't be continuous. So that would be an example of 
where this [the premise of S1] would be false. But since it's continuous, there is [are] no 
breaks [un]like this, or there is [are] no jumps [un]like that. (Fig. 4, left) So […] there has 
to be a 𝑓(𝑐) that equals to 𝑁, which is like, when you input any value of 𝑥 between 𝑎 and 
𝑏, for example, 𝑐 (marks 𝑐 on Fig. 4, left), there has to be a 𝑦 for it, a number that 
𝑁 equals, this roughly would be an N (marks N on Fig.4, left). 

Hannah used several inferential warrants in normative ways to support her claims from her 
data. First of all, her use of continuous functions and discontinuous functions as any particular 
example indicates that she used what is called universal generalization, i.e., (for any fixed 𝑥0 ∈
𝑋, 𝑃(𝑥0)) → (∀ 𝑥 ∈ 𝑋(𝑃(𝑥)). We also found that Hannah used another inference that we call 
modus ponens, (𝑝 → 𝑞) ∧ 𝑝) → 𝑞, normatively in her argument for S1: She assumed the premise 
of S1. For her, a continuous function is equivalent to (or at least implies) that there is no break or 
hole in its graph. And, for her, no breaks or holes on the graph means for each input c between a 
and b, the output 𝑓(𝑐) is between 𝑓(𝑎) and 𝑓(𝑏).  

Hannah attended to the syntactic differences between S1 and S2 and construed distinct 
meanings from each statement. Furthermore, she conceived that S1 and S2 would potentially 
represent different each-to-some relationships, i.e., S1 represents the each-𝑐-to-some-𝑁 
relationship, whereas S2 represents the each-𝑁-to-some-𝑐 relationship. Her construal of different 
relationships from different statements characterizes her arguments distinct from Marie and 
Zack. However, she expressed her confusion about S3. In particular, she was not sure if the 
conclusion of S3 would describe a one-to-every relationship or an each-to-some relationship. 
Although she finally interpreted the conclusion of S3 as a description of an each-to-some 
relationship between c and N, she was uncertain about her interpretation of the conclusion of S3.  

Hannah on S3: It sounded different [from S2]. But if you think it through, it's not saying that 
there is only one N. (reading the conclusion of S2) Okay, I am confused. Is it saying there 
is only one N or there exists a number, just any number? That's what is confusing me.  

As she experienced some difficulty with S3, she focused on the sameness rather than 
differences between the statements, saying, "All four [statements] are equivalent because like 
they are just saying that there exists an input where there is a real output in this interval. So, they 
[S1-S4] are all saying the same thing." Here, Hannah demonstrated that some parts of the 
statements were distinct. However, she used her meaning of function and the input-output 
relationship to conclude that all four statements held the same meaning. Hannah resolved her 
confusion by substituting the conclusion of S3 to a conjunction of two conditions about the 
existence of the input and output values.   

Once Hannah treated all four statements as equivalent, she also provided another way of 
justifying her claims about these statements, namely treating each of the given statements S1-S4 
as equivalent to its inverse. She believed that she could say a statement is true by showing a 
statement which is what we call the inverse of a conditional statement. She thought that if a 
function f is not continuous, then the conclusion of the given statement must be false. Therefore, 
if f is continuous, then the conclusion of the statement is true. 

Hannah: If you take a part of the statement, I guess, into two parts, it's saying it has to be a 
continuous function at first. Because this is discontinuous, in order to prove this 
statement true, you have to show that in a situation where it's not a continuous function, 
the second part [the conclusion] is not true. If you take a situation where like it doesn't 
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meet like the basic requirements [the premise], the second part [the conclusion] can't be 
true for this statement to be true. 

We characterize her use of such a personal inference as what we refer to in this paper as modus 
inverse, [(𝑝 → 𝑞) ∧ ¬𝑝] →  ¬𝑞. Her use of modus inverse seemed rooted in her conception of 
the equivalence between a conditional statement and its inverse, i.e., (𝑝 → 𝑞) ⇔ (¬𝑝 → ¬𝑞). 
On the other hand, the modus inverse was not aligned with normative logical inferences as there 
are cases in that a conditional statement is not equivalent to its inverse. Thus, her use of this 
inference made her assertion invalid in this case. 

Conclusion & Discussion 
Our findings suggest that these calculus students do have intuitive personal inferences that 

are quite sophisticated and often in line with mathematical/logical convention. All three students 
spontaneously used various inferences rules normatively. Marie and Hannah's use of 
biconditional elimination, Zack's use of conjunctive elimination, existential instantiation, and 
hypothetical syllogism, and Hannah's use of universal generalization and modus ponens were 
examples of personal inferences that these students used normatively. It was noteworthy that 
these students utilized these logical inference rules normatively to support their claims even 
though they had not received any formal instruction for conventional logic or proof writing in 
mathematics. 

While these students used several logical inferences normatively, their arguments often led to 
inaccurate conclusions. Partially, these students’ invalid personal inferences (e.g., Marie's use of 
generalization from a particular and Hannah’s use of modus inverse) explain how inaccurate 
conclusions were derived in their arguments. However, in some other cases, these students’ use 
of content-specific warrants affected their argument to be invalid even if their personal 
inferences were valid. Marie's meanings for quantified variables influenced the invalidity in her 
arguments. Zack's location thinking (i.e., thinking of output values of a function as the spatial 
locations of points on the graph of a function) was also closely related to his invalid argument. 
We hope to investigate further how to leverage students to use their personal inferences with 
content-specific warrants for valid arguments in mathematics.  
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Isomorphism and homomorphism appear throughout abstract algebra, yet how algebraists 
characterize these concepts, especially homomorphism, remains understudied. Based on 
interviews with nine research-active mathematicians, we highlight new sameness-based 
conceptual metaphors and three new clusters of metaphors: sameness/formal definition, 
changing perspectives, and generalizations beyond algebra. Implications include a way to 
articulate a conceptual purpose for homomorphism beyond its relationship to isomorphism: 
namely, as a tool for changing perspectives when problem-solving.   

Keywords: Advanced Mathematical Thinking, Communication, Undergraduate Education. 

Isomorphism and homomorphism are widely recognized as central to introductory abstract 
algebra coursework—not only do research-based curricula expressly focus on their development 
(Larsen, 2013) but they also serve crucial roles in fundamental theorems of algebra (e.g., the 
First Isomorphism Theorem (Gallian, 2009), also referred to as the Fundamental Homomorphism 
Theorem (Fraleigh, 2003)). Furthermore, isomorphism can be viewed as a type of sameness that 
expands on students’ prior experiences with equality and congruence (Rupnow & Johnson, 2021) 
and serves an important classification role for objects like groups and rings (Randazzo & 
Rupnow, 2021). Nevertheless, limited research has focused explicitly on how mathematicians 
understand homomorphism’s utility in abstract algebra. 

 To address this gap, we examine nine research-active mathematicians’ language for 
isomorphism and homomorphism. In so doing, we expand on Rupnow (2021)’s characterization 
of instructors’ language, especially with respect to homomorphism. Furthermore, we provide 
insight into conceptual purposes for homomorphism beyond relating it to isomorphism. 

Literature Review and Theoretical Perspective 
Researchers have long been interested in understanding students’ views of isomorphism and 

enhancing students’ problem-solving around isomorphism. Early research examined how 
students approached determining whether groups were isomorphic (Dubinsky et al., 1994; Leron 
et al., 1995) or approached proving theorems related to isomorphism (Weber & Alcock, 2004; 
Weber, 2002). More recent work has created a local instructional theory for isomorphism 
(Larsen, 2013), built on students’ approaches to proofs using isomorphism (Melhuish, 2018), and 
delved into the function-nature of isomorphism (Melhuish et al., 2020).  

Researchers have also begun examining students’ views of homomorphism. Though many 
early studies examined conceptions of homomorphism in service of examining students’ 
understanding of isomorphism (e.g., Larsen et al., 2013; Weber, 2001), more recent work has 
examined conceptions of homomorphism independently. Hausberger (2017) highlighted 
homomorphism’s description as a “structure-preserving function” in textbooks, as well as what 
students took away from tasks intended to help students abstract the notion of ring 
homomorphism from their experiences with groups. Like with isomorphism, recent attention has 
often focused on how students coordinate the homomorphism concept and their function 
knowledge (Melhuish et al., 2020) as well as metaphors students use for homomorphism 
(Melhuish & Fagan, 2018; Rupnow, 2017). 
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In contrast to the many student-focused studies, limited research has been conducted on 
mathematicians’ views of isomorphism or homomorphism. Weber and Alcock (2004) examined 
mathematicians’ understandings in the context of proof while Ioannou and Nardi (2010) studied 
mathematicians’ use of images in the classroom. Recent work has focused more on instructors’ 
conceptual metaphors (described below) for isomorphism and homomorphism. Rupnow (2021) 
interviewed and observed instruction of two abstract algebra instructors, neither of whom did 
research in abstract algebra, and found four clusters of isomorphism and homomorphism 
metaphors: sameness, sameness/mapping, mapping, and the formal definition. Rupnow and 
Sassman (2021) built upon this by examining survey results from 197 mathematicians and 
observed examples of metaphors from each of these four clusters. To extend this work, we 
interviewed nine mathematicians with research specialties related to abstract algebra or category 
theory to see whether a larger population and a more research-oriented group of mathematicians 
invoked other types of conceptual metaphors for isomorphism or, especially, homomorphism. 

Conceptual metaphors are a theoretical lens aimed at revealing individuals’ structure of 
thought based on their choices of language (e.g., Lakoff & Johnson 1980; Lakoff & Núñez, 
1997). Specifically, cross-domain conceptual mappings are used to connect one’s cognitive 
structure for a target concept (e.g., isomorphism, homomorphism) to one’s more developed 
thoughts in source domains (e.g., sameness, structure-preservation). For instance, “A 
homomorphism is a method for gaining information” is a conceptual metaphor that gives 
information about a target domain (homomorphism) by relating it to a more developed source 
domain with which people have had other experiences (a method for gaining information). We 
acknowledge that this theoretical perspective imposes the researchers’ view on the 
mathematicians’ statements; that is, we do not claim that the mathematicians intended to speak 
metaphorically in their responses (Steen, 2001). Nevertheless, we believe this lens does permit 
insight into how understandings can be clustered and the types of reasoning that can be 
employed when thinking about or using isomorphism and homomorphism. 

Conceptual metaphors have influenced examinations of students’ understandings of bases in 
linear algebra (Adiredja & Zandieh, 2020) as well as been used as a framework for examining 
college students’ beliefs about mathematics (Olsen et al., 2020). More closely tied to this study, 
conceptual metaphors have been used to examine understandings of functions in high school and 
linear algebra (Zandieh et al., 2016) and in abstract algebra (Melhuish et al., 2020; Rupnow, 
2017), as well as mathematicians’ views of isomorphism and homomorphism (Rupnow, 2021; 
Rupnow & Sassman, 2021). Here we aim to extend the framework proposed in Rupnow (2021) 
to incorporate new clusters of metaphors based on new ideas raised by the mathematicians in this 
study. We thereby answer two research questions: What conceptual metaphors do research 
mathematicians employ to characterize (1) isomorphism and (2) homomorphism? 

Methods 
Data were collected from Zoom interviews conducted with nine mathematicians, given 

gender-neutral pseudonyms in this paper. These mathematicians had previously completed a 
survey about sameness in mathematics and were selected from those who had provided clear 
responses to the survey and had characterized themselves as research-active in abstract algebra, 
category theory, or a field interacting with abstract algebra. All participants had taught abstract 
algebra and/or category theory at least once (one once, three 2-5 times, four 6-10 times, and one 
11+ times). The interviews focused on how participants characterized isomorphism and 
homomorphism for research, teaching, and laypeople (e.g., “How, if at all, does isomorphism 
play a role in your research?”, “How would you describe a homomorphism to a layperson?”). 
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Two researchers coded the interviews separately using the conceptual metaphors for 
isomorphism and homomorphism in Rupnow (2021) as codes (e.g., operation-preserving, 
journey) and then met to discuss coding and reach consensus. Each talk-turn was coded with all 
metaphors that appeared within that talk-turn. Although each phrase could only be associated 
with one metaphor, a talk-turn could contain multiple sentences and multiple metaphors. When 
new metaphors arose that were not clearly aligned with existing codes, these were added to the 
codebook, and interviews were iteratively reexamined in light of the new codes. This process 
aligns with codebook thematic analysis (Braun et al., 2019) in which an a priori codebook 
provides structure to the analysis, but space is made for emergent themes to be incorporated. 

Results 
We found that the original four metaphor clusters in Rupnow (2021) (sameness, 

sameness/mapping, mapping, and formal definition) were represented in this data as well, with 
some new codes being added to the sameness and mapping clusters. Additionally, three new 
clusters (sameness/formal definition, changing perspectives, and generalizations) were added to 
the framework to accommodate the new language used by participants in this study. 
Sameness 

This cluster contains codes referring to isomorphism or homomorphism as encoding 
information about the sameness of objects. This includes codes originally from Rupnow (2021), 
such as generic sameness, where participants described isomorphic objects as objects that are 
(essentially) the same, and same properties, where participants described isomorphic objects as 
those that have the same properties or invariants (e.g., cardinality). Several new codes were also 
included in this cluster and are discussed below. 

Two participants were given the code indistinguishable when they described isomorphic 
objects as exact copies or not distinct from one another. For example, Avery said: 

I’m trying to teach [students] that isomorphism is measuring sameness so that they actually 
start to think of isomorphic objects as no longer being distinct… I might try to get them to 
stop distinguishing between isomorphic objects, and therefore, we can talk about the dihedral 
group of order 8 as opposed to different models of that group. 

While Avery appears to be encouraging students to avoid viewing different manifestations of the 
dihedral group of order 8 as different, this identity-focused interpretation was not necessary to be 
coded as indistinguishable. Note that participants here were still thinking of isomorphic objects 
as being “the same,” but used more specific language than those coded with generic sameness.  

The code embedding was used when participants described homomorphisms as an 
embedding or a mapping into part of a larger object. This code also included sameness of 
homomorphic images in terms of the structure of one object appearing in another object or a 
copy of one object “sitting inside” another object. For instance, Indy remarked: 

[S]o I say, an isomorphism is an exact copy. These things are exactly the same. But a 
homomorphism,…maybe we don’t have this bijection anymore. But somehow some of this 
structure is appearing in this other object. And the ways that that could happen—one of the 
ways is maybe—I have an exact copy sitting inside this larger object. 

This quote was also given the code indistinguishable due to the comment about an isomorphism 
being an exact copy, which highlights the similarity between these two ideas: indistinguishable 
refers to isomorphisms as producing exact copies, whereas embedding refers to homomorphisms 
producing copies inside a larger object. 
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The code logical equivalence was given to participants who described an isomorphism or 
homomorphism as a transfer of knowledge in which truth values or facts about objects are 
preserved. When discussing different ways of writing isomorphic groups, Blair remarked: 

And so it’s okay if we pick different ways of writing down what ultimately results in the 
same structure…At the end of the day, they’re going to have the same structure because 
they’re isomorphic in the logical sense as well. Any statement of group theory that is true 
about one of those structures will be true if and only if it’s true in the other structure. 

Others talked about isomorphism in terms of classification problems and were given the code 
classification. For instance, Hayden said: 

So I think the example of the classification of finite simple groups in the 20th century is just 
one of the tools of 20th century algebra. But that statement properly understood suggests that 
we’ve written sometimes in infinite families…what all the finite simple groups are up to 
isomorphism, not what they all are but up to isomorphism… 

Notice they specify these classification problems are not listing all possible objects, just those 
“up to isomorphism”, which relates to Avery’s focus on “the dihedral group of order 8” above—
these participants seem to view isomorphism as the “sameness” that matters in abstract algebra.  
Sameness/Mapping 

This cluster contains codes about isomorphism or homomorphism that showcase sameness 
via mappings, which are all included in Rupnow (2021). In particular, five participants spoke of 
isomorphism as a renaming/relabeling, or described isomorphic objects as the same, except for 
their names. Others were coded with matching when they talked about matching or pairing up 
elements between isomorphic objects in some way. The code equivalence classes was given to 
homomorphism-focused responses that explicitly mentioned equivalence classes or cosets. This 
code also included responses talking about homomorphisms in terms of an “orderly collapsing 
where things line up,” or the process of “stacking [elements] into the same bins” (Indy). These 
latter types of responses make it clear why this code was included in this category, as they 
emphasize the sameness of a grouping of elements under a homomorphism. Note here that the 
idea of “lining things up” is what is implying the existence of equivalence classes; the word 
“collapsing” is coded with structure loss in the changing perspectives cluster below. 
Mapping 

This category includes responses that talk about isomorphisms and homomorphisms as 
functions or maps between mathematical objects, focusing on the map or process of mapping 
rather than the objects. The code generic mapping was given to participants who described 
isomorphism or homomorphism generally in terms of a function, morphism, arrow, map, or 
correspondence, whereas the code journey was given to participants who were explicit about the 
directionality of the map or used some sort of movement metaphor (e.g., elements being “sent 
to” one another). Both of these codes are included in Rupnow (2021). 

The new code invertibility was given to four participants who highlighted the necessity of an 
isomorphism being reversible or comprised of maps that compose to the identity. Greer provides 
a clear example of the former: 

I mean, all the things I really think about when I think about the way isomorphisms would 
occur in the non-mathematical world maybe, really are sort of reversible processes. So now I 
was just thinking about cyphers and codes,…and that’s a really concrete example of the way 
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an isomorphism would work. It’s even within the English language, but it’s turning all 
messages in English to other messages in English in a completely reversible process. 

Notice Greer’s explanation of isomorphism for a non-mathematician focuses on the reversibility 
of isomorphism. Finley provides an example of the identity-focused version of invertibility: 

An isomorphism between groups is a homomorphism from G to H together with a 
homomorphism from H to G so that the composites are identities. But then, you could also 
say an isomorphism is a bijective homomorphism because that’s a theorem that in the 
category of groups, the categorical isomorphisms coincide with the bijective 
homomorphisms. So I usually will present those two different ways. 

Observe Finley distinguishes between bijective homomorphisms and homomorphisms with 
inverses that are also homomorphisms—although the definitions coincide in abstract algebra, 
they do not when generalizing to other contexts (e.g., continuous bijections need not have 
continuous inverses in topology). 

The new code transformation was given to two participants who talked about isomorphism 
or homomorphism as a process that morphs or transforms one object into another (similar to 
Zandieh et al., 2016). For instance, Greer said: 

I use the word mechanism like an isomorphism really is a process to me. It’s a process of 
turning one object into another in some sense. It’s not turning the objects into each other, it’s 
reframing your thinking from…one object to another object, I would say. Objects themselves 
are distinct. Completely distinct to me, and they’re identified by isomorphisms. 

Notice that Greer characterizes isomorphic objects as being distinct, in contrast to the examples 
given the indistinguishable code above. 
Formal Definition 

These are codes given to responses that utilized the formal definition to reason about 
isomorphism or homomorphism. All of these codes are included in Rupnow (2021). The code 
literal formal definition includes instances of describing an isomorphism as a bijection, often 
with special properties, or describing isomorphic objects as simply objects that have an 
isomorphism between them. While this code included responses using the literal string of 
symbols in the homomorphism property in Rupnow (2021), these types of responses did not exist 
in this study, likely because the mathematicians were not asked to engage in problem-solving. 

Several participants also defined isomorphism based on homomorphism, and vice versa. The 
code special homomorphism was given to responses describing isomorphism in terms of 
homomorphism, either formally (e.g., “an isomorphism is a bijective homomorphism”, Finley) or 
informally (e.g., “I think of isomorphism as homomorphism plus extra things”, Greer). Similarly, 
the code isomorphism without bijectivity was used for responses that focused on describing 
homomorphism by relating to isomorphism (e.g., “[Homomorphism is] ‘Sort of an isomorphism’ 
is what comes to my mind. So we still want to preserve the structure, but maybe we don’t insist 
on one-to-oneness anymore or one-to-one correspondence”, Cameron). 
Sameness/Formal Definition 

Codes here include crucial parts of the formal definition (i.e., structure/operation 
preservation), but stated in an informal way. These two codes were originally included in the 
formal definition category in Rupnow (2021) because they were generally used as unexplained 
stand-ins for the homomorphism property/homomorphism by those participants. However, we 
now view them as a separate cluster because participants here seemed to use them to explain 
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what they meant by sameness (e.g., “preserving the algebraic structure, same algebraic 
structure”, Dallas). Cameron illustrates both structure-preserving and operation-preserving: 

And so when I cite preservation of structure, I mean that all these [mathematical sub-]fields 
have a notion of isomorphism in there. And you’re usually referring to a bijection which 
preserves the structure of whatever it is you’re looking at. So in topology, it’s like a bijection 
that preserves continuity in both directions. And in abstract algebra, it’s a bijection that 
preserves your multiplication, addition operations, whatever. In graph theory, it’s a bijection 
that preserves adjacency. 

We note here that the ideas of operation-preservation and structure-preservation are very similar, 
and Cameron seems to be using them interchangeably in the context of abstract algebra, though 
the notion of structure-preservation could carry over to other mathematical sub-fields as well. 
Changing Perspectives 

The metaphors in this category are all new codes involving responses that emphasize how 
homomorphisms force a change of perspective (quotient group construction, structure loss), or 
that explicitly mention using isomorphisms or homomorphisms to change perspective for the 
purpose of aiding mathematical research (information gain). 

Two participants were given the code quotient group construction when they mentioned that 
homomorphisms arise from quotient groups or vice versa. Blair talked about viewing these two 
concepts interchangeably, even though students may see them as distinct initially. 

And a quotient object is exactly how you make rigorous this notion of collapsing down and 
the most important result… is that homomorphisms are the same things as quotients… a 
really important idea for students is that a group homomorphism between two groups is the 
same thing as a certain type of equivalence relation, a certain type of quotient group as well. 

This quote mentions the idea of “collapsing” in relation to homomorphism, so was given the 
code structure loss as well, which involved responses talking about homomorphisms in terms of 
collapsing or similar ideas such as simplifying, losing, or ignoring structure. For example, 
Emerson describes homomorphism in the following way: “[T]aking a homomorphism is 
preserving some structure but losing something along the way. Hopefully, something that you 
are trying to ignore or that you don’t care as much about as the stuff you’re trying to preserve.” 
The similar concept of getting only partial or limited information from a homomorphism was 
also included here. Greer observed: 

I think describing a homomorphism to a layperson… I want to say that it’s about maybe 
collapsing and simplifying structure in mathematics, but I think it’s actually a pretty foreign 
idea to the real world, this idea that you can take something you care about and record only 
partial information, and still learn something about whatever you’re studying, but maybe not. 

Thus, while only partial information is retained from a homomorphism, Greer believes that 
homomorphisms are still helpful in learning something about the relevant objects. 

Four participants used metaphors related to information gain. This code captures the idea that 
homomorphisms are used to gain understanding about one or both of the objects involved. For 
example, Blair gave the following reason for using homomorphisms in their research but was 
relatively vague on the details about what sort of information is gained from this. 

And a great example of that would be like group actions. A group acts on a metric space. 
And even if you—a group action is a homomorphism from a group into the isometry group 
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of this metric space. And even if you didn’t understand that much about the metric—or you 
knew some things about the metric space, you knew some things about the groups, the 
information can go both ways. You can use things you learn about the metric space to learn 
things about the group, and you can use algebra that you can actually compute in the group to 
learn things about the metric space. So, you can gain knowledge in both directions. 

Others, like Hayden, referred to this information gain as part of their mathematical tool set:  
It’s our basic tool in moving around between algebraic objects [we] want to sort of exhibit. 
Often when you’re trying to find out something about some object, you will apply some 
homomorphism to it to understand it, maybe in a simpler context. That’s part of the grammar 
of doing research in algebra. 

Isomorphisms were similarly mentioned as useful for shifting perspectives to gain information 
(e.g., “isomorphisms are used in my research, I would say, to build bridges between two different 
ways of thinking,” Greer). 
Generalizations 

Here we include generalizations and analogues of isomorphism and homomorphism across 
different branches of mathematics. Five participants noted that isomorphisms are an example of 
an equivalence relation. Blair uses this idea to talk about isomorphisms broadly in any category. 

So everything I do when I talk about two things being equal or the same, there’s always some 
explicit or implicit notion of an equivalence relation. It’s up to something. And every 
equivalence relation gives rise to some notion of isomorphism in the right category. 

Blair seems to be speaking about isomorphism in the category theoretical sense here, which 
includes the algebraic notion. 

In a similar vein, all nine participants brought up other branch analogues to isomorphism in 
abstract algebra. Some of these were in response to being asked whether they view isomorphism 
in a specific context or more broadly. For example, Dallas made connections to analogous 
concepts in topology: “But the concept of isomorphism… extends kind of beyond just algebra.… 
So I think of concepts like homeomorphism, diffeomorphism, or homotopy equivalence even as 
being analogous to isomorphism.” Finley also talked about isomorphism existing outside of 
algebra: “I think most mathematicians will think of [isomorphism] as a general thing across 
mathematics. But for me, the reason… is because it’s a thing in category theory, and then you 
can apply it in any category.” Again, we see the idea of category theory being a way to talk about 
these concepts in a more general way. 

Some other branch analogues were also discussed in response to the final interview 
questions, which specifically asked about these analogues: “Some people answering the survey 
saw connections between isomorphism/homomorphism and equivalent fractions or 
congruence/similarity in geometry. Do you agree that there is some level of similarity between 
these contexts? Do you think it would be helpful to highlight these similarities with students?” 
Indy compared equivalent fractions to the relabeling conception of isomorphism: “I think 
equivalent fractions is kind of an interesting notion in the sense that they’re the same number, 
but they’re written differently. So it is kind of this idea of, we have different names for the same 
object.” However, they didn’t feel like similar triangles were a strong enough analogy to use for 
homomorphism: “The similar triangles… that one I don’t like as much because… you’re only 
zooming in and out. You’re not even kind of like folding it… I feel like the similar triangles 
would give an impression of too much rigidity.” This comment brings up the importance of 
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being careful how analogues are used in the classroom, in order to avoid encouraging too narrow 
or loose conceptions about isomorphism or homomorphism. 

Discussion 
Isomorphism and homomorphism have a variety of conceptual facets to them. As previously 

observed, they can be interpreted formally through their definitions, through the lens of 
sameness, as mappings, and as sameness-focused mappings (Rupnow, 2021). One way we add to 
prior work is by noting new ways that sameness (e.g., indistinguishable) and mapping (e.g., 
invertible, transformation) metaphors can manifest. While these metaphors were only used by a 
few mathematicians, we note that they reveal opposite views of how much sameness is conveyed 
by isomorphism. For indistinguishable, objects linked by the isomorphism are not worth viewing 
as different—in all important ways they are the same. In contrast, transformation emphasizes 
differences still exist, even for isomorphic objects. Although these perspectives are in tension, 
they provide complimentary views depending on what is important for a specific context. 

Furthermore, even the four original clusters do not fully capture ways in which isomorphism 
and homomorphism are understood. Here we see formal definitions conveying a type of 
sameness (formal definition/sameness cluster) through operation-preservation and structure-
preservation. Though these metaphors can be used as stand-ins for the homomorphism property, 
the preservation aspect also highlights the sameness of elements’ interactions with each other. 
We also see ways in which isomorphism and homomorphism are part of a broader system of 
interconnected ideas, permitting connections to similar concepts in other parts of mathematics 
(generalizations cluster). These connections can be viewed thematically (equivalence relations) 
or as specific other instantiations (other branch analogues like homeomorphism). Finally, the 
changing perspectives cluster highlights a route for viewing problems in new ways when 
problem solving. Specifically, these mathematicians working in or near algebra/category theory 
provide homomorphism a purpose of its own rather than viewing homomorphism as important 
only for its relationship to isomorphism or for having a tenuous connection to sameness.  

Furthermore, the changing perspectives cluster highlights potential routes for future research. 
For instance, considering these homomorphism purposes did not arise in the prior study and were 
only noted by four mathematicians here, how prevalent are these notions? Similarly, would math 
instructors who teach but do not research algebra benefit from explicit conversations and 
professional development on this topic to make their teaching more relevant? Alternatively, do 
students find the changing perspectives cluster relevant if they are not interested in pursuing 
higher level math courses? Further explorations of such connections between instructors’ 
understandings and teaching as well as teaching and students’ understandings seem justified. 

Finally, this examination of experts’ language highlights desirable conceptions for students. 
Prior work has carefully examined students’ use of properties and approaches to determining 
whether groups are isomorphic (e.g., Dubinsky et al., 1994; Leron et al., 1995) as well as focused 
on the function nature of isomorphism and homomorphism (e.g., Melhuish et al., 2020). Here we 
highlight a framework that permits and structures simultaneous examination of both while 
connecting to analogous topics in other mathematical subfields. Future research could examine 
the benefits of using particular clusters of metaphors, contexts in which different clusters are 
optimal, and ways to foster explicit connections among these metaphor clusters in the classroom. 
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One of the goals of advanced undergraduate mathematics courses is to engage students in 
activity that is authentic to the mathematics discipline. However, engaging students in such 
activity often involves managing tensions between authenticity-to-students and authenticity-to-
the-discipline. In this paper, we use the Authentic Mathematical Proof Activity (AMPA) 
Framework to further explore potential relationships and tensions between different dimensions 
of authenticity. We analyzed classroom data from an inquiry-oriented abstract algebra course 
where instruction focused on unpacking the fundamental homomorphism theorem. Our results 
focus on the complexity dimension of authenticity and how this dimension relates to other 
dimensions of authenticity within instruction. We identify ways that instructor decisions shape 
authenticity even within the context of a carefully developed task. 

Keywords: Undergraduate Education, Reasoning and Proof, Instructional Activities and 
Practices 

Many mathematics educators value engaging students in “authentic” mathematical activity. 
The use of the term authentic often reflects ties to the work of the discipline where the goal is to 
engage students in activity reflective of research mathematicians (e.g., Watson, 2008). However, 
what constitutes authentic activity and the degree to which such activity should be the goal of 
school mathematics is an unsettled topic (Weber & Dawkins, 2020). Further, engendering 
students in authentic activity is often subject to intrinsic tensions between authenticity to students 
and authenticity to the discipline (e.g., Melhuish et al., 2021; Ball, 1993; Lampert, 1992; Herbst, 
2002). A well-documented tension is that between authenticity-to-the-discipline (as in Weiss et 
al. 2009) in terms of accuracy of content and alignment with student contributions that often 
diverge from the norms of the discipline (e.g., Chazan & Ball, 1999). Herbst (2002) has further 
illustrated dilemmas in proof courses where there is a double bind on the teacher to progress a 
class in normative ways related to proof argumentation while also staying authentic to the 
contributions and activity of students in class. As noted in Dawkins et al.’s (2019) analysis of an 
inquiry-based instructor, this tension remains salient at the advanced undergraduate level. 

In Melhuish and colleague’s (2021) recent work, they have suggested a need to better 
operationalize authenticity for the context of proof-based courses. Drawing on diverse design-
based research projects, they built on Weiss et al.’s (2009) initial decomposition of authenticity 
to suggest both student/discipline dimensions and practice/content dimensions of authenticity 
that are at play in the advanced proof-based settings. In this paper, we build directly on this work 
by adapting this framework (developed in the settings of task-based interviews) to the classroom 
setting to better explore how different dimensions of authenticity may align or diverge in order to 
better understand instruction in such classes. For the scope of this paper, we forefront elements 
of practice, that is the nature of activities, as they have been less explored than their parallels in 
relation to content. 

Our study is situated in the context of abstract algebra, a course taken by mathematics majors 
and pre-service secondary teachers. The advanced undergraduate setting is often a place where 
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students are apprenticed into the work of research mathematicians with a focus on formal 
proving. It is well-documented that students often struggle to grasp the abstract concepts that are 
central to the course (e.g., Dubinsky et al., 1994; Melhuish et. al, 2019). As a result, there has 
been a growing body of research on how to improve the teaching of abstract algebra and a 
continued development of inquiry-oriented abstract algebra curriculum (e.g., Larsen et al., 2013) 
with a focus on engaging students in authentic activity. We are building on such work by 
elaborating on the tensions and relationships amongst competing authenticity goals observable in 
instruction. 

Theoretical Framework 
Drawing from activity theory (Engeström, 2000), we frame both students and instructors as 

operating within activity systems. These activity systems relate goal-driven actions to how 
members of a community work together toward shared goals. The assumption underlying our 
work is that advanced mathematics courses provide students with an opportunity to engage in 
activities that align with the activities of research mathematicians. Advanced mathematics 
courses may provide students an opportunity to use tools (e.g., examples, warranting, 
deformalizing) to meet objectives that can be deconstructed into motives (e.g., explore, test, 
construct) in reference to an object (proof, statement, concept). Evidence of participatory 
learning can be seen through expansions in activity within an activity system. For example, 
students may introduce tools, thus adding more variety and increasing their role in the division of 
labor. 

We draw from the Authentic Mathematical Proof Activity (AMPA) framework (Melhuish et 
al., 2021) which was developed to capture components of student activity that reflect the work of 
research mathematicians. The framework includes ten tools: analyzing/refining, formalizing, 
deformalizing, warranting, analogizing/transferring, examples, diagrams, logic, 
structure/frameworks, and existent objects. These tools are used alongside three motives: 
constructing, exploring, and testing, in reference to three objects: proofs, statements, and 
concepts. Authenticity is operationalized across six dimensions to account for different, 
sometimes competing, notions of authenticity. Notably, the three dimensions: variety, 
complexity, and accuracy reflect the discipline and stem from analysis of mathematician activity 
while agency, authority, and alignment reflect features of authenticity to student activity and 
contributions. See Table 1 below for the dimensions of the Authentic Mathematical Proof 
Activity (AMPA) framework along with our elaboration of four levels within each dimension. 

 
Table 1: Dimensions of Authenticity 

Dimension of Authenticity Levels 
Variety: Degree of variation 
within tools used: formal, 
informal, generative, 
translating 

 

Low: Only one type of tool at play 
Low-Mid: Two of the four types of tools at play 
Mid-High: Three of the four types of tools at play 
High: Informal, formal, translating, and generating tools at 
play 
 

Complexity: Degree in 
which tools are used in 
isolation or in conjunction 

Low: Single tool 
Low-Mid: A variety of tools are used in isolation 
Mid-High: Many tools used in conjunction 
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(and shifts from outcomes to 
tools) 
 
 

High: Objects shift to tools 

Accuracy: Degree in which 
the tools used would be 
accurate within the 
mathematical community 

Low: Inaccurate 
Low-Mid: Mixed - correct tools but incorrect outcome 
Mid-High: Similar but imprecise 
High: Tools and outcomes are accurate 
 

Alignment: Degree in which 
tools aligned with student 
contributions (whose tools are 
endorsed) 

Low: Teacher Contributions 
Low-Mid: Mostly Teacher/ Some Student Contributions 
Mid-High: Mostly Student Contributions/ Some Teacher or 
Refined Student Contribution 
High: Tools and Outcomes are Student Contributions 
 

Agency: Degree in which 
students generate tools 

 

Low: Teacher generates/uses Tools 
Low-Mid: Teachers generate tools and students Use Tools 
Mid-High: Students Generate Tools (prompted) 
High: Students Generate Tools (unprompted) 
 

Authority: Degree in which 
students determine how tools/ 
outcomes connect (validity of 
tools/ outcomes at play) 

Low: Instructor links & explains 
Low-Mid: Instructor links & students explain 
Mid-High: Students link & explain (sometimes) 
High: Students link & explain (mostly) 

Background: Fundamental Homomorphism Theorem and Quotient Groups 
The focal task in our study involves students exploring the proof of the Fundamental 

Homomorphism Theorem (FHT). Both the FHT and quotient groups are key topics in an abstract 
algebra curriculum, but they are also two of the most difficult topics for students to understand 
(Melhuish et al., 2021). The FHT (see figure 1 below) involves both a homomorphism and an 
isomorphism to show that the quotient group is isomorphic to the image of the homomorphism. 

Literature suggests that students may struggle to coordinate the homomorphism and 
isomorphism in the FHT (Nardi, 2000). Nardi (2000) elaborated that mathematical abstraction is 
particularly challenging in such proof settings. For students to productively engage with this 
theorem and proof, they need to coordinate a number of abstract mathematical objects including 
functions and quotient groups. Yet, Hazzan (1999) suggests that students often try to create less 
abstract environments for themselves by relying on things like the coset algorithm which in turn 
hides the structure of quotient groups. With the inherent challenges of abstract functions (e.g., 
Melhuish et al., 2021, year) and quotient groups (e.g., Dubinsky et al., 1994), we anticipate 
substantial opportunities to study authenticity dimensions where student contributions may often 
be in tension with disciplinary norms.  
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Figure 1: Statement and Proof of the FHT 

Methods 
The data for this report was collected at a large public university in the United States as a part 

of a design-based research project focused on orchestrating discussion around proof. More 
specifically, the data comes from an activity in which students were tasked with engaging with 
the Fundamental Homomorphism Theorem. This activity spanned one and a half class periods. 
On the first day, students worked in small groups on two tasks. For the first task, each group was 
given a different homomorphism between groups and asked to draw a function diagram where 
the homomorphism, kernel, cosets, and isomorphism were all labeled. This task concluded with a 
whole class discussion. 

The second task involved unpacking the proof of the FHT. Students were first tasked with 
partitioning the proof into sections based on the property being proved (well-defined, 
homomorphism property, one-to-one, and onto). Since there were four groups, each group was 
assigned a section and given a set of questions about their section of the proof to facilitate a 
small group discussion. After each small group spent some time discussing their section of the 
proof, a representative from each group went to the front of their class to present their answers to 
each question and discuss their overall understanding of their section of the proof. The 
presentations occurred during the following class period. 
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This activity was video recorded, audio recorded, and transcribed. Using the video data from 
the two class sessions, we segmented the class into segments based on activity. A new segment 
was created when shifts in conversation such as a new topic of conversation or more major 
changes such as whole class to small group discussion occurred. The coding was done in two 
stages by two of the authors. The first stage was a trial coding of two segments, the second stage 
consisted of coding the rest of the segments. Using the AMPA framework, 21 segments with an 
average length of 6 minutes and 40 seconds were coded along six dimensions and received a 
code of low, low-mid, mid-high, or high. Any discrepancies between the two coders were 
resolved through discussion.  

After we coded our data, we looked for patterns and trends throughout the coded data to find 
relationships and conflicts. We identified any segments that conflicted with the general trends of 
the data set. We discuss the findings of our analysis below. 

Results  
For this report, we forefront the dimension of complexity in order to better understand the 

relationships between complexity and other dimensions of authenticity that emerged from our 
analysis. Complexity captures the degree to which a set of tools are used interrelatedly to make 
progress towards an outcome. We use quotes and descriptions of the video data to provide 
context for each relationship. Note that all students have been assigned a pseudonym in these 
segments.  

Before discussing the relationship between complexity and the other dimensions of 
authenticity, we present a figure (Figure 2) that summarizes the authority dimension levels across 
our segments. The grey boxes correspond to small group segments (focusing on the small group 
reported later in the results) while the white boxes are whole class segments. We note that we 
transition between lessons at the 80-minute mark. We can observe that authenticity dimensions 
are infrequently all at the high-level, with both discipline (variety, complexity, accuracy) and 
student (agency, authority, alignment) varying in different segments.

 
Figure 2: Coding Over Time By Whole Class And Small Group 1 

Variety, a Necessary, but Not Sufficient Condition for Complexity  
From a simplistic view, complexity and variety are interrelated. In order for multiple tools to 

be used in conjunction (high complexity), there must first be multiple tools available to use (high 
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variety). For example, consider the following quote from the end of a segment where a student, 
Joe, is explaining a portion of the proof to his classmates: 

And then the last thing, which I hate. Oh, I hate this line so much is, what does it mean that 
beta does not depend on the choice of coset representatives, which is a really horrible way of 
saying that something's "well-defined". So, basically to translate what this means... I didn't 
know what it meant when I first saw it. A coset representative is like, if you think about our 
group over here, 1 and 4 would both be like coset representatives that are equal, right? 
Because they map to the same thing when paired with a kernel. And in our actual proof here, 
g1 and g2 are our coset representatives. And what we're trying to show in this proof is that it 
doesn't matter what you call them. Doesn't matter which one's being used, as long as they are 
equal, you will get the same result,  
Joe generated several different types of tools in this segment. First, he is deformalizing when 

he translates the formal language in the proof to more informal language. Then, he is warranting 
by referring to an example, and formalizing by relating the example back to the formal proof. 
The variety of tools that were generated by Joe, as well as the tools being used in tandem, 
resulted in the segment having high levels of both variety and complexity. Across the lesson, 
students often generated tools with the intention of using them in conjunction with other tools. 
Similarly, with few tools at play (low variety), there are fewer opportunities for complex usage 
(low complexity.) Overall, levels of variety and complexity corresponded (both higher or both 
lower) in 20 of the 21 total segments. 
A Deviation for the Trend of Variety and Complexity Co-Occurrence - and a Tension with 
Authority. 

While most of the instances included variety and complexity playing out in tandem, one 
segment provided counter evidence to this trend. A small group of students was tasked with 
making sense of the onto portion of the FHT proof. Throughout this segment, students generated 
many different tools. For example, they referenced an example of a homomorphism between two 
groups, as well as deformalized the formal definition of onto by stating “everything in the 
codomain gets hit”. Despite generating a variety of tools, the students did not end up using any 
of the tools in tandem. This led to them having trouble making progress toward unpacking and 
understanding their portion of the proof. The instructor intervened and stated, “So, actually you 
have everything... So, let’s make sense of this”, and attempted to prompt students to begin using 
some of the tools they generated in tandem. This deviation from the trend we noticed provides 
evidence that students being able to successfully generate tools does not guarantee that they will 
use them together. The intervention by the instructor increased the level of complexity for the 
segment (tools began being used in tandem) but decreased authority (the instructor was primarily 
the one linking tools to outcomes – that is, evaluating that they had the right tools). Without the 
instructor’s intervention, the students appeared at an impasse in their activity. By decreasing 
authority (a student-related dimension), the instructor promoted increased complexity (a 
discipline-related dimension). Thus, this case suggests a tension between these dimensions, since 
linking between tools and outcomes often requires using a variety of tools in tandem. 

Decreasing Agency to Increase Variety and Complexity 
The final relationship we observed was that levels of agency related to levels of both variety 

and complexity. There were several instances where the students were not generating very many 
tools. If the instructor was not present, then this would necessarily lead to both low variety and 
complexity, because there would not be very many tools at play. However, it was often the case 
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that if the instructor noticed that students were not generating many tools, they would step in to 
introduce a new tool, and sometimes even use the tool in tandem with another tool. This move by 
the instructor resulted in increasing both variety and complexity for the segment but decreasing 
agency –as the tools were no longer being generated strictly by the students. Consider the 
following exchange where one of the members of the group from the previous section (Nick) is 
presenting their explanation of the onto portion of the proof. The student started by writing out 
what was known: 𝜑  is onto. Then the student proceeded to attempt to explain why this 
necessarily meant that β was onto.  

Nick:     So, now it's time for us to address β. And we were given the definition for β, 
what it is. And I think if I remember it correctly, it has something to do with 
the kernel. Do you guys remember what the definition for β is? How is β 
defined? 

Joe:       Beta of G times the kernel equals 𝜑(𝜑)? 
Nick:    Yeah. So, it's elements in G operated with the kernel, right? 
Joe:       Which are quotient group elements. 
Nick:    Yeah. So, would it be too much of a jump to say that 𝜑(𝜑)is equal to 𝜑(𝜑) 

operated with K? 
Joe:      You are allowed to do that 
Nick:   And why am I allowed to do that? I'm actually asking you. 
Joe:      That’s the definition of beta 
Nick:    Okay 
Kevin:  Because why is it 𝜑(𝜑). Right so, it is an element in the big 𝜑(𝜑), which we 

just said was equal to beta of little gK or in this case, little x big K. So, 
you've just replaced Y with that. 

Nick then notes that his classmates’ contributions helped him “understand a little better” but 
still does not think he has the “best grasp on it.”  After this comment, the instructor states they 
have a “general insight on what is going on with the onto,” but introduces a diagram (a new 
tool), to think through the argument. The introduction of a diagram of a homomorphism from  
ℤ9 to ℤ6 increased variety, since a new type of tool (informal) was being discussed. Additionally, 
the instructor used the tool in reference to existent objects (homomorphism, image) to warrant 
why the section of the proof was true. Thus, not only was variety increased, but complexity was 
increased as well. However, since the new tool being used was generated by the instructor, 
agency was decreased. This example shows that when a limited number of tools are at play and 
are being used in isolation, the instructor will often step in and introduce a new tool, as well as 
use that new tool in tandem with other tools. This results in increasing variety and complexity 
but decreasing agency. 

Discussion 
The AMPA framework was designed to document how students engage in authentic 

mathematical activity in a proof-based setting. Through our work, we have expanded the use of 
this framework to the classroom setting. We note that the course that we examined was an 
inquiry-oriented class which, in many ways, was naturally designed to foster an environment 
where students are engaging in many of these activities. Social norms within inquiry classes 
often include the expectation that the students are engaging actively in a disciplinary activity. 
Such a setting provides a robust opportunity to explore tensions in authenticity dimensions; 
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however, we caution that we cannot generalize these dimension relationships to a more 
traditional classroom. 

Due to the inquiry nature of the classroom, the presence of the instructor varies from 
segment-to-segment. This influenced the levels of the dimensions of authenticity because when 
the instructor was not present in a small group, the dimensions of alignment, agency, and 
authority (presuming activity was occurring) all defaulted to high. The reason for this was 
because the instructor did not have an opportunity to prompt the students to introduce additional 
tools or give input on the validity of outcomes. In this paper, we shared three segments where the 
instructor was present throughout to better explore relationships between dimensions of 
authenticity. 

If we turn back to the literature on authenticity, we can see evidence of the underlying 
tension between authenticity-to-students and authenticity-to-the-discipline found in the K-12 
literature (e.g., Chazan & Ball, 1999; Lampert, 1992). The overarching goal for this abstract 
algebra lesson involved students engaging in authentic activities related to comprehending a 
theorem and a proof. In order to do this, the students needed to use a variety of tools in complex 
ways to make sense of a rather abstract theorem and proof. Variety was a necessity for 
complexity, and when variety was low, the instructor sometimes limited agency in order to 
introduce new tools. Further, variety did not assure complexity, and we observed the instructor 
lowering authority to assist students in connecting their tools to outcomes.  

We also anticipate that the instructor's values and beliefs affected the authenticity profile of 
this class. For example, in the last exchange, the instructor introduced a diagram (which 
increased variety but decreased agency). We can reasonably conjecture this was for the purpose 
of supporting students’ understanding of the onto portion of the proof. In other words, at this 
moment, the instructor appeared to value the students’ engaging with a diagram more than 
ensuring that all of the tools at play were generated by the students. Further, this explanation 
means the increase in a disciplinary dimension was not necessarily motivated by authenticity 
intentions, but a consequence of other pedagogical intentions – attending to students’ 
understanding. 
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Inquiry-based classes provide an opportunity for authority (i.e., the source(s) of legitimacy 
within a classroom) to be shared among the members of the classroom rather than simply 
concentrated within the instructor or textbook (Amit & Fried, 2005; Gerson & Bateman, 2010). 
Inquiry-based classes focused on mathematical proof provide a context to investigate the nature 
of students’ decision-making during the proving process (Bleiler-Baxter et al., 2021; Langer-
Osuna, 2016). While mathematics educators espouse the importance of “allow[ing] students 
ample opportunities to be the bearers of granted authority” (Gerson & Bateman, 2010, p. 206) in 
mathematics classrooms, we know less about students’ tendencies when granted such authority. 
In this study we seek to gain further insight into student decision making during collaborative 
group proving. We ask the following research question (Bleiler-Baxter et al., under review): To 
what aspects of proof do students in an undergraduate inquiry-based introduction to proof course 
attend when granted authority to co-construct mathematical proofs within small groups? 

This study was conducted in an inquiry-based introduction to proof course in the Spring 2020 
semester. Students were placed in small groups of approximately three students and were asked 
to co-construct group proofs for various claims over the course of the semester. During these 
small-group sessions, students received minimal feedback/guidance from the instructor and had 
to make decisions about the best ways to spend their time to develop a final proof product they 
would then present to the whole class. We collected nine video episodes of small-group 
collaborative proving before we halted data collection due to the instructional transitions caused 
by the COVID-19 pandemic. We adapted Stylianides’ (2007) framework to define three aspects 
of proof to which students may attend when making decisions in their small-groups: set of 
accepted statements (S), modes of argumentation (A), and modes of argument representation (R). 
We coded the episodes by talk-turn using the S, A, R framework, and then met as a team to come 
to a consensus on our coding.   

This poster will present findings from our research question and how we operationalized 
Stylianides’ (2007) framework to serve as an analytic coding framework. We believe this 
operationalization presents a powerful tool for future research in proof that will allow researchers 
to dissect how students discuss and make decisions about aspects of the proving process. Further, 
we will use the poster as a venue to discuss some of the theoretical implications of this coding 
scheme. For example, there were times when single talk-turns were coded with multiple aspects 
of the Stylianides framework. These instances of double-coded talk-turns, such a talk-turn coded 
with both an “S” code and an “A” code, often indicated times when students expressed their 
arguments (A) with more precision due to their reliance on accepted statements (S). We believe 
that a poster session will serve as a valuable setting for us to engage in conversation with other 
mathematics education researchers who may have ideas for directions of future related work and 
implications for both research and practice in proof-based mathematics courses.  
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This study discusses the difference in a preservice teachers’ (PSTs) mathematical noticings and 
the relationship between where they attend in a 360 video. Using a convergent mixed methods 
approach, our evidence provides support that PSTs who are more explicit in their written 
noticing of mathematical references are more focused in their viewing of a 360 video on a group 
of students or area of the classroom than those who look around more often. 

Keywords: Teacher Noticing; Technology; Preservice Teacher Education. 

Overview & Purpose 
Teacher noticing is a critical skill amongst mathematics teachers (Jacobs, 2010; Sherin, 

2005). Additionally, attending to students mathematical reasoning and thinking is vital to 
effective teaching (AMTE, 2017). This attention to a students’ mathematical reasoning and the 
ability to interpret a students’ thinking is a subset of professional teacher noticing (Jacobs, 2010; 
Sherin, 2005). The use of video in preservice teachers (PSTs) methods courses has been shown 
to support teachers’ growth in professional noticing (van Es et al., 2017; Roche & Rolland, 
2020). Recently, mathematics educators have begun to use and study 360 videos in teacher 
noticing, which record an omnidirectional view of the classroom. Evidence suggests that 360 
video facilitates a PSTs’ development of professional noticing (Kosko et al., 2021b; Roche & 
Rolland, 2020). PSTs who look around the recorded classroom more often in a 360 video attend 
to more generic student actions in their written noticing (Gold & Windscheid, 2020; Huang et al., 
2021b). However, many of these studies have focused on attending to aspects of classroom 
behavior, and not to more content-specific facets. The purpose of this study is to examine the 
relationship between PSTs’ mathematical noticing and how they view 360 videos.  

Background Literature & Theoretical Perspectives 
Professional noticing has been studied extensively in the context of mathematics education 

(Jacobs, 2010; Sherin, 2005). Professional noticing involves the three interrelated actions of 
attending to, interpreting of, and deciding how to respond to pedagogical events (Jacobs, 2010; 
Sherin & Russ 2014). Novice teachers tend to initially attend to students’ generic actions (i.e., 
participation) and behavior, or focus on the teacher’s instructional activities. By contrast, more 
experienced teachers attend more to students’ mathematical thinking (Huang & Li, 2012; Kosko 
et al., 2021b). Mathematics teacher noticing can be facilitated and is the aim of many teacher 
education programs. However, this noticing should be structured, with an early focus of teacher 
educators to develop professional noticing skills (Jacobs, 2010; Star & Strickland, 2008).  

In characterizing PSTs’ noticing practices, and expanding upon prior conceptualizations (i.e., 
Jacobs et al., 2010), van Es et al., (2017) described a trajectory of noticing from generic to 
specific descriptions of students’ mathematics. The noticing of mathematical thinking relies on 
specific strategies identified within students’ mathematical development (Jacobs et al., 2010). In 
other words, the mathematics content is conveyed more precisely and defined with a higher 
degree of noticing. This is consistent with other findings that suggest that PSTs who are 
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attending to other classroom happenings such as ‘student investigation’ or ‘group work’ did not 
describe specific mathematical content even when prompted to do so (Kosko et al. 2022).  

The emerging scholarship on teachers’ noticing through 360 video suggests a relationship 
between teachers’ linguistic descriptions and their actual viewing behavior (Kosko et al., 2022; 
Weston & Amador, 2021). Much of the analysis on this phenomenon has been limited to screen 
recordings of PSTs’ field of view (Gold & Windscheid, 2020; Huang et al., 2021b; Kosko et al., 
2021b) or interviews with PSTs re-viewing 360 videos of their own teaching (Balzeretti et al., 
2019; Buchbinder et al., 2021; Weston & Amador, 2021). We conjectured that PSTs’ perceptions 
of where they focused attention may be an additional lens in understanding their experiences 
within a 360 video of a classroom. With this focus, we sought to answer: 

How do PSTs’ variance in perceived focus in viewing a 360 video associate with the 
specificity of their professional noticing of students’ mathematics? 

Method 
Sample and Procedure 

The sample included 47 undergraduate students who were enrolled in an educational 
technology course in a Midwestern University. Students enrolled in this course were required to 
fulfill a credit, which could be completed by participating in this study. Much of the sample 
identified as white (n = 43), female (n = 41), and early childhood education majors (n = 28). 

PSTs were asked to record their viewing of the 360 video. The video was a 5 minute, 50 
second excerpt of a fourth-grade lesson on reviewing equivalent fractions. In the video, students 
were provided fraction strips and tasked with finding equivalent fractions for 5/6 and then 3/8. 
After viewing the video initially, participants reported where they focused their attention most by 
marking up to 10 red Xs on a provided classroom map (see Figure 1). They then were asked to 
“describe any and all pivotal moments you noticed during the lesson (i.e., any moment you 
believe is important for teaching and/or learning of mathematics).” Next, PSTs recorded their 
viewing sessions and rewatched the fourth-grade lesson. After viewing, PSTs again self-reported 
where they focused their attention most before being asked to focus on “ONE pivotal moment” 
in the 360 video and describe why it was important for the teaching and/or learning of 
mathematics. For the purposes of this initial analysis of data, we focused on analysis of PSTs 
second viewing of the 360 video.  
Analysis and Results  

We utilized a convergent mixed methods design to examine a relationship between where 
PSTs reported to have attended in the 360 video on a classroom map (i.e. self-reported heat map) 
and their written mathematical noticing. Convergent mixed methods design involves 
independently analyzing both qualitative and quantitative data before merging them to better 
understand a given phenomenon (Creswell & Plano Clark, 2011). For this analysis, we focused 
on PSTs’ written attending and qualitatively analyzed writing using an adaptation of van Es et 
al.’s (2017) rubric for mathematics specificity. Concurrently, the self-reported heatmaps 
categorized along designated regions (see Figure 1). This categorical data was then used to 
calculate an unalikeability statistic—a non-parametric statistic of variance in nominal data. 
Qualitative codings were quantitized into an ordinal variable and unalikeability statistics were 
compared using an independent sample Kruskal-Wallis test. This allowed for examination of 
how variance reported aligned with the specificity of their mathematical noticing. 
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Figure 1: Classroom map for the 360 video with regions highlighted. 

Qualitative analysis of PSTs’ noticing. We used a coding framework for PSTs’ attending to 
students’ mathematics that was developed by van Es et al. (2017). For specificity to mathematics 
content, van Es et al. (2017) included three hierarchical levels: little or no attention to the 
mathematics in the lesson; noting the specific task or problem; and attending to / inferring from 
the task to the broader learning goal in the mathematics lesson. Our own adaptation included: 1) 
No reference to the mathematics in the lesson (i.e., equivalent fractions); 2) Generic or vague 
reference to the mathematics in the lesson; and 3) Reference to mathematics of the lesson. 
Excerpts of three participants are illustrated in Table 1 to help illustrate the difference in codes. 
The second and third author independently analyzed participants’ written noticing using van Es 
et al.’s (2017) adapted framework. Findings indicated substantial agreement (K=0.714) before 
the authors reconciled analysis of writing. Across the sample, 14.9% of participants had no 
reference to the mathematics, 42.6% included generic references, and 42.6% included 
mathematical references in their written noticing.  
 

Table 1: Example Excerpts of Attending to Mathematics by Classification of Focus. 
No Reference Generic Reference Mathematical Reference 

All the students are interacting 
and doing the activity. This 
allows the students to see 
multiple answers. It also allows 
them to see multiple ways of 
doing the question. Because the 
teacher is asking the students 
questions and asking for their 
answers it makes the learning 
experience better. 

The students figured out 
that they could not 
represent the fractions 
because they were not on 
the fraction papers. 

One pivotal point I noticed 
was when the teacher gave 
them a fraction in which they 
couldn't use their fraction 
strips. I think it allowed them 
to strengthen their 
multiplication skills as well 
as broaden their ideas of how 
to find similar fractions. 

 
Quantitative analysis and results. Qualitative findings for PSTs’ attending to mathematics 

were quantitized into ordinal data (0=No Reference; 1=Generic Reference; 2=Mathematical 
Reference) for use in quantitative analysis. Additionally, PSTs self-reported heat map data was 
coded as an unalikeability statistic (𝑈𝑈2). In this study, a 𝑈𝑈2 statistic of 0 would indicate that the 
PST is not looking around the room and is only attending to one specific region (e.g. the front-
left), whereas a 1 would indicate that a PST was looking across all regions of the room for an 
equal amount of time.  
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We used an independent sample Kruskal-Wallis test to compare 𝑈𝑈2 statistics between PSTs 
who provided no reference, a generic reference, or a mathematical reference in their written 
noticing. The median 𝑈𝑈2 statistic indicated a much higher degree of unalikeability (𝑈𝑈2 = 0.7456) 
for the no mathematical reference group than the generic (𝑈𝑈2 = 0.6803) or mathematical 
reference groups (𝑈𝑈2 = 0.6779). These differences were found to be statistically different (H(2) = 
6.291, p = 0.43). A Dunn post-hoc test indicated a statistically significant difference in the 𝑈𝑈2 
statistics between the mathematical reference group and the no mathematical reference group (p 
= 0.013), as well as between the general reference group and no mathematical reference group (p 
= 0.039). This difference may be due to the no mathematical reference group having a larger 𝑈𝑈2 
statistic, which indicates that they perceived focusing on a larger spread of the classroom than 
the other groups. These findings suggest that participants who perceive they focus on more of the 
classroom have less specificity in their professional noticing of students’ mathematics.  

Discussion 
The reports of this study are preliminary but contribute to emerging research that the use of 

360 video aides in the facilitation of professional noticing (Buchbinder et al., 2021; Walshe et 
al., 2021; Weston & Amador, 2021). The findings in this study support and extend observations 
in prior literature that PSTs have less specific noticings when they look around the 360 video 
frequently (Ferdig et al., 2020; Kosko et al., 2021b, Kosko et al., 2022). The results from our 
analysis indicates that PSTs with higher 𝑈𝑈2 statistics tended to make no mathematical references 
in their written noticing. Results also suggest the possibility of a trend regarding specificity and 
focus, but additional data and future research are needed. These results align the work of Kosko 
et al. (2021b), which noted that PSTs tend to be more conceptual in their writing of mathematical 
reasoning when they focus on a set of students in the classroom for longer periods of time. Thus, 
a high variability of PST viewing may lead to PSTs attempting to focus on too many things and 
miss more specific pivotal moments within a classroom, such as student actions, mathematical 
discussions, and/or student reasoning. While the differences were not statistically significant 
between the mathematical reference and general reference groups, average 𝑈𝑈2 statistics in these 
groups do suggest a trend.  

Although analysis is ongoing, this study provides several important implications. First, 
mathematics teacher educators seeking to integrate 360 video may wish to scaffold PSTs’ use to 
encourage more focus on limited number of students. Advocated by Weston and Amador (2021), 
this focusing may include tasking PSTs with focusing on key locations for a set period of time 
before looking elsewhere, and providing specific prompts associated with their viewing. A 
second key implication is the potential for using self-reported focusing as a possible alternative 
to manual analysis of PSTs’ screen recordings (Zolfaghari et al., 2020). Finally, the current paper 
provides further evidence towards the notion of attending as a subset of perception (van Es & 
Sherin, 2021). Those teachers better able to be selective in what they perceive demonstrate more 
sophistication in how they describe what occurred in the classroom. It is possible that PSTs with 
lower 𝑈𝑈2 statistics tend to be better at disregarding selected features of pedagogy than their peers 
with higher 𝑈𝑈2 statistics. However, future research is needed to better understand this interplay 
and how it may best be used to inform mathematics teacher education for professional noticing.  
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To prepare preservice teachers (PTs) to create equitable, culturally responsive mathematics 
classrooms, mathematics teacher educators must support them in making connections between 
theory and practice. Critical examination of culture, its role in the mathematics classroom, and 
PTs own culture and experiences can be an entry point for this important work. In this study, 
preservice elementary teachers at various points in their teacher preparation programs engaged 
in activities that supported their understanding of culturally responsive and relevant 
mathematics. Using a Culturally Relevant Cognitively Demanding (CRCD) rubric (Matthews et 
al., 2013) to evaluate tasks and reflect upon the various issues that the tasks illuminate can be 
transformative experiences for PTs as they develop their identities as equitable mathematics 
teachers. This multiple case study examines how PTs’ understanding of cultural relevance and 
responsiveness evolved over both content and methods courses.   

Keywords: culturally responsive pedagogy; preservice teachers; teacher preparation 

Equity and cultural responsiveness as a key component to teacher preparation programs has 
gained significant traction in recent years. There is broad support for considering both culture 
and equity in mathematics teaching (Gay, 2018; Ladson-Billings, 1995), and teacher preparation 
programs are being tasked to support preservice teachers' understanding and practice of equity, 
diversity, and inclusion (NCTM 2000; 2014). In this brief, we present on three teacher educators’ 
experiences implementing a curriculum for culturally responsive teaching in elementary teacher 
preparation courses. Our goal of the intervention is twofold. First, we initiate critical dissonance 
for our PTs by asking a primarily dominant group to consider a part of their identity, one hidden 
by overarching systems (Leonardo, 2009). In bringing forth this dissonance, we seek to push our 
PTs to strive for more socially just contexts for learning and teaching mathematics by provoking 
a critical examination of the role of culture in math classrooms through analysis of mathematics 
task(s) using a culturally relevant, cognitively demanding framework (Matthews et al., 2013; 
Matthews et al, 2022).  

Culturally Responsive Pedagogy 
Culturally responsive teaching is defined as “using the cultural knowledge, prior experiences, 

frames of reference, and performance styles of ethnically diverse students to make learning 
encounters more relevant to and effective for them” (Gay, 2018, p. 36). While culturally relevant 
teaching can be considered within the broader umbrella of culturally responsive teaching, its 
definition and purpose are different. Culturally relevant pedagogy is a “theoretical model that not 
only addresses student achievement but also helps students to accept and affirm their cultural 
identity while developing critical perspectives that challenge inequities that schools (and other 
institutions) perpetuate” (Ladson-Billings, 1995, p. 469). By defining both culturally responsive 
pedagogy and culturally relevant pedagogy, we acknowledge the differences between the two 
theories. We also note the role of Ladson-Billings' (1994,1995) scholarship on the fields' 
understanding of culturally responsive pedagogy and teaching for justice. So, while we position 
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this manuscript within the theory of culturally responsive pedagogy, we draw on the work of 
scholarship in culturally relevant pedagogy. 

Scholars have shown what it looks like to implement culturally relevant pedagogy 
successfully in practice through several case studies (Ladson-Billings, 1994; Matthews, 2009). 
However, attending to and incorporating students’ cultures and lived experiences into a math 
classroom is difficult. For example, Sleeter (2012) discusses the potential pitfalls of mis-enacted 
culturally responsive teaching and tasks. Compounding this, prospective teachers have been 
shown to be dismissive or resistant to incorporating issues of culture and equity in their teaching 
(Ahlquist, 2001). However, fostering PTs’ examination and reflection of their beliefs has been 
shown to decrease this resistance and expand how PTs might more equitably approach the 
teaching of mathematics (de Freitas, 2008). To provoke such critical examination and reflection, 
we employ the culturally relevant, cognitively demanding framework (Matthews et al., 2013). 

CRCD Framework 
In their framework, Matthews and colleagues’ (2013) draw on research on cognitive demand 

(Stein et al., 2000) and culturally relevant pedagogy (Ladson-Billings, 1995) to build and 
evaluate mathematics tasks that make connections to students’ culture and that maximize 
students’ opportunity to learn mathematics. In Stein and colleagues’ (2001) framework for 
cognitive demand they offer criteria for analyzing mathematics tasks by the depth of thinking 
that they elicit. Tasks that are more procedural without connections to broader aspects of 
mathematics are low in complexity, while tasks that draw mathematical connections and/or target 
conceptual understandings are high in complexity. Table 1 shows how Matthews and colleagues 
(2013) synthesize cognitive demand with culturally relevant pedagogy and draw upon the 
complexity component of cognitive demand in their analysis of task structure. 

 
Table 1. Culturally Relevant, Cognitively Demanding Rubric 
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How does a curricular unit that asks PTs to analyze mathematics tasks with the Culturally 
Relevant Cognitively Demanding rubric shape their beliefs about culture in a math classroom? 

Methods 
In this multiple case study, we draw on empirical data collected from two elementary teacher 

preparation programs at two universities in the United States during the Spring semester of 2022. 
The two universities are predominantly white, and the prospective teacher programs are 
predominantly female. The case study examines how a culturally responsive curriculum 
influences preservice teachers’ beliefs about culture and its place in the mathematics classroom 
(Yin, 2009). Qualitative methods were employed for the inquiry. Data from the curriculum 
implementation was collected across three early mathematics content courses and one 
mathematics methods and field experience course. In addition to implementation artifacts, pre- 
and post-surveys were given to learn more about PTs thoughts about their own culture, and more 
broadly, the role of culture in the mathematics classroom. Finally, as a reflexive tool, the three 
teacher educators journaled through the design and implementation of the curriculum. For us, 
this journaling presented a means at potentially avoiding misrepresentation and misinterpretation 
of participants (Milner, 2007), particularly when confronting systems of domination (Leonard, 
2009). 
Toward a Culturally Responsive Curriculum 

To develop a collective understanding of culturally responsive teaching, preservice teachers 
first read and discussed an excerpt from Advancing a Framework for Culturally Relevant, 
Cognitively Demanding Mathematics Tasks (Matthews et al., 2013). The whole class analyzed 
and discussed the first task, So You Think You Can Draw with the CRCD rubric (Figure 1). Then, 
as small groups, the preservice teachers analyzed and discussed task 5, Curfew Currency, and 
Task 7, Reduce, Reuse, Recycle. Finally, the whole class analyzed and discussed a task from a 
prior lesson, such as the Locker Problem (Kimani et al., 2016). Discussions emphasized 
justifications for the rubric rates. At this point, we reasoned the preservice teachers had a general 
understanding of how to use the rubric to rate mathematics tasks with the rubric. 

From here, the task was introduced to the preservice teachers. We chose a task that aligned 
with fifth to sixth grade standards and a task that was similar to application and style to the 
included tasks (Matthews et al., 2013). Justice for Janitors was chosen from ReThinking 
Mathematics (Gustein & Peterson, 2006). The task draws from a children’s book, ¡Si, Se Puede! 
/ Yes, we can! (Cohn, 2002), whose context is the 2000 janitor strike in Los Angeles. For 
homework, the preservice teachers listened to an audio recording of the book and solved the task. 
During the next course meeting time, we discussed the task, analyzed the task with the CRCD 
rubric, and discussed our analysis.  
Data Collection 

To analyze the effects of the curriculum, we collected artifacts including preservice teachers’ 
solutions and analysis of the task Justice for Janitors. We also conducted an open-ended pre- and 
post- survey which asked participants to reflect on their culture, their experiences with culture in 
a mathematics classroom, and the importance of culture in the teaching and learning of 
mathematics through the following prompts: 

 What is culture? How do you define it? What do you think it is? How would you describe 
your culture?  

 What role does students’ culture play in a math classroom? 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1128



  

 What responsibility do math teachers have to consider and incorporate students’ cultures into 
their teaching? 

 Have you heard of culturally responsive pedagogy? What does that term mean to you? What 
experience do you have with it? 

 What does a culturally relevant math task look like? Can you give an example from your 
math experiences? 

In total, we collected 122 participant responses. For this brief proposal, we draw from Randy, 
a preservice teacher in a mathematics methods course. She is white, in her early twenties, and 
she is currently placed in a kindergarten classroom.  

Analysis and Preliminary Results 
Our analysis will orient on PTs’ awareness of their own culture and the role of culture in the 

mathematics classroom. Given that our data collection is currently in progress, we report on pre-
survey responses. PTs, in general, could articulate a definition of culture but struggled to name 
their own culture. For example: 

I think culture is everything that makes an individual who they are. It is their background, 
their experiences, their relationships, status, beliefs, all of the above. All these things affect 
the lens in which you view the world. I would describe my culture as my thoughts, beliefs, 
and attitudes in which I navigate this world. I personally have a very positive disposition and 
believe that people are put on this world to do good and make differences in people's lives for 
the better. This belief affects every decision I make in my life and is the lens in which I view 
the world.  

Randy’s description of her disposition and perspective of others speaks to the difficulty PTs have 
in describing their culture and beliefs. Leonardo (2009) speaks to the role of education of the 
dominant group and the power of normativity in perpetuating systems of domination. While 
Randy struggles to name her culture, she anticipates how culture shapes a math classroom: 

I definitely know that there are ways to implement culturally relevant math in your 
classroom, but I haven't thought much about specific tasks. I am thinking it could look 
something like allowing your students to connect with the content in a meaningful way. This 
can be done by having students collect data on their family, then represent that data using a 
graph and then sharing it with your family. Or it could look like looking at the current state 
of the world to inform a math lesson. It might be on statistics of an endangered species and 
comparing the percentage in which their population is dropping? This could open up 
conversation on why these species are endangered and how we can play a part in it. I am not 
entirely sure if this is what culturally relevant math looks like, but just some ideas. 

Randy’s responses, as one case, speaks to the need of our curricular intervention for PTs’ 
development of their cultural understandings. Upon completion of our data collection, we will 
offer a comparison of responses of PTs across content and methods courses, particularly the 
ways PTs in different phases of their certification engage with the ideas of culturally responsive 
pedagogy and how these ideas shape their beliefs.  
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It is well-documented that elementary preservice teachers (PSTs) enter teacher education 
programs with beliefs about mathematics education largely formed from their own schooling 
experiences. These beliefs are often narrow and strongly influence how PSTs will eventually 
teach mathematics to their elementary students. In an effort to create dissonance regarding these 
beliefs, we presented PSTs with four tasks of varying levels of openness as part of their 
elementary math methods course. After participating in discussions surrounding these tasks, 
PSTs completed an open-ended questionnaire that asked them about the experience. Preliminary 
findings suggest the open tasks challenged PSTs’ beliefs about mathematics as a subject, 
mathematics learning, and mathematics teaching. 

Keywords: Affect, Emotion, Beliefs, and Attitude; Preservice Teacher Education 

Preservice teachers’ (PSTs) beliefs about the teaching and learning of mathematics are 
formed through their own experiences as students of mathematics (e.g., Lampert, 2002; 
Thompson, 1992). As PSTs’ previous schooling experiences often contradict with goals of the 
mathematics education community, Ball (1990) called for mathematics methods courses to be a 
place of dissonance to interrupt the “smooth continuity from student to teacher” (p. 11). The 
work we report here emphasizes the breaking of such continuity and the creation of dissonance 
related to PSTs’ experiences with mathematical tasks. We aimed to unsettle their notions of 
mathematical tasks through the use of tasks involving varying levels of openness (e.g., Leikin, 
2018; Silver, 1995). In our analysis of PSTs’ reactions to these tasks, we focused on their beliefs 
about mathematics education. We addressed this research question: What do elementary PSTs’ 
perceptions of tasks of varying levels of openness illuminate regarding their beliefs about 
mathematics education? 

Theoretical and Conceptual Framings 
Through synthesizing past research, Op’t Eynde et al. (2002) developed a framework of 

students’ mathematical beliefs and defined mathematics-related beliefs as “implicitly or 
explicitly held subjective conceptions students hold to be true about mathematics education, 
about themselves as mathematicians, and about the mathematics class context” (p. 27). Their 
resulting framework was comprised of a person’s beliefs about mathematics education, a 
person’s beliefs about the self, and a person’s beliefs about the social context (p. 28). Here, we 
focus specifically on PSTs’ beliefs about mathematics education, which Op’t Eynde et al. viewed 
as the compilation of three different subsets of beliefs: (1) a person’s beliefs about mathematics 
as a subject, (2) a person’s beliefs about mathematics learning and problem solving, and (3) a 
person’s beliefs about mathematic teaching (p. 28).  

We used tasks of varying levels of openness as a platform to explore PSTs’ beliefs about 
mathematics education. Leikin (2018) outlined three different types of openness to mathematical 
tasks. Open-start tasks allow for multiple ways to start the task and multiple strategies to solve 
the task. Open-end tasks have multiple valid answers to them. The third type of task, open-start 
and open-end combined tasks, are ones in which multiple strategies and different, valid answers 
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are possible. Due to the various levels of openness within Leikin’s classification structure, we 
created categorizations for the tasks we used with PSTs: (1) open-start, closed-end tasks allowed 
for different entry points and strategies but culminated in one, single answer; (2) open-start, 
limited-end tasks provided for different entry points and strategies but focused the multiple valid 
answers relevant to a limited number of contexts; and (3) open-start, open-end tasks allowed for 
multiple entry points, strategies, and valid answers. 

Methods 
This study is part of a larger exploratory study conducted for the purpose of describing PSTs’ 

engagement in open-ended mathematical tasks. We report here on a single case – one section of 
an elementary math methods course – and focus specifically on what PSTs’ perceptions of their 
own engagement in mathematical tasks of varying levels of openness illuminated about their 
beliefs about mathematics education. 
Participants and Context 

This study was conducted at a large Mid-Atlantic university. In the section of the elementary 
math methods course we describe here, there were 23 participants. The majority of the 
participants were White females; there was only one male participant. 

 During their math methods course, PSTs engaged in four tasks that were designed to have 
varying levels of openness. PSTs also participated in a discussion of each task led by their 
instructor. These tasks included a “Which One Doesn’t Belong?” (WODB) task (Danielson, 
2016), a word problem (WP) of high cognitive demand (Hallman-Thrasher & Spangler, 2020), a 
“How Many?” (HM) task (Danielson, 2018), and a “Notice and Wonder” (N&W) task (Fetter, 
2021; Ray-Riek, 2013). Descriptions of the specific tasks are provided in Table 1. 

 
Table 1: Task Descriptions 

Task Type Description 
Task 1: 
WODB 

 open-start, 
limited-end 

PSTs were presented with four addition expressions, three of which 
had three single-digit addends and one of which had four single-digit 
addends. PSTs could assert any of the four options did not belong as 

long as they provided justification. 
Task 2: 

WP 
 open start, 
closed-end 

Given a total number of cupcakes and boxes with specific capacities 
for two separate flavors, PSTs were asked to find how many boxes 

could be made of each flavor. 
Task 3: 

HM 
 open-start, 
open-end 

PSTs were presented with an image of a large box of sidewalk chalk. 
The top of the box was removed and the chalk was arranged in 

columns according to color. Several pieces of chalk were also visible 
outside of the box. PSTs could choose what and how to count. 

Task 4: 
N&W 

 open-start, 
open-end 

PSTs were presented with a pictorial representation of the 
composition of ingredients of nine espresso-based coffee drinks. PSTs 
were asked to share what they noticed and wondered about the image. 

 
Data Collection 

We visited the section of elementary math methods on four separate occasions. Before each 
visit, we met with the instructor to choose a task that aligned with the planned content. We also 
collaborated with the instructor to anticipate possible PST responses and to generate potential 
discussion prompts. For each implementation of the task, the instructor introduced the task, gave 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1132



PSTs time to work on the task individually, then facilitated a whole-class discussion of PSTs’ 
thinking surrounding the task. We video-recorded each task session and also took field notes as 
we observed. Following each discussion, PSTs completed a nine-item, open-ended questionnaire 
that asked them about their experience and engagement with the task. Based on PSTs’ responses 
on the questionnaire after the first two implementations, we adapted some of the questions for 
the latter two implementations. 
Data Analysis 

In exploring our research question as to PSTs’ beliefs about mathematics education, we 
focused our analysis on specific items from the questionnaire. Both versions of the questionnaire 
included a question that asked PSTs to describe their emotions and a question that asked “When 
you think about math, is this a task you expect? Why or why not?” PSTs’ responses to these 
questions were included in analysis for all four task sessions. Other questions included in 
analysis were a question that asked about how PSTs felt about their identity as a learner of 
mathematics during the task and discussion (first two task implementations) and a question that 
asked how PSTs’ experience of the task and discussion compared to their typical experiences 
with mathematics (third and fourth task implementations). 

When jointly coding the PSTs’ responses, we used a combination of inductive and deductive 
coding (Miles et al., 2014). We used inductive coding when examining each PSTs’ responses to 
the above-mentioned questions for whether or not each task matched the PSTs’ expectations for 
mathematical tasks and when analyzing PSTs’ responses for the beliefs they communicated 
about mathematics education. In doing so, we looked for common phrases and themes within 
PSTs’ responses. We also took note of responses that differed from these themes. We used 
deductive coding when we categorized our inductive codes using Op’t Eynde et al.’s (2002) 
subsets of beliefs about mathematics education: beliefs about mathematics as a subject, beliefs 
about mathematics learning, and beliefs about mathematics teaching in general.  

Results  
For our preliminary results, we looked for predominant themes that emerged in each of these 

subsets of beliefs about mathematics education. These findings are briefly described below. 
Beliefs About Mathematics as a Subject 

When we coded PSTs’ responses in the subset of beliefs about mathematics as a subject, the 
most commonly apparent belief involved mathematics as a content area or a set of topics. Of the 
84 questionnaires completed across four tasks, 37% of responses (n=31) expressed a belief about 
mathematics that involved specific content. These responses most commonly involved a belief 
that mathematics involved numbers and operations (20 of 31 responses, or 65%). For example, 
when completing Task 3 (HM), one PST stated that in math, they expect “to either add, subtract, 
multiply, or divide something and in this case we did” (Biscuit; all names are pseudonyms). 
When completing Task 4 (N&W), another PST shared they were “very taken aback by the lack 
of numbers” (Krystal). When PSTs were coded as having expressed a belief about mathematics, 
that belief most often involved a content area or a set of topics. 
Beliefs About Mathematics Learning 

The most predominant theme in PSTs’ beliefs about mathematics learning involved whether 
they expected one or multiple answers and/or one or multiple possible strategies. Of the 84 
submitted questionnaires, 40% (n=34) provided evidence of belief in this area. Of the 34 
responses involving number of answers and/or strategies, 56% (n=19) mentioned expecting a 
task to have one correct answer. After engaging with Task 1 (WODB), one PST explained they 
tend to think of math as “coming up with one particular answer… while there are many ways to 
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solve… the answer remains the same” (Katherine). Including Katherine, 44% (n=14) of 34 PSTs 
mentioned the belief that math can involve multiple strategies. Maria noted of Task 3 (HM), 
“This problem had many ways of solving it and to me that is what I usually expect from a math 
task.” However, 44% (n=14) of 34 PSTs expressed a belief that math usually involves one set 
strategy or approach. For example, when solving Task 2 (WP), Becca shared that in her past 
experience as a math student, “we always were told to solve [problems] one specific way.” 
Importantly, across all questionnaires, no PSTs stated that they expected a task to have multiple 
possible answers. 

Additionally, although discussions were held for all tasks so that PSTs could share their 
strategies and solutions, these discussions seemed out of place for PSTs in the tasks allowing for 
multiple valid answers. This was not the case for the for open-start, closed-end task (Task 2, 
WP), in which discussion seemed to be expected. For the other tasks, however, the PSTs made 
comments like these: “Traditionally, I think about math as less of a conversation” (Emma, Task 
1, WODB), “The discussion was a bit different because I haven't really had to fully express my 
thought process in the past” (Oliver, Task 3, HM), and “…this task is not really similar because a 
lot of math problems are not open-ended and discussion based” (Biscuit, Task 4, N&W). 
Beliefs about Mathematics Teaching 

We also saw PSTs’ experiences as influencing their beliefs about mathematics teaching as 
they reacted to tasks of varying levels of openness. Although PSTs commented on the similarity 
or differences between the tasks and their experiences as mathematics learners, when they took a 
teacher’s perspective, prior experience in the math methods course influenced their beliefs. This 
was specifically the case with Task 1, a WODB task that was facilitated after PSTs were 
introduced to another WODB task earlier in the semester. When asked if this was a type of task 
they expect when they think about math, approximately 23% (n=5) indicated that previous 
experience with a WODB task in the mathematics methods course influenced their thinking. As 
examples, one PST responded, “Before taking this course, I would not [have] felt that this was as 
much math as it actually is. I had never seen this done before and I find it to be super beneficial” 
(Pam), and another PST commented, “Prior to this course, I would say no, as it is not something 
I ever experienced before. Today yes, simply because we have done it in class before” 
(Calleigh). Interestingly, although PSTs had also engaged in another HM task earlier in the 
semester, none of them mentioned that experience influencing their views on whether they 
expect that type of task when thinking about mathematics. 

Discussion 
The dissonance created by implementing mathematical tasks with varying levels of openness 

with PSTs illuminated their beliefs about mathematics as a subject, mathematics learning, and 
mathematics teaching. Preliminary findings suggest that PSTs view mathematics as a set of 
topics, and not as “an activity grounded in human practices, a science of patterns with problem 
solving at the heart of it” (Op’t Eynde et al., p. 29). Additionally, several PSTs expected a 
mathematics task to have one valid answer (e.g., Schoenfeld, 1992). None of the PSTs expected 
a task with multiple solutions, and many expressed surprise at encountering tasks that allowed 
for multiple answers. PSTs’ previous experiences also influenced their beliefs (e.g., Ball, 1990) 
for when mathematics could include discussion (e.g., open-start, closed-end tasks) and about 
what types of tasks they expect when they think about mathematics. In closing, we offer this 
question: Because moments of dissonance lead to moments of growth and learning, how do we 
leverage breaks in experience (Ball), such as the use of open-start, open-end tasks, with PSTs in 
ways that help them see the potentials, rather than the differences, of such experiences? 
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In this paper, we report on two years of collaboration with inservice teachers to rethink field 
work in elementary mathematics education. We engaged teachers who had completed the K5 
Mathematics endorsement to serve as university supervisors. Their unique position as practicing 
teachers and agents of the university provided insight into program improvement. The teacher 
mentors shared equity tools and rubrics with the preservice teachers. Inservice teachers, 
preservice teachers, and the researchers interrogated their practice with these tools and 
provided insight into each other’s practices. At times there was harmony in our thinking and at 
other times productive dissonance between researchers, inservice teachers, and preservice 
teachers. 

Keywords: Equity, Inclusion, and Diversity, Classroom Discourse, Preservice Teacher 
Education, Teacher Educators 

In this paper, we investigate the collaboration between university researchers and inservice 
teachers to support preservice teachers (PSTs) in building equitable mathematics learning 
communities and attending to marginalized students or groups. We employed three tools to 
support our own and the PSTs’ practice. In this practice, we had a trifold foci: supporting robust 
mathematics identities; the use of high-leverage practices to build discourse; and equitable 
participation in the community.  

Perspectives 
To shift practices in schools, teachers at all levels need practice with innovative teaching 

strategies or they are likely to revert to the patterns of schooling they experienced (Beyer & 
Zeichner, 2018; Britzman, 1991). PSTs typically begin their teaching career as part of a triad—
the PST, the field supervisor from the university, and the cooperating teacher in the school. 
There is a critical need to explore the nature of effective supervision further, especially in light of 
high-stakes assessments (Donovan & Cannon, 2018). Cooperating teachers are embedded in 
schools but are often removed from the theory and methods taught at universities. Zeichner 
(2010) describes the disconnect between universities and schools as one of the "central 
problems" in teacher education (p. 480) and recommends the construction of hybrid spaces 
where university and field-based education can come together. Other studies have explored and 
found success in bridging the theory to practice gap by recruiting program alumni as cooperating 
teachers (Ragland, 2017). In this project, we have recruited inservice teachers with mathematics 
expertise to bridge the space between university and field by serving as field supervisors and 
induction mentors for PSTs.  
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We recruited graduates of our mathematics endorsement program (ECs) to support preservice 
teachers in their final internship. The focus of this support is on the use of high-leverage 
practices, mathematics identities, and equitable participation. We incorporated three tools to 
serve as pedagogical guides: the EQUIP (Equity Quantified in Participation) app (Reinholz & 
Shah, 2018); the Levels of Classroom Discourse (LCD) rubric (Hufferd-Ackles et al., 2004); and 
a culturally relevant task rubric (CRT). Boston et al. (2015) posited that tools allow teachers to 
focus in on aspects of instruction to “provide a concrete structure for the development of new 
practices by specifying criteria and identifying standards for the implementation of the intended 
practice” (p. 154). 

Together with the inservice teachers, who had used the tools in their coursework, we 
considered the drawbacks and potential of each tool and how they might best be incorporated 
into field work. Drawing from the work of Herbel-Eisenmann and Shah (2019), our goal was to 
use EQUIP to help teachers and ourselves to develop critical consciousness toward a change in 
practice.  

Elementary supervisors must possess strong mathematics content knowledge and pedagogy 
to support PSTs fully. By supporting PSTs in the field with ECs, we work to close the theory to 
practice gap for elementary mathematics teachers. At our university, 1 of the 33 existing 
university supervisors had a mathematics content specialty. By recruiting ECs to serve as 
university supervisors, student teachers had access to mentors in the field who have both a 
command of research-based practices and theories and were attuned to the realities of the 
classroom since they were currently teaching. We found that this was especially important during 
the 2020-2021 school year as teachers navigated various models and combinations of online and 
face-to-face instruction for the first time.  

The questions that guided this project were:  

 How do we collaborate with teachers in moving from an intention to be equitable to critical 
consideration of how equitable our practice is?  

 What are the benefits and drawbacks of using the EQUIP, LCD, and CRT tools with 
inservice and preservice teachers to increase high leverage practices? 

 How might the coordination of the three tools in a recursive cycle across university and 
schools promote the creation and maintenance of an equitable mathematics learning 
community? 

Methods 
Georgia is one of 19 states in the United States that has developed a route for endorsement of 

elementary mathematics specialists. This study was drawn out of a nine-semester elementary 
endorsement program comprised of three courses focused on equitable mathematics teaching. 
Each eight-week course was designed to embed content and pedagogy. The courses were 
designed to be fully online and asynchronous, but we offered synchronous sessions weekly, 
which the majority of the teachers attended. Through this exploratory qualitative inquiry, we 
report on three cohorts of in-service teachers (2019-2020, 2020-2021, 2021-2022) and their 
engagement with two cohorts of PSTs (2020-21, 2021-22). 

Teaching and teacher education are complex social and political acts; therefore, we employ 
exploratory case study methodology (Yin, 2009) to account for context, agency, and temporality 
(Byrne & Callinghan, 2014). We conducted cross case analysis across the three EC cohorts and 
between EC and PST cohorts. Since we are building on two previously researched tools, to 
analyze the data we are using provisional coding (Saldaña, 2016). This means that the codes are 
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predetermined for anticipated categories. For  this study, the codes include the areas of the LCD 
rubric and the discourse and demographics in the EQUIP app. We also use invivo coding to 
“prioritize and honor the participant's voice" (Saldaña, 2016, p. 106) which is often not the case 
with teachers. 

Results 
From the data we collected with three cohorts of inservice teachers and two cohorts of 

preservice teachers, there is an overwhelmingly positive reaction to the use of the two tools 
within their practice. All the teachers expressed positive shifts in their practice and the usefulness 
of the tools to improve their instruction and build more equitable mathematics learning 
communities. We share their reflections below as they related to the areas of the LCD rubric and 
the EQUIP app.  

In the area of teacher role and questions, as the teachers began using the EQUIP app and 
LCD rubric, several teachers first noticed the lack of time they gave their students to speak. One 
teacher called herself the “main talker” and another described herself as “dominating the 
conversation.”  As the teachers reflected later in their practice after using the tools several times, 
they were able to shift and to “take a step back and allow my students to carry through the 
mathematical discourse and only prompt and probe when necessary to achieve deeper thinking.” 
One teacher reflected on this shift by stating that “allowing [students] to respectfully talk about 
their strategies and their answers can help them respect classmates in the long run.”  Another 
teacher reflected on this shift and identified her own understanding that “when students work 
together and complete mathematical tasks, they talk to each other more and rely less on me and 
more on each other for guidance and advice.”  

Though many of the teachers in our programs were in school settings that encouraged or 
mandated, gradual release (I do, we do, you do) instructional paradigms, the use of the LCD 
rubric helped them to identify and attune to key practices that would shift the mathematical 
authority in the classroom for teacher centered to student centered.  

In the area of Student Responsibility, after the implementation of both the tools, several 
teachers identified that their students were capable of more than they had originally thought. In 
their reflections, the teachers demonstrated that they had begun to see their students as 
mathematical leaders. One teacher stated, “I have learned that if I believe my students are 
capable of doing what others might label as too hard for them, then they will gain the confidence 
in themselves and be able to complete most tasks presented to them with little to no assistance 
from myself.” This shift is significant and difficult when teachers are being asked by their 
districts to show their students how to do everything, every day before they allow students to do 
any mathematics. Another teacher commented, “I was afraid to try higher level activities with 
my students.” The work with the LCD rubric, as a guiding document, allowed these teachers to 
envision another type of mathematics classroom, a community in which students are leaders.  

In the area of Explaining Mathematical Thinking, we posit that along with the data from 
EQUIP, the LCD rubric prompted teachers to listen more carefully to their students. One teacher 
stated, “I have been more cognizant of looking for those areas in which the students shine and 
finding ways to use those to help themselves and others gain a better understanding of problem 
solving or completing tasks.”  

Moving from gradual release to classrooms focused on pedagogies centering mathematical 
discourse changed the way that some teachers thought about the purpose of talk in their 
classrooms. We posit that the LCD tool provided an authoritative pedagogical model that 
allowed inservice teachers to push back against the mandates of their districts.  
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Several teachers noted that EQUIP opened their eyes to different ways of thinking about how 
to be equitable in their classrooms. One teacher noted, “I had never seen anything wrong with 
who I call on, what I ask, and how I have students respond but this had a totally different spin on 
it.” Another teacher wrote, “Equity wasn’t something that was covered in my undergraduate 
classes, and the importance of equity in the curriculum has never crossed my mind. …My 
students come from all different backgrounds and homes, so assuming that they all know what I 
am talking about at all times is a grave mistake.” 

Drawing on their experiences with the tools, ECs were able to guide PSTs to meaningfully 
implement the tools in their own practice. Looking across the responses of ECs and PSTs to the 
tools, we found that both groups became more aware of marginalized groups and individuals. 
However, the PSTs had fewer resources and ideas as to how to draw in the marginalized 
populations. Guidance from ECs was crucial in navigating both their critical consciousness and 
the practical moves they could make in their classrooms to respond to issues of status and 
marginalization.  

Discussion 
We found that while teachers quickly admitted that they were the main talker in the room and 

openly discussed their intent to provide more and different opportunities for student talk, there 
was less attention in the first two cohorts to directly addressing race when considering 
marginalized individuals and groups. Teachers discussed gender, location of students in the 
room, and strength in mathematics as demographic dimensions. While we do assert that the use 
of these two tools in concert led the teachers to foster more equitable mathematics learning 
communities and to increase their use of high-leverage practices, we are interested in how the 
teachers' consideration of their practice could be more critical.  

The EQUIP app allowed flexibility for teachers to create their own discourse and 
demographic dimensions. We see this as a positive as the context of classrooms and schools 
varies widely. However, this flexibility left an opening for teachers to avoid race as a 
consideration in their classroom dynamics. It is too easy to be complicit in supporting or ignoring 
colorblindness in teacher education (Gordon, 2005).  

Though EQUIP allows teachers to see patterns of participation, the ways the app is set up and 
the degree to which a teacher digs into the data can influence the impact of the app. When they 
introduced EQUIP in 2018, Rhienhalz and Shah, asked, “What are the affordances and 
limitations of a quantitative approach to measuring aspects of equity and inequity in classroom 
discourse?” (p. 141). We share this question, and we also share the acknowledgment that 
classrooms are incredibly complex spaces and that these and other tools should be used in 
concert to guide and encourage deeper reflection. However, we found, unsurprisingly, that the 
use of EQUIP alone cannot undo marginalization in classrooms.  

In our most recent iteration of the endorsement course sequence, we have incorporated 
identity work with teachers, direct conversations about White Supremacist tenants in 
mathematics classrooms, and more guidance in setting up and reflecting on the data from the 
EQUIP app. We have drawn more attention to the structures and systems in the United States 
and in schools that disproportionately disadvantage Black and African-American students.  
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En este artículo se presentan los resultados de una investigación que atiende la desconexión 
entre la matemática escolar y la realidad, en particular se reconoce que esa desconexión ha 
obligado a privilegiar la representación gráfica de asíntota como recta, negando otro tipo de 
comportamientos asintóticos. Se construyó un diseño escolar que favoreció a modificar el 
tratamiento de la asíntota con 5 profesores de matemáticas en formación inicial. Se implementó 
en un ambiente virtual mediante zoom. El marco teórico fue la teoría socioepistemológica de la 
matemática educativa. Fue un estudio de caso instrumental. Como resultado se amplió el 
universo de asíntota en la comunidad de estudio y se conformó un marco de referencia para 
enseñar la asíntota. 

Palabras clave: Cálculo, Conocimiento matemático para la enseñanza, Precálculo, Modelado.  

Introducción  
Una preocupación que hay en la matemática educativa, y en particular del profesor, es ¿cómo 

conectar esa matemática que se enseña con la realidad? Además, el docente es cuestionado por 
los estudiantes en cuanto a la “utilidad de la matemática” en contextos de la vida real. Bajo esta 
visión de incorporar y conectar el conocimiento que se aprende en el aula con la realidad, existen 
perspectivas teóricas en matemática educativa que se han preocupado por valorar las 
matemáticas no escolares. Por ejemplo, Rosa y Orey (2015) advierten la necesidad de valorar y 
promover en el currículo de matemáticas el conocimiento local desarrollado por los miembros de 
la comunidad que interactúan en un determinado entorno escolar. Ante esta preocupación, 
Codero et al. (2015) señalan que en lugar de enfocar la atención en lo que saben los estudiantes 
es preciso mirar cómo usan el conocimiento. 

El objetivo de esta investigación fue conocer, según el modelo de socialización 
contemporánea de Gómez (2015), los procesos de construcción y organización del conocimiento 
que pasaron los profesores de matemáticas en formación al enfrentarse a situaciones específicas 
de la realidad en un diseño escolar y que permitieron ampliar el universo de asíntota. La 
aplicación del diseño se llevó a cabo mediante la plataforma de zoom. La pregunta de 
investigación fue ¿Cómo se dan los procesos de socialización de lo asintótico en una comunidad 
de profesores de matemáticas en formación al enfrentarse a un diseño de situación escolar? 

Marco teórico 
La teoría socioepistemológica de la matemática educativa considera la importancia de 

incorporar otros saberes que han estado ausentes en la escuela y favorecerían a una matemática 
útil para el que aprende. Cordero et al. (2015) reconocen como problemática de la enseñanza y 
aprendizaje de la matemática al discurso matemático escolar (dME). Este ha invisibilizado 
significados del cotidiano y por tanto hay una desconexión entre la realidad y la matemática 
escolar. Este fenómeno se reconoce como opacidad. Lo anterior, requiere trabajar en la 
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socialización contemporánea del conocimiento matemático, de tal forma que la realidad sea un 
marco de referencia para enseñar matemáticas y lo que se aprende en la escuela sea útil para la 
vida (Gómez, 2015; Pérez-Oxte, 2021). 

Gómez (2015), propone tres procesos que dan cuenta de la socialización del conocimiento 
matemático: proceso funcional, historial e institucional. El proceso funcional se expresa en el 
conocimiento útil para la comunidad: los usos. Según Cordero (2008) y Cordero, Mena y 
Montalto (2010) el uso del conocimiento matemático se caracteriza con referencia a dos 
elementos dialécticos: el funcionamiento (Fu), es decir ¿qué hace? y la forma (Fo); ¿cómo se 
hace? Además, Cordero y Flores (2007) afirman que las tareas pueden ser actividades, acciones y 
ejecuciones. El proceso historial requiere establecer relaciones entre usos de una situación 
específica a otra, a esto se le llama resignificar el conocimiento. Finalmente, el proceso 
institucional muestra la organización de las relaciones entre los usos sintetizados en categorías de 
conocimiento, es decir, argumentaciones basadas en lo vivencial del que aprende.  

Un ejemplo de categoría es el comportamiento tendencial de funciones (CTF) (Cordero, 
1998; Cordero y Solís, 2001; Buendía y Cordero, 2005). Según Cordero (1998), el CTF es un 
“argumento que establece relaciones entre funciones y está compuesto por una colección 
coordinada de conceptos y situaciones del Cálculo donde se discuten aspectos globales de 
variación” (p. 56). Un estudiante dará cuenta de la emergencia de la categoría CTF cuando 
establezca relaciones entre funciones acerca de su comportamiento en el infinito, recurriendo a 
procedimientos como la variación de parámetros a partir de modelos gráficos y analíticos.  

El modelo de socialización es considerado como una perspectiva que provee de elementos 
teóricos-metodológicos para la construcción del diseño y análisis de datos.   

Metodología 
La investigación fue de tipo cualitativa y un estudio de casos instrumental (Skate, 2005). Se 

sometió a prueba que la socialización de lo asintótico propicia un entorno de relaciones 
recíprocas entre la asíntota y sus usos, permitiendo al docente ampliar su universo de asíntota. 

 La aplicación del diseño escolar en el ambiente virtual zoom, debido a las condiciones 
provocadas por el Covid19. La población de estudio fue conformada por 5 estudiantes del 
profesorado de matemáticas de la Universidad Pedagógica Nacional Francisco Morazán, en 
Honduras. Posterior a la aplicación del diseño se realizó una entrevista con el fin de profundizar 
sobre sus respuestas.  
Momentos de la ruta metodológica  

Momento 1. Reconocimiento de la categoría CTF. Se retomó los resultados de estudios 
previos (Mendoza, 2020; Soto y Vilches, 2018) sobre el CTF para estudiar la epistemología que 
emerge en otras comunidades como las de ingeniería y la biología. Se confrontó con lo habitual 
de la enseñanza de la asíntota.  

Momento 2. Conformación de la epistemología. Se consideró tres situaciones específicas de 
tres dominios distintos, a saber: el control de temperatura de un foco (ingeniería biónica), la 
capacidad de soporte poblacional (biología) y la dinámica de una epidemia (epidemiología). A 
partir de esto se reinterpretó esta epistemología de usos para el diseño de tareas en cada 
situación.  

Momento 3. Construcción del diseño escolar. Se construyó cada una de las situaciones y 
tareas con base en la epistemología de usos. Se ejecutó un pilotaje que permitió mejorarlo, 
validarlo y construir un guion para la entrevista no dirigida. Como resultado se estructuró en tres 
fases coherentes con la perspectiva de socialización: 1) evidenciar elementos de opacidad, 2) 
poner en juego las situaciones específicas para dar cuenta del proceso funcional e historial y 3) 
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develar la emergencia de la categoría comportamiento tendencial de funciones, para ampliar el 
universo de asíntota a partir de nuevos argumentos gráficos.   

Momento 4. Puesta en escena del diseño escolar. Se desarrolló a través de la plataforma 
Zoom, con una duración de 4 horas. Se utilizó WhatsApp como medio para que los estudiantes 
enviaran el desarrollo de las tareas. Posteriormente se entrevistó individualmente a cada 
participante, para ahondar en sus respuestas, procedimientos y argumentaciones.  

Momento 5. Análisis de datos. El análisis se desarrolló en tres secciones que corresponden a 
las fases del diseño y la perspectiva de socialización. Por lo cual, en la sección I se analizan 
elementos de opacidad en la comunidad, en la sección II se analiza el proceso funcional e 
historial y en la sección III, se analiza el proceso institucional. Según Pérez-Oxté (2021) rendir 
cuentas de algún proceso significa identificar expresiones asociadas a cada proceso. De esta 
manera se identificó relaciones en las expresiones matemáticas de la comunidad que pudieran 
darse entre lo matemático y la situación específica (tabla 1).   

 
Tabla 1: Cuestionamientos para caracterizar procesos de socialización. 

Procesos  Cuestionamientos 
Funcional  

 
 

 
 Historial  

 
 
 

Institucional  

¿cómo usan la asíntota? ¿qué significan en cada situación? ¿cuáles son 
los funcionamientos de su conocimiento matemático? 

 
¿qué debates surgen entre los usos de la asíntota en cada  

dominio? ¿cuáles son los procedimientos? ¿cuáles son las formas  
de uso en que se manifiesta su conocimiento? 

 
¿Cómo emerge la categoría comportamiento tendencial? ¿Qué 

instrumentos se presentaron en las situaciones? ¿Cuál es la relación 
que hay entre la asíntota y la categoría de comportamiento tendencial? 

  
  

Nota: adaptado de Pérez-Oxté (2021) 
 
En las transcripciones se utilizó P1, …, P5 para mostrar las respuestas de las participantes.  
 

Resultados y discusión 
Sección 1 del análisis   

En la fase 1 del diseño se preguntó a los participantes ¿qué es la asíntota? Las respuestas 
mostraron que la recta tiene un papel hegemónico en las argumentaciones gráficas de la 
comunidad para definir la asíntota. P2 indicó que la asíntota “es una recta a la que se aproxima 
continuamente la gráfica de una función.”, mientras P3 respondió que “Es una línea recta que 
prolongada de forma indefinida se acerca progresivamente a una curva sin llegar nunca a 
encontrarla.” Los tipos de asíntota que se manifiestan son la asíntota vertical, horizontal y 
oblicua, evidenciando que no existen argumentos sobre comportamientos asintóticos curvos. 
Ante la pregunta ¿cómo enseñaría la asíntota? se evidencia la falta de marcos de referencia para 
enseñar la asíntota. El sentido de “aplicar del concepto” está presente a través de ejemplos 
gráficos, pero no hay referencias de la realidad que favorezcan al uso de la asíntota. 
Sección 2 del análisis   
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En la fase 2 del diseño se presentan tres situaciones específicas que rescatan la 
epistemología de lo cotidiano en los dominios: ingeniería biónica, biología y epidemiología. Las 
situaciones específicas son:  

 Se1: el control de temperatura de un foco,  
 Se2: la capacidad de soporte poblacional y  
 Se3: la dinámica de una epidemia. 

Se buscó la alternancia de dominios que generan nuevos usos de la asíntota, los que están 
dados por establecer una relación mutua entre alcanzar y mantener una temperatura deseada, 
mantener la fluctuación de una población alrededor de la capacidad de soporte y determinar una 
tasa de recuperación favorable en una epidemia. 

En la Se1 se pidió que describieran el comportamiento de la función de temperatura de un 
foco 𝑇(𝑡) al transcurrir el tiempo, sabiendo que debe alcanzar y mantenerse lo más cercano a la 
temperatura de referencia 𝑇𝑟(𝑡) (Figura 1). 

 
 

 
 

Conclusiones 
 
 

 
Figura 1: Temperatura 𝑇(𝑡) de un foco y temperatura de referencia 𝑇𝑟(𝑡). 

Se sabe que un control on-off restablece la temperatura del foco 𝑇(𝑡) comparándola con la 
temperatura de referencia 𝑇𝑟(𝑡), determinando un error Ɛ(𝑡) que controla el encendido y el 
apagado del foco y con esto su temperatura. 

Se pidió escribir una expresión que relacione 𝑇(𝑡), 𝑇𝑟(𝑡) y Ɛ(𝑡). Los participantes 
compararon 𝑇(𝑡) y 𝑇𝑟(𝑡) a través de la resta para determinar el error Ɛ(𝑡). Modelando un patrón 
de construcción que conllevó procedimientos de variación de parámetros y organizar 
comportamientos asintóticos. Esto dotó de significados a la asíntota como la reproducción de la 
temperatura deseada considerando que se debe alcanzar y mantener. Además, se preguntó ¿Cuál 
debe ser el comportamiento de Ɛ(𝑡) para mantener 𝑇(𝑡) lo más cercana a 𝑇𝑟(𝑡)? Para lo que 
establecieron condiciones necesarias. Por ejemplo, profesora P1 describió que la condición para 
reproducir la temperatura deseada es que Ɛ(𝑡) debe tener una tendencia hacia cero cuando el 
tiempo tiende al infinito (figura 2).  

 
 
 
 
 

 
 

Figura 2: Comportamiento de E(t) en la se1.   

El patrón de construcción que significó a la asíntota en la 𝑆𝑒1 se resignifica en la 𝑆𝑒2, donde 
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se busca reproducir la tendencia de una dinámica de población hacia una capacidad de soporte 
poblacional. Aquí, la resta también es la forma de comparación que lleva a modelar el patrón 
𝑃(𝑡) = 𝐶(𝑡) + 𝑆(𝑡). Donde 𝑃(𝑡) representa la dinámica de población, 𝐶(𝑡) la capacidad de soporte 
poblacional y 𝑆(𝑡) la sobresaturación.  

En ambas situaciones, los profesores recurrieron a la forma de la tendencia para destacar  
el comportamiento global de las funciones T(t) y P(𝑡) a partir de comparar su tendencia con 

Tr(t) y C(𝑡) respectivamente. Por ejemplo P1, habla de la estabilidad entre las funciones y 
afirmando que P(t) tiende a la capacidad de soporte C(t). El proceso funcional describe los usos 
en cada situación específica y el proceso historial la resignificación entre ellos (figura 3).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 3: Resignificación de usos de la asíntota entre la Se1 y Se2.  

Los profesores concluyeron que existen comportamientos asintóticos en las gráficas de 
temperatura y dinámica poblacional con lo que surge un primer criterio de asintoticidad: Sean 
𝑓(𝑥), 𝑔(𝑥) y ℎ(𝑥) funciones reales, donde 𝑓(𝑥) = 𝑔(𝑥) + ℎ(𝑥), tal que ℎ(x) → 0 cuando 𝑥 → ∞. 
𝑆𝑖 lim

x→∞ 
(𝑓(𝑥) − 𝑔(𝑥)) = 0 entonces 𝑔(𝑥) es asíntota de 𝑓(𝑥). De esta manera, dada una asíntota 

g(𝑥), lograron construir funciones asintóticas 𝑓(𝑥) al sumarle una función ℎ(𝑥) tal que ℎ(x) → 0 
cuando 𝑥 → ∞. Al variar ℎ(𝑥) organizan infinitos comportamientos asintóticos no solo lineales 
sino curvos, la situación misma propicia esta ampliación.  

En la Se3, dada la función 𝑓(𝑡) =𝑒−𝑡 +
1

𝑡+1
  para la tasa de infección. Se pide que elijan entre 

las funciones 𝑘1 (𝑡) = 𝑒−𝑡 o 𝑘2 (𝑡) = 1

𝑡+1
, la tasa de recuperación que representa un mejor 

escenario de la epidemia. Se solicita que usen el criterio lim
t→∞ 

(𝑓(𝑡) − 𝑘(𝑡)). Los participantes se 
dan cuenta que este criterio no es suficiente para determinar la mejor tasa de recuperación. Sin 
embargo, surge la expresión “aunque 𝑘2 (𝑡) decrece menos” lo que sugiere un significado para la 
asíntota como la rapidez de la tendencia. Es aquí donde se les presenta una noción de la 
epidemiología: el número básico de reproducción (R°), que permitió ampliar la situación 
ofreciendo tres posibilidades para decidir cuál tasa de recuperación es la mejor opción. R° 
representa el número de personas que un infectado puede contagiar y se obtiene a través del 
cociente: 𝑅° = tasa de infección/tasa de recuperación. Esto llevó a una forma de comparación por 
cociente donde surgió un segundo criterio de asintoticidad: Sean 𝑓(𝑥), 𝑔(𝑥) y ℎ(𝑥) funciones de 
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x, si lim
x→∞ 

(
𝑓(𝑥)

𝑔(𝑥)
) = 1  entonces 𝑔(𝑥) es asíntota de 𝑓(𝑥). 

La resignificación que se mostró en las situaciones antes expuestas resultó de un debate de 
usos que se resumen en: reproducir comportamientos con tendencia.  
Sección 3 del análisis   

El proceso institucional sintetiza ese debate en una categoría de conocimiento: el 
comportamiento tendencial de funciones. Las tareas que provocan la construcción de lo 
asintótico están estrechamente relacionadas con mantener la forma y rapidez de la tendencia de 
una función a otra. Esto se llevó a cabo mediante la comparación del comportamiento de 
funciones “en el infinito” y la determinación de sus tendencias a través de la resta y/o el cociente. 
Lo anterior es una argumentación que modifica la enseñanza habitual de la asíntota, ampliando 
sus significados con base en lo cotidiano de otros dominios del conocimiento.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figura 4: Proceso institucional y la ampliación del universo de asíntota   

Conclusiones  
Ante la pregunta ¿Cómo se dan los procesos de socialización de lo asintótico en una 

comunidad de profesores de matemáticas en formación al enfrentarse a un diseño de situación 
escolar? Se concluye que el proceso funcional describió los usos de la asíntota en cada situación 
específica, es decir, mostró el conocimiento que le fue útil a la comunidad: 

1. Reproducir una temperatura deseada 
2. Reproducir la tendencia de una dinámica poblacional 
3. Reproducir una tendencia favorable entre la tasa de recuperación y tasa de infección de 

un virus. 
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  El proceso historial dio cuenta del debate entre estos usos y se resumen en una función 
orgánica más general: reproducir comportamientos con tendencia. Donde el funcionamiento está 
dado por mantener la forma y/o rapidez de la tendencia de una función hacia otra; y las formas 
serán:  

 Comparar el comportamiento de dos funciones cuando la variable independiente tiende al 
infinito.  

 Determinar sus tendencias a través de la resta y/o el cociente.  

Finalmente, el proceso institucional dilucidó la emergencia del comportamiento tendencial, 
lo cual dotó de significados a la asíntota a partir de patrones de comportamientos gráficos y 
analíticos, donde la resta y el cociente son los criterios que permiten construir funciones 𝒇(𝒙) 
asintóticas a una función 𝒈(𝒙) dada. La función asíntota se reconoce como una instrucción que 
organiza comportamientos con tendencia. 

Se observó que los profesores establecieron relaciones entre las funciones acerca de su 
comportamiento global, donde los procedimientos como variar parámetros les permite construir 
funciones asintóticas a una función dada.   

Lo anterior, amplió el universo de asíntota en los profesores de matemáticas en formación 
inicial que participaron en el estudio y se conformó un marco de referencia que modifica en 
tratamiento habitual de este objeto matemático.  

Reconocimiento  
La investigación tuvo apoyo de CONACYT a través de las becas de estudiantes de posgrado. 
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This article presents the results of a research that addresses the disconnection between school 
mathematics and reality, in particular, it is recognized that this disconnection has forced to 
privilege the graphic representation of asymptote as a straight line, denying other types of 
asymptotic behaviors. A school design that favored to modify the treatment of the asymptote was 
built with 5 mathematics teachers in initial training. It was implemented in a virtual environment 
using Zoom. The theoretical framework was the socioepistemological theory of educational 
mathematics. It was an instrumental case study. As a result, the universe of asymptotics in the 
study community was expanded and a framework for teaching asymptotics was formed. 

 Keywords: Calculus, Mathematical knowledge for teaching, Precalculus, Modeling. 

Introduction 
A concern in educational mathematics, and in particular for the teacher, is how to connect the 

mathematics being taught with reality. In addition, the teacher is questioned by students as to the 
"usefulness of mathematics" in real life contexts. Under this vision of incorporating and 
connecting the knowledge learned in the classroom with reality, there are theoretical perspectives 
in educational mathematics that have been concerned with valuing non-school mathematics. For 
example, Rosa and Orey (2015) warn of the need to value and promote in the mathematics 
curriculum the local knowledge developed by community members who interact in a given 
school environment. Given this concern, Codero et al. (2015) point out that instead of focusing 
attention on what students know, it is necessary to look at how they use knowledge. 

The objective of this research was to know, according to the contemporary socialization 
model of Gómez (2015), the processes of construction and organization of knowledge that 
mathematics teachers in training went through when faced with specific situations of reality in a 
school design and that allowed the asymptote universe to be expanded. The application of the 
design was carried out using the zoom platform. The research question was How do the 
processes of socialization of the asymptotic occur in a community of mathematics teachers in 
training when confronted with a school situation design? 

Theoretical framework 
The socio-epistemological theory of educational mathematics considers the importance of 

incorporating other knowledge that has been absent in school and would favor a useful 
mathematics for the learner. Cordero et al. (2015) recognize as a problem in the teaching and 
learning of mathematics the school mathematical discourse (SMD). This has made everyday 
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meanings invisible and therefore there is a disconnection between reality and school 
mathematics. This phenomenon is recognized as opacity. This requires working on the 
contemporary socialization of mathematical knowledge, so that reality is a frame of reference for 
teaching mathematics and what is learned in school is useful for life (Gómez, 2015; Pérez-Oxte, 
2021). 

Gómez (2015), proposes three processes that account for the socialization of mathematical 
knowledge: functional, historical and institutional process. The functional process is expressed in 
the knowledge useful to the community: the uses. According to Cordero (2008) and Cordero, 
Mena and Montalto (2010) the use of mathematical knowledge is characterized with reference to 
two dialectical elements: the functioning (Fu), i.e. what does it do? and the form (Fo); how is it 
done? Furthermore, Cordero and Flores (2007) state that tasks can be activities, actions and 
executions. The historical process requires establishing relationships between uses from one 
specific situation to another; this is called resignifying knowledge. Finally, the institutional 
process shows the organization of relationships between uses synthesized in knowledge 
categories, i.e., arguments based on the learner's experience.  

An example of category is the tendential behavior of functions (TBF) (Cordero, 1998; 
Cordero and Solís, 2001; Buendía and Cordero, 2005). According to Cordero (1998), the TBF is 
an "argument that establishes relationships between functions and is composed of a coordinated 
collection of concepts and situations of the Calculus where global aspects of variation are 
discussed" (p. 56). A student will account for the emergence of the TBF category when 
establishing relations between functions about their behavior at infinity, resorting to procedures 
such as the variation of parameters from graphical and analytical models.  

The socialization model is considered as a perspective that provides theoretical-
methodological elements for the construction of data design and analysis.   

Methodology 
The research was qualitative and an instrumental case study (Skate, 2005). It was tested that 

the socialization of the asymptotic propitiates an environment of reciprocal relations between the 
asymptote and its uses, allowing the teacher to expand his universe of asymptote. 

 The application of the school design was through Zoom, due to the conditions caused by 
Covid19. The study population consisted of 5 students of the mathematics faculty of the 
Francisco Morazán National Pedagogical University, in Honduras. After the application of the 
design, an interview was carried out in order to deepen their answers.  
Moments of the methodological route  

Moment 1. Recognition of the TBF category. The results of previous studies (Mendoza, 
2020; Soto and Vilches, 2018) on the TBF were taken up to study the epistemology that emerges 
in other communities such as engineering and biology. It was confronted with the usual of 
asymptote teaching.  

Moment 2. Conformation of epistemology. Three specific situations from three different 
domains were considered, namely: temperature control of a focus (bionic engineering), 
population support capacity (biology) and the dynamics of an epidemic (epidemiology). From 
this, this epistemology of uses was reinterpreted for the design of tasks in each situation.  

Moment 3. Construction of the school design. Each of the situations and tasks was 
constructed based on the epistemology of uses. A pilot test was carried out to improve it, validate 
it and construct a script for the non-directed interview. As a result, it was structured in three 
phases coherent with the socialization perspective: 1) to evidence elements of opacity, 2) to put 
into play the specific situations to account for the functional and historical process and 3) to 
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unveil the emergence of the tendency behavior category of functions, to expand the universe of 
asymptotes based on new graphic arguments.   

Moment 4. Staging of the school design. It was developed through the Zoom platform, with 
a duration of 4 hours. WhatsApp was used as a means for students to send the development of 
the tasks. Subsequently, each participant was interviewed individually, to delve into their 
answers, procedures and arguments.  

Moment 5. Data analysis. The analysis was developed in three sections that correspond to 
the phases of the design and the socialization perspective. Thus, section I analyzes elements of 
opacity in the community, section II analyzes the functional process and history, and section III 
analyzes the institutional process. According to Pérez-Oxté (2021), to account for a process 
means to identify expressions associated with each process. In this way, relationships were 
identified in the mathematical expressions of the community that could occur between the 
mathematical and the specific situation (Table 1).   

 
Table 1: Questions to characterize socialization processes. 

Process  Questions 
Functional  

 
 
 

 Historical  
 
 
 
 

Institutional 

How do they use the asymptote? what do they mean in each 
situation? what are the functioning of their mathematical 

knowledge? 
 

What debates arise between the uses of the asymptote in each 
domain? what are the procedures? what are the forms of use in 
which its knowledge is forms of use in which its knowledge is 

manifested? 
 

How does the category of trend behavior emerge? What 
instruments were present in the situations? What is the relationship 
between the asymptote and the category of trend behavior? 

  
  

Note: Adapted from Pérez-Oxté (2021). 
 

In the transcripts, P1, ..., P5 were used to show the participants' responses. 

Results and discussion 
Section 1 of the analysis   

In phase 1 of the design, participants were asked what is asymptote? The responses showed 
that the straight line has a hegemonic role in the community's graphical arguments for defining 
the asymptote. P2 indicated that the asymptote "is a straight line to which the graph of a function 
continuously approaches.", while P3 responded that "It is a straight line that prolonged 
indefinitely progressively approaches a curve without ever meeting it." The types of asymptote 
manifested are vertical, horizontal and oblique asymptote, evidencing that there are no arguments 
about curved asymptotic behaviors. In response to the question "How would you teach the 
asymptote?", the lack of reference frameworks for teaching the asymptote is evident. The sense 
of "applying the concept" is present through graphic examples, but there are no references to 
reality that favor the use of the asymptote. 
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Section 2 of the analysis  
In phase 2 of the design, three specific situations are presented that rescue the epistemology 

of everyday life in the domains: bionic engineering, biology and epidemiology. The specific 
situations are:  

  Se1: the temperature control of a light bulb,  
 Se2: the population support capacity, and.  
  Se3: the dynamics of an epidemic. 

The alternation of domains that generate new uses of the asymptote was sought, those given 
by establishing a mutual relationship between reaching and maintaining a desired temperature, 
maintaining the fluctuation of a population around the carrying capacity and determining a 
favorable recovery rate in an epidemic. 

In Se1 they were asked to describe the behavior of the temperature function of a focus 𝑇(𝑡) as 
time elapses, knowing that it should reach and maintain as close as possible to the reference 
temperature 𝑇𝑟(𝑡) (Figure 1). 

 
 

 
 
 
 
 
 

Figure 1: Temperature 𝑇(𝑡) of a focus and reference temperature 𝑇𝑟(𝑡). 

It is known that an on-off control resets the light bulb temperature 𝑇(𝑡) by comparing it with 
the reference temperature 𝑇𝑟(𝑡), determining an error Ɛ(𝑡) that controls the on-off switching of 
the light bulb and with this its temperature. 

They were asked to write an expression relating 𝑇(𝑡), 𝑇𝑟(𝑡) and Ɛ(𝑡). Participants compared 
𝑇(𝑡) and 𝑇𝑟(𝑡) through subtraction to determine the error Ɛ(𝑡). Modeling a construction pattern 
that entailed parameter variation procedures and organizing asymptotic behaviors. This endowed 
meanings to the asymptote as the reproduction of the desired temperature considering that it 
should be reached and maintained. Furthermore, it was asked what should be the behavior of Ɛ(𝑡) 
to maintain 𝑇(𝑡) as close to 𝑇𝑟(𝑡) as possible? For which they established necessary conditions. 
For example, teacher P1 described that the condition to reproduce the desired temperature is that 
Ɛ(𝑡) must have a trend toward zero when time tends to infinity (Figure 2). 
 

 
 
 
 

 
 

Figure 2: Behavior of E(t) in se1.   

The construction pattern that signified the asymptote in 𝑆𝑒1 is re-signified in 𝑆𝑒2, where we 
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seek to reproduce the trend of a population dynamic towards a population carrying capacity. 
Here, subtraction is also the form of comparison that leads to model the pattern 𝑃(𝑡) = 𝐶(𝑡) + 
𝑆(𝑡). Where 𝑃(𝑡) represents population dynamics, 𝐶(𝑡) represents population carrying capacity, 
and 𝑆(𝑡) represents oversaturation.  

In both situations, the teachers resorted to the trend form to highlight the overall behavior of 
the functions T(t) and P(𝑡) from comparing their trend with Tr(t) and C(𝑡) respectively. For 
example P1, talks about the stability between the functions and stating that P(t) tends to the 
bearing capacity C(t). The functional process describes the uses in each specific situation and the 
historical process the resignification between them (Figure 3).   
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Resignification of uses of the asymptote between Se1 and Se2. 

The professors concluded that there are asymptotic behaviors in the temperature and 
population dynamics plots with which a first criterion of asymptoticity emerges: Let 𝑓(𝑥), 𝑔(𝑥) 
and ℎ(𝑥) be real functions, where 𝑓(𝑥) = 𝑔(𝑥) + ℎ(𝑥), such that ℎ(x) → 0 when 𝑥 → ∞. If 
𝐥𝐢𝐦
𝐱→∞ 

(𝒇(𝒙) − 𝑔(𝑥)) = 0 then 𝑔(𝑥) is asymptote of 𝑓(𝑥). Thus, given an asymptote g(𝑥), they 
succeeded in constructing asymptotic functions 𝑓(𝑥) by adding to it a function ℎ(𝑥) such that ℎ(x) 
→ 0 when 𝑥 → ∞. By varying ℎ(𝑥) organize infinite asymptotic behaviors not only linear but 
curved, the situation itself is conducive to this extension.  

In Se3, given the function 𝑓(𝑡) =𝑒−𝑡 +
1

𝑡+1
  for the infection rate. They are asked to choose 

between the functions 𝑘1 (𝑡) = 𝑒−𝑡 or 𝑘2 (𝑡) = 1

𝑡+1
, the recovery rate that represents a best-case 

scenario of the epidemic. They are asked to use the criterion lim
t→∞ 

(𝑓(𝑡) − 𝑘(𝑡)). The participants 
realize that this criterion is not sufficient to determine the best recovery rate. However, the 
expression "although 𝑘2 (𝑡) decreases less" emerges which suggests a meaning for the asymptote 
as the rapidity of the trend. It is here that they are introduced to a notion from epidemiology: the 
basic reproduction number (R°), which allowed them to broaden the situation by offering three 
possibilities for deciding which recovery rate is the best option. R° represents the number of 
people an infected person can infect and is obtained through the quotient: 𝑅° = infection 
rate/recovery rate. This led to a form of comparison by quotient where a second criterion of 
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asymptoticity emerged: Let 𝑓(𝑥), 𝑔(𝑥) and ℎ(𝑥) be functions of x, if lim
x→∞ 

(
𝑓(𝑥)

𝑔(𝑥)
) = 1  then 𝑔(𝑥) is 

asymptote of 𝑓(𝑥). 
The resignification shown in the above situations resulted from a discussion of uses that can 

be summarized as: reproduce behaviors with tendency.  
Section 3 of the analysis   

The institutional process synthesizes this debate into a category of knowledge: tendential 
behavior of functions. The tasks that trigger the construction of the asymptotic are closely related 
to maintaining the shape and speed of the trend from one function to another. This was done by 
comparing the behavior of functions "at infinity" and determining their trends through 
subtraction and/or quotient. The above is an argument that modifies the usual teaching of the 
asymptote, expanding its meanings based on the everyday of other domains of knowledge.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Institutional process and the extension of the asymptote universe.   

Conclusions  
In response to the question How do the processes of socialization of the asymptotic occur in a 

community of mathematics teachers in training when facing a school situation design? It is 
concluded that the functional process described the uses of the asymptote in each specific 
situation, that is, it showed the knowledge that was useful to the community: 

 
1. Reproduce a desired temperature 
2. Reproduce the trend of a population dynamic 
3. Reproduce a favorable trend between the recovery rate and infection rate of a virus. 

 
  The historical process accounted for the debate between these uses and is summarized in a 

more general organic function: to reproduce behaviors with trend. Where the function is given by 
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maintaining the shape and/or speed of the trend from one function to another; and the shapes will 
be:  

 Compare the behavior of two functions when the independent variable tends to infinity.  
 Determine their tendencies through subtraction and/or quotient.  

 
Finally, the institutional process elucidated the emergence of the trend behavior, which 

endowed the asymptote with meanings from graphical and analytical behavior patterns, where 
the subtraction and the quotient are the criteria that allow constructing functions 𝒇(𝒙) asymptotic 
to a given function 𝒈(𝒙). The asymptotic function is recognized as an instruction that organizes 
behaviors with trend. 

It was observed that teachers established relationships between functions about their global 
behavior, where procedures such as varying parameters allow them to construct asymptotic 
functions to a given function.   

This expanded the universe of asymptote in the mathematics teachers in initial training who 
participated in the study, and a frame of reference was formed that modifies the usual treatment 
of this mathematical object. 
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Research suggests that preservice teachers enter teacher education with predominantly negative 
dispositions towards mathematics. We present a case study of an approach to supporting the 
development of positive mathematics teaching identities among students in a middle-level math 
methods course. Our findings suggest that engaging in narrative reflection in tandem with 
collaborative problem solving in a mathematical discourse community over time helped students 
to transform their relationships with mathematics and forge positive mathematics identities. 
Providing opportunities for students to share and work through their vulnerabilities was critical 
to this process. Our findings illustrate a promising approach for teacher educators to support 
the development of positive mathematics teaching identities in preservice teacher education. 

Keywords: Preservice teacher education, problem solving, affect, emotion, beliefs, and attitudes 

Introduction 
Preparing preservice teachers (PSTs) to teach mathematics involves attending to the 

development of complex knowledge, skills, and reasoning practices. It also involves supporting 
the identity work that novice teachers must do to position themselves as mathematics teachers 
(Ntow & Adler, 2019; Lutovac & Kaasila, 2014). This identity work is made especially 
challenging by common approaches to mathematics instruction that permeate U.S. K-12 schools. 
Confronted by years of memorizing facts and procedures, in settings that emphasize being first 
and fastest, the majority of young people entering teaching view mathematics as a body of 
disconnected, procedural skills that need to be memorized, leading many to conclude that they 
are simply “not a math person” (Relich, 1996; Machalow et al., 2020). 

This paper presents findings from a small study of an effort to support the mathematical 
identity work of a group of middle-level PSTs through mathematics problem solving and 
reflections. Building on the work of Machalow and colleagues (2020), we see PSTs' identities as 
teachers of mathematics as grounded in their experiences as learners of mathematics and 
intertwined with their orientations toward the subject (Gresalfi & Cobb, 2011; Ntow & Alder, 
2019). Our research was guided by the following questions: 

1. What connections between mathematics learning experiences and orientations toward the 
subject are surfaced through PSTs mathematics identity work?  

2. How does engaging in collaborative problem solving influence PSTs’ relationships with 
and orientations towards mathematics? 

The participants in this study were students in a one-year teacher preparation program, seeking 
middle-level (ML) certification (grades 4-8). The context of the study was a semester-long 
mathematics methods course for all ML candidates, the majority of whom were specializing in 
subjects other than mathematics. The authors were both instructors of the course.  

Conceptual Framework 
The conceptual framework guiding our study builds on work by Machalow et a. (2020), 

which conceptualizes mathematics identity for teaching as being shaped by teachers’ 
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interpretations of their experiences and their related mathematics orientations. We understand 
mathematics identity as a learner’s interpretations of themself in relation to mathematics 
(Darragh, 2016; Graven & Heyd-Metzuyanim, 2019). Learners develop and continuously 
reshape their mathematics identities through experiences learning mathematics, in which 
multiple social factors are implicated. When learners engage with mathematics, they are also 
influenced by relationships with teachers and classmates, their social identities, such as race, 
gender, and class, and institutional systems that often make mathematics dehumanizing (Sfard & 
Prusak, 2005; Gutierrez, 2002). PSTs' mathematics identities are central to their development as 
teachers. Teachers with negative mathematics identities are more likely to focus on rote 
procedures and exhibit low expectations for their students (Brady & Bowd, 2005; Relich, 1996). 

Teachers’ orientations toward mathematics are core to their mathematics identities. 
Machalow and colleagues (2020) define mathematics orientations as one’s beliefs about the 
nature of mathematics knowledge. They employ Skemp’s (1976) two contrasting approaches to 
understanding mathematics to distinguish between a view of mathematics as instrumental, 
comprised of procedural knowledge, and relational, characterized by understanding why rules 
work and the relationships between them. Often, PSTs enter teacher education having learned 
mathematics in highly instrumental ways and have come to think of mathematics as a series of 
rules and procedures. Studies suggest that when students are exposed to relationally oriented 
approaches to mathematics, they have more of an opportunity to develop positive relationships 
with mathematics as a subject (McCulloch et al., 2013; Brady & Bowd, 2005). 

Literature Review 
Increasingly, learning is understood as a process of identity formation or becoming a certain 

type of person in a particular context (Lave & Wenger, 1991). Learning to teach mathematics 
involves developing an identity as a mathematics teacher (Hodges & Hodge, 2017; Ntow & 
Adler, 2019), in which mathematics identity plays a central role. Many preservice elementary 
teachers, however, have had problematic relationships with mathematics and are likely to 
experience feelings of math anxiety or lack confidence in their own ability to effectively teach 
mathematics based on negative formational experiences as mathematics learners (eg., Brady & 
Bowd, 2005, Machalow et al., 2020, McGlynn-Stewart, 2010). Research on efforts to shift PSTs’ 
relationships to mathematics offer two distinct approaches: exploring mathematics in order to 
“break” from one’s past experiences with the subject (Ball, 1990) and engaging them in identity 
work to influence their mathematics teaching identities (Ntow & Adler, 2019).  

Engaging PSTs in doing mathematics in ways that emphasize relational understanding 
(Skemp, 1976) and are likely to differ substantially from their experience as K-12 students is a 
well-established approach used by teacher educators (e.g., Ball, 1990). Various studies 
demonstrate how such opportunities to re-learn primary mathematics in methods classes can 
support positive shifts in mathematics orientations and identities (Harkness et al., 2007; 
McGlynn-Stewart, 2010). Harkness and colleagues (2017), for example, found that by working 
constructively in groups to make sense of mathematics increased PSTs' self-concept and self-
efficacy, as well as their understanding the role that the teacher played in facilitating this 
productive struggle. Researchers have also found, however, that success of these approaches is 
dependent upon several key components of instructional design, including emphasis on relational 
understanding of mathematics concepts using concrete representations, positive support from 
teachers and peers, and collaborative work in communities of practice (Harkness et al., 2017; 
Kaasila et al., 2008; Machalow, et al., 2020). 
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Research that examines efforts in teacher education to positively influence PSTs’ 
mathematics identities has emerged as promising in the last decade. One widely discussed 
strategy is to provide PSTs with opportunities to explore their own identities through narrative 
accounts. In these studies, researchers (who are often teacher educators) invite students to 
recount their own formative mathematics learning experiences as narrative texts, hypothesizing 
that this type of narrative work promotes reflection and understanding of one’s own mathematics 
learning experiences (Kaasila et al., 2008; LoPresto & Drake, 2004; McCulloch, 2013). Further, 
asking PSTs to reflect on how their experiences have shaped their relationship with mathematics 
allows them to consider how common classroom practices influence how they come to think of 
themselves in relation to mathematics (e.g., Machalow et al., 2020; Remillard, 1993). Zazkis 
(2015) further argues that personifying the object of the narrative (mathematics) can emphasize 
the potency of the relationship learners have with the subject. The impact of identity on teachers’ 
future orientations towards teaching underscores the importance of identity work in preservice 
teacher education. When teachers are able to reframe their past learning experiences through 
identity work, there is an increased likelihood that they will feel a sense of agency over their 
future mathematics teaching (Lutovac & Kaasila, 2014) and a greater capacity to foster positive 
math identities to future students (Machalow et al., 2020). 

Our mathematics methods course combined these two approaches to surfacing and nurturing 
PSTs’ relationships to mathematics: we engaged them in re-learning mathematics from a 
relational perspective and asked them to write narratives about their relationship with a 
personified version of mathematics. These narratives provided a window into PSTs’ developing 
orientations toward mathematics and their mathematics identities. Our research used the 
narratives and other artifacts and observations to examine the connections between PSTs’ 
experiences and their orientations toward and relationships with mathematics. 

Methods 
The eight participants in the study comprised the 2021-22 cohort of ML teacher candidates in 

a one-year, K-12 program, situated in a private (PWI) university in a large east-coast city. The 
program aims to prepare teachers to work in poverty-impacted, urban schools. The ML 
certification covered all subjects for grades 4-6 and content specialization for grades 7-8. Only 
one of the 8 participants was seeking a specialization in mathematics; the others were 
specializing in ELA (n=3), social studies (n=3), and science (n=1) and enrolled in content-
specific courses for grades 7-12. All were enrolled in the ML mathematics methods course, 
taught by the authors. The fact that the majority of students in the course would be certified to 
teach grades 4-6 mathematics but identified as teachers of other subjects presented an 
instructional challenge and a research opportunity. Our aim was to explore the potential of the 
approach described above for nurturing non-mathematics PSTs’ identities as teachers of 
mathematics. Three of the participants identified as white females, one as a white male, two as 
black females, one as a white trans-masculine non-binary, and one as an Asian male. Both 
authors identify as white females.  

During the semester-long mathematics methods course, students were presented with a 
weekly Problem of the Week, an open-strategy problem involving mathematics content 
appropriate for grades 5-8. In the example (Figure 1), Squares to Stairs, students are prompted to 
justify their thinking as they explain the progression of the figure, followed by subsequent 
questions about increasingly complex case numbers and numbers of squares.  
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Figure 1. Squares to Stairs 

Students worked on the problem outside of class and submitted a “rough draft” solution (Jansen, 
2020) on an electronic document that all students had access to. The first 30 minutes of each 
class were devoted to paired and whole-class work on the problem, facilitated by the instructors.  

The data for this study consist of two narratives written by participants, one prior to the 
beginning of the semester and one upon completion of the course, as well as the teacher 
educator/researchers’ observations of students’ work and interactions during in-class problem-
solving sessions. The first narrative, called a “Dear Math Letter,” was inspired by Bertolone-
Smith and MacDonald (2020) and followed Zazkis’s (2015) approach of personification. During 
the summer term, they were prompted to “Write a letter to Math as if Math was a person that you 
know.” For the second narrative, students reflected on their work on the Problems of the Week in 
relation to the experiences and sentiments described in their initial letter. 

We used inductive coding to analyze the narratives, highlighting emergent themes in the 
students’ reflections. Themes in both narratives included salient mathematics learning 
experiences, shifts in views of mathematics and self-perceptions, and other influential factors 
such as teachers, classmates, or family members. We also applied a priori codes to indicate 
instrumental or relational mathematics orientations (Machalow et al., 2020). For the second 
narrative, we also noted specific problems mentioned by students as influential in their learning 
and the date during the semester when the problem was assigned. We then compared the two 
narratives for each participant to identify shifts and discussed themes across the trajectory of the 
cohort as a whole. Additionally, we used analysis of student work and observations from class 
sessions to supplement our understanding of the themes. 

Results 
Similar to previous research, we find that these PSTs entered preparation having had troubled 

relationships with mathematics, instrumental orientations toward the subject, and negative 
perceptions of themselves mathematically. PSTs described these relationships in connection to 
mathematics learning experiences that prioritized memorization, academic achievement, and 
external evaluation. These findings confirm prior accounts of the power of experiences in 
shaping PSTs’ mathematics teaching identities (Gresalfi & Cobb, 2011; Machalow et al., 2020; 
Sfard & Prusak, 2005). Despite these negative entry points, students expressed a desire to 
improve their relationships with math for the sake of their future students.  

Over the course of the semester and through participation in collaborative problem-solving 
sessions, we observed two parallel and related changes. As PSTs engaged with new types of 
mathematics learning experiences, they began to shift orientations towards mathematics and also 
began to form new mathematics identities, showing increased confidence and comfort with 
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mathematics as a subject. We hypothesize that these shifts were supported by both the nature of 
the mathematical problem-solving tasks and the role of a supportive mathematics discourse 
community within the class.  

The sections that follow are structured to illustrate the trajectory of PSTs’ developing 
mathematics teaching identities as they relate to past and current mathematics experiences. We 
begin by describing the findings from PSTs’ “Dear Math Letters”, indicating the patterns in the 
mathematics identities and orientations surfaced through their narrative descriptions. We then 
outline the changes that occurred throughout the course of the semester as described in their end-
of-semester reflections and corroborated by researcher observations. These changes occurred 
within three discernable phases: initial apprehensions, as PSTs began the semester deeply 
influenced by their prior negative associations with mathematics; aha moments, which occurred 
several weeks into the semester,  as PSTs began to experience new realizations about 
mathematics in their problem-solving work; and, finally, transformed relationships with 
mathematics, where PSTs were adopting new strategies and approaches to problem solving and 
becoming more confident in their ability as learners and teachers of mathematics. We conclude 
by discussing how collaboration in a mathematics discourse community served as a key mediator 
for the transformations described by PSTs at the end of the semester. 
“Dear Math, You Are Such a Heartbreaker.” 

The act of personifying math in their initial Dear Math letters brought forth the emotional 
nature of students’ relationships with mathematics. Students revealed predominantly negative 
mathematics identities, which were deeply intertwined with their social identities. The letters 
were moving for us as instructors to read; students shared heart wrenching accounts of tears, 
frustration, anxiety, pressure, and feelings of inadequacy defining their past experiences with 
mathematics. For example, Faith began her letter telling math: “you have always frustrated me, 
and I won’t deny that I’ve cried over you more than once…the academic pressure on me felt so 
crippling.” 

These accounts of negative experiences often pointed to an instrumental understanding of 
mathematics, in which memorization of rote procedures and a need to get the answer “right” 
figured significantly. Students wrote about their experiences with “drills”, “missing points”, the 
demoralization of “never getting an A” or the devastation of “getting an F.” All eight students 
mentioned testing as contributing to a sense of inadequacy or uncertainty in relationship to 
mathematics. In these and other similar comments, students described math as an individual 
endeavor where one fails or succeeds on their own. 

Along with the individualized pressure to succeed, PSTs’ descriptions of mathematics 
learning experiences demonstrated how institutionalized presentations of math can be seen to be 
highly dehumanizing, perpetuating notions that mathematics ability is linked to a person’s value 
in society. This type of comparison often occurred in relation to other dimensions of students’ 
social identities. In many cases, the notion of being judged in relation to mathematics was highly 
influential in shaping students’ orientations toward and relationships with mathematics.  Several 
students noted feeling inferior to family members or classmates who were “naturally” better in 
math. Some of these emotions were deeply internalized: Kevin, a student who immigrated from 
Korea in middle school wrote to Math: “you were the stereotype I desperately tried to run away 
from. I think I told myself that I was ‘not good’ at math because I was afraid that you would take 
over my whole identity”. 

When PSTs mentioned positive associations with math, they were fleeting; students either 
felt positively about math when they received good grades or as a result of a supportive 
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relationship with a teacher. Several students mentioned at least one teacher by name who helped 
them to improve their motivation to do math and their sense of ability to succeed in a particular 
mathematics course. Other positive orientations to math related to completing a problem, as 
Natalie described feeling like “the heavyweight champion of the world” after finally solving 
division problems. These positive experiences did not appear to have a lasting impact on their 
mathematics identities, perhaps in part because they were contingent upon temporary 
circumstances. 

For many students, the conclusion of their letter to math expressed a desire to reconcile their 
own negative experiences and find ways to help their future students develop positive 
mathematics identities. They raised concerns about how their own problematic relationships with 
math would influence their identities as teachers, as Faith writes: “How can I teach my students 
to love and engage with you when I don’t even do that myself?” As illustrated by this and other 
statements, PSTs may recognize their negative relationships with math, but pathways to rectify 
these relationships remain out of reach. 
“I Didn’t Know You Could Manipulate Numbers Like That!” 

A primary component of the mathematics methods courses was collaborative work on the 
Problem of the Week. Problem solving discussions were structured around students’ strategies, 
and instructors strategically paired students to share different approaches to solving the problem. 
During the whole class discussion, students compared different strategies and agreed on a 
reasonable solution. Based on our analysis, we saw three key stages that emerged over the course 
of the semester through students’ work with these problem-solving activities. 

Initial apprehensions. In the initial weeks of the semester, we found that PSTs continued to 
demonstrate behaviors that focused on finding algorithms and wanting to be sure to get the 
correct answer so as to not be judged by their classmates or teachers. Students also exhibited 
self-protective behaviors, such as adding self-deprecating notes or humorous memes to their 
submitted rough-draft thinking in an effort to deflect from their feelings of inferiority. This initial 
period of discomfort was evident in many students’ reflections at the end of the semester. For 
example, Dylan explains:  

When this assignment first started, I felt very uneasy presenting my work to the class. I was 
constantly comparing myself to the other students… I feared my classmates would judge me 
as not being intelligent enough for the program. This was clearly reflected in my early 
Problem of the Week assignments…there is little evidence of work being completed and 
there is an emphasis on correctness. 
This type of response was shared by the majority of the students in class, as they reported 

finding it difficult to engage with problems and practices that were counter to their prior 
mathematics learning environments. Students realized, however, that they needed to “unlearn” 
these deeply ingrained tendencies. 

Aha moments. The structure of sharing work collectively in class pushed students to work 
through their vulnerabilities. Through discussing different strategies and visualizations for 
solving problems, students were exposed to new ways of thinking about mathematics, which led 
to a second phase that we refer to as a period of aha moments. Students gradually began to place 
more emphasis on strategies than arriving at a correct answer:  

When we worked on the problem in class I felt like something finally clicked and I realized 
that my visual model would have been useful if I had spent less time worrying about whether 
or not it was the “correct” way to solve the problem and instead just stuck it out and 
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recognized that my ideas do not have to be correct to be worthwhile, they have an inherent 
worth.” (Brandon) 
Two problems in particular, Transparent Algorithms and Squares to Stairs, helped students 

to see more mathematical meaning and develop deeper conceptual understanding. Both the 
nature of these problems as well as the timing mid-semester could have contributed to multiple 
students reaching aha moments at this point. Madison described her aha moment, stating: “On 
transparent algorithms, I did not know that you could manipulate numbers like that, straying 
from the basic, standard algorithms!” Squares to Stairs engaged students in recognizing patterns 
to help visualize figures in linear sequences. Unlike earlier in the semester when students 
focused on finding an algorithm to solve the problems, students used multiple ways to visualize 
and solve the pattern. Natalie’s aha moment noted the importance of representing problems to 
find solutions: “Because of how we have been socialized, I would have thought that it was an 
elementary school tactic to visually represent a problem. I saw how my classmates drew out their 
patterns and I thought ‘Why not?’”. In these moments, students describe developing increased 
relational understandings as opposed to their initial instrumental orientations. As these 
orientations shifted, students also expressed more enthusiasm for problem solving. They began to 
position themselves as capable of breaking from the procedural rules of mathematics in favor of 
trying new strategies without a fear of being “wrong”. 

Transformed relationships to mathematics. During the final phase, students began taking 
on new strategies and approaches that they learned through their problem-solving discussions. 
As highlighted in their aha moments, working in collaboration with one another helped them to 
feel empowered to try out different strategies that focused on developing conceptual 
understanding rather than getting the correct answer. Once Natalie found that it was not 
indicative of a lack of understanding to attempt multiple strategies, she explained that she 
“looked for patterns, switched orders, crossed things out and used the process of elimination. I 
surprised myself and my confidence grew.” Similarly, Faith reflects on how she began 
documenting “discoveries” as a result of her work with her classmates, which helped her 
“discover something new in every iteration” as she worked towards a solution.  

As a result of engaging in problem solving discussions and reflective identity work, students 
made incredible shifts in their mathematics identities and orientations over the course of one 
semester. Several students continued to teach math in their field placements beyond what was 
required, and three students went from thinking they would never want to teach math to 
expressing interest in seeking certification to teach middle years math. 
“I Had Eight Other Minds On the Job.” 

 Looking across their reflections on their experiences engaging in the Problems of the Week, 
we found that the role of the mathematics learning community was a key mediator in helping 
students to shift their relationships with mathematics. Students trusted the class community in a 
way that enabled them to move through their vulnerabilities and in doing so, they allowed 
themselves to release the security of algorithms and accuracy. Brandon expressed how working 
with his peers supported this shift: “I felt like I was part of a community of inquiry dedicated to 
finding solutions instead of being evaluated on my ability to simultaneously learn, synthesize, 
and enact a new concept.”  

Further, the experience challenged their preexisting notions of math as individualized and 
dehumanizing. Students found support in one another and were able to move beyond their initial 
phase of vulnerability. While before this conceptual and identity work, Kevin purposefully 
disassociated from mathematics to avoid stereotypes, he described how working with others 
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allowed him to grow: “I always assumed that ‘doing math’ was an individualized process. But 
incorporating meaningful discourse into the process of ‘inquiring’ into new mathematical 
concepts has evidently shown me that learning math is really a journey of growth.” 

Discussion 
Our study reaffirms prior findings that suggest PSTs benefit from opportunities to re-learn 

mathematics from a relational perspective (Ball, 1990) and from engaging in narrative identity 
work to reconcile their prior experiences with mathematics (e.g., Machalow et al., 2020; 
McCulloch et al., 2013; Remillard, 1993). Our data also help to illustrate that PSTs’ mathematics 
identities are complex and intertwined with other social identities that are implicated in how they 
learn to teach mathematics. Addressing a personified version of mathematics allowed PSTs to 
unpack how their prior experiences shaped their identities and helped them to problematize their 
instrumental understandings of math.  

Our study provides a unique window into the power of engaging in this type of narrative 
identity work in tandem with conceptually oriented, collaborative problem solving. We believe 
that these two processes were mutually supportive in our PSTs’ transformation across the course 
of the semester, which included beginning to identify as teachers of mathematics (Ntow & Adler, 
2019; Lutovac & Kaasila, 2014). The cycle of reflecting on their views of math while working 
with one another in community rather than individually gave students space to envision a new 
approach to mathematics instruction. Norms for openness, learning from mistakes, and 
communication throughout the problem-solving discussions helped students increase their 
confidence and willingness to adopt new strategies. Further, their reflections on the problem-
solving experience itself helped them to see the power of community and express a desire to 
carry that into their own classrooms.  

Importantly, we found that this process takes time and consistent, on-going work to develop a 
community of practice that allows students to share their vulnerabilities with one another. 
Although our study focuses on a small cohort of PSTs, we posit that combining opportunities for 
students to develop relational understandings of math with narrative identity work and 
community building offers opportunities for teacher educators to support the development of 
positive mathematics teaching identities in preservice teachers. 
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More than 50% of PK-12 students in the United States are students of color and/or from 
historically underrepresented populations (NCES, 2020). Yet for so long, mathematics 
curriculum has not been representative of diverse student populations or inclusive of their 
backgrounds and their identities (AMTE, 2015; D’Ambrosio, 2017; TODOS, 2020). Through a 
focus on the intersections of mathematical modeling, ethnomathematics and cultural and 
historical practices, this ethnomodeling research study intentionally connects ways to engage 
and value each and every students’ culture and identity while emphasizing essential geometry 
content. During this presentation, we share results from a study examining how a sequence of 
geometry-focused ethnomodeling tasks informed secondary mathematics prospective teachers’ 
perceptions of valuing their own as well as their future students’ cultures and identities. 

Keywords: Ethnomathematics; Culturally Relevant Pedagogy; Equity, Inclusion, and Diversity; 
Geometry and Spatial Reasoning 

For centuries, mathematicians and mathematics educators have debated whether mathematics 
is culturally bound (Bishop, 1988; D’Ambrosio, 1985) or culture free (Kline, 1980). Oftentimes, 
mathematics is presented as a “prized body of knowledge” stripped of its rich cultural and 
historical connotations, and far removed from the lives and ways of many around the world 
(Naresh, 2015). More than 50% of PK-12 students in the United States are students of color 
and/or from historically underrepresented populations (NCES, 2020). Yet for so long, 
mathematics curriculum has not been representative of diverse student populations or inclusive 
of their backgrounds, cultures, and their identities (AMTE, 2015; D’Ambrosio, 2017; TODOS, 
2020). In order to confront the separation between context and content, in recent years there has 
been an increased interest in integrating mathematical modeling into the K-12 curriculum 
(Abassian et al., 2019; Niss et al., 2007; NGA & CCSSO, 2010; Pollak, 2016). In addition, a 
recent international survey of mathematics education researchers calls for increased research in 
equity, diversity, and inclusion as well as connecting mathematics to other disciplines such as 
integrated STEAM, familial activities, and leisure activities (Bakker et al., 2021). Mathematics 
should be accessible and equitable for all students by incorporating cultural diversity into 
mathematics lessons (AMTE, 2017; NCSM & TODOS, 2016; NCTM, 2018, 2020a, 2020b). 
Gutiérrez (2018) describes one way to rehumanize mathematics through valuing student’s 
identities and their cultural traditions and practices is through an ethnomathematics perspective. 
For such efforts to be long lasting, it is crucial that prospective teachers (PSTs) experience this 
advocacy modeled in their preparation programs so they are prepared for their roles in 
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developing students who contribute to a more equitable and just society (D’Ambrosio & 
D’Ambrosio, 2013). 

Purpose of the Study and Research Question 
The purpose of this study was to further extend and connect work by mathematics education 

researchers, educators, and K-12 teachers in integrating modeling with mathematics. 
Specifically, the ethnomodeling perspective intentionally connects students' cultural and 
historical identities to the teaching and learning of geometry. 

As supported by NCTM (2020a, 2020b), experiencing geometry in an integrated and active 
manner can capitalize on the wonder, joy, and beauty of examining the world. The research goal 
for this study was to engage PSTs in geometry-focused ethnomodeling tasks to develop and 
understand new insights into honoring and sustaining cultural systems and practices through 
examples that are grounded in a shared commitment to equity, empowerment, and dignity. This 
study addressed the following research question: 

In what ways can a sequence of geometry-focused ethnomodeling tasks inform secondary 
mathematics PSTs’ perceptions of valuing 

 their own cultures and identities? 

 their students’ diverse cultures and identities? 

Conceptual and Theoretical Perspectives 
There are many frameworks that inform and connect to this study including 

ethnomathematics (D’Ambrosio, 1960), culturally relevant pedagogy and teaching (Gay, 2002; 
Ladson-Billings, 1995), community funds of knowledge (Civil et al., 2002), and culturally 
sustaining pedagogy (Paris, 2012). Despite the critical contributions of these frameworks to the 
field, some argue that these frameworks can lack a focus on mathematical content. Previous 
studies have also created and examined frameworks that connect the mathematical modeling 
cycle with culturally relevant pedagogy (Anhalt et al., 2018), and with social justice issues 
(Aguire et al., 2019). An ethnomodeling approach attempts to apply mathematical modeling to 
bridge domains of ethnomathematics while preserving and valuing aspects of the local culture 
(Rosa & Orey, 2013). Through such engagements, mathematics teacher educators can help pre- 
and in-service teachers strategize and build a progression for ways of teaching mathematical 
modeling with the relevant cultural aspects that help shape critical consciousness for students 
(Anhalt et al., 2018). 
Ethnomodeling 

Ethnomodeling is the intersection of cultural anthropology, ethnomathematics, and 
mathematical modeling. Cultural anthropology refers to the aspects of identity connected to 
language, religion, art, and other aspects of people’s daily mathematical practices. 
Ethnomathematics refers to the understanding of the relationship between culture and 
mathematics and mathematical modeling approaches that attempt to engage students in real 
world applications of mathematics. In much of the current literature on mathematical modeling, 
five perspectives are commonly discussed – realistic, educational, models and modeling, socio-
critical, and epistemological (Abassian et al., 2019; Rosa & Orey, 2010). However, each of these 
would benefit from greater linkage to cultural components, and this is where ethnomodeling 
connects. One of the primary goals of ethnomodeling is to engage and empower people to 
mathematize their own realities, and is studied through three lenses - emic, etic or dialogic. In 
their previous work, Orey and Rosa worked with students and teachers in Brazil, Nepal (e.g., 
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Orey & Rosa, 2020; Rosa & Orey, 2009), where the participants all come from very similar 
racial and ethnic backgrounds. In this study, the participants at a university in the United States 
came from diverse backgrounds and experiences.  
Geometry 

Another key focus particularly for this study was secondary geometry content. Previous 
studies have shown there is a lack of exposure to deep geometrical thinking, and many teachers 
need additional support to effectively teach it with depth (Clements, 2003; Driscoll, 2007; Steele, 
2013). Geometry has historically been the content domain with the lowest performance on 
international exams such as The Trends in International Mathematics and Science Study 
(TIMSS, 2019). Geometry is a critical content domain that spans across our K-12 standards 
(NGA & CCSSO, 2010). Additionally teaching geometry is crucial in facilitating student 
opportunities to make connections between and within mathematical content and representations 
(Desai et al., 2022); and connections with the real world (Jones, 2002; Usiskin, 1980). Through 
this focus, the intentional connections and integrations of ethnomodeling and geometry afford 
participants opportunities to link mathematical domains enriched by the wonder, joy, and beauty 
of geometry in our lives, communities, and cultures. 
Conceptual Framework 

Previous studies have created and examined a framework that connects the mathematical 
modeling cycle with culturally relevant pedagogy (Anhalt et al. 2018), and with social justice 
issues (Aguire et al., 2019). For this study, the conceptual framework illustrated by Figure 1 
describes the interaction between the aspects of ethnomodeling and mathematical modeling. The 
cyclical and iterative process of this framework informed the design and creation of the tasks as 
well as the process that participants engaged. 

 

 
Figure 1: Ethnomodeling Conceptual Framework 

Methods 
Context 

Previous studies have not focused explicitly on the intersection of ethnomodeling and 
geometry in connection to PSTs perceptions. As such, a qualitative research methodology 
described by Creswell (2013) was used for the purposes of this study. Within the qualitative 
methodology, this study was designed as a multi-case study as described by Creswell (2013), 
Merriam (2009), Stake (1995), and Yin (1994). 
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This research study took place in a mathematics education methods course in a college of 
education at a large suburban public university in the southeastern U.S. during the Spring 2022 
semester. The participants of this study were secondary mathematics (Grade 6-12) education 
PSTs, as this aligns to the programmatic and course structure at the university where this study 
was conducted. 
Participants 

The total number of PSTs enrolled in this course was 20 undergraduate students from which 
18 were participants for this study. Specifically, the research study took place during the first 
mathematics education methods course that PSTs in this program are required to take. This 
course was intentionally chosen because it was early in the PSTs’ program and is taken prior to 
PSTs starting their internship in schools, and these were important criteria in helping to best 
inform the research question. Of the 18 participants, seven expressed interest in being selected as 
a case participant. In selecting the cases, multiple factors were considered in the following order 
of importance: (1) As much as possible keeping participants in their chosen groups to maintain 
natural group dynamics; (2) Heterogeneous representation amongst cases in terms of 
race/ethnicity; (3) Heterogeneous representation amongst coursework as well as experiences with 
diversity. Based on these criteria, six participants were selected- Elaine, Lucas, Helina, Diego, 
Tanh, and Zohar - all participant names are pseudonyms. Table 2 provides an overview of these 
six participants. 

 
Table 2: Participants 

Group 
# 

Potential 
Cases Race/ Ethnicity Gender 

Coursework 
Experience 

Experience 
with Diversity 

1 Elaine White F Some Some 
1 Lucas White M Some More 
2 Helina White F Some Some 
2 Diego Hispanic M Some Some 
3 Tanh Asian-

Vietnamese 
F Some Some 

3 Zohar White-Jewish M Some More 
 

Data Collection and Analysis 
All PSTs in the course completed the pre-survey, ethnomodeling tasks, written reflections 

based on these tasks, as well as the post-survey as these were regular course activities. However, 
only work completed by the participants chosen as the cases was analyzed as further described in 
the Data Analysis section. Additionally, the case study participants were asked to participate in 
three interviews. Figure 2 shares a summary of data source collection which is then described in 
greater detail. 

 

 
Figure 2: Data Sources Overview 
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Surveys. PSTs were asked to individually complete one questionnaire and one pre/post-
survey. The Academic and Demographic Background Questionnaire contained three parts 
according to recommendations by Siwatu (2007) which state that for studies focusing on 
multicultural aspects, obtaining information about PSTs’ academic and demographic background 
including items related to their racial and ethnic background, coursework, and experiences in 
multicultural settings can be helpful in gaining baseline information. Section A of the 
Multicultural Efficacy Scale (MES) (Guyton & Wesche, 2005) was used to gain insights into 
additional personal and professional experiences PSTs may have had in multicultural settings. 

Section B and C of the MES was used as the pre- and post-survey. This survey contained 2 
parts - Part 1: Attitude Towards Teaching Culturally Diverse Students and Part 2: Efficacy in 
Implementing Multicultural Teaching Strategies. As the pre-survey was used to establish a 
baseline for participants' perceptions of how prepared they feel to enact the teaching practices 
discussed. These results were then compared to the post survey through a matched pairs t-test for 
dependent samples to assess any changes. 

Tasks, Assignments and Reflections. One of the major goals of ethnomodeling is to 
acknowledge, value, and respect the traditional and local knowledge and to find and develop 
techniques to provide a translation and contextualization of mathematical ideas. In alignment 
with these ideas, three tasks and two activities were developed for this study focusing on both 
valuing and respecting diverse cultures and histories and learning and translating geometrical 
ideas as well as intentionally emphasizing the iterative process of the ethnomodeling cycle. Each 
task began with contextualizing the task to give value and respect to the local ethnomathematics 
practices (Task Launch). In the next phase of the task, participants engaged in the mathematical 
modeling process to mathematize and find a solution to the given problem (Mathematize and 
Find a Solution). In the last phase, the task recontextualized the situation by connecting the task 
to local knowledge with a particular focus on valuing and respecting the local practices 
(Reflections and Connections).  

These tasks were created using examples of ethnomodeling tasks described by Rosa and 
Orey (2009), and culturally relevant mathematical modeling tasks described by Anhalt and 
colleagues (2018), as well as built on researchers’ previous work (Safi & Desai, 2017). Table 3 
provides a brief overview of the ethnomodeling connections (cultural/historical and geometry 
connections) for each of the assignments and tasks. Following engagement in each task, PSTs 
submitted an individual written reflection. The assignments were completed individually outside 
of class and the tasks were completed in small groups of 4-5 PSTs during class time. 

Interviews. The six participants chosen as the cases participated in three semi-structured 
interviews. Figure 2 in the Data Collection and Procedures section shares when in the process 
each interview took place. Each of the interviews provided participants an opportunity to extend 
and reflect on their group’s work, as well as their own beliefs and perceptions. 

Data analysis. The data collected for this study comprised both quantitative and qualitative 
components. The questionnaire as well as the pre-/post-surveys were analyzed quantitatively 
using descriptive statistics as well as a matched pair t-test. Task artifacts, task reflections, as well 
as interviews were analyzed qualitatively through coding and categorizing artifacts by themes 
based on the Ethnomodeling Conceptual Framework and finding other themes that emerged 
during the analysis.  

 
Table 3: Assignments and Task Descriptions and Connections 
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Task Cultural/Historical 
Connections 

Geometry Connections 

Assignment 1: 
Geometry Around 
You 

Connections to local 
cultural and historical aspects 

Geometry in the world around us 

Task 1: City 
Explorations 

Cultural and historical 
aspects that have influenced 
city and structural planning 

Angles, 3D shapes, Properties of 
circles, Scale drawings 

Task 2: Tiles and 
Tiling Patterns 

Tiles and tiling patterns 
from around the world with a 
focus on cultural and historical 
significance of Mexican 
Talavera tiles 

Geometric transformations, 
Ratios/ Scale 

Task 3: Exploring 
Connections between 
2D-3D Geometry 

Connections to Moorish 
architecture and influence of 
cultures across time and place. 

2D ←→ 3D geometry, Lines/ 
segments, Parallel/ perpendicular 
lines, Symmetry, Midpoint, 
Geometric modeling (HS standards) 

Activity 2: 
Creating your own tile 

Connections to own culture, 
history and identity. 

Lines/ segments, Parallel/ 
perpendicular lines, Symmetry, 
Midpoint, Geometric transformations, 
Geometric modeling (HS standards) 

Results 
The data collection process that included both quantitative and qualitative data is  

summarized in this section. Specifically, these results are examined through the lens of the 
Ethnomodeling Conceptual Framework (Figure 1) which guided all aspects of this study 
including the task creation, data collection, and data analysis. The three main components of the 
ethnomodeling framework include cultural anthropology, ethnomathematics, and mathematical 
modeling. Following the individual summary of each, the results are synthesized to discuss 
PSTs’ work with ethnomodeling. For the purpose of this paper, we focus the analysis on the 
individual and group data from Group 2.  
Case Descriptions 

 The primary focus of this study involved aspects related to the identities and backgrounds of 
teachers and students and as such it would be expected that these PSTs’ personal stories 
impacted the ways they engaged in this study. Group 2 members were Helina, Diego, and three 
additional PSTs. The group was diverse in terms of gender, race and ethnicity.  

Helina identifies as a White female and at the time of this study was a third-year student at 
the university. This was her third major – prior to this she was an architecture major and then a 
computer science major. Outside of mathematics classrooms, she has had these discussions and 
experiences in her K-12 art and undergraduate architectural classes, and also enjoys doing her 
own research to learn about architectural styles and cultures from around the world. These 
experiences seemed to greatly influence her contributions to the small group and whole class 
discussions. 

Diego identifies as a Hispanic male, and at the time of this study, Diego was a mathematics 
teacher at a private school. From all the PSTs in the class, he was the only one with formal K-12 
teaching experience. Outside of teaching and learning mathematics Diego shared his other 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1169



 

biggest passion is music. Diego was able to bring in his experiences as a current teacher. These 
perspectives were important in his interactions with the tasks as well as in the interactions and 
discussions he had with his peers. 
Cultural Anthropology 

In discussing culturally relevant and sustaining pedagogies and teaching, Ladson-Billings 
(1995), Gay (2000), and Paris (2012) all reinforce the importance of including students’ cultural 
references in all aspects of learning to promote racial and ethnic equality across diverse 
communities. Overall, the mean of the participants' beliefs and attitudes towards culturally 
relevant teaching on the pre- to post-survey increased from M = 3.37 to M = 3.42, however this 
difference was not statistically significant at the p<0.05 level. For the factors relating to overall 
efficacy for implementing culturally relevant teaching practices, the increase in mean was 
statistically significant.  

From the first interview with Helina, and Diego, it was evident that they individually shared 
some tendencies towards wanting to incorporate multicultural ideas in their classroom but not 
necessarily tied in with mathematical content. By the end of the study, both Helina and Diego 
shared that the ethnomodeling activities they engaged in opened their eyes towards the 
importance of incorporating students’ identities and cultures in mathematics. This sentiment was 
also shared by other members of their group who agreed that if engaging in such tasks as PSTs 
had an impact on their views of their own culture and identity, such tasks were even more crucial 
to incorporate with K-12 students who are learning the content for the first time. 
Ethnomathematics 

Ethnomathematics focuses on studying practices of people in different cultures from around 
the world (Ascher, 2002; D’Ambrosio, 1985). From the beginning of this study, as indicated by 
the pre-survey data, many of the PSTs had favorable attitudes towards culturally relevant 
teaching. From their own experiences as K-12 students, Helina and Diego mentioned learning 
about the integration of multicultural ideas in their world history or world languages classes, or 
“we would talk about things during Black History Month and things like that but the focus was 
really on testing” (Helina, Interview 1). Through their engagement in this study, the PSTs were 
able to experience geometry focused tasks through which they saw a model for integrating such 
ideas within their future mathematics classrooms. As Group 2 shared in their final reflection, 

Our perceptions changed because we could see that there is so much geometry in the world 
around us as well as in culture that we can incorporate into our lessons. It has made us all 
look at a different way to go about how we can include everyone's identities and cultures that 
we would not have thought of before. (Group 2 Reflection) 
In addition to becoming more aware of the geometry that exists in the world around them, 

this group also shared how the tasks from this study provided them with a model for synergistic 
integration of both incorporating their own as well as their future students’ cultures and identities 
as well as teaching and learning mathematics. 
Mathematical Modeling With Focus on Geometry 

Students sometimes perceive school mathematics to be a narrow set of rules and algorithms 
that have little or no meaning to their lives. This was evident in both Diego and Helina’s 
responses to what they think of when they hear geometry - “shapes, proofs, and the subject that 
so many students hate” (Interview 1). When mathematical content is devoid of relevancy to 
students and their lives, there is a decrease in interest and motivation for learning it. Geometric 
ideas and images surround students in the form of art, architecture, and patterns, and “by 
integrating geometry, art, and history, we can create opportunities for students to experience the 
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excitement and beauty of mathematics that build on foundational geometric ideas and elevate 
student interest in mathematics and related subjects” (Desai & Safi, 2020, p. 96). An 
ethnomodeling approach allows for the focus on both learning about historical and cultural ideas 
and engaging in the mathematical modeling cycle to further learn about the mathematics of these 
practices. 

Following each in-class task exploration, PSTs individually reflected on their experiences. 
During their explorations, in their interviews, as well as elsewhere in their reflections they 
discussed many mathematical ideas their group engaged in. However, when asked to name 
specific standards, they often left out key ideas. In sharing a specific example of the changes they 
would make for the future, for Task 2, Helina shared that her group would need to focus on 
connecting their plan back to the real world context. In creating a plan for tiling their wall, they 
used reflections which is possible on GeoGebra, however in real life where tiles are one sided 
this would not work. Diego added that a solution for this could be pre-designing two tiles that are 
reflections of one another. Such discussions point to the need for integrating real-world contexts 
into mathematics tasks. 
Ethnomodeling 

At the beginning of this study, ethnomodeling was new terminology for all of the 
participants. Many of them had some familiarity with engaging in mathematical modeling tasks 
in previous mathematics education courses, however integrating that with cultural and historical 
components was a new approach for them. In their final group reflections when asked how they 
would describe ethnomodeling tasks to a friend or colleague outside of this study, the group 
shared “Ethnomodeling is incorporating culture and art into mathematical concepts”. 

While the group was able to define key components of ethnomodeling, in sharing how these 
tasks will influence their own practice, the group shared they would use such tasks in introducing 
concepts before they go on to teaching traditional textbook content. This response calls for a 
greater need for continued discussions about redefining what it means to do, teach, and learn 
mathematics in our mathematics teacher education preparation programs.  

Discussion and Concluding Remarks         
While all the participants agreed that ethnomodeling tasks were necessary to incorporate in 

mathematics education, there was a consensus that they would need more guidance and examples 
of how to incorporate such tasks into other mathematical content domains. Research efforts have 
indicated the need for further ways to explicitly connect students' identity, culture with 
mathematical experiences - and ethnomodeling can be one way to achieve this goal. As 
educators, we have a moral responsibility to tell the story of mathematics from multiple 
standpoints that provide our students an immersion in mathematical experiences informed by 
cultural and historical perspectives (Naresh, 2015). Through engaging in ethnomodeling tasks, 
PSTs can learn to value and respect mathematical practices of diverse cultures and traditions as 
well as become more prepared to engage their students in such geometric tasks. An 
ethnomodeling approach creates necessary critical dissonance as it pushes on current inequitable 
and unjust systems, and through this integrated ethnomathematics and modeling approach we 
can create 'resonant harmony. Through such explorations, PSTs are able to learn mathematical 
content in de-siloed and connected ways, and naturally find connections between mathematics 
and other content domains - and explore and share their own experiences. Such experiences also 
empower PSTs to engage their future students to experience the wonder, joy, and beauty of 
mathematics in the world around them. 
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The dissonance in the field between practice-based and justice-oriented approaches to teacher 
education motivated my review of the literature on the relationship between these approaches, 
specifically in the context of mathematics teacher education. I reviewed literature to better 
understand reasons for this dissonance and explore how these approaches might be harmonized 
within mathematics teacher education. Building on this review, I present a framework for 
conceptualizing practice-based approaches in justice-oriented ways. I argue social foundations 
can support preservice teachers in developing a critical lens to apply in their enactment of 
mathematical practices through practice-based approaches. 

Keywords: Preservice Teacher Education, Teacher Educators, Social Justice 

Problem Statement and Objectives 
The dissonance in the field between practice-based teacher education (PBTE) and a teacher 

education oriented toward social justice (SJTE) motivated my review of the literature on PBTE 
and SJTE, with connections to mathematics teacher education (MTE). I reviewed the literature to 
better understand reasons for this dissonance and to explore if and how these approaches could 
be harmonized within MTE. The following research questions guided my analysis: (1) For what 
reasons have mathematics teacher educators adopted practice-based approaches? (2) What 
opportunities and challenges have mathematics teacher educators experienced when 
implementing PBTE with respect to issues of social justice? and (3) How can PBTE and SJTE be 
harmonized within MTE?  

PBTE emerged as a response to a persistent problem in teacher education, the problem of 
enactment (i.e., the struggle amongst beginning teachers to bridge theory and practice) 
(Kennedy, 1999). This problem motivated teacher educators to conceptualize a professional 
knowledge base for teaching and the practices involved in the work of teaching (i.e., high-
leverage practices), and make this learnable to PSTs through opportunities to examine and enact 
the practices (i.e., pedagogies of enactment; Grossman et al., 2009) before entering the 
profession (Ball & Bass, 2002; Ball & Cohen, 1999; Ball et al., 2009; Grossman et al., 2009; 
Holmes Group, 1986). However, as teacher educators adopted practice-based approaches, some 
worried these could be reductive and reinforce the status quo of whiteness (Philip et al., 2019), 
while others have leveraged practice-based approaches for supporting the enactment of justice-
oriented pedagogy (e.g., Schiera, 2019 & 2020). This tension between different lenses of PBTE 
first motivated my exploration into the dissonance (Doherty, 2022; Doherty, in press). In this 
conference proceeding, I will build on those ideas and tie them more specifically to mathematics 
teacher education. My motivation for addressing the dissonance between PBTE and SJTE is to 
show these two approaches can be more powerful together than as stand-alone initiatives. In 
other words, harmonizing these approaches within MTE can better support PSTs to 
operationalize justice-oriented mathematics pedagogy. 
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Theoretical Framework 
Literature Review 

Differing conceptualizations of PBTE across time and across scholars seem to be one 
contributing factor to the dissonance between PBTE and SJTE. Forzani (2014) documents these 
various conceptualizations and asserts, “what teacher educators and education researchers have 
meant by ‘practice’ and ‘practice-based’ teacher education has varied from one era to the next” 
(Forzani, 2014, p. 357), and adds, “there seems to be little consensus about what it means or 
should mean” (Forzani, 2014, p. 358). For instance, Philip et al. (2019) describe PBTE as a 
reductive, prescriptive, and decontextualized approach that “amplifies oppression,” whereas 
Schiera (2019 & 2020) leverages practice-based approaches for bridging justice in theory with 
practice and acknowledges these practices are contextually situated. Schiera (2019) noticed PSTs 
struggled to operationalize justice-oriented pedagogy, particularly in a world made by and for 
whiteness, and practice-based approaches can support PSTs in navigating this and acting on 
injustices through their teaching practice.  

Studies have investigated different combinations of PBTE, SJTE, and MTE, but fewer have 
studied the integration of all three. For instance, studies found practice-based approaches 
(particularly, pedagogies of enactment) improved PSTs’ readiness and competency to teach 
mathematics content (see Boerst et al., 2011; Campbell and Elliott, 2015; Ghousseini and Herbst, 
2016; Lampert et al, 2013; Tyminski et al., 2014). However, these were not paired with a justice-
oriented focus. Some studies harmonized PBTE and SJTE within other content areas other than 
mathematics, such as social studies (e.g., Schiera 2019 & 2020) or multiple subject areas 
(Calabrese Barton et al., 2020; Kavanagh et al., 2020). Kavanagh and colleagues (2020) found 
approximations of practice can improve teacher responsiveness to students’ contexts; and 
Calabrese Barton et al. (2020) identified justice-oriented high-leverage practices they observed 
from teachers’ instructional practices. While pedagogies of enactment (such as approximations 
of practice) can help operationalize pedagogy, naming practices (such as justice-oriented high-
leverage practices) can contribute to a professional knowledge base of the work involved in 
teaching for social justice. While these studies were not specific to MTE, an empirical study by 
Campbell and Elliott (2015) discuss PBTE in relation to MTE, with a closer connection to SJTE. 
Campbell and Elliott (2015) situate their work in sociocultural theory and leverage 
approximations of practice for supporting PSTs in being more responsive to students, which they 
call part of “ambitious and equitable mathematics teaching.” While the studies referenced above 
are notable in attempts to harmonize some combination of PBTE, SJTE, and MTE, there were no 
peer-reviewed published studies that I could find that wholly integrate all three. I found reductive 
dichotomies of theory and practice combined with different lenses of PBTE and SJTE 
contributes to reductive dichotomies of PBTE and SJTE within MTE.  
Conceptual Framework 

In this section, I present my framework for integrating PBTE and SJTE within MTE, with 
connections to dissonance and harmony. In music, harmony results when more than one note is 
played simultaneously to produce a sound arguably more powerful than the sound each stand-
alone note could make. By harmonizing PBTE and SJTE within MTE, the field can realize a 
teacher education that is more powerful than trying to implement them as separate, stand-alone 
initiatives. Schiera (2019) explains integrating PBTE and SJTE entails learning to develop a 
critical consciousness and applying that lens to act on inequities in practice (e.g., in genuine 
mathematics teaching contexts). Schiera (2019) draws on Ball’s (2018) notions of discretionary 
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spaces which explains practice is never absent from belief and disposition and teachers have the 
power to disrupt or reinforce patterns of inequity through their teaching. Schiera explains,  

These processes of representation, decomposition and approximation could be interrogated 
with critical conceptual tools (Grossman et al., 2009) to investigate whether and how the 
enactment of a practice might reinforce or interrupt inequities. In the field, researchers and 
practitioners together can also investigate the ways that they enact practices in culturally 
responsive ways. Researchers can also look to decompose actions social justice educators 
take in discretionary spaces, following Ball’s (2018) model, to learn further about how 
teachers at all stages of development respond to inequities in the moment (Schiera, 2019, p. 
943). 
The SJ-PBTE Framework (socially just practice-based teacher education framework) 

introduced in Doherty (in press) describes leveraging social foundations with practice-based 
approaches (see Figure 1). It builds on Schiera’s (2019) ideas and is supported by Bowman and 
Gottesman (2013) who also argue for grounding PBTE in social foundations. The framework 
involves identifying high-leverage practices for mathematics instruction, that are made learnable 
to PSTs through pedagogies of enactment, situated in social foundations that support PSTs’ 
development of a critical consciousness to apply as a lens in the enactment of the practices. The 
framework has connections to TeachingWorks (2022b), which acknowledges teaching is not 
neutral and supports grounding teacher preparation in pedagogies of enactment that support PSTs 
in noticing and disrupting patterns of inequity through their practice. This involves identifying 
the work of teaching (i.e., high-leverage practices) and how the work can advance justice, and 
making this learnable to PSTs through pedagogies of enactment. For instance, for each high-
leverage practice, TeachingWorks (2022a) offers explicit statements describing how the practice 
can advance justice. For example, the description of the high-leverage practice, Implementing 
norms and routines for discourse, contains the subheading “How does implementing norms and 
routines for classroom discourse and work advance justice?” which explains content area norms 
and routines can help students construct and share knowledge but “often reflect dominant power 
and privilege.” Thus, TeachingWorks (2022a) cautions that norms and routines should center 
student voice and in ways that do not marginalize others. Using the framework within MTE thus 
involves identifying high-leverage practices (1) as conceptualized within mathematics spaces and 
(2) specific only to mathematics, and offering similar statements that describe how the practice 
can reproduce or disrupt injustices in the mathematics classroom.  

Another approach to using the framework might involve engaging PSTs in pedagogies of 
investigation (Grossman & McDonald, 2008) about Freire’s discussion of the banking approach 
to education (as related to traditional mathematics), alongside reform mathematics (NCTM, 
1989) as moving closer (but not fully) to Freire’s problem-posing and co-intentional education, 
where students share in the co-construction of knowledge and use mathematical argumentations 
with justifications to decide what counts as truth rather than the teacher readily confirming 
answers. Pedagogies of investigation can be interwoven with pedagogies of enactment 
(Grossman et al., 2009) to provide PSTs scaffolded and mediated opportunities to carry out this 
work. Although not every scenario can be approximated (because teaching and learning is 
contextual), I argue approximating within various contexts that center student voice can help 
PSTs learn to be more responsive to students when later placed in other contexts. This is 
supported by Kavanagh et al. (2020) who found teachers’ responsiveness to students improved 
through approximations of practice. I argue approximations and field teaching experiences 
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should be mediated by teacher educators and mentor teachers to support PSTs in disrupting 
inequities that arise within the discretionary spaces (Ball, 2018) of mathematics instruction.  
 

 
 

Figure 1: SJ-PBTE Framework 

Discussion 
Learning to teach mathematics in ways that enact ambitious and justice-oriented pedagogy is 

complex work, which is why I argue for supporting PSTs through a practice-based approach. 
Without practice-based approaches to support PSTs, many struggle with figuring out how to 
operationalize justice-oriented pedagogy (Kavanagh & Danielson, 2019; Schiera, 2019). Schiera 
explains, “SJTE critiques [PBTE] for reproducing social structures that perpetuate inequities 
(Philip et al., 2019). Such divergent starting points make it difficult to find common ground from 
which [PBTE] and SJTE begin to collaborate. This leaves novices… alone to figure out how to 
become ‘comfortable’ with practice while being ‘mindful’ of justice amid the complicated 
process of learning to teach” (Schiera, 2019, p. 2). Although broad in design, the SJ-PBTE 
Framework shows the potential for a socially just, practice-based teacher education situated 
within MTE. Because of the complex work of teaching (Ball & Forzani, 2009) and even more 
complex work of harmonizing these perspectives, this integration itself will be complex. The 
framework has implications for the field to develop more empirical studies that integrate PBTE 
and SJTE within MTE. It also has implications for the field to identify justice-oriented high-
leverage mathematics practices, similar to those described in Calabrese Barton et al. (2020). 
Mathematics education is a highly influential field, as it serves as an academic and economic 
gatekeeper (Martin et al., 2010). Due to its strong influence on society, helping beginning 
teachers learn to enact equitable mathematics pedagogy is important work for social justice 
initiatives, and I believe practice-based approaches can support this.  
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Supporting our teachers means that we must continually improve our teacher preparation 
programs. This improvement is influenced by various sources (e.g., state policies, university 
culture, program environment, faculty, needs of local schools, research). An overlooked 
perspective on teacher preparation programs is students’ voices. We conducted a multi-stage 
survey to inquire into students’ perspectives about their mathematics teacher preparation 
program. We discuss mathematics teachers’ beliefs about the strengths and weakness of their 
preparation program. Findings from both stages indicated that students experienced disconnects 
between what they expected to get out of certain courses and what we, as faculty, expected them 
to learn. Although these are not novel issues, they are pertinent issues related to improvement of 
teacher education and serve as the impetus for conversations around programmatic 
improvement.  

Keywords: Systemic Change, Teacher Beliefs, Teacher Educators 

Pre-service secondary mathematics teachers take a variety of mathematics, education, and/or 
mathematics education courses in their programs (Darling-Hammond et al., 2005). The courses 
and structure of the program are heavily tied to the institutional context. Local institutional 
contexts are always looking to improve their programs to enhance the recruitment and retention 
of students, as well as improve the overall teacher education experience. Student voices and 
perspectives are an important, yet often overlooked, component in the process of instructional 
changes related to improving these programs (Allen & Peach, 2007; Fielding, 2001). In this 
work, we share findings from student voices and perspectives on their beliefs about how their 
program is preparing them or has prepared them to be teachers. Our research question was: What 
do preservice and inservice teachers believe about how their program is preparing them to be 
teachers or has prepared them to be teachers? The goal of this research is not only to learn 
students’ perspectives on their education, but to understand what needs they have even after 
leaving our programs. What role does teacher education play in professional development post-
graduation? To situate this, we will also describe the specifics of our mathematics teacher 
preparation program. First, we summarize relevant literature. We then discuss our methods and 
findings. 

Literature 
There is much literature on teacher preparation programs, oftentimes using student 

achievement to discuss successful programs (e.g., Boyd et al., 2009; Koedel et al., 2015). More 
recently, though, focus has shifted to standards for mathematics teacher preparation that are not 
solely about student achievement. In 2017, the Association of Mathematics Teacher Educators 
(AMTE) published the Standards for Preparing Teachers of Mathematics. To assess candidates, 
AMTE recommends assessing mathematical knowledge relevant to teaching, mathematics 
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teaching practice, and dispositions. Regarding programs, AMTE recommends assessment of 
stakeholder engagement, program curriculum and instruction, effective clinical experiences, and 
recruitment and retention. An overall assumption within these standards is that “those involved 
in mathematics teacher preparation must be committed to improving their effectiveness in 
preparing future teachers of mathematics” (AMTE, 2017, p. 2). 

Thus, given these important standards and recommendations, the teacher education field 
needs to know how these standards are communicated to students in teacher preparation 
programs. Having teachers reflect on their instructional practice is a well-documented successful 
strategy for teacher education (e.g., Etscheidt et al., 2012); we aim to use reflection in this work 
at the programmatic level. 

Methods 
Research Design and Context 

Our research question was: What do preservice and what did inservice teachers experience in 
their mathematics teacher preparation program? To answer this question, we conducted a two-
phase exploratory convergent parallel design study (Creswell & Creswell, 2017; Tashakkori & 
Teddlie, 1998), wherein we designed a survey to collect both qualitative and quantitative data in 
Phase 1, and results from both data sets are used to compare or relate our findings for an overall 
interpretation. We then sent a follow up survey in Phase 2 to ask targeted qualitative open-ended 
questions from the three themes that emerged from the qualitative data in Phase 1. 

In Phase 1, we sent a survey to our current undergraduate middle-grades and/or secondary 
mathematics education students and former graduates from these programs from the last 10 
years. Participants either graduated from or are currently enrolled in a university in the 
southeastern United States which is a UTeach replication site. Preservice teachers seeking 
certification to teach middle grades and/or secondary mathematics have multiple majors.  
Students can either major in Mathematics or Middle Grades Mathematics. In some cases, 
students will choose to major in both. Mathematics certification also requires an additional major 
in Science and Mathematics Education (SMED). All of the mathematics courses are taught by 
mathematics education or mathematics faculty within the Mathematics Department. The SMED 
courses are taught by education faculty in the School of Education. Although there is not a 
formal connection between mathematics and education courses, the faculty in both units try to 
provide a cohesive experience. In the mathematics courses, the focus is strictly on content 
whereas the education classes focus on the various aspects of teaching.  
Data Collection 

We used alumni email lists and current student departmental email lists to ask for 
participation. Sixty-nine participants filled out the Phase 1 survey (15 current students and 54 
former students). The survey collected demographic information, open-ended responses, and 
Likert-scale questions. The demographic information was gender identification, race, ethnicity, 
first-generation college student status, majors, minors, and classification (former student, senior, 
junior, sophomore, first-year). The quantitative data were 5-point Likert-scale questions 
(strongly agree to strongly disagree) where participants were asked how their program was 
preparing or has prepared them to: 1) teach mathematics in a student-centered way; 2) inquire 
into my students’ mathematical thinking; 3) assess students’ mathematical knowledge; 4) prepare 
mathematics lessons; 5) solve mathematical problems; 6) support diverse students and diverse 
student thinking; and 7) make connections between mathematics content. Example open-ended 
questions for former students were: 1) Please describe your teaching style and why that is your 
approach to teaching mathematics; 2) What about our program, in regard to your [mathematics / 
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education] courses, [did / did not] prepare you for your current position? Current students were 
asked similar questions, rephrased to be applicable to them. 

In Phase 2, we asked specific questions based on the results from Phase 1. Specifically, we 
asked: 

1. Describe how the content you learned in your courses is connected (or not connected) to 
the content you teach in your classes. Please discuss both mathematics and education 
classes, and be as specific as possible. 

2. What is your definition of good mathematics pedagogy? Where have you experienced 
this as a student and as a teacher? 

3. Concerning your response to the previous question: Describe how often and in what ways 
your teaching does or does not espouse (live up to) this definition of good mathematics 
pedagogy. 

4. Classroom management is often something that teachers feel least prepared for. Please 
describe a specific issue you have had with classroom management during your time as a 
teacher. Why did you feel prepared or unprepared to deal with it? 

Data Analysis 
To analyze the quantitative data from Phase 1, we hoped to perform an ordinal logistic 

regression of the five-point scaled Likert items – comparing students’ majors and their 
classifications. Unfortunately, the data did not meet the assumptions for this regression approach, 
particularly we failed the proportional odds assumption (p < 0.001). Additionally, in looking at 
the raw scores for students, many students responded similarly to one another with little 
deviation (i.e., most students responded with somewhat or strongly agree on all Likert items) – 
indicating that there was little to no difference in how students responded based on major or 
classification. As such, we will focus predominately on the qualitative data analysis for this 
project as it provides a richer description of students’ voices.  

To analyze the qualitative data (in both Phase 1 and Phase 2), we did open coding and 
thematic analysis (Braun & Clarke, 2006). As the crucial component of our study was to lift 
students’ voices and reflections about their teacher preparation programs, we did our initial 
coding in vivo. Two researchers individually coded all the data. They then discussed 
disagreements on coding to continue to refine the codebook. Then all three researchers coded the 
data with the refined codebook. All three met to discuss changes that needed to occur to have an 
agreed upon codebook. 

Results 
Recall our research question was: What do preservice and inservice teachers believe about 

how their program is preparing them to be teachers or has prepared them to be teachers? We 
conducted a two-phase exploratory convergent parallel design study to answer this question. 
Three central themes emerged regarding students’ experiences in our programs in the Phase 1 
analysis. These were 1) connections to content they will teach, 2) what is good pedagogy, and 3) 
classroom management. We then sent a follow up survey to get more information specifically 
relating to these three themes. The results presented below combine results by theme, but clearly 
indicate which phase they were from. 
Connections to Content They Will Teach 

In the Phase 1 survey, many former students made connections between how their 
mathematics courses tied directly to what and how they are now teaching their students. 
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Specifically, there were 15 comments from former students that mentioned seeing this 
connection. Several comments focused on direct content connections. For example, 

My courses gave me a good background to the knowledge I already had, which allows me to 
more easily break down the content for students. The best example I have is the geometry 
course I took. We delved further into geometry proofs than normal high school curriculum 
goes, but that knowledge has helped me create a foundation of learning for my sophomore 
geometry students. 
Likewise, another former student said, 
I felt like the courses I took at University X were very helpful in preparing me for teaching 
mathematics. I learned a lot about how connected the various parts of mathematics were 
which helps me to use those connections with my students currently. 
Additionally, several former students discussed not only the connection between what they 

learned but how the classes were taught. “[I] developed a better understanding of the ‘why’ 
behind the mathematics, an understanding of how secondary concepts are used in post-secondary 
mathematics, and learned concepts that I now teach that I did not learn in school.” And some 
students referenced certain classes. 

The problem solving class was THE most effective class for teaching me how to teach math, 
and it wasn’t even a teaching class directly. It made me realize how students struggle and 
what makes a difficult problem fun, and I strive to recreate or use problems from that class in 
my own classroom. I also really think the class with [professor] helped with explicitly 
integrating math practices and finding research based (even multi-disciplinary) inquiry 
activities to do with students. 
From these comments, we are encouraged that these respondents are taking their experiences 

in college level mathematics classes and connecting them to their practice as teachers. However, 
not all participants on the first survey mentioned similar experiences. Some former, as well as 
current students, commented on not seeing the connection between their mathematics courses 
and what they teach or will be teaching (i.e., Horizon Content Knowledge (Ball et al., 2008)). 
Specifically, there were 12 related comments. These comments often centered on the idea that 
the content that was taught in their undergraduate mathematics classes was beyond the content 
that they teach their middle or high school students. For example, one respondent said “There 
was not a lot of information targeted at helping us teach mathematics to students. For example, 
what are common misconceptions high school students have about math and how can we 
counteract that in the classroom.” Another said, “Although I enjoyed all the mathematics courses 
required, the higher level classes are just not that applicable.” 

Additionally, several comments stated that the undergraduate mathematics classes should 
have discussed the aforementioned middle and high school content. “I would have appreciated 
more of an in-depth look at the content I’m currently teaching my students. While we covered 
some parts of the content, there was much that I am now teaching that I didn’t see … in college.” 

Perhaps, the comment that summarizes these student experiences best addresses both 
mathematics and education classes simultaneously. 

Creation of content is one area that I wish I would have been given more of a chance to 
practice. [Education classes] taught me to teach lessons, and the mathematics [classes] taught 
me to understand the math. However, I did not have a chance to really marry the two skills. It 
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would have been helpful to have a course solely dedicated to creating content (test items, 
quizzes, activities) that checked for higher-order thinking questions and rigorous task 
creation. 
On the Phase 2 survey, we directly asked how respondents perceived how the content they 

were taught connects (or does not) to the connect they teach. Nine respondents indicated that the 
classes they took were helpful, but not all respondents discussed the connection of content. Of 
those that did five said that the mathematics content they were taught was directly connected. For 
example, one respondent said, “the math I have been teaching is at a lower level than I was 
taught at the college level and has me prepared to go beyond and answer questions students may 
ask.” Interestingly, another respondent had a similar response but a different implication. “The 
math courses I took, while I found interesting, really didn’t help prepare me for teaching. The 
content taught is above the levels I teach.” Three respondents had similar comments that the 
content was not connected to what they teach. In these two comparing responses we see that both 
students knew that the content in college level mathematics class is beyond what they will be 
teaching their future middle or high school students. However, one respondent perceived this as a 
positive because it led them to be able to answer questions beyond the content, and the other 
respondent did not see this similar value. 

A take-away from this finding is that students currently in our program and those who have 
completed it, vary in terms of what they expected certain courses to give them. The mathematics 
courses in our program are designed to be college-level mathematics classes that are taught in 
student-centered ways focusing on conceptual understanding, and then that conceptual 
understanding connects to the content they will teach. As this was not consistent across 
participants, this indicates potential programmatic clarity issues (e.g., transparently explaining to 
our students the purpose of the program design and specific classes). 
What is Good Pedagogy? 

Another theme that emerged from our data was the idea of what good pedagogy is and where 
students see it. Preservice teachers experience pedagogy, from a learner’s point of view, in their 
own classes or in their field experiences. In Phase 1, 12 participants discussed, from their point 
of view, how their mathematics classes were taught. For instance, one participant said, “Many of 
the mathematics courses within the Middle Grades mathematics degree were designed as inquiry 
based courses themselves. As such, they served as a good model of how to teach math using this 
method.” While another said, “all of the Middle Grades mathematics courses I had challenged 
me to think about the ‘why’ for each math skill and operation, not just the how. This deeper 
understanding helps me identify student misconceptions.” 

There were a few instances of former students saying that courses they took were not student 
centered, but they often referenced specific courses (e.g., Abstract Algebra) which Secondary 
Mathematics majors take and are not taught by mathematics education faculty within the 
department. Importantly, when participants referenced good pedagogy, it most often focused on 
student-centered instruction. Yet, when we asked former students to describe their teaching style, 
16 were coded as all or leaning student-centered, 15 were coded as all or leaning teacher-
centered, and 14 were coded as a mix between the two. Notice the even split. Further, some 
participants who identified as leaning teacher-centered were also the same participants that 
mentioned the disconnects in the previous theme. 

Regarding education classes, the comments on what is good pedagogy often focused on how 
those classes focused on inquiry-based learning but especially focused on experiences in the 
field. There were 18 comments from current and former students addressing the importance of 
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field experiences. For instance, one participant said, “I believe getting to actually teach students 
early in [Program Name], gave me confidence in classroom management. While teaching real 
students, I began creating my teacher personality.” 

In Phase 2, we focused on asking the participants to define good mathematics pedagogy for 
themselves and then state if their teaching does or does not espouse this definition of good 
mathematics pedagogy. Three respondents said that direct instruction works best for them and 
their students. One said, “a clear concise instruction of the topic that at least addresses where it 
can be relevant outside of the math classroom.” All respondents who said their teaching was 
teacher-centered said that they do achieve this style of teaching all or most of the time. Most 
respondents said that they teach in student-centered ways. “Good mathematics pedagogy is 
allowing students to construct understanding for themselves while guiding them toward that 
understanding.” Similarly, some respondents discussed the importance of conceptual 
understanding. “Good mathematics pedagogy is being able to understand math on a conceptual 
level, understanding how I got my answer, and why it makes sense.” Most respondents said that 
most of the time they can achieve this teaching style. However, two participants the hardships 
with this. One said,  

I take pride in my classroom and I love my students. As a result, I believe my teaching lives 
up to my mathematics pedagogy daily. In the current state we are in with challenges from the 
COVID situation, I do believe I am currently challenged more daily to live up to my 
expectations for my classroom experiences for my students. 

Another said, 
My teaching does not live up to this definition as often as I would like due to time 
constraints. I cannot give students the amount of time they need to discover and construct 
their own understanding within the confines of my class times and the amount of content 
they need to see each year. I am able to do this about once every other week for an entire 
class, and other classes I try to build in smaller amounts of time for discussion and discovery, 
just not on a large scale. 
This is often a very common reason that teachers do not implement active learning as often 

as they wish: time constraints. Similarly, the COVID-19 pandemic has impeded their ability to 
teach in the way they believe to be most successful for their students. 
Classroom Management 

Overwhelmingly, 23 participants in Phase 1 expressed a wish for more learning in their 
program on classroom management. One participant said, “I felt unprepared to deal with a class 
of 30 students when the time came.” Whereas another participant mentioned classroom 
management but acknowledged the importance of being in the K-12 classroom to learn about 
that. “I am not sure if there is a way to prepare for classroom management without having your 
own classroom, but that is the one skill I wish I could have gotten more experience in.” 

Respondents from Phase 2 elaborated on the specifics they wished they knew about in 
regards to classroom management from their preparation programs. Six respondents have had 
issues with behavior management and disruptive students. Two respondents were not prepared to 
deal with students having cell phones in class and the disruption it causes. Two respondents 
mentioned not being prepared for students with mental health issues (exacerbated by the 
pandemic). Respondents also mentioned struggles with apathetic students, unsupportive parents, 
and a lack of administrative support. One respondent specifically discussed their role in 
classroom management. 
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A specific issue was realizing I CAN affect and shape student behavior/misbehavior. In 
[education] classes, I was taught to accept all answers and let students control/lead classroom 
discussion. This caused me to not properly address student misbehavior and for general 
confusion and frustration in the classroom. For example, when doing PBI [project based 
instruction], students and groups would not participate in the learning, but distract students 
and the class. 
This comment addresses a connection between teachers’ desired teaching styles and learning 

goals and how classroom management can distract from those learning goals. These respondents 
overwhelmingly discussed a need for support in managing their classes; and continued support 
even after their teacher preparation programs. 

Discussion and Conclusion 
We aimed to understand what future teachers experience when they go through a 

mathematics teacher preparation program. Our findings are heavily tied to our institutional 
context as a UTeach replication site and that in particular we have several mathematics education 
faculty housed in the mathematics department. Thus, our findings not only inform practically 
how we can improve our program, but they illuminate overarching gaps between how we design 
our programs and what students experience when they go through them (or what they expect to 
get out of a program). 

From our data we found three overarching themes about students’ experiences in teacher 
preparation programs. We then followed up with additional questions regarding these three 
themes. First, there was a split between participants in terms of ones that experienced the 
connections to content they will teach when in their undergraduate mathematics classes to ones 
who did not see that connection. Moreover, the fact that college mathematics courses covered 
content beyond middle and high school content was sometimes a benefit and sometimes not for 
respondents. Second, what is good pedagogy was discussed in the context of both how we as 
mathematics education faculty teach our courses and their experiences in the field. Further, most 
of the time, teachers are able to live up to their definition of good pedagogy, but if they are not, it 
is often due to time constraints or issues related to the pandemic. Third, classroom management 
was something that a large majority of participants wished was a focus of their learning. 
Specifically, teachers have issues with behavior management, disruptive students, cell phones, 
unsupportive parents, and more, and these are all topics they wish were discussed in their teacher 
education programs.  

Together, these three themes highlight an important take-away for the field of mathematics 
teacher education. That is, what is the purpose of a program in mathematics teacher education 
(and the courses within it)? Often in academia, program design is shrouded behind administrative 
procedures that students never need to know about (Fielding, 2001). They are at a university to 
get a degree. Those degrees vary by state and university. However, our findings indicate that if 
we want students to get the best possible experience out of their teacher education program (as 
they often are designed based on research or community standards (e.g., AMTE, 2017)), then an 
important component of that is to include students in program-level discussions and be 
transparent about what they should get out of an education. We acknowledge that our findings 
are very specific to our institutional context, however, according to Chan (2016), “student 
expectations and purposes for completing undergraduate education tend to be instrumental and 
personal, while institutional aims and purposes of undergraduate education tend to be highly 
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ideal (i.e., life- and society-changing consequences)” (p. 19). We believe this is a larger concern 
in teacher preparation. 

This work provides initial steps in building program reform that is rooted in students’ voices 
and experiences of their program. Moreover, implications from this work will inform the teacher 
preparation research community about perspectives on their education which can be used to 
understanding, from a student point of view, if programs are achieving their goals. Further 
research is needed to ascertain if these disconnects have long lasting effects on effective teaching 
or on the retention of teachers in the field. 
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We examined transitions in secondary math pre-service teachers (PSTs)’ professional identities as 
they engaged in online practice-based, virtual simulations designed to support the development of 
their skills to facilitate argumentation-focused discussions. Using a single item measure, we 
captured a snapshot of the PSTs’ identity at two time points and observed notable shifts over time. 
Findings indicated that identity development was related to PSTs’ opportunities to practice 
teaching in the simulations. For some PSTs, their math teacher identity became more central during 
the semester, while for others it foregrounded other sub-identities.  

Keywords: Preservice Teacher Education, Identity, Instructional Activities and Practices, 
Professional Development 

Teacher identity can be defined as “teachers’ understandings of themselves as teachers, which 
has been shaped through ongoing processes of interpretation and re-interpretation of personal and 
professional experiences embedded in multilayered social [historical] contexts” (Schutz et al., 2020, 
p. 208). Teacher identity is dynamic, develops over time, and continuously evolves (Watson, 2006). 
Identity is thought to be relational (Day et al., 2006); thus, it is formed and reshaped as we negotiate 
and internalize our interactions within our environment. This relational component undergirds the 
notion that no one claims an identity by themselves (Carlone & Johnson, 2007). Thus, identifying as 
a teacher involves how one sees themselves and how that image of self is affirmed or disaffirmed by 
others (Schutz et al., 2020). Additionally, identity tends to be multidimensional, meaning being a 
teacher is only one aspect of who teachers are. Our sub-identities (e.g., sister, Muslim) develop 
through experiences in different contexts which we harmonize over time (Beijaard et al., 2004).  

Research on teacher identity in math education has gained traction within the last two decades 
(Brown & McNamara, 2011; Kaasila, 2007; Lutovac & Kaasila, 2011). This increased attention 
came through acknowledgement that professional identity is “a key influencing factor on teachers’ 
sense of purpose, self-efficacy, motivation, commitment, job satisfaction” and is thus an “essential” 
aspect of “teacher work” (Day et al., 2006, p. 601). Not developing a robust teacher identity can 
manifest in actions that are destructive to career goals and choices and run contrary to teachers’ 
desired ways of being. In more extreme cases, it can lead to early burnout and attrition (Nghia et al., 
2017).  As such, teacher educators have put greater emphasis on designing learning experiences for 
their pre-service teachers (PSTs) to support the development of positive professional identities 
(Izadinia, 2013; Walkington, 2005). We know that engaging in the work and lifestyles of teachers 
(including field experiences or internships) support identity development, so being intentional about 
designing enriching experiences for PSTs bode well for them developing relevant teaching 
competencies and a realistic, rather than idealistic, idea of the profession (Hong, 2010). 

One alternative approach to developing professional identity worth exploring more closely is the 
use of virtual simulations. Simulations, unlike naturalistic settings such as field experiences, can 
eliminate the potentially limiting effect of working in one school with one mentor teacher and allow 
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for carefully crafted experiences to practice aspects of ambitious instruction that is central to the 
work of teachers. This may help in supporting identity development by allowing the simulation 
designer to ensure engagement in the work of teaching in ways that are known to be meaningful. 
Magen-Nagar and Steinberger (2022) and Carrington and Pereira (2011), for example, found that 
PSTs had a clearer image of themselves as teachers following engagement in simulations that were 
integrated into their teacher education courses. In this study, we examined how participation in a 
suite of practice-based simulations designed to support PSTs in developing the skills to facilitate 
discussions focused on argumentation influenced secondary math teachers’ professional identity.  

Study Context 
This study was a part of a larger project focused on understanding secondary PSTs’ 

participation in a suite of three increasingly complex practice-based simulations – Eliciting Learner 
Knowledge (ELK), Teacher Moments (TM), and Avatar-based Simulation (ABS) - collectively called 
the Online Practice Suite (OPS). OPS was designed to address some of the current limitations 
within teacher education programs through providing PSTs support in advancing their skills around 
a single teaching practice, the facilitation of argumentation-focused discussions. The OPS leverages 
the technical aspects of online simulation platforms to decompose complex practice and provide 
PSTs opportunities to engage in repeated practice of different aspects of teaching. Within ELK, a 
pair of PSTs alternatively role play a student or a teacher using a text-based chat, with a goal that 
the PST playing the teacher might elicit the student’s understanding of the topic. Within TM, PSTs 
reviewed written work from two students and planned an argumentation-based discussion based on 
the students’ ideas. In ABS, PSTs practiced facilitating a small-group, argumentation-focused 
discussion about a mathematical idea with five student avatars in an online simulated classroom. 

Dotger and Smith (2009) suggested teachers develop their professional identity by gradually 
learning the practices and expectations of a profession. Thus, participation in OPS created 
opportunities for PSTs to engage in three online simulations and practice their discussion 
facilitation skills, which created a context where professional identity could flourish. We were 
interested in understanding how participation in the OPS would influence pre-service mathematics 
teachers’ professional identity development. Specifically, our research questions were: 1) How do 
secondary pre-service teachers identify in relation to teaching math prior to and after participation 
in a suite of online practice-based simulations? 2) How do these identities change over time? 3) 
What reasons do secondary pre-service teachers provide for their existing mathematics teacher 
identity?  

Participants, Data Sources and Analyses 
Participants included twenty-five PSTs enrolled in secondary mathematics teacher education 

programs at two institutions in the U.S. To track the PSTs’ identity development, we adapted 
McDonald et al. (2019)’s single item measure to capture a “snapshot” of the teacher’s identity at a 
particular moment (p. 4) (Figure 1). This item was embedded at two time points. First, PSTs 
responded as part of an online background questionnaire (BIQ) including items about their personal 
characteristics and professional background, administered at the semester start. Second, they 
responded as part of an online survey administered after completing the final (ABS) simulation. 
Participants were given the following prompt, “Select the picture that best describes the current 
overlap of the image you have of yourself and your image of what a math teacher is.” They selected 
among a set of seven overlapping circles varying in the degree of overlap: 1 = no overlap (do not 
identify as a math teacher) and 7 = near complete overlap (closely identify as a math teacher) (see 
Figure 1). In addition, PSTs explained why this picture best described the image of themselves as a 
math teacher. All PSTs completed the pre-measure; 19 completed the post-measure. 
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                 Figure 1: Single Item Measure (adapted from McDonald et al., 2019)   

Participants’ image selections were tabulated and the sum of the responses for each image number 
on the pre and post measures were included in Table 1. The reasons provided by participants who 
selected a particular image were grouped together by number, then read to identify common themes. 

Findings and Discussion 
Table 1 shows the PSTs’ image selection and the total PSTs who selected each image on the 

pre and post measure. 
 

Table 1: PSTs’ Selection of Image from the Teacher Professional Identity Overlap Measure 
 Number of PSTs Selecting Image 

Image Number  BIQ (pre-measure) (n =25) Post ABS Survey (post-measure) (n = 19) 
1 (no overlap) 0 0 
2 0 2 
3 7 1 
4 (50% overlap) 7 3 
5 10 4 
6 1 7 
7 (more than 90% overlap)  0 1 

Results showed that prior to OPS, a majority of the PSTs (24/25) selected images with medium 
overlap (Images 3-5) between their current image of self (indicated as ME in the overlapping 
circles) and their image of a mathematics teacher. However, there was one PST who indicated 
strong overlap (Image 6) showing that this PST strongly identified as a mathematics teacher. We 
noticed how PSTs’ professional identity shifted towards the end of participation in the OPS. Of the 
19 participants who completed the post measure, eight selected images with maximum overlap 
(Images 6-7) indicating that they strongly identified as mathematics teachers suggesting that PSTs’ 
experiences in the OPS may have supported their identity development as mathematics teachers.  

We also closely examined the shifts in PSTs’ image selections from pre- to post-administration 
and made some interesting observations. We only used data from the 19 participants who completed 
the post-measure in this analysis. First, the range of image numbers changed from 3 to 5 showing 
greater variability in the degree to which PSTs identified as mathematics teachers. For the pre-
measure, PSTs selected images between 3 and 6, however, on post-measure they selected images 
between 2 and 7. Second, PSTs shifts were multi-directional; 12 PSTs identified more strongly as 
math teachers (moving from a lower image number to a higher image number), three showed no 
change (same image number), and four responses moved from a higher to a lower image number. 

We examined PSTs’ reasons for their image selections to better understand influences on the 
PSTs’ identity development. Two factors stood out on responses at the mid-level (Images 3 and 4) 
for either pre or post response or both. One, responses indicated an awareness that their math 
teacher identity was one of multiple identities they held. As Garry noted, “While math teacher is a 
part of me, it does not define me as a person”. The second factor was related to how strongly they 
connected being a math teacher with having actual teaching experience; thus, for those who had 
none prior to OPS, they did not see themselves as math teachers. Hannah captured this well “Since I 
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have not had a lot of in-person experience teaching math, I do not fully picture myself as a ‘real’ 
math teacher yet, but it is still something that I have been studying a lot.” For those PSTs who 
selected Images 6 and 7 during post-administration, they indicated that their experiences within the 
OPS activities provided them an opportunity to practice teaching, which made them feel more 
confident to engage in the work of a math teacher. This underscores the connection between identity 
and efficacy in that individuals tend to identify more closely with a role for which they feel more 
confident performing (Schutz et al., 2020; Kelchtermans, 2009). We noted a subtle distinction 
between the responses associated with Image 6 and Image 7 with respect to feelings of preparedness 
and levels of comfort. More specifically, Ellie who selected Image 7, commented, “I feel super 
prepared after everything this semester to be a teacher!”. Responses associated with Image 6 also 
reflected a sense of being better prepared, but coupled this with noting they still had more to learn. 
This is reflected in the response by Nancy who stated, “I feel really comfortable teaching in my 
placement, but there is still so much to learn!” PSTs who selected Images 6 and 7 in the post 
explicitly stated that participation in the OPS helped them to perform aspects of a challenging 
teaching practice, which would support them in their role as a math teacher. 

We were also interested in understanding how identity could change through participation in 
OPS, so we took a closer look at Sharon who selected Image 6 on pre and Image 4 on the post.  
Sharon described the reason Image 6 reflected their profession identity stating,  

I have often been told that I am the embodiment of a math teacher. People say that I am 
logical…and have expertise in math. I have a love for math that exists outside of my classes and 
teaching experiences... However, there are dimensions of me that are separate from my identity 
as a math teacher, such as my hobbies and personality. 

They identified strongly as a math teacher because they were recognized as such by others, 
had a love for the discipline and had a connection with math beyond their academic life. We note 
here that they mentioned that there were still aspects of self (i.e., hobbies and personality) that are 
distinct from being a mathematics teacher. Interestingly, at the end of participation in the OPS, 
Sharon selected Image 4 and stated the reason, “I have many interests separate from math 
education, but my career embodies who I am in terms of my love for children, math, and learning”. 
By the end of their participation in the OPS, it appeared that other interests were more central to 
their identity widening the gap between their current self and their mathematics teacher identity.  

Conclusion 
 In the OPS, mathematics teacher identity development took multiple pathways. Participation 
appeared to strengthen and make teacher identity more central for some PSTs, while for others it 
foregrounded other sub-identities. These findings showed the dynamic nature of identity and that 
how identity changes and develops is related to individuals’ personal interpretations of these 
experiences. Aligned with existing literature, we also observed interconnectedness of mathematics 
teacher identity and teacher efficacy (c.f. Marschall, 2021), that recognition by others (e.g., Sharon) 
(Carlone & Johnson, 2007) and opportunities to engage in the work of teaching (e.g., Ellie, Nancy) 
(Hong, 2010) engendered a stronger mathematics teacher identity (Images 6 and 7). In this regard, 
online practice-based simulations are a valuable resource as they provide opportunities for PSTs to 
practice teaching without some of the drawbacks of field experiences, which bodes well for 
developing a robust mathematics teacher identity. We also noted that the PSTs who indicated 
having stronger professional identities on the post attributed it to participation in OPS. Given that 
OPS comprise researcher-designed simulations, these experiences may not be considered akin to the 
realistic experiences advocated for PSTs (Hong, 2010). However, this may be related to the degree 
of authenticity the PSTs themselves ascribe to the simulation. This is an area for further exploration. 
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Mathematics teacher educators need pedagogical strategies to orchestrate opportunities for 
prospective secondary mathematics teachers (PSMTs) to develop their capacities to elicit and 
build on student thinking. We share preliminary results of an ongoing project to design protocols 
for clinical simulations that will create such opportunities and that will press PSMTs to act on 
those opportunities in ways that elicit and build on student thinking. 

Keywords: Preservice Teacher Education  

Over the past few decades, researcher have documented the positive impact of teaching that 
elicits and builds on student thinking on students’ achievement in mathematics across K-16 (e.g., 
Carpenter & Fennema, 1992; Laursen et al., 2014). Scholars focused on issues of equity in 
mathematics education suggest that eliciting and using evidence of student thinking is a 
necessary component of equity-oriented teaching that positions students as active agents in 
constructing mathematical knowledge (Chao, Murray, & Gutiérrez, 2014; Seda & Brown, 2021). 
For these reasons, among others, the Association of Mathematics Teacher Educators (AMTE, 
2014) and the National Council of Teachers of Mathematics (NCTM, 2014) describe the practice 
of eliciting and using evidence of student thinking as a core practice for mathematics teachers. 
Because the practice is a complex activity (Van Zoest et al., 2017), prospective secondary 
mathematics teachers (PSMTs) need support in their professional education for learning how to 
engage in eliciting and building on evidence of student thinking. 

However, though research and recommendations support teaching that incorporates tasks that 
promote student thinking and that elicits and builds on that thinking, teachers face a number of 
barriers related to socioeconomic status of communities, school or district policies that constrain 
their authority, demands related to high-stakes testing, and other factors, each of which can limit 
the extent to which teachers are able to act on those recommendations (Serrano Corkin et al., 
2019). In the face of those barriers, many mathematics teachers choose (or are constrained) to 
teach in ways that emphasize memorization, drill, and practice with limited opportunities for 
students to think independently or creatively (Banilower et al. 2006; Weiss & Pasley, 2004). So, 
while PSMTs need opportunities to engage in eliciting and responding to student thinking as part 
of their professional education (Didis et al., 2016), we cannot rely solely on clinical field 
experiences to provide those opportunities. We face a fundamental challenge in mathematics 
teacher education to complement clinical experiences with other experiences designed to create 
opportunities for PSMTs to engage in eliciting and building on student thinking. 

In this brief report, we describe initial stages of our work to investigate the design of clinical 
simulations of student thinking as a pedagogy for orchestrating opportunities for PSMTs to 
observe, elicit, and build on student thinking. 

Designing Clinical Simulations 
We ground the project in the pedagogies of practice model (Grossman et al., 2009), positing 

that effective teacher education requires close connections between content that teachers learn in 
professional coursework and practical skills developed in clinical experience. The perspective 
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has been influential for designing coursework for teacher education (e.g., Core Practices 
Consortium, 2017). Our work bridges the development of knowledge and skill by orchestrating 
“iterative and interactive relationship[s] between teachers’ development of principles for 
teaching and practical tools [for teaching]” (Grossman et al., 2009, p. 278). Further, according to 
principles of situated cognition (Brown, Collins, Duguid, 1989), learning to teach requires 
participation in the kinds of environments in which that teaching will occur. 

Our design builds on others’ uses of clinical simulations to engage prospective teachers with 
problems of practice (e.g. Dotger & Smith, 2009; Dotger et al., 2017). Our design aligns with the 
use of approximations of practice to engage prospective mathematics teachers in developing 
high-leverage instructional practices (Arbaugh et al., 2019, 2020; Campbell & Elliott, 2015; 
Graysay & Freeburn, 2018; Graysay & Masingila, 2021; Lampert et al., 2010; McDonald, 
Kazemi, & Kavanagh, 2013). 

We based designs on two guiding principles. First, simulation must create opportunities for a 
PSMT to observe realistic depictions of behaviors that students exhibit while engaged in 
mathematical thinking. Second, to engage PSMTs in eliciting and building on student thinking, 
simulation must allow aspects of student thinking to remain opaque unless elicited by the PSMT. 
We designed three protocols to guide actors in taking actions that represent realistic depictions of 
student thinking and that serve as triggers (Dotger & Smith, 2009) to communicate information 
about the student’s approach. We designed simulations around a task from Rivera (2007). Rivera 
reported, based on extensive study of ninth-grade Algebra students’ responses to this task, two 
types of strategies that students use: figural strategies focus on spatial relationships among 
Patterns and numerical strategies focus on quantities derived from each pattern. Rivera reported 
that many students were able to extend the pattern iteratively yet struggled to express an explicit 
generalized expression for the number of tiles needed for an arbitrary figure. Our designs are 
based on simulating student responses that represent those findings. 

 

 
Figure 1. The Tiling Task (Rivera, 2007) 

Each protocol includes an initiating trigger in which the student shows a table that she has 
constructed showing the number of tiles in the first three Patterns and asks for an opportunity to 
talk through the task with a teacher. The protocols then diverge, each presenting a different 
simulated figural or numerical strategy to extend the table and an initial, albeit imperfect, 
expression of her generalization. In the Nell McNally simulation, Nell skip-counts by four to find 
the number of tiles for the 20th figure and proposes n+4 as her generalization. In the Suzy 
Greenberg simulation, Suzy perceives Pattern 2 as Pattern 1 plus a group of four additional tiles, 
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Pattern 3 as Pattern 1 plus two groups of four and proposes 5+n*4 as a generalization. In the 
Michelle Gordon simulation, Michelle perceived each pattern as two overlapping rows of tiles 
with a shared tile at the center and proposes n*2-1 as a generalization. We instructed actors to 
respond to questions from the teacher and to allow the teacher to help them revise their 
generalization. We trained actors in one-hour sessions outlining each role and the triggers that 
they should present during the simulations. To address proof of concept we chose actors who 
self-reported ambivalence about their mathematical ability, no prior training as actors, and no 
teaching experience. In this report we refer to protocols with female names, but in practice we 
asked actors to self-select a gendered name consistent with their identity. 

Our goal in this stage of the project was to determine the effectiveness of the designs for 
creating conditions in which PSMTs would have opportunities to engage in eliciting and 
responding to student thinking. We sought to answer the following: 

1. Are the protocols and training sufficient for guiding the actors in portraying their role? 
2. In what ways, if any, do the simulations provoke PSMTs to elicit and build on student 

thinking? 

Data Collection and Analysis 
We collected data in two events separated by several days. Prior to the first event we 

provided four participating PSMTs (Emily, Fiona, Gabriella, and Heather (pseudonyms)) in their 
final year of an undergraduate teacher education program with copies of the task. We asked them 
to generate multiple possible approaches to the task. We explained the nature of the simulation 
experience. We provided no information about approaches that Nell, Suzy, or Michelle would 
represent. In the first data collection event each PSMT met individually with an actor portraying 
Michelle. In the second event each PSMT participated in one conversation with an actor 
portraying Nell and one conversation with an actor portraying Suzy. We recorded conversations 
to capture the presentation of triggers and the responses from PSMTs. 

We coded PSMTs’ responses using the Teacher Response Coding Scheme (TRC) (Van Zoest 
et al., 2021). The TRC is a multidimensional framework based on the idea that for each 
mathematical idea that a student expresses, a teacher’s response invites some Actor (teacher or 
student) to make some Move to advance the conversation. Responses vary in the extent to which 
the student would recognize their own idea in the response (explicitly, implicitly, or not at all), 
and in terms of how the student’s idea anchors the Move (core, peripheral, other, or not at all). 
Space precludes including the fifteen possible Moves included in the TRC; examples include 
Dismissing, Clarifying, or Justifying the idea, Collecting a new idea, and Checking In for 
understanding. We added Move codes for responses that we could not clearly identify with an 
existing code from the TRC. For student statements we created a separate code set: An Intended 
Trigger is a statement that is explicitly provided in training, an Unplanned Trigger is consistent 
with the role but not explicitly provided in training, and an Off-Protocol statement is an 
improvisation by the actor in response to a PSMT question that the training did not anticipate. 
We divided transcripts into two sets of six, each coded the transcripts in one set, then reviewed 
the other’s coding and resolved differences of opinion to arrive at consensus coding for the 
twelve transcripts. As we coded we noted patterns in response within each simulation, within 
each PSMTs’ set of simulations, and across the simulations for each role (Nell, Suzy, or 
Michelle). 
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Preliminary Findings 
Effectiveness of Protocols 

We found the protocols moderately effective at guiding actors’ portrayals of Nell, Suzy, or 
Michelle. In each simulation, actors presented intended triggers, though the timing of triggers 
varied depending on how each PSMT responded. For example, in response to Nell’s extension of 
her table of values by skip counting to find the number of tiles for Pattern 4 and Pattern 5, Emily 
quickly interjected to guide Nell away from writing out the table to get to the 20th pattern and 
began introducing and developing a different approach. In contrast, after Nell presented the same 
skip-counting trigger, Gabriella encouraged Nell to follow her approach, allowing Nell to write 
out the table up to Pattern 20. 

Our goal was to create conditions that would press the PSMTs to elicit and build on student 
thinking. We found the protocols not very effective at helping the actor deflect the introduction 
of alternative approaches by PSMTs. We had asked actors to portray Nell, Suzy, and Michelle as 
insistent on following their own approach by including a deflection trigger, a paraphrasing of “I 
want to do it my way first.” However, we noted that in multiple simulations PSMTs were able to 
introduce and pursue an alternative approach that the protocol did not prepare the actor for, 
suggesting that the deflection triggers and actor training were not sufficient to ensure that the 
simulation followed our intended student approach. 
Opportunities to Elicit and Build on Student Thinking 

Given that we found evidence in each simulation of actors presenting the intended triggers, 
we find that simulations were effective at creating opportunities for PSMTs to elicit and build on 
student thinking. However, simulations were not universally effective at pressing PSMTs to act 
on those opportunities. In each simulation, PSMTs made some inquiries into how the student had 
arrived at their initial extension of the table, which allowed the actor to present a trigger 
representing their numerical approach (Nell) or their way of conceptualizing the structure of the 
Patterns (Suzy and Michelle). Some PSMTs responded, as Gabriella did, by asking the student to 
develop the student’s idea, eventually helping the student revise her generalization in a way that 
was consistent with her approach. However, as described in the preceding illustrative anecdote, 
others responded -- as Emily did -- by replacing the student’s idea with a different approach and 
then working to develop the new approach instead of building on the student’s thinking. 

Discussion 
We provide early, preliminary results of an ongoing project to design simulations that create 

conditions in which PSMTs are pressed to engage in eliciting and building on student thinking. 
Our findings suggest, first, that we can create protocols that will effectively guide actors to make 
statements and take actions that simulate authentic ways that students respond to a given task, 
regardless of the actor’s self-reported mathematical confidence, prior training as an actor, or 
experience as a teacher or teacher educator. However, the current designs were not effective at 
creating conditions in which PSMTs are pressed to respect student thinking and build on that 
thinking rather than replacing students’ approaches with the teacher’s preferred alternative. Our 
next step in this ongoing project is to incorporate triggers that actors can present to deflect 
attempts by PSMTs to guide them away from one approach in favor of the PSMTs’ preferred 
alternative. 
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In this proposal, we share research that explores the potential benefits of a novel Making 
experience within mathematics teacher preparation that we hypothesized would inform the 
pedagogical and curricular thinking of prospective teachers of elementary mathematics (PMTs). 
That experience had PMTs exploring at the intersection of content, pedagogy, and design to 
digitally design, 3D print, and share an original manipulative with a child to promote their 
mathematical thinking. We share several vignettes of our research that aim to discern some of 
the potential benefits the experience might offer PMTs. These take a variety of theoretical and 
methodological approaches at the intersections of teacher knowledge, identity, pedagogy, and 
design. Implications of our findings for teacher preparation and professional learning are 
provided throughout the paper and in its conclusion. 

Keywords: Teacher Knowledge, Technology, Problem-Based Learning, Integrated 
STEM/STEAM 

Prospective elementary teachers (PMTs) have been characterized as coming to teacher 
preparation with limited conceptions of mathematics (AMTE, 2013) and a model of mathematics 
teaching that appeals mostly to rules and procedures (Ball, 1990; Ma, 1999). Consequently, 
teacher preparation must offer opportunities that challenge this model, and provide pathways to 
meaningful interactions and deepened understanding of both content and pedagogy. Connecting 
with a body of research that conceives of Making in education as the creative practice of 
designing, building, and innovating with analog and digital tools and materials (Halverson & 
Sheridan, 2014), we present one such opportunity that we centered in a novel Making experience 
within mathematics teacher preparation. That experience tasks PMTs with digitally designing, 
3D printing, and sharing an original manipulative with a child to engage and advance their 
mathematical understanding. In seeking to determine what this experience might offer PMTs as 
they prepare to teach mathematics, our work has taken a number of theoretical and 
methodological approaches to address research questions at the intersections of teacher 
knowledge, identity, pedagogy, and design. These questions address the project’s broader 
agenda, which is framed by the following question: What are the potential benefits of a Making 
experience within mathematics teacher preparation?  

In this proposal we share some of the findings of our research along with their implications 
for teacher preparation and professional learning. Because the theoretical framings and 
methodological approaches we’ve taken are specific to each of these projects, this proposal is not 
organized in the conventional manner. Instead, we begin with the broader rationale for this 
project and then we present three vignettes of our research, each situated within their own 
literature, framings, and approaches. We conclude by looking across these and other projects to 
offer some reflections on the potential value of STEAM-integrated curricular experiences in 
teacher preparation. 
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Rationale 
Schad and Jones’s (2019) review of the research on the Maker movement in K12 education 

finds that students’ learning through Making dominates that literature, with foci that include the 
improvement of STEM learning outcomes, increasing motivation and interest in STEM, and 
increasing equity by broadening notions of what counts as Making in STEM education. The 
extent to which this review mentions research on what teachers learn through Making is through 
studies of how they learn to design makerspaces and integrate maker-centered learning strategies 
(Clapp et al., 2016) into existing curriculum. Thus, there is almost no research on supporting 
teacher learning through Making. Our work (Akuom & Greenstein, 2021; Greenstein et al., 2017, 
2018, 2019, 2020, 2021, 2021, under review) is situated within that gap in the research.  

This work connects with a body of literature that frames teachers as designers (e.g., Brown, 
2009; Maher, 1987) of learning experiences and of the material resources that mediate them. We 
conceive of design quite broadly to include the “intentional activity of transforming ideas and 
knowledge” (Carvalho et al., 2019, p. 79) into “tangible, meaningful artifacts” (Koehler & 
Mishra, 2005, p. 135). Our purpose in doing so is to introduce a pedagogically genuine, open-
ended, and iterative design experience into mathematics teacher preparation that is centered on 
the Making of an original physical manipulative for mathematics teaching and learning. We 
hypothesized that the experience would afford unique pathways of diversified engagement that 
could promote epistemic and pedagogical shifts toward inquiry-oriented creative and 
participatory practices that support teaching and learning mathematics with joy and 
understanding. Accordingly, we view this Making experience as a Learning by Design (Koehler 
& Mishra, 2005) approach that honors the proposition that it is productive to develop teacher 
knowledge within a context that recognizes the interactions and connections among its 
constituent domains of knowledge. We also view the experience from a constructionist 
perspective (Harel & Papert, 1991), which argues that meaningful learning happens through the 
designing and sharing of digital or physical artifacts “that learners care about and have some 
degree of agency over” (Schad & Jones, 2019, p. 2). Indeed, when teachers take agency over the 
design of their own curriculum materials, they may challenge the dissonance that often arises at 
being tasked with implementing curriculum they neither chose nor endorsed. A harmony occurs, 
as a result, as these teachers come to see themselves as agents of curricular and pedagogical 
reform (Leander & Osborne, 2008; Priestley et al., 2012).  
The Curricular Context and Experience 

The study took place over three semesters in a specialized mathematics content course for 
PMTs at a mid-sized public university in the northeastern United States. Situated in an 
instructional context in which the teacher educators of those courses modeled an inquiry-oriented 
pedagogy, the course engaged students in a Making experience defined by the following task: 
“The purpose of this project is for you to 3D design and print an original physical tool (or 
‘manipulative’) that can be used to teach a mathematical idea, along with corresponding tasks to 
be completed by a learner using the tool.” The data corpus was comprised of video recordings of 
the in-class design sessions, the design of the tool, and these four written project components: 
1) a “Math Autobiography,” 2) an “Initial Idea Assignment,” 3) a “Project Rationale,” and 4) a 
“Final Paper/Reflection” that presents the findings from problem-solving interviews conducted 
by the PMTs with their tool and an elementary-age target learner. 

The PMTs learned to use the Tinkercad (Autodesk, Inc., 2020; see Figure 1, left) digital 
modeling platform to design their manipulatives. They worked on their designs in in-class design 
sessions during three or four of the weekly class meetings. These sessions were held in a design 
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lab (Figure 1, right), that we deliberately chose as we imagined that the PMTs’ design activity 
would be more inspired in an environment intentionally configured to accommodate the kind of 
immersive, collaborative social space that nourishes it. 
 

        
  Figure 1: The Tinkercad design environment (left) and the design setting (right). 

The first implementation of the Making experience occurred in the context of a pilot study 
(Greenstein, et al., 2019). Findings from exploratory and revelatory case studies (Yin, 2009) 
revealed that as the PMTs designed their manipulatives, they leveraged an appreciably rich and 
mature repertoire of teacher knowledge domains that we are not typically afforded opportunities 
to see. This finding betrays essentializing characterizations of elementary teachers as lacking in 
knowledge for teaching mathematics (AMTE, 2013) and suggests the promise of the Making 
experience. Accordingly, our pilot work became the launching point on a trajectory of further 
research. 

Three Vignettes 
In the findings that follow, we present three vignettes of research we’ve undertaken on that 

trajectory. Should this proposal be accepted, we will share the findings of these and other 
projects in our presentation. We propose that this body of work offers evidence of the broadly 
formative value of a making-oriented, learning by design experience in mathematics teacher 
preparation. 
The Interplay of Discourses of Identity, Mathematics, Pedagogy, and Design in 
Mathematical Making 

Here we took a commognitive perspective on learning (Sfard, 2007, 2008) in order to explore 
the premise that learning to teach mathematics can be seen as changes in discursive activities that 
include narratives about mathematics and identity (Heyd-Metzuyanim & Sfard, 2012). We 
adopted this perspective by foregrounding the identities (Sfard & Prusak, 2005) of teachers as 
learners in order to recognize what affective, interpersonal, and social matters can bring to this 
conversation. The following question guided the inquiry: As prospective teachers of elementary 
mathematics Make new manipulatives to support the teaching and learning of mathematics, what 
might their discourses reveal about the epistemology of learning to teach mathematics?  

Methods. We addressed the question through a revelatory case study (Yin, 2009) of a 
prospective elementary teacher named “Moira” and by framing mathematics learning as the 
interplay between discourses about mathematical objects (mathematizing), participants of the 
discourse (identifying), teaching and learning (pedagogy), and design activity (designing). This 
framework provided us with a lens through which to study how the process of making a 
manipulative can provoke the four discourse activities and make visible the intertwined nature of 
a teacher’s learning. We chose Moira because her initial design was a tool intended to simulate 
the “keep-change-flip” algorithm for fraction division. However, when the course’s teacher 
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educator pushed back on the idea because it did not meet the expectations for a tool that would 
support a students’ conceptual learning, she tried to make sense of the algorithm but could not. 
Eventually she abandoned the idea altogether. We sought to understand this change through the 
lenses of the four discourses.  

Findings. In this section, we present just one of the central results, which came from a 
follow-up interview we conducted with Moira in order to understand her rationale for the change 
in her design idea. It concerns our analysis of this change through the discourses of 
Mathematizing [M], Pedagogy [P], Designing [D], and Identifying [I]. Moira explained, “I 
wanted to make something that could be interpreted in many different ways [M/P/D] ...” As she 
considered her initial “keep-change-flip” tool, she explained how she realized that, “flipping the 
fraction upside down in my initial tool... it was just not useful [M/P/D] ... Then I came up with 
this [fraction comparison tool]” [M/D/I].  

These reflections revealed how Moira’s decision to abandon her initial design in light of the 
dissonance she wrestled with as she contemplated its purpose was not just about mathematizing, 
it was also about identifying. As a teacher, it was important to her that her students have the 
opportunity to develop their own ways of thinking about fractions with a tool that can be used in 
a variety of personally meaningful ways. Moira acknowledged that the pedagogy promoted in the 
course was also part of her decision to change her design: “Well, [the change of design] was 
because we were talking and you [the teacher educator] said, ‘you’re just teaching them how to – 
you’re just giving them a way to solve the problem.’ And I realized, you’re right ...” [M/P/D/I]. 
By switching to a design for comparing fractions, Moira found harmony in the realization that 
she could participate in the discourse endorsed in the course and honor the teacher she wanted to 
be [P/I].  

Implications. As in a woven tapestry, learning to teach mathematics weaves together four 
threads – or discourses – that are unique to a PMT’s discursive experiences and particular to a 
learning community where an inquiry pedagogy is promoted. In this sense, to characterize 
Moira’s learning to teach mathematics as a complex structure of discursive activities interwoven 
in dialectical unity is to illuminate the brilliance of a tapestry threaded by what she wants to 
teach (mathematizing), how she wants to teach it (pedagogy), decisions about what resources to 
make available (designing), and the kind of teacher she wants to be (identifying). This finding of 
the intertwined nature of the four discursive activities establishes that identity is as central to 
learning to teach mathematics as is the learning of mathematics, pedagogy, and design. And its 
implications speak to the formative potential of interdisciplinary project-based experiences as 
venues for the cultivation of prospective teachers’ identities as teachers becoming (Greenstein et 
al., under review). 
Designed Manipulatives as Anchors for Teacher Knowledge  

This next vignette presents research that explores the ‘life’ of teachers as designers (e.g., 
Brown, 2009) of their own curricular materials, tracing their design activities from tool-design to 
tool-use. The aim is to explore how a PMT’s designed manipulative can mediate the perennial 
gap (Ünver, 2014) that exists between teacher preparation and practice. The project proceeded in 
two phases. We began by examining the conceptual, pedagogical, social, and material resources 
that PMTs bring to their design decisions, their rationales for their uses of those resources, and 
how these intersect to mediate those design decisions. This phase is depicted in the inner ring of 
Figure 2. We then extended our inquiry to explore whether the designed tool could possibly be 
some sort of anchor for their conceptual/pedagogical visions in practice (see the outer ring of 
Figure 2). The following questions guided the inquiry: As prospective teachers Make new 
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manipulatives for mathematics teaching and learning, what are the resources and rationales 
they bring to their design decisions? Can connections be made between the resources for their 
design decisions and how their designs mediate the pedagogical moves they make in practice?  

Methods. To convey just one of many “images of the possible” (Shulman, 2004, p. 147), we 
present some of the findings of a revelatory case study (Yin, 2009) with “Anyango,” a PMT 
whose written work explicitly expressed a wealth of design decisions and whose problem-
solving interview demonstrated how her embeddings of pedagogical and conceptual knowledge 
in her designs served as anchors for that knowledge in practice.  

 

 
Figure 2: The 3 elements of a design decision (inner ring); Mediating resources may also be 

evoked in enactment (outer ring).  

As the PMTs designed their manipulatives, it was their intention (Malafouris, 2013) to 
provide their designs with particular affordances (Gibson, 1977) for utilization schemes (Verillon 
& Rabardel, 1995) that they hypothesized would enable the child to abstract, through their 
sensorimotor manipulations, the perceptual elements that are the basis of the target concepts. 
Schön’s (1992) notion of “knowing in action” (p. 2) directed our attention as our Learning by 
Design approach (Koehler & Mishra, 2005) enabled us to characterize the interplay between the 
PMTs’ knowledge, experiences, intentions, and other resources that mediated their design 
decisions as they were invoked and made visible during the iterative design of their tool. In 
addition, we used the analytic concept of an embedding to connote a design element that embeds 
a PMT’s pedagogical and/or conceptual knowledge in their tool. We referred to instances in 
which the tool served the PMT as a resource for (i.e., a reminder of) knowledge they embedded 
in the tool as an anchoring phenomenon. 

Results. Anyango conceived of her design idea in response to the needs of a child she had 
worked with during problem-solving interviews earlier in the course. She wanted “to help… 
students visualize and deepen their understanding as they explore fraction relationships.” Her 
design is “a 3D version of fraction strips (Figure 3). Each strip was made to be a 
rectangular/square piece that slides into individual pegs… [the] blocks stack vertically... to 
indicate height as value and amount.” With several fractions mounted on a single “platform with 
the 1 (whole) always being visible… the student could begin to grasp how all the smaller parts 
can equate and compare to the whole.” Technological knowledge, the mathematics of fractions, 
and a responsive pedagogy (e.g., Smith et al., 2016) mediated these and other design decisions 
that embed fraction values and concepts into the tool.  

Anyango posed the following task in her problem-solving interview with the child: Jack and 
his two friends each had the same size pizzas for lunch. Jack ate 5/8 of his pizza. Judy ate 2/3 of 
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her pizza. And Sam ate 3/6 of his pizza. Who ate the most pizza? Who ate the least? The child 
responded by stacking five one-eighth pieces, two one-third pieces, and three one-sixth pieces, 

 

 
Figure 3: Anyango’s fraction tool 

each on their own pedestal with their labels facing her (Figure 3, right). Anyango’s intention was 
for the child to compare “heights as amount” and identify the tallest as the one “who ate the 
most,” and shortest as the one “who ate the least.” When she asked the child, “Who ate the 
most?” the child attended exclusively to the symbolic representations engraved on each of the 
pegs and concluded that “It’s Jack” (represented by the 5/8 piece). She went on to say that, “5 
out of 8 is the biggest of all of them… 2 out of 3 is smaller and 3 out of 6 is… kind of small.” 
Then, when Anyango asked the child to justify her answer, the child explained, “The top is two 
and the bottom is three.” We inferred from this response that the child was basing her 
comparisons on interpretations of fractions as two separate whole numbers. According to this 
way of thinking, 5/8 is greater than 2/3.  

We interpret Anyango’s next move as a noticing one (Sherin et al., 2011) as she leveraged 
her pedagogical knowledge about the efficacy of interpreting and attending to students’ thinking: 

Anyango: If I turn this [pedestal] around [Figure 2, left, such that the child’s gaze can no 
longer be restricted to the fraction labels on the pieces], who ate the most? 

Child:  <Pointing to Judy’s stack of two one-third pieces:> This one. 
Anyango: Who has the least? 
Child: <Pointing to Sam’s stack of three sixth-pieces:> This one. 
In this excerpt, an unintentional design affordance enabled Anyango’s “flipping” move and 

served as an anchor for her pedagogical knowledge in action. In a similar anchoring move soon 
thereafter, Anyango returned the tool to its initial, label-facing orientation so that the child could 
connect the physical representation of the amount to the symbolic one.  

Implications. The diversity of design decisions made by Anyango and other PMTs, as well 
as the breadth of resources they leveraged and embedded within their designs, speaks to the 
generative power of the Making experience in terms of the agency PMTs enacted through their 
design activity and the wealth of conceptual resources that mediated it. In addition, the 
identification of anchoring phenomena in practice suggests that the Making experience yielded 
material epistemic scaffolding (in physical manipulative form) that supported PMTs and their 
commitments to the models of knowing and learning they construct in teacher preparation. 
Dare to Care: A Case Study of a Caring Pedagogy on Mathematical Making, Teaching, and 
Learning  

The mathematics and Maker cultures can be interpreted as exclusionary (Stinson, 2004; 
Gutiérrez, 2017; Barton et al., 2017), thereby suggesting opportunities for broadening learning 
opportunities to these spaces through caring and Maker pedagogies. We selected three 
participants for a revelatory case study (Yin, 2009), each with accompanying “outsider” traits to 
the project. The teacher educator (TE) and PMT (“David”) brought caring pedagogies to their 
work but viewed themselves as interlopers to the Making culture. David’s kindergarten student, 
“Vincent,” is a student with disabilities (SWD) on the autism spectrum whose embodied acts of 
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learning are not typically embraced in traditional mathematics classrooms. By focusing on 
caring-centered relationships, we illustrate how together, the participants redefined values 
associated with Making, traditional mathematics, and what can get celebrated as learning. 

Hackenberg’s (2010) mathematical caring relations (MCR) honor the mathematical and 
affective dimensions of learning. To navigate an MCR, a teacher must decenter “from his or her 
own perspectives… to help students realize and expand their ideas and worlds” (p. 239). In our 
project, we honor the open-ended nature of designing and Making a mathematics manipulative, 
the sometimes uneasy navigation through emergent mathematical “unknowns,” the child’s 
unique needs and experiences, and the tensions that are negotiated by carers (Noddings, 2012) in 
balancing these considerations. We therefore asked: How does enacting a caring pedagogy 
during a Making-centered experience impact and broaden opportunities for meaningful 
mathematics learning? How does this challenge traditional notions of who can Make or 
participate in mathematics, and who cannot?   

Methods. We utilized purposeful sampling (Creswell, 2007) to focus this case study on our 
three participants. MCRs were analyzed and revealed through participants’ verbal utterances and 
intonations, body language, actions, and mutual positionings (Simmt, 2000). The possibility of 
intersecting caring and Making theories called for a grounded theory approach (Glaser & Strauss, 
1967) to analyzing and cross-referencing our data sources.  

Results. David’s Making experience began with an easy “answer” to the project task by 
designing an already-existing manipulative with a classmate. However, when the TE noticed the 
warm interactions between David and Vincent in a video recording of an earlier interview, she 
invited David to design a manipulative that was responsive to these interactions. When David 
articulated his trepidation in undertaking this more open-ended task, the TE promised to support 
him. We recognized this moment as the TE accepting responsibility for supporting David in 
caring for Vincent, and in navigating the discomfort and tensions (Noddings, 2012) that 
accompany this pedagogical decision. David, in turn, accepts responsibility for Vincent’s care by 
sharing and utilizing Vincent’s knowledge and love of shapes. After a few sessions with Vincent, 
David opts to design triangular, square, and hexagonal prisms with holes and corresponding 
inserts intended to create a one-to-one matching task. 

During a design session, David noticed that some printed inserts did not fit into their intended 
holes. The TE utilized this moment of struggle to support David through his technological 
anxieties, and recommended including the “mis-shapes” in the matching task. David reflected on 
this being a “teachable moment” because his “mis-shapes” became usable for his and Vincent’s 
learning. In another teachable moment, Vincent showed David how every shape and insert need 
not “match” to fill the holes (e.g., Vincent drops hexagonal inserts into the square hole). These 
uninhibited moments of insight suggested a transition in Vincent’s attention from a shape’s sides 
to its genus—a driving force underlying the concept of topological equivalence. These 
explorations culminated in Vincent aligning the hexagonal and square prisms with unlike holes 
to peer through them, and David receptively arranging the pieces between them to form a 
telescope (see Figure 4)! Together, they locked eyes and exchanged laughter and words of 
affirmation in an MCR where David decentered from the intended activity to literally see his 
child’s point of view (Hackenberg, 2005).  

Implications. Our focus on Making something for and with a specific student enabled a TE 
and PMT to leverage caring-centered pedagogies, and speaks to the inclusivity that caring brings 
to learning. As a member of the SWD community, Vincent’s inclusive participation enabled him 
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to learn with his characteristic, embodied enthusiasm in ways that defy the exclusionary notion 
that SWDs are not expected to participate in problem solving. The TE and David’s caring- 

 

 
Figure 4: Vincent sees similarities in different-shaped holes. 

centered pedagogies embraced David’s “mistakes” as an important part of his learning in 
addition to Vincent’s inclination to know and learn with his body. By providing a platform “to 
demonstrate care for individual students and for the subject matter itself” (Bartell, 2011, p. 54), 
this case demonstrates how Making can create a novel opportunity to honor and invite the 
participation of supposed outsiders to the mathematics and Maker cultures and embrace the 
mathematical struggle, surprise, and discovery of all learners. 

Conclusion 
In addressing the question, What are the potential benefits of a Making experience within 

mathematics teacher preparation?, our research has revealed a number of positive outcomes. We 
shared these findings and their implications for teacher learning at the conclusion of each of the 
vignettes we presented above. With the conference theme of critical dissonance and resonant 
harmony in mind, we now provide a summary overview of the findings reported here and of 
other projects associated with this research. 

Over and over, our findings demonstrate that immersing prospective teachers in a communal 
design environment and tasking them with a pedagogically genuine design experience generates 
opportunities for them to harmonize emerging dissonances. Moira’s shift to a design for a 
conceptually promising learning tool harmonized the dissonance she faced as she confronted the 
rote understandings associated with her initial design idea. Anyango reconciled the dissonance 
that arose in her interaction with a learner by enacting a harmonizing pedagogy for the child’s 
sound learning using a novel use of her tool. And the dissonances David felt in his interactions 
with a teacher and learner were harmonized as he navigated a caring pedagogy that gave rise to 
unforeseen and innovative perspectives on his tool for that child’s learning. In addition, in 
projects not reported here, we observed two learners harmonize the dissonance they experienced 
in making sense of fraction division through embodied actions (e.g., Abrahamson, & Lindgren, 
2014) with a physical “Fraction Orange” manipulative (Greenstein et al., 2021). We also 
observed the dissonance one PMT felt as she hesitated to leverage her cultural funds of 
knowledge (Moll et al., 1992) being harmonized as another PMT encouraged her to leverage it in 
their design of a tool for counting (Akuom & Greenstein, 2021). 

These findings contribute to bodies of research on a “teacher’s becoming” (Vågan, 2011; 
Greenstein et al., under review). They also generate new opportunities for research that moves 
the field forward regarding the potential value of constructionist, STEAM-integrated curricular 
experiences in teacher preparation. Future research could more closely explore the design of 
these environments in teacher preparation, the teacher educator’s role in designing and 
facilitating these experiences, and the subsequent in-service instruction of teachers who 
participated in these experiences during teacher preparation. 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1206



Acknowledgements 
This material is based upon work supported by the National Science Foundation under Award 
No. 1812887.  

References 
Abrahamson, D., & Lindgren, R. (2014). Embodiment and embodied design. In R. K. Sawyer (Ed.), The Cambridge 

Handbook of the Learning Sciences (2 ed., pp. 358-376). Cambridge University Press.  
Akuom, D. & Greenstein, S. (2021). Prospective Mathematics Teachers' Designed Manipulatives As 
Anchors for Their Pedagogical and Conceptual Knowledge. Proceedings of the 43rd Meeting of the North American 

Chapter of the International Group for the Psychology of Mathematics Education, Philadelphia. 
Association of Mathematics Teacher Educators (AMTE). (2013). Standards for elementary mathematics specialists: 

A reference for teacher credentialing and degree programs. Retrieved from San Diego, CA: 
http://amte.net/sites/all/themes/amte/resources/EMS_Standards_AMTE2013.pdf 

Autodesk Inc. (2020). Tinkercad [Computer software]. Retrieved from https://www.tinkercad.com/ 
Ball, D. L. (1990). The mathematical understandings that prospective teachers bring to teacher education. The 

Elementary School Journal, 90(4), 449-466. doi:10.2307/1001941 
Bartell, T. G. (2011). Learning to Teach Mathematics for Social Justice: Negotiating Social Justice and 

Mathematical Goals. Journal for Research in Mathematics Education, 41(0).  
Barton, A. C., Tan, E., & Greenberg, D. (2017). The makerspace movement: Sites of possibilities for equitable 

opportunities to engage underrepresented youth in STEM. Teachers College Record, 119(6), 11-44.  
Brown, M. W. (2009). The teacher-tool relationship: Theorizing the design and use of curriculum materials. In J. T. 

Remillard, B. A. Herbel-Eisenmann, & G. M. Lloyd (Eds.), Mathematics teachers at work: Connecting 
curriculum materials and classroom instruction (pp. 17–36). Routledge. 

Carvalho, L., Martinez-Maldonado, R., & Goodyear, P. (2019). Instrumental genesis in the design studio. 
International Journal of Computer-Supported Collaborative Learning, 14(1), 77-107. 

Clapp, E. P., Ross, J., Ryan, J. O., & Tishman, S. (2016). Maker-Centered Learning: Empowering Young People to 
Shape Their Worlds. Wiley. 

Creswell, J. W. (2007). Qualitative inquiry and research design: Choosing among five approaches, 2nd ed. Sage 
Publications, Inc.  

Gibson, J. J. (1977). The Theory of Affordances. In R. Shaw & J. Bransford (Eds.), Perceiving, Acting, and 
Knowing: Toward an Ecological Psychology. (pp. 67-82). 

Glaser, B. G., & Strauss, A. L. (1967). The Discovery of Grounded Theory: Strategies for Qualitative Research: 
Aldine.  

Greenstein, S., Fernández, E. & Davidson, J. (2019). Revealing Teacher Knowledge Through Making: A Case Study 
of Two Prospective Mathematics Teachers. Proceedings of the 41st Annual Conference of the North American 
Chapter of the International Group for the Psychology of Mathematics Education. St. Louis, MO. 

Greenstein, S., Jeannotte, D., Fernández, E., Davidson, J., Pomponio, E., & Akuom, D. (2020). Exploring the 
Interwoven Discourses Associated with Learning to Teach Mathematics in a Making Context. In A.I. Sacristán, 
J.C. Cortés-Zavala & P.M. Ruiz-Arias, (Eds.). Mathematics Education Across Cultures: Proceedings of the 
42nd Meeting of the North American Chapter of the International Group for the Psychology of Mathematics 
Education, Mexico (pp. 810-816). Cinvestav/AMIUTEM/PME-NA. 

Greenstein, S., Jeannotte, D., & Pomponio, E. (under review) Making as a Window into the Process of Becoming a 
Teacher: The Case of Moira. 

Greenstein, S. & Olmanson, J. (2018). Reconceptualizing Pedagogical and Curricular Knowledge Development 
Through Making. Emerging Learning Design Journal, 4(1), 1-6.  

Greenstein, S., Pomponio, E., & Akuom, D. (2021). Harmony and Dissonance: An Enactivist Analysis of the 
Struggle for Sense Making in Problem Solving. Proceedings of the 43rd Meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education, Philadelphia. 

Greenstein, S. & Seventko, J. (2017). Mathematical Making in Teacher Preparation: What Knowledge is Brought to 
Bear? In E. Galindo & J. Newton, (Eds.). Proceedings of the 39th Annual Conference of the North American 
Chapter of the International Group for the Psychology of Mathematics Education (pp. 821-828). Indianapolis, 
IN: Hoosier Association of Mathematics Teacher Educators. 

Gutiérrez, R. (2017). Political conocimiento for teaching mathematics. In A. Lischka, A. Tyminski, S. Kastberg, & 
W. Sanchez (Eds.), Building support for scholarly practices in mathematics methods (pp. 11-37): Information 
Age Publishing.  

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1207

http://amte.net/sites/all/themes/amte/resources/EMS_Standards_AMTE2013.pdf
https://www.tinkercad.com/


Hackenberg, A. (2005). A model of mathematical learning and caring relations. For the Learning of Mathematics, 
25(1), 45-51.  

Hackenberg, A. (2010). Mathematical caring relations in action. Journal for Research in Mathematics Education, 
41(3), 236-273.  

Halverson, E. R., & Sheridan, K. M. (2014). The maker movement in education. Harvard Educational Review, 
84(4), 495-504, 563, 565. 

Harel, I., & Papert, S. (1991). Constructionism. Ablex. 
Heyd-Metzuyanim, E., & Sfard, A. (2012). Identity struggles in the mathematics classroom: On learning 

mathematics as an interplay of mathematizing and identifying. International Journal of Educational Research, 
51, 128-145. 

Koehler, M., & Mishra, P. (2005). Teachers learning technology by design. Journal of Computing in Teacher 
Education, 21(3), 94-102. 

Leander, K. M., & Osborne, M. D. (2008). Complex positioning: Teachers as agents of curricular and pedagogical 
reform. Journal of Curriculum Studies, 40(1), 23-46. 

Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental 
mathematics in China and the United States. Lawrence Erlbaum Associates. 

Malafouris, L. (2013). How things shape the mind. MIT press. 
Moll, L. C., Amanti, C., Neff, D., & Gonzalez, N. (1992). Funds of Knowledge for Teaching: Using a Qualitative 

Approach to Connect Homes and Classrooms. Theory into Practice, 31(2), 132-141.  
Noddings, N. (2012). The caring relation in teaching. Oxford Review of Education, 38(6), 771-781.  
National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics. Reston, 

VA, National Council of Teachers of Mathematics. 
Priestley, M., Edwards, R., Priestley, A., & Miller, K. (2012). Teacher agency in curriculum making: Agents of 

change and spaces for manoeuvre. Curriculum Inquiry, 42(2), 191-214. 
Schad, M., & Jones, W. M. (2020). The Maker movement and education: A systematic review of the literature. 

Journal of Research on Technology in Education, 52(1), 65-78. 
Schön, D. A. (1992). Designing as reflective conversation with the materials of a design situation. Knowledge-based 

systems, 5(1), 3-14. 
Sfard, A. (2007). When the rules of discourse change, but nobody tells you: Making sense of mathematics learning 

from a commognitive standpoint. The Journal of the Learning Sciences, 16(4), 565-613. 
Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. 

Cambridge University Press. 
Sfard, A., & Prusak, A. (2005). Telling identities: In search of an analytic tool for investigating learning as a 

culturally shaped activity. Educational Researcher, 34(4), 14-22. 
Sherin, M., Jacobs, V., & Philipp, R. (Eds.). (2011). Mathematics Teacher Noticing: Seeing Through Teachers’ Eyes 

(1st ed.). Routledge. https://doi.org/10.4324/9780203832714 
Shulman, L. S. (1986, February). Those who understand: Knowledge growth in teaching. Educational Researcher, 

15(2), 4-14. 
Shulman, L. (2004). The wisdom of practice: Essays on teaching, learning, and learning to teach. Jossey-Bass.  
Simmt, E. (2000). Mathematics knowing in action: A fully embodied interpretation. Paper presented at the 

Proceedings of the 2000 Annual Meeting of the Canadian Mathematics Education Study Group.  
Smith, K., Gamlem, S. M., Sandal, A. K., & Engelsen, K. S. (2016, 2016/12/31). Educating for the future: A 

conceptual framework of responsive pedagogy. Cogent Education, 3(1), 1227021. 
Stinson, D. W. (2004). Mathematics as “gate-keeper” (?): Three theoretical perspectives that aim toward 

empowering all children with a key to the gate. The Mathematics Educator, 14(1), 8-18. 
Ünver, G. (2014). Connecting Theory and Practice in Teacher Education: A Case Study. Educational Sciences: 

Theory and Practice, 14(4), 1402-1407.  
Vågan, A. (2011). Towards a sociocultural perspective on identity formation in education. Mind, Culture, and 

Activity, 18(1), 43-57. 
Verillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought in relation to 

instrumented activity. European Journal of Psychology of Education, 10(1), 77-101. 
Vygotsky, L. S. (1978). Mind in Society: The Development of Higher Psychological Processes. Harvard University 

Press.  
Yin, R. K. (2009). Case study research: Design and methods (4 ed.). Sage. 
 
 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1208



A PROSPECTIVE TEACHER’S SHIFTING VIEWS IN HOW MATHEMATICAL 
AUTHORITY OPERATES IN THE CLASSROOM 

Michael Hamilton 
University of Georgia 
mwhamilton@uga.edu 

This case study investigated how one prospective teacher’s views of how mathematical authority 
operates in the classroom were influenced by her student teaching practicum by comparing 
mathematical authority diagrams produced prior to and after student teaching. I found there 
were similarities across the diagrams, but many differences in the diagrams resulted directly 
from her student teaching experience(s). The most noticeable difference was in her views of 
students as mathematical authorities. Practical implications, particularly for mathematics 
teacher educators, are discussed. 

Keywords: Preservice Teacher Education, Teachers’ Perspectives  

Introduction 
Many discussions of effective instructional strategies in mathematics classrooms have 

implications for how authority should operate in the classroom. For instance, many strategies and 
recommendations made in Principles to Actions (NCTM, 2014) require teachers to leverage and 
build upon students’ ideas, students’ solution strategies, and students’ experiences as means for 
students to develop their own conceptions of mathematics. Following these recommendations, 
teachers who enact productive instructional strategies consistently position students as authorities 
in the classroom particularly when it comes to the mathematics that is reasoned with, discussed, 
and presented. However, consistently positioning students as authorities in the mathematics 
classroom can be challenging for mathematics teachers (Amit & Fried, 2005; Hamm & Perry, 
2002; Wilson & Lloyd, 2000). One reason it can be challenging for teachers to frequently and 
consistently positions students as authorities is that multiple sources of authority, other than the 
teacher and students, may be operating within the mathematics classroom (Wagner & Herbel-
Eisenmann, 2014). Because enacting instructional strategies that consistently position students as 
mathematical authorities is challenging and complex, the purpose of this study is to investigate a 
prospective teacher’s views of how mathematical authority operates in classrooms and how those 
views were influenced by their student teaching experience(s). 

Literature Review and Theoretical Framing 
Mathematical authority in classrooms is a relatively new line of inquiry in mathematics 

education research. Consequently, few conceptions of mathematical authority exist and many 
scholars provide descriptions of mathematical authority rather than defining the construct (see 
Gresalfi & Cobb, 2006; Stein et al., 2008; Wilson & Lloyd, 2000). Moreover, many descriptions 
of mathematical authority describe only the teacher and students as potential authorities and 
leave out other individuals or objects outside of the immediate classroom content. Gresalfi and 
Cobb, for instance, described mathematical authority as “the degree to which students are given 
opportunities to be involved in decision making and whether they have a say in establishing 
priorities in task completion, method, or pace of learning” (p. 51). However, Wagner and Herbel-
Eisenmann’s (2014) study suggests individuals and objects, in addition to teachers and students, 
can be positioned as mathematical authorities in the classroom. Hence, I contend that a new 
definition of mathematical authority that allows for a variety of potential sources of 
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mathematical authority is needed to further our understanding of mathematical authority 
relations in classrooms. 

To develop my conception of mathematical authority, I draw from tenets of Gresalfi and 
Cobb’s (2006) description of mathematical authority along with Weber’s (1947) conception of 
authority. Weber perceived authority as a relationship in which one individual chooses to follow 
the orders of another. Furthermore, Weber claimed that when an authority relation exists, the 
individual chooses to follow the orders of the other when the other is seen to have a valid claim 
to legitimacy by the individual. Amit and Fried (2005) summarized Weber’s conception of an 
authority relation well when they wrote an authority relation “has as much to do with those who 
obey it as it does with those who command it: a relationship of authority is a quasi-reciprocal 
one” (p. 147). The primary tenets of Weber’s conception of authority that I draw on are authority 
being described as a relationship and one that hinges of the legitimacy of the individual who is 
viewed as an authority. Tying those tenets of authority together with Gresalfi and Cobb’s 
description of mathematical authority, I define mathematical authority as a relationship in which 
at least one individual views another subject (i.e. person, community, object) as a legitimate 
source of mathematical knowledge or mathematical reasoning and, thus, able to make 
meaningful mathematical contributions.  

Methods 
This study was a particularistic and descriptive case study (Merriam, 1998) of one 

prospective teacher’s views of mathematical authority in the classroom and how those views 
were influenced by their student teaching practicum. As part of a larger study, Grace was a 
student in the secondary mathematics education program at a large public university in the 
southeastern United States and completed her student teaching practicum in a high school 
classroom during the Fall 2021 semester. Grace took part in three interviews prior to student 
teaching, one interview during student teaching, and three interviews after student teaching. 
Grace also developed two diagrams representing how she thought mathematical authority 
operated in the classroom (see Figures 1 and 2). The purpose of the diagrams was to provide 
Grace a medium in which she could explore and explicate aspects of her experiences and 
thoughts related to mathematical authority in the classroom (Black & Halliwell, 2000; Wagner & 
Herbel-Eisenmann, 2014). Grace developed her initial diagram during the second interview. 
Prior to the sixth interview, Grace developed the second diagram and recorded a video 
explanation of her diagram. During the sixth interview, Grace was asked to further describe 
aspects of her second diagram and compare her second diagram with her first diagram side-by-
side. Grace was chosen for this case study because of the influence student teaching had on her 
views of mathematical authority in the classroom, particularly when it came to students 
positioned as mathematical authorities. 

The data from the interviews and the video describing the second diagram were transcribed. 
These transcripts were then coded with broad codes such as teacher as authority, students as 
authority, and objects as authority. Within each code I then determined emergent themes and 
created subcodes describing those themes (Strauss & Corbin, 1998). With the new subcodes I re-
coded the transcripts again and asked if new codes needed to be included. This process continued 
until no new codes emerged. Both diagrams were analyzed in tandem with the coded transcripts. 
Specifically, aspects of the diagrams that were not discussed in the interviews were analyzed 
based on Grace’s descriptions of the diagram, particularly how she described relationships 
between sources of authority in the diagram (e.g. via arrows between sources). 
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Results 
Prior to student teaching Grace viewed all students as mathematical authorities and some 

students were viewed as more of a mathematical authority in relation to their peers. Moreover, 
the legitimacy by which students were positioned as mathematical authorities was primarily 
rooted in their mathematical conceptions. To represent mathematical authority operating among 
students and the teacher in her first diagram, Grace drew bidirectional arrows between all the 
students, represented by squares, and between the teacher and the students (see Figure 1). Grace 
explained that students viewed their peers as mathematical authorities due to their peers’ 
knowledge of a certain mathematical topic or because they can “find value in how they’re 
thinking about the math.” As she described the teacher positioning students as mathematical 
authorities, Grace claimed, “there are always ways to either look at problems or solve problems 
that I would never think of that my students would think of.” Furthermore, a student could be 
viewed as more of a mathematical authority by both their peers and the teacher if they 
consistently contributed productive mathematical insights and/or ideas in class discussions. 
Consistent in Grace’s descriptions of what made a student a mathematical authority was their 
mathematical thinking or insights. In addition to the teacher and students, Grace included other 
sources of mathematical authority in her first diagram that were divided into those positioned by 
the teacher as authorities (such as Department Heads) and those positioned by students as 
authorities (such as Tutors). 

 

 
Figure 1: Students and teacher represented as mathematical authorities in first diagram 

When asked to compare diagrams, Grace noted there was much more detail in her second 
diagram. Grace’s second diagram did not include many new sources of mathematical authority, 
but some sources that were once viewed as sources for the teacher were now viewed as sources 
for both students and teachers. For instance, in the first diagram Grace included fellow teachers 
as a source that the teacher might view as a mathematical authority when it comes to increasing 
content knowledge and how to best teach certain mathematical concepts. In the second diagram 
Grace espoused a similar view of how teachers might position other teachers as mathematical 
authorities, but she also described how students might view other teachers as mathematical 
authorities. What is notable in her description of this shift is it is grounded in her experiences as 
a student teacher. During student teaching, Grace saw students go to their previous teachers for 
help on math homework which she indicated influenced differences in how she developed her 
second diagram. While describing her second diagram, and as she compared the two diagrams, 
Grace consistently attributed changes in her views of how mathematical authority operates in the 
classroom to her student teaching experience(s). 

The most salient change in Grace’s views about mathematical authority was related to 
students and their position as mathematical authorities. From the teacher’s perspective, Grace 
continued to view all students as mathematical authorities in the classroom, however her view of 
students positioning their peers as mathematical authorities shifted. When discussing her second 
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diagram, Grace claimed, “after finishing my student teaching there’s no denying that some 
students have more mathematical authority than others”. In isolation this claim may seem no 
different than Grace’s claim prior to student teaching that some students could be viewed as 
more of a mathematical authority in relation to their peers. Yet, the primary reasons Grace held 
this view after student teaching were the differences she noticed in students’ personalities and/or 
dispositions. For instance, Grace viewed some students being positioned as more of a 
mathematical authority than others due to differences in their confidence, willingness to 
participate, and abilities to clearly communicate their ideas. These views are shown in her second 
diagram (see Figure 2) by representing students with various sized rectangles and with 
unidirectional arrows going between students. When elaborating on why she represented students 
this way, Grace said, “there could also be students that don't have any arrows going to them at 
all,” meaning some students may not be viewed as a mathematical authority by their peers. 
Influenced by her student teaching experience(s), Grace no longer held the view of students 
positioning all their peers as mathematical authorities. Moreover, what is notable in this shift is 
that students’ personalities and/or dispositions were the primary factors that led to them being 
positioned as mathematical authorities by their peers, not necessarily the validity of their 
mathematical ideas or conceptions. In other words, the legitimacy by which students were 
primarily positioned as mathematical authorities shifted from their mathematical ideas and 
insights to their personalities and/or dispositions. 

 

 
Figure 2: Students as mathematical authorities to other students in second diagram 

Discussion and Implications 
Although this study focuses on just one student teacher’s shifting views of how mathematical 

authority operates in the mathematics classroom, Grace’s story is notable due to the change in 
her view of students as mathematical authorities as well as what influenced those changes. 
Britzman (2003) claimed learning to teach is an active and interactive endeavor in which “one’s 
past, present, and future are set in dynamic tension” (p. 31). Because student teachers experience 
this dynamic tension it would be reasonable to assume their student teaching experience(s) lead 
to changes in their beliefs, conceptions, and perspectives, as was the case with Grace. Given the 
complex nature of student teaching, student teachers like Grace may need support from 
mathematics teacher educators (MTEs) navigating and reflecting upon their shifting views and 
the implications of those shifts on their instructional practice. Additionally, and echoing a 
suggestion made by Wagner & Herbel-Eisenmann (2014), mathematical authority diagrams may 
be a powerful tool to engage teachers in such reflection on their instructional practices. Through 
this support and reflection, novice teachers may be better prepared to enact instructional 
strategies that consistently position students as mathematical authorities and, as a result, support 
students in developing their own meaningful conceptions of mathematics. 
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Typically, mentor teachers (MTs) help teacher candidates (TCs) learn by supporting them before 
and after lessons and observing TCs’ practice. This design research study reimagines the MT-TC 
relationship to be one of co-learning and tests a provisional theory and design of a 
Collaborative Learning Structure (CLS) tool to support MT-TC co-learning equity-oriented 
teaching. We draw from a case in which a pair of educators used an early iteration of the CLS. 
Our analysis demonstrates that rather than asking teachers to plan to confer in ‘curious or 
uncertain’ moments, it may be more beneficial to confer in ‘decision-making moments’ while 
teaching. We discuss implications of our theory of co-learning equity-oriented teaching. 

Keywords: Preservice Teacher Education, Equity, Inclusion, and Diversity, Mentor Teachers,  

Teachers engage in learning while teaching as they navigate in relation to students and 
subject matter, a process Lampert (2009) calls “learning teaching.” Shulman (2005), like 
Lampert characterizes teaching as necessarily entailing a "pedagogy of uncertainty." The 
relational and improvisational nature of the work constantly presents a necessity for teachers of 
all levels to make new decisions about “how to act under conditions where knowledge is limited 
but actions must be taken” (Shulman 2005, p.20).  

Teacher education programs routinely place teacher candidates (TCs) in field experiences, 
primarily designed to give them opportunities to practice teaching and learn from mentor 
teachers (MTs). Mentors typically offer support before and after teaching and position 
themselves as observers, rarely engaging with novices “inside the action of teaching” (Schwille, 
2008). This arrangement assumes teaching is an individual act and leaves teachers alone to 
“grapple independently with the complexities that may arise” (Ghousseini, 2021, p.1). Drawing 
on concepts from theater studies, Ghousseini et al. (2021) liken these norms of noninterference to 
the “fourth wall” that separates actors from the audience. They argue that this “entrenched wall” 
separates “teachers who gather to improve their practice and the practice itself” (Ghousseini, 
2021, p.1). That mentors and novices are typically positioned as spectators of one another’s 
teaching has implications for the learning opportunities available in field experiences. Our study 
seeks to design learning opportunities for both MTs and TCs supported by tools which break 
through the fourth wall, thereby opening up practice to collaboration, experimentation, inquiry.  
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Purposes and Research Questions 
We are in early stages of a four-year NSF funded project to reimagine the MT-TC as co-

learners (i.e., Thompson et al., 2015) of equity-oriented teaching (e.g., Aguirre, et al., 2013). 
Using design research methodology (English, 2003), we are creating tools that we term 
Collaborative Learning Structures (CLSs) which create opportunities for mentors and novices to 
co-learn in the context of field experiences. The CLS, in focus here, works to make more explicit 
the implicit work of teaching, which occurs during instruction, in an effort to support teachers in 
learning about equity-oriented teaching together. Striving for equitable teaching and learning in a 
mathematics classroom is an ongoing process (NCTM/TODOS, 2016) characterized by an 
orientation to teaching centered on the needs and assets of traditionally marginalized students 
and is, therefore deeply relevant and urgent for all educators including MTs and TCs alike 
(Gutierrez, 2018; Shah & Crespo, 2018). Teachers must be on a daily quest for understanding the 
dissonance felt by traditionally underserved students in their math classrooms and act in ways 
that elicit, draw on, value, and validate students’ perspectives, strengths, knowledge, and skills. 

Methods   
We started our project with a provisional theory of co-learning between MTs and TCs and, 

over the next several years, intend to revise it as we iteratively study MT-TC dyads’ use of 
CLSs, and revise the CLSs accordingly (Cobb et al., 2003; English 2003). Our current CLS tool 
prompts mentor-novice pairs to focus on equity in students’ participation patterns during a 
lesson. Before the lesson, the MT-TC dyad are asked to confer about the upcoming lesson (either 
person may be teaching) and to anticipate moments to confer during the lesson when the person 
teaching might “feel curious or uncertain” regarding their noticings of students’ mathematical 
understandings and/or participation patterns. The intent is for the MT-TC dyad during the lesson 
to “co-notice” students’ participation, confer at least one time to discuss an uncertain moment, 
and deliberate about what to do next with students. After the lesson, the MT and TC are asked to 
reflect on noticing either made during the lesson, any instructional decisions jointly made, and 
identify new goals for co-learning. Due to logistical reasons related to the global pandemic, we 
were unable to collect data using a CLS with MTs and TCs. However, we were able to study a 
coaching cycle between a teacher and a coach as they engage using parts of our initial CLS tool. 
While the case focuses on co-learning between in-service professionals (rather than MT-TC 
dyads), our analysis supported a revision of a key aspect of our theory of co-learning and the 
CLS. The case below exemplifies how our team is relating a teacher’s in-the-moment decision-
making to opportunities for MT-TC co-learning. Our analysis highlights how we are thinking 
about the design of tools to support MT-TC dyads co-learning equity-oriented teaching. 
Participants 

The focal participant in this study is Sally, a white middle school math teacher with 19 years 
of teaching experience, with the last 10 years as a 6th grade math teacher at this school. Sally’s 
school serves approximately 1000 students, nearly 40% of whom are students of color, the 
majority of whom are Latinx. Nearly half of the students at the school qualify for free/reduced 
lunch. Four years ago, Sally and a colleague successfully initiated efforts to de-track 
mathematics in their school, which is now in its second year of being de-tracked.  
Context, Data Collection, and Analysis 

We gathered data on use of some of the CLS tool prompts in a coaching cycle, including 
planning, teaching, and debriefing, between the district math coach and Sally. A project 
researcher audio recorded, observed, and took field notes throughout the cycle, including during 
the 70-minute math class.  This coaching cycle occurred after a professional development session 
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featuring “worked examples” (Renki, 2017). Sally and the coach planned a lesson using worked 
examples that Sally intended to use during three class periods the next day. The goal for Sally’s 
lesson was for students to identify the origin and represent five teams participating in a race on a 
straight line divided into equal intervals with this information: Team A is in the lead; Team B is 
4 miles behind Team C; Team C is 2 miles behind Team A and 8 miles ahead of Team D; and 
Team E is 5 miles ahead of Team B. Students were to note the position of each team relative to 
others and be able to explain how they knew. Sally expected students to use positive and 
negative numbers to express spatial relationships. She and the coach discussed advantages of 
using worked examples to explore and compare multiple solutions. During the lesson the math 
coach and project researcher joined in co-noticing and conferred with Sally about what they 
noticed. Sally made a number of changes to the original lesson plan in-the-moment but her 
pedagogical reasoning remained invisible to them. 

We analyzed excerpts from the lesson debriefing in service of further refinement of the CLS 
tool and the theory of co-learning underlying its design. Our analytic questions included: What 
was uncertain for Sally while teaching? What did she notice during the lesson about students 
who were currently experiencing low status? What decisions did she make that related to 
elevating those students and on what basis did she make the decisions? How might what we learn 
from analyzing Sally’s reflections on her in-the-moment decisions and the reasoning behind 
them inform refinement of the CLS tool for both novices and experienced teachers? 

Results 
The following two excerpts from a transcript during the lesson debriefing session make 

visible a sample of many decisions Sally made while teaching and her reasons for making these 
decisions (Ball, 2018). The numbers in Table 1 and Table 2 indicate Sally’s reasons verbatim 
from the transcript. Our analysis references Sally’s reasoning with these numbers. Sally changed 
her plans from using worked examples and, instead, selected and sequenced her students’ work 
(Smith & Sherin, 2019) The coach asked her to explain her reasoning around this decision. 
 

Table 1: Excerpt 1 from Sally’s Lesson Debrief with Coach and Researcher  
Sally’s Reasoning from the Debrief 

*indicates reasons known ahead of the lesson 
** indicates reasons unknown ahead of the lesson 

Analysis 

1. One of the reasons I made the shift is I could see the 
waning attention span of this group.** 

2. And I was looking at the time, and I needed to make 
sure that they could understand the relationship of pieces 
together. So, I decided to table this [worked examples] for 
now.**  

3. That, and the fact that we had 3 kids who pulled up 
numbers to show the distance between. That seemed more 
authentic than doing this [worked examples]. ** 

4. The last thing as to why I did make the shift is…which 
of the kids who responded today were my IEP kids? Which of 
my kids, whose journals went up on the overhead, were my 
IEP kids? And which four voices came out that haven’t 
contributed anything all year? So, I took it as a win.* 

Sally entered class 
knowing that some students 
have shorter attention spans 
than others and because of 
this she watches how much 
time she spends on activities 
(1, 2). She also noticed 
several students’ work and 
voices she wanted to elevate 
(4) do work on the math 
problem in ways that offered 
her ideas to share that would 
benefit other students (3).  
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 Table 1 offers insight in Sally’s deep knowledge of students that prompted in-the-

moment decision changes to her lesson plans. Table 2 represents Sally’s pedagogical reasoning 
when she was asked by project researcher to elaborate on her decisions who she called on and 
why.  

   
Table 2: Excerpt 2 from Sally’s Lesson Debrief with Coach and Researcher 

Sally’s Reasoning from the Debrief Analysis 
5. And the two IEP kids, one of them had the numbering 

system I wanted.**  
6. Not Will, but this was the kid that showed the 

numbers…** 
7. James needs to have his status raised with other 

students. James knows what he's doing. He knows why he's 
doing it. He's not comfortable giving his ideas out to kids 
who claim to have math status.* So, I wanted his status to be 
raised for those people to see Jonathon as a 
mathematician.**  

8. Mike doesn't participate a lot. *And, so, when I saw 
the numbers on his paper and that we could connect to 
Will…I wanted his ideas to come up because he never 
shares. And because this was a deep thought to share about 
the exact relationship between things …**  

9. Brandon just needs all the status he can get. He's a 
copier. He’s very good at it.* And, so, the fact that he had 
something different from his group, and they were arguing 
about it, because his was in a separate spot than everybody 
else's, and the two girls [in his group] have really high math 
status in the classroom.**  

James and Brandon are 
students with IEPs who Sally 
knows are seen by others and 
themselves as having lower 
status and she noticed they 
both had ideas that she knew 
could be useful to other 
students (5). She could see that 
James knew how to solve the 
problem (5, 7). Brandon 
usually copies others but this 
time he had not copied and his 
group was arguing about his 
ideas and the ideas of two girls 
with high status in his group 
(5, 9). Will was not someone 
who needed his status elevated 
(6) but he had math ideas that 
Sally thought would allow her 
to connect Mike’s (8) deep 
thinking with Will’s idea (8).   

 
What Sally learned about how to attend to students’ participation patterns and status while 

teaching are things she could not have known earlier. These improvised moments represent 
Sally’s efforts to be responsive to who her students are outside and inside the math class, what 
they know, and what they need to feel engaged, seen, and successful. However, despite the math 
coach and project researcher’s attempts to engage with Sally while she was teaching, most of the 
rich pedagogical reasoning which she engaged in during the lesson remained invisible to them. 
This analysis leads us to refine the CLS tool to shift from conferring during the lesson in 
moments that feel ‘curious or uncertain,’ to “decision-making moments” in teaching. We aim to 
position MTs and TCs as co-learners in shared enactments of equity-oriented teaching and create 
routines supportive of co-learners in predicting when these moments are about to occur and 
pausing for collaborative sharing of co-noticing and decision-making. We will test a revised 
theory of co-learning that centers moments of decision-making, specifically regarding how to 
center traditionally marginalized students’ mathematical sensemaking.  

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1217



Acknowledgments 
This paper is based in part on work supported by the National Science Foundation under 

grant No.2010634. Any opinions, findings, conclusions, or recommendations expressed in this 
paper are those of the authors and do not necessarily reflect the views of the National Science 
Foundation. 

References  
Aguirre, J., Mayfield-Ingram, K. & Martin, D. (2013). The impact of identity in K-8 mathematics: Rethinking 

equity-based practices. Reston, VA: NCTM.  
Ball, D.L. (2018). Just dreams and imperatives: The power of teaching in the struggle for public 

education. Presidential Address at 2018 American Educational Research Association Annual 
Meeting, New York, NY, April 15, 2018 

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., Schauble, L. (2003). Design experiments in educational 
research. Educational Researcher, 32 (1), 9-13. 

English, L. (2003). Reconciling theory, research, and practice: A models and modeling perspective. Educational 

Studies in Mathematics, 54, 225-248. 

Feiman-Nemser, S. (2012). Teachers as learners. Cambridge, MA: Harvard University Press. 
Ghousseini, H., Kavanagh, S. S., Dutro, E., & Kazemi, E. (2021). The Fourth Wall of Professional Learning and 

Cultures of Collaboration. Educational Researcher, 0013189X211058751. 
Gutierrez, R. (2018). The need to rehumanize mathematics. In I. Goffney, R. Gutierrez, & M. Boston, 

Rehumanizing Mathematics for Black, Indigenous, and Latinx Students (pp.1-8). Reston, VA: NCTM 
Lampert, M. (2009). Learning teaching in, from, and for practice: What do we mean? Journal of Teacher Education, 

61(1-2), 21-34. 
National Council of Supervisors of Mathematics (NCSM) & TODOS: Mathematics for ALL. (2016). Mathematics 

education through the lens of social justice: Acknowledgement, actions, and accountability. 
Renkl, A. (2017). Learning from worked examples in mathematics: students relate procedures to 

principles. ZDM, 49(4), 571-584. 
Schulman, L. (2005). Pedagogies of uncertainty. Liberal Education,18-25. 
Schwille, S. A. (2008). The Professional Practice of Mentoring. American Journal of Education, 115(1), 139–167. 

https://doi.org/10.1086/590678 
Shah, N. & Crespo, S. (2018). Cultural narratives and status hierarchies: Tools for identifying and disrupting 

inequities in mathematics classroom interactions. In R. Hunter, M. Civil, B. Herbel-Eisenmann, N. Planas, and 
D. Wagner, Mathematical Discourse that Breaks Barriers and Creates Space for Marginalized Learners, pp. 23-
37. Boston, MA: Brill. 

Shah, N. & Lewis, N. (2019). Amplifying and attenuating inequity in collaborative learning: Toward an analytical 
framework. Cognition and Instruction, 37(4) 423-452. 

Smith, M. & Sherin, M., (2019). The five practices in practice [middle school]: Successfully orchestrating 
mathematics discussion in your middle school classroom 1st edition. Thousand Oaks, CA: Corwin Press.     

Thompson, J., Hagenah, S., Lohwasser, K., & Laxton, K. (2015). Problems without ceilings: How mentors and 
novices frame and work on problems-of-practice. Journal of Teacher Education, 66(4), 363-381. 

 
 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1218



EXPLORING THE USE OF ONLINE MODULES FOR SUPPORTING MATHEMATICS 
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This research examines the use of online modules in supporting the development of mathematics 
for teaching in pre-service teachers. This paper focuses on a single participant in the research 
study to provide some overarching themes that were presented in the work. Although the results 
were mixed on even improving mathematics content knowledge, the case provides evidence for 
considering how to improve an online platform in supporting future teachers. 

Keywords: Mathematical Knowledge for Teaching; Preservice Teacher Education; Online and 
Distance Education 

This research is based in Ontario in a Bachelor of Education program, where individuals 
would attend the program after a four-year degree. Since the program itself is a two-year 
program, there are limitations in the number of hours provided to mathematics. In the studied 
university, there are two required mathematics methods courses (one in each year of the 
program), but these courses explore pedagogical methods for teaching mathematics in 
combination with mathematics for teaching. Since previous research has pointed to concerns 
about the level of mathematics for teaching in pre-service teachers (e.g., Kajander, 2010), the 
creation of an online portal provided extra time for pre-service teachers to focus on mathematics 
knowledge for teaching. In this research, a single participant from the piloted study is examined 
in detail to provide some preliminary questions and starting points for expanding the online 
platform. 

Literature and Theoretical Framework 
The research is framed by the discussion of mathematics for teaching presented in the 

research literature. Mathematics for teaching has been identified as an understanding of 
mathematics content which “bridges content knowledge and the practice of teaching” (Ball et al., 
2008, p. 389). In creating the modules, the focus was on an understanding of models, 
manipulatives, and alternative algorithms that would be needed by a teacher, but not necessarily 
someone studying mathematics (Baumert et al., 2010; Hill, 2010; Ma, 1999). The mathematics 
for teaching knowledge needed by teachers also differs from the knowledge a mathematics 
student would need or gain during a classroom learning experience (Chamberlin et al., 2008; 
Davis & Simmt, 2006; Kajander, 2010). In particular, the lens used in analyzing the participant 
responses focused on the notion that merely stating a procedure or procedural steps would not be 
enough to show mathematical reasoning and support a claim when teaching (Ball & Bass, 2000). 
In evaluating the responses, the responses were coded to examine whether they followed a 
procedure or used an alternative method for solving the question. 

More research, especially during the pandemic, has been conducted on using online 
technology as a platform to teach without specifically considering video-interventions. For 
example, Mulenga and Marbán (2020) examined pre-service teachers and their engagement 
during an online mathematics course and noted that the ability to personalize the program 
supported development, although attitude related to mathematics and technology impacted 
performance. Although there is much that can be learned from the research about online teaching 
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in mathematics, since this research focused on the use of video-interventions, the literature 
discussed focuses on this area. The majority of research on video-based interventions with pre-
service teachers focuses on the use of classroom observation videos for prompting discussion of 
teaching and learning practices (e.g., Borko et al., 2008). In these interventions, teachers are 
often shown short videos of active classrooms and asked to observe teacher practices and student 
behaviours. Barth-Cohen et al. (2018) used video analysis with the intent of increasing the 
reflective practices of the pre-service teacher. This study also points to how video is an 
underused and understudied form of professional development. Johnson et al. (2019) examined 
the use of virtual teaching playgrounds with a video component in supporting pre-service and in-
service teachers and determined no difference between the in person and virtual learning 
outcomes. The study presented in this paper adds to this existing literature by focusing on an 
intervention to support mathematics knowledge for teaching through video-based interventions. 

Methods 
The participants in the research study were pre-service teachers enrolled in the Bachelor of 

Education program. Since the online modules were an addition to the program, pre-service 
teachers self-selected if they wished to participate. The platform for the program was housed 
within the university system limiting the possible participants to those who had enrolled in the 
program. The modules in the platform were completed and adjusted in an iterative process, with 
participants being enrolled and allowed to work, then additional information or modules were 
created. At the time of the research, three modules were completed: measurement, algebra, and 
fractions. Each of the modules contains sub-modules related to different areas of the content 
strand based on complexity determined by the Ontario curriculum up to and including grade 8 
(Ontario Ministry of Education, 2020). For example, the algebra module contains sub-modules 
related to repeating patterns, linear patterns, and non-linear patterns. The number of sub-modules 
varied between the different content modules.  

Each of the sub-modules followed an identical pattern to allow familiarity with the course 
content, as well the initial platform had a linear layout, so this prevented overly complicating the 
platform. Each sub-module began with an initial mathematics problem that was then submitted to 
the site. Upon submission of their work, participants would be able to view videos of different 
ways to solve the problem, as well as see an answer to the initial mathematics problem. Next, 
participants would be invited to complete and submit a solution to a second, similar problem. A 
survey was also provided to ask participants about their experience in the sub-module. Figure 1 
shows the first and second question in the measurement sub-module on area. Data collected for 
the entire project consists of the solutions to both sets of problems and the information provided 
in the survey.  

 
Figure 1. Questions from area sub-module 
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Note. Question 1 is on the top. This question would appear before the video intervention. 
Question 2 is on the bottom.  

 
The videos and questions in the program were designed to be completed on the participants’ 

own time and are elective, so participants chose which problems to do and to what extent they 
wished to complete them. At time of writing, 19 participants volunteered to be part of the 
project; however, only 9 had completed any work within the platform. The data collection is 
ongoing, and the number of questions that the participants have completed varies between the 
participants. Data was collected through the online learning management system of the 
university, and ethics was obtained through the university Research Ethics Board. The 
participant in this summary was one of two participants to complete all sub-modules in the 
measurement section, and the only individual to complete any sub-modules in the algebra 
module. For the data analysis, descriptive statistics were first collected on the number of correct 
and incorrect solutions both before the video intervention and after it. Solution methods were 
then analyzed to see if there was evidence of mathematics for teaching and if the solution method 
differed from the start to the finish. 

Results 
For the purposes of this discussion, I will use the pseudonym of Terry. Since gender was not 

a question in the data collection, the pronoun “they/them” will be used throughout when 
discussing Terry’s solutions. Table 1 provides a summary of the questions answered correctly 
and incorrectly before the intervention and after watching the videos. The number of questions 
that were answered correctly increased for the second question that was attempted. 

 
Table 1: Summary of Data 

Question Correct Incorrect 
Question #1 (pre-intervention) 9 (36%) 16 (64%) 
Question #2 (post-intervention) 16 (64%) 9 (36%) 

 
In exploring the survey results, Terry rated the majority of the questions as “easy” both 

before and after the intervention. There were questions that Terry got correct before the 
intervention that they got incorrect after, so there was no consistency in the application of correct 
procedures after intervention. As well, there were questions that Terry got incorrect both before 
and after intervention, such as the volume of rectangular prisms sub-module.  

In the second part of the analysis, the individual solutions of the individual were examined. 
This data led to some interesting results where only one solution method changed from the pre-
intervention question to the post-intervention question. Even with the change in method, Terry 
still gave an incorrect answer. The solutions Terry submitted can be found in Figure 2. The 
question was found in the irregular shapes sub-module, where participants were asked to find the 
area and perimeter of an irregular shape in question 1, and then a different irregular shape in 
question 2. In one sub-module, Terry did not show a solution method in the second question, but 
the answer was incorrect both before and after the video. 
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Figure 1. Solutions to a question related to finding the area and perimeter of an irregular 

shape. The solution on the left was the first question. 

Discussion and Conclusion 
This single participant provided some interesting initial results related to the use of the online 

modules. A limitation of the study was the fact that Terry mainly completed the modules within 
a three-day period right at the beginning of their participation in the study. At the time of the data 
collection, the province of Ontario had instituted a mandatory mathematics exam for licensing 
(Ontario College of Teachers, 2019), so this likely also led to some of the focus on simply 
solving questions instead of focusing on mathematics for teaching since the goal of the Test was 
to solve mathematics questions correctly and in a set time frame (Education Quality and 
Accountability Office, 2020). Terry did show gains in mathematics knowledge between the two 
questions; however, there was no evidence that the interventions had an impact on their 
mathematics knowledge for teaching. 

In conclusion, the project has added to the discussion of video-based interventions for 
learning mathematics for teaching but has also raised some suggestions about how to create a 
better platform for implementation. In examining the results for strictly increasing mathematics 
knowledge, there is evidence that it does help. In considering mathematics for teaching, the 
results were not as promising. With the implementation of the exam, it could be that Terry was 
simply focused on increasing mathematics content knowledge and did not believe that there was 
a need for anything different. In reflecting on the platform used in the study, clearly more needs 
to be done to point participants towards considering the importance of mathematics for teaching, 
which may change future results. At present, this was only a pilot study exploring the platform to 
learn more about changes that could be made to support learners. Creating a new platform while 
considering the need to highlight mathematics for teaching would open possibilities for a revised 
project that could support adding extra mathematics-focused hours to a teacher education 
program. 
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This exploratory study aims to describe what productive struggle looks like when prospective 
mathematics teachers in a middle school mathematics methods course engage with a challenging 
mathematics task. We hypothesize that a productive struggle consists of different types of 
struggles—goal struggle, strategy struggle, and sub-strategy struggle—that can coexist 
simultaneously. We provide insight into the complexity of prospective teacher productive 
struggle and how it differs from that of middle school students. This information is useful for 
teacher educators who want to capitalize on the opportunity productive struggle offers for 
prospective teacher learning. 

Keywords: Instructional Activities and Practices, Preservice Teacher Education 

In general, people perceive struggles as things they should avoid. However, the National 
Council of Teachers of Mathematics (NCTM; 2014) views students’ mathematical struggles as 
“opportunities for delving more deeply into understanding the mathematical structure of 
problems and relationships among mathematical ideas, instead of simply seeking correct 
solutions” (p. 48). Several researchers have worked to better understand those opportunities by 
studying school students’ (e.g., Warshauer, 2015) and prospective teachers’ (e.g., Zeybek, 2016) 
efforts to make sense of mathematics when engaging with challenging mathematical activities. 
Despite these gains, we lack research that reveals how and when learning occurs during the time 
that learners are engaged in a productive struggle. This information would help mathematics 
teacher educators to recognize and leverage their PTs’ productive struggle and thus better 
support those PTs to be able to support productive struggle in learning mathematics (NCTM, 
2014) in their future K-12 classes. Thus, this study explores the inner workings of PTs’ 
productive struggle to investigate how and when those learning moments arise. 

Literature Review 
Productive struggle is a growing area of research that has encompassed three major themes: 

(a) types of struggles (e.g., DuCloux et al., 2018; Warshauer, 2015), (b) factors that foster 
productive struggle in classes (e.g., Roble, 2017; Russo et al., 2021), and (c) ways to help PTs to 
support productive struggle in their future classes (e.g., El-ahwal & Shahin, 2020; Warshauer et 
al., 2021). Since our work focuses on PTs’ productive struggle, we elaborate on the first theme. 
Warshauer (2015) investigated 327 middle school students’ struggles and developed a productive 
struggle framework that included four dimensions: (a) Task, (b) Student Struggle, (c) Teacher 
Response, and (d) Outcome. Within the Student Struggle dimension, she identified four kinds of 
student struggles: (a) get started, (b) carry out a process, (c) give mathematical explanation, and 
(d) express misconception and errors (Warshauer, 2015). These identified kinds of struggles 
have served as the foundation for other research in this theme. Sayster and Mhakure (2020) used 
Warshauer’s kinds of student struggles to discuss 28 high school students’ struggles with 
simplification of rational algebraic expressions. Their results aligned with Warshauer’s kinds of 
student struggles. Other researchers have investigated PTs’ struggles. Zeybek (2016) used 
Warshauer’s kinds of student struggles to document the struggles of 48 pre-service middle grade 
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teachers when engaging in non-routine tasks in a geometry course. Zeybek’s findings aligned 
well with the results of Warshauer’s study, thus she concluded that “struggle types are similar in 
all classrooms regardless of grade level or participants as long as participants are engaged in a 
high level task” (p. 411). DuCloux et al. (2018) used Warshauer’s kinds of student struggles as a 
guide to analyze the perceptions of 32 prospective elementary, middle, and secondary teachers 
about their struggles. Their participants identified perseverance and struggling together with their 
peers as important aspects of their productive struggles. Although these studies provide us some 
information about PTs’ productive struggles, they stop short of investigating the inner workings 
of productive struggle. Hence, our study aims to build on the existing research by exploring this 
research question: What do PTs’ productive struggles look like when they are engaged in a 
challenging mathematics task in a middle school mathematics methods course? 

Theoretical Framework 
We ground our work in Warshauer’s (2015) productive struggle framework mentioned 

above, with our adaptations shown in Figure 1. Rather than looking at tasks with a variety of 
cognitive demands, we used a doing math task (Box 1; Stein et al., 1996). Similarly, rather than 
looking at all possible outcomes, we looked only at interactions that led to a productive outcome 
(Box 4). To operationalize a productive outcome, we defined a productive struggle as an 
interaction that begins with some expression of struggle, verbal (e.g., “I’m confused”, “I don’t 
know”, or long pause), or physical (e.g., deep sigh, putting hands in head) that provides the 
opportunity to better understand a well-specified statement of a mathematical truth—what we 
call a mathematical point (MP; Van Zoest et al., 2016)—and ends when some sense has been 
made of the MP and the focus of the interaction changes. Our work is situated in Boxes 2 and 3. 
 

 
Figure 1: PT Productive Struggle Framework (Developed from Warshauer, 2015) 

Methodology 
This exploratory study is part of a larger ongoing project that investigates the teaching and 

learning that occurs in a middle school mathematics methods course (e.g., Ochieng, 2018; 
Van Zoest & Levin, 2021). The current study took place with the 18 PTs in the Fall 2021 course 
during the first two 90-minute class sessions. The PTs were engaged in the Frog Problem (see 
Figure 2), which met the criteria for a doing math task (Stein et al., 1996). (For more details 
about the Frog Problem, see Andrews (2000) and Dixon and Watkinson (1998).) 

 

 
Figure 2: The Frog Problem Prompt and Representation of Two Frog Teams of Size Three 

Data collection included videos and audio recordings of both class sessions, which were 
primarily whole-class discussion on the first day and small-group discussions on the second-day. 
We also gathered electronic copies of all PT written work and reflections from both days to help 
us better understand what a productive struggle looks like in detail. We first identified 
interactions that met our definition of productive struggle (see above). These interactions—
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referred to as “productive struggles”—served as our primary data set for the study, with the other 
data sources referred to as needed to help us make sense of each productive struggle. Our 
analysis of these productive struggles was supported by coding the answers to these questions: 
(a) Who is struggling?, (b) What are they struggling with?, and (c) Why is it a productive 
struggle? In our broader analysis we looked at the role of the teacher response, but here we 
narrow the discussion of our results to what we found out about the Student Struggle dimension 
of Warshauer’s (2015) framework, identified as PT Struggle in Box 2 of Figure 1. 

Results & Discussion 
Based on our preliminary analyses, we hypothesize that a productive struggle consists of 

different types of struggles that can coexist simultaneously. We identified three types of 
struggles: goal struggle, strategy struggle, and sub-strategy struggle. We use an illustrative 
productive struggle (IPS) to elaborate on these types and to provide insight into the inner 
workings of PTs’ productive struggles and how they may differ from school students’ struggles 
(Warshauer, 2015). This particular productive struggle took place during a small-group 
discussion among four PTs (PT1, PT2, PT3, and PT4) that occurred on the second day of the 
classes’ engagement with the Frog Problem. At this point in the discussion, the group knew the 
actual numbers for frog teams of size 1, 2, 3, and 4. PT3 suggested an arithmetic sequence 
[an = a1 + (n – 1)d] as a template for finding an equation that represents the fewest number of 
moves for any size team of frogs and the other PTs agreed. (Note that the difference of the 
fewest moves from each consecutive case is not constant, thus an arithmetic sequence does not 
apply to this situation.) The IPS began with the following exchange: 

PT1:  So wait, what would d be then? 
PT3:  That’s what I’m trying to figure out because the difference increases so [d]’s not 

consistent. So I don’t know that it’s technically arithmetic because the, an 
arithmetic sequence is consistent. 

PT1:  That’s true. 
PT3:  So I don’t know if I can change the d to be something like that. 

This exchange initiated a productive struggle because it provided the PTs the opportunity to 
better understand this MP: d is a constant that represents a common difference between each 
consecutive term in an arithmetic sequence. The IPS ended approximately ten minutes later 
when the group made sense of that MP and agreed on a plan for a different approach (discussed 
in more detail below).  

After the transcript excerpt above, the other PTs joined PT3 in her struggle by attempting to 
find d even though they recognized that the d in an arithmetic sequence needs to be constant. We 
noticed that their struggle was related to express misconception and errors, one kind of student 
struggle from Warshauer’s (2015) study. However, the result from our study is slightly different, 
since the PTs realized the misconception of using d as a common difference in arithmetic 
sequence when the differences in their data are not constant. We hypothesize that the PTs 
additional experience in learning mathematics may be responsible for their ability to recognize 
their misconception, leading to a more sophisticated version of this kind of struggle than that 
seen in Warshauer’s study with middle school students. 

The PTs were struggling with making sense of d in an arithmetic sequence. However, while 
struggling with this specific concept, they also had been struggling with how to use an arithmetic 
sequence as a template to find the equation that represents their solution to the task. This is an 
example of what we call a strategy struggle. Hence, struggling with finding d became a sub-
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strategy struggle since it represents small steps or elements in the proposed strategy. While 
engaged in both of these types of struggles, they also had been struggling with how to find an 
equation to represent the fewest number of moves for any size team of frogs. This struggle is 
defined as a goal struggle since the goal of this task is to generalize their obtained data to any 
size frog team. Since struggling with this sub-strategy struggle—making sense of d in an 
arithmetic sequence—brought an opportunity for the PTs to better understand the stated MP (see 
above), we hypothesize that with doing math tasks, resolving sub-struggle strategies may be 
where PTs’ learning—their coming to better understand an MP—occurs. To describe more about 
how that learning occurs, we need to take into consideration context outside the IPS. From our 
broader analysis, the challenging mathematical task—the Frog Problem—initiated the PTs’ goal 
struggle. Then, the PTs’ goal struggle initiated the PTs’ strategy struggle, followed by the PTs’ 
sub-strategy struggle that led them to further their learning of the MP of this IPS. Thus although 
in this case there were three struggles going on simultaneously that were moving the PTs 
towards the goal of the lesson, it was the sub-strategy struggle that made this particular 
interaction productive in the sense of learning mathematics. 

Towards the end of the 10-minute IPS, making a decision to change to a different focus after 
making sense of the sub-strategy struggle provided evidence that learning had occurred. Below 
is when the PTs realized they could not use the current approach and proposed a next strategy for 
the group to consider. 

PT2:  So instead of making it d, could almost like put a variable that was like the last 
variable I’m gonna add two then in place of 𝑑 like that’s what it would represent 
there? 

PT1:  So what do you mean? 
PT2:  Like, Ok so [PT3: I know what you’re saying] Yeah, Like if you have like when 

you [PT3: But then we will have two variables] use the last one. Yeah that’s the 
only thing is that there’d be a lot of variables. 

PT4:  Like and now we can do some substitution or elimination to figure out the other 
variable 

PT1:  So I feel like the total moves for the first four groups we can plug that in and 
maybe solve for a variable. 

PT2:  Yeah 
Making these decisions as a group provided evidence that they were all engaged in making sense 
of the MP and had benefited from the learning opportunity. 

Conclusion 
The results of this exploratory study revealed the complexity of the inner workings of PTs’ 

productive struggle. We hypothesize that a productive struggle can consist of different types of 
struggles—goal struggle, strategy struggle, and sub-strategy struggle—that may coexist 
simultaneously. These types of struggles expand our knowledge about struggle by adding detail 
about the nature of struggles to the already existing information about kinds of struggles (e.g., 
Warshauer, 2015; Zeybek, 2016). These findings highlight the importance of mathematics 
teacher educators recognizing the mathematical opportunities that may be present in their PTs’ 
struggles and provide some insight into how mathematics teacher educators might leverage their 
PTs’ productive struggles to better prepare those PTs to support their future students’ productive 
struggles. 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1227



References 
Andrews, P. (2000). Investigating the structure of Frogs. Mathematics in School, 29(2), 7-9. 
Dixon, J., & Watkinson, R. (1998). The investigating experience: Frogs. Mathematics in School, 27(5), 42-43. 
DuCloux, K., Gerstenschlager, N., Marchionda, H., & Tassell, J. (2018). Characterizing prospective mathematics 

teachers’ productive struggle. In Venenciano, L. & Redmond-Sanogo, A. (Eds.), Proceedings for the 45th 
Annual Meeting of the Research Council on Mathematics Learning (pp. 9-16). Baton Rouge, LA. 

El-ahwal, M., & Shahin, A. (2020). Using video-based on tasks for improving mathematical practice and supporting 
the productive struggle in learning math among student teachers in the faculty of education. International 
Journal of Instructional Technology and Educational Studies, 1(1), 25-30. 

National Council of Teachers of Mathematics [NCTM]. (2014). Principles to actions: Ensuring mathematical 
success for all. Author. 

Ochieng, M. A. (2018). The bellringer sequence: Investigating what and how preservice mathematics teachers learn 
through pedagogies of enactment [Unpublished doctoral dissertation]. Western Michigan University. 

Roble, D.B. (2017). Communicating and valuing students’ productive struggle and creativity in calculus. Turkish 
Online Journal of Design Art and Communication, 7(2), 255-263. 

Russo, J., Bobis, J., Downton, A., Livy, S., & Sullivan, P. (2021). Primary teacher attitudes towards productive 
struggle in mathematics in remote learning versus classroom-based settings. Education Sciences, 11(2), 35. 
https://doi.org/10.3390/educsci11020035 

Sayster, A., & Mhakure, D. (2020). Students’ productive struggles in mathematics learning. In K. Tirri, & A. Toom 
(Eds), Pedagogy in basic and higher education - Current developments and challenges. IntechOpen. 

Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building student capacity for mathematical thinking and 
reasoning: An analysis of mathematical tasks used in reform classrooms. American Educational Research 
Journal, 33(2), 455–488. https://doi.org/10.3102/00028312033002455 

Van Zoest, L. R., & Levin, M. (2021). Artifact-enhanced collegial inquiry: Making mathematics teacher educator 
practice visible. In M. Goos & K. Beswick (Eds), The learning and development of mathematics teacher 
educators. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-030-62408-8_9 

Van Zoest, L. R., Stockero, S. L., Leatham, K. R., & Peterson, B. E. (2016). Theorizing the mathematical point of 
building on student mathematical thinking. In C. Csíkos, A. Rausch, & J. Szitányi (Eds.), Proceedings of the 
40th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 323-
330). Szeged, Hungary: PME. 

Warshauer, H. K. (2015). Productive struggle in middle school mathematics classrooms. Journal of Mathematics 
Teacher Education, 18(4), 375-400. 

Warshauer, H. K., Starkey, C., Herrera, C. A., & Smith, S. (2021). Developing prospective teachers’ noticing and 
notions of productive struggle with video analysis in a mathematics content course. Journal of Mathematics 
Teacher Education, 24(1), 89-121. https://doi.org/10.1007/s10857-019-09451-2 

Zeybek, Z. (2016). Productive struggle in a geometry class. International Journal of Research in Education and 
Science, 2(2), 396-415. 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1228



RECRUITING AND RETAINING MINORITIZED PRESERVICE TEACHERS: 
CRITICAL RESISTORS 

Nick Kim 
The University of Tennessee 

nkim2@utk.edu 

Lynn Hodge 
The University of Tennessee 

lhodge4@utk.edu 

Shande King 
Trevecca Nazarene 

University 
nking2@trevecca.edu 

The primary purpose of this research was to provide insight into the narratives and experiences 
of minoritized (based on race) preservice teachers (PST) interested in teaching mathematics and 
how those experiences impact recruitment and retention of those minoritized teachers. Narrative 
inquiry framed through equity and identity lenses were chosen as the methodology for gathering 
and analyzing data from one-on-one, structured interviews as well as a focus group interview. A 
finding from the data analysis resulted in one specific resonant thread, Critical Individuals: 
Resistors. In summary, the PSTs’ minoritized identities clearly impacted their decisions to 
pursue and remain in mathematics teacher education. All participants could recall “aha 
moments” when dealing with important people in their lives who either supported or attempted 
to resist their journeys to pursue teacher education. 

Keywords: Preservice Teacher Education, Teacher Educators, High School Education  

Teacher shortages across the United States in elementary, intermediate, and secondary 
schools are a recognized concern and can be credited to the difficulties in recruiting and retaining 
highly qualified teachers. The American Association for Employment in Education (AAEE, 
2016) found data signifying a substantial teacher shortage in the Southeast United States. More 
specifically in Tennessee, forecasts designate that half of the more than 65,000 teachers in the 
state will leave or retire in the next decade (Aldrich, 2017). Teacher preparation programs, 
policymakers, and administrators are particularly familiar with said difficulties in that they are 
continuously tasked with the challenge of finding highly qualified teachers in response to a 
reduction in enrollment for teacher educator programs (TEP) (Flannery, 2016; Westervelt, 2015), 
a high rate of teachers leaving the profession only after a few years, and a high proportion of 
veteran teachers retiring. 

Shortages of specifically minoritized teachers coupled with the growth of minoritized 
students attending schools raise additional challenges. According to McFarland et al. (2018) and 
National Center for Educational Statistics (NCES, 2019), minoritized students made up 
approximately 52% of public-school students in 2015-2016.  By contrast, however, minoritized 
teachers made up approximately 20% of U.S. public school teachers during the same timeframe 
– constituting a mere 4% growth since 1999-2000 (McFarland et al., 2018; NCES, 2019). These 
statistics evidence the unlikelihood of many minoritized students seeing a proportional number 
of teachers representing their own communities. This is significant in that minoritized teachers 
are more likely to honor and support the cultures and interests of minoritized students, and 
according to research, such exemplification has been found to be a source of motivation for some 
minoritized students (Guarino et al., 2006).  

Issues and Problem Statement 
Research has addressed issues of teacher shortages and recruitment in general as well as 

more specific issues of teacher shortages among disciplines including science, technology, 
engineering, and mathematics (STEM). Fisher and Royster (2016) found that secondary level 
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core subject teachers such as mathematics and science teachers as well as special education 
teachers are most likely to leave the teaching profession. Fisher and Royster (2016) take a look at 
multiple studies that offer different accounts as to why mathematics teachers leave the profession 
including: not enough preparation in the mathematics content, stressful situations from poor 
student behavior and lack of administrative support, and pressure from high-stakes testing. Fisher 
and Royster (2016) also offer resolutions to reduce teacher stress levels and ease the teacher 
retention problem by offering recommendations for stronger professional development, more 
effective mentoring for new teachers, and more productive peer collaboration. 

In spite of these studies, we still know little about how to recruit and retain mathematics 
educators in practical ways. Therefore, we are forced to look for new and innovative ways to 
recruit more teachers, especially mathematics teachers, in practical ways that do not require 
extensive budget reforms that are unlikely to be implemented. This study addressed the broader 
issues of diversifying the teacher workforce and teacher shortages, particularly in the area of 
mathematics education. In doing so, the study shined light on the effective recruitment and 
retention strategies by identifying common stories amongst minoritized participants. The primary 
research question addressed in this study: How do minoritized preservice teachers’ experiences 
(identity) contribute to their decision to pursue mathematics education? The sub question 
addressed in this study: How does an identity as a minoritized individual based on race and 
ethnicity affects one’s pursuit of mathematics education? In this study, experiences are defined 
as life events that impacted the individuals’ identity as a minoritized individual. 

Theoretical Framework 
The notion of identity informs the design of this study. An individual’s identity is created as 

one participates in the social and cultural practices within a community of practice (Lave & 
Wenger, 1991). In this instance, concentrating on the involvement in social experiences also 
indicates a clear emphasis on the individual as a participant of the sociocultural community 
(Lave & Wenger, 1991). This situated perspective of identity comprises in what ways individuals 
see themselves, how society views them, and how they interpret these views in relation to their 
positions within communities of practice (Matheny, 2016). In addition, Hodges and Hodge 
(2017), drawing on Wenger (1998), described identity as a “constant becoming” where identities 
evolve based on their experiences within communities of practice. 

 More specifically and making identity more concrete, Gresalfi and Cobb (2011) and 
Hodges and Hodge (2017) identify one’s “personal identity” as formed when one comes to 
associate with certain practices valued within a community. “The idea of personal identity 
provides structure to a narrative approach by focusing our attention on the normative ways of 
acting and valuations of these norms from a participant’s perspective (Hodges & Hodge, 2017, p. 
104).” In this way, the notion of personal identity informs the design of this study by focusing 
attention on whether or not and to what extent PSTs experiences as minoritized individuals 
influenced their decisions to pursue mathematics teacher education. In addition, this identity lens 
emphasizes the resources, including other individuals and interactions, that contribute to or 
delimit the participants’ identities. 

Narrative Inquiry 
Clandinin and Connelly (2000) refined the narrative research approach to a narrative inquiry 

methodology that commences and concludes “in the midst of living and telling, reliving and 
retelling, the stories of the experiences that made up people’s lives, both individual and social” 
(p. 20). Narrative inquiry is mutual as the researcher and the participants “reach a joint 
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intersubjective understanding of the narratives that occur during the research process” (Moen, 
2006). The cooperative association between participants and researcher is also expressed in the 
re-storying of their experiences. Human beings give meaning to experience by situating it in 
time, place, and relationship to others (Connelly & Clandinin, 2006). This is the reason why the 
study is situated in Tennessee as the participants and researcher have collaborated in various 
learning environments prior to the study.  

Data Analysis 
This study consisted of seven participants of varying races, genders, and status as a university 

undergraduate student. During this study, preliminary and primary data analysis occurred 
concerning both the individual narrative interviews as well as the focus group interview. 
Preliminary data analysis during both interview types assisted in providing structure and quality-
checking of participant responses. In addition, this process provided an opportunity to start initial 
analysis for possible implications and overall recurrent themes. The researcher continued to use 
the research journal during this preliminary analysis process to keep note of themes, 
irregularities, and noteworthy findings. Patterns and findings from the preliminary analysis 
portion of the individual narrative interviews influenced modifications in the questions and 
process of conducting the focus group interview. The analysis of the data collected in the 
research journal was then transferred to a spreadsheet with each individual participant’s quotes 
and initial codes. This was the beginning process of the primary data analysis.  

Primary data analysis of the transcriptions from the audio from both interviews served as the 
primary source of data in this study. In addition, video recordings of the Zoom Video 
Conferencing interviews allowed the researcher to focus not only on the words chosen by the 
participant but also their body language, facial expressions, changes in tone, and verbal 
emphases while answering personal questions about their experiences. The experiences and 
narratives collected were then coded in vivo through continuous coding cycles with constant 
comparisons (Saldaña, 2013). In the opening round of coding, each individual interview was 
evaluated separately through multiple readings of the transcript while examining the notes on 
body language and facial expressions to be for significant findings to address the research 
questions. These codes were created from concrete experiences contributing to participants’ 
journey to become a minoritized mathematics teacher and recorded in the spreadsheets 
mentioned above. 

Results 
Resonant Narrative Threads 

Clandinin defined resonant threads as “threads that echoed and reverberated across the 
accounts” (Clandinin et. al., 2012, p.14). Therefore, similar themes and significant differences 
were identified across the narratives. The next section will describe how the participants’ 
interactions with critical individuals in their lives resisted their journey to become a mathematics 
teacher. 
Critical Individuals: The Resistors 

Critical individuals resisted the participants’ intentions to pursue mathematics teaching. The 
major reason for resisting becoming a mathematics teacher came from their families concern 
about the adequacy of teacher salaries. Sydney, Tiana, Peter, and Il-seong’s families all wanted 
them to “earn higher than average salaries” since they were in lucrative fields of mathematics or 
engineering in Peter’s case. The rationale was due to financial stability. All participants 
questioned and revisited their decisions to pursue mathematics teacher education because of the 
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concerns expressed by their families, but ultimately the participants decided that a high salary 
was not the major factor in their decisions to become a teacher. This theme is made clear in 
Sydney’s (a Black, female) comments about her decision to continue pursuing becoming a 
mathematics teacher. As she notes:  

My grandparents, they were like, Sydney, if you're going to school for math, don't be a 
teacher. And they kind of skewed my viewpoint a bit. And I was like, should I do something 
else? Because they made me feel like I was settling... They were like, you’re smart, so why 
are you going to pursue a math degree, then just going settle on being a teacher? And I was 
like, I guess, yeah, you're right. I mean, why am I just going to settle on being a teacher, but 
then I realized that I wasn't settling on being a teacher. They wanted me to go and work and 
get money, which is fine. Money is great, don't get me wrong, but I was like, I was not going 
to be happy with that. Man, of course, I'd be happy, but was I going to be genuinely happy? 
And I realized I wasn't going to be genuinely happy with that, so I went back to teaching. 
For most of the participants, becoming a teacher serves more than just earning a salary; it is 

about making a difference in students’ lives, similarly how other teachers have changed their 
lives.  

Reflecting one significant difference, Gabriel’s (a Latino, male) resistor came in the form of 
an eighth-grade mathematics teacher. His teacher was a White, female who recommended 
Gabriel take below grade-level mathematics coursework during his freshman year of high 
school. Gabriel has always been confused about why he was placed into such a low performing 
class. Instead of harboring negative feelings, Gabriel used the actions of the teacher as 
motivation to pursue high- level mathematics in high school. As the participants’ journeys make 
clear, they decided to carve their own paths in spite of resistance from some critical individuals 
in their personal lives. It seemed that these tough life decisions created critical decisions in which 
the participants chose to listen to their own voice rather than the voice of their resistors. 
However, the resistors did play significant roles in motivating participants in some cases, such as 
Gabriel’s. These critical individuals, these resistors, often play a role in what I call aha moments 
when individuals decide to pursue teaching. 

Conclusion 
Minoritized PSTs have experiences with critical individuals in their journey to pursue a 

mathematics teacher license. These individuals can often be resistors not just supporters. This 
research examined the critical individuals who resisted PSTs decision to pursue mathematics 
education through various ways. The resistance came from family members as well as teachers. 
The first recommendation based on this research is to inform PSTs with all of the financial issues 
with becoming a teacher. Starting with low salary- presenting the statistics that show teacher 
salaries combined with benefits such as retirement and step raises actually are competitive with 
many other professions. In addition, identifying the teach grants or federal teacher loan 
forgiveness programs that can ease some of the financial burden.  

Another recommendation based on the research is to allow current secondary teachers, as 
well as community college or university instructors, to actively search for potential mathematics 
teachers by explicitly providing opportunities for minoritized students to teach or tutor or by 
explicitly recommending them to consider mathematics teaching. In contrast, current teachers 
should be made aware of their decisions on how they track their students and the long-term 
impact those decisions have on their potential students’ potential career choices. 
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Describimos la segunda fase de una investigación en curso que se pregunta sobre la manera en 
que los maestros en formación asumen sus prácticas pedagógicas en un contexto global donde el 
lenguaje y las matemáticas se conjugan. Tal intención obedece al propósito de formar maestros 
que respondan a los retos educativos actuales. Uno de estos retos es el uso del inglés como 
lengua global. Se presenta una experiencia de trabajo conjunto entre estudiantes y docentes de 
dos cursos de enseñanza de métodos y didáctica de las matemáticas, uno en Estados Unidos y 
otro en Colombia. Esto implicó el diseño de actividades para la enseñanza de las matemáticas 
usando como referencia cuentos infantiles. Dentro de los resultados se identifica que las 
actividades fueron influenciadas más por el uso del lenguaje que por el contenido matemático 
que se quería enseñar.  

Palabras clave: Teacher Educators, Preservice Teacher Educators, Elementary School Education 

Este artículo presenta resultados preliminares de una investigación en curso que tiene como 
centro la formación de docentes de la escuela primaria y preescolar en el área de las 
matemáticas. Además, nuestra investigación intenta identificar cómo esta formación contribuye a 
el desarrollo de docentes globales (Krause et al., 2021).  

El uso de la palabra “globalización” explotó en los años noventa porque capturó la naturaleza 
cada vez más interdependiente de la vida social en nuestro planeta (Steger, 2013). Esta 
interdependencia ha llevado a grandes cambios sociales, políticos, y económicos a nivel mundial, 
que han influenciado los sistemas educativos locales. Esta interdependencia ha establecido 
procesos de estandarización en el campo educativo enfatizando en exámenes que miden y 
posicionan a los estudiantes, a los maestros y a los sistemas educativos de acuerdo con un 
ranking establecido por agentes económicos (por ejemplo, la Organización para la Cooperación y 
el Desarrollo Económico - OCDE), que al mismo tiempo se encargan de patrocinar dichos 
exámenes (por ejemplo, las pruebas PISA) (Meyer & Benavot, 2013). Como consecuencia, el 
aula escolar en el mundo está cambiando y este cambio, necesariamente, nos obliga a hablar 
sobre la formación de maestros. Como formadores de maestros estamos obligados a preparar 
maestros que puedan asumir los retos que traen estos cambios en los sistemas educativos. Los 
tres autores de este artículo nos dimos en esta tarea hace dos años. En 2020 iniciamos nuestro 
trabajo colaborativo enfocándonos en entender cómo se están formando los maestros desde 
nuestros contextos locales, específicamente desde los cursos relacionados con los métodos y 
didáctica de las matemáticas. Resultados preliminares de la primera fase fueron publicados y 
presentados en esta misma conferencia el año anterior (Krause,  et al., 2021). En dicha 
publicación documentamos la planeación, desarrollo e implementación inicial de retos 
matemáticos en dos clases: una de métodos de enseñanza de las matemáticas en Estados Unidos 
y la otra de didáctica de las matemáticas en Colombia. En este estudio encontramos cuatro 
aspectos en común en los dos contextos; los maestros en formación (MEF): (1) usaron diferentes 
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estrategias para solucionar los problemas matemáticos, (2) reflexionaron sobre los posibles 
efectos negativos de la memorización de fórmulas sin entender conceptos, (3) se dieron cuenta 
de que entienden más matemáticas que lo que realmente creían, (4) reportaron el disfrutar el 
trabajo de los retos matemáticos (Krause,  et al., 2021). Otros aspectos que identificamos se 
refieren a que los MEF en el contexto colombiano mostraron características de trabajo 
colaborativo, mientras que en el contexto de Estados Unidos los MEF expresaron tendencias más 
individualistas. Adicionalmente, en el contexto de Estados Unidos los MEF estuvieron más 
atentos al uso del tiempo mientras que en Colombia consideraciones de tiempo para la solución 
de problemas no fueron notorias. A partir de estos resultados pasamos a una segunda fase de 
nuestro estudio en la que, informados por los resultados anteriores, decidimos integrar los dos 
contextos en una actividad conjunta.  

En esta fase le pedimos a los MEF que diseñaran y enseñaran actividades matemáticas para 
los MEF en el otro país. Esta integración tomó varios meses de planeación principalmente 
porque debíamos establecer puentes de comunicación entre dos contextos monolingües, uno en 
inglés y otro en español. En este artículo documentamos la experiencia de diseño, integración y 
resultados preliminares que han emergido al analizar este trabajo. En este artículo nos centramos 
en contestar la siguiente pregunta de investigación: ¿de qué manera asumen los maestros en 
formación sus prácticas pedagógicas en un contexto donde el lenguaje y las matemáticas se 
conjugan?  

En las siguientes secciones describimos la actividad pedagógica que desarrollamos para 
integrar las dos clases, cómo se implementó, y las decisiones de instrucción que tomamos 
informados en la literatura. Por último, presentamos un resumen de lo que aprendimos y los 
pasos a seguir en el futuro. 

Antecedentes y Marco Teórico 
Nuestro estudio parte del principio que las matemáticas deben estar en el centro de las 

discusiones de equidad en la sociedad y por ende en el salón de clase (Moses & Cobb, 2002; 
Gutierrez, 2013). Este principio rige el marco teórico de nuestras prácticas pedagógicas. En el 
contexto estadounidense la clase de métodos de enseñanza de las matemáticas se enfoca en 
proveer oportunidades que fomentan el extender y expresar ideas matemáticas. Un aspecto para 
resaltar en esta clase es el enfoque que tiene en fomentar la participación de estudiantes 
multilingües. En particular un pilar importante de esta clase es el promover las discusiones 
matemáticas especialmente aquellas que mantienen el lenguaje y la identidad cultural de los 
estudiantes (Krause,  et al., 2021; Krause & Colegrove, 2020). En el contexto colombiano, la 
clase Didáctica de las Matemáticas centra su interés en proveer a los futuros licenciados de 
estrategias y recursos que les permitan integrar la formación matemática en la educación infantil 
(Murcia & Henao, 2015). 

Cuando estudiamos la globalización en el contexto educativo es muy común encontrar 
artículos y estudios que hacen referencia a los “ciudadanos globales” (por citar algunos (Spring, 
1998; Steger, 2013; Subedi, 2013; Triandis, 2001)). En muchos casos, estos ciudadanos globales 
son aquellos ejecutivos que se mueven fluidamente entre continentes y estudiantes 
internacionales que en muchas ocasiones gozan de los mismos privilegios económicos. Sin 
embargo, muy poco se dice sobre otros ciudadanos globales que también se mueven entre países 
y culturas, pero con menos ventajas económicas. Este contraste lo describe claramente Doerr 
(2020), quien hace un paralelo mostrando cómo los diferentes estatus que proveen la raza, el 
nivel socioeconómico y el nivel educativo de algunos ciudadanos globales contrastan con otros 
ciudadanos globales que cruzan fronteras en busca de seguridad, educación y empleo. En las 
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escuelas públicas de los Estados Unidos, estos ciudadanos globales son un número bastante 
grande. La pobreza es una de las razones más comunes descrita por ellos como el motivo 
principal para dejar su país (Bigelow, 2006). Particularmente en Centro y Latino América, los 
Estados Unidos ha jugado un papel importante en contribuir a este estado de pobreza. El acuerdo 
North American Free Trade Agreement (NAFTA) es quizá una de las razones más mencionadas 
y estudiadas en las aulas de clase como una consecuencia directa del incremento en las 
migraciones masivas de Centro América a los Estados Unidos. Sólo en México, 10 años después 
de la firma de este acuerdo, el salario mínimo declinó 50%, las exportaciones de maíz de Estados 
Unidos a México incrementaron 14% y el precio del maíz mexicano bajo 45% entre los años 
2001 y 2005. Según reportes económicos en esa misma década 3 millones de empleos que 
dependían de la agricultura mexicana desaparecieron (Bigelow, 2006). 

Otro aspecto que se menciona comúnmente al hablar de globalización es el uso del inglés 
como lengua global (Melitz, 2016). Al hablar de la globalización como un proceso de 
interconexión, el lenguaje se convierte en un medio casi obligatorio para esta interconexión, 
sirviendo como herramienta en los procesos de estandarización que mencionábamos 
anteriormente. En el contexto colombiano, bajo el argumento de la necesidad de un país más 
competitivo en tiempos de la globalización, el gobierno central aprobó una serie de reformas 
educativas en el año 2005 en las cuales el aprendizaje y enseñanza del inglés adquiere un papel 
prioritario en el sistema escolar nacional (Usma, 2009).  

Identificados estos dos grandes aspectos de la globalización, influenciando cada uno de los 
contextos donde trabajamos, nos dimos a la tarea de diseñar la actividad en común.  
Descripción y justificación de la actividad 

La orientación del ejercicio propuesto para nuestros MEF (tanto estadounidenses como 
colombianos) fue diseñar una actividad para enseñar un concepto o desarrollar un pensamiento 
matemático a partir de cuentos para niños. La actividad debía además ser enseñada a sus pares 
del otro país. Esta decisión la tomamos informados por la literatura. Sabemos que 
frecuentemente los educadores de matemáticas usan los ensayos pedagógicos como medio para 
modificar sus prácticas de instrucción (Webb & Wilson, 2022). Estos ensayos son herramientas 
que permiten a los MEF imaginar nuevas posibilidades de enseñanza y aprendizaje. Además, 
estos ensayos proveen la oportunidad al MEF de reflexionar en cómo y por qué actuamos de la 
manera que lo hacemos desde el punto de vista del maestro y del estudiante (Webb & Wilson, 
2022). De esta manera, los ensayos pedagógicos abren la puerta para reflexionar en nuevas 
formas de aprender y en por qué respondemos de la manera que lo hacemos en el mismo 
momento de la instrucción. Además, la reflexión colectiva contribuye a alinear nuestras prácticas 
de instrucción a través de la observación y discusión (Webb & Wilson, 2022).  

En preparación de la actividad cada pareja de Estados Unidos y de Colombia tuvo la 
posibilidad de escoger un cuento y tener 6 semanas para diseñar la actividad de enseñanza. La 
actividad debía trabajar algún concepto o pensamiento matemático. Los MEF tenían la libertad 
de escoger el concepto matemático que ellos consideraran adecuado. Luego, dispusimos 
diferentes espacios en línea para que los MEF de los dos países se pusieran en contacto y se 
enseñaran la actividad.  

La idea de usar los cuentos surge con la intención de proveer a los estudiantes con un punto 
de partida en común. Tal intención obedece a la diferencia de idiomas que se manejan en los dos 
contextos, por tanto, de cada cuento se tenía su versión en inglés y en español. El uso de cuentos 
para enseñar matemáticas ha sido empleado por los investigadores en sus clases. Por ejemplo, en 
la clase de Estados Unidos el primer autor ha diseñado una actividad donde los MEF crean una 
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figura geométrica usando las letras de su nombre. Como preámbulo de esta actividad el primer 
autor trae varios cuentos que hacen referencia a los nombres. Uno de estos cuentos es 
Crisantemo (y su versión en inglés Chrysanthemum)  (Henkes, 2008), The Name Jar (Yangsook, 
2003), Marisol McDonald Does not Match (Brown, 2011), entre otros. Durante la clase hay un 
espacio para que los estudiantes lean los cuentos, vean las imágenes, y compartan sus 
apreciaciones del libro con sus compañeros. Luego, los discutimos como clase. La discusión del 
cuento se centra en varios aspectos de pertenencia e identidad y la relevancia que estos tienen en 
el aprendizaje de las matemáticas. Al mismo tiempo, esta actividad abre un espacio en la clase 
para hablar sobre cómo hacer conexiones en clase de matemáticas con la lectura. Además del uso 
de libros que incluyen diferentes representaciones culturales y lingüísticas en el salón de clase. 
Luego, los MEF pasan a realizar una actividad matemática que requiere reemplazar y despejar 
variables usando valores asignados a cada letra del nombre de cada uno. Así se generan pares 
ordenados que luego se ubican en el plano cartesiano. De esta manera se generan figuras 
geométricas usando sus nombres. En esta actividad el cuento es una herramienta para ayudarnos 
a discutir el tema de pertenencia e identidad, es el preámbulo de la clase. La actividad 
matemática se conecta con este preámbulo y el cuento nos ayuda a unir los nombres con la 
matemática. En preparación a nuestra actividad colaborativa, Colombia adoptó esta actividad 
también. Teniendo en cuenta que el monolingüismo en cada uno de nuestros contextos locales 
podría generar una barrera de comunicación, decidimos ubicar cuentos que estuvieran 
disponibles en inglés y español, o que no tuvieran palabras, solo imágenes. También 
necesitábamos que los MEF pudieran tener acceso a los libros de forma digital. Aquí nos 
apoyamos en los recursos de las bibliotecas en cada una de nuestras instituciones. Siguiendo 
estos parámetros tomamos como base cinco cuentos infantiles: Un Charco Azul (Amaco, 2007); 
Cómo Atrapar Una Estrella (Jeffers, 2010); Crisantemo (Henkes, 2008); Mi León (Mandana, 
2006); estos cuatro dispuestos en inglés y en español y Journey (Becker, 2013) que contiene sólo 
imágenes.  

Las pautas para la actividad fueron las siguientes: (1) trabajar en grupos de dos. Cada grupo 
fue asignado a otro par en el contexto de la otra clase y fueron presentados con 6 semanas de 
anterioridad a la ejecución de la actividad. Basados en nuestras experiencias pedagógicas 
sabemos que el trabajo en parejas proveería un poco más de seguridad para que los estudiantes 
en cada contexto se sintieran apoyados en el diseño y ejecución de la actividad. Esto era 
importante para nosotros, dado que era la primera vez que estábamos realizando la actividad y 
además sabíamos que los estudiantes en los dos contextos se sentían un poco atemorizados de 
afrontar este reto, dado las diferencias en el lenguaje. (2) Diseñar una actividad matemática a 
partir de uno de los cinco cuentos seleccionados. (3) Cada grupo debía enseñar la actividad al 
otro grupo asignado de la otra clase. Es decir, un grupo de Colombia debía diseñar una actividad 
y luego enseñarla a un grupo asignado en Estados Unidos y, de la misma manera, un grupo de 
Estados Unidos debía diseñar una actividad y luego enseñarla a un grupo de Colombia. De esta 
manera cada grupo asumiría el papel de maestros y de estudiantes. Estas dos parejas tenían en 
común el mismo cuento. (4) El “intercambio” académico se hizo a través de la plataforma Zoom 
y pedimos que se grabara esta interacción. Esto lo hicimos con el fin de tener acceso a cada 
momento de instrucción de los grupos y así poder estudiar el desarrollo de la actividad. El 
tiempo que se destinó para que cada pareja ejecutara su actividad fueron 15 minutos. Así, en 
total, cada grupo debía tomar 30 minutos para el intercambio.  (5) Finalmente, cada estudiante 
debió escribir una reflexión sobre la experiencia y sus aprendizajes. La reflexión la usamos para 
conocer las apreciaciones individuales de cada estudiante. Al mismo tiempo, la usamos para 
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aprender sobre el impacto que tuvo en los dos grupos. La reflexión tenía 7 puntos específicos 
donde pedíamos a los MEF describir desde el diseño de la actividad hasta su experiencia 
enseñándola y participando como estudiantes de la actividad del otro grupo. También, 
preguntamos por sus sugerencias sobre cómo hacer este intercambio más significativo para su 
formación como maestros y una descripción de lo que aprendieron sobre cómo enseñar 
matemáticas, el lenguaje y, en general, de toda la actividad.  

Métodos 
Datos 

Los datos que analizamos para nuestro estudio se conforman de las actividades diseñadas por 
cada grupo, las reflexiones individuales, y los videos donde los maestros en formación 
participaron del intercambio de actividades en los dos roles: maestros y estudiantes. En total 
tuvimos 13 parejas en cada contexto, es decir 26 grupos en total. Este trabajo produjo 26 
actividades de matemáticas, 52 reflexiones, y 13 videos. El análisis de los datos se hizo 
siguiendo el modelo hermenéutico dialéctico (Martínez, 2013), con el cual revisamos los datos 
desde diferentes dimensiones como la enseñanza, el aprendizaje, la comunicación y la didáctica 
misma de la experiencia, a fin de descubrir significados y aprender de ellos. 

Cada uno de los instructores leyó las reflexiones e identificó aspectos diferenciadores en cada 
reflexión y aspectos que fueron comunes. Al mismo tiempo, cada instructor vio cada uno de los 
videos y marcó episodios donde aspectos de uso del lenguaje sobresalieran en referencia a cómo 
se comunicaban conceptos matemáticos, tanto en el papel de maestro o de estudiante. Luego, a 
través de diferentes sesiones de trabajo, los investigadores discutieron cada uno de estos 
episodios y aspectos emergentes de las reflexiones y seleccionaron aquellos que encontraron en 
común. De este análisis salieron los resultados que describimos a continuación. 

Resultados 
En este primer análisis, cuatro ideas sobresalieron: (1) los cuentos infantiles no fueron ese 

punto de partida de lenguaje común que consideramos.  El cuento fue usado por algunos MEF 
como el medio de instrucción. Es decir, no tuvieron en cuenta que los compañeros del otro país 
ya conocían el cuento, en cambio optaron por leerlo y usar esta lectura como medio para la 
enseñanza de las matemáticas. Por ejemplo, el grupo 1 usó el cuento Un Charco Azul (Amaco, 
2007). En este grupo la pareja de Estados Unidos leyó el libro en español a su pareja colombiana. 
A medida que leían el libro pausaban y hacían preguntas sobre las imágenes del libro, por 
ejemplo, preguntaron “¿cuántas golondrinas estaban tomando agua?”  “¿Cuántos animales han 
visto en total hasta este punto?” Aún sabiendo que su pareja colombiana tenía el libro en español. 
Algo similar sucedió en Colombia, aun sabiendo que la pareja en Estados Unidos tenía el libro 
en inglés, los estudiantes decidieron leerlo en inglés al grupo de Estados Unidos. (2) Los temas 
matemáticos cubiertos se centraron en su mayoría en contar e identificar figuras geométricas y 
patrones porque, según la explicación de algunos estudiantes, son temas que no requieren un 
mayor uso del lenguaje. Un estudiante escribió en su reflexión: 

“… we chose our topic because we felt that shapes and patterns required little knowledge of 
English/Spanish words in order to comprehend or explain.” [… escogimos este tema porque 
sentimos que las figuras y los patrones requieren poco conocimiento de palabras de 
inglés/español para entender o explicar las ideas.”]. 

(3) La experiencia fue diferente para cada estudiante dependiendo del papel que asumieron. Este 
resultado es quizá el que muestra con mayor claridad indicaciones del impacto que tuvo la 
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actividad en los MEF y que sirve como punto de partida para expandir esta investigación. 
Cuando los MEF reflexionaron sobre su papel como maestros, ellos hablaron sobre el número de 
veces que practicaron, los recursos que usaron para asegurarse de traducir las palabras correctas, 
los materiales que decidieron usar, y de cómo sus habilidades docentes fueron puestas a prueba. 
Sin embargo, cuando asumieron el otro papel, el de estudiantes, la experiencia fue un poco 
diferente. En ese momento ellos tenían que responder sin aviso previo o preparación para lo que 
debían contestar. Por ejemplo, un estudiante de Estados Unidos escribió en su reflexión: 

I was expecting to be more nervous as an instructor than the student, but the opposite 
happened for me. I knew exactly what I was going to say and teach for my own lesson, but I 
was nervous about doing the activities for the other group correctly. I got nervous when I did 
not understand the directions because I wasn’t sure how to ask, but we eventually got it and it 
was really fun! 
[Esperaba estar más nervioso como instructor que como estudiante, pero al contrario sucedió 
para mí. Sabía exactamente lo que iba a decir y enseñar para mi propia lección, pero estaba 
nervioso por hacer correctamente las actividades para el otro grupo. ¡Me puse nervioso 
cuando no entendía las instrucciones porque no estaba seguro de cómo preguntar, pero 
finalmente lo conseguí y fue muy divertido!] 

En Colombia una estudiante escribió:  
Me sentí muy bien, como volviendo a ser niña de nuevo, aunque un poco ansiosa ya que nos 
estaban observando y esperando nuestra respuesta, pero aun así fue satisfactorio ya que se 
pudo realizar la actividad y nos entendieron al momento de dar nuestras respuestas. 

Acá cabe anotar también que, en las reflexiones, fue claro que cada MEF trabajó y dedicó tiempo 
para diseñar las actividades, sin embargo, este esfuerzo no incluyó tiempo para conocerse un 
poco más entre ellos o comunicarse con alguna frecuencia antes de la actividad, a pesar de que 
los canales de comunicación estuvieron dispuestos con bastantes semanas de anterioridad.  

Adicionalmente otras ideas emergieron del análisis. Por ejemplo, los MEF concluyeron que 
pueden usar diferentes métodos de comunicación y que el no ser bilingües en realidad no fue una 
barrera tan grande como la que inicialmente temían al momento de presentarles la asignación. 
Esto es algo que queremos seguir estudiando y analizando, ya que pueden surgir alternativas 
pedagógicas importantes para la formación de maestros. También encontramos que el uso de 
recursos (por ejemplo, herramientas de traducción, materiales, imágenes, etc.) fue bastante usado 
por los diferentes grupos. Este es un tema bastante relevante para nuestra investigación. Por 
ejemplo, preguntas como ¿cuáles recursos son los más eficientes? ¿por qué se usan o por qué no? 
¿quién tiene acceso a estos recursos? Están entre algunas de las ideas que aún seguimos 
explorando. 

Discusión y Conclusiones 
Iniciamos este trabajo con la intención de identificar de qué manera los MEF asumían los 

retos que pudieran presentarse al diseñar e implementar una actividad de matemáticas en un 
contexto donde dos idiomas y la matemática convergían. Los resultados preliminares de nuestro 
estudio nos dirigieron a dos puntos esenciales que informan y contribuyen al trabajo de 
formadores de maestros. Uno es la diferencia entre la preparación y el tiempo que dedicaron los 
futuros maestros en nuestro estudio para asumir los papeles de maestros y de alumnos. En las 
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reflexiones de los MEF encontramos que ellos dedicaron bastante tiempo a preparar la actividad 
y a ensayar cómo presentar la actividad. Sin embargo, este esfuerzo se enfocó sólo en eso, en su 
preparación. No hubo ningún registro de comunicaciones previas para conocer un poco más de 
quienes asumirían el papel del estudiante. No hubo registro de comunicaciones para conocerse 
un poco más. Ninguno de los grupos intentó reunirse con anterioridad para familiarizarse un 
poco más y establecer estrategias para comunicarse. En las indicaciones de la actividad 
intencionalmente dejamos por fuera el “requerir” que se comunicaran con anterioridad, sin 
embargo, los presentamos con 6 semanas antes porque queríamos ver si ellos sentían la 
motivación o necesidad de hacerlo en preparación a la actividad. El encontrar que esta parte 
estuvo ausente en todos los grupos, nos lleva a concluir que es necesario enfatizar prácticas 
pedagógicas que guíen al maestro en formación para que trabaje y aprenda a conocer más de 
cerca a sus estudiantes. En el contexto de los Estados Unidos, particularmente este resultado fue 
bastante sorprendente. Uno de los pilares de la clase de métodos de la enseñanza de las 
matemáticas del primer autor (en Estados Unidos) es el formar a los futuros maestros para que 
aprendan a conocer más a fondo a cada uno de sus estudiantes y usar este conocimiento para 
informar sus prácticas pedagógicas. Específicamente, los MEF en esta clase desarrollan una tarea 
donde cada uno de ellos debe entrevistar a un estudiante focal en sus salones de práctica. Esta 
tarea tiene varios propósitos. Una es averiguar más sobre el estudiante, incluyendo sus intereses 
y las actividades que realiza fuera de la escuela. Otro propósito es averiguar más acerca de las 
ideas del estudiante, actitudes y disposiciones hacia las matemáticas. De esta manera, los 
maestros en formación tienen una base para empezar a trabajar en el diseño de problemas de 
matemáticas y otras actividades que se desarrollan en la clase (Krause & Colegrove, 2020). Esta 
tarea es una las primeras que realizan los MEF en el semestre. Por lo tanto, ya para el momento 
que realizaron este intercambio entre Colombia y Estados Unidos, los MEF en la clase de 
Estados Unidos habían realizado esta entrevista. Este resultado es bastante diciente ya que los 
MEF particularmente en el contexto de Estados Unidos van a estar trabajando en escuelas con 
una diversidad cultural y lingüística amplia. El conocer los fondos de conocimiento que traen los 
estudiantes al salón de clase es esencial en cómo los futuros maestros asumen sus prácticas 
pedagógicas (Civil et al., 2005). Al mismo tiempo, este resultado aclara un poco por qué los 
MEF no usaron los cuentos como lenguaje común. Su enfoque se centró tanto en ellos mismos 
que no permitió ver los recursos que ya aquellos, asumiendo el papel de estudiantes, tenían como 
presaberes. Como mencionamos anteriormente, el ignorar este recurso hizo que cada actividad 
consumiera más tiempo del que en realidad necesitaba. Lo que puede ser una razón para 
justificar la superficialidad del contenido matemático que se enseñó. Este sólo punto de 
enfocarse en ellos mismos prácticamente desencadenó un efecto dominó al momento de enseñar 
la actividad. De igual manera para la clase de Didáctica de las Matemáticas en el contexto 
colombiano, sorprende que los MEF no se interesaran por conocer a sus estudiantes de manera 
previa. Esto riñe con lo que de manera permanente se trabaja en su formación para ser maestros 
en educación infantil. En este nivel es particularmente importante reconocer quiénes son los 
alumnos, cuál es su contexto, qué les gusta, qué saben. Las respuestas a tales preguntas 
fundamentan las bases del constructivismo y el aprendizaje significativo (Ministerio de 
Educación Nacional, 2014) que se espera alcancen los niños y las niñas. 

El otro punto esencial que nos muestran los resultados es el contenido matemático escogido 
para las actividades. Todavía es necesario estudiar este punto con detenimiento, pero por los 
resultados preliminares conjeturamos que el lenguaje sí jugó un papel importante en la decisión 
del contenido matemático que se enseñó. En varias de las reflexiones los maestros en formación 
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explícitamente dijeron que usaron patrones y figuras geométricas porque así no tendrían que usar 
tantas palabras. El debate existente en la enseñanza de las matemáticas en contextos bilingües es 
común en los Estados Unidos. Existen grupos avocando por educación bilingüe que incluya 
instrucción de matemáticas en la lengua materna de los estudiantes y al mismo tiempo existen 
grupos avocando por instrucción bilingüe, pero excluyendo la matemática (Jacobs, 2016). 
Independientemente de este debate, los resultados de esta investigación revelan un aspecto del 
uso del lenguaje que poco se menciona en estos debates. La calidad de la instrucción de las 
matemáticas (Jacobs, 2016). En este trabajo los resultados mostraron que los MEF, en los dos 
contextos, se prepararon para usar el lenguaje de sus estudiantes y que además el uso del 
lenguaje fue lo que condicionó la decisión de qué enseñar. Algo que esperábamos que surgiera 
de la interacción previa (que no ocurrió) era que entre los grupos hablaran y compartieran un 
poco sobre sus experiencias en las prácticas escolares que son parte de su formación como 
maestros y que tomaran de ahí las ideas sobre el contenido matemático. Este aspecto particular 
del uso del lenguaje nos hace pensar en la idea de la estandarización de prácticas educativas 
como consecuencia de la globalización y el uso del inglés como lengua de la globalización. 
Particularmente estos dos aspectos del lenguaje se conectan con la creciente población de 
estudiantes inmigrantes en las escuelas de Estado Unidos. ¿Qué pasa con la calidad de la 
educación que reciben estos estudiantes mientras adquieren un nivel de inglés adecuado para 
comunicarse con sus maestros que, en la gran mayoría, son monolingües? Esto es una pregunta 
que todavía no se contesta en nuestro campo de educación de matemáticas bilingüe y que 
tampoco hemos visto en la literatura sobre la globalización y la educación.  

El intercambio pedagógico que nos atrevimos a diseñar resultó ser una herramienta eficaz 
para apoyar la formación de los maestros en formación. Al mismo tiempo, abrió la puerta para 
continuar caminos de investigación que claramente se necesitan para fortalecer la formación de 
maestros para que enseñen matemáticas.  
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TEACHERS, STUDENTS, LANGUAGE, AND MATHEMATICS: PEDAGOGICAL PRACTICES FOR PRE-

SERVICE TEACHERS WITH A GLOBAL VISION  

 
We describe the second phase of an ongoing investigation that asks about the way in which pre-
service teachers assume their pedagogical practices in a global context where language and 
mathematics are combined. Such a focus supports the goal of preparing teachers who can 
respond to current educational challenges. One of these challenges is the use of English as a 
global language. We present an experience from collaborative work between students and 
professors of two courses teaching methods and didactics of mathematics, one in the United 
States and the other in Colombia. This included the design of activities for the teaching of 
mathematics using children's books as a reference. Among the results we noted that the activities 
were influenced more by the use of language than by the mathematical content to be taught. 
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Abstract: This report is part of a larger, longitudinal study focusing on the development of 
equity-related knowledge, beliefs, and practice across 68 individuals and five teacher 
preparation programs. In this brief report, we seek to unpack the ways five preservice and 
beginning mathematics teachers think about equity, especially as it relates to their current and 
future teacher practice. Analysis of interview data from these participants suggest as many as 
twelve different aspects of equity reflected in their thinking, as well as multiple actions teachers 
could take to promote equity including raising expectations, rejecting deficit views, and using 
complex instruction.  

This material is based upon work supported by the National Science Foundation under Grant 
No. 1758401. 

Keywords: Preservice Teacher Education, Equity, Inclusion, and Diversity 

In this brief report, we describe preliminary analysis of data from an ongoing, longitudinal 
study of middle/high school mathematics teacher education and beginning teacher practice in the 
U.S. as it relates to equity. Our goal is to understand how teachers develop and use their 
knowledge of equity - how they think, what they think, and how they apply their knowledge. We 
are guided in this work by ideas from culturally responsive teaching (Gay, 2002; 2010; 2015) 
and equity literacy (Gorski 2014, Gorski & Swalwell, 2015), as well as from work by experts in 
the field of educational equity in mathematics (e.g., Aguirre, Mayfield-Ingram, & Martin, 2013; 
Bartell et al., 2017; Gutierrez, 2009; Moschkovich, 2013; Ramirez & Celedon-Pattichis, 2012). 
We adopt Aguirre, Mayfield-Ingram, and Martin’s (2013, p. 45-48) categories of access and 
advancement, the use of cultural and linguistic resources, and the development of identity and 
agency to structure our thinking about teacher knowledge and its development. Further, we 
incorporate self-determination theory (Ryan & Deci, 2000) into our conceptual framework as a 
lens through which to consider teacher agency and perceived constraints to increasing equity. 

Using a combination of data sources including interviews, work samples, surveys, written 
reflections, and videos of instruction, our research group is constructing data sets for each of 67 
preservice or beginning teachers (PT/BT) across five teacher education programs in the U.S. 
Each PT/BT participates in the research project for four years, encompassing the final two years 
in their education program and the first two years of their post-program classroom teaching. 
Most study participants are/were enrolled in undergraduate programs at their institutions, but 
some are/were enrolled in a graduate certification program while teaching concurrently. For this 
brief report, we examine the knowledge and beliefs of five PT/BTs, which was a convenience 
sample but also spanned four of the five programs. We present our preliminary analysis of the 
end-of-program, structured interviews, and focus on the following research question: How do 
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PT/BTs think about equity in relation to their teacher education programs and their emerging 
teaching practice?  

The interview protocol for each PT/BT included the following questions: (1) Since you 
began your teacher education program at [institution], what experiences have particularly 
impacted how you think about teaching mathematics? (2) What are some of the most important 
things you have learned about teaching and about students in your teacher education program? 
(3) What, if any, instruction or experiences related to equity have you had in your teacher 
education program? (Note: a definition of equity was not provided) (4) What have you learned 
about equity through your teacher education program? (5) How do you feel personally about 
equity? (6) What actions should math teachers take to promote equity in opportunities to learn, 
participation in learning, and learning outcomes?  (7) What do you wonder about, or what 
questions do you have, about equity and mathematics teaching? We used an open-coding process 
(Strauss & Corbin, 1990) involving four interviews and two coders which resulted in six codes. 
Next, three researchers coded one common interview independently using the six codes and met 
to discuss differences, refine coding categories, and add new codes as appropriate. Finally, three 
researchers independently coded three interviews each using the refined coding scheme and met 
again. The final coding scheme we established accounted for the sections of data we interpreted 
as equity-related, with some sections of text receiving two or more codes. 

Using the process described above, we achieved kappas of 0.9+ across coders for these six 
codes: personal meanings - personal meanings, experiences or definitions of equity; 
understanding/sense-making - productive struggle, mathematical reasoning, cognitive demand, 
creativity, learning from mistakes, critical thinking and problem solving; building relationships 
with students - includes relationships with individual students or groups, attending to 
social/emotional needs, listening to students and sharing with them beyond the mathematics at 
hand, knowing about students’ homes, knowing who needs what to help them learn; connecting 
the math/classroom to the real world - building math instruction upon students’ interests and 
lives, bringing current events/issues into the classroom, attending to social (in)justices, 
connecting to lived experiences outside the classroom; inequities in education and actions to 
take - includes expressions of awareness of educational issues such as bias, deficit views, and 
privilege (from a personal or systemic perspective), descriptions of inequities in general or 
specific terms, as well as strategies for addressing inequity; and constraints to increasing 
equity - focus on barriers identified by PT/BTs that they believe will materially limit their ability 
to create more equitable classrooms, or barriers for the world to be more equitable, also includes 
expressions of lack of knowledge about how to achieve a vision of equity. For this paper, we 
focus on initial analysis of the “personal meanings” code and responses to the questions “How 
do you feel personally about equity?” and “What actions should math teachers take to promote 
equity in opportunities to learn, participation in learning, and learning outcomes?” 

A constant-comparative analysis of the five PT/BT interview transcripts resulted in 12 
“equity associations” demonstrating the many ways these five PT/BTs connected the notion of 
equity to themselves and to their emerging teacher practice. 

Equity as Accommodation - “equality is everyone gets the same resources, but equity is 
where you, um, accommodate for those who would need the additional resources to be able to 
perform at the same level as everyone else around them” 

Equity as Productive Struggle - “I know that sounds evil, and almost inequitable, but um, I 
mean, there's this idea of a constructive, I think, constructive struggle that students need to go 
through so that they've reached an understanding themselves” 
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Equity as Asset-Based Teaching - “it's very, very easy to prioritize and . . . spend a lot of 
time on boost up the students who are also good students . . . I think that it's so easy to just fall 
into like this compare and contrast. I think you like you at first do it in your own head. . . . you 
start thinking all these negative things and then like it starts coming out in your actions and your 
words . . . it’s just something you have to be really conscious of.” 

Equity as Accessibility and Choice - “it'll make math more accessible to all students 
because you, you know, as long as you follow like some certain basic rules, like you can solve, 
like coming, coming up with a new way to solve a problem is, is actually a better thing.” 

Equity as Assigning Competence - “giving them that public specific praise in class to raise 
their status of not only of themselves, but also how other students view them.”  

Equity as Differentiation - “supporting those students who might need extra support . . . 
challenging all of your students to just go above and beyond and push past your expectations.” 

Equity as Personal Experience - “and just being like a female in a math class was you 
could tell, as soon as I walked in the room, they didn't even look at me twice.” 

Equity as Culturally Responsive Teaching - “so for me, it's like the culturally responsive 
teaching. . . . you have to know who your students are to be able to meet their needs best.” 

Equity as Social Justice - “it's sort of the responsibility of an educator to address these 
systems of oppression and inequity that are looming around us and making our students aware” 

Equity as Empowerment - “maybe have a focus on empowering students . . .  explaining to 
them the reality of the world and then working with them to break down the barriers.”  

Equity as Personal Transformation - “a lot of the time, I thought, well, why don't people 
just work harder if they're not doing as well?. . . . [the program] made me realize that there are 
barriers that other people have had to fight through systemically that I've never faced.” 

Equity as a Systemic Issue -  “issues with the system is how we should be viewing it rather 
than how that idea kind of portrays it as issues with the person. . . .  dismantling hierarchies of 
status in class trying to almost like level the playing field.” 

Although we can imagine other associations that PT/BTs might make that we did not find in 
the interviews of these five individuals, for example, equity as racial justice or collective 
liberation, initial analysis suggests that PT/BTs are able to connect the idea of equity to their own 
lives and their emerging teacher practice in many different and potentially powerful ways. Going 
forward, we are interested in determining whether/how different ways of thinking about equity 
cluster together within and across individuals and teacher preparation programs, and 
whether/how particular associations are expressed in the classroom. 

Regarding actions that mathematics teachers could take to promote equity in opportunities to 
learn, participation in learning, and learning outcomes, all five PT/BTs noted that teachers should 
engage students in problem solving that draws on contexts that are familiar or interesting to 
students and related to their experiences. One PT/BT, Frank, believed the experience would help 
students understand that mathematics could be useful in navigating their world. 

     I think math teachers have to take the opportunity to use real world issues in the class. Not 
just like word problems, but actually bringing about, in the right way, in the right context, 
issues that face their students in a very real way […]. Saying, okay, we can use math to help 
solve this issue or we can use math to at least analyze this issue that many of you are facing 
or dealing with. And that can be one way for maybe students who haven't dealt with that 
issue before in my class to kind of open their eyes to it. (Frank, PT/BT) 
Three PT/BTs suggested that teachers should differentiate their instruction to meet students 

where they are and build on their existing knowledge. The PT/BTs noted that engaging students 
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in problem solving could be challenging. Two PT/BTs suggested that it was important that 
teachers have non-deficit views about the students and their capabilities. Teachers should believe 
their students can engage in challenging mathematics with scaffolding. One of the PT/BTs 
discussed the importance of allowing students to engage with productive struggle for learning. 

In regard to overall instruction, I think learning to allow your students to struggle. And I 
know that sounds evil, and almost inequitable. I mean, there's this idea of a constructive 
struggle that students need to go through so that they've reached an understanding 
themselves, rather than the instructor providing the answer for them. (Colin, PT/BT) 
In addition to believing that students are capable of handling challenging work, three PT/BTs 

stated that the teachers need to develop a supportive classroom environment to encourage student 
discourse. They pointed out the importance of classroom discussions among the students, and the 
students and the teacher, and they highlighted the work that the teachers need to do to make the 
classroom into a discussion-rich space.  

I really think teachers ought to use this idea of complex instruction. Whether it be exactly 
that or some sort of form of it, it's just what I've been able to see in the classroom. There have 
been students who have been so quiet at the beginning of the year, but to see their growth 
using this, this kind of teaching, this group work building on students' strengths and giving 
them that public specific praise in class to raise their status of not only of themselves, but 
also how other students view them in class. I think, is it just, it does a lot for when it comes to 
equitable participation in class, you see students grow, you see them finally feeling like they 
have a voice. I would say using that strategy is definitely a big teacher move (Frank PT/BT) 

Discussion 
In this paper, we focus on ways of thinking about equity as expressed by five PT/BTs who 

were interviewed near the completion of their respective teacher education programs. As we 
move forward in our research, we are interested in considering how frameworks for thinking 
about equity, such as that proposed by Gutierrez (2009), could be useful in characterizing this 
data. For example, comparing the 12 “equity associations” made by the five PT/BTs with the 
axes of access, identity, power, and achievement (Gutierrez, 2009), we notice that they attended 
collectively to all four axes, but with differing emphases. With regard to the categories and 
framework developed by Aguirre, Mayfield-Ingram and Martin (2013), these PTs expressed 
ways of thinking about equity falling into all three categories - access and advancement, the use 
of cultural and linguistic resources, and the development of identity and agency. One component 
of equity literacy (Gorski 2014, Gorski & Swalwell, 2015) we did not find in the data for these 
five PT/BTs is empowering students to collectively take action to create meaningful changes 
inside or outside their schools. This is not to suggest that the PT/BTs do not think in this way, 
but rather that this idea was not evoked during the interview. 

With respect to influences on PT/BTs’ knowledge, both Colin and Frank pointed to 
university courses and their instructors as they described the importance of productive struggle 
and complex instruction, respectively. In fact, we found an emerging theme in the data thus far 
as the PT/BTs repeatedly return to the importance of maintaining non-deficit views of students 
and allowing them to engage in problem-solving and productive struggle. Going forward, we 
will investigate how these ways of thinking about equity may serve as “launch pads” for 
designing increasingly equitable classrooms, and how they may constitute “comfort zones” 
allowing teachers to maintain the status quo. 
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Efforts within mathematics teacher education have recognized and attended to the importance of 
developing pre-service teachers’ skills for leading mathematical discussions. Number Talks have 
been utilized in teacher preparation programs to create opportunities to practice discussion 
facilitation moves. A virtual Number Talk field experience was enacted to provide pre-service 
teachers the experience of facilitating Number Talks while navigating technology.  Two 
purposefully selected pre-service teachers’ experiences conducting virtual Number Talks were 
analyzed using a formative assessment that decomposed the discussion practice. As a mode of 
using research to inform teacher educator practice, results of the analysis provide implications 
for assisting pre-service teachers in orchestrating productive mathematics discussions using 
technology in order to move from critical dissonance to resonant harmony in praxis. 

Keywords: pre-service teacher education, technology, classroom discourse, teacher knowledge 

Facilitating meaningful mathematics discourse is recognized as an essential element of 
effective mathematics teaching practice (NCTM, 2014). To orchestrate productive mathematical 
discussions, teachers must attend to discussion components in the moment and possess an 
understanding of mathematics content, student thinking about content, and pedagogical practices 
to develop students’ mathematical understanding (Smith & Stein, 2018). Recent efforts within 
mathematics teacher preparation programs have attended to pre-service teachers’ (PSTs) skills in 
leading discussions that support students’ development of conceptual understanding 
(Shaughnessy et al., 2021). Number Talks have been utilized in this regard to build fundamental 
knowledge and skills for leading productive mathematical discussions (Woods, 2021).   

In Fall 2020, we implemented a Number Talks-based, virtual field experience to allow PSTs 
to practice and refine skills in conducting a productive mathematics discussion (Fletcher & 
Meador, 2022). The virtual Number Talk teacher learning cycle (VNT TLC) was our response to 
creating field experiences for students when access to schools was unavailable (Joswick et al., 
2021). While this modification served a purpose, it also created a critical dissonance in PST 
practice. Not only were PSTs required to juggle the demands of conducting a mathematical 
discussion, but they had to do so in a virtual space. Conducting a productive mathematical 
discussion requires attention to the areas of framing, orchestrating, and recording/representing 
content (Shaughnessy et al., 2021) in real time. When enacting a mathematical discussion in a 
virtual classroom, consideration must also be given to the use of technology in these areas. We 
analyzed PSTs’ skills in facilitating mathematical discussions, demonstrated in their virtual 
Number Talks videos, to move our own practice as teacher educators from critical dissonance to 
resonant harmony. The following research questions guided our analysis: (1) Which areas of 
work in a mathematics discussion (framing, orchestrating, recording/ representing content) are 
revised through participation in a teacher learning cycle focused on virtual Number Talks? (2) 
Which areas of work in a mathematics discussion do PSTs attend to, or not attend to, when 
developing a virtual Number Talk practice? As we respond to these research questions, we focus 
on the voice of the PST as a formative assessment of our own teaching practice. We use our 
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analysis of PSTs’ experiences implementing virtual Number Talks to inform our teaching on 
facilitating meaningful mathematics discussions, using technology to achieve pedagogical goals, 
and attending to equitable opportunities for student voice in the mathematics classroom. 

Theoretical Framework  
Facilitating a meaningful mathematics discussion requires the building of shared 

understanding “of mathematical ideas by analyzing and comparing student approaches and 
arguments” (NCTM, 2014, p. 35). By implementing mathematics discussions, teachers also 
engage in several effective mathematics teaching practices (Smith & Stein, 2018), such as using 
and connecting mathematical representations. Teachers must also identify a mathematical 
concept to guide the discussion so that the flow of the conversation is directed to this point 
(Shaughnessy et al., 2021; Sleep, 2012) and ensures that the sharing of ideas involves discourse 
and not merely a “show and tell” of ideas (Kazemi & Stipek, 2001; Smith & Stein, 2018). We 
utilized a decomposition of the facilitation of mathematics discussions in a formative assessment 
framework developed by Shaughnessy et al. (2021) as our theoretical frame. Shaughnessy and 
colleagues (2021) created a checklist of skills for leading mathematics discussions centered on 
the decomposition of three main areas of work, framing, orchestrating, and recording and 
representing content, along with associated teacher moves (see Table 1). 
 

Table 1: Mathematics Discussion Skills Assessment Checklist (Shaughnessy et al., 2021) 
Areas of Work Teacher Moves 

Area of Work: 
Framing 

Launching 
Efficiently engages students in the mathematical work 

Directs attention towards the mathematics intended for the discussion 

Concluding 

Makes a closing statement that indicates the conclusion of the discussion.  

Supports students in remembering or making sense of at least one key 
mathematical topic or practice 

Area of Work: 
Orchestrating 

Eliciting 
contributions 

Elicits multiple solutions, strategies, or ideas  

Elicits a range of student understanding or methods  

Engages several students in sharing their thinking 

Probing students’ 
thinking in relation 
to the 
mathematical goals 

Poses questions to get students to explain their thinking about processes  

Poses questions to get students to explain their understanding of key mathematical 
ideas  
Follows up on responses to make more student thinking about the mathematics 
available  
Provides support for students to complete their contribution or clarify their 
thinking 
 

Orienting students 
to the contributions 
of peers 

Ensures that the class can hear others’ ideas  

Poses questions to students about others’ ideas and contributions, including asking 
students to comment on, add to, or restate another student’s idea  
Supports the listening of the class through the use of moves that require all 
students to respond to others’ work  
Encourages students to attend, listen, and respond to peers’ contributions in order 
to maintain productive and focused interaction 

Making 
contributions 

Uses moves such as redirecting, revoicing, and highlighting to keep the discussion 
on track  
Ensures that substantive and relevant analysis is part of the discussion  

Makes mathematical contributions which enrich the core ideas of the discussion 
and keep the discussion focused on the learning targets 
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Area of Work: 
Recording and 
Representing 
Content 

Keeping accurate 
records 

Records student ideas in ways that are true to the students’ contributions 

Attends to the accuracy of records and representations 
Choosing and 
using appropriate 
representations to 
convey key 
mathematical 
ideas. 

Records in ways that are clear, organized, and visible to the class 

Uses recordings which support student understanding and participation 

 
This frame was also selected for analysis to capture the technology component of the virtual 

Number Talks. After study of the framework and initial assessment of PSTs’ virtual Number 
Talk videos, we found that technology could be addressed in the orchestrating and 
recording/representing content areas of the assessment. We also considered the use of the 
teacher learning cycle and the ability of the framework to highlight areas of work PSTs enacted 
throughout the cycle. Additionally, the assessment checklist provided exemplar decomposition 
move descriptions (Shaughnessy et al., 2021) that provided guidance and clarity of recognition 
when evaluating the virtual Number Talks videos for evidence of these moves.  

Methods 
As part of a larger study, we considered a purposeful sample of two teachers’ Number Talk 

videos for qualitative analysis using the assessment framework. These teachers were deliberately 
chosen for two main reasons. The first selection criteria for analysis included PSTs who 
demonstrated development of a variety moves in each of the three main areas of the checklist as 
they progressed through our learning cycle. The final selection criteria included PSTs with a 
range of prior teaching experience, while also taking into consideration their respective field 
placements. As a result, two teachers were chosen as cases for this study.  Institutional review 
board approval was obtained and for anonymity of participants, pseudonyms are being used.  
Setting and Participants 

A virtual field experience based on Number Talks was implemented in Fall 2020 in an 
elementary mathematics methods course required for an elementary education master’s program 
at a university in the northeastern United States. 29 students were enrolled in the course, with 23 
consenting to having their course assignments analyzed for research purposes.  

Dakota was in their second year of the elementary education master’s program and was 
enrolled in the course in the fall semester prior to student teaching. Dakota was working for a 
third semester as an intern at a suburban public K-4 school and had no other prior teaching 
experience. Dakota’s school was implementing a hybrid model but did not permit videotaping, 
so Dakota completed the VNT TLC field experience (Fletcher & Meador, 2022) with three third 
grade students recruited with the help of the instructor. The students did not know one another or 
Dakota prior. Dakota had not heard of the phrase “Number Talks” before the project but had 
seen the practice while observing classes during their internship. 

Emerson was in their graduate year of a five-year integrated Bachelor’s/Master’s program in 
elementary education and was enrolled in the course prior to student teaching. Emerson was in 
their first semester of working as an intern in a suburban public school for grades 3-5. Emerson 
had prior experience working as a paraprofessional in a summer school program for grades 9-12. 
Emerson’s school implemented a hybrid cohort model at the start of the semester and later 
shifted to primarily in-person instruction with some students learning remotely. Emerson 
completed their Virtual Number Talks field experience with three third grade students from their 
internship. Emerson was unfamiliar with Number Talks prior to the project.  
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Data Sources 
Sources of data consisted of two complete virtual Number Talks videos submitted by each 

participant as part of the VNT TLC (Fletcher & Meador, 2022). At the start of the cycle, the 
PSTs learned about Number Talks through readings, videos, discussions, and demonstrations. 
Next, the PSTs planned their first Number Talk by identifying the mathematical focus of the 
Number Talk, selecting a set of problems from a provided list [most of these problem sets were 
taken from Parrish’s (2010) Number Talks book], anticipating student responses and strategies 
along with follow-up questions (Smith & Stein, 2018), selecting technological tools, and 
considering participation norms. The instructor provided feedback on the plans, and then PSTs 
rehearsed their Number Talk with peers from the course, reflected on the experience, and made 
any necessary modifications to their plan based on feedback. The PSTs then implemented and 
video recorded their Number Talk with K-6 students and reflected on the experience. Following 
the first Number Talk, PSTs engaged in further learning and planning for a second Number Talk, 
using the knowledge and skills developed during their first to inform their planning for the 
second. They facilitated and video recorded a second Number Talk and then completed a final 
reflection as part of the learning cycle. Figure 1 details an iteration of the VNT-TLC cycle.  

 
Figure 1: One Iteration of the VNT-TLC Cycle (Fletcher & Meador, 2022) 

Data Analysis 
The analysis of the data sources was conducted in three phases. The first phase began by 

individually evaluating the first and then the second virtual Number Talk videos for each of the 
purposefully selected participants using the assessment checklist. Each video was broken into 
one-minute segments for unit analysis and each minute was evaluated for evidence of the 
decomposed teacher move areas of the checklist. A code of 1 was recorded if the participant 
demonstrated proficient use of the teacher move, a 0 if the participant demonstrated developing 
use of the teacher move, and an X if the move was not applicable or not observed. Through 
rounds of watching and coding participants' Number Talks videos, a consensus of proficient and 
developing practice was achieved inductively to develop a common definition and description 
for analysis using the skills checklist. Notes were also recorded to provide rationale for 
assignment of codes. The second phase of data analysis consisted of the comparison of codes 
assigned to each Number Talk video by going through each unit of analysis in an open coding 
format (Strauss & Corbin, 1990; Vollstedt & Rezat, 2019). Discrepancies of code assignment 
were discussed, notes were compared, and videos were revisited at the unit under consideration 
before a consensus on the code was determined. The final phase of data analysis consisted of 
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constant comparison analysis (Glaser & Strauss, 1967; Leech & Onwuegbuzie, 2007) of the 
framing, orchestrating, and representing/recording data decomposition areas coded for each 
participant between the first and second Number Talk.  

Results 
The results are presented by participant and are organized by the three areas of work in 

leading a mathematics discussion developed by Shaughnessy et al. (2021): framing, 
orchestrating, and recording and representing content. Because the checklist was intended to be 
used with videos of mathematical discussions rather than transcripts of this data source 
(Shaughnessy et al., 2021), we describe the occurrence of moves from the checklist observed in 
the Number Talk videos. The number of occurrences of each move was documented during data 
analysis, but because the number of moves is affected by the number and complexity of the 
problems presented, we instead report whether or not the moves were attempted.  
Dakota’s Areas of Work  

Dakota’s framing of the mathematical discussions through launching of both Number Talks 
included prompts that “efficiently engaged the class in the mathematical work.” Dakota did not 
“direct attention towards the mathematics intended for the discussion” in the launch of their first 
Number Talk, but this was observed in their second. In concluding both discussions, Dakota 
“made statements to indicate the conclusion of the discussion.” Dakota also attempted to 
“support students in remembering or making sense of at least one key mathematical topic or 
practice” in both Number Talks, though they executed this move more effectively in the second. 

During the orchestration of the mathematical discussions in both Number Talks, Dakota 
elicited contributions by “eliciting multiple solutions, strategies, or ideas” and “engaging several 
students in sharing their thinking.” Dakota was not observed “eliciting a range of student 
understanding or methods” during their first Number Talk, but this did occur during their second. 
However, this could be due to the task, as Dakota was facilitating dot arrangement Number 
Talks, and less of a range of understanding would be expected with this task. Dakota probed 
student thinking frequently by “posing questions to get students to explain their thinking about 
processes” during both Number Talks, a key component of the routine structure. “Posing 
questions to get students to explain their understanding of key mathematical ideas” was observed 
in both of Dakota’s Number Talks, but the use of this question type was far more limited than 
questions to get students to explain their thinking. Dakota did not “follow up on responses to 
make more student thinking about the mathematics available” in either Number Talk. “Providing 
support for students to complete their contribution or clarify their thinking” was not observed in 
their first Number Talk but was observed in their second. 

The orienting students to the contributions of peers’ component of orchestrating a 
mathematical discussion was used less frequently than other moves during Dakota’s Number 
Talks. Dakota did not “pose questions to students about others’ ideas and contributions, 
including asking students to comment on, add to, or restate another student’s ideas” during their 
first Number Talk but did use this move during their second Number Talk. Similarly, 
“encouraging students to attend to, listen, and respond to peers’ contributions in order to 
maintain productive and focused interaction” was observed only in Dakota’s second Number 
Talk. Dakota did not “support the listening of the class through the use of moves that require all 
students to respond to others’ work” during either Number Talk. Dakota also did not use any 
moves to “ensure that the class can hear others’ ideas,” but this was not needed during either of 
Dakota’s small group virtual Number Talks as all students could be heard clearly.  

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1252



 

Dakota showed significant improvement in the making contributions component of 
orchestrating a mathematical discussion. In their first Number Talk, Dakota did not use moves 
such as “redirecting, revoicing, and highlighting to keep the discussion on track” or “make 
mathematical contributions which enrich the core ideas of the discussion and keep the discussion 
focused on the learning targets.” Yet they did use the move “ensure that substantive and relevant 
analysis is part of the discussion” once during the first Number Talk. However, in their second 
Number Talk, Dakota employed all three of these types of moves throughout the discussion. 
Dakota’s second Number Talk was double the length of their first Number Talk, even though the 
problem type (dot arrangements), number of problems, and the number of students all remained 
the same from the first to the second Number Talk. The increased length was due to Dakota’s use 
of the making contributions moves frequently throughout, which extended and deepened the 
discussion of each problem. 

Dakota’s recording and representing content also improved significantly between their first 
and second Number Talk. Dakota did not record student thinking during their first Number Talk. 
When a teacher facilitates a dot arrangement Number Talk in-person, they may record student 
thinking, or they may use gestures to demonstrate student thinking about groupings and number 
decomposition. Because Dakota’s Number Talk was virtual, they were not able to gesture 
towards the dot arrangement image on the screen as a teacher could gesture towards an image on 
the board or a large hand-held card (Dakota did not use the Zoom function of using a slide as a 
virtual background). In the virtual setting, recording would be necessary to make student 
thinking available to others, but this move was not used. In their second Number Talk, Dakota 
“recorded student ideas in ways that are true to the students’ contributions,” “attended to the 
accuracy of records and representations,” “recorded in ways that are clear, organized, and visible 
to the class,” and “used recordings which support student understanding and participation.” 
Throughout the Number Talk, Dakota recorded students’ thinking by circling dot groupings and 
recording equations along with branches to demonstrate number decomposition.   
Emerson’s Areas of Work  

Emerson framed the mathematical discussions by launching with moves that “efficiently 
engaged the class in the mathematical work” and “directed attention towards the mathematics 
intended for the discussion” in both Number Talks. Emerson concluded the discussions by 
“making statements to indicate the conclusion of the discussion” in both Number Talks and by 
“supporting students in remembering or making sense of at least one key mathematical topic or 
practice” in their second Number Talk. Emerson elicited contributions during their orchestration 
of the mathematical discussions by “eliciting multiple solutions, strategies, or ideas” and 
“engaging several students in sharing their thinking” in both Number Talks. “Eliciting a range of 
student understanding or methods” was observed in Emerson’s first Number Talk but not in their 
second. This is potentially explained by Emerson’s choice of tasks–Emerson used dot 
arrangements for their first Number Talk and a sequence of double-digit addition problems for 
the second. Facilitating a Number Talk focused on double digit addition may require further 
developed Mathematical Knowledge for Teaching (Ball et al., 2008) than is necessary for a 
discussion of dot arrangements, making “eliciting a range of student understanding or methods” 
more challenging with this type of task. 

To probe student thinking as part of the orchestrating area of work, Emerson “posed 
questions to get students to explain their thinking about processes” in both Number Talks. 
Emerson “posed questions to get students to explain their understanding of key mathematical 
ideas” in their first but not second Number Talk, which again could be explained by task 
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complexity. “Follow up on responses to make more student thinking about the mathematics 
available” was not observed in either Number Talk. Emerson did not use moves to “provide 
support for students to complete their contribution or clarify their thinking” in their first Number 
Talk but did so in their second. Emerson employed some moves to orient students to the 
contributions of peers more than others. Emerson “encouraged students to attend to, listen, and 
respond to peers’ contributions in order to maintain productive and focused interaction” in both 
Number Talks, and their frequency in the use of this move increased from the first to the second. 
“Posing questions to students about others’ ideas and contributions, including asking students to 
comment on, add to, or restate another student’s ideas” was not observed in Emerson’s first 
Number Talk and was observed once in their second. Emerson did not “support the listening of 
the class through the use of moves that require all students to respond to others’ work” in either 
Number Talk. Due to a student’s internet issues during the first Number Talk, Emerson “ensured 
that the class can hear others’ ideas,” but this move was not needed in the second Number Talk. 

Emerson demonstrated some variation in the making contributions component of 
orchestrating a mathematical discussion. Emerson “used moves such as redirecting, revoicing, 
and highlighting to keep the discussion on track” during both Number Talks. “Making 
mathematical contributions which enrich the core ideas of the discussion and keep the discussion 
focused on the learning targets” was not observed in Emerson’s first Number Talk but was 
observed in their second. Emerson used moves to “ensure that substantive and relevant analysis 
is part of the discussion” in their first Number Talk but did not use this type of move in their 
second. Again, the increase in task complexity may have been a contributing factor.  

Emerson showed a marked improvement in their recording and representing content. 
Interestingly, this improvement occurred midway through their second Number Talk. During the 
first Number Talk and first half of the second, Emerson recorded student thinking by typing 
students’ contributions verbatim. Emerson “recorded student ideas in ways that are true to the 
students’ contributions” but did not “record in ways that are clear, organized, and visible to the 
class” due to font size and use of small virtual sticky notes on a blank whiteboard. This method 
of recording did not allow Emerson to “attend to the accuracy of records and representations” or 
to “use recordings which support student understanding and participation” as a student’s 
explanation for adding a two-digit number that demonstrated understanding of place value was 
recorded verbatim. Midway through the second Number Talk, Emerson switched from typing to 
recording equations using the pen tool. Emerson’s clear and accurate recording with equations 
highlighted the place value understanding inherent in the student’s partial sums strategy, 
supporting other student’s comprehension of the strategy. 

Discussion and Conclusion 
Analyzing Dakota and Emerson’s virtual Number Talks using the formative assessment 

checklist for prospective teachers’ skills in leading mathematics discussions (Shaughnessy et al., 
2021) revealed both proficiencies and areas in need of further development–critical dissonance 
and resonant harmonies. Both Dakota and Emerson demonstrated skills in framing their Number 
Talks during both the launch and conclusion. Both PSTs elicited multiple solutions and strategies 
throughout both number talks and “accepted, respected, and considered” all answers, a key 
component of Number Talks (Parrish, 2010, p. 19). Dakota and Emerson also made efforts to 
engage all students during both Number Talks, although tendencies to call on certain students 
were first observed. An implication for future practice is moving beyond involving multiple 
students in the discussion, to ensuring more equitable opportunities for student engagement. 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1254



 

Most PSTs conducted their Number Talks with small groups of students. Though small group 
size was used for flexibility of implementation during COVID, a benefit of this was that it 
allowed for a focus on mathematical content, technological tools, and discussion facilitation 
rather than classroom management. Although the small group size shifted the focus to the 
important work of discussion facilitation, our analysis revealed that positioning students to make 
sense of or attend to the contributions of others during discussion orchestration was observed 
less frequently. Prior research has identified positioning students to interact with the ideas of 
their peers as a challenge for teachers due to the cognitive demand of productively utilizing 
student solutions and strategies (Smith & Stein, 2018). Even teachers aware of the benefits of 
incorporating student thinking into their instruction can be apprehensive about responding to 
student thinking “on the fly” (Smith & Stein, 2018, p. 9). The move of orienting students to the 
contributions of peers presented an area of critical dissonance in need of resolution. When 
discussion facilitation does not encourage students' to consider the contributions of peers, it 
brings about the question of whose voice in particular is being centered. While both PSTs were 
developing in terms of this move, lack of effective moves to orient students to strategies 
suggested by their peers minimizes the opportunity for discourse as the conversation proceeds in 
a “show and tell” format that does not highlight or illustrate important mathematical ideas (Smith 
& Stein, 2018, p. 6). To achieve resonant harmony, we need to further emphasize the importance 
of this practice and support PSTs in learning to implement this move. 

    Recording and representing content was an area of dissonance that shifted to harmony for 
both PSTs. Representing and recording students' thinking is a challenging but vital way to 
support students' development of conceptual understanding by connecting language, notation, 
and visual representations during mathematics discussions (Garcia et al., 2021). Within the cycle, 
teacher participants were provided with various technologies for recording and representing 
content when facilitating a Number Talk virtually (Dimas, 2020). Both PSTs demonstrated 
growth from their first to their second Number Talk in using technology for pedagogical goals. 
Representations corresponded more accurately to students’ thinking and were more effective in 
supporting other students’ understanding of shared ideas as teachers became more familiar with 
the virtual space. We hypothesize that the effectiveness of PSTs' recording of student thinking 
may vary based on task selection, depending on PSTs' depth of knowledge and comfort level 
with the operations, relevant concepts, strategies, and representations relevant to selected tasks. 
Still, facilitating Number Talks virtually afforded PSTs the opportunity to use technology tools 
as they developed skills needed to effectively record and represent mathematics for instruction. 

Analyzing pre-service teachers' work in the areas of framing, orchestrating, and recording 
and representing content during virtual number talks provided a formative assessment of the 
strengths PSTs bring to classroom discussions as well as the knowledge and skills needing 
further attention in future iterations of the VNT TLC and course. Research of this type allows for 
an awareness of the areas where teacher education experiences may create a critical dissonance 
in praxis and provides an opportunity for dissension resolution to achieve resonant harmony. 
Moreover, and in agreement with Shaughnessy et al. (2021), we acknowledge that assessment of 
mathematical discussion practice with this framework is a dynamic process. We are also 
cognizant that the framework can be tailored to serve various purposes, such as learning about 
supports for noticing and areas that are important but not addressed in the checklist framework 
(Shaughnessy et al., 2021). Regardless, engagement with decompositions of mathematical 
discussions and analyses of experiences created by teacher educators to develop this practice 
elaborate the field’s understanding of this instructional component for teaching and learning. 
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Recent calls to (re)humanize mathematics education require a clearer articulation of how equity-
oriented pedagogy can be taught to and learned by teacher candidates. In this article we propose 
and theorize “flipped scripts” as a research and pedagogical construct that can help identify 
prospective teachers’ (PTs) potential to (re)imagine mathematics classrooms as inclusive and 
equitable spaces for learning. We use examples of PTs’ imagined representations of a 
mathematics class discussion to examine explicit and hidden messages they communicate about 
students as capable or struggling learners of mathematics. We conclude by offering implications 
and affordances of studying PTs’ generated “flipped scripts” as indicators of their potential to 
take up and enact humanizing mathematics pedagogical approaches. 

Keywords: Classroom Discourse, Elementary School Education, Preservice Teacher Education, 
Culturally Relevant Pedagogy   

Efforts to conceptualize equity-oriented pedagogies in our field have been ongoing and have 
taken multiple forms such as teaching mathematics for social justice (Gutstein, 2006), culturally 
relevant mathematics teaching (Tate, 1995), and most recently the call to (re)humanized 
mathematics classrooms (Gutiérrez, 2017). Despite past and present efforts to conceptualize 
equity-oriented pedagogies, teachers of all experience levels find it challenging to stray away 
from dominant forms of mathematics instruction which set up classrooms as hierarchical and 
exclusionary spaces for learning (Louie, 2017). This challenge is compounded for those at the 
initial stages of teacher preparation and for mathematics teacher educators (MTEs) interested in 
supporting prospective teachers (PTs) to reimagine mathematics classrooms as loving and 
nurturing spaces for learning. In this study we seek to understand PTs’ potential for subverting 
dominant scripts for mathematics teaching. We conceptualize dominant instructional scripts as 
representations of practice that center intellectual authority solely on the teacher and that set up 
classrooms as exclusionary spaces for learning. We explore PTs’ capacity for generating “flipped 
scripts” which we conceptualize as representations of instructional practice that counter 
exclusionary and dominant forms of mathematics teaching practice.  

Theoretical Framework 
We enter the conversation of reimagining mathematics classrooms as humanizing spaces for 

learning by building on previous studies focusing on culturally relevant mathematics teaching 
(Leonard et al., 2010; Parker et al., 2017), teaching mathematics for social justice (Kokka, 2015; 
Gutstein, 2006) and (re)humanizing mathematics (Goffney & Gutiérrez, 2018). These previous 
studies have highlighted the instructional practices of teachers who have challenged dominant 
forms of mathematics instruction and align with the conceptualization of humanizing pedagogy 
as described by critical scholars outside of mathematics education (del Carmen Salazar, 2013; 
hooks, 1994; Freire, 1993). To be clear, humanizing pedagogical practices are not new to 
mathematics education but rather have been a topic of continued interest and scholarship. Bartell 
and colleagues (2019) share their exploration into working with prospective teachers to draw on 
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students' funds of knowledge (Moll et al., 1992) to build connections between their lived 
experiences and the content in the classroom. Additionally, Yeh and colleagues (2020) explore 
how (re)humanizing classrooms become a place where students are free of deficit narratives and 
challenge the way students with dis/abilities are excluded from traditional mathematics 
classrooms. Humanizing pedagogies disrupt familiar dominant scripts of mathematics 
classrooms that position teachers in control of the content and form of the classroom discourse.  

Louie (2017) describes the dominant script of mathematics classrooms as embedding a 
culture of exclusion and describes it as “the restrictive and hierarchical culture that has 
historically dominated American mathematics education” (p. 489). A culture of exclusion sorts 
students into those who know and do not know while creating only narrow forms of participation 
in the classroom. Cultures of exclusion are characterized by dominant instructional scripts in the 
classroom that set the stage for competitive student behaviors that are unproductive and 
potentially harmful. Running counter to this culture of exclusion is an inclusive mathematics 
classroom. Inclusive classrooms encourage multiple solution paths and forms of participation, 
and it also encourages students to engage in collaborative learning practices. An inclusive 
classroom, as described by Louie, is a classroom working to (re)humanize mathematics.  

Our study also draws from studies of lesson plays and of lesson scripts of mathematics 
classrooms which are used as artifacts that make visible the imagined instructional practice of 
practicing and prospective teachers (Zazkis et al., 2009; Zazkis & Herbst, 2017). We use a 
collection of classroom dialogues generated by prospective teachers to explore the extent to 
which they reproduced dominant (exclusionary) instructional scripts and/or produced what we 
are calling flipped (inclusive) instructional scripts. We use Louie’s framework of exclusionary 
and inclusive mathematics classroom culture to identify and unpack salient characteristics of 
dominant and flipped classroom scripts that the PTs in this study generated. We argue that 
flipped classroom scripts may be good indicators of PTs’ readiness and potential for enacting 
humanizing pedagogy in their future mathematics classrooms.  

Research Methods 
This is an exploratory study that uses a small portion of data collected for a larger study of 

PTs’ generated representations of mathematics teaching practice (Crespo, 2006). This data 
consisted of 17 imagined classroom dialogues generated by PTs who were at the end of their 
senior year elementary mathematics methods courses, prior to their yearlong internship. This 
study uses one of the project’s teaching scenario prompts that features The Coins Problem as the 
mathematical object for a potential class discussion with third graders (Ball & Bass, 2003; 
Stylianides, 2007). The teaching scenario prompt (Figure 1) was designed to elicit PTs’ 
representations of their emerging mathematics teaching practice by asking them to write teacher 
questions they might use with the given task and by generating a classroom dialogue that 
illustrated a possible class discussion a teacher and their students could have around this 
mathematics problem.  

Imagine you have given your students the following problem to work on. 
  

The Coins Problem 
You have a bunch of coins in your pocket, and you know that there are some of each—Pennies, Nickels, and 
Dimes. Suppose you take out two coins. How much money could you pull out? 
  

 . Write 3 questions you want to make sure you ask the students about this problem. Say a little bit about what your 
goal is for asking these questions.  

a. Imagine students have spent some time working on the coins problem, you call everyone’s attention to begin the 
class discussion about the problem. What can you imagine students will say and do in return? Write out as much of 
your imaginary class discussion as you can in the following format: 
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Class Exchange Explanation 

T: Let’s have a discussion about the coin problem, is everyone 
ready? 
  
Ss: Yes 
  
T: 

Getting everyone’s attention and make sure everyone is ready to share 
and listen 

 

Figure 1: Generate a Classroom Dialogue (Two-Coins Problem) Task 

We drew on Louie’s (2017) exclusion/inclusion framework to characterize the PTs’ 
generated classroom dialogues as following or not following dominant scripts of math class 
discussions. As seen in Table 1, scripts classified as flipped (inclusive) set the stage for a 
collaborative classroom culture and include teacher questions that create openings for diverse 
solutions and answers communicating the message that all answers (including mistakes) and 
forms of participation are valued. In contrast, scripts classified as dominant (exclusionary) set the 
stage for a competitive classroom culture and include teacher questions that have a narrow set of 
possible solutions and answers creating a sorting mechanism for those who do and do not know 
the answer. Through the data analysis a third category emerged where the dialogues were a 
mixture of both flipped and dominant scripts.  

 
Table 1: Examples of Flipped and Dominant Scripts 

 

Script 
Type  

Class Exchange Explanation 

Flipped 
Script 

T: Can 3 students come up and share their solutions and how 
they got them  

Ss with different solutions and methods come up and put their 
work on the board 

T: Why are these so different? Are they all correct? 
S: They are all correct but people picked different coins. The 

coins have different amounts so you will get different totals. 
T: What happens when you add a 3rd coin? 
Ss: we get even more different answers 
T: Why? 
Ss: Because we had more choices 
T: What does that mean? 
S: The more choices there are the less chance there is of getting 

the same thing.  

 
 
 

To show a problem can have 
many solutions 
 
Compare different situations 
 
Justification  
 
Finding a solution/rule 

Dominant 
Script  

T: What are the values of the coins? 
S: one cent, 5 cents, 10 cents 
T: if there are 2 of each coin in his pocket, how many different 

combinations could you make? 
S: 6 
T: how did you get that? 
S: 3x2 
Ss: No there has to be more than 6 
T: Why did you say that?  

Speak up to get class attention, 
once all eyes are on you and all 
talking has stopped you can 
start your discussion with an 
intriguing question.  
 

To unpack the distinctions between dominant and flipped scripts we examined: (1) PTs’ 
questions in both parts (a) and (b) of the task and the extent to which these questions set the stage 
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for exclusionary and inclusive classroom discussion, (2) how students are represented in terms of 
being active/passive participants and competent/not competent, (3) PTs’ explanations for their 
teaching moves. Each of these domains highlighted a different aspect of how the prospective 
teachers were imagining their class discussions. We then re-read the scripts with a focus on 
coding each of these three areas as either adhering to or subverting the dominant scripts of 
mathematics instruction. 

Findings 
Of the 17 responses to the coins problem task, we categorized 5 of them (29%) as meeting 

the criteria of dominant scripts, 3 of them (18%) met our criteria of “flipped script”, and the 
remaining 9 (53%) were a mixture of both, dominant and flipped scripts. Although it may seem 
discouraging that only 3 (18%) of the dialogues were classified as flipped scripts, we see the 
latter types of mixed scripts as also suggestive of PTs’ potential for learning and taking up 
(re)humanizing mathematics pedagogy.   

Our analysis of the questions the PTs generated in the flipped and mixed scripts found an 
important difference between the questions the PTs generated in part (a) and (b) of the teaching 
scenario prompt that we interpreted as PTs’ willingness to go “off-script” as another feature of 
their potential to subvert dominant scripts. The questions PTs had generated in the part (a) of the 
task focused exclusively on the mathematics of the coins problem task, whereas when they then 
attempted to enact those questions within the class discussion those initial questions were left out 
and instead the questions used were more dialogical and had a dual focus on the mathematics and 
the students’ participation. In doing so, they represented the classroom as a more humanizing 
space where students could be more active (rather than passive) participants. Instead of 
representing students as answer givers to factual questions asked by the teacher, the students in 
the flipped scripts were represented as generating and constructing ideas collaboratively. Flipped 
scripts also (re)imagined teachers as inviting students into the space by asking questions to 
generate discussion and pressing students to explain their reasoning once an answer was shared.  

Reading the scripts with a focus on teacher-student interaction and student-peer interaction 
we also found PTs’ flipped scripts represented class discussions that break off from the dominant 
Initiation-Response-Evaluation (IRE) pattern of classroom discourse and instead represented the 
teacher pressing for explanations with multiple back and forth between the teacher and 
student(s). However, it is important to note that the student responses in the flipped scripts were 
not as clearly specified as the answers represented in the dominant scripts. There was typically a 
sentence or two included about students sharing answers or collaboratively generating a list. We 
interpret this difference as suggesting that PTs may have a general vision of what inclusive 
mathematics class discussions might look like but are not yet able to produce specific teaching 
moves that align with their vision.  

Discussion & Implications  
We offer the construct of “flipped scripts” as an indicator of PTs’ potential to take up and 

enact humanizing mathematics pedagogical approaches. We offer it as a useful analytical lens to 
analyze PTs’ generated representations of mathematics teaching at different stages of 
development of (re)imagining mathematics instruction as equitable and humanizing. PTs 
generated classroom dialogues with mixed scripts can provide MTEs with the opportunity to see 
the initial attempts of PTs to create humanizing pedagogical approaches. In identifying ways PTs 
attempt to flip the script from exclusionary to inclusive forms of mathematics instruction, MTEs 
can build on the assets PTs bring to the teacher education classroom.  
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After a two-semester graduate mathematics pedagogy sequence, nine preservice mathematics 
teachers showed significant changes in their beliefs away from mathematics as a set of rules and 
procedures and towards mathematics as a process of enquiry. Interviews corroborated 
quantitative findings and pointed towards practical conceptually-focused strategies in the 
courses as a driving factor in affecting students’ beliefs. Implications for preservice mathematics 
teacher education are discussed. 

Keywords: Teacher Beliefs; Preservice Teacher Education  

Teaching mathematics with a focus on developing conceptual understanding, and not merely 
procedural fluency, is called for in the Common Core Mathematics Standards (National 
Governors Association, 2010). The link between teachers' conceptual views of mathematics and 
the achievement of their students is well documented (e.g., Staub & Stern, 2002; Tchoshanov, 
2011). However, in a recent study of U.S. mathematics teachers, only 61% of high school 
teachers and 49% of middle school teachers considered themselves very well prepared to 
develop students’ conceptual understanding (Banilower et al., 2018). In a study of preservice 
mathematics teachers, only 24.1% of teachers proposed instructional strategies that promoted 
conceptual understanding and qualitative reasoning (Cankoy, 2010). 

Why might there be dissonance between the benefit of teaching students conceptually and 
teachers’ beliefs that mathematics should be taught this way? This study sought to understand 
preservice teachers’ beliefs about how mathematics should be taught before and after two 
content pedagogy (methods) courses, and to identify programmatic or other factors that 
contributed to changes in beliefs. The following research questions guided the collection and 
analysis of data: (1) What is the nature of secondary mathematics preservice teachers’ beliefs 
about the nature of mathematics (as a more conceptual or procedural discipline) before and after 
their methods courses? (2) Which aspects of students’ preservice teacher preparation program 
impacted their beliefs about how mathematics should be taught? 

The conceptual framework for the present study is derived from research that suggests that 
teachers’ pedagogical beliefs are precursors to their enacted pedagogy (Pajares, 1992). This 
study also drew inspiration from Conney et al.’s (1998) and Gomez and Conner’s (2020) belief 
structures to help explain why teachers changed their beliefs. 

Methods 
This was a convergent parallel study that explored the beliefs of a group of nine preservice 

mathematics teachers. Although a preliminary analysis, this study was significant in its 
examination of secondary preservice teachers specifically, its mixed methods approach, and its 
emphasis on understanding not just how beliefs changed but why (Gomez & Conner, 2020). 

The research sample consisted of a subset of a cohort of preservice teachers in a secondary 
mathematics teacher preparation program at a large public research university. Of the 19 students 
enrolled in Introduction to Methods of Teaching Mathematics (Methods 1) and Advanced 
Methods of Teaching Mathematics (Methods 2) in Fall 2020 and Spring 2021, nine students 
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volunteered to participate in the study. Two were undergraduates, five were graduates in the 
Master of Arts in Teaching program, and two were in a five-year combined program. All but one 
student were women. The primary researcher was also the course instructor.  
The Intervention: Methods 1 and Methods 2 

Methods 1 and 2 were both three-credit courses which met for 160 minutes per week for 14 
weeks. Both courses were taught synchronously online due to the COVID-19 pandemic. Course 
activities in Methods 1 centered around exploring how students learn mathematics and creating 
mathematical tasks that foster conceptual understanding. The instructor shared many examples of 
learning activities from his own experience as a high school mathematics teacher. Two important 
components of Methods 1 were observations of secondary mathematics classrooms and practice 
planning, implementing, and reflecting on two lessons which students taught to their peers. 
Methods 2 built upon this foundation and focused on sequencing lessons into coherent unit plans 
as well as assessment of student learning. Students also had their third opportunity to plan, 
implement, and reflect upon a lesson to their peers. 
Data Sources 

Data sources included: (1) a survey taken in the beginning of Methods 1 and again after 
Methods 2; (2) a VoiceThread assignment completed in the beginning of Methods 1; and (3) a 
45-minute semi-structured interview over Zoom after Methods 2. 

The validated survey consisted of 33 six-point Likert-scale items that measured participants’ 
beliefs about mathematics and how it should be taught (Tatto et al., 2012). The first six survey 
statements related to beliefs about mathematics as a set of rules and procedures and the next six 
to beliefs about mathematics as a process of enquiry. Composite scores were calculated for the 
two categories, indicating participants’ preferences toward statements about mathematics as a 
process of enquiry as opposed to mathematics as a set of rules and procedures. 

At the same two points during participants’ teacher preparation program, interviews were 
conducted to provide further detail on survey choices and to attempt to understand factors that 
had influenced any belief changes. The first interview was conducted virtually using 
VoiceThread. After the completion of the two-semester methods sequence, participants sat for a 
45-minute semi-structured interview over Zoom. Interview guides were developed based on prior 
research to provide different ways for participants to demonstrate their beliefs about mathematics 
and how it should be taught. To triangulate results, multiple types of questions were used, 
including open-ended questions, reactions to student work, and reactions to a video of a very 
procedural approach towards teaching the fact that 𝑥0 = 1 for 𝑥 ≠ 0.  
Data Analysis 

Quantitative analysis involved performing a paired-samples t-test to identify significant 
differences in participants’ composite scores before and after the Methods sequence. A power 
analysis performed using SPSS v28 indicated that the sample size of nine was adequate for 
>80% power and a large effect size. 

Qualitative analysis involved an iterative coding process. The project team coded interview 
transcripts line-by-line using a priori provisional coding (Miles & Huberman, 1994), grouped 
thematically into axial codes, with elements of grounded theory (Saldaña, 2009). 

Results 
Quantitative Results 

Figure 1 shows how students’ preference toward mathematics as a process of enquiry over 
mathematics as a set of rules and procedures changed from before Methods 1 (first bar) to after 
Methods 2 (second bar).  
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Figure 1: Pre-Methods 1 and Post-Methods 2 Survey Responses 

The fact that all values were nonnegative for the pre-Methods survey indicated that all 
students came into their Methods courses preferring statements towards mathematics as a process 
of enquiry, with one student showing no preference. All values increased from the beginning of 
Methods 1 (M = 0.78, SD = 0.54) to after Methods 2 (M = 1.98, SD = 0.63), indicating that 
students developed significantly stronger preferences towards mathematics as a process of 
enquiry, t(8) = 6.063, p < .001, with a large effect size, Cohen’s d = 2.02.  
Qualitative Results: What Changed? 

Interview transcripts corroborated students’ positive shifts towards mathematics as a process 
of enquiry over mathematics as a set of rules and procedures, with implications for how the 
preservice teachers planned to teach mathematics in the future. When asked if her views had 
shifted on how to teach students rules such as 𝑥0 = 1, Adell said: 

Absolutely. And I think it’s really just because of the Methods courses. I think those were 
definitely the most powerful courses that I was able to take. I don’t ever want to just spit out 
facts to my students, or rules… I would still make everything as conceptual as possible, use 
different methods, use manipulatives, use technology like Desmos, GeoGebra. It would feel 
wrong if I just gave them out as rules.  
Changes in beliefs were particularly notable given that many students affirmed that they were 

taught mathematics in very procedural, teacher-centered ways, and that they had planned to teach 
this way until their participation in the teacher preparation program. For example, in reaction to a 
procedural video about 𝑥0 = 1, Bernadette stated that “before [Methods] I would probably teach 
it like that… I don’t think I would have much of a problem with just giving students a rule like 
𝑥0 = 1. But after the program definitely I would teach them to understand why.” 
Qualitative Results: Why Were There Changes? 

Interview transcripts also gave insight into why changes occurred after the Methods 
sequence. Adell, who showed one of the greatest changes in her preference toward mathematics 
as a process of enquiry, expressed her desire to have a classroom full of technology, 
manipulatives, and group work, saying that the Methods classes gave her pedagogical tools that 
she had not previously possessed which she could use to develop students’ conceptual 
understanding. Adell expressed how her changed beliefs influenced her actions as a tutor and as 
a mathematics student: 

I think the Methods classes even just changed the way I thought, like I could see even 
how I was tutoring changed completely, just based on the Methods classes. The way that 
I felt about my other math classes definitely changed. I was so happy in my algebra class 
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when I saw a pattern myself, in the textbook, and then I noticed that it was just given to 
me as a rule… It was just so nice to finally see a pattern myself. 

In reference to teaching a rule such as 𝑥0 = 1, Adell said that she did not understand why it 
worked until it was discussed in her Methods class. She recalled writing the number two to 
various descending powers and noticing a pattern and planned to teach it the same way in the 
future. Adell was an example of a reflective connectionist who was able to formulate a coherent 
philosophy of teaching that connected new information with her experience (Cooney et al., 
1998). Another student, Allyson, also said that although she always wanted a collaborative 
mathematics classroom (as evidenced by her relatively high score on the pre-Methods 1 survey), 
during Methods she learned many strategies for actualizing the type of classroom she wanted.  

Reatha, another student who showed a large increase in her score pre- to post-Methods, said 
that in Methods she was introduced to the importance of groupwork, self-exploration, and 
developing mathematical ideas with teacher assistance, rather than lecturing. She also mentioned 
her belief that students should be presented problems before learning the procedures, as opposed 
to learning a procedure first and then simply repeating it. Reatha even said that after the class 
discussion on why 𝑥0 = 1, she contacted her friend to teach her why the rule worked, giving 
evidence that an activity in the Methods class had a direct and immediate impact on her 
pedagogical practice. 

Based on interview transcripts, course elements that appeared to have positive effects on 
students’ productive beliefs about mathematics and its teaching included: (1) use of interactive 
technology (e.g., Desmos and GeoGebra); (2) use of physical and virtual manipulatives (e.g., 
Algebra Tiles); (3) use of collaborative groups; (4) practice writing exams that assessed both 
conceptual understanding and procedural fluency; (5) learning about why mathematical rules 
work; (6) reading the book Mathematical Mindsets (Boaler, 2016), with its emphasis on teaching 
mathematics creatively instead of through memorization; (7) use of topic-specific examples of 
teaching for conceptual understanding; (8) realizing through discussion and readings that many 
students are not successful learning mathematics in procedural ways; (9) observing secondary 
lessons taught conceptually; and (10) reflecting on their personal experiences learning 
mathematics procedurally in light of alternative methods. 

Conclusion 
A sequence of Methods courses purposefully designed to convince preservice teachers of the 

merits of teaching mathematics for conceptual understanding, and the detriments of teaching 
mathematics for merely procedural competency, significantly affected their beliefs about the 
nature of mathematics towards mathematics as a process of enquiry. The findings presented here 
imply that beliefs can change when preservice teachers are provided opportunities to learn 
various strategies for teaching mathematics conceptually, practice using these strategies with 
their peers, and reflect on their experiences learning and teaching mathematics this way. 
Preservice teacher programs should be structured in ways that support these changes in beliefs 
and practice through a variety of strategies, so that students have both the motivation to change 
their beliefs and the pedagogical toolkit to modify their practice accordingly. Future research 
could explore how other aspects of secondary mathematics preservice programs, such as clinical 
experience, work in tandem with Methods courses to influence preservice teachers’ beliefs and 
practices. 
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PTS’ EXPERIENCE DEVELOPING CULTURALLY RESPONSIVE MATHEMATICS 
LESSONS IN A MIDDLE SCHOOL MATHEMATICS METHODS COURSE 
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The proposed presentation describes 20 prospective teachers’ (PTs) experience developing 
culturally responsive mathematics lessons in their middle school mathematics methods course. 
One mathematics teacher educator guided the PTs in developing and implementing lessons as 
they engaged in micro-teaching episodes. During Spring 2020, Fall 2020 and Spring 2021 
semesters, the PTs engaged in micro-teaching guided by the lesson analysis tool developed by 
Aguirre and Zavalla (2013) to make culturally responsive mathematics teaching (CRMT) 
explicit. Engagement in the activity allowed the PTs to learn about developing and implementing 
lessons that are mathematically rigorous as well as sensitive to social justice issues. The 
proposed presentation aims to deconstruct how micro-teaching guided by the CRMT tool was 
employed and to describe the opportunities for PTs’ learning.  

Keywords: Culturally Relevant Pedagogy, Equity, Inclusion, and Diversity, Social Justice and 
Preservice Teacher Education.  

Incorporating culturally responsive pedagogy (CRP) in mathematical context is challenging 
(Nasir, Hand, & Taylor, 2008). PTs in their methods courses must experience ways to weave 
CRP with the content they teach (Cochran-Smith, Davis, & Fries, 2004). For example, using 
students’ funds of knowledge (FoK) to teach mathematics (Moll & Gonzalez, 2004). The 
research on FoK encourages teachers to incorporate students’ wider experiences into teaching 
mathematics. However, this doesn’t necessarily include issues of equity and social justice 
(Aguirre & Zavala, 2013). CRMT includes knowledge, beliefs, and teaching practices that 
highlight mathematical thinking, culture, language, as well as issues of social justice (Aguirre & 
Zavalla, 2013; Aguirre, 2009; Gay, 2009; Gutiérrez, 2009; Kitchen, 2005; Leonard, Napp, & 
Adeleke, 2009; Turner et al., 2012). It includes 8 dimensions that incorporate elements of 
pedagogical content knowledge (PCK) and CRP to guide equitable mathematics teaching. 

Mathematics education research with a focus on social justice views mathematics as a tool to 
analyze social justice issues locally or globally (Aguirre, 2009; Christiansen, 2008; Gutieŕrez, 
2009; Gutstein, 2006; Mukhopadhyay & Greer, 2008; Tate, 1994; Turner & Strawhun, 2007; 
Gutstein, 2006; Mukhopadhyay & Greer, 2008; Peterson, 2005; Varley-Gutierrez, 2011; Kitchen 
& Lear, 2000). When teaching mathematics for social justice, teachers provide opportunities for 
students to use mathematics to challenge and understand existing structures of power.  

According to Aguirre and Zavala (2013) developing culturally responsive mathematics 
teachers requires that they become aware of the larger context within which they teach 
mathematics. They must conceptualize their role as a teacher to prepare their students to become 
engaged members of a larger social, cultural or political context. Teachers must recognize that 
teaching mathematics is a political activity, it is not the neutral subject it’s often perceived to be. 
This means becoming aware of inequities in mathematics education and the role of mathematics 
as a gatekeeper to advance courses and careers. To this end, the specific research question 
guiding this study is: How did engagement in a micro-teaching activity guided by the CRMT tool 
provide opportunities for PTs’ learning? 
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Methodology  
Action research methodology was employed to investigate how micro-teaching guided by the 

CRMT tool provided opportunities for PTs’ learning over three semesters (Johnson, 2005; 
Kemmis & McTaggart, 2000; Mills, 2003; O’Brien, 2001; Willis & Edwards, 2014). Micro-
teaching activity included PTs developing lesson plans and video recording a short 5-10 minute 
teaching episode from that lesson. The Mathematics teacher educator (MTE) and peers provided 
feedback on the video followed by the PTs reflecting on their experience. 

The study took place at a public university in the mid-Atlantic region of United States (US). 
Data sources include student lesson plans, video lessons, student reflections, and peer feedback 
provided by the PTs during Spring 2020, Fall 2020 and Spring 2021 semesters. Qualitative 
research methods, specifically thematic analysis (Braun & Clarke, 2019) was employed to 
systematically code the data and look for emergent themes. Data was organized into 8 CRMT 
dimensions when analyzing the lessons. Dimensions 1 through 5 guided the analysis on how the 
lessons attended to students’ mathematical thinking. (1-intellectual support, 2-depth of student 
knowledge and understanding, 3-mathematical analysis, 4-mathematical discourse & 5-
communication and student engagement). Dimensions 6a and 6b provided information about 
students’ language (6a-academic language support for ELL & 6b-use of ESL scaffolding 
strategies). While dimensions 7 and 8 guided the lesson analysis on culture and social justice 
components (7-funds of knowledge/culture/community Support & 8-social justice). 

Findings 
Analysis of data collected over three semesters unearthed PTs’ perceptions about CRMT and 

their challenges. During Spring 2020 semester PTs’ understanding of CRMT ranged from ‘using 
mathematics to solve real-life problems’ to ‘developing a math lesson superficially using context 
from another (non-US) culture’. Most PTs sprinkled some context over mathematics. Such 
lessons pointed towards the need to improve my PTs’ perceptions about CRMT. I planned to 
help them see connections between CRP, social justice and teaching mathematics. During the 
next two semesters I devoted more time to unpacking CRMT and introduced it earlier on in the 
semester. Using existing resources (Berry, Conway, Lawler, & Staley, 2020) I highlighted how 
CRMT dimensions could form the foundation of a math lesson. PTs examined a social justice 
based mathematics lesson in class guided by the CRMT tool and developed their own ideas 
about CRMT. PTs appreciated seeing a math lesson where math and social justice were given 
equal importance. I also provided a list of social justice standards (Teaching Tolerance, 2016) to 
be used in the lesson plans along with mathematics standards. The resulting student work from 
Fall 2020 and Spring 2021 semesters showed marked improvement in students’ lesson plans.  
Description of two Lessons from Fall 2020 and Spring 2021 

During Fall 2020 one PT developed a lesson on linear equations and gender wage gap. The 
guiding question for the lesson was, How do functions represent the relationship between two 
variables? The PT stated the following mathematics standard and social justice goals: “The 
student will investigate and analyze linear and quadratic function families and their 
characteristics both algebraically and graphically, including connections between and among 
multiple representations of functions using verbal descriptions, tables, equations, and graphs.”, 
“Students will be able to recognize inequality in the world around them and discuss the issues 
critically.” and “Students will be able to do their own research on inequalities and voice their 
biggest concerns in that area.” During this semester the MTE did not ask the PTs to include 
social justice goals into their lesson however this PT included them. Among other activities in 
the lesson, the PT planned to have the students engage in a Desmos activity comparing graphs of 
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two linear functions depicting the wages of two different people. Later in the lesson, the PT 
planned for the students to react to an image depicting gender wage gap data through Jamboard. 
The lesson presented a balance between a focus on mathematics and the social justice issue being 
considered. The lesson did not touch upon the needs of students whose first language is not 
English. A deep connection to students funds of knowledge and their culture was also missing.  

In another example of a lesson from Spring 2021, a PT aimed to engage students in 
discussions about digital activism while learning about histograms, stem-and-leaf plots and dot 
plots. The PT stated the following mathematics and social justice goals: “The student, given data 
in a practical situation, will (a) represent data in a histogram; (b) make observations and 
inferences about data represented in a histogram; and (c) compare histograms with the same data 
represented in stem-and-leaf plots, and line (dot) plots” and “I take responsibility for standing up 
to exclusion, prejudice and injustice” The PT planned to collect data on the number of letters in 
student names and make a histogram from this data. The PT also planned to ask the students 
questions like, “What could happen to our histogram if we asked this same question in another 
country? A different era in history? Another culture?” Such questions could potentially lead to a 
discussion about similarities and differences in naming conventions of different cultures. While 
this lesson also included social justice standards, the inclusion of social justice standards did not 
lead to a deep connection between mathematics and social justice. This semester the students 
were explicitly asked by the MTE to include social justice standards so inclusion may have been 
a response to that requirement. The lesson did have the potential to connect to students’ home 
cultures but did not attend to learning needs of students whose first language was not English.  

These lessons showed a shift away from superficial use of context. The inclusion of social 
justice standards may have encouraged the PTs to choose contexts that justified their selection of 
social justice standards. Their intentional goal selection for both mathematics and social justice 
may have allowed the PTs to think of both these factors as important in their planning. Overall 
the analysis of PTs’ lessons over three semesters showed a decrease in the use of contexts such 
as, “ice cream activity” or “graphing flowers” and an increase in contexts such as, “planning a 
community garden”, “using American sign language” or “ learning about affordable housing”. 
Challenges and Growth during Spring 2020, Fall 2020 and Spring 2021 

Engagement in the micro-teaching activity itself provided the PTs with the opportunity to  
learn about CRMT, become aware of their challenges, and experience excitement in connecting 
issues they feel passionate about to mathematics. The PTs shared similar concerns and patterns 
of growth over the three semesters. I describe these findings below.  

Finding a context was challenging. Some of the PTs’ concerns were general in nature 
because of the novelty of CRMT, for example, “When I saw that we had to come up with a 
culturally relevant lesson, I got nervous. I had never been forced to come up with a lesson that 
wasn’t all about math. This assignment pushed me out of my comfort zone and forced me to 
consider other people and their perspectives on the world.” (Spring, 2020) PTs shared specific 
concerns as well, and their biggest challenge was deciding on a context. As one PT shared, “It 
was also more difficult coming up with an idea to do my lesson on and incorporating the culture 
I wanted to.” (Spring, 2020) The specific challenge was to first find a connection between 
mathematics and a real world situation that was also culturally relevant. 

CRMT was perceived as beneficial for students. Despite their challenges, the PTs found 
that connecting mathematics to a context was beneficial for their students. Some were motivated 
to overcome this challenge. One PT shared, “I learned that CRMT is not always going to be the 
easiest method of teaching, but it is something I am going to have to work on getting used to and 
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trying to implement in my classroom whenever possible.” (Spring, 2021) Another PT explained 
their thinking by saying, “Prior to this course I hadn’t had much experience thinking about 
students’ funds of knowledge can be implemented into a math lesson. I have learned that it is 
extremely important to make content relevant for students so that they feel connected to it and 
thus more interested in it.” (Spring, 2021) The PTs found the idea of CRMT useful for their 
students. In addition, PTs’ initial concerns were allayed with support from MTE as well as their 
peers. Through peer and professor feedback, cycles of revision and many discussions, the PTs 
became less apprehensive about CRMT. One PT shared, “Developing lessons based on culturally 
relevant pedagogy is extremely important, because it allows all students to feel valued and 
represented.” (Spring, 2020) 

CRMT was perceived as meaningful for the PTs. In addition to being beneficial for their 
students many PTs shared finding the process of incorporating context into mathematics lessons 
exciting. For example one PT shared, “I really liked doing this lesson. It was cool to incorporate 
something that is a big part of my own homelife culture into a lesson … I got feedback saying 
that they thought the sign language was a cool touch.”(Spring, 2020) Even though the goal was 
to learn about their students and find contexts relevant to their fictional students, the PTs found it 
rewarding to connect their own passion to mathematics. A PT commented, “This topic is very 
close to me and I wish I could have focused more on mental health in teenagers.” (Fall, 2020) 
The PTs started thinking about what contexts were important to them as well as their students.  

Discussion and Implications 
The experience with the micro-teaching activity allowed the PTs to broaden their perception 

of teaching and learning of mathematics. It was the first time each PT had heard about culturally 
responsive mathematics teaching. The experience of learning ways to develop culturally 
responsive mathematics lesson plans allowed them to unpack their own beliefs about being a 
mathematics teacher. Many of the PTs were uncomfortable with the idea of social justice in a 
mathematics classrooms and needed support to unpack how the two were connected. Using the 
CRMT tool to examine existing lesson plans in class, class discussions, peer feedback on lesson 
plans and having access to social justice standards all proved to be sources of support. 

Through this ongoing action research project I am learning about the actionable steps MTEs 
can take to develop supports for their PTs. In particular MTEs can help their PTs consider ways 
of incorporating social justice contexts into teaching and learning mathematics. Allowing PTs to 
express their concerns about discussing difficult issues in a mathematics classroom can be a first 
step in allaying those concerns. MTEs must provide tools and examples to show how PTs can 
develop CRMT but more importantly MTEs must support their PTs. It’s a challenging task to 
help PTs change their perception about mathematics as more than just a stand-alone subject that 
is devoid of context. This work requires the MTEs to have patience with PTs in order to support 
their growth.  

Conclusion 
Findings indicate that MTEs need to be intentional in their course design to highlight the 

connections between mathematics and social justice. With guidance, future teachers can begin to 
see how to design classroom experiences to support mathematical knowledge that underpins 
social issues. This work addresses the need to develop effective mathematics teachers for diverse 
learners (Civil, 2007; Leonard, 2008; Civil, 2002; González et al. 2001). 
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Moll, L., & González, N. (2004). Engaging life: A funds-of-knowledge approach to multicultural education. In J. A. 
Banks & C. A. Banks (Eds.), Handbook of research on multicultural education (2nd ed., pp. 699–715). San 
Francisco, CA: Jossey-Bass.  

Mukhopadhyay, S., & Greer, B. (2008). How many deaths? Education for statistical empathy. In B. Sriraman (Ed.), 
International perspectives on social justice in mathematics education. Charlotte, NC: Information Age 
Publishing. 

Nasir, N. S., Hand, V., & Taylor, E. V. (2008). Culture and mathematics in school: Boundaries between “cultural” 
and “domain” knowledge in the mathematics classroom and beyond. Review of Research in Education, 32(1), 
187.  

O’Brien, R. (2001). An overview of methodological approach of action research. In R.Richardson (Ed.), Theory and 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1271



practice of action research . João Pessoa, Brazil: Universidade Federal da Paraíba (English version). Available 
online. Accessed on September 09, 2020. 

Peterson, B. (2005). Understanding large numbers. In E. Gutstein & B. Peterson (Eds.), Rethinking mathematics: 
Teaching social justice by the numbers (pp. 76–79). Milwaukee, WI: Rethinking Schools.  

Teaching Tolerance. (2016). Social justice standards: The teaching tolerance anti-bias framework. Retrieved from 
https://www.learningforjustice.org/frameworks/social-justice-standards. 

Turner, E. E., Drake, C., Roth McDuffie, A., Aguirre, J. M., Bartell, T. G., & Foote, M. Q. (2012). Promoting equity 
in mathematics teacher preparation: A framework for advancing teacher learning of children’s multiple 
mathematics knowledge bases. Journal of Mathematics Teacher Education, 15(1), 67–82. doi: 10.1007/s10857-
011-9196-6 

Varley-Gutierrez, M. (2011). “I thought this U.S. place was supposed to be about freedom”: Young Latinas engage 
in mathematics and social change to save their school. Rethinking Schools, 24(2), 36–39.  

Willis, J. W. , & Edwards, C. (eds.). (2014). Action research: Models, methods, and examples. Information Age 
Publising.  

 
 
 
 
 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1272



THE SELF AS NOTICER: SUPPORTING PRESERVICE TEACHERS’ DEVELOPING 
AWARENESS 

Ethan Rubin 
ebrubin@uci.edu 

Elizabeth A. van Es 
evanes@uci.edu 

Gaining insight into how one’s noticing shapes decision making can enable a teacher to reflect 
on how they frame, interpret, and respond to classroom activity and disrupt the influence of 
dominant ideologies. Working in the context of teacher education, we conjectured that 
systematically analyzing and reflecting on their own noticing can enable preservice teachers 
(PSTs) in mathematics to develop more equitable practices. Using data from summative 
assignments in a course on advancing equitable teaching, we investigate how PSTs use lenses of 
equitable teaching to make sense of their noticing and develop conceptions of equity. Analysis 
reveals that PSTs engaged in meaningful reflection and adopted terms from the course but 
avoided discussing the sociopolitical dimensions of instruction. These findings have implications 
for course design and facilitation in the context of developing PSTs’ noticing for equity. 

Keywords: Preservice teacher education, instructional vision, social justice  

Objectives of the study 
Teacher noticing, which encompasses how teachers attend to and interpret details of 

classroom activity, has been recognized as an important construct for equitable teaching practice 
(Schack et al, 2017; Scheiner, 2021). How teachers notice interactions is situated within 
dominant narratives from the history of mathematics education as a field (Sherin et al, 2011). 
Especially in Western education, mathematics has been characterized as an objective subject 
without social or political implications, despite a complex legacy of racialized, gendered, and 
otherwise biased structures and institutions (Gutierrez, 2018). Through that framing, math 
education continues to be a site for reproducing dominant narratives about what counts as 
“smart,” who is capable of mathematics, and related ideologies that undermine efforts toward 
equitable education (Louie, 2017). One approach to disrupting those ideologies is for teachers to 
develop an awareness of how their noticing is shaped by broader sociopolitical systems and their 
personal histories within those systems. As the influence of dominant narratives becomes more 
visible, teachers are able to recognize biases and blind spots in their noticing, empowering them 
to reframe their conceptions of classroom activity and cultivate instructional practices that 
support equity (Mendoza et al, 2021). Gaining insight into oneself as a noticer and understanding 
how noticing shapes moment-by-moment decision making can therefore enable a teacher to 
reflect on how they frame, interpret, and respond to classroom activity and disrupt the influence 
of dominant ideologies (Louie et al., 2021; Patterson Williams et al, 2020). 

Working in the context of teacher education, we conjectured that developing insight into 
oneself as a noticer can enable preservice teachers (PSTs) to develop more equitable practices. 
We enter this conversation by investigating pedagogies for supporting preservice teachers in the 
process of gaining insight into their noticing practices. In response to the constraints imposed on 
education by the COVID-19 pandemic, we adapted a course for PSTs focused on learning to 
systematically notice and analyze teaching practice (see Sherin et al, 2009). The course centered 
on developing “lenses” for noticing and advancing equitable teaching, including attending to 
student thinking, discourse, positioning, and identity. We structured the course around a series of 
noticing tasks that entailed using those lenses to analyze how noticing, instruction, and 
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commitments come to life in moment-to-moment interactions. As a summative assignment, the 
PSTs reflected on and analyzed those noticing tasks in order to represent their noticing as a 
system informed by the lenses the course had introduced. In this study, we ask: how do 
preservice teachers use lenses of equitable teaching to make sense of their noticing practices? 
What do their self-analyses reveal about their emerging conceptions of equitable instruction? 
Theoretical framework 

Noticing is especially central to teaching for equity, as noticing is shaped and constrained by 
ideologies that frame what teachers deem worthy of attention and how they interpret those details 
(Louie, 2017). Noticing occurs continuously as an active and subjective process, whether or not 
the teacher in question is conscious of attending to certain phenomena over others or interpreting 
details in particular ways. Becoming aware of one’s noticing, however, enables a teacher to 
understand, question, broaden, and disrupt their noticing practices (Erickson, 2011; Mason, 
2009). Similarly, ideologies are shaping noticing whether a teacher is aware of them or not; 
awareness helps one see what ideologies are shaping noticing and how, i.e. are they supports or 
barriers to advancing equity in teaching. 

The concept of frames is of particular importance for unpacking the relationship between 
ideologies and noticing. Hand (2012) describes frames as structures that establish “expectations 
for how the emerging activity should unfold and for the roles that different individuals will take 
within it” (p. 251). Louie (2021) builds on this understanding, characterizing frames as narratives 
that shape both what and how we notice, and which “take on authority as they are told and retold 
[to] influence their tellers’ and others’ subsequent framing” (p. 3). Frames are both internal 
structures that teachers rely on to make sense of classroom activity and modes of representation 
and communication with students about the content and context of learning in the discipline. 
Frames that are based in dominant ideologies, e.g., white racial knowledge or race denialism 
(“colorblindness”), can perpetuate those ideologies (Reisman et al, 2020; Bonilla-Silva, 2006). 
On the other hand, frames based in challenging inequitable systems and rehumanizing learning 
can disrupt dominant ideologies (Gutierrez, 2018; Louie, 2017; McKinney de Royston et al, 
2021). 

The relationships between ideologies, frames, and noticing have prompted attention to how 
teachers’ self-awareness in noticing develops. For instance, Patterson Williams et al (2020) offer 
a model of teacher noticing that centers on cultivating an “inner witness” by attending to how 
equity unfolds in “micro-moments within fleeting classroom discourse” (p. 505). Mason (2009) 
parses the development of teacher awareness into phases of preparation (e.g. structuring and 
planning), paration (the enactment of teaching), and postparation (e.g., reflection and 
interpretation). Postparation practices then provide the basis for preparation in continuing 
instruction. Philip (2019) describes practices for gaining insight into one’s teaching through 
narrating, re-narrating, and re-envisioning episodes of teaching. Across these frameworks, 
authors highlight the importance of reflecting on past practice to improve future practice in 
iterative cycles. In the context of teacher education, this insight indicates pedagogies for 
supporting the development of self-awareness with pre-service teachers. In the course design that 
led to this study, we drew on these frameworks to engage PSTs in representing, reviewing, and 
reinterpreting their noticing as the manifestation of commitments, beliefs, and ideologies they 
consciously and unconsciously hold. 
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Research methods 
Study context 

This study was situated in a required course for a combined Master of Arts in Teaching and 
teaching credential program that took place in the fall of 2020. The course, titled “Learning to 
Learn from Teaching,” engaged preservice teachers in analyzing representations of teaching 
practice (e.g., videos and transcripts) to develop their noticing practices and their awareness of 
their noticing. Through course readings, discussions, and assignments, we provided PSTs with 
multiple lenses that together constitute a model of responsive and equitable teaching. PSTs were 
directed to use the lenses to analyze and reflect on representations of teaching in a series of 
noticing tasks assigned throughout the course. Their observations and reflections were recorded 
in a noticing journal, which documented PSTs’ noticing in a form they could review and 
reference. Examples of lenses and associated readings are listed in Table 1. 

 
Table 1: Lenses and readings from the course 

Lens Summary Readings 
Understanding 

students’ 
identities 

Knowing, doing, and being are intertwined aspects of 
learning. Students’ identities, practices, and knowledge are 
all continuously expressed and developing in the classroom. 

Herrenkohl 
& Mertl, 

2010 
 

Student thinking 
(strengths-based 

perspective) 

 
“Smartness” in math has been narrowly defined in terms of 

speed, accuracy, and “right” answers. Teachers can 
challenge this ideology by focusing on students’ strengths 

instead of deficits and moving beyond the right/wrong 
binary to understand and appreciate student thinking. 

 
Louie, 2017; 

Jilk, 2016 

 
Discourse and 

accountable talk 

  
Classroom discussions can be understood through three 
forms of accountability: to knowledge, to standards of 

reasoning, and to the learning community. Rich classroom 
discourse involves students collaborating to navigate the 

process of sensemaking and guide discussion through 
questioning, reasoning, and mutual support. 

 
Hufferd-

Ackles et al, 
2004; 

Michaels et 
al, 2008  

 
Prior iterations of the course culminated in PSTs planning, enacting, recording, and 

analyzing a lesson in their student teaching placements. Due to the COVID-19 pandemic, 
however, PSTs were not in classrooms and therefore could not produce and analyze 
representations of their own teaching. As an alternative, we engaged PSTs in a method of self-
analysis using their interpretations of videos and transcripts in the noticing journals as data. In 
prior work, we developed an analytic method to characterize the relationship between teachers’ 
commitments, noticing practices, and instructional practices (see Authors, 2022), which we refer 
to as a system of noticing. We conjectured that the process of constructing a personal system of 
noticing through reflection and analysis of noticing tasks would support PSTs developing the 
kind of awareness that would support equitable practice in teaching.  

Developing a system of noticing first required PSTs to review their responses to noticing 
tasks and make distinctions between their observations and their inferences. PSTs identified 
patterns in what they tend to notice (observations) and how they interpreted those details 
(inferences). They then grouped their patterns of observations and the associated inferences into 
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clusters that shared a noticing lens. Figure 1 provides an example of a cluster of observations and 
inferences around a noticing lens. 
 

 
Figure 1. Example of a system of noticing 

Through this process, we conjectured that PSTs would develop the ability to distinguish 
between an objective observation and an interpretation, thereby revealing the influence of 
commitments, ideologies, and dominant narratives on how they interpret what they see. 
Grouping the observations and inferences and naming that cluster as a lens then helps preservice 
teachers identify the specific narratives, ideologies, and commitments at play. By making these 
aspects of noticing visible, we intended to position preservice teachers to consider how their 
noticing may or may not support equity and determine aspects of their noticing they want to 
refine, expand, or disrupt. In addition to creating a visual representation of their system of 
noticing, the preservice teachers wrote a paper explaining how they developed and interpreted 
their system of noticing using their noticing task responses and the literature from the class. The 
paper consisted of three parts: 1, explain the noticing lenses using evidence from the noticing 
tasks; 2, analyze the lenses using the course readings; and 3, identify areas of noticing to expand 
or disrupt and describe a plan for doing so. 
Data analysis 

Of the 11 mathematics candidates enrolled in the course, five consented to participate in this 
study. Data consists of their summative system of noticing assignments, which include a visual 
representation of the system of noticing and a reflection paper explaining the data from their 
noticing tasks and the concepts from course readings that they used to develop that 
representation. We employed iterative qualitative methods (Miles & Huberman, 1994) to 
examine the ways that PSTs took up lenses of equitable and responsive teaching and the 
conceptions of equitable teaching their work revealed. First, both authors read through, made 
margin comments, and wrote memos about each paper. The authors then discussed their 
comments and memos, identifying categories and themes that stood out across their impressions. 
These themes concerned which lenses were raised by the PSTs, what kinds of explanations they 
provided to justify prioritizing those lenses, and how their explanations related to the course 
materials and goals. Following these discussions, the authors returned to the data to conduct 
rounds of focused coding (Saldaña, 2011) around three areas: how terms were used (e.g. 
definitions and examples), critical statements (e.g. “students often feel vulnerable”, “math is seen 
as irrelevant,”) and normative or values statements (e.g. “teachers should do X”, “I want to 
create a classroom that is Y”). Finally, the authors reviewed the readings that PSTs cited most to 
consider how student definitions aligned with the definitions of concepts in the course materials 
and the extent to which their critical and normative stances were consistent with the aims of the 
course. 
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Results 
Analysis revealed two main findings. First, PSTs appear to have taken up the fundamental 

aims and practices of the course by trying on lenses to re-envision and re-imagine schooling in 
light of their commitments. Second, PSTs applied language from the course readings and 
discussions, but often defined those terms in partial or adapted forms that were more compatible 
with their pre-existing frames. These redefinitions showed a tendency to avoid the broader 
systemic issues and ideologies that influence classroom activity. 
Finding 1: Interpreting noticing through beliefs and commitments 

Although this portion of the assignment asked PSTs to describe what they noticed and 
inferred in the noticing tasks, all five PSTs in this study consistently made normative or 
aspirational statements about teaching. Student 1, for instance, made the arguments that 
“students should develop ideas, have authority in the classroom, and be responsible for their 
knowledge” and “it is crucial to create a safe, supporting, and inclusive place…students should 
have the opportunity to practice their identity, individuality, and whom they are.” Student 2 
stated that “we need to value students for who they are and acknowledge their differences” and 
Student 5 made claims like “students should lead the direction of the discussion” and “teachers 
need to learn how to really listen to their students.” In a similar vein, Student 4 linked their 
understandings of key concepts to value statements: “Tools are shared through communicating 
with one another, thus, communication is a practice that must be developed to promote learning”; 
“Students develop their identity through interactions, thus participation is key in providing 
students with an opportunity to develop their identity”; “Knowing, doing, and being are all 
intertwined, hence it is important to study all aspects.” These claims about the purposes of 
teaching indicate that these PSTs were articulating their beliefs and commitments about how 
teaching should be and understanding those commitments as the basis for their noticing. 

In several cases, PSTs expressed normative or aspirational claims by pairing critiques of 
schooling with alternatives. Student 1 articulated these dyads in each section of their paper, 
starting with: “in many cases, the teacher is considered as the only authority in the classroom…I 
believe in a student centered classroom.” In their next argument, they state, “students cannot see 
the connection between what they learn as mathematics and how it is used…students must 
become aware of…the applications of the subject.” Finally, they point out that “all students come 
from different backgrounds and stories and we should not expect them to adjust their identities to 
the dominant culture. Students should be appreciated as individuals with unique thoughts, 
beliefs, values, and identities.” Student 4 used the same format, at one point unpacking a specific 
observation by explaining that “this student might have felt left out…teachers must not turn 
away different representations of participation because it may hinder students’ opportunities to 
learn. Thus, students must not only be encouraged to participate but more importantly must be 
offered assistance to participate.” Later in their paper, Student 4 presses on assumptions about 
the nature of doing mathematics, noting that “students have been conditioned to believe that if 
they are fast and accurate, then they are smart. However, my noticing lens disrupts this narrative 
because my… noticing lenses value participation and use participation to redefine smartness.” 

Students 2, 3, and 5 reverse these dyads, with Student 2 saying, “I look at the positive 
interactions or ideas…teachers may focus too much on what students are doing wrong,” and 
Student 3 expressing that they pay more attention to student-led discussions because they have 
observed classrooms in which “there is not a lot of room for discussion, just lectures and note 
taking.” Student 3 also provides a more personal example, saying, “I remember being in the 
classroom and not wanting to provide my opinions because I was afraid of being wrong and 
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other students judging me for it. So, when I observe students, I look to make sure that everyone 
feels comfortable being wrong and learning from it.” Student 5 makes a broader claim about 
their beliefs on the nature of learning: “students should be given the opportunity to construct 
knowledge for themselves. If students are constantly spoon-fed knowledge without a chance to 
build it for themselves, we position them as incompetent learners that need someone to build it 
for them.” Across these examples, we see PSTs using their normative commitments as frames to 
interpret classroom activity. Instructional practices they observed, interpersonal dynamics, and 
messages implied by teacher actions were interpreted in relation to beliefs about what is valuable 
in teaching and learning, which in turn pointed PSTs to alternatives they conceptualized as 
solutions to persistent issues in schooling. 
Finding 2: Redefining terms from the course to fit with pre-existing frames 

PSTs used terms from the course, but often adapted them to fit with their pre-existing frames. 
This was most visible when PSTs explicitly provided definitions and illustrations that were 
partial or selective versions of the concepts introduced in class. Student 2, for instance, begins 
their paper by defining “noticing” as “a critical and analytical tool that…pertains to student 
attainment, cognition, and thinking, as well as the educational environments where such facets 
take place.” The framing emphasized in the course, however, sought to define noticing as a 
typically unconscious manifestation of a teacher’s identity, their personal and social history, and 
the systems in which they work, rather than as an analytical tool that teachers can choose to aim 
at students. Student 2’s focus on attainment and cognition appears again when they use the term 
“accountability” to mean “where students are held accountable in understanding certain content 
material…[and] held accountable in finding answers, persevering if struggling.” This conception 
of accountability indicates a partial understanding of “accountable talk” from the course 
readings, as it omits Michaels et al’s (2008) emphasis on the social dimension of accountability 
to a learning community. The idea of “perseverance through struggle”, on the other hand, does 
not appear in the course materials. Student 3 applied a similar partial understanding to interpret a 
video shown during class, writing that “during the discussion, some students were right while 
others were wrong, but there was never any judgment in the room.” In the course, however, the 
rationale for showing that video was to demonstrate a teacher rejecting the frame of the 
“right/wrong binary”, valuing student sensemaking instead of thinking in terms of students being 
right or wrong.  

The tendency toward partial or selective understanding is further illustrated by what PSTs did 
not talk about when explaining or analyzing a given concept. For instance, four of the five PSTs 
cited Philip et al (2016) as evidence that they attended to power and positioning. The reading, 
whose title refers to “becoming racially literate” and “racial-ideological micro-contestations” (p. 
361), unpacks a classroom interaction in terms of the teacher’s avoidance of talk about race, 
which tacitly enables racial antagonism between students and excludes a Black student by 
delegitimizing his insights about content that involves Black communities. Student 5 argued that 
the problems in that situation arose because the teacher “positioned himself as the authority 
figure in the room by acting as the ‘gatekeeper of knowledge’”, in accord with a claim that 
asking the question “was the teacher acting as the ‘gatekeeper of knowledge’...allows us to 
analyze who has the power in the classroom.” While questions of authority and gatekeeping are 
relevant to this example, the absence of race, identity, and power dynamics beyond the 
interpersonal scale in this account is conspicuous. Likewise, Student 3 diagnosed the problems in 
the Philip et al reading as “[the student] being disregarded so much and constantly defending his 
opinion to the point where he just stopped.” Again, this analysis brings up relevant points, but 
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there is scant mention of race despite the authors’ insistence that race, and particularly the 
teacher’s refusal or inability to discuss race, is crucial to understanding the example. Student 1, 
in contrast, did mention race in the context of this example, but they interpreted it in colorblind 
terms: “we ostracize an individual due to simply the color of their skin, but at the end of the day, 
we are all human, so why do these discrepancies exist?” This response conflicts with the authors’ 
argument that a student’s race entails legitimate differences in experience and perspective, which 
can afford insights that should be recognized. 

With regard to Philip et al (2016) and several other examples, PSTs showed a tendency to 
omit the sociopolitical aspects of a concept or situation by choosing to focus on smaller scale 
interpersonal perspectives. All five PSTs prioritized some version of students feeling safe, 
welcome, and included, and four made claims about attending to positioning. In their 
explanations and examples, they focused primarily on how teachers’ actions affected students. 
Student 4, for example, stated that “teachers can create an inclusive classroom by asking students 
questions and inviting students to participate.” Student 5 claims, “I very much focus on how 
students are positioned in the classroom. For example…where the knowledge is coming from 
contributes to the power dynamic between teacher and student.” Their understanding of 
positioning related to how students were positioned within the classroom through interactions, 
without engaging with how students were already positioned coming into the classroom based on 
their identities and histories. Likewise, PSTs’ accounts of students feeling safe/unsafe or 
welcome/unwelcome focused on how teachers’ actions could cause a student to feel that way, 
rather than considering how certain students may not feel safe or welcome within school 
institutions even before a teacher acts. 

Discussion 
Findings suggest that PSTs took up the practices of developing self-awareness that were 

facilitated by the course design, although their responses did not necessarily capture the details 
of the content. Even when PSTs brought up different ideas than were discussed in the course, 
their practices of surfacing assumptions and interpretations, critiquing the status quo, and 
reimagining instruction were consistent with the course aims. The prevalence of normative and 
aspirational statements indicates that PSTs were examining their noticing in the context of their 
beliefs and commitments, which complements the course focus on revealing the power of 
ideologies and frames. Through reflection and analysis of representations of their own practices, 
PSTs were beginning to see the connections between a teacher’s ideologies and commitments, 
what they notice, and the actions they can take to embody a vision of responsive and equitable 
teaching. This is consistent with other research on developing PSTs awareness (e.g., Philip, 
2019). While the conceptions they applied within those practices were at times partial or 
misaligned with the course content, it is important to recall that these were emerging 
conceptions; many of the ideas and frameworks in the course were entirely new for the PSTs. 
Research on developing frames for equitable teaching speaks to the difficulty of changing 
frames, even with experienced educators who participate in extended professional development 
(Louie, 2017; Reisman et al, 2020). For PSTs, this process is additionally complicated because 
they lack the frame of reference on which experienced teachers rely. Without their own 
experiences of the classroom context to draw on, pre-service teachers often struggle with what 
details are noteworthy in a case and how to interpret those details (Darling-Hammond & 
Hammerness, 2002; van Es et al, 2017). Given the novelty of the course material, the fact that 
PSTs were applying relevant practices in efforts to make sense of their noticing in terms of their 
commitments indicates they began to adopt the perspectives intended by the course. 
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It is noteworthy, however, that the areas in which PSTs’ responses departed most from the 
course aims revolved around sociopolitical awareness. Despite efforts throughout the course to 
center and unpack the effects of social histories and systems on instruction, the PSTs rarely 
mentioned the sociopolitical dimension. As a counterpoint, McKinney de Royston et al (2021) 
consider how Black educators enact frames of care and protection towards Black students and 
find that their frames are characterized by “clarity about the historical and political landscape” 
that illuminates “racialized disparities and experiences in schools…as by-products of systemic 
racism” (p. 73). This clarity is expressed in “politicized caring”, which motivates and empowers 
the teachers and school leaders to disrupt harmful narratives and structures in the name of 
making students feel safe and cared for. By contrast, the PSTs here bring in a frame of apolitical 
caring. In these reflections, PSTs emphasize creating a sense of safety and students feeling 
welcome or at home, but without addressing the broader social and systemic issues that affect 
students’ experiences of schooling. This pattern was visible even in PSTs’ responses to 
representations of explicitly racialized situations, as in the Philip et al (2016) example. This fits 
with a more generalized tendency to view the classroom as a neutral space until it is shaped by 
teacher actions. Treating the classroom as a neutral space (rather than one inherently pre-shaped 
by sociopolitical factors) frames creating a sense of student safety as a question of not doing 
things to make them feel unsafe as individuals within classroom interactions, rather than 
disrupting or counteracting broader sociopolitical narratives. The absence of a sociopolitical 
frame, even under the guise of neutrality or valuing interpersonal relationships, ultimately 
reproduces a colorblind ideology that perpetuates harmful narratives and delegitimizes the 
experiences of students from historically non-dominant communities (Bonilla-Silva, 2016). 
These findings therefore raise questions regarding what kinds of pedagogies, artifacts, and 
supports are needed for PSTs to cultivate systemic and interpersonal perspectives as compatible 
and complementary frames (Weis & Fine, 2012). 
Limitations and future research 

The systems of noticing that PSTs developed and the reflections they analyzed to do so were 
produced by engaging with a set of artifacts, representations, and readings that were selected by 
the authors. As teacher educators, we were not neutral or objective in the selection of these 
materials. Rather, we attempted to curate a set of materials that support a vision of equitable 
noticing and instruction that we hoped to cultivate with this group of PSTs. It is likely that 
engaging with different representations or being informed by different literature would reveal 
other tendencies in PSTs’ noticing, ideologies, and commitments. The study is also limited by its 
small size, both in terms of the number of PSTs involved and by virtue of being a single instance 
of the course. This study represents only one iteration of guiding this process of development, 
and findings reveal both areas of success and possibilities for improvement. Further research is 
needed to consider the implications of these findings for course design and facilitation in the 
context of developing noticing for equity and social justice. Moreover, a single course is clearly 
insufficient for deep and lasting change given the complexity of noticing and the persistent 
nature of dominant ideologies and narratives. Future research will also address how this process 
can be supported and sustained in other PST courses and in professional development for early 
career teachers. 
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This paper examines the possibilities of designing a formative assessment that gathers 
information about novice elementary teachers’ skills with modeling content and makes sense of 
such information. A decomposition of the practice of modeling content was developed and used 
to design the assessment. Participants included ten first-year teachers who graduated from a 
range of different teacher education programs. The findings reveal that our formative 
assessment works to gather information about teachers’ capabilities with modeling content and 
that the associated tools support making sense of the information gathered.  

Keywords: Assessment; Instructional Activities and Practices; Preservice Teacher Education  

Ms. Hazard is a third-grade teacher who is currently teaching her students how to name 
shaded parts of areas as fractions using the definition of a fraction in the Common Core State 
Standards (CCSSO, 2010). She knows that it is crucial that students grapple with the importance 
of making equal parts, naming one of the equal-sized parts, and then counting the number of 
shaded parts to name the fractions. In her initial lesson, she presents students with the task shown 
in Figure 1. There is disagreement about the fraction of the rectangle that is shaded, with students 
suggesting 1/3, ¼, and 1/2. She holds a rich discussion where children share their thinking and 
consider the thinking of others, including asking questions of their classmates. The class talks 
about how some students arrived at ½ because they used part of the rectangle as the whole and 
other students, who arrived at 1/3 or ¼, used the whole rectangle. They further talk about how 
some students noticed that one of the parts was bigger and that they added a line to make the 
parts the same sizes and that this is how some people arrived at 1/3 and others arrived at ¼. At 
the end of the discussion, it seems that a convincing argument for ¼ has been shared and that the 
class is tentatively in agreement that the shaded area is ¼ of the large rectangle. Ms. Hazard 
recognizes that the class needs to consolidate the core ideas shared.  

 
What fraction of the rectangle is shaded gray?  

 
 

  

Figure 1: Third Grade Fractions Task 

Ms. Hazard concludes by saying to the class, “We had such an important discussion today 
and I want you to listen carefully as I share how I think about naming this fraction because it 
connects to lots of ideas that were shared today and can help us think about other fraction 
problems.” Ms. Hazard goes on, “The first thing I ask myself is, ‘What is the whole?’, and I 
outline the whole. Our whole is the big rectangle.” As she says this, Ms. Hazard outlines the big 
rectangle with a whiteboard marker. “Then, I ask myself, ‘Is the whole divided into equal parts?’ 
Let’s look, here the parts in the whole are different sizes. See this part [pointing to the rectangle 
on top] is bigger than these parts [pointing to the parts on the bottom]. So, I need to make the 
parts the same size, so I can divide this part [pointing to the rectangle on top] in half to make the 
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parts the same size.” Ms. Hazard uses her red marker to split the part in half. Ms. Hazard goes 
on, “Now I ask myself, ‘how many equal parts does it take to make the whole?’ I can count one, 
two, three, four.” As Ms. Hazard counts, she points to each part and labels them one, two, three, 
four. Ms. Hazard goes on, “Then, I ask myself, ‘What do you call one of the parts?’ We call one 
of the parts, one out of the number of equal parts. We have four equal parts so we can call one of 
our equal parts, one-fourth. We have one equal part shaded in our rectangle, so one-fourth of the 
rectangle is shaded.” Ms. Hazard labels the shaded part as one-fourth on the board. Ms. Hazard 
concludes, “We will continue to work with fractions and it is really important that we ask 
ourselves four questions. What is the whole? Trace around the whole [while tracing]. Is the 
whole divided into equal parts? If not, make the parts the same size [traces line with finger]. 
How many equal parts does it take to make the whole? What do we call one of the equal parts? 
We can call it one-fourth.” Ms. Hazard records these questions on the board as she says them. 

Ms. Hazard first engaged students in grappling with mathematical ideas related to naming a 
shaded part of area as a fraction and concluding that ¼ of the rectangle is shaded. She then 
provided access to thinking by naming, highlighting, and scaffolding important ideas surfaced by 
students in ways that support the whole class in doing complex mathematics. Ms. Hazard named 
the core ideas and provided scaffolding questions that support students in learning what to ask 
themselves as they approach such mathematical work.   

In recent decades, there has been increased attention to several instructional practices that 
teachers can use to support students in constructing understanding of mathematics, including 
selecting rich mathematical tasks (i.e., Smith & Stein, 1998) and facilitating discussions of 
students’ work on such tasks, either in small group or whole class (Chapin, O’Connor, & 
Anderson, 2013; Smith & Stein, 2011; Kazemi & Hintz, 2014). But we argue that these 
instructional practices are, by themselves, insufficient to enable every student to be successful 
with complex mathematical work and to experience of joy of mathematics as they can often 
leave core mathematical ideas “in the ether” rather than supporting students to synthesize and 
generalize the ideas they have developed individually and collectively.  

Fundamentally, modeling content is about intentionally and thoughtfully providing access to 
content that may otherwise remain hidden to some students. Modeling, which requires the 
teacher to think aloud while demonstrating a skill, makes visible those practices and processes 
that happen internally and often remain invisible to learners if not explicitly named, explained, 
and shared. As we saw in the vignette from Ms. Hazard’s classroom, when modeling, a teacher 
names, highlights and scaffolds the topics and practices in ways that support students in doing 
complex mathematics without taking over the work for them or compromising students’ agency 
and their opportunity to engage in complex mathematical work.  

The concept of “explicitness” in modeling is distinct from “direct instruction,” which is a 
teacher-centered approach for delivery of content instruction (Archer & Hughes, 2011). 
Explicitness in modeling is not meant to reinforce or recreate the patterns of telling that are often 
seen in U.S. mathematics classrooms (Stein, Smith, Silver, & Henningsen, 2000), but rather it is 
aimed at making “access” a reality rather than a goal of collaborative development of 
mathematical ideas. But this sort of explicitness has often had an uncomfortable place in 
mathematics education. We argue both that this sort of explicitness is important and that the 
consideration of when to make content explicit through modeling is crucial for ensuring that all 
students have opportunities to engage with complex mathematical ideas. The key here is what is 
made explicit and what is left for students to figure out, and what “making explicit” means for 
the role of the teachers and students. Yet, partly due to concerns that focusing on modeling 
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content might result in direct instruction, mathematics teacher educators have often 
backgrounded the work of making complex mathematics accessible through modeling. Further, 
this practice is complex and difficult and there is much to learn about how to support new 
teachers in learning to model content in productive ways (Charalambous et al., 2011). 

We believe that formative assessment could make a substantial contribution to preparing new 
teachers to model content to support children’s mathematical learning. By formative assessment, 
we mean assessments used to formulate subsequent learning opportunities (Cizek, 2010). 
Formative assessment enhances learning by revealing the current state of learners’ knowledge, 
skills, and dispositions and ensuing action that facilitates growth (Black & Wiliam, 1998; Hattie 
& Timperley, 2007; Shute, 2008). We use the term skills to describe teacher candidates’ (TCs) 
abilities to carry out specific aspects of the work of teaching at a particular moment in time, fully 
recognizing that TCs’ capabilities will grow and change over time. Studies of the development of 
expertise have found that practice opportunities alone do not sufficiently support TCs to 
improve. Practice opportunities need to be coupled with structured directive coaching (Ericsson 
& Pool, 2016), which formative assessment can provide. Thus, formative assessment is a critical 
component in teacher preparation (AMTE, 2017; Darling-Hammond et al., 2005) and we need 
additional tools to assess TCs’ skills with particular practices and components of teaching (Boerst 
et al., 2020; Shaughnessy & Boerst, 2018; Shaughnessy, Boerst, & Farmer, 2019; Shaughnessy 
et al., 2021). We argue that if we develop and refine formative assessments of teaching practice 
and tools that support teacher educators in providing timely feedback to TCs on their skills, then 
TCs will develop more robust skills with these teaching practices, impacting student learning. 
Thus, we sought to investigate whether it would be feasible to design a formative assessment 
focused on modeling content for use with elementary TCs. Specifically, we investigated whether 
such an assessment could elicit and reveal detailed aspects of TCs’ skills with modeling content.  

The Teaching Practice: Modeling Content 
Modeling Content 

Although the field of mathematics education does not yet have a shared conceptualization or 
common language for decomposing modeling content, a number of scholars have worked to 
specify and define instruction related to modeling content in ways that support our 
conceptualization of this instructional practice, which is distinct from behavioral modeling 
(demonstrating how to complete a task or behavior). The work of Collins, Brown, and Newman 
(1989) and Collins, Brown, and Holum (1991) in their development of the cognitive 
apprenticeship as a way to make thinking visible to students, name modeling as the work of 
performing a task while making internal processes external. Leinhardt’s seminal research on 
instructional explanations (e.g., Leinhardt, 2010; Leinhardt et al., 1991; Leinhardt & Steele, 
2005) has illustrated the complexities of explanations that are accountable to both the discipline 
of mathematics and pedagogical purposes. They also suggest criteria for such explanations. 

Other scholars have worked to decompose the work of modeling content by examining 
specific types of teacher moves related to explicitness. Selling (2016) offered a decomposition of 
eight types of teacher moves that made different aspects of mathematical practices explicit in 
middle and high school mathematics discussions. This included moves like highlighting and 
naming when students were engaged in particular practices. Furthermore, Selling highlighted 
how the work of making aspects of mathematics explicit often happens at the end or in the 
middle of lessons, rather than at the beginning, which is also supported by other empirical 
research (e.g., Schwartz & Bransford, 1998; Schwartz & Martin, 2004). Further, teachers’ choice 
and use of particular mathematical examples can support, constrain, or even obscure the 
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mathematics that is available for students to learn within a particular domain (Ball et al., 2005; 
Rowland, 2008) and the choices teachers make about particular mathematical representations 
influence the nature of students’ learning opportunities (Ball, 1993).  

Overall, the mathematics education research base supports our conceptualization of modeling 
content and suggests that this practice is related to student learning (Cohen, 2018). The research 
also supports our conception of modeling as being appropriate and effective after students have 
had an opportunity to grapple with the mathematical ideas themselves (Schwartz & Martin, 
2004). We recognize that the way that this practice is often enacted does not align with our view 
of this practice. When Cohen summarized her study of explicit instructional strategies (modeling 
& strategy instruction) in elementary ELA and mathematics lessons, she reflected, “explicitness 
need not be directive or prescriptive, though the instruction in this study suggests that it often is” 
(Cohen, 2018, p. 322). This suggests that, given the tendency for directiveness and 
prescriptiveness in classrooms, it is crucial that we support teachers in learning how to make 
context explicit in productive ways that are not directive or prescriptive. 
Decomposing the Teaching Practice 

To assess teachers’ capabilities in modeling content, we drew upon Grossman et al.’s (2009) 
notion of parsing teaching practice into specific areas of work to create a “decomposition” of the 
practice. Because we were interested in using decomposition in teacher preparation, we attended 
to the importance of decomposing in ways that the practice can be taught and learned by TCs 
(Boerst et al., 2011). We drew upon prior research on the importance of modeling content for 
student learning and research on moves that teachers make when demonstrating, explaining, and 
modeling content to develop an unpacking of the work of modeling content, a “decomposition” 
of the teaching practice. We identified different aspects of what teachers have to do to model 
content. We acknowledge that a decomposition is a living document (Jacobs & Spangler, 2017; 
Shaughnessy, Ghousseini, et al., 2019; Shaughnessy et al., 2021). One challenge of 
decompositions is that while they are meant to provide details about the work of carrying out the 
practice, they cannot name the complete set of knowledge and skills required to carry out the 
practice or they will be unwieldy. While we recognize that teaching practice is dependent on 
mathematical knowledge for teaching and teachers’ views of mathematics and children’s ideas, 
the decomposition is focused squarely on teachers’ enactment of the teaching practice.  

Our decomposition deliberately foregrounds certain aspects of the work of modeling content 
with students––specifically those that we consider crucial for entry-level teaching. We further 
considered the aspects of modeling content that are most likely to be accessible to and learnable 
by novices. We began by identifying specific aspects of leading modeling content and what 
teachers of any level of experience and expertise do to try to accomplish those. For example, in 
modeling content, one important goal is to make thinking visible that might otherwise be 
invisible. This entails specific techniques such as annotating, which refers to adding in ideas 
necessary to support students’ understanding, including clearly articulating what you are doing 
and why you are doing it. These moves are also foundational for the more complex work 
experienced teachers do in modeling content. We organize our decomposition for modeling 
content into six areas of work: (1) planning to model, (3) framing, (3) doing content area work, 
(5) highlighting core ideas, and (6) making thinking visible by emphasizing thinking and key 
elements, and (6) using language and representations carefully (see TeachingWorks, 2019 for a 
list of moves associated with each area of work).  
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Assessing Teacher Candidates’ Skills with Modeling and Explaining Core Content 
The design of the assessment was influenced by our view of teaching as interactive and 

situated in contexts (Cohen et al., 2003; Lampert, 2001). We aimed to design an assessment 
focused squarely on TCs’ ability to model content in real time. Three considerations led us to 
design a standardized assessment in which TCs video recorded themselves modeling content in 
response to a prompt without children present. First, skillful modeling is responsive to the ideas 
and resources that students bring and learning goals for students. A standardized assessment 
enabled us to design a scenario in which we could specify the prior work that children had done 
and the learning goals for students. Second, modeling content can be done by the teacher, 
students, or co-constructed by teachers and students. These approaches differ in how much can 
be seen about a teacher’s skills with modeling. Our standardized assessment created an instance 
in which we could see TCs doing all of the work rather than handing some of it off to students. 
Third, because the selection of content matters and we wanted a design that would enable us to 
see patterns in performances across TCs, a standardized assessment allowed us to standardize the 
content being modeled and the example and representations used. We purposefully selected 
content that is core to the upper elementary curriculum (comparing fractions) and focused on the 
use of a particular representation (the number line) to see how all TCs could model content in 
this situation. Specifically, we asked TCs to model comparing the fractions 5/4 and 5/6 using the 
number line. Figure 2 contains the “class background” and instructions. Aware that TCs might 
have different ideas about the practice of modeling, we included a definition of the work of 
modeling in the full instructions and student learning goals.  

 
Class Background 

Your fourth grade students have been working on identifying and ordering fractions. They are 
familiar with number lines and understand the importance of creating segments of equal length 
when partitioning the whole into segments of equal length. Students have worked with 
common fractions such as halves, thirds, fourths, sixths and eighths. They are comfortable 
with the relationship between halves, fourths, and eighths. Students in general know that if you 
divide a unit interval into n equal segments that n/n is one whole.  

Instructions 
You will model how to use a number line, or two number lines, to accurately place and 
compare two fractions. You can choose any number line representation(s) that you think best 
communicates these ideas to fourth grade students. 

 Begin with unmarked line(s) and model placing the necessary whole numbers. It is 
recommended that you place the whole numbers far enough apart that you can easily 
partition the intervals into fourths and sixths.  

 Show how you determine, with precision, where each of the fractions falls on the line. 
Specifically, remind students how to partition the unit interval(s) and use that 
information to locate the fractions on the line.  

 Explain how to determine which fraction is greater using the number line.  
You should model the process of using this technique as you would for a group of fourth 
graders. The goal is to make explicit the process for placing and comparing the fractions 5/4 
and 5/6 on the number line. 

Figure 2: Assessment Task 
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We used the decomposition to develop a checklist that would support us in noticing the skills 
with modeling content demonstrated by the TCs. We focused on five areas of work: framing, 
doing the content area work, highlighting core ideas, making thinking visible by emphasizing 
thinking and key elements, and using language and representations carefully. We excluded 
planning because we identified the content to be modeled and the example and representations 
for the TCs. Our checklist focuses on the teacher’s use of specific techniques within our 
decomposition. In other words, techniques are what we look for to see if the practice happens. 
We could look directly for most of the techniques. However, in some cases, we had to further 
unpack ideas. For example, within highlighting core ideas, we had to identify the core ideas.   
Present Study 

We used the tool we had developed to investigate whether an assessment could elicit and 
reveal details in teachers’ skills in modeling content. While the assessment was designed to be 
used with TCs enrolled in a teacher education program, we studied the practice of first-year 
teachers from a range of teacher education programs because this enabled us to study the use of 
the assessment in ways that were not constrained to one teacher preparation program.  

Methods 
The ten participants, all in their first year of teaching, spanned grades 1–5. All of the teachers 

were teaching in the midwestern USA. Contexts varied across urban, suburban, and rural 
schools. We recruited a diverse sample of teachers with respect to grade level, school district, 
and teacher preparation program. This sample was not intended to be representative of all first-
year teachers. All teacher names used in subsequent sections are pseudonyms. 

Data sources include a video record of each participant modeling in response to the provided 
prompt. We met with each teacher individually in their classroom after school hours or during a 
prep period. We gave teachers the assessment instructions and allowed 20 minutes of preparation 
time. Teachers were aware that we were studying their skills in modeling content. Teachers were 
told that they had up to 10 minutes to complete the modeling.  

Data analysis proceeded in two phases. First, members of the research team independently 
watched each video and used the checklist to capture attributes of the performance. Second, the 
team discussed cases where there were differences in observations on the checklist, referencing 
and refining a codebook as needed to reach consensus.  

Findings 
Framing 

Framing included both launching and closing the modeling. For launching, we found that 
eight of the 10 teachers made an opening statement that named what was about to be modeled. 
Two teachers explained the purpose of what was being modeled. Three teachers connected the 
modeling to students’ prior learning, future learning, or background and/or experience. None of 
the teachers closed the modeling by summarizing or revisiting core ideas and results. 
Doing Content Area Work 

The content area work included four components. Six of the 10 teachers marked whole units 
(intervals) on the number line. To place the first fraction on the number line, six teachers marked 
the number line and labeled the fraction. To place the second fraction, eight teachers marked the 
number line and labeled the fraction. Seven teachers stated which fraction is greater.  
Highlighting Core Ideas 

With respect to backgrounding ideas, we found that only two of the 10 teachers avoided 
highlighting aspects of the content or task that are distracting or may lead to misconceptions. 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1288



This means that eight teachers highlighted aspects of the content or task that were confusing or 
might lead to misconceptions. For example, Mr. Houston highlighted that he was using 24 cm as 
the unit length because it was divisible by both 6 and 4.  

Three of the teachers foregrounded mathematical ideas by using explicit verbal and non-
verbal markers to draw students’ attention to important aspects of the content. Ms. Wheeler used 
gestures to emphasize that the value of a fraction on a number line represents a distance from 
zero by motioning from the zero on the number line to the point representing the fractional value.  

Teachers varied in marking ideas. We focused on five core mathematical ideas. Two of the 
10 teachers elaborated the whole unit before partitioning, five teachers highlighted the meaning 
of the denominator (with respect to one or both of the fractions), three teachers explained the 
partitioning using the language of equal parts (or same-sized parts), nine teachers showed how to 
use the numerator and the parts that had been marked to locate the fractions (with respect to one 
or both fractions), and five teachers stated how to use the representation to determine the 
comparison. There was variation in how many ideas each teacher marked. Further, we examined 
the sequencing of teachers’ marking of the core ideas and found that only three teachers 
compared the fractions on a number line in a logical manner.  
Making Thinking Visible by Emphasizing Thinking and Key Elements 

We examined whether teachers made use of three different sorts of techniques for making 
thinking visible by emphasizing thinking and key elements: annotating, marking metacognition, 
and thinking aloud. Two of the ten teachers engaged in annotating, adding ideas necessary to 
support students’ understanding, including clearly articulating what you are doing and why you 
are doing it. For example, Ms. Wheeler emphasized why she was drawing two (stacked) number 
lines and the importance of lining up the number lines to later support the comparison. One 
teacher, again Ms. Wheeler, engaged in thinking aloud as a means to make thinking visible for 
students. After Ms. Wheeler marked both fractions on the number line, she engaged in a think 
aloud about how to compare the fractions. None of the teachers marked metacognition by using 
verbal, tone, or visual markers to indicate to students when thinking was being made visible.  
Using Language and Representations Carefully 

When looking at teachers’ use of language, we found that nine of the 10 teachers consistently 
used language economically. All 10 teachers consistently used language which was grade level 
appropriate. However, only two of the teachers consistently used language which was 
mathematically accurate and precise. The mathematical language used by teachers that was not 
accurate and/or precise included referring to numbers as higher and/or lower, and saying fours 
and sixes rather than fourths and sixths. When we looked at teachers’ use of representations, we 
found that only four teachers drew number lines in accurate ways (e.g., having arrows on both 
ends of the number line, marking 0, and making equal parts). Nine of the teachers produced 
writing and representations that were legible and visible. Only four teachers organized the board 
in a way that supported understanding how to use a number line to compare two fractions. 

Discussion 
Having access to detailed information about TCs’ developing proficiencies with teaching 

practices is crucial for quality teacher education. Moreover, teacher educators must be able to use 
the data gathered from such assessments to focus efforts to support TCs’ development. This 
study sought to examine the utility of using an assessment to assess teachers’ skills with 
modeling content for formative purposes. The findings reveal details about skills with modeling 
content displayed by each of the teachers in the study.  
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We identify four key limitations of the design and use of the assessment and checklist. One 
limitation concerns the use of a checklist, yielding information primarily about the presence or 
absence of each technique rather than the use of a rubric, distinguishing the quality or quantity of 
teachers’ enactments above the threshold. However, checklists allow for in-the-moment scoring, 
whereas a rubric requires that a teacher educator watch the entire performance and often rewatch 
it before making a judgment. Further, the checklist addressed our goal of capturing whether a TC 
could enact a particular technique. A second challenge is the potential interaction of 
mathematical knowledge for teaching (MKT) and modeling content. Even with the focus on 
content that matters for teaching mathematics, and supports built into the materials (e.g., student 
learning goals), there were instances in which MKT appeared to be a factor in the enactment. 
This is unsurprising as MKT is clearly intertwined throughout the work. In these cases, it was 
unclear whether we were accurately capturing a teacher’s skill with modeling content or whether 
their use of MKT prevented them from demonstrating their modeling skill. This is an inherent 
problem in examining teaching practice. A third limitation is that we do not know whether the 
teachers in this study would perform differently if they modeled content in a different context. 
The context could be interpreted along multiple dimensions, including, but not limited to, the 
mathematics task used, the grade level of the students, or even engaging in the modeling work 
with actual children rather than through a simulation. This is an inherent problem; however, 
because we are not making claims about teachers’ skills more broadly, we argue the assessment 
reveals important information about teachers’ skills with modeling that can be used for formative 
purposes. A fourth limitation is that our study does not provide evidence of whether these 
teachers could decide what and when to model in their own teaching. We call out this point 
because, as we stated in the introduction, the goal of a teacher modeling in math class is to 
expand access to opportunities to engage in cognitively-demanding mathematical work. The aim 
is not to increase access by lowering the cognitive demand and spoon-feeding content to 
students. Instead, modeling is a means to consolidate ideas that students have explored. Thus, it 
is crucial that other sorts of information be gathered to determine (and, if necessary, intervene 
on) TCs’ beliefs about what, when, and why to model.  

Despite these limitations, our findings suggest that a standardized assessment of modeling 
content can reveal important information about TCs’ skills. As we did not intend to make claims 
about this sample of teachers or a larger population of TCs, the small sample was appropriate for 
our goals. However, the variations in performance that are used to illustrate the capabilities of 
the assessment and tool cannot be interpreted as representing the skills of a larger population of 
TCs. This standardized assessment accomplished many of our design goals. Its ability to capture 
a range of skills could make the assessment and scoring tool useful in teacher education. Teacher 
educators and programs could use such assessments to track TCs’ growth over time and to 
identify areas of strength and weakness with respect to the practice, which would allow for 
targeted support and program-level curriculum design. 

We close by noting two questions that arose from this study. First, we might explore how this 
assessment could fit into a trajectory of assessments for assessing TCs’ skills with modeling 
content. Second, in light of the questions that arose in this study about the role of content 
knowledge, we need to investigate further how we can reliably assess teaching practice in ways 
that account for the role of content knowledge for teaching.  
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Mathematical argumentation is a practice in which K-12 students should be engaging but 
supporting preservice teachers (PSTs) in learning to facilitate argumentation among students is 
challenging. The tasks used to support PSTs’ learning in this area should be as carefully selected 
as the tasks that K-12 classroom teachers choose for their students. In this study, we examine a 
performance task that was designed for PSTs to practice facilitating an argumentation-focused 
mathematics discussion in a simulated classroom environment. Findings showed that most PSTs 
both articulated and enacted at least one feature of argumentation that was embedded in the 
performance task’s student learning goal. However, evidence of PSTs’ attention to critique in 
both the learning goal and the enacted discussion was limited. This suggests that careful 
consideration of alignment between a specific discursive practice and the design features of a 
performance task could yield better learning opportunities for PSTs when using online 
simulations.    

Keywords: Classroom discourse; preservice teacher education; teacher educators; task design; 
mathematical argumentation  

 Introduction 
Mathematical discussions have been a focus in mathematics teacher education for decades 

with a great deal of attention paid to supporting teacher learning (Boerst et al., 2011; Ghousseini, 
2008; Stein, et al., 2008). Related research has been widely covered in mathematics education 
literature and has included examining cognitively-oriented math tasks that can support K-12 
students’ engagement in discussions (Stein & Lane, 1996), exploring how to effectively launch 
and implement those tasks to support students in having productive discussions (Jackson et al., 
2012), and developing frameworks for orchestrating productive discussions (Stein et al., 2008).  
While justification and proof have always been critical components of mathematics, the advent 
of the Standards for Mathematical Practice (National Governors Association, 2010) made the 
term argumentation prominent in the mathematics education world. Since then, several scholars 
have published on how to support PSTs in learning how to facilitate mathematical argumentation 
with their students (Conner & Singletary, 2021; Rumsey & Langrall, 2016; Stylianou & Blanton, 
2018). Learning how to engage students in productive mathematical argumentation requires 
targeted learning opportunities, especially for PSTs who have limited experience with this 
practice. While some research has examined the tasks used by teachers to engage K-12 students 
in mathematical argumentation, more limited research has been conducted to examine the 
performance tasks used by teacher educators to support PSTs as they learn how to engage in this 
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aspect of the work of teaching mathematics. This study is directly designed to address this gap 
by examining how PSTs perceived and used one performance task that was designed to support 
them in learning how to facilitate argumentation-focused discussions. 

Theoretical Framework 
One promising approach for helping PSTs learn how to engage in novel teaching practices, 

such as facilitating argumentation-focused discussions, is the use of approximations of practice 
where PSTs can try out and refine an instructional skill in settings of reduced complexity 
(Grossman, Compton et al., 2009). Approximations of practice are one type of pedagogy of 
practice advocated for in a theory of practice-based teacher education. This theory hypothesizes 
that teacher learning is supported by opportunities for them to learn in and from their practice. 
This stance suggests that teachers, especially PSTs, need to have opportunities to practice 
discrete components of the work of teaching mathematics, ideally in settings of reduced 
complexity and with opportunities for feedback, reflection, and repeated practice.  

Peer teaching has been one kind of approximation used in practice-based teacher education 
and involves a PST playing the role of teacher while their peers act as students (Kazemi et al., 
2016). A newer technology that is being used to engage PSTs in approximations of practice to 
support their learning is simulated classrooms (Howell & Mikeska, 2021). Simulated classrooms 
readily allow for repeated practice, interactions with students without having to find classroom 
placements and reflection through video recorded practice sessions (Gibson et al., 2011). From a 
research perspective, these practice spaces support analyses of PST learning opportunities. 
Because they are designed spaces, researchers can also pay close attention to the functioning of 
the practice spaces themselves and optimize them over multiple iterations of study. 

Within both simulated and real-life learning environments, the kinds of tasks teachers use in 
their classrooms to engage students can impact their learning opportunities (Hiebert et al., 1997; 
National Research Council, 2001; Stein et al., 2000). While much work has focused on 
cognitively-oriented task choice in the K-12 setting, an area less explored is performance-based 
task choice for PST learning. As educators we hypothesized that similar logic applies here, i.e., 
the nature of the tasks used to support PST learning likely relates to the quality of learning 
opportunities they experience. How those tasks are interpreted can also impact what students 
and/or teachers learn from and interact with them (Watson & Ohtani, 2015). Part of interpreting 
a task is deciding what the learning goal is for a given instructional sequence and then making 
choices about how to engage students around the task to reach the learning goal (Hiebert & 
Grouws, 2007; Sleep, 2012).  

Study Purpose 
In this study, we examined the features of a performance task designed to engage PSTs in an 

approximation of practice where they practiced one ambitious mathematical teaching practice: 
facilitating discussions that engage students in mathematical argumentation.  We explored how 
the PSTs interpreted the task’s goal and examined how they subsequently engaged in the 
simulated discussion. We set out to answer the following research questions: RQ1. How do PSTs 
articulate the goal of a discussion task focused on argumentation?; RQ2. To what extent do PSTs 
engage student avatars in mathematical argumentation that targets the task’s goal in the 
simulated classroom?  

We made design choices in the performance task development phase that led us to 
hypothesize that this task provided opportunities for PSTs to practice engaging the student 
avatars in three key features of mathematical argumentation: (a) explaining or justifying their 
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work, (b) comparing different approaches to solving the problem, and (c) critiquing one 
another’s work. Specifically, we anticipated the PSTs would do so, respectively, by providing 
the students with opportunities to discuss the choice and utility of rates used in the solution 
(pounds per day versus days per pound) and/or justify the approaches used; note similarities and 
differences in the approaches used; and consider the efficiency and utility of different solution 
approaches.  

Methods 
Study Context  

This study was part of a larger research project examining teacher educators’ use of and 
PSTs’ learning within an online suite of simulated teaching experiences, one of which is an 
Avatar-Based Simulation (ABS) (Mikeska et al., 2022). This study reports on the task design 
phase when we used the task with PSTs to gauge its success and inform subsequent updates. In 
this study, we were piloting a mathematics performance task that we developed to see how PSTs 
interpreted the task materials and how they engaged in facilitating the argumentation-focused 
discussion in the simulated classroom. This task was developed for the middle school level but 
was designed along the same structure as used in our prior work for the elementary level (Howell 
& Mikeska, 2021).  
Mathematical Task  

The content focus of the mathematical task, Hungry Hungry Huskies, is proportional 
reasoning, and the specific problem the student avatars (hereafter referred to as students) engage 
with is a story problem in which two dogs consume dog food at different rates. The students are 
asked to use the rates of consumption to predict how long it would take to consume a given 
quantity. We designed the story line of the task as if the five middle school students worked on 
the problem in two groups, with one group using a pictorial representation and the second using 
a table. Similarities and differences across the two solution approaches were deliberately 
constructed to provide opportunities to compare different ways of solving the same math task, 
with the intention that these will also open avenues to support argumentation. For example, both 
groups reached a correct answer, a design feature intended to help the PST focus on methods 
over answers. While both approaches are successful in this case, neither is optimal in general. 
This aspect of the task design was intentional so instead of the PST favoring one approach over 
the other, they would be encouraged to identify affordances in each. Each approach also relied 
on a form of visual inspection to draw conclusions, leaving the possibility that the approaches 
might not extend effortlessly with less friendly numbers (i.e., if the amount of dog food they 
were looking for did not appear in the table). This was an intentional task feature to provide 
PSTs a space to press on the limitations of the visual approach. One group uses unit rates and the 
other does not, providing a point of contrast and a place the PST might press to find out why unit 
rates were used and what they afford. In addition, one group represents the ratio as pounds per 
day where the other represents it as days per pound, creating an opportunity for the PST to think 
about the significance of ‘per unit’ while working on proportional reasoning tasks.  
Study Design  

Seven PSTs enrolled in secondary mathematics teacher education programs across the U.S. 
participated in this study. For data collection, each PST completed: (a) an online background 
questionnaire about their personal characteristics and professional background; (b) a 20-minute 
discussion in the simulated classroom using the Hungry Hungry Huskies mathematics task; (c) 
an online task survey to provide information about their discussion preparation and their 
perceptions on the task components and their discussion performance; and (d) a semi-structured 
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interview where they answered questions about the discussion goal, the task materials and their 
discussion performance. Each discussion was video recorded and then later transcribed for 
analysis purposes.  

Before the PSTs engaged in their ABS session, they were given a task packet to prepare to 
facilitate a 20-minute argumentation-focused discussion among five students around the 
students’ work on the mathematics problem. The task packet included the students’ work, the 
learning goal, the mathematics problem that they solved, tips about engaging the students in 
argumentation, and other information about what to expect in the simulated classroom. PSTs 
facilitated this discussion with the students from their computers. 
Analysis  

Analysis included multiple approaches. First, we conducted qualitative content analysis to 
identify patterns in the PSTs’ open-ended responses from the interview and survey about the goal 
of the discussion. We looked for alignment between PSTs’ articulations of the goal of the 
discussion and these three features of an argumentation-focused discussion: students 
explaining/justifying their work; students comparing their approaches; and students evaluating 
and/or critiquing each other’s work. Using hypotheses described above that emerged from the 
task design phase of development, we looked for PST alignment with these features in their 
responses to questions about the goal of the task. Second, we reviewed video records from each 
ABS session to determine whether there was evidence that each PST provided the students with 
opportunities to engage in the specific features of mathematical argumentation embedded in the 
task design as articulated above.  

Findings 
In terms of PSTs’ articulations of the task’s goal (RQ 1), one of the PSTs reported all three of 

the features of argumentation-focused discussions that we were looking for (justification, 
comparison, critiquing). Three of the PSTs articulated two of the three (justification and 
comparison).  Two PSTs each reported on one feature of the discussion: one each for 
justification and critique. There was one PST who did not articulate any of the features that we 
expected when asked what the goal of the task was. Instead, she stated that she “wanted students 
to explore each other’s methods and think about their own method.” While relevant, her response 
was not detailed enough to determine whether she was addressing any of the key features that we 
anticipated. Table 1 summarizes findings across the 7 PSTs.  

Table 1  
PSTs’ Articulations of Features of Argumentation in the Task Goal 

PST 
(pseudonyms) 

Justification/
Explanation 

Comparing 
Approaches 

Critiquing Each 
Other’s Work 

Taylor X X X 
Addy   X 
Mo X X  
Saylor X   
Molly    
Lynn X X  
Caleb X X  

 
One of the PSTs, Taylor, included all three features, stating: 
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“(1) All students will present and explain their ideas; (2) All students will listen to the 
justifications of others and respond appropriately to further understanding; (3) All students 
will interact with each other to have a meaningful math discussion; (4) Students will analyze 
others’ work in order to compare and contrast ways to solve the problem; (5) Students will be 
engaged and feel involved throughout the entire discussion.”  

In Taylor’s response, she noted that there would be justifications and that students would 
compare and contrast the ways of solving the problem. Taylor was alluding to critique in stating 
that the students would “respond appropriately to further understanding” and in her comment 
about contrasting the approaches to the problem. Another PST, Lynn, said 

“The overall goal of the discussion I wanted them to be able to compare and contrast the 
strategies, that was a big one, …to justify their work and say how their procedure connected 
to their answer.”  

Here, Lynn was highlighting two of the features: justification and comparing  approaches to the 
problem. She went a step further to state that the students should connect their work to their 
answer. Critique, however, was not evident in her response.  

The fact that a majority of PSTs (n = 6) provided evidence of understanding at least one 
component of the goal that we considered to be a key feature underscores that most PSTs in our 
study were pedagogically aware of one or more of the key features of mathematical 
argumentation they should aim for when facilitating their discussion. However, the lack of PSTs’ 
attention to critique in the learning goal suggests it did not stand out as part of the goal.  

Our analyses addressing the extent to which the PSTs engaged the students in argumentation 
(RQ 2) suggest that most PSTs did support the students to justify their work in the discussion 
(n=7) and to compare their approaches (n=6). This evidence points to alignment between how 
PSTs articulated the goal and engaged the students in the discussion. All PSTs supported the 
students to justify their work by typically asking the students to share their solutions or to talk 
about how they came to their answer. Caleb did so by stating, “You were asked to come up with 
an answer that the group agreed on, along with evidence to support your answer. So what group 
would like to [share] first?” Here, Caleb was reminding the students that they were to justify 
their solution with some sort of evidence. A typical way that PSTs engaged the students in 
comparison was by asking them to identify similarities and differences in their solutions. In her 
discussion, Taylor said,   

“So now we’re going to do a little bit more of an advanced skill. Now that you’ve both 
solved the problem, I’m happy to tell you that both groups got the answer right. So we’re 
just going to compare and contrast. So that means we’re going to point out similarities 
and differences between the two ways to solve the problem.”  

Taylor let the students know, now that they shared their work, it was time to compare 
approaches. One of the students, Ethan, indicated that a difference was that his group used a 
drawing and the other group used a table. Another student, Dev, said that his group used unit 
rates in the solution but the other group did not. The groups were considering each other’s work 
and comparing it to their own.  

While the PSTs engaged the students in justification/explanation and comparing approaches 
quite a bit, critique was less evident. Only 3 of the 7 PSTs engaged the students in critique. 
When evident, critique was usually around the limited utility of a given approach. For example, 
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when using a table to solve rate problems, very large numbers could become difficult to 
represent in a table. Molly encouraged her students to think in this direction by stating,  

“Do you guys want to talk about maybe what do you like best about this method and then 
 maybe where Savannah identified maybe an area of concern, like if this would work for 
 other problems...identify something you liked about this method and then something you 
 didn’t like about this method.”  
Molly encouraged a critical lens by asking the students to identify a part of the solution that they 
disliked, but also clued them in on thinking about other problems. Addy, who both described 
critique as part of the learning goal and enacted her discussion with evidence of critique, 
encouraged a critical lens in a different way. To set the students up to critique, she had them 
complete a “See, Think and Wonder” chart while observing each group’s written work. More 
explicitly, she also told the students “We are mathematicians and we’re going to act like great 
mathematicians, evaluating and critiquing each other.” A little later on, one of the students, 
Savannah, asked a group if they thought their picture would work to solve other problems.   

Discussion 
To date we have analyzed how PSTs articulated the goal of the discussion they facilitated 

and found that most PSTs (n=6) articulated and enacted at least one of the key features of 
argumentation that we intended in the task design phase. This evidence suggests that PSTs were 
interpreting the performance task’s associated learning goal as intended. Just as the PSTs 
articulated more justification and comparison in the task’s goal, they also engaged in more of 
that dialogue in their simulated discussions. While this finding suggests that the task’s learning 
goal needs to better support PSTs to engage their students in critique, it also demonstrates that 
the PSTs’ enactments, at least in part, aligned with their understanding of the goal in the 
simulated environment. An open question, then, is whether including ideas around critique in the 
learning goal will support PSTs to engage the students in more of it.  

In this study, we were able to examine the alignment between the performance task’s goal 
and the PSTs’ enacted practices in the simulated discussion, but we did not consider the quality 
of the argumentation that occurred. That is, we identified where it occurred, but not how or what 
the mathematical content of the argumentation was. Future work will need to analyze the quality 
and content of argumentation in the simulated discussions.  

The literature supports the conclusion that facilitation of argumentation is difficult, and 
novice teachers often struggle with this practice, an issue the larger study seeks to address. The 
affordance of this analysis is in allowing us to draw conclusions about where the designed task 
might be improved in ways that increase PST opportunity to learn to engage students in critique, 
justification and comparison. With the understanding that tasks influence opportunities to learn, 
these findings prompted our team to re-design the task and its affiliated learning goal around 
which PSTs facilitated the simulated discussion to better support them with learning 
opportunities to practice engaging the students in the full set of argumentation features when 
facilitating the mathematics discussion. Future work will examine how PSTs make use of the 
revised task in the simulated discussions, including addressing the mathematical point of the 
argumentation that is evident (Sleep, 2012).  
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The purpose of this study is to investigate how preservice elementary teachers view mathematics 
lesson coherence. It is often reported that how lessons are less coherent in U.S. mathematics 
classrooms compared to high-achieving countries. Stigler and Hiebert (2009) urged the 
importance of teacher’ conception and their learning to achieve coherent lessons. In this study 
we examined 18 preservice teachers’ views of lesson coherence. We developed theoretical 
framework by extensively reviewing previous studies. By crosschecking preservice teachers’ 
responses across our survey questions using the framework, we illustrate what knowledge of 
lesson coherence the preservice teachers have and have not, and thus suggest how teacher 
educators help preservice teachers to develop and analyze lessons to be more coherent.   

Keywords: Lesson coherence, Preservice teachers, Teacher beliefs 

Lesson coherence is important predictors that contribute to teachers’ high quality of 
mathematic teaching and classroom practice (Hiebert et al., 2003; Stigler & Perry, 1990; Stigler 
& Stevenson, 2005). When lesson coherence is achieved, students have more chances to 
conceptually understand mathematics better. Lesson coherence is in close relation not only to 
teachers’ effective mathematics instruction but also to students’ learning. Accordingly, lesson 
coherence has gained significant attention to address how U.S. teachers did in their everyday 
classroom (Jacobs & Morita, 2002; Stigler & Perry, 1990; Stigler & Stevenson, 2005; Wang & 
Murphy, 2004). It has been reported that lesson coherence can be established when topics, 
activities, and teachers’ discourse moves are structurally and contextually connected each other 
(Sekiguchi, 2006; Stigler & Stevenson, 2005). The purpose of this study is to investigate how 
preservice elementary teachers (PSTs) view mathematics lesson coherence. Despite the 
important relationship between teacher view and instructional practices, there is relatively a few 
research studies on teacher view of mathematical lesson coherence (e.g., Cai, Ding, Wang, 2014; 
Sekiguchi, 2006; Stigler & Perry, 1990; Stigler & Stevenson, 2005; Wang & Murphy, 2004). 
Considerable amounts of research have dealt with teacher lesson coherence, but far less research 
has dealt with in-service and preservice teachers’ view of this topic in the US context. The 
research questions that guided the study are: How do preservice elementary teachers view 
mathematics lesson coherence? 

Theoretical framework 
Figure 1 shows our conceptualization of lesson coherence drawn from prior research studies 

(e.g., Hiebert et al., 2003a; 2003b; Newmann et al., 2001; Wang, Cai, & Wang, 2015; Wang & 
Murphy, 2004). Coherence often relates to connectedness and interrelations to mathematics 
content and instructional activities (Wang, Cai, & Wang, 2015; Wang & Murphy, 2004). In 
particular, lesson coherence refers to 1) connectedness of lesson structures and events within and 
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across lessons (Cai et al., 2014), 2) goal-oriented and content-focused classroom activities to 
achieve learning outcomes (Liang, 2013), 3) “how well lessons follow a logical and structured 
sequence of events and how well lessons focus on one or related topics and proceed from simple 
to complex situations in the process of concept development” (Chen & Li, 2009, p.713), 4) 
relations among themes or topics in the lesson (Sekiguchi, 2006), and 5) “coherence was defined 
by the group as the (implicit and explicit) interrelation of all mathematical components of the 
lesson… a lesson with a central theme that progressed saliently through the whole lesson” 
(Hiebert et al., 2003a, p. 196). Hiebert et al. (2005) argue that it is not enough to simply include 
all components but individual components work together to achieve lesson coherence.    

 

 
Figure 1. Theoretical framework for our study 

Methods 
Participants A total of 18 PSTs participated in the study from two elementary 

mathematics methods classes at a large Northeastern university of teacher preparation in the 
United States that offers a five-year teacher preparation program. As part of the undergraduate 
major in elementary education, students complete a core sequence of educational psychology 
courses and two mathematics content courses before taking a three credit-hour methods course in 
their senior year. Participants were recruited from their second methods course during their 
internship year. Their ages ranged from 22 to 35 years, with 54 females and 4 males.  

Instruments Since the purpose of this study is to explore PSTs’ views and perceptions, 
we employed open-ended survey questions. Open-ended survey method allows respondents to 
include more information, attitudes, and understanding of a particular subject by responding to 
the questions with their own wording directly (Reja, Manfreda, Hlebec, & Vehovor, 2003). At 
the beginning of the semester, the PSTs were asked to answer three questions that were adapted 
from Cai et al. (2014). The questions include: 1) When people say a lesson is very coherent, what 
does the word “coherent” mean to you? What are the characteristics of a coherent lesson?; 2) If 
you mentor a new teacher, how would you guide the new teacher to achieve coherence in her or 
his teaching?; 3) Some people say that a coherent lesson can foster students’ learning. Do you 
agree with this statement? Why? 

Data analysis We used an inductive content analysis approach (Grbich, 2007) for the 
written response. We initially organized raw data into a spreadsheet, read all of the responses, 
and created codes based on the raw data. More specifically, data analysis involved these four 
processes: (a) an initial reading of each PST’s response, (b) identifying the subcategories under 
each analytical aspect according to the framework shown in Table 1, (c) coding the categories 
and subcategories, and (d) interpreting the data quantitatively and qualitatively (Creswell, 1988). 
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In order to answer the research question examining PSTs’ view of lesson cohere, PSTs’ 
responses were categorized based on the themes that emerged as researchers read multiple cases.  

Summary of Results 
Figure 2 presents our finalized categories that describe PSTs’ conception of lesson cohere.  

When PSTs were asked to describe their conception on lesson coherence, two additional 
categories emerged in addition to two categories drawn from previous studies: student learning 
opportunities and what teachers need to know and do. Of the 18 PSTs, 17 defined mathematics 
lesson coherence with respect to mathematical coherence, and 3 PSTs viewed it from 
pedagogical coherence. Ten PSTs additionally stated student learning opportunities resulted from 
coherent lessons, and five PSTs additionally mentioned what teachers need to know and do in 
order to create a coherent lesson.  

 
Figure 2. A framework that describes PSTs’ conception of lesson coherence. 

Mathematical coherence 
When the PSTs defined lesson coherence from mathematical coherence, they displayed 

similar distributions among three subcategories: the lesson structure (10 PSTS), content 
connection (9 PSTs), and instructional process (11 PSTs) (Figure 3). Nine PSTs discussed 
across two characteristics, either lesson structure and content connection, lesson structure and 
instructional process, or content connection and instructional process. Our PSTs showed clear 
attention to mathematical coherence with reference to lesson coherence. However, the responses 
of PSTs were mostly broad and did not include narrowed topics and a several activities that need 
to be arranged for understanding of the topics the previous studies emphasized (e.g., Sekiguchi, 
2006; Stigler & Perry, 1990). The PSTs displayed a lack of attention to pedagogical coherence. 
As pedagogical coherence, particularly teachers’ intentional discourse moves help students to 
obtain mathematical knowledge (e.g., Chen & Li, 2009), PSTs need support to develop content 
rich discourse throughout their lesson.  

 

 
Figure 3. Distribution of PSTs’ view on mathematical lesson coherence 
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Specifically, ten PSTs described lesson structure as an important characteristic of a coherent 
lesson. Among them, four PSTs emphasized flow, stating that “A coherent lesson is broken up 
into parts, [so] it flows nicely” (PST #4). Three PSTs mentioned the sequence of the lessons, 
stating that “A coherent lesson should be structured as beginning, middle, and end”. Among 
them, PST #17 stated, “A coherent lesson includes a general introduction of the topic, some 
problems that include that topic and methods in going about solving that problem.” Only one 
PST (PST #4), emphasized clear and focused lesson objectives in the lesson structure. 

Interestingly, none of the PSTs mentioned mathematic problem complexity to create a 
coherent lesson, such as organizing mathematical problems to proceed from simple to complex. 
In general, our PSTs tended to focus on the lesson structure, using a broad concept of ‘flow’ and 
‘sequence’ rather than how activities are systematically and logically organized in a lesson.  
Discussion and Conclusions  

This study contributes to the current literature on teacher view on lesson coherence and the 
knowledge base of teacher education. This study has implication for teacher educators working 
to design mathematics education courses for PSTs, as well as for researchers interested in 
furthering understanding of teachers’ knowledge and beliefs on lesson coherence. Very few 
PSTs had such complex understanding regarding lesson coherence. The findings of this study 
suggest that teacher educators need to find a better way to help PSTs perceive lesson coherence 
differently. Future studies need to be done with different research tools and in multiple contexts, 
possibly using interviews or observations to provide more detailed explanations for preservice 
teachers’ responses.  
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This study cross analyzes the results of two multiple case studies that focus on ambitious 
mathematics instruction within two institutions. The first study examines how three elementary 
mathematics methods instructors in the same teacher education program (TEP) provide their 
teacher candidates with learning opportunities. The second study examines how two elementary 
teachers who graduated from that TEP enact mathematics instruction. Findings suggest that 
teacher beliefs influence both the content that students have the opportunities to learn (OTL) and 
the nature of the learning opportunities. The results describe how instructors and teachers 
perceive the purpose of elementary mathematics instruction and how their beliefs align with the 
enactment of ambitious mathematics instruction with learners.  

Keywords: Elementary School Education, Preservice Teacher Education, Teacher Beliefs, and 
Instructional Activities and Practices   

Purpose 
Mathematics education research has yet to reach a consensus on the construct of ambitious 

mathematics instruction (Kazemi et al., 2009; Newmann & Associates, 1996; Windschitl et al., 
2018). This has implications for TEPs that aim to support teachers in enacting such instruction 
and for novice teachers (i.e., those with zero to three years of experience) who attempt to draw 
upon their pre-service teacher experiences as practicing teachers. In this study, the 
researchers conceptualize ambitious instruction as comprised of a set of teaching practices that 
foster students’ deep, conceptual understanding of standards-based mathematics concepts 
(Newmann & Associates, 1996). The National Research Council (NRC; 2001) defines 
conceptual understanding as “an integrated and functional grasp of mathematical ideas” (p. 18). 

In an effort to further operationalize ambitious instruction, the researchers examine the 
complexity of enacting such instruction within three methods courses at one TEP and in two 
novice teachers' classrooms who graduated from that program. By focusing on the enactment of 
ambitious instruction at various stages, this study acknowledges the complexities that novices 
face in enacting such instruction. By doing so, we argue that a shared vision of ambitious 
mathematics instruction within a TEP could have positive implications for the ways that novices 
transfer these opportunities and experiences into their own teaching practices. 

The purpose of the study is to examine what perceptions of ambitious instruction from a TEP 
carry over into novice teachers’ beliefs while remaining conscious of the many factors that 
influence their beliefs and instruction. Various factors impact novice teachers' instruction, yet in 
order for us to develop a shared vision of what ambitious instruction means and looks like in the 
classroom, we seek to examine the trajectory of these beliefs from a TEP into elementary 
schools. To do so, this study cross-analyzes the results of two multiple case studies that were 
nested within a larger longitudinal study; one study was bounded within a University’s TEP and 
focused on three instructors who taught elementary mathematics methods courses (Thomas, 
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2021); the other study was bounded within a school and focused on two graduates of the 
University's TEP. 

Theoretical & Conceptual Frameworks 
Theoretical Framework: Activity Theory  

Both studies drew upon activity theory in order to examine teachers’ interactions with the 
socio-material context in which they develop mathematics teaching practices and create learning 
opportunities for their students. Activity theory emerged from the Vygotskian theory of 
cognition, examining cognitive activity from a socio-cultural lens (Peddie, 2019; Chahine, 2013). 
As Pai, Adler, and Shadiow (2006) explain, “There is no escaping the fact that education is a 
sociocultural process,” or an artifact-mediated activity (p. 6). Therefore, activity theory is useful 
for understanding how teachers and educators may be influenced, and how their teaching 
practices provide opportunities to learn for students. Within the framework for activity theory, a 
subject is influenced by mediating artifacts both conceptual and material to reach, develop, or 
create some object. In the first study, elementary mathematics methods instructors (subjects) 
engaged with artifacts to create learning opportunities for teacher candidates (objects). In the 
second study, novice teachers (subjects) were influenced by numerous factors (artifacts) as they 
planned for and enacted instruction with elementary students (objects). Although tools were 
conceptualized differently in each study, both researchers examined tools as mediated artifacts as 
they relate to pedagogies of practice (Grossman et al., 2000).  

Activity theory was instrumental in both studies and informs the comparative analysis across 
studies as it relates to OTL and beliefs about and the enactment of ambitious elementary 
mathematics instruction. Activity theory provides a lens for examining how and why methods 
instructors provide particular OTL for teacher candidates and how such OTL seem to translate 
into novice teachers’ beliefs and instructional activities with elementary students within an 
artifact-mediated activity system. 
Conceptual Frameworks 

Opportunity to learn. The first study (Thomas, 2021) draws upon Schmidt and colleagues' 
(2011) framework for OTL, defining it as "the content to which future teachers are exposed as 
part of their teacher preparation programs" (p. 140). The second study defines OTL as the "the 
set of experiences that schools organize to help students acquire the knowledge, skills, and 
abilities specified in those official standards (Schmidt & McKnight, 2012, p.13). Although there 
is variability within these definitions of OTL, as it relates to the contexts and learners, both 
studies focus on OTL ambitious elementary mathematics in pedagogy and practice.  

Influence of beliefs on practice. We take the position that beliefs are more cognitively 
ingrained and harder to change than perceptions (Philipp, 2007). Likewise, teachers may believe 
that it is important for students to grapple with cognitively demanding tasks, but if the 
psychological strength of this belief is not strong, then they may not follow through to 
create such opportunities; further, just because a belief has strength in one context does not mean 
that it will have as much strength in another (Cooney et al., 1998; Thomas, 2021). When 
examining how teacher educators’ and novice teachers’ beliefs impact mathematics instruction, 
both studies take into consideration the teachers’ beliefs and their actions in the 
classroom; reporting upon beliefs that were considered psychologically strong, supported with 
evidence, and demonstrated consistently within the actions of the participants. Hence, we take 
the position that, “Teachers’ beliefs influence the decisions that they make about the manner in 
which they teach mathematics” (NCTM, 2014, p. 10).  
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Research Questions 
1) How do methods instructors and novice teachers perceive the purpose of elementary 

mathematics instruction? 
2) How do the methods instructors' and novice teachers' beliefs of teaching mathematics align 

with the enactment of ambitious mathematics instruction? 

Methods 
Sample 

Two researchers implemented multiple case studies to examine teachers’ perceptions of 
elementary mathematics instruction. Both studies were nested within the same longitudinal 
mixed-methods study that focused on the ways that five TEPs support novices' development of 
ambitious instruction. The first researcher's study took place at one TEP in a southeastern state, 
called Robin University (pseudonym). During that time, there were three total elementary 
mathematics methods instructors at Robin University and each participated in the study. The 
second researcher's study took place the following school year within two elementary classrooms 
in the same southeastern state at McCaskey Elementary School (MES). The teachers taught at 
the same school and both attended Robin University.  
Data Collection 

In the first study, the researcher observed each instructor two to three times for a duration of 
two and a half hours each, for a total of 20 hours of observation. The researcher took fieldnotes 
alongside each observation. Additionally, each instructor participated in two rounds of 
interviews that lasted between 45 and 60 minutes each. The first interview was structured to 
better understand the methods instructors’ perceptions of their instructional strategies (prior to 
observations) and the second interview was semi-structured and took place after observations to 
further examine emerging findings. In the second study, the researcher observed and recorded 
three one-hour mathematics lessons for each teacher for a total of nine hours of observation. In 
addition, the teachers participated in one structured interview that focused on topics related to 
classroom expectations, curricular resources, and beliefs of teaching mathematics. The study also 
featured three semi-structured interviews with each teacher that took place after each lesson and 
focused on the ways that teachers planned and enacted their mathematics instruction. The 
interviews lasted approximately 30 minutes each. Finally, each teacher provided supporting 
artifacts such as lesson plans and lesson handouts.  
Analytical Strategies 

Each researcher drew upon an instrument called the Mathematics Scan (M-Scan; Berry et al., 
2017) to analyze their observation data. M-Scan represents a schema of instruction that can be 
used to measure teachers’ implementation of standards-based teaching practices. The instrument 
is useful in research that focuses on ambitious mathematics instruction because it captures 
differences between teaching for conceptual understanding versus teaching for acquisition of 
procedural knowledge (Berry et al., 2017). M-Scan has nine dimensions that measure teaching 
practices in four domains: task selection and enactment, the use of representations, the use of 
mathematical discourse, and lesson coherence.  

The researchers captured fieldnotes from each lesson observation and transcribed their own 
interviews. Analytic logs were developed alongside each set of field notes and transcriptions. 
The researchers independently analyzed each of their data sets. Additionally, each used inductive 
and deductive coding to develop emerging themes that incorporated Erickson's (1986) model of 
analytic induction and constant comparison (Miles, Huberman, & Saldaña, 2014) respectively. 
The themes were triangulated across each of the data sources to support assertions in each 
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research study. Both researchers compared confirming evidence and disconfirming evidence for 
each of their emerging assertions and continued to adjust the assertions until all evidence was 
accounted for.  

For the purposes of this study, the researchers cross-analyzed the archival interview 
transcriptions from both studies, examining the similarities and differences in perceptions of 
ambitious instruction, and they simultaneously engaged in deductive coding. Based upon 
emerging themes from this data analysis, the researchers triangulated video recordings and field 
notes from observed lessons and analytic memos to further explore OTL provided to students 
and how these compared to each individual's stated perceptions and beliefs.  

Results 
Across studies, assertions suggested that both instructors’ and teachers’ perceptions of 

teaching elementary mathematics seemed to be associated with their enactment of ambitious 
mathematics instruction. The results also feature examples of OTL that instructors provided to 
students at Robin University in addition to experiences that the novice teachers seemed to draw 
upon from their pre-service experience to enact such instruction. For example, a teacher at MES 
described the importance of encouraging students to use various strategies when solving 
mathematics tasks. In turn, it was common for the teacher to provide students the 
opportunity to represent content using words, pictures, and symbols. This teacher described how 
the experiences at Robin University allowed her to practice doing mathematics as a child would, 
which helped her conceptualize how the use of various strategies could strengthen students' 
understanding of mathematical concepts. The findings from the first study confirm that the 
methods instructors at Robin were providing OTL that emphasized the importance of providing 
multiple mathematical representations inclusive of mathematical tools and engaging in problem 
solving that incorporated multiple strategies.  

Furthermore, the results describe counter-examples that focus on various mediating artifacts 
that seemed to be associated with novices' enactment of ambitious mathematics instruction. This 
was witnessed in the first study when novices felt pressured within the context of their field 
placements to conform to cooperating teacher norms. Later, teachers complied with the school-
wide expectations at MES in order to develop their mathematics lessons. The teachers also had 
relationships with their grade-level colleagues that seemed to influence the ways that they 
selected and enacted mathematics tasks. Grade-level colleagues with more teaching experience 
provided materials and lesson implementation ideas to teachers that they then enacted in their 
own classrooms. There was also a relationship between Robin University and MES such that the 
teachers were provided professional development opportunities by the University. 

Discussion & Significance 
Math education is making strides in studying the development of ambitious mathematics 

instruction at the pre-service level (Cavanna et al., 2017; Kazemi et al., 2009). However, more 
work needs to be done focusing on the capabilities of novice teachers in enacting ambitious 
mathematics instruction (Jong, 2016). This study is significant in that it focuses on OTL 
across methods instructors and classrooms. We also focus on the various perceptions of 
instructors and novices as there is still more to be understood about the ways that beliefs seem to 
influence the enactment of ambitious mathematics instruction. This study highlights significant 
ideas that seemed to have transferred from one university to novice teachers' classroom settings 
while using activity theory as a lens to examine the complexities of defining ambitious 
mathematics instruction. Future research could benefit from examining the impact of a shared 
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vision at different levels as well as the continued study of various mediating artifacts that seem to 
be associated with the enactment of ambitious mathematics instruction. 
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This study is focused on different lenses that may be used to make quality determinations with 
respect to prospective elementary teachers’ instructional decisions.  Using a professional 
noticing framework, we analyze individuals’ deciding responses within a video-anchored case to 
explore the varying ways that quality of such decisions might be determined. Specifically, we 
examine how quality may be ascribed to decisions via holistic and analytic lenses. Our findings 
suggest key differences and tensions in quality determinations when using analytic and holistic 
lenses to make quality determinations with respect to instructional decisions.  

Keywords: Teacher Noticing; Instructional Activities and Practices; Preservice Teacher 
Education 

Purpose 
 The purpose of this preliminary study is to explore the variations of quality with respect to 
instructional decisions via a professional noticing framework. Specifically, we focus on how 
different rating lenses may be used to evaluate the quality of prospective elementary teachers’ 
(PSETs’) decision making skills within their professional noticing of children’s mathematical 
thinking.  This study was conducted as part of a larger funded venture focused on development 
of PSETs’ professional noticing capabilities with respect to dimensions of equity.  

Professional Noticing and Deciding  
 Focus on teacher noticing and variants thereof has been sustained for some time (Schack, 
Fisher, & Wilhelm, 2017); Sherin, Jacobs & Philipp, 2011a) and, as such, is increasingly shaping 
practitioner guidance in a variety of ways including noticing along mathematical progressions 
(Thomas, et al., 2014) and noticing via equity lenses (Jackson, Taylor, & Buchheister, 2018). 
While some portrayals of noticing focus primarily on attending and interpreting (i.e., sense-
making) (Sherin, Jacobs & Philipp, 2011b), Jacobs, Lamb & Philipp (2010), describe a third, 
interrelated component process, deciding, which connotes intended activity resulting from the 
interpretation of a mathematical moment stemming from one’s attending to certain features of 
that moment.  As such, the component process of deciding represents the bridge between an 
individual’s cognitive processing of a mathematical moment (attending, interpreting) and 
intended action in response to that moment.  

We focus this investigation on the deciding component and the different ways in which the 
quality of such decisions may be examined. Historically, decision quality has been considered 
through a lens of routine. Different types of decisions were categorized with little attention to the 
perceptive and interpretive activity that guided such actions (Leinhardt, Weidman, & Hammond, 
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1987). However, professional noticing frameworks recast decisions as resultant of perception 
and interpretation allowing for more expansive applications of lenses with respect to quality.  For 
example, quality determinations might be a function of alignment with a particular mathematical 
learning progression (Schack, et al., 2013). From this perspective, for example, a task aimed at 
helping a student move from constructing perceptual unit items to figural unit items was 
determined as higher in quality in that it matches well with typical mathematical development 
along a learning progression. This lens for evaluating decisions is predicated on detecting subtle 
details of mathematical activity, interpreting them through a developmental lens, and responding 
to create productive space for mathematical construction. Another lens to determine decision 
quality might foreground the extent to which a particular decision addresses multiple and varied 
critical incidences or perspectives within a mathematical moment (Fisher, Thomas, Jong, 
Schack, & Dueber, 2018).  For example, in a whole class discussion, a decision that connects 
with and furthers the mathematical reasoning of multiple, varied student perspectives might be 
deemed more productive than a decision that merely focuses on a single individual. Stockero et 
al. (2017) describe the distinction between these two lenses as noticing within and noticing 
among. Lastly, researchers may evaluate decisions more holistically via considerations of 
context to determine the extent to which a proposed decision is centered on student reasoning 
and has the potential to bend that moment toward conceptual growth and/or productive activity.  
From this perspective scoring processes such as rubrics or flowcharts (Fisher et al, 2018; Schack 
et al., 2013) may recede or be used with increased flexibility to enhance interpretive space for 
raters. Further, more holistic, contextualized and interpretive lenses render distinctions between 
noticing within and noticing among less salient as they relate to quality. Rather, quality 
determinations are guided by some central, desirable element or outcome (e.g., decisions that 
centralize student thinking or activity) as it may apply to a given context. For this study, we 
compare two approaches to evaluate the quality of decision-making within a professional 
noticing framework.  One rating approach was heavily structured via the use of flow-process 
charts and privileged decisions that reflected the detection of nuanced details as well as address 
of multiple students. We refer to this lens as analytic scoring. The other rating approach focused 
adopted a more holistic approach to evaluating decisions and quality determinations were made 
according to the presence or absence of broadly desirable elements. We refer to this lens as 
holistic scoring. Our aim was to compare these two lenses (analytic scoring, holistic scoring) in 
the context of evaluating PSET decisions to better understand how differing perspectives and 
processes influence quality determinations.  

Methods 
Context and Participants 
 Eight modules to integrate equity and professional noticing of children’s mathematical 
thinking were developed by the authors. To facilitate embedding in a class session, each module 
had a duration of approximately 20 minutes focused on mathematical topics typical of a methods 
class as well as a particular dimension of equity (Gutiérrez, 2009).  Some participating faculty 
members elected to engage in full implementation (minimum of seven modules). Other faculty 
elected to engage in partial implementation (use of four, five, or six modules). One module, 
which introduced the concepts of equity and professional noticing, was required as the initial 
module for all implementation sites, full or partial.  This paper reports on one semester of data 
collected at three institutions, one research and two regionals, in two southeastern states. Two of 
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the settings, one rural, one urban/suburban, completed full implementation and one rural 
completed a partial implementation.  
Data Collection 

The Video Assessment on Noticing and Equity (VANE) consisted of prompts for 
professional noticing and equitable practices observed in an approximately two-minute clip of a 
2nd grade class exploring the concept of equality. A problem, 10 + 10 = __ + 5 was presented to 
the class.  The students were encouraged to share their solution and strategy. The clip captures 
three students sharing, two of whom respond with an incorrect answer but some reasoning and 
the third with the correct answer with different reasoning. After watching this video, PSETs were 
tasked with responding to items corresponding to professional noticing component processes 
(attending, interpreting, deciding). Germane to this study are the PSET responses to the deciding 
prompt – Imagine that you are the classroom teacher. What might you do next? Provide a 
rationale for your decision. For this preliminary investigation of varying lenses, we randomly 
selected 23 deciding matched pre/post responses from full implementation sites and 13 matched 
pre/post responses from partial implementation sites. We elected to engage in this comparative 
investigation with relatively small sample sizes as an exploratory exercise that will inform rating 
processes for the larger study focused on PSETs’ development of equitable noticing practices.    
Analytic Processes  

The selected responses were each scored by two raters using both the holistic scoring lens 
and the analytic scoring lens (see Figure 1).   
 

 
Figure 1: Holistic and Analytic Scoring Lenses 

Note, the holistic scoring lens provides descriptions of quality at three levels and creates 
considerable interpretive space for raters, while the analytic lens is far more structured and 
provides discrete pathways to guide the rater. The raters had previously engaged in iterative, 
independent scoring activity with each lens and associated calibration conversations. Thus, there 
was considerable shared familiarity. For instances of disagreement (for both lenses), raters 
engaged in negotiated discussion to arrive at a consensus score.  

Findings and Discussion 
Again, we note that this investigation represents a preliminary examination of different 

lenses as they apply to PSET deciding. We first examined the outcomes from each lens in terms 
of rudimentary counts (see Tables 1 and 2). We also conducted 2-tailed paired t-tests to 
determine statistical significance of rating outcomes (see Table 3).  
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Table 1: Holistic Scoring  

  Score 0 Score 1 Score 2 
Full Implementation Pre 20 3 0 
Full Implementation Post 15 7 1 

Partial Implementation Pre 8 5 0 
Partial Implementation Post 10 3 0 

  

Table 2: Analytic Scoring 
  Score 0 Score 1 Score 2 Score 3 
Full Implementation Pre 2 1 11 9 
Full Implementation Post 2 4 13 4 
Partial Implementation Pre 1 3 6 3 
Partial Implementation Post 1 1 6 5 

  

Table 3: 2-Tailed Paired t-Tests: 
Holistic Scoring 

p-value 
Analytic Scoring 

p-value 
  

0.324174 0.151834 All paired data 
0.436265 1 Partial implementation paired data 
0.055668 0.076272 Full implementation paired data 

  

Comparing changes in response counts, pre/post, across the two lenses, PSET decisions tended to 
receive a low rating (0) when scored holistically and higher ratings (2, 3) when scored 
analytically. Given the more interpretive nature of the holistic lens, this finding suggests tension 
between structured ratings processes (Fisher et al., 2018) and the raters more intuitive sense of 
quality with respect to PSET decisions when ratings processes are more loosely guided. Further, 
p-values for both partial and full implementations more closely approach statistical significance 
when scored via a holistic lens vs. an analytic lens. This finding strikes us as somewhat 
counterintuitive given the notion that more regulated and structured processes tend to minimize 
chance outcomes.   
 The deciding component of professional noticing has consistently presented challenges in 
terms of measurement. (Schack et al., 2013; Thomas, 2017). Determining the quality of decisions 
requires negotiating the space between specific and highly contextualized moments and broader 
principles of teaching. In these complex arenas, researchers tend to emphasize structure and 
guided processes to make the terrain more negotiable. However, our findings suggest that 
reducing structure and process guidance and creating space for more holistic interpretation in the 
context of instructional decisions may result outcomes more consistent with researchers’ 
understanding of quality and less likely to be attributable to chance.  We intend to further 
investigate this intriguing hypothesis in subsequent study.  
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This paper offers a socio-cultural perspective on the mechanism by which research-based 
assessment tools designed to evaluate mathematics teaching, are used as pedagogical tools for 
teacher learning. This process is exemplified by the Realization Tree Assessment tool (RTA), 
showing how pre-service teachers refer to the pedagogical messages valued and devalued by the 
assessment tool, and which conflicts between these messages they attend to.   

Keywords: Preservice Teacher Education, Teacher Educators, Assessment. 

Introduction 
In recent years there has been a growing interest in reform-oriented pedagogies, such as 

student-centered, cognitively demanding and ambitious teaching (Brown, 2003; Kazemi et al., 
2009; Stein et al., 2000), which aim to support mathematics learning of all students at the highest 
possible level (NCTM, 2014). Accordingly, many efforts have been made to develop tools, such 
as the IQA – Instructional Quality Assessment (Boston & Smith, 2009) and the MQI – The 
Mathematical Quality of Instruction (Hill et al., 2008), for evaluating how these pedagogies are 
being implemented in classrooms. A small but growing strand of research has recently examined 
the use of these assessment tools also as pedagogical tools, aiming to help teachers implement 
ambitious teaching practices in their classrooms (e.g., Boston & Candela, 2018). These studies 
focus on implementing a particular assessment tool and describing teachers' gain from engaging 
with this specific tool. From a socio-cultural perspective on teacher learning, this paper aims to 
explore the mechanism by which research-based tools designed to assess teaching are used as 
pedagogical tools for pre-service teachers (PSTs) who learn how to teach mathematics.  

Theoretical Framework 
Teacher learning from a socio-cultural point of view draws upon the idea that teacher 

learning is not just a matter of mastering specific skills or acquiring certain bits of pedagogical 
knowledge (Horn & Kane, 2015; Nachlieli & Heyd-Metzuyanim, 2021). It is a more holistic 
process that often requires teachers, especially PSTs, to shift between Contextual Discourses 
(CDs), which are different perceptions of messages about teaching and learning communicated 
in various social, cultural, and institutional situations (Thompson et al., 2013). The pedagogical 
messages, which are messages about teaching and learning, include how students learn (e.g., 
memorizing or exploring), who is the main authority of mathematical ideas (teacher or students), 
and what are the teacher’s roles (e.g., delivering knowledge or supports student thinking). 
Thompson et al. (2013) differentiate two CDs. The first, ambitious CD, values deep 
understanding of ideas and student engagement in solving complex problems rather than 
procedural tasks. The second, traditional CD, values traditional teaching practices, where the 
teacher presents a procedure using a model problem and students practice on similar problems.  

Initiating PSTs into ambitious CD stands at the core of multiple teacher education programs 
(e.g., Van Es et al., 2017) that often use various pedagogical artifacts or teaching representations 
such as students’ work or video excerpt to promote PST learning processes (Herbst & Kosko, 
2014; Kazemi & Franke, 2004). Recently, studies have examined the use of assessment tools as a 
pedagogical means for teacher learning (Boston & Candela, 2018; Kraft & Hill, 2020). The 
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Realizations Tree Assessment tool (RTA), for example, was designed to evaluate classroom 
discussions and was found to be helpful for PSTs to attend to the mathematical objects at the 
core of a lesson (Weingarden & Heyd-Metzuyanim, 2020). Boston and Candela (2018), which 
examine the use of the IQA as a reflection tool for teachers, concluded this process: “what is 
assessed becomes what is valued, hence classroom observation tools have the power to shape 
and support instructional reforms by highlighting or foregrounding specific features of 
instructional practice” (p. 427). In what follow I examine the process of “what is assessed” and 
“what is valued” by relying on the traditional and ambitious CDs. Eventually, allowing to 
examine how PSTs, while engaging with such tools, refer to various pedagogical messages from 
different CDs and the tension between them. I exemplify this process on the RTA tool. 

The Realization Tree Assessment Tool (RTA) 
The Realizations Tree Assessment tool (RTA) (Weingarden et al., 2019) was designed to 

evaluate the extent to which class discussions provide opportunities for students to attend the 
various realizations (representations) of the mathematical object and the links between them. The 
RTA visually depicts the mathematical object at the core of a class discussion, its various 
realizations, and the extent to which students, rather than the teacher, author narratives about the 
object. Figure 1 exemplifies three different class discussions assessed by the RTA (Weingarden 
et al., 2019; Weingarden & Heyd-Metzuyanim, 2021). These class discussions focused on the 
Hexagon Task in which students were asked to find the perimeter of n hexagon concatenation 
(the mathematical object). The cells in the RTAs describe the realizations of the mathematical 
object (e.g., algebraic realizations such as 4n+2, visual realizations of the hexagons pattern) 
according to who articulated them, the students, or the teacher.    
 

Lesson A Lesson B 
 
 
 
 
 
 
 

Lesson C  

RTA score: 0.39 RTA score: 0.47 RTA score: 0.87  
Figure 1: Three RTA Images and Measures Represent Different Learning Opportunities 

Each lesson was depicted by an RTA image quantified into a number between 0 to 1 – the 
RTA score, based on the ratio of student-authored and teacher-authored narratives and the 
number of realizations and links mentioned. The presented images and measures show the 
different extent and levels of opportunities offered during the lesson. Lesson A describes a 
teacher-centered lesson with almost all realizations and links authored by the teacher. Lesson C, 
in contrast, shows the students as the main authority in the class discussion. Thus, Lesson A 
received a lower score (0.39) than Lesson C (0.87). In Lesson B, although students authored 
most of the realizations and links, the solutions were not linked to each other (by vertical links) 
as in Lesson C. Thus, Lesson B received a lower score (0.47) than lesson C (0.87). These RTA 
images and scores (Figure 1) exemplify different pedagogical messages aligned with traditional 
and ambitious CDs. The pedagogical messages of student-centered teaching (Lesson B, C) and 
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linking between realizations (Lesson C) align with ambitious CD, whereas the pedagogical 
messages of teacher-centered (Lesson A) and show-and-tell (Lesson B) align with traditional 
CD.  

This paper aims to examine how the RTA can be used as a pedagogical tool for PST learning 
to teach mathematics by attending to messages from different CDs. Thus, the research questions 
are: How do PSTs, by using the RTA, attend to pedagogical messages aligned with traditional 
and ambitious CDs? And what conflicts between the CDs were illustrated by the PSTs?  

Method 
The current study took place within a course for pre-service secondary mathematics teachers. 

During the course, 33 PSTs were introduced to the RTA tool and its theoretical aspects, then 
compared and discussed different RTAs (similar to those in Figure 1). Subsequently, they were 
administered the Calling-Plans task (Institute For Learning, 2015) and an empty RTA of this task 
(Figure 2). They were asked to shade three RTAs in different ways describing three types of 
learning opportunities and discuss the similarities and differences between the shaded RTAs.  
 

Long Distance Telecommunication Company A charges a base 
rate of 45 NIS (equivalent of dollars) per month for phone calls 
plus 5 agoras (equivalent of cents) per minute of call. Long 
Distance Telecommunication Company B charges a base rate 
of only 20 NIS per month, but charges 30 agoras per minute of 
call. Which service would you choose, and why? 

 

Figure 2: The Calling-Plans Task and the RTA for the Task 

The PSTs worked in 11 groups (3 PSTs in each group), and thus 11 worksheets, including 33 
RTAs, were analyzed. The analysis was performed in two stages and included analyzing the 
PSTs’ written descriptions about the RTAs they shaded. First, coding the PSTs’ utterances 
according to the pedagogical messages they referred to (e.g., student-centered, rich discussion, 
teacher directs too much, teacher-centered, student struggle). The coding categories were 
adopted from studies that examined teacher learning as transitioning between CDs (e.g., Heyd-
Metzuyanim, 2019). Second, identifying conflicts between the two CDs illustrated when the 
PSTs described their shaded RTAs. 

Findings 
Attending Traditional and Ambitious Contextual Discourses 

The most common pedagogical message referred to by the PSTs (9 groups) was the extent to 
which the teacher and students authored narratives during the lesson. Figure 3 presents an 
example of two RTAs designed by two groups.  

 
Group 5 Group 11 

Lesson 5.A Lesson 5.B Lesson 11.A Lesson 11.B 
 
 
 

   

Figure 3: The Extent of Student Authority in the RTAs  
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Lessons 5.A and 11.A are described by the PSTs as teacher-centered lessons in which the 
teacher “suggests all of the ideas by herself” and “takes over the discussion and simply shows the 
students a complete solution to the problem”. Lessons 5.B and 11.B are described by the PSTs as 
student-centered lessons in which “students participated and tried to solve the question on their 
own” and “discovered many links between realizations”. The PSTs, by the RTAs they designed, 
attended to a pedagogical message assessed by the RTA tool – the extent to which students and 
the teacher authored mathematical narratives. They attended to this pedagogical message both as 
aligned with traditional CD (light-shaded RTAs: Lesson 5.A and 11.A), and as aligned with 
ambitious CD (dark-shaded RTAs: Lesson 5.B and 11.B). 
Conflicts Between Contextual Discourses   

Although most of the PSTs described the teacher-centered RTAs as less valuable (e.g., 
“failed attempts”) compared to the student-centered lessons (e.g., “ideal lesson”), some of the 
PSTs pointed out some valued pedagogical messages in these teacher-centered lessons aligned 
with traditional CD. For example, the PSTs in group 11, while describing Lesson 11.A (Figure 
3), indicated that although “the students did not participate in the lesson”, this lesson has some 
advantages. They wrote: “since the teacher explains the solutions by herself, it is possible to go 
further and deeper with the ideas… students may ask questions that they may not have asked if 
the teacher had not explained”. The PSTs referred to two pedagogical messages aligned with 
different CDs. One, teacher authority (“explain by herself”) aligned with traditional CD and the 
second, engagement with important mathematics (“go deeper with the ideas”) aligned with 
ambitious CD. They tacitly attend to a conflict between the two discourses by referring to a 
teacher-centered lesson (traditional CD) as supporting and promoting engagement with important 
mathematics (ambitious CD). Another example of such a conflict appears in group 6’s RTAs. 
They showed how student-centered lessons are not always valuable as teacher-centered lessons. 
They shaded an RTA with many student-authored realizations but no links and indicated that “in 
this situation, the teacher needs to direct students to make these links”. The PSTs referred to the 
conflict between the importance of linking between realizations, aligned with ambitious CD and 
the teacher as “directs the students too much”, aligned with traditional CD. 

Discussion  
This paper examines how the RTA, designed to evaluate teaching mathematics, is used as a 

learning tool for PST learning to teach. This was done by relying on the idea that teacher 
learning occurs when teachers initiate into the ambitious CDs and adopt the pedagogical 
messages aligned with this CD. Initial findings show that the PSTs, by the RTAs they shaded, 
attended to different types of pedagogical messages aligned with traditional and ambitious CDs. 
This allowed them to attend to conflicts and tensions that could occur while two different 
pedagogical messages from different CDs are embedded in the same lesson.  

PSTs attending to different, often competing CDs and the conflicts between them can 
contribute to teacher educators’ efforts to engage PSTs with ambitious teaching practices (Ma & 
Singer-Gabella, 2011; Thompson et al., 2013). Examining the use of assessment tools as 
pedagogical tools by focusing on the valued and devalued pedagogical messages aligned with 
ambitious and traditional CDs, can theoretically contribute to the growing strand of research 
examining teacher learning using assessment tools (e.g., Boston & Candela, 2018).  

Further studies are required to examine how different assessment tools attend to different sets 
of pedagogical messages and which conflicts can be addressed by using assessment tools as a 
pedagogical means. This study is the first step towards a better understanding of the mutual 
relationship between teaching assessment and teacher learning. 
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This paper reports initial findings from the implementation of a Mindfulness-Based Intervention 
(MBI) during the COVID-19 pandemic in an effort to mitigate the effects of stress and anxiety on 
preservice K-8 teachers (PTs) as learners of mathematics for teaching. Three teacher educators, 
at three U.S. institutions, implemented the MBI in their mathematics content and methods 
courses for PTs, as a way to connect with and holistically support students during a semester of 
pandemic-induced online instruction. Initial analysis of survey data (n=136) shows that PTs 
reported mindfulness helping them to become self-aware and learn strategies for regulating their 
behaviors. PTs saw value in applying mindfulness outside of the classroom and with their future 
students. By introducing coping strategies, we were able to show PTs the importance of caring 
for their mental and emotional well-being and the well-being of their future students. 

Keywords: Preservice Teacher Education, Affect, Emotion, Beliefs, and Attitudes, Teacher 
Educators, Sustainability (of Teachers) 

Teaching is a particularly demanding profession (Roeser et al., 2012) and teachers have long 
endured some of the highest rates of work-related stress among all occupations (Felver, 2016; 
Johnson et al., 2005). Higher levels of stress have been linked to higher rates of teacher burnout 
(McCormick & Barnett, 2011). In fact, prior to the COVID-19 pandemic, more than 44% of new 
teachers were leaving the profession within five years (Ingersoll et al., 2018) and the full effects 
of the pandemic on teacher retention is yet to be seen. Thus, we argue that supporting preservice 
K-8 teachers (PTs) in developing strategies to mitigate the negative effects of stress and anxiety 
should be a consideration of teacher preparation programs. “Mindfulness is an aspect of social-
emotional competence that may protect them [teachers] from experiencing burnout and its 
negative consequences” (Abenavoli et al., 2013, p. 57). Furthermore, research has shown that a 
significantly larger percentage of elementary PTs experience high levels of mathematics anxiety 
when compared to other undergraduate students (Harper & Daane, 1998). Therefore, 
mathematics courses for PTs may provide a fruitful context for introducing such strategies. 

The COVID-19 pandemic illuminated these long standing mental-health challenges related to 
the teaching and learning of mathematics and exacerbated these issues as classes moved online, 
instructional expectations and situations underwent frequent changes, and teachers and students 
felt isolated. Thus, three mathematics teacher educators, at three U.S. universities, designed and 
implemented a Mindfulness-Based Intervention (MBI) for PTs in mathematics content and 
methods courses, as a way to connect with and provide holistic support for their students during 
the fall of 2020, a semester of pandemic-induced online instruction. 

Background 
Mindfulness  

Kabat-Zinn (2003) describes mindfulness as “the awareness that emerges through 
paying attention on purpose, in the present moment, and nonjudgmentally to the unfolding of 
experience moment by moment” (p. 144). Mindfulness is often associated with the practice of 
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traditional meditation, which is rooted in Buddhism; however, over the past three decades 
secular mindfulness as a state, trait, process, and intervention has been adapted in settings such 
as schools, businesses, and medical facilities (Brazier, 2016; Gupta, 2019). The practice of 
mindfulness involves three key features of attention-training, “paying attention to the present 
moment, recognizing and classifying emotions, and experiencing more refined self-awareness in 
the present” (Ahmed et al., 2017, p. 26). By combining self-awareness, self-regulation, and self-
compassion (Roeser et al., 2012), mindfulness can reduce stress (Bamber & Schneider, 2016; 
Poulin et al., 2008), increase quality of attention (Good et al., 2015), improve resiliency (Salmon 
et al., 2004), and provide people with tools that allow them “to ‘respond’ to a potentially anxiety-
producing situation with greater effectiveness rather than to ‘react’ with escalation, panic or fear” 
(Miller et al., 1995, p. 197).  
Mindfulness and Education 

Recent and rapid growth in research addressing mindfulness-based interventions (MBIs) for 
both students and teachers (Felver & Jennings, 2016; Jennings, 2015) has included dozens of 
studies assessing the effects of mindfulness on college students (Bamber & Schneider, 2016, 
Bellinger et al., 2015, Brunyé et al., 2013). Research suggests that MBIs, ranging from brief 
informal activities to formal, sustained programs, may be particularly well-suited for supporting 
teachers, PTs, and college students in mitigating the negative effect of stress and anxiety 
(Burrows, 2018; Meiklejohn et al., 2012; Ramsburg & Youmans, 2013). Research regarding 
teachers indicates that mindfulness training can reduce reactivity, stress, and burnout while 
increasing teachers’ sense of self-efficacy, acceptance of self and others, self-regulation, well-
being, classroom management skills, creativity, and ability to cultivate positive student 
relationships (e.g., Bliss, 2017; Burrows, 2015; Jennings & Greenberg, 2009; Meiklejohn et al., 
2012). Less research has examined the effects of mindfulness on PTs (Brown, 2017), although 
the Mindfulness-Based Wellness Education program at the University of Toronto has found 
some promising results in increased self-efficacy and social and emotional competence for PTs 
(Poulin et al., 2008; Poulin, 2009; Soloway, 2011; Soloway et al., 2011).  

In addition to reducing negative states such as stress and anxiety (e.g., Bamber & Schneider, 
2016), mindfulness has been linked to improving factors that can affect learning such as 
sustained attention, working memory, and concentration (Chambers et al., 2008; Jha et al., 2007), 
cognition (Rodgers & Raider-Roth, 2006; Zeidan et al., 2010), knowledge retention (e.g., 
Ramsburg & Youmans, 2013), and academic achievement (Bakosh et al., 2015; Bellinger et al, 
2015; Brunyé et al., 2013; Weger et al., 2012). These findings inspired our design and 
implementation of an MBI to support our K-8 PTs during the pandemic in an effort to mitigate 
the effects of stress and anxiety while learning mathematics for teaching. Our work utilizes the 
theoretical framework of self-regulation learning theory, which postulates that stress can be 
alleviated and learning can be more effective when learners are able to self-regulate (Roeser et 
al., 2013; Zimmerman, 1989a, 1989b). 

Methodology 
During the fall of 2020, we implemented a semester-long MBI in our mathematics content 

and methods courses for PTs. Integrating mindfulness was seen as an important step in 
supporting our PTs as well as recognizing the balance needed in the teaching profession and the 
importance of humanizing education beyond the content. Our intervention consisted of 
introducing and engaging with students in two short (5-10 minutes) mindfulness practices per 
week, one completed at the beginning of each class meeting. The MBI was designed to introduce 
a new form of mindfulness each week, e.g., mindful breathing, mindful listening, mindful 
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movement, body scan meditations, and gratitude journaling, for 15 weeks. Each week, the PTs 
engaged in two different, yet related, practices for each form. Most practices were implemented 
by sharing publicly-accessible videos or images made by leaders in the mindfulness community, 
e.g., Dan Harris and Sharon Salzburg (Happify, 2015). 

As part of our data collection, PTs were asked to complete two surveys regarding 
mindfulness, one at the midterm and another at the end of the semester. Each survey consisted of 
10 Likert scale items and 4 open-ended response questions. This report shares the qualitative 
analysis of responses from 136 PTs to the open prompt, “Mindfulness has helped me…”.  
Preliminary Qualitative Data Analysis  

Initially the researchers read the data and one took the lead to identify major codes that 
emerged. Then the three researchers met and discussed the emergent codes and reorganized them 
based on mindfulness literature. This conversation led to code revisions and a new code list with 
definitions for each code. Next the data were recoded using this finalized list. To establish 
interrater reliability, the codes were checked by a second researcher who then coded the data a 
second time. The second coder produced codes that were matched by the original coder by 
100%. However, the original coder had some additional codes, which were discussed to reach 
mutual agreement. Below, we will report on the three strongest themes that were revealed by the 
three most prevalent codes: self-awareness, self-regulation, and applications (listed in the order 
in which we will discuss them, see Table 1). 

 
Table 1: Codes/Themes, Definitions, and Count 

Code/Theme Definition Mid Post Total 
Self-

awareness 
Awareness of bodily sensations (e.g., tension), 

emotions, attention, or automatic reactions 
28 20 48 

Self-
regulation 

Behavioral changes made as PTs learned 
strategies for responding to or managing 

stress, and/or anxiety 

119 78 197 

Applications PTs identified a specific audience or situation 
where they found or could foresee benefits of 

using mindfulness practices (such as when 
focusing in class or for use with future students) 

26 27 53 

Results  
Self-awareness 

Self-awareness was a major theme identified by many participants. This included awareness 
of physical sensations in one’s body (such as the breath or muscular tension), emotions, 
attention/focus, and typical responses to stressors. For example, one PT wrote, “Mindfulness has 
helped me become more aware of my emotions and feelings.” Similarly, a PT reported, 
“Mindfulness helped me become more aware of how I am feeling and know how to handle the 
tensions and stressors of the day.” Another PT shared, “[I am] more aware of my emotions so I 
am able to reevaluate my situation.” One PT noted, “[I have] become more aware of how I have 
previously handled stress and anxiety and find new and healthier ways to handle those feelings.” 
Self-regulation 

Self-regulation was the strongest theme identified by far and can already be noted in the 
sample PT comments above. This included being able to modify one’s reactions to stress and 
anxiety, such as slowing down the body or breathe, being able to relax and calm oneself, and 
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having more control over one’s emotions. The ability to regulate one’s feelings of stress and 
anxiety was mentioned more than any other code. PTs noted that mindfulness helped them “deal 
with the stress of school work better,” “control my anxiety,” and “learn how to take time to 
breathe and take my mind off of what is stressing me out.” One PT shared that the mindfulness 
practices helped them “realize that in times of stress, I can't JUST push through.  I have to take a 
deep breath and mentally remind myself that I CAN DO HARD THINGS.” Another stated, “It is 
easy to get caught up in the stress and anxiety of the day, but doing these [mindful] exercises 
help me when I get worked up.” One PT reported “learn(ing) how to regulate my emotions 
outside of class. Another prominent code within this theme was a sense of empowerment that 
seem to arise through the development of strategies to apply in moments of dysregulation. One 
PT noted, that they can now “identify stressors and develop ways to cope and overcome them.” 
Applications 

The third code that emerged is that PTs acknowledged specific ways in which they used or 
plan to use the mindfulness strategies they learned through this MBI. PTs noted that mindfulness 
helped them concentrate in class. For example, one shared that the MBI helped them, “calm 
down a bit before class starts.” Another said the strategies helped them to “begin each class with 
a clean slate, by helping me forget all the stressors and become more focused for class.” One PT 
even noted that the practices helped them “wake up” so they could pay more attention in early 
morning classes. Specific to the needs of PTs enrolled in mathematics courses, one noted that 
mindfulness helped them “handle my math-related anxiety.” Some PTs who were further in their 
programs and/or involved in field experiences acknowledged potential benefits of using 
mindfulness practices with their future students. One PT said that it helped them, “think about 
what to do for some students facing stress,” while another said participating in the activities 
helped them “find strategies that I will be able to use with my future students to manage stress.”  

Discussion 
The results of analyzing this single open-response question already shows evidence that the 

MBI helped PTs develop meta-awareness in ways that empowered them to effectively modify 
their behaviors, i.e., self-regulate (Vago & Silbersweig, 2012), through the development and 
application of new strategies. It is interesting that students reported their abilities to regulate their 
behaviors or mindsets at a much higher rate than their awareness of such things. However, 
intentional self-regulation requires awareness of the experience (i.e., thought pattern, emotion, 
reaction, or bodily sensation) one wishes to regulate (Bandura, 1991). Thus, even though the 
self-awareness code appeared fewer times, the prevalent of the self-regulation code suggests that 
there was more self-awareness occurring than the PTs reported or were consciously aware of.  

This study also found that PTs acknowledged mindfulness as being beneficial to them within 
the context of the course the MBI was implemented. Thus, future research might explore how 
MBIs impact PTs’ mathematical achievement and/or self-efficacy in their teacher preparation 
programs. However, we hope that the benefits PTs experience will support their development of 
resilience by helping them mitigate the negative effects of stress and anxiety, especially within 
the first few years of teaching. Therefore, we see value in extending this work with longitudinal 
research studying the impact of MBIs on teachers as they enter the profession and exploring if 
they stay in the profession long-term. This study also found that PTs foresaw longer-term 
applications of mindfulness for supporting their future students. This was particularly interesting 
as the PTs were not directly asked about their intentions to use mindfulness in their future 
classrooms. However, longitudinal research could explore the effects of the MBI on PTs’ future 
application of mindfulness with their future students. 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1324



References 
Abenavoli, R. M., Jennings, P. A., Greenberg, M. T., Harris, A. R., & Katz, D. A. (2013). The protective effects of 

mindfulness against burnout among educators. The Psychology of Education Review, 37(2), 57–69.  
Ahmed, K., Trager, B., Rodwell, M., Foinding, L., & Lopez, C. (2017) A review of mindfulness research related to 

alleviating math and science anxiety. Journal for Leadership and Instruction, v16 n2 p26-30.  
Bakosh, L. S., Snow, R. M., Tobias, J. M., Houlihan, J. L., & Barbosa-Leiker, C. (2016). Maximizing mindful 

learning: Mindful awareness intervention improves elementary school students’ quarterly grades. Mindfulness, 
7(1), 59-67. 

Bamber, M. D., & Schneider, J. K. (2016). Mindfulness-based meditation to decrease stress and anxiety in college 
students: A narrative synthesis of the research. Educational Research Review, 18, 1–32.   

Bandura, A. (1991). Social cognitive theory of self-regulation. Organizational Behavior and Human Decision 
Processes, 50(2), 248-287. 

Bellinger, D. B., DeCaro, M. S., & Ralston, P. A. S. (2015). Mindfulness, anxiety, and high-stakes mathematics 
performance in the laboratory and classroom. Consciousness and Cognition, 37, 123–132. 

Bliss, S. A. (2017) Exploring Shunyata (emptiness) and the cultivation of mindfulness practices: Educators finding 
their zero-point balance, Childhood Education, 93(2), 114-118, DOI: 10.1080/00094056.2017.1300489 

Brazier, D. (2016). Mindfulness: Traditional and utilitarian. In R. E. Purser & D. F. Adam (Eds.), Handbook of 
mindfulness: Culture. Context, and Social Engagement. Springer. 

Brown, R. (2017). The perceived impact of mindfulness instruction on pre-service elementary teachers, Childhood 
Education, 93(2), 136-146. DOI: 10.1080/00094056.2017.1300492 

Brunyé, T. T., Mahoney, C. R., Giles, G. E., Rapp, D. N., Taylor, H. A., & Kanarek, R. B. (2013). Learning to relax: 
Evaluating four brief interventions for overcoming the negative emotions accompanying math anxiety. 
Learning and Individual Differences, 27, 1–7. https://doi.org/10.1016/j.lindif.2013.06.008 

Burrows, L. (2015). Inner Alchemy. Transforming dilemmas in education through mindfulness. Journal of 
Transformative Education, 13(2), 127–139. 

Burrows, L. (2018). Safeguarding mindfulness in schools and higher education: A holistic and inclusive approach. 
New York, NY: Routlege. 

Chambers, R., Lo, B. C. Y., Allen, N. B. (2008). The impact of intensive mindfulness training on attentional control, 
cognitive style, and affect. Cognitive Therapy and Research, 32, 303-322. DOI 10.1007/s10608-007-9119-0 

Felver, J. C. (2016). Book review: Patricia A. Jennings: Mindfulness for teachers: Simple skills for peace and 
productivity in the classroom. W. W. Norton, New York, NY, 2015, 288 pp., Mindfulness, 7, 286-288.  

Felver, J. C., & Jennings, P. A. (2016). Applications of mindfulness-based interventions in school settings: An 
introduction. Mindfulness, 7, 1-4. https://doi.org/10.1007/s12671-015- 0478-4  

Good, D. J., Lyddy, C. J., Glomb, T. M., Bono, J. E., Brown, K. W., Duffy, M. K., Baer, R. A., Brewer, J. A., & 
Lazar, S. W. Lazar. (2015). Contemplating mindfulness at work: An integrative review. Journal of 
Management, 42(1), 114-142. 

Gupta, K. (2019). The sacred to the secular: Using mindfulness and meditation as instructional methods in 
academia. Meditation and Mindfulness in Adult Education, 161, 21-32. DOI: 10.1002/ace.20308 

Happify (2015, March 27). Meditation for Beginners - Featuring Dan Harris and Sharon Salzberg [Video]. 
YouTube. https://www.youtube.com/watch?v=mtsdz_jhB7c&t=1s 

Harper, N. W., & Daane, C. J. (1998) Causes and reduction of math anxiety in preservice elementary teachers, 
Action in Teacher Education, 19(4), 29-38. DOI: 10.1080/01626620.1998.10462889 

Ingersoll, R., Merrill, E., Stuckey, D., & Collins, G. (2018). Seven trends: The transformation of the teaching force, 
updated October 2018. Research Report (#RR 2018–2). Consortium for Policy Research in Education, 
University of Pennsylvania. 

Jennings, P. A. (2015): Mindfulness for teachers: Simple skills for peace and productivity in the classroom. W. W. 
Norton, New York, NY.  

Jennings, P. A., & Greenberg, M. T. (2009). The prosocial classroom: Teacher social and emotional competence in 
relation to student and classroom outcomes. Review of Educational Research, 79(1), 491–525. 

Jha, A. P., Krompinger, J., & Baime, M. J. (2007). Mindfulness training modifies subsystems of attention. 
Cognitive, Affective, & Behavioral Neuroscience, 7(2), 109-119. 

Johnson, S., Cooper, C., Cartwright, S., Donald, I., Taylor, P. and Millet, C. (2005). The experience of work-related 
stress across occupations, Journal of Managerial Psychology, 20(2), 178-187.  

Kabat-Zinn, J. (2003). Mindfulness-based interventions in context: Past, present, and future. Clinical Psychology: 
Science & Practice, 10(2), 144-156.  

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1325



McCormick, J. & Barnett, K. (2011). Teachers’ attributions for stress and their relationships with burnout. 
International Journal of Educational Management, 25, 278–293. 

Meiklejohn, J., Phillips, C., Freedman, M. L., Griffin, M. L., Biegel, G., Roach, A., ... Saltzman, A. (2012). 
Integrating mindfulness training into K-12 education: Fostering the resilience of teachers and students. 
Mindfulness, 3(4), 291-307.  

Miller, J. J., Fletcher, K., & Kabat-Zinn, J. (1995). Three-year follow-up and clinical implications of a mindfulness 
meditation-based stress reduction intervention in the treatment of anxiety disorders. General Hospital 
Psychiatry, 17, 192-200. 

Poulin, P. A., Mackenzie, C. S., Soloway, G., & Karayolas, E. (2008). Mindfulness training as an evidenced-based 
approach to reducing stress and promoting well-being among human services professionals. International 
Journal of Health Promotion and Education, 46(2), 72-80. 

Poulin, P. A. (2009). Mindfulness-based wellness education: A longitudinal evaluation with students in initial 
teacher education (Unpublished doctoral dissertation). University of Toronto, Canada. 

Ramsburg, J. T., & Youmans, R. J. (2013). Meditation in the higher-education classroom: Meditation training 
improves student knowledge retention during lectures. Mindfulness 5(4), 431–441. DOI: 10.1007/s12671-013-
0199-5 

Roeser, R. W., Schonert-Reichl, K. A., Jha, A., Cullen, M., Wallace, L., Wilensky, R., & Harrison, J. (2013). 
Mindfulness training and reductions in teacher stress and burnout: Results from two randomized, waitlist-
control field trials. Journal of Educational Psychology, 105(3), 787–804.  

Roeser, R. W., Skinner, E., Beers, J. & Jennings, P. A. (2012). Mindfulness training and teachers’ professional 
development: An emerging area of research and practice. Child Development Perspectives, 6, 167–173. 

Rodgers, C. R., & Raider-Roth, M. B. (2006). Presence in teaching. Teachers and teaching: Theory and Practice, 
12(3), 265-287. DOI: 10.1080/13450600500467548 

Salmon, P., Sephton, S., Weissbecke, I, Hoover, K., Ulmer, C. & Studts, J. I. (2004). Mindfulness meditation in 
clinical practice. Cognitive and Behavioural Practice, 11, 434-46. 

Soloway, G. B. (2011). Preparing teacher candidates for the present: Exploring the praxis of mindfulness training in 
teacher education (Unpublished doctoral dissertation). University of Toronto, Canada. 

Soloway, G. B., Poulin, A., & Mackenzie, C. S. (2011). Preparing new teachers for the full catastrophe of the 21st 
century classroom: Integrating mindfulness training into initial teacher education. In A. Cohan & A. Honigsfeld 
(Eds.), Breaking the mold of preservice and in-service teacher education (pp. 221–227). Lanham: R and L 
Education. 

Vago, D. R. & Silbersweig, D. A. (2012, October 25). Self-awareness, self-regulation, and self-transcendence (S-
ART): A framework for understanding the neurobiological mechanisms of mindfulness. Frontiers in Human 
Neuroscience, 6, 1-30. https://doi.org/10.3389/fnhum.2012.00296 

Weger, U. W., Hooper, N., Meier, B. P., Hopthrow, T. (2012). Mindful maths: Reducing the impact of stereotype 
threat through a mindfulness exercise, Consciousness and Cognition, 21(1), 471-475. 

Zeidan, F., Johnson, S. K., Diamond, B. J., David, Z., & Goolkasian, P. (2010). Mindfulness meditation improves 
cognition: evidence of brief mental training. Conscious Cognition, 19(2):597-605. DOI: 
10.1016/j.concog.2010.03.014 

Zimmerman, B. J. (1989a). A social cognitive view of self-regulated academic learning. Journal of Educational 
Psychology, 81, 329-339. 

Zimmerman, B. J. (1989b). Models of self-regulated learning and academic achievement. In B. J. Zimmerman & D. 
H. Schunk (Eds.), Self-regulated learning and academic achievement: Theory, research, and practice (pp. 1-
25). New York, NY: Springer. 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1326

https://doi.org/10.3389/fnhum.2012.00296


EARLY MATHEMATICS TEACHER PREPARATION EVALUATION RUBRICS FOR 
THE CONTEXT OF LIVE DISCUSSION FORUMS 

Jeremy Zelkowski 
The University of Alabama 

jzelkowski@ua.edu 

Tye Campbell 
Crandall University 

tye.campbell@crandallu.ca 
 

Teacher candidates bring many beliefs and interpretations of mathematics teaching and learning 
at the start of their teacher preparation coursework (e.g. methods courses, field experiences, 
assessment). Well-prepared beginning teachers in many instances requires programs and 
designed experience to breakdown unproductive beliefs and/or improve dispositions to align to 
best practices and equitable dispositions for the teaching and learning of mathematics. Our 
study focused on developing and validating two rubrics to evaluate teacher candidates’ talk 
during live discussion forums in the first month of their initial teacher preparation program 
coursework with the intent to inform to varying degrees, where teachers candidate talk is 
situated (or not) in alignment to foundational readings and productive beliefs. Early validity 
evidence for rubric use is presented with suggestions for informative use and practice. 

Keywords: Affect, Emotion, Beliefs, and Attitudes; Preservice Teacher Education; Teacher 
Beliefs; Measurement 

Many secondary mathematics teacher candidates (TCs) enter their preservice preparation 
programs with traditional (e.g. cultural norms, conventional) beliefs about education, believing, 
for example, that all or most student learn best in teacher-centered classroom instructional 
methods and/or performing rote practice with learn-by-example replication/practice (Cady et al., 
2006; Conner et al., 2011; Cooney, 1999). Combating such beliefs is laborious since literature 
suggests TCs are likely to replicate practices most prevalent in their own educational experiences 
in K-12 mathematics classrooms (Borko at al., 1992; Cross, 2009). This idea is still generally 
supported by the more recent publication of the National Council of Teachers of Mathematics’ 
(NCTM) Catalyzing Change in High School Mathematics (NCTM, 2017), where it is noted that 
only pockets of excellence exist within the high school for classrooms modeling the eight 
effective mathematics teaching practices (MTPs) (NCTM, 2014) developed from research over 
the last few decades. More troublesome in such conventional and culturally/historically normed 
mathematics teaching methods is the rooting of inequitable opportunities for non-dominant 
cultures creating a group of students becoming historically marginalized as an outcome (Aguirre 
et al., 2013). Our work is designed to fit within the challenges of preservice mathematics teacher 
education that presses to create critical dissonance within the status quo of teacher preparation 
programs with the designed intent of a resonant harmony of well-prepared, equitable teaching by 
newly minted mathematics teachers. We recognize this challenging work to rock the teacher 
preparation magnate model that has generally continued the cyclic pattern of student to TC to 
beginning teacher that does not significantly alter on a grander scale the teaching and learning of 
mathematics embedded in the eight MTPs. 

Over the course of the last two decades, our preparation program has used and/or developed 
program measures as a means and intent to be predictive, yet deeply informative, with respect to 
desired outcomes for interns’ (full-time student teachers) mathematics teaching practices and 
ultimately first-year teaching. We view the importance of internal program measures as needing 
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validity evidence for their effective use to inform and shape the development of all teacher 
candidates over time that helps shifts beliefs and practices when needed to desired TC outcomes. 
While we recognize the limitations of the data collection and rubrics presented in this paper, we 
believe this work presses preparation programs to push boundaries and challenge barriers that 
have not moved quickly enough to eradicate conventional and culturally/historically normed 
practices in mathematics teacher preparation to ultimately produce systematic change in K-12 
schools in the teaching of mathematics to be equitable for all students. Our work firmly fits 
within most guiding questions for PME-NA 2022 program, as well as adding to the psychology 
of how the field views mathematics teacher preparation program components as a learning to 
teach experience that prepares and aligns to best practices as a systematic requirement to become 
a licensed teacher of mathematics. Our research questions are as follows: 

1. What is the predictive nature of two rubrics scoring first semester teacher candidate 
discussion forums in relation to entering the teaching profession as validity evidence? 

2. To what degree does the alignment of teacher candidates’ first semester talk with 
assigned readings relate to completion of their preparation program? 

3. To what degree do teacher candidates publicly stated first semester beliefs (productive or 
unproductive) during discussions relate to completion of their preparation program? 

4. Do males and females (as identified on self-report) show any differences within the 
analyses given TC imbalance of 2:1 female to male within the preparation program? 

Theoretical Framework 
The American Educational Research Association, American Psychological Association, and 

the National Council on Measurement in Education Standards for Educational and 
Psychological Measurement in Education (AERA, APA, & NCME, 2014) introduces the need 
for validity evidence for measurement within educational contexts. The validation framework for 
the development, use, and interpretation of rubrics is the central tenet of our study. 

Rubric development for affective domains in teacher education is an arduous task. 
Constructing a case for rubric validity is an ongoing process involving multiple facets of validity 
evidence, including the notion of the construct(s) in which are sought to be determined. 
Instruments in social sciences vary in precision and quality in the measurement of a particular 
construct, whereas the validation process should be centered on rubric interpretation and use 
(AERA et al., 2014; Bostic et al., 2019; Lavery et al., 2019). Kane (2013) denotes the use and 
interpretations of instruments [rubrics] require more validity evidence than is the case for less 
ambitious applications of instruments [rubrics]. Kane (2016) later indicated validation research is 
not easy but that it is generally sensible to grow solid evidence with manageable efforts. 
Situational Perspectives of Rubric Use in Teacher Preparation 
Rubrics are used extensively in teacher education preparation programs for assessment and for 
accreditation purposes, but there has been a lack of validity evidence (published) with arguments 
for specific rubrics and their appropriate interpretation and use (Hill & Shih, 2009; Howell et al, 
2019; Lavery et al, 2019). Well-constructed, systematically developed instruments with validity 
evidence in mind for their intended purposes have strong potential to provide teacher educators 
valuable and predictive data in the development trajectory of TCs. Traditionally, rubrics used 
programmatically are grounded in the documentation for accreditation purposes. That is to say 
for example, that for the Council for the Accreditation of Educator Preparation (CAEP) or 
jurisdictional level accreditation, rubrics are used to report aggregate level performance of 
program completers on an annual basis at different points in time within TCs’ program 
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coursework and field experiences. Yet, most of the rubric data is not generate with a TC-level 
predictive nature in mind but rather for program accountability and documentation to 
become/remain accredited (CAEP, 2013, 2022). We challenge this status quo in teacher 
preparation in the use of rubrics beyond that of accountability, but significantly more so, with 
predictive validity in mind as a means to inform program faculty on their effectiveness of 
shaping TCs over time to align practices and beliefs to the mathematics education literature that 
ultimately removes barriers for marginalized students’ opportunities to engage with and learning 
mathematics. Should such internal program rubrics exist, ultimately program faculty can modify 
program curricular experiences and provide TCs feedback identified earlier. We recognize that 
some TCs have only a single semester of preparation before the full-time (or extensive) student 
teaching internship. This fact is presented in our discussions and limitations later. 
Teacher Candidate Beliefs in Teacher Preparation 

Of particular importance to this study is NCTM’s (2014) Principles to Actions, designed to 
describe “the conditions, structures, and policies that must exist for all students to learn” (p. vii). 
Principles to Actions (PtA) advances and redefines NCTM’s (2000) six guiding principles for 
school mathematics: teaching and learning, access and equity, curriculum, tools and technology, 
assessment, and professionalism. Within each of these domains, NCTM (2014) outlined 
productive and unproductive beliefs that support or hinder mathematical learning for all students. 
NCTM’s delineation between productive and unproductive beliefs in PtA serves as a standard by 
which TCs begin to think about their beliefs and how potential practices as a result of such 
beliefs may not be in the best interest of teaching and learning for all students. 

Research suggests whole class discussions can positively influence TC beliefs within a whole 
class (Stohlmann, 2015; White et al., 2016) though less is known about the variation of influence 
and change on an individual TC level. The field would benefit from empirical research 
investigating the nature of individual contributions during whole class discussion and how those 
contributions shift beliefs toward or align to productive visions of teaching and learning 
mathematics within a teacher preparation programs. For example, if individual contributions 
during whole class discussion significantly influence TCs’ teaching vision and beliefs, program 
faculty may utilize whole class discussions to learn about TCs’ situated beliefs early enough to 
create situational interventions and even potential remediation activities. Stohlmann (2015) and 
White et al. (2016) both found engaging TCs in whole class discussions with purposefully 
chosen questions/tasks/prompts aided in TCs developing productive beliefs. Utilizing whole 
class discussion allows TCs to construct their own knowledge through discussing relevant 
material, but it further reinforces positive dispositions by enculturating TCs into a desirable 
learning environment. Our study is grounded in these ideas about using whole class discussions, 
which we refer to as TC live discussion forums, as the setting for the purposeful development of 
two rubrics to record and monitor TCs contributions over three live discussion forums in the first 
month of teacher preparation [education] coursework. 

Methodology 
This paper reports on three distinct phases of the study in which rubric development was 

sought to create a tool to more reliably assess what teacher candidates put forward during live 
discussion forums. First, the development of two rubrics was needed to align to our research 
questions. Second, our team then looked to start the validity and revision process of testing the 
rubrics to move forward to the third phase. The final phase was to analyze the data in which the 
rubrics development sought to examine TCs alignment to the readings and productive beliefs (or 
not). Consider that in all mathematics teacher preparation programs, TCs who begin coursework 
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all do not finish the program as certified mathematics teachers. Therefore, our study 
methodology was to develop rubrics, test the rubrics on existing data to generate validity 
evidence, and then ultimately have validated rubrics situated to have a predictive ability to 
improve TC outcomes and program completion aligned to the desired characteristics in the field 
of mathematics teachers who exemplify productive visions and beliefs about teaching and 
learning mathematics (i.e. implementing the MTPs). 
Context of Participant Generated Discussion Forum Data 

Within the teacher preparation program at The University of Alabama, three live discussion 
forums have existed in the first month of the program for more than a decade. The notes about 
TC talk have been analyzed qualitatively in the assessment of progress in the program, but never 
has such analyses resulted in a mechanism to understand which TCs might program faculty 
provided deeper feedback on their development visions and beliefs about teaching and learning 
mathematics at such an early stage of the program. A seven-year period of data collection was 
used in which all three live discussion forums were implemented without deviation, holding the 
format, readings, and prompts to be consistent, as well as the mechanism for how data was noted 
and recorded in a spreadsheet. A small subset (~10%) via random selection of the existing data 
across all seven years was used for the development, test, revision, and initial validation work to 
finalize the rubrics for the full analysis. It is important to paint a vivid picture of how the data is 
collected during the live discussion forums. 

The data used in this study was collected in a first semester TPP course (fall semester, junior 
year) which is embedded in a sequence of three consecutive mathematics teaching methods 
courses prior to the student teaching internship (see Zelkowski et al, 2018, 2021) for more details 
of program structure and sequence. The three live discussion forums took place at the start of the 
mathematics technology methods course during the first four weeks where each class was held 
twice a week for 1-hour 15-minutes (class meeting 2, 4, and 7). Lessons in the methods course 
between each of the three discussion forums included technology driven activities (see 
Zelkowski (2013), Bismarck et al., (2014) for examples) with TCs exposed as engaged learners 
to the eight Standards for Mathematical Practice (National Governors Association Center for 
Best Practices & Council of Chief State School Officers, 2010). 
Data Collection 

Over seven years, 110 PSMTs (77-female, 33-male) were enrolled in the methods course. 
The readings were the first three chapters of Teaching Secondary and Middle School 

Mathematics (Brahier, 2013) titled: (a) Mathematics as a Process, (b) Principles of Mathematics 
Education, and (c) Learning Theories and Psychology in Mathematics Education. During each 
live discussion forum, the methods course professor projected a PowerPoint presentation with 
discussion prompts based on the focus questions of each chapter. The professor remained silent 
concentrating on accurate notetaking, allowing TCs to engage in an open, student-led forum 
related to each discussion prompt based upon the focus questions of each chapter. There were no 
restraints regarding how much individual TCs could talk during each prompt or discussion 
forum, though the professor encouraged equitable opportunities for all and respect among peers. 

For this particular method of data collection (i.e. researcher as complete observer), Creswell 
(2003) discusses many advantages to this design such as it is useful in exploring topics that may 
be uncomfortable for participants to discuss, information can be discovered as it is revealed, and 
unusual aspects can be noticed with the researcher’s firsthand experience with the participants. 
Creswell points to some limitations such as the researcher being intrusive or lacking good 
attention and observation skills. To mitigate such concerns, the methods professor had already 
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spent five years observing and recording data in such forums. Meetings with students allowed for 
the methods professor to check and verify the notes taken in years prior to the data used in this 
study. Given the five years of data collection and checking with students, we are confident that 
most comments captured reflect the TCs spoken words during the seven-year period of this 
study’s data collection. 

The professor took notes by constructing a grid with each TCs name as one column with 
additional columns for each prompt. TCs had name-tents on display for complete accuracy of 
comments being recorded. The quality of discourse and level of contribution during each of the 
three live discussion forums constituted about 3% of the final course grade (about 9% total) as an 
encouragement to participate early with peers at the start of the methods course sequence. 
Rubric Development Process 

The development of two rubrics and the validation work for their use to evaluate TCs’ 
discussion contribution were rating two constructs of interest. The first rubric was designed to 
capture the alignment and interpretation of TCs’ responses with the assigned chapter readings. 
The second rubric was designed to capture the alignment and interpretation of the responses to 
the unproductive and productive “beliefs about teaching and learning mathematics” within 
Principles to Actions (PtA) (NCTM, 2014, p.11) prior to TCs reading PtA. 

We initially began with a four-level rubric (0-3) and two raters. We randomly scored about 
3% of the forum data using the first rubric iteration. We discovered that an additional rubric- 
level would be needed and that a revision of the language was necessary as there were too many 
examples of implicit scoring decisions (e.g. higher or lower with less agreement). The rubrics 
were revised and retested with a new random sample of responses. After a third small revision of 
language in a few cells of the rubric, the third iteration was finalized. 

In terms of each rubric, our revision process noted above went through three cycles in 
scoring a small sample until we were confident of removing as much subjectivity as possible 
between each level of the rubric. Ultimately, having enough levels in Rubric-1 was needed to 
consider the follow-up talk of a TC in terms of whether they were giving opinion supported by 
the interpretation of the reading or just giving opinion not supported by the reading. Whereas, 
Rubric-2, the sole purpose was to identify statements that do not align or do align to the 
productive beliefs tables in PtA. The rubric final iterations are shown in Figure 1. 
 

Rubric-1. Alignment of Response with Reading 
Level 0 Level 1 Level 2 Level 3 Level 4 
Student 
did not 
engage in 
the 
discussion 
forum 

Responses across 
prompts are mostly 
unrelated to the 
reading OR reveals 
misinterpretation of 
content of chapter 

Responses across 
prompts are mostly 
related to the 
reading but is based 
on opinion rather 
than the content of 
the chapter 

Responses across 
prompts mix 
personal opinion 
and correct 
interpretation of 
content of the 
chapter 

Responses across 
prompts rely on 
content of the 
chapter but might 
also include some 
personal 
interpretation 

 
Rubric-2. Alignment of Response with PtA Beliefs about Teaching & Learning Mathematics 

Level 0 Level 1 Level 2 Level 3 Level 4 
Student 
did not 
engage in 
the 

Response across 
prompts reveals 
statements which 
align with 

Response across 
prompts partially 
reveals statements 
which align with at 

Response across 
prompts reveals more 
statements which 

Response across the 
prompts reveals 
little evidence of 
statements that align 
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discussion 
forum 

unproductive 
beliefs 

least one productive 
belief 

align with productive 
beliefs than not 

with unproductive 
beliefs 

Figure 1: Finalized Rubrics for Scoring TCs Alignments within the Discussion Forums 

Results 
Rater Reliability of Rubrics 

One rater scored all three discussion forums for all N=110 TCs with both rubrics which 
generated 660 spreadsheet cells. We randomly selected 10% of the cells for each rubric for a 
second rater to score independently. The rater agreement was 78.8%. We discussed our scores 
that were not in alignment in reference to the rubrics and the TCs discussion forum contributions. 
Rater one revisited all 660 cells and rescored. Independently, rater two randomly selected 
another 10% of cells to score for each rubric. There were 6 cells of overlap with the initial 10% 
selected for a total of 126 cells (19.1% of all). Rater two rescored the initial 66 cells and scored 
the additional 60 cells. The rater agreement was 88.1%. The results of each rubric scoring are 
presented in Table 1. We proceeded then to compute the associated Cohen’s Kappa, Cronbach 
Alpha, and Intra-class Correlation Coefficient (ICC) presented in the note of Table 1. 
 

Table 1: Rater Agreement for Rubric-1 and Rubric-2 
Rubric-1   Rater 2    Rubric-2   Rater 2   
Rater 1 0 1 2 3 4  Rater 1 0 1 2 3 4 

0 6 0 0 0 0 0 6 0 0 0 0 
1 0 1 0 0 0 1 0 9 3 0 0 
2 0 0 29 4 0 2 0 0 19 2 0 
3 0 0 1 19 0 3 0 0 1 20 1 
4 0 0 0 2 1 4 0 0 0 1 1 

Note. Rubric-1 Statistics: Kappa=0.819, ICC=0.934, Cronbach Alpha=0.966. Rubric-2 
Statistics: Kappa=0.822, ICC=0.939, Cronbach Alpha=0.969. All statistics sig. @ p<0.001 
level. 

 
Relationship of Rubric Scores to Program Completion 

Rubric-1 and Rubric-2 produce two scores for each of the three live discussion forums and 
total scores (sums of each forum). Of the N=110 TCs, 64 were program completers (~58%), 39 
left the program (~35%) for academic and/or personal decisions not to enter teaching, and seven 
(~6%) eventually entered teaching through an alternative non-certified route. With this 
knowledge, our interest is whether Rubric-1 and/or Rubric-2 have any predictiveness in 
classifying TCs as a likely program completer or not from semester-1 discussions. More 
importantly, rubric scores should provide methods faculty early insights to improve outcomes 
related to core program readings, beliefs, and ultimately practices. 

Two quantitative analysis methods were employed to address the research questions. 
Zelkowski (2011) stated, “the basic idea underlying this statistical method was to determine 
whether these groups differed significantly with respect to the mean of” (p.34) rubric levels 
individually and collectively. Zelkowski further described the use of Discriminant Analysis as a 
method that indicates the nature of the predictor variables (i.e. both rubrics) in contributing to 
group separation (i.e. outcome group) through a linear modeling process. We used Chi-square for 
each rubric across each of the three live discussion forums (six total analyses) considering our 
TCs three possible outcomes. Because research suggests males and females contribute differently 
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to whole class discussions (e.g. Guzzetti & Williams, 1996), we further examined if there were 
any differences across TCs gender. 
Statistically Significant Findings 

Rubric-1 was found to be least predictive of program outcome for all three forums. However, 
the Chi-Square analyses found statistically significant results for Rubric-1 with the third 
discussion forum chapter (Learning Theories and Psychology in Mathematics Education) for 
females but not males. Given the ratio of 77:33 TCs’ gender imbalance, this is not surprising. 
This is further examined in the discussion. 

The strongest results were found with the Discriminant Analyses. We found correctly 
classify males was significant in predicting a final outcome, but not females alone and not all 
N=110 TCs together in the analyses. Based on each Rubric-2, as well as the sum of both rubrics, 
males were correctly classified in the analyses into their outcome between 60% and 76%. 
Rubric-2 scores for chapter 1 forum predicted the outcome 60.6% correctly, chapter 2 forum 
predicted the outcome 69.7% correctly, and the sum of all three forums predicted the outcome 
75.8% correctly. When considering both rubric scores on all three forums (six total scores 
summed), male outcomes in the program were predicted 69.7% correctly. 

Discussion 
The purposes of the discussion forums have always been driven by introducing TCs to 

three foundational chapters setting the stage for mathematics teaching and learning. More 
importantly, the design engages TCs with peers to hear, listen, and discuss with each other’s 
interpretations of the readings and injecting their own beliefs. Because these three forums 
immediately provide about 9% of the course grade, there is an early responsibility of TCs to 
read, be ready to discuss, and openly discuss critical foundations of mathematics education 
with their peers. We report here that less than 5% of TCs did not engage at least in at least 
one of three discussion forums. 

Program Use of Rubrics 
Our intent in the development of these rubrics and working through validation processes for 

their use and interpretation with desired outcomes, was and still is, to understand TCs potential 
cognitive conflicts with aspects of mathematics teaching and learning best practices. We further 
wanted to understand if early semester-1 discussions could be assessed to improve attrition and 
begin building improved belief structures. Our use of these rubrics in the program serves as 
informative early indicators of cognitive conflict with readings and/or productive beliefs about 
teaching and learning mathematics. In our previous program analyses (Zelkowski et al., 2018, 
2021), we focused on the impact of key program assessments, coursework, and structural 
sequence on content knowledge and pedagogical content knowledge for program completers. 
These two rubrics across three live TC discussion forums provides an early indicator in which 
personal emails, one-on-one conversations, and high-quality feedback can be provided to TCs to 
increase their likelihood of program completion if teaching is truly their career desire. We do not 
see these rubrics as valuable in saving or rescuing those who decide to change majors out of 
teaching, though we do see their use as indicative and valid to improve outcomes and reduce 
attrition. 
Implications for Mathematics Teacher Education 
Rubrics are widely used in teacher education as we previously discussed, including mathematics 
teacher education. Rubrics serve excellent purposes regarding accreditation of programs, 
admission to teacher education programs, assignments and grades in coursework, and to provide 
feedback to TCs. However, the literature rarely points to the issues with the validity of using 
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self-created rubrics for assessment without rigorous validity work having ensued (Hill & Shih, 
2009; Howell et al., 2019; Lavery et al., 2019). That is to say, such rubrics generally lack one or 
more of the categories of validity evidence, or have none at all, for establishing arguments for 
rubric use in making important interpretations and decisions in mathematics teacher preparation. 
More precisely, what constructs do rubrics measure and to what degree are the use and 
interpretation valid? These are difficult questions to face without some process in the validation 
of the rubrics that methods course faculty may use. We provide our results and findings as a way 
to encourage rubric use but by generating validity evidence for use and their interpretation. 
Rubrics as any sort of measure in mathematics teacher education programs, ultimately should be 
providing faculty and TCs some predictive value about their development towards first-year 
teaching. Further, we demonstrate a methodology that aligns to the AERA, APA, and NCME 
(2014) for using rubrics for purposes of decision making, assessment, and programmatic 
outcomes with aims to reduce attrition and provide objective scoring for TCs. 

Conclusion 
As researchers, we are interested in examining the ‘next step’ of remediation when TCs do 

not exhibit movement towards productive beliefs regarding teaching and learning and/or share 
personal experiences as ‘proof’ over well-structured readings (i.e. Brahier). That is, how can 
methods faculty support learners whose beliefs regarding teaching and learning are not 
influenced by readings and discussions? We made several revisions to our program design over 
the last decade to account for these considerations (Zelkowski et al., 2018; 2021; Zelkowski & 
Gleason, 2018), but there is much to learn regarding effectiveness of program components, 
course designs, and the validation of key assessments. 

We hope this work provides stimulus for discussion, research, and practice towards aiding 
TCs in developing productive beliefs about teaching and learning mathematics within their 
preparation program. Developing and validating rubric use and interpretation is a critical piece to 
not only improving mathematics teacher education, but also measuring the effectiveness of 
interventions aimed at stronger TC development. This work may serve as an example of the 
utility of rubrics in mathematics teacher education and provide methods faculty with a process 
for the validation of rubric use in critical junctions of teacher preparation programs. 
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Learning trajectories focus on expectations related to how learners’ ideas develop during an 
instructional sequence in relation to a learning goal (Simon, 1995). Thus, research on learning 
trajectories has given little attention to affective aspects of learners’ experiences in understanding 
and exploring mathematical ideas. However, findings from a wide range of studies continue to 
document the central role of affect in learning (e.g., Cobb et al., 1989; deBellis & Goldin, 2006; 
Grootenboer & Marshman, 2015). The goal of our study is to foreground the affective 
experiences of preservice elementary teachers (PSTs) during a fractions unit and to consider how 
these relate to the conceptual aspects of their learning process. 

The affect-focused literature regarding elementary PSTs is sparse and mostly limited to math 
anxiety (Kelly & Tomhave, 1985; Stoehr, 2017). We seek to both broaden and deepen our 
understanding of PSTs’ affective experiences. Understanding patterns and variabilities in PSTs’ 
affect during their learning is of value to teacher educators. The conceptual challenges PSTs face 
in coming to better understand fractions and fraction operations are coupled with emotional 
challenges. It is important to anticipate and plan for these challenges in designing instruction. We 
draw on the construct of epistemic affect (Jaber & Hammer, 2016) which refers to the various 
feelings, emotions, and motivations that are experienced within work centered on the production, 
communication, and critique of ideas to explore phenomena and solve problems. This affect 
might include feelings of vexation when faced with inconsistencies, excitement when figuring 
things out, and motivation to pursue a puzzling question. These affective experiences are not 
separable from but rather entangled with the work of sensemaking in mathematics. 

The data used in this study consist of discussion boards, written reflections, recordings of 
class discussions, and interviews with one cohort of PSTs. We focus on weekly reflective 
assignments that students completed at the end of each class, designed to capture their emotions 
and feelings experienced during and after each meeting. Early analysis indicates students moved 
through a variety of affective experiences as the unit progressed. Rather than moving from 
anxiety to pleasant emotions, PSTs are moving between a variety of emotions that are influenced 
by external factors including but not limited to new or challenging content, overcoming difficult 
concepts, and interactions with classmates. Attending to affect could be beneficial to teacher 
educators as they support PSTs as they move through learning trajectories, especially those 
charged with emotions such as anxiety. 
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It is more important than ever to prepare teachers who can advocate for minoritized students 
and social justice. It has been found that preservice mathematics teachers who have opportunities 
to critically reflect upon the opportunity gap in education and interrogate their own positionality 
as equity-minded teachers are better equipped to advance social justice in classrooms. In addition 
to direct cross-cultural experiences, teacher preparation programs can support the preparation of 
preservice teachers by broadening their perspectives of family and communities.  

This poster will share experiences from a course designed to: (1) develop an understanding of 
pedagogical practices and educational strategies for successful teaching in the high-need setting, 
especially in the math classroom; and (2) cultivate both cultural self-awareness and cross-cultural 
consciousness in one’s ability to adapt to the high-need environment in a culturally responsive 
way. The poster depicts how key assignments have been adapted over time to encourage scholars 
to interrogate their positionalities toward working with diverse others and advocate for 
marginalized youth as preservice teachers. The assignments we highlight are: Reflections on the 
utility of key texts; Early field experiences to diverse high-poverty schools; Making positive 
parent phone calls; and, Engaging in Critical Reflection practices. 

Methodology 
Each year of implementation, an external evaluation team from outside the scholarship 

program and university conducted focus-group discussions with scholars about the course, the 
program, and their teacher-preparation experience. We analyzed the anonymized focus-group 
data in addition to course assignment submissions, weekly and final reflections on the course, 
work samples, and anonymous course evaluations.  
Findings 

The predominant themes that emerged from course and assignment reflections were scholars' 
increased awareness of how they might “fit” and be successful within a HNS, a more thorough 
understanding of the inequities in schools and classrooms, and a clearer vision for how they can 
advocate for students and a more socially-just school system as an early career teacher. The 
poster highlights our scholars’ voices to show how specific assignments contributed to their 
future thoughts and actions in HNSs. Overall, the course was influential to scholars' 
understanding of equity issues in education, as evidenced by their reflections on observations, 
readings, and experiences with prior alumni. The assignments in the course predominately 
promoted scholars’ introspection and reflection of how they might position themselves to address 
inequities in HNSs. The voices of our scholars iteratively guided our revisions to the course, 
alongside our personal growth and professional development as social justice teacher educators.  
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Theoretical Perspectives and Research Question 
Effective mathematics teaching calls for engaging students in solving and discussing cognitively 
demanding tasks that promote mathematical reasoning and problem solving (NCTM, 2014). The 
cognitive demand of tasks has been categorized by their functional and qualitative 
characteristics, such as memorization, procedures without connections, procedures with 
connections, and doing mathematics (Smith & Stein, 1998). As the opportunity to learn to 
develop skills of selecting and modifying appropriate tasks is critical, this study investigates the 
following question: What types of content and pedagogical knowledge do pre-service teachers 
(PSTs) demonstrate while engaging in the task classification and modification activities?  

Data Collection and Analysis 
Four fraction-related tasks were provided to 54 elementary PSTs in a Midwestern University in 
the US. They were asked to complete the following activities: (a) match them with the levels of 
cognitive demand, and (b) modify two tasks identified as lower-level to higher-level tasks along 
with justifications and expected students’ responses. For the first activity, frequencies were 
identified. PSTs’ written and drawn work in the second activity were analyzed following the 
inductive content analysis approach (Grbich, 2013).  

Summary of Findings and Implications 
PSTs were more successful in identifying lower-level than higher-level tasks — procedures 
without connection (87%), memorization (85%), procedures with connection (74%), doing 
mathematics (72%). Major modification strategies focused on changing the forms and 
requirements of the tasks (e.g., incorporating story problems and drawings, requiring to explain, 
asking to solve in different ways). However, some modifications did not raise the level of 
cognitive demand (e.g., routine story problems focusing on computations only). This tendency is 
similar to a prior study, reporting teachers’ tendency of selecting tasks according to “surface-
level features” (Boston & Smith, 2009, p. 123). Some PSTs’ anticipated student responses 
included false representations or excessively detailed work, which were not included in the task 
directions. This study suggests that PSTs need to be exposed to various tasks and opportunities to 
analyze and develop tasks beyond the surface level work. Also, giving proper directions aligned 
with the purpose of the task is another area PSTs need to learn and refine.  
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Problem-solving constitutes an important aspect of school mathematics. Little, however, is 
known about how prospective teachers (PSTs) think about mathematical argumentation in 
context-rich situations and ill-defined problems that lack a clearly defined solution path or single 
correct answer. Francisco and Maher (2005) argued that in the context of problem-solving, 
students could learn the practice of explaining and convincing others of the validity of their ideas 
and develop skills of critically examining and evaluating arguments and ideas shared by their 
peers. This research adds to the current efforts to support PSTs in meeting the challenges of 
fostering argumentation in school mathematics by examining PSTs’ interpretations of the term 
convincing mathematical argument. Prior to negotiating classroom norms for argumentation, we 
explore (a) How do PSTs characterize convincing arguments in inquiry-oriented problem-
solving contexts, (b) How do they judge if an argument is convincing when listening to 
arguments shared by their peers, and (c) What do PSTs perceive as a challenging aspect of 
writing convincing mathematical arguments in a problem-solving context.   

In this research, a mathematical argument in the problem-solving context is conceptualized 
as a case for a mathematical claim—a solution to a given problem situation. An argument is 
interpreted as a product or a discursive practice that leads to discovering new mathematical ideas 
and convincing oneself or others that the given claim (result) is true (Leitão, 2000). Analyzed 
were written journal responses completed by 33 grades 1-8 teacher candidates enrolled in a 
Problem-Solving Course (99 journal entries analyzed). In their definitions of convincing 
arguments, PSTs addressed the validity of claims, logical flow, clarity of assumptions, and 
accuracy of mathematical representations. When asked to describe convincing arguments in the 
context of class discussions and presentations, PSTs characterized convincing arguments by their 
informative power (i.e., how well they could understand the argument, argument clarity, 
precision, overall organization, level of details). Some PSTs considered the presenter’s 
confidence as a criterion for assessing convincing arguments. Most of the PSTs reported that 
deciding on the necessary level of details to make an argument comprehensive is a challenging 
aspect of generating convincing arguments. The results provide a direction for helping PSTs 
develop a robust knowledge of mathematical argumentation in teacher preparation programs by 
revealing PSTs’ initial views about convincing arguments in problem-solving contexts.    
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Mathematics self-efficacy is defined as a student’s belief about their ability to be successful 
in mathematics (Bandura, 1986; Zimmerman & Cleary, 2006). Previous research has shown the 
benefits of high mathematics self-efficacy (believing you are good at mathematics). In particular, 
self-efficacy affects future performance, persistence, effort, self-regulation, resilience, and 
success on difficult tasks (Cassidy, 2012; Ruch et al., 2014; Sawtelle et al., 2012; Usher et al., 
2018; Holenstein et al., 2021). However, most self-efficacy work has been quantitative, often 
using Likert scales to assess self-efficacy. This quantitative focus often means we lack 
understanding of what students mean when they say, “I am good at math.” In addition, the work 
has rarely focused on pre-service teachers (PTs). Do PTs define “good” in ways that align with 
researchers and their instructors?  

Research Question, Design, and Analysis 
This poster presents preliminary results from a qualitative study that used journaling to 

examine PTs’ definitions of being “good” at mathematics. This work adds to existing work on 
PTs’ mathematics self-efficacy (e.g., Phelps, 2010; Zuya et al., 2016). Participants in this study 
were 23 elementary PTs enrolled in a mathematics class for PTs taken before the mathematics 
methods course. Participants completed two written journal entries on their beliefs, which were 
analyzed with codes developed inductively; two authors worked together to ensure reliability of 
the codes following Campbell and colleagues (2013). Future work will examine additional 
beliefs, such as PTs’ beliefs about teaching. 

 Findings and Implications 
Results suggest PTs had a variety of definitions of being “good” at mathematics. Some 

participants (n = 17, 74%) defined being good at math as applying their skills to new contexts 
and problems; Olivia said, “A successful learner can apply the concepts to different situations 
and can solve problems using a bank of different strategies.” Other common definitions included 
being able to explain math to others (n = 16, 70%), getting good grades (n = 13, 57%), being 
fluid (n = 12, 52%) and working hard (n = 6, 26%). However, there was distinct disagreement 
among some PTs’ definitions; for example, some PTs said being “good” at math meant always 
getting the right answer but an almost equal number of PTs (n = 11, 48%) expressed doubt that 
right answers or high grades alone meant you were good at math. Mia said, “The grade that I 
receive is not always a reflection of how successful I was. I have completed many math courses 
and received an A without actually mastering the material.” Overall, these results, and other data 
we will share in the poster, suggest that PTs may not define being “good” at math in the same 
way as researchers, their classmates, or their instructors. This has implications for understanding 
PTs’ mathematics self-efficacy beliefs, in particular, what they may mean when they say, “I am 
good at math.” In addition, this work can help teacher educators understand PTs’ future teaching 
and the goals they will strive for their students to achieve. 
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Learning to teach mathematics for prospective elementary teachers (PTs) is challenging. 
Mathematics content instructors must be prepared to not only teach mathematics content, but 
engage PTs in understanding children’s mathematical thinking strategies, learning trajectories, 
and misconceptions (Carpenter et al., 1996; Carpenter & Moser, 1982; I et al., 2020). When 
considering how instructors might best be prepared and supported however, one must recognize 
that there is significant variation in the backgrounds and expertise of mathematics content 
instructors (Masingila et al., 2012; Yow et al., 2016) and little is known about the preparation, 
knowledge, and experiences of mathematics content instructors (Even, 2008; Goos, 2009; 
Masingila et al., 2012; Oesterle, 2011; Zaslavsky & Leikin, 2004). Furthermore, most instructors 
who are newer to teaching PTs do not feel prepared and additionally report an absence of 
training, resources, and support at their institutions (Goodwin et al., 2014; Masingila et al., 2012; 
Yow et al., 2016). Mathematics content instructors, especially those newer to teaching PTs, need 
preparation and support that account for their background and teaching context. 

In this poster, I describe a beginning mathematics content instructor’s experiences learning to 
teach elementary PTs in their respective teaching context. Specifically, I aim to draw 
connections from the instructor’s background and preparation to their challenges and successes 
around teaching and learning to teach mathematics content for elementary PTs. 

I view instructor learning as occurring through interactions with others, while also occurring 
through reflection and inquiry into one’s own practices and the practices of others (Cobb & 
Bauersfeld, 1995). I further recognize that an instructor’s interactions and reflections are 
inseparable from context, time, and place, and are deeply rooted in socio-cultural norms 
(Gutiérrez, 2008; Lave & Wenger, 1991; Rubel & Nicol, 2020; Vygotsky, 1978). Challenges and 
successes may offer substantial insight into instructor learning. Since they are embedded in 
experiences, understanding experience is essential to understanding learning. Hence, I engage in 
narrative inquiry, drawing on Clandinin and Connelly’s (2000) three-dimensional inquiry space 
to make sense of one beginning instructor’s experiences learning to teach mathematics for 
elementary PTs. For one semester, I observed all of the instructor’s classes and meetings with 
other instructors, conducted three interviews with the instructor, collected the instructor’s 
teaching and learning autobiographies, and collected the instructor’s weekly reflection journals. 

Narrative themes connecting the instructor’s contexts to their learning to teach mathematics 
for elementary PTs will be presented. For example, transitioning from evaluating students’ work 
in introductory-level mathematics courses to students’ work in mathematics content courses may 
present challenges for instructors in mathematics departments. I will discuss stories that resonate 
or create dissonance with the literature on mathematics content instructor preparation and 
support, and theories for harmonizing instructors’ backgrounds with their current experiences. 
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We present the development and implementation of Carolina Transition to Teaching, a 
cohort-based, 18-month teacher residency program focused on the recruitment, preparation, and 
retention of diverse teachers in rural communities. The significance of this work is two-fold: (a) 
the dearth of teaching candidates in STEM fields at all levels (Cowan et al., 2016); and (b) the 
ongoing lack of racial diversity found in teacher preparation programs (King et al., 2016). These 
factors are situated at a time when states are investing less in higher education (Mitchell et al., 
2019), leading to the need for innovative approaches alongside more traditional pathways. In this 
poster we highlight the deliberate interplay of recruitment, preparation, clinical practice, and 
attention to certification requirements that lead a master’s degree and state teaching licensure. 

Through a U.S. Department of Education Teacher Quality Partnership (TQP) grant, a 
flagship university in the Southeastern part of the U.S. developed a teacher residency program 
with two partner districts located in rural communities. A Network Improvement Community, 
Carolina Transition to Teaching, including university-based faculty and staff from the College of 
Education, external evaluators, and district representatives, used systematic methods of inquiry 
within an improvement science approach (Bryk et al., 2017) to explore and inform 
implementation as well as to analyze ongoing and retrospective findings as a mechanism for 
programmatic refinements.   

A goal of the Carolina Transition to Teaching residency program is to diversify the 
professional pipeline to include individuals with a bachelor’s degree who are currently working 
within our partner districts as paraprofessionals or long-term substitute teachers as well as career 
changers from rural communities. Built upon research-informed components of teacher 
residencies (e.g., Guha et al, 2017), the structural components of the Carolina Transition to 
Teaching residency program include: (a) providing a minimum living wage stipend; (b) yearlong 
practicum in classrooms within partner schools, (c) multiple layers of support through coaching 
and ongoing professional development; (d) graduate coursework; (e) completing a series micro-
credentials to satisfy teacher certification requirements, and (f) induction support during the first 
three years of classroom teaching.  

The initial findings are promising for our recruitment and preparation efforts. For instance, 
one goal of the Carolina Transition to Teaching residency is to support and prepare teachers 
while diversifying the workforce within rural districts; through our two rounds of recruitment 
and preparation, 87% of our participating residents (N=23) self identified as African American or 
Black, and 17% self identified as male. These data stand out as only 21% of the new teachers in 
our state identify as non-white and 19% identify as male. Further, 100% of the residents range 
from 30-70 years old, bringing with them a wealth of knowledge to their residency experiences. 
As we continue to analyze our research efforts to recruit, prepare, and support the residents in the 
program, we will share additional findings related to supporting our two cohorts who are or will 
be practicing teachers in classrooms within our partner school districts.  
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Teaching with mathematical action technology (MAT) is a complex practice (e.g., Lagrange 
& Monaghan, 2009; Lee & Hollebrands, 2008) that requires attention to learners’ thinking and to 
the role of MAT in supporting productive discussions. McCulloch et al. (2021) found that few 
teacher preparation programs provide opportunities for prospective teachers (PTs) to engage in 
implementation of MAT tasks. One way to support PTs in developing complex teaching 
practices is through the use of teaching rehearsals (Kazemi et al., 2016). To provide PTs an 
opportunity to engage in the implementation of MAT tasks, we implemented rehearsals focused 
on orchestrating whole-group discussion of MAT tasks in secondary mathematics methods 
courses.  

Rehearsal is a pedagogy that provides opportunities for PTs to approximate teaching practice 
(Grossman et al., 2009) with peers in the role of learners, in a space that allows for reflection and 
growth (Kazemi et al., 2016). In rehearsals, PTs learn to implement pedagogical practices and 
tools to support learning. Mathematical action technologies are technology tools that allow 
learners to engage with mathematical objects in a dynamic way as they explore mathematical 
concepts and make sense of mathematical relationships (Dick & Hollebrands, 2011).  

In three secondary mathematics methods courses at three different institutions, we 
implemented a rehearsal cycle with 20 PTs in Fall 2021. Prior to the rehearsal cycle at all three 
sites, PTs read about MATs (Dick & Hollebrands, 2011), considered ways in which MATs could 
serve as amplifiers or reorganizers (Sherman & Cayton, 2015), and discussed ways in which 
MATs might be enacted (Drijvers et al., 2010). PTs were then required to select, create, or adapt 
an existing MAT-based lesson using Desmos or Geogebra for use in a rehearsal in which the 
focus was class discussion of a mathematical concept. The rehearsal cycles included video-
recorded enactment of the discussion and a debrief following a viewing of the videos to support 
reflection. Common data collection included a pre-rehearsal planning survey, videos of the 
enacted rehearsals, peer rehearsal feedback forms, and a post-rehearsal reflective survey.   

Preliminary analysis of the data shows that combining the pedagogies of rehearsals with the 
use of MATs is a plausible way to fill the gap in mathematics teacher preparation noted by 
McCulloch et al. (2021). Rehearsals can be used to engage PTs in thinking about decisions they 
make while integrating MATs in their lesson design and teaching. Findings show PTs felt that 
this was an authentic experience that helped to grow their thinking about teaching with 
technology. One PT commented on the experience saying: “it was very helpful to be able to 
rewatch the video, pause, reflect, and then continue. This allowed for thoughtful, extended 
critical thinking for our responses.” Analysis will continue so as to determine the specific ways 
in which this pedagogy informs teacher preparation. In this poster, we seek to share findings 
from our ongoing data analysis. 
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Mathematics teacher educators and researchers have proposed that a critical knowledge 
domain for prospective teachers (PTs) is professional teacher noticing of student mathematical 
thinking, often referred to simply as “teacher noticing.” Emerging research suggests that teacher 
noticing supports both high-quality mathematics teaching in the short term (e.g., Jacobs et al., 
2010) as well as long-term growth in teacher expertise (Santagata, 2011). Further, research 
suggests that teacher noticing might also be associated with high quality teacher questioning 
(Weiland et al., 2014). However, more research is needed to better understand the relationships 
between teacher noticing and questioning and how these skills support each other. 

Research Question, Design, and Analysis 
In this poster, we present results from a larger study in which PTs (n = 18) conducted a 

simulated interview, focused on geometric thinking, with an AI chatbot named “Matilda” (which 
had been programmed based on children’s responses). Previously, we analyzed PTs’ questioning 
patterns in the interview (Spitzer & Phelps-Gregory, 2021). After the interview, PTs wrote an 
essay describing Matilda’s knowledge (including misconceptions) about quadrilaterals, 
interpreting the evidence and identifying her van Hiele level, and describing what Matilda’s 
teacher should do next. PTs’ essays were analyzed in terms of the three domains of teacher 
noticing, Attending, Interpreting, and Deciding (Jacobs et al., 2010). We then categorized PTs as 
having either high, medium, or low noticing skills and qualitatively analyzed for differences in 
their questioning patterns.  

Findings and Implications 
Our emerging findings suggest that teacher questioning is critical to eliciting the kinds of 

student mathematical responses that teachers can use as evidence in their noticing. During their 
interviews, PTs with stronger noticing skills asked more open-ended questions (e.g., “What is 
shape 2?”) and less leading questions (e.g., “Is shape 2 a rectangle?”). In contrast, PTs with 
weaker noticing skills appeared to struggle to find the right questions to diagnose Matilda’s 
thinking, asking more questions overall and more restatements of previous questions.  

Several cases from our data help illustrate these findings. For example, Abigail used a 
productive questioning pattern, starting with asking “What is shape 2?” When Matilda called it a 
diamond, Abigail asked multiple follow-up questions, such as “What is a diamond?” In her 
essay, Abigail focused on the answers to these questions to provide strong evidence for her 
appropriate diagnosis of student thinking. In contrast, Brianna used many leading questions, such 
as “So is shape 2 a rectangle?” Brianna asked less follow-up questions than Abigail and, when 
Matilda named the shape a diamond, responded with “If it is a square, doesn’t that also mean it is 
a rectangle?” In Brianna’s essay, she inappropriately cited this exchange as evidence that Matilda 
had learned. In this poster presentation, we will present these and other cases that exemplify the 
relationships between questioning and noticing. This has implications for teacher educators in 
helping PTs develop both the critical skills of noticing and questioning. 
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Mathematical modeling is the process of interpreting real world situations with the use of 
mathematics. The benefits to students when they engage in mathematical modeling include 
developing reasoning abilities, entrepreneurial thinking, and conceptual understanding of 
mathematics and other relevant contents (Blum & Niss, 1991; Lesh et. al, 2000; Zbiek & Conner, 
2006). It is recommended that preservice teachers’ (PSTs) learn mathematical modeling to 
engage their future students with authentic problem-solving experiences (Association of 
Mathematics Teacher Educators, 2017). However, research is needed in the area of such learning 
opportunities and in the area of learners' perspectives while responding to working through 
mathematical modeling (Asempapa & Sastry, 2021).    

This study investigates the effects on PSTs self-efficacy from engaging in a mathematical 
modeling task. Self-efficacy is defined as “judgements of their capabilities to organize and 
execute courses of action required to attain designated types of performances” (Bandura, 1986, p. 
391). According to Bandura (1986), motivation and behavior influence each other, and through 
interventions and strengthening these beliefs can increase academic achievement. While much 
research has involved learning opportunities in mathematical modeling, the importance of 
teacher’s self-efficacy in continuing the practice needs to be explored.    

Using design-based research, the three authors worked with PSTs on a modeling task 
involving two parts: (1) the design of a classroom and (2) the development of a rating or ranking 
system of the classroom design. The first part of the modeling aimed to use both two- and three-
dimensional concepts in geometry for elementary grades, while the second part was designed to 
compare the classroom designs, as well as learn how involved a grading system is implemented. 
This modeling task was employed over a course of four classrooms: three undergraduate classes, 
and one graduate class of students all enrolled in an elementary mathematical content and 
methods course. With the third author enacting the first iteration of the task, we then revised the 
lesson, and used the task again in three other classrooms: two undergraduate classrooms with the 
first author, and one graduate class with the second author.   

Coding reflective journals from the PSTs, we utilized Bandura’s (1994) four main sources of 
influence: mastery experiences, vicarious experiences, social (or verbal) persuasion, and somatic 
and emotional states (pp. 2-3) to guide our analysis. Preliminary results indicate an overall 
increase in PSTs self-efficacy from this modeling task, in part due to the nature of the task, 
collaborative efforts of their classmates, with the instructors as a facilitator in the modeling 
task. In our poster session, we will illustrate the sources of influence on self-efficacy and its 
connection to specific aspects of the mathematical modeling task. We will also look at the 
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differences between the three authors enacting the mathematical modeling task and highlight 
general themes from the reflective journals relating to the PSTs self-efficacy.  
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Purpose  
This poster summarizes findings from a review of the literature on teacher identity formation. 

Through this summary, we aim to explore the different methods and theoretical frameworks used 
by researchers in their teacher identity work. We will discuss strengths and weaknesses of these 
methodologies, how different methods and frameworks may fit together, and ultimately how they 
fit with mathematics teacher identity research.  

Summary of Methodologies and Theoretical Frameworks Reviewed  
Identity is complex with socially formed multiple identities that continue to grow and 

develop over time (Akkerman & Meijer, 2011; Beauchamp & Thomas, 2009; Chung-Parsons & 
Bailey, 2019; Ruohotie-Lyhty, 2013). A majority of the studies reviewed employed qualitative 
methodologies including interviews, narratives, and reflections. Through these qualitative 
methods, researchers focused on how preservice teachers perceive the teaching profession and 
how their lived experiences affect their beliefs of teaching (Cross & Hong, 2012; Losano et al., 
2018; Pillen et al., 2013). In addition, implementing interviews, narratives, and reflections within 
the practice of preservice teachers afford students opportunities to reflect and reevaluate the 
influence their own lived experiences have on their mathematics teacher identities. Along with 
narratives and reflections, autoethnography has been utilized as a self-reflective cultural 
narrative, which requires the author of the narrative to reflect and analyze experiences to 
understand culture and the impact it has on identity, both a process and a product (Anderson, 
2006; Austin & Hicky, 2007; Duarte, 2007; Ellis et al., 2011; Hains-Wesson & Young, 2017; 
Hamilton, 2021; Pinner, 2018; Yung, 2020). While most studies utilized qualitative methods, 
there were a couple that used quantitative methods including surveys or questionnaires (Harvath 
et al., 2018; Hong, 2010). Each of these methods bring different strengths and weaknesses into 
the study of teacher identity in answering different research questions.  

Studies examined have also utilized different theoretical frameworks to analyze identity 
formation within teacher education, for this poster we will highlight three. The first being Gee’s 
four views of identity: Nature, Institution, Discursive, and Affinity (Carrier et al., 2017; 
Tsybulsky & Muchnik-Rozanov, 2019), another is the two-dimensional Cognitive Process model 
(Sutherland et al., 2010), and finally, Bronfenbrenner’s Ecological System (Cross & Hong, 
2012). Each of these frameworks were used to analyze the different experiences, feelings, and/or 
environments impact on teacher identity formation and were chosen as highlights for this poster 
given their perceived potential to incorporate autoethnographic activities within each framework. 
We layout the main structure and ideas in each of these frameworks in order to highlight 
strengths and weaknesses within teacher identity research as well as their potential to specifically 
focus on mathematics teacher identity.   
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Preparing prospective elementary and middle school teachers for the diverse classrooms in 
which they will teach is of critical importance (AMTE, 2017). Learning to notice children’s 
mathematical thinking and their cultural funds of knowledge provides teachers with 
opportunities to leverage these student resources to support students equitably and inclusively in 
their classrooms (Turner & Drake, 2016). The use of videos to support teachers’ professional 
teacher noticing skills and practices has been well documented (Jacobs et al., 2010; van Es, 
Cashen, Barnhart & Auger, 2017). As part of a larger study, we focus here on salient features of 
the video selection as considerations in supporting prospective teachers’ (PSTs) development of 
noticing skills specific to student thinking, and the use of cultural funds of knowledge to support 
productive struggle. 

Purpose 
While research suggests that productive struggle is an important component of learning 

mathematics (Hiebert & Wearne, 2003; Hiebert & Grouws, 2007), supporting productive 
struggle in the classroom remains challenging for teachers to implement (NCTM, 2014; 
Warshauer, 2015). Thus, we explore specific features of video selections designed to support 
PSTs understanding of noticing and productive struggle while also drawing their attention to 
equitable teaching practices that support children’s Multiple Mathematical Knowledge Base 
[MMKB] (Roth McDuffie et al., 2014; van Es, E., Hand, V., & Mercado, J. 2017).   

Methods 
The study included 40 PSTs enrolled in their final mathematics content course for elementary 

teachers. They completed three writing assignments with prompts incorporating frameworks on 
Noticing, Productive Struggle, and MMKB (Jacobs, et al., 2010; Author, 2015; Roth McDuffie 
et al., 2014) to reflect on and analyze video episodes of productive struggle and the teachers’ use 
of MMKB in the classroom interactions. The video episode selection criteria were based on the 
presence of: Interaction type, Mathematical content, Productive Struggle, and MMKB. 

Results and Implications 
 We report the specific dimensions considered including the type of interpersonal interaction 
present (e.g. 1-1 student and teacher interaction or whole class discussion lead by teacher), the 
difficulty of mathematical content (level of cognitive demand related to PSTs class learning), 
level of productive struggle, and the complexity of noticing required (inclusion and emphasis on 
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MMKB). Selection, progression, and use of videos with these dimensions can add an equity lens 
towards PSTs viewing a more socially just context for learning and teaching mathematics. 
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Understanding and supporting preservice teachers’ (PSTs’) mathematical creativity (MC) is 
important to encourage their teaching with and for mathematical creativity. Research on MC 
with a focus on teachers has mostly been concerned with in-service and pre-service teachers’ 
conceptions of MC (e.g., Andrade & Pasia, 2020; Beghetto, 2007; Bolden et al., 2010; Lev-
Zamir & Leikin, 2011;2013, Shriki, 2010; Author 1, 2019). We extend this line of work by 
investigating PSTs’ MC as they engage in problem solving in the context of quadratic and linear 
growth. The purpose of the study was to investigate the components of MC that are evident when 
secondary PSTs engage in problem solving including how these components relate to their 
mathematical meanings for quadratic and linear growth. Participants included three secondary 
mathematics PSTs at a university in the Southern part of the US. Data were collected using 
teaching experiment (Steffe & Thompson, 2000) and analyzed using ongoing analysis and 
retrospective analysis (Steffe & Thompson, 2000). 

We adopted Lithner’s (2008) framework for creative and imitative reasoning. The 
framework’s criterion for MC includes novelty (developing a new sequence of reasoning or re-
creating a forgotten one), flexibility (using multiple approaches fluently and adapting to new 
situations), plausibility (arguing for ones’ choice and/or implementation of a strategy), and 
mathematical foundation (anchoring arguments in the intrinsic mathematical properties of the 
components entailed in reasoning). We leveraged literature on quantitative and covariational 
reasoning, (e.g. Carlson et al., 2002; Ellis et al., 2020; Author 2, 2013; Author 2 & Thompson, 
2015; Paoletti & Author 2, 2017; Saldanha & Thompson,1998; Thompson, 2011; Thompson & 
Carlson, 2017) which means attending to the manner in which quantities change together, and 
specifically coordinating first- and second-differences in quantities. We used the fundamental 
principles of radical constructivism (von Glasersfeld, 1995) to drive and form the kinds of 
descriptions that we provide regarding PSTs’ mathematical creativity. 

PSTs’ meanings for linear growth included: constant first differences in the dependent 
variable with uniform changes in the independent variable and constant rate of growth. Their 
meanings for quadratic growth included: constant second differences in the dependent variable 
with uniform changes in the independent variable, increasing rate of growth (constant amount in 
which the addition increases each time), and conceptualizing quadratic growth using first and 
second derivatives to describe rate of change and the difference in rate of change respectively. 
Novelty and flexibility were evident in PSTs’ conceptualizations of linear and quadratic growth 
through their use of multiple approaches and representations such as tables, graphs, and 
equations to elaborate these meanings. However, one PST experienced perturbations with the 
plausibility and mathematical foundation in terms of her quantitative organization in 
conceptualizing linear and quadratic growth. Initial findings of this emphasizes the development 
of conceptual meanings beyond multiple representations to show linear and quadratic growth and 
leveraging quantitative and covariational reasoning through task design and questioning to 
develop PSTs’ meanings for quadratic and linear growth and support PSTs’ MC. 
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Scarce literature focuses on PSTs’ reasoning related to hierarchical geometric relationships 
(Browning et al., 2014). Some articles address ways in which PSTs’ reasoning has not measured 
up to researchers’ expectations: Researchers find that PSTs have difficulty defining shapes 
inclusively, exhibit “misconceptions” (Pickreign, 2007), and rely on “personal figural concepts” 
(Fujita & Jones, 2007). Such findings provide baseline data but do not illuminate a path forward. 

In a report of an intervention study, Yi et al. (2020) offer evidence that PSTs’ knowledge of 
geometry can improve significantly over a three-week period. Their description mentions 
instruction on hierarchical relationships but does not elaborate. The assessment included items 
involving properties and relationships, focusing on quadrilaterals, but did not address particularly 
challenging aspects (e.g., categorization of trapezoids). Brunheira and da Ponte (2019) report on 
a teaching experiment focused on classification of quadrilaterals and then of prisms. An example 
that they provide of a student’s work (their Figure 11) involves what seems to us to be two very 
different interpretations of Venn diagrams. This distinction is left unexplored. The authors report 
progress in PSTs’ reasoning but also lingering difficulties, and they suggest the need to explore 
“other factors” beyond those identified in the framework of Fujita (2012), which is based on Van 
Hiele levels. They refer to such factors as “language interpretation and logical reasoning” (p. 80). 

Overall, the literature leaves us with unanswered questions. It does not provide insights into 
PSTs’ geometric reasoning, nor does it document viable learning trajectories for the development 
of that reasoning (Browning et al., 2014). We believe a key to understanding PSTs’ reasoning 
and supporting their learning related to hierarchical geometric relationships lies in those 
aforementioned “other factors” that we have not seen explored in the literature to date. 

Focusing on PSTs’ reasoning about relationships among quadrilaterals, we are charting a 
viable learning trajectory (Simon, 1995) consisting of two intertwined strands: (a) interpretation 
and use of language and representations concerning hierarchical relationships and (b) reasoning 
about properties and relationships. In the first strand, progress is afforded by the development of 
shared language, most notably to distinguish two ways of using and interpreting Venn diagrams 
(“set–subset” and “similarities/differences”). Related to the second strand, PSTs explore and 
discuss relationships in sequence (rectangle–square, parallelogram–rhombus, etc.) with the help 
of dynamic geometry software. These activities, together with analogies to other contexts (e.g., 
relating the relationship between rectangles, rhombi, and squares to that between mint ice cream, 
chocolate chip ice cream, and mint chocolate chip ice cream), appear to support progress in 
PSTs’ distinguishing between inclusive and exclusive definitions, reasoning inclusively about 
hierarchical relationships, and identifying overlapping sets, leading to the ability to construct 
“one big diagram” representing a hierarchy of quadrilaterals. Given the contrasting ways of using 
and interpreting language and diagrams at the beginning of the unit, this is a nontrivial feat. Our 
ongoing work documents the development of PSTs’ reasoning about hierarchical relationships 
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by working from their prior knowledge with an emphasis on communication. It has yielded 
insights that clarify for us PSTs’ reasoning and enable us to articulate a learning trajectory. 
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Remaining continually curious about students’ mathematical thinking is challenging, yet 
worthwhile, in teaching practice. This paper describes and analyzes two video-based 
professional learning (PL) activities designed to help teachers go beyond their initial 
perceptions of what students understand and to identify what else they might learn about 
students’ thinking. The findings suggest the potential of the activities to evoke different types of 
curiosity about student-thinking and the conditions that may support such questioning. 
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Uncovering students’ mathematical thinking is accepted as an important part of ambitious 
mathematics teaching (Lampert et al., 2013). However, the emphasis on immediacy in the 
classroom often results in teachers lacking the time to be curious about students’ thinking and to 
understand all that is there. Teachers may also not know what else to look for or be curious about 
when a student seems to understand certain mathematical ideas well. In other words, teachers 
may not attend to what they themselves do not know about students’ thinking. Both these cases 
may result in teachers paying less attention to student-thinking than needed and responding 
before having given adequate attention to such thinking. In these challenging situations, it is 
important for teachers to slow down their own thinking and be curious about the details of 
students’ thinking.  

This paper describes two video activities designed to help teachers slow down their own 
thinking regarding students’ mathematical ideas, and support teacher-curiosity about students’ 
mathematical thinking when counting. The first activity helped teachers identify what they could 
learn about a student’s thinking when the student’s understanding of early number concepts 
appeared unclear, and the second helped teachers identify how they might extend what they 
knew about a student who appeared to have a strong understanding of the concepts involved in 
the activity. The activities are based on the construct of teacher-curiosity (Anantharajan, 2020) 
and were part of a professional learning (PL) module designed to support teachers’ curiosity 
about student-thinking. 

Literature review and conceptual framework 
This study is theoretically based on the approach of Cognitively Guided Instruction (CGI) 

(Carpenter et al., 1996) and the framework of teacher-noticing of student thinking (Jacobs et al., 
2010), which prioritize attending to student-thinking, and using it to determine how teachers can 
respond to students. The steps involved in these approaches are translated to questions that guide 
teachers to notice, interpret and respond to student thinking. However, skilled noticing does not 
automatically help teachers figure out how to respond (van Es & Sherin, 2008). In this context, 
the framework of teacher-curiosity suggests one way for teachers to respond by introducing 
specific intermediate steps to help teachers identify what they wish to learn about student 
thinking, and how they can find out about that aspect of their students’ thinking, thus providing a 
concrete way to move from noticing to responding.  
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Teacher-curiosity is defined as follows: An instance of teacher-curiosity is one where 
teachers recognize something as unknown, unfamiliar, puzzling, uncertain, or new in the context 
of teaching and learning, and feel motivated to initiate inquiry into that instance (Anantharajan, 
2020). This conceptualization of teacher-curiosity is based on literature in teacher professional 
learning, and mathematics education, and understandings of curiosity in philosophy and 
psychology. Teacher-curiosity is comprised of cognitive, motivational, and active aspects (Audi, 
1995, 2017). The cognitive aspect of teacher-curiosity involves an experience of dissonance, not 
knowing, or confusion and can include surprise, ambiguity, puzzlement, or novelty (Berlyne, 
1966; Kashdan, 2004; Lowenstein, 1994) about student-thinking. The motivational aspect 
addresses the desire to learn more about those aspects of student-thinking that the teacher finds 
surprising, ambiguous, puzzling, or new, that the teacher wants to learn more about. The active 
element of teacher-curiosity refers to how teachers go about trying to learn about aspects of 
student-thinking they are curious about. 

Teacher-curiosity can be directed towards many aspects of instruction, including students’ 
thinking. When teachers’ curiosity is directed at something they observed or experienced, it may 
be regarded as ‘specific’. For example, if a student counts and says a total number that is one 
more than the actual total, the teacher may wonder “Did this student count an object twice by 
mistake or do they not know their number sequence?” While it may relate to understanding a 
particular instance, specific curiosity may not always be satisfied by information from that 
instance itself. For instance, in the preceding example, a teacher observing the student in real 
time would be unable to re-watch the student count. However, they may design other activities or 
questions to answer the question. When what teachers observe or experience evokes curiosity 
about something that was not immediately observed or experienced, their curiosity may be 
regarded as ‘diversive.’ For example, a teacher may see a student group objects by five and 
wonder what other numbers the student can group by (Grossnickle, 2016). 

The PL at the heart of this study focused on teachers’ curiosity about children’s mathematical 
thinking in the domain of counting. Counting involves counting principles like one-to-one-
correspondence, number-sequence, and cardinality, as well as an understanding of counting 
strategies like grouping (Carpenter et al., 2017).  

The current paper focuses on the cognitive aspect of teacher-curiosity. The PL activities were 
designed to surface the range of potential ideas in student-thinking that teachers could be curious 
about. Prior work on noticing has focused on identifying what students know and are able to do 
(Jacobs et al., 2010). The goal of the video activities and corresponding instruments analyzed 
here was to shift the focus away from determining what students know and can do, to what the 
teacher-participants did not know about what students knew. Approaching children’s thinking in 
this way was intended to provide a starting point to take a stance of curiosity, rather than one of 
certainty, about student-thinking. The research question addressed here is: How do two video-
based PL activities help participants identify what they do not know about students’ 
mathematical thinking? 

Methods 
The PL focused on Counting Collections. In this activity children count collections of 

objects. Teachers observe students and ask them to explain their strategies and try to understand 
students’ thinking. The study had six participants. They taught grades TK1 to 1st grade in three 

                                                 
1 Transitional kindergarten (TK) in the California public school system includes 4-year-olds who turn five after 
September 2 of the school year, and will enter kindergarten the following year. 
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schools in California, and four of these participants taught combined K-1 classrooms. They had 
worked as teachers for between 1 and 20 years, and all of them implemented Counting 
Collections prior to the PL as well. The PL was informed by research on teacher-learning (Borko 
et al., 2014; van Es & Sherin, 2008) and supporting curiosity (Kashdan & Fincham, 2004), and 
was facilitated by the first author. The entire PL comprised of six, weekly after-school sessions 
of 90-minutes each. Sessions included video-based discussions that were guided by the teacher-
curiosity framework. Participants were individually interviewed before and after the PL using a 
protocol that operationalized the teacher-curiosity framework. The participants were paid a 
nominal honorarium for their time.  

The current paper analyzes participant responses to two video-based activities in the second 
session of the PL which focused on identifying what is unknown, and therefore possible to be 
curious about, with respect to student-thinking. Guidelines on planning video-based professional 
development for teachers (Borko et. al 2014), a framework of criteria for choosing videos 
portraying students’ mathematical thinking (Sherin et al., 2009) and empirical guidelines for 
interventions to support curiosity (Kashdan & Fincham, 2004) informed the selection of video-
clips. Each video contained elements that could potentially push teachers to examine what is and 
is not known about students’ thinking. Each brief video was of a student engaged in a counting 
activity and who was of a similar age as those the teachers taught. Participants responded 
individually to instruments developed for these specific video activities. The data analyzed in 
this paper consist of the responses to these two instruments (Table 1). For this activity the 
participants were given a research-based list of counting principles and strategies they could 
refer to as they watched and commented on the student videos.  
Video 1: Christian Counts Bears 

The purpose of this activity was to draw participants’ attention to the unpredictable and the 
unexpected in students’ thinking. The activity was structured in four steps: Provide partial 
information about student-thinking; invite participants’ prediction based on the partial 
information; provide more information that might be surprising to participants and have 
participants assess their prediction; and finally, have participants identify what they now do not 
know about the student’s thinking. The conjecture was that participants would want to know 
what might explain any gaps between their prediction and what the student actually did. 

 
Table 1: Christian Counts Bears Instrument 

Questions 
[Video paused] 

1. Based on what you have seen, what do you expect Christian might do or say next? 

2. Why would you expect that? 

[Video resumes] 

3. Did you see what you expected? [If not, what was different?] 

4. Based on this video, what do you not know, or what could you try to find out about 
Christian’s thinking?  

 
In this video, the student, Christian, is seated at a table and a researcher gives him several 

plastic bears to count. The researcher asks Christian to count all the objects together, count 
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objects by color, and compare the size of different color groups. Christian’s counting initially 
suggests that if objects were to be added to his collection, he would count the entire collection 
again to find out the total number, rather than remembering how many he previously counted and 
counting on from there. At one point in the video, the researcher adds more objects to Christian’s 
collection and asks how many he has in total. In the PL, the video was paused just prior to this 
point and participants were asked to predict in their response instruments (Table 1) what 
Christian might do next, based on what they had seen so far. The participants then saw the rest of 
the video, where he seems to count on mentally and says the new total number. Asked how he 
knew, he explains that he held the previous total in his mind, started to count mentally from the 
next number and arrived at the new total. This ability was not apparent in the preceding part of 
the video. Participants were then asked to note whether he did what they had predicted. Finally, 
participants were asked to reflect and identify what they felt they did not know about Christian’s 
mathematical thinking. 
Mohammad Counts Cookies 

The purpose of this activity was to explore what else there may be to learn about a student 
whose understanding is both strong and visible. Unlike the previous activity, here the 
participants were shown the whole video. They were then invited to propose informed 
conjectures of what remained unknown but relevant based on the information in the video. 

In this video, the student, Mohammad, is seated at a table with a researcher. The researcher 
asks him to imagine that he has three boxes with five cookies in each. He is then asked how 
many cookies he has in all. The researcher provides Mohammad a set of blocks which he uses to 
help him count. He first places three yellow blocks side by side. These may represent the boxes 
although he does not say so, because he does not count these yellow blocks going forward. On 
each yellow block he stacks five blocks of other colors. He then counts the first two stacks as 5 
and 10. Then he counts on the remaining five by ones. He says that he has fifteen cookies in all. 
In the video he devises a clear counting strategy and explains his thinking without apparent 
difficulty. This video gave participants the opportunity to reflect on what they might learn about 
a student who did not indicate any confusion or struggle. The instrument for this activity had 
only one question that participants responded to after watching the whole video: Based on what 
you see in the video, what could you try to find out about Mohammed’s thinking? 
Coding and Analysis 

The data was coded for the type of curiosity that participants expressed, and the 
mathematical principles and strategies that the participants mentioned in their responses. The 
responses were also coded for whether participants perceived a strong or partial understanding of 
the principle or strategy (Table 2). Additionally, for the first video, the analysis also looked at 
participants’ statements about whether or not Christian did what they had predicted. 
Inter-rater agreement was calculated with Kappa statistics at the parent and child code levels, and 
discussion and consensus at the grandchild code level. The Kappa value for the parent and child 
codes ranged from 0.7-1.0. Agreement values were calculated for the pre- and post-interview 
transcripts2. This instrument and data set operationalized all the elements of the teacher-curiosity 
framework and was a reliable indicator of the types of responses in more activity-specific 
instruments like the video response tool that operationalized only the cognitive aspect of teacher-
curiosity. After reaching agreement on the interview data the two coders discussed the data from 
all other instruments, including the instruments analyzed in the current paper to confirm that the 

                                                 
2 In these interviews participants watched a video and responded to questions based on the teacher-curiosity framework, as well as broader questions on the role of curiosity in 

their own work. The codebook used in the present study corresponds to the questions in the interviews and the elements of the framework. 
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codebook could be applied to these data as well. The kappa calculations mentioned above were 
thus for data sources (i.e., interview transcripts) not the focus of this study, but mentioned here 
because coding those was necessary to developing the codebook used here. Disagreements were 
discussed to reach consensus. 
 

Table 2: Codes Applied 
Type of curiosity 

Specific curiosity Participant is curious about something that they observe a student do 
or say. 

Diversive curiosity Participant is curious about something a student might do or say, 
which they cannot observe at that time. 

Mathematical ideas that participants perceive in students’ thinking 

a. Counting principles Principles teachers perceive as constituting child’s understanding of 
counting.  (Carpenter et. al. 2017, NRC 2001) Includes: • One-to-
one correspondence • Cardinality • Number sequence • Abstraction 
principle • Order irrelevance • Other principles or concepts (e.g., 
number conservation, operations, base-ten system, place value). 

ai. strong 
understanding 

Teacher implies the child has a comfortable/ fluent/ consistent 
understanding. 

aii. partial 
understanding 

Teacher implies the child is working on understanding, or that the 
child’s understanding is not always consistent. 

b. Counting strategies Strategies children use to count objects. Includes: • Grouping by 
number • Strategies to keep track • Sorting based on non-numerical 
qualities • Visual arrangements • Associating number with object • 
Other strategies 

 bi. strong 
understanding 

Teacher implies the child has a comfortable/ fluent/ consistent 
understanding. 

bii. partial 
understanding 

Teacher implies the child is working on understanding, or that the 
child’s understanding is not always consistent. 

 
Table 3. Sample of Coded Responses 

Question Bella Codes Beth Codes 
2. Why 
would you 
expect that? 

He understands 
that he can touch 
each one & count it 
out loud. 
 
He does not seem to 
count on. 

ai. One-to-one 
correspondence; 
strong understanding 
 
bii. Counting on; 
partial understanding 

He doesn’t seem 
to be keeping 
track or 
counting on as 
he is answering 
the questions. 

bii. Keeping 
track and 
counting on; 
partial 
understanding 
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The responses for each instrument were organized into a single table where each row 

represented a question in the instrument and each column represented a participant. Thus, all the 
participants’ responses were visible side-by-side. The first author then coded the responses for 
the mathematical ideas that the participants refer to. Table 3 indicates a sample of two 
participants’ responses to question 2 and the codes applied to Christian Counts Bears. 

Results 
The coded data indicated multiple patterns. The results for each video are discussed below. 

Christian Counts Bears  
After watching the first portion of the video, five of the six participants predicted in their 

written response that Christian would recount the entire collection. This was consistent with what 
they had observed until that point, where Christian tended to count all the objects each time 
objects were added. One participant wrote that he would count on from the previous total he 
counted, if he could remember the total. Four of the six participants also wrote that they expected 
that Christian would not arrive at the correct total number of objects after counting the final time.  

Five participants said he did not do what they expected – in other words, they said their 
prediction was not correct. One said she had expected that if he counted on he would begin at 14 
but he began at 16, and in this sense he did not do what she expected. The aspect of Christian’s 
counting that surprised the participants was his ability in the second portion of the video to count 
on from a number he held in his mind. This aspect of counting on is what all participants said 
they could learn more about. For example, Lillian stated in her response, “I would ask him to 
show me how he counted them all together by adding on” and Hannah stated, “We know he can 
do the basic idea of counting on. We don’t know if he can do it accurately.” 

Three participants also identified an additional mathematical idea that they wanted to look 
for and learn about in the student’s thinking, namely addition. Bella wondered “Can he add 
bigger numbers together? What can he add together in his head?” 

The participants all expressed two types of curiosity about Christian’s thinking. On the one 
hand, they wished to know more about things that would help explain why he had counted on, 
and why their own predictions were not accurate. For example, Beth stated, “I would like to find 
out how high he can count with one-to-one correspondence. (When he counted the 12 bears, he 
did not have one to one).” The other type of questions were related to what else Christian knew 
or could do as a kindergartener, or related to the general body of ideas related to number and 
counting. For example, Stacey wondered, “Would he be able to add together 2 smaller groups of 
bears?” In summary, the participants used what they had seen upto the point the video was 
paused to predict Christian’s future moves and discovered that their prediction was not accurate. 
Rather, participants found that Christian’s understanding and skills were more complex and 
advanced than they anticipated. Consequently, participants perceived that there were aspects of 
his thinking that they did not know about and identified what they could learn about his thinking. 
Mohammad Counts Cookies 

In their responses after watching the entire video of Mohammad, all the participants went 
beyond Mohammad’s ‘correct answer’ and identified further aspects of his thinking they could 
try to learn about. All the participants attended to the details of what they saw Mohammad do 
and posed questions about what he understood. Lillian wondered if he could subitize the quantity 
of five blocks. Bella said she would ask him to explain his strategy for “figuring out 15.” 

The participants all wondered if Mohammed understood how to count by groups of 5 or 10. 
This ability to skip count or count by grouping can be seen as a precursor to multiplication and 
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the participants may have wanted to determine this before exploring multiplication with him. For 
example, Hannah wondered, “Can he count by 5s? if there were 25 would he count on starting at 
11 still? Or would he make groups of 10? Count by 5s?” 

Without a particular element of surprise or dissonance evoked by the video, the types of 
questions that participants posed were of two types. The first was to clarify aspects of what they 
saw him do. The questions posed by the participants also make clear that despite completing the 
task with apparent confidence and giving the right answer, there were aspects of what the student 
did in the video that were not clear and thus possible to clarify. For example, Beth stated, “He 
was good at counting on. I would like to know more about how he keeps track.” The other type 
of questions that participants posed had to do with related mathematical ideas that they could 
explore with the student, to find out what else he understood and to what extent. For example, 
Rita wrote, “I could try to find out what he knows about 10s. [Can he] use a 10s frame?” In 
summary, the participants identified aspects of Mohammad’s thinking that were related to what 
he was able to do but were not apparent in the video.  

Discussion 
This paper looks at how two video-based activities helped participants in a PL identify what 

they could further learn about students’ mathematical thinking. The experience of the 
participants in the two activities was quite different. For the Christian Counts Bears video, 
participants were likely curious about what was unknown because of the nature of the video the 
facilitator chose, the way the viewing of the video was structured (i.e., pausing at an opportune 
time), and how inviting predictions required participants to process the information they had up 
to that point. These steps appeared to seed dissonance and give rise to participants’ puzzlement. 
The dissonance or disequilibrium that resulted from participants predicting what the student 
could do then finding out that the prediction was not accurate likely evoked participants’ 
questions about what more they could learn. It was also striking to note that the participants 
readily stated that the student did not do what they predicted, which indicates a certain humility 
and openness on the part of the participants to revise their thinking. It also potentially suggests 
that the structure of the activity may have helped them revise their thinking by focusing on their 
surprise rather than evaluating whether or not their prediction was correct. 

For the Mohammad Counts Cookies video, participants had to draw on their own knowledge 
and experience to assess the information from the video and imagine what other information they 
would like to have. The response of the participants affirms Kashdan and Fincham’s (2004) 
recommendations for interventions to facilitate curiosity, which informed the design of the task. 
These include developing “tasks that capitalize on novelty, complexity, ambiguity, variety, and 
surprise,” “enjoyable, group-based activities,” and “tasks that are personally meaningful” 
(p.490). The video-based PL activities may also provide participants cues for practice, to attend 
to the unexpected and unknown aspects of their own students’ thinking.  

With the Christian Counts Bears video, making an inaccurate prediction and seeing some 
surprising aspects of the student’s thinking may have provided a starting point to learn more 
about aspects of the student’s thinking, such as counting on or keeping track of counting, as well 
as consider other mathematical understandings that may explain what he did, such as addition. 
The teachers’ questions might have been motivated by a desire to resolve the dissonance they 
experienced, which can be a strong motivating factor in learning (Chinn & Brewer, 1993). 

For the Mohammad Counts Cookies video, participants considered a wide range of ideas they 
could learn about in Mohammad’s thinking, despite his apparent confidence and correct answer. 
The structure of the video activity may have helped participants identify what else they could 
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learn about Mohammad’s thinking. This includes the sequencing of the video after Christian 
Counts Bears, which may have primed the participants to reflect on what is known or unknown 
about the mathematical thinking of the student in a video. This mental priming, as well as the 
explicit invitation to consider what else the student may know, may have helped participants 
identify the wide range of mathematical ideas they could explore with this student.  

Although participants did not explicitly refer to Mohammad’s understanding of 
multiplication in Mohammad Counts Cookies, they did want to learn about his understanding of 
grouping and skip counting, which can be a step towards multiplication. Teachers often tend to 
associate multiplication with older students (Carpenter et al., 2017). However, the participants’ 
responses suggest that activities like these may provide opportunities to slow down, look beyond 
the correct answer, and uncover the seeds of such “advanced” ideas in younger students as well.  

Both types of curiosity that participants displayed towards student-thinking – specific and 
diversive – implicitly acknowledge that there is more to learn about students’ understanding than 
is initially apparent. The findings however indicate that specific curiosity may be further 
unpacked into questions that seek two types of answers: information that will help resolve a 
feeling of dissonance as the result of a surprising occurrence or an incorrect prediction, and 
information to explain what is observed. The former can help teachers correct misconceptions or 
assumptions about students, and the latter can help teachers make sense of the knowledge and 
understanding that a student demonstrates in the moment.  

In the context of video-based PL activities, it is possible that some specific questions can be 
resolved by re-watching the video. For example, Rita asked of Christian’s counting, “Where does 
his 1-to-1 [correspondence] stop?” Watching the video again with this question in mind may help 
her answer this question. But not all questions can be answered by re-watching the video because 
the information to answer some of the specific questions that participants asked is not present in 
the video. They would need to interact with the student and give him more tasks to find out, like 
asking him to count all bears by ones, or asking him to explain how he keeps track, asking him to 
count the collection again using the strategy that he just used – all ideas proposed by the 
participants. Thus, these questions indicate specific curiosity to the extent that what the student 
does in the video triggers participants’ questions though the answers may not be in the video.  

On the other hand, diversive questions can help teachers use their observations as a starting 
point to wonder what else the student may know or understand. In this sense, diversive questions 
may help teachers plan their response to and next steps even with students who seem to have 
strong mathematical understandings. In the context of the PL itself, diversive or “what else” 
questions may be an effective way to close the video activities, so as to invite teachers to 
continue thinking about what they might learn about a student’s thinking, including their own. 
Developing the capacity to pose these questions can also help teachers approach student-thinking 
with the attitude that there is always more to learn. PL activities can thus be designed to elicit all 
these different types of questions about student-thinking. 

Limitations and future work 
As this is a small dataset, further research is needed to determine to what extent these 

findings are applicable to other PL contexts. Further, the participants in the study already 
implemented Counting Collections and were interested in teaching that elicits and responds to 
student-thinking. It would require further research to understand whether and in what ways 
teachers with other pedagogical approaches respond to the activities described in this study.  
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This study aims to understand a middle school mathematics teacher’s instruction and reflections 
on her experiences with supplementary curricular materials enriched with interactive 
simulations—PhET interactive simulations (sims) and sim-based materials—over two years. We 
conceptualize Linda’s (pseudonym) teaching in terms of both thinking and doing. Regarding 
Linda as doer, results show significant differences in Linda’s instruction, favoring sim lessons 
compared to non-sim lessons. Regarding Linda as thinker, results show increased attention to 
problems of practice related to teaching, as well as more productive framing of problems of 
practice. When these two findings are taken together, shifts in what Linda did and thought 
illustrate the potential for high-quality supplementary materials to function as a catalyst for 
change as we map the flow of shifts in what Linda thought and did across two years. 

Keywords: teacher learning, interactive simulations, problems of practice, framing  

Purpose 
In the light of research suggestions, teachers have been tasked to empower students to 

experience mathematics as a dynamic process of exploration (Boaler & Greeno, 2000; Langer-
Osuna, 2017) rather than recalling a static body of knowledge. This task demands teachers to 
create a fundamentally different learning environment in which teachers “draw information out 
of students” (Boaler, 2003, p. 4) rather than transferring the information to students. Given the 
challenges of “moving away from a language of skills (‘students will calculate slopes’) to the 
language of understanding (‘students will identify common features of linear growth’)” (p. 62), 
to transition from one teaching approach to the other is not an easy task (Horn, 2012).  

Even if many teachers engage in informal reflection on their teaching on a daily basis, it 
might be challenging for teachers to be critical about their instructional decisions and know what 
to change about their teaching (Hart et al., 1992). Then, the question becomes how to create 
opportunities for teachers to be critical about what they do in classrooms and “rethink their 
teaching, rather than merely extend their existing practice” (Horn et al., 2017, p. 51). Related to 
this question, there are some promising research findings on the use of technology (Goldenberg, 
2000) and supplementary curricular materials (Matewos et al., 2019) in challenging routine 
instructional practices and the existing interplay between students, teachers, content, and activity 
(Zbiek et al., 2007). As a special technological tool, we focus on PhET sims (phet.colorado.edu) 
and supplementary curricular materials designed around them—sim-based materials. 

Teachers often use online supplementary curricular materials with the intention of improving 
student engagement or learning (Polikoff et al., 2018). However, it is well-documented in the 
literature that teachers may end up being the ones engaging in learning. For example, in their 
effort to create a learning environment for students to engage in mathematics in more meaningful 
ways, Wood et al. (1991) realized how “the classroom had simultaneously and unintentionally 
become a learning environment for the teacher as well” (p. 588). Building on research on 
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learning through teaching, teachers often develop their understanding of students, content, and 
teaching as they use unfamiliar tasks (Leikin, 2005).  

Building on the research findings on the potential of supplementary curricular materials and 
instructional technologies to be catalysts for change (Kaufman et al., 2018; Matewos et al., 
2019), this study explores the potential of sims and sim-based materials to motivate shifts in a 
middle school mathematics teacher’s approach to teaching mathematics. For this purpose, we 
recorded what Linda did in her sim and non-sim lessons and what she thought about her 
experiences with these materials over two years. Accordingly, we asked the following questions: 

1. How did Linda’s instructional practices in the sim and non-sim lessons compare in terms 
of instructional quality over two years?   

2. What problems of practice did Linda identify as she used sims and sim-based materials 
over two years? How did she frame these problems of practice?  

3. What, if any, alignments were there in Linda’s identification and framing of problems of 
practice and her instructional practices as evidence of professional growth?  

Conceptual Framework 
Given the complexity of teaching, identifying shifts and changes is not an easy task. To 

capture a complete picture of teacher change, we conceptualize teachers as both doers 
and thinkers (Horn et al., 2017) (Table 1). The field of mathematics education made important 
progress in developing measures for instructional quality based on instructional practices aligned 
with a reform approach in which the instruction builds on student thinking and ideas (Boston, 
2012; Marder et al., 2010; Thompson & Davis, 2014). Some observable indicators of what 
teachers do in the classroom include the rigor of tasks as planned and implemented, teacher 
questioning (e.g., exploring mathematical relations), accountability of student–teacher and 
student–student interactions (e.g., linking mathematical ideas), teacher’s press for knowledge or 
thinking, and students providing knowledge or thinking in response (Boston, 2012).  

One important resource to get access to teachers’ thinking is problems of practice that they 
identify in their talk (Horn & Little, 2010; Vedder-Weiss et al., 2018; Windschitl et al., 2011). 
For example, ‘students’ difficulties in mathematics’ can be a problem of practice that teachers 
may identify. In addition to identifying this problem of practice, how teachers frame the problem 
of practice (Dyer, 2020; Vedder-Weiss et al., 2018) adds an interpretive stance of 
teachers’ thinking. Building on the same example, the teacher may frame the problem as an 
inherent student characteristic (e.g., some students are born with a “math gene” and some are 
not) or as a lack of learning opportunities available in the classroom (e.g., the context of the 
problem did not afford students to make sense of the content). These two framings have 
important consequences for what teachers might do in the classroom.  

Aligned with the conceptualization of teachers as doers and thinkers, Clarke and 
Hollingsworth (2002) presented an interconnected professional growth framework including 
teacher reflection and enactment, showing the interplay between personal domain (e.g., 
knowledge), external domain (e.g., curricular materials), domain of practice (e.g., teacher’s 
instructional practices), and domain of consequences (e.g., outcomes of teacher questioning) 
(Table 1). Our conceptual framework enabled us to capture what a teacher did and thought and 
the interplay between the two across the domains of interconnected professional growth model.  

  

Table 1: Conceptual Framework 
Teacher as a Thinker Teacher as a Doer 
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• What problems of practice 
teachers identify (Horn & Little, 
2010; Vedder-Weiss et al., 2018; 
Windschitl et al., 2011) in their 
talk. 

 
• The way(s) teachers frame the 

problems of practice (Bannister, 
2015; Dyer, 2020; Jackson et al., 
2017; Snow & Benford, 1988; 
Vedder-Weiss et al., 2018) they 
identify in their talk.  

• Instructional quality assessment (IQA) (Boston, 
2012) comprised of eight rubrics below: 

- Potential of the Task 
- Implementation of the Task  
- Student Discussion Following the Task 
- Rigor of Teachers’ Questions  
- Teacher’s Linking Contribution 
- Student’s Linking Contribution 
- Teachers’ Press for Knowledge or Thinking 
- Students Providing Knowledge or Thinking 

• Each rubric is scored on a scale from 0 to 4   

Teacher as doer and thinker (Horn et al., 2017) 
The Interplay between Thinking and Doing 

 

Methods 
Participant 

Linda was a middle school mathematics teacher with 11 years of teaching experience at the 
beginning of the study. During her participation in the study, she was teaching in a Title 1 school 
in the southeastern United States.  Her students were predominantly white (64%), with students 
who were identified as African American (15%), Hispanic (18%), and others (3%). Overall, 
Linda shared many characteristics not uncommon with other middle school mathematics 
teachers. She identified her teaching as teacher-centered. She was knowledgeable about student-
centered pedagogy based on her professional learning experiences (e.g., undergraduate program). 
She was struggling with student engagement and looking for some resources to increase student 
engagement. At the start of this research, Linda participated in a two-day workshop where she 
was familiarized with PhET simulations and provided with sample sim-based lessons. Besides 
the workshop, she received no structured support (e.g., professional development). The 
instructional materials designed by the PhET research team and other teachers were accessible to 
her through the website. She decided which sims and corresponding sim-based materials to use.  

Our goal with our case study selection was to understand a middle school mathematics 
teacher’s use of supplementary curricular materials enriched with interactive simulations. Yin 
(2018) highlighted the goal of doing case study research is to develop “analytic generalizations” 
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(p. 23), which are defined as “The logic whereby case study findings can apply to situations 
beyond the original case study, based on the relevance of similar theoretical concepts or 
principles” (p. 349). We believe this case study can inform other teachers in situations beyond 
Linda’s case and make connections to the theory of teacher learning (LeCompte et al., 1993).   
Data Collection 

We observed and recorded lessons in two of Linda’s 7th grade math periods during the 
2017–2018 and 2018–2019 school years. In the first year of the study, Linda taught three sim-
based lesson modules, each comprised of 3–4 consecutive days of teaching with the use of sim-
based materials, in one of her class periods in which data were collected. She taught the 
corresponding non-sim modules in another class period in which data were collected. The data 
set included video recordings of seven sim lessons and six non-sim lessons in Year 1 and 10 sim 
lessons in Year 2. Linda used the same sim-based modules in the first year and second year of 
the study. We also conducted interviews with Linda at three time points: the beginning of Year 1, 
the end of Year 1, and the end of Year 2, as well as collected written reflections after she taught 
each sim-based module (Figure 1).   

 

Data Analysis 
To answer the first research question on what Linda did, we used video recordings of Linda’s 

teaching in sim lessons and non-sim lessons. We analyzed the instructional quality of each lesson 
by using IQA (Boston, 2012; Matsumura et al., 2002) and assigned a rubric-specific IQA score 
for each type of lesson—sim lessons versus non-sim lessons. To examine whether sim lessons 
resulted in statistically higher levels of instructional quality, we ran seven permutation tests (one 
for each of our seven IQA rubrics) (Good, 2013).  

We used Linda's written reflections and interviews to answer the second research question on 
Linda’s thinking. We separated them into idea units (Jacobs et al., 1997; Tekkumru-Kisa & 
Stein, 2015). In each idea unit, we identified what problem of practice (Horn & Kane, 2015) 
Linda discussed and how she framed the problem of practice (Dyer, 2020; Snow & Benford, 
1988). We organized our coding chronologically to identify shifts across two years.  

To answer the last research question, we examined the interplay between what Linda did and 
thought as she started using sims and sim-based materials over two years by using the 
interconnected model of professional growth framework (Clarke & Hollingsworth, 2002). This 
framework enabled us to map the flow of change between four domains: external domain (e.g., 
sims and sim-based materials), personal domain (e.g., knowledge, assumptions), domain of 
practice (e.g., sim-based activities used by the teacher, questions the teacher pose to students), 
and domain of consequences (e.g., student engagement, student learning). 

Figure 1: Data Collection 
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Results 
Differences in What Linda Did in Class with a Focus on Instructional Quality  

Regarding Linda as doer, results showed that IQA scores were significantly higher in sim vs. 
non-sim lessons on four rubrics: implementation of the task, student discussion following the 
task, rigor of teacher’s questions, and teacher’s linking (Table 2). More specifically, in sim 
lessons, Linda encouraged students to elaborate their thinking and explore mathematical 
meanings with some effort to make connections between their contributions. Thus, students had 
more opportunities to develop their own strategies and present their work and their thinking to 
the whole class. Please note that we excluded the rubric on the potential of the task because sim-
based materials were provided to Linda. We were interested in what Linda was doing with sim-
based materials when she used them in her lessons rather than the potential of these tasks.  

 

Table 2: Mean of IQA Rubric Scores in Non-sim and Sim lessons  
Potential 

of the task 
Implement
ation of the 

task 

Student 
Discussion 

Following Task 

Rigor of 
Teachers' 
Questions 

Teacher 
Linking 

Student 
Linking 

Teacher 
Press 

Students 
Providing 

Non-sim 
Lessons 
(Year 1) 

 
2.50 

 
2.00* 

 
1.50* 

 
1.50* 

 
1.33* 

 
1.17 

 
2.17 

 
2.00 

Sim Lessons 
(Year 1 & 

Year 2) 

 
3.80 

 
3.20 

 
2.80 

 
2.87 

 
2.07 

 
1.80 

 
2.93 

 
2.67 

*p < .05.  

To give the reader a sense of what Linda’s sim and non-sim lessons looked like, we briefly 
describe the lessons focusing on the same topic—scale factor, part of the unit on proportional 
relationships. In the non-sim lesson, Linda went through a worked example in the book, which 
comprised of three steps as follows: (1) write the scale as a fraction, (2) convert the fraction to a 
unit rate, (3) multiply the unit rate by actual length to find the missing value. In contrast, the sim 
lesson started with an open-play time for students to explore how the sim works (click to open 
the sim). After exploring the sim, Linda asked students to create a figure on the sim and scale it 
by a scale factor of 2 and 3, as well as to predict how the perimeter and area of the figures would 
change as the original figures were scaled. After students compare their predictions with the 
actual values (the sim can show the actual values of the perimeter and area of the figures with a 
click on a button), Linda asked students: 

What do you think happened to the area? Why was not as simple as it is, just multiplying it 
[the area of the original figure] by 3?... Any ideas of why you think that is? It [the scale 
factor] definitely affected the area differently? (Sim Lesson on Scale, Year 2)  

Based on these qualitative descriptions, in the non-sim lesson, finding the missing values asked 
in the problems was the end of the discussion. Whereas, in the sim lesson, the scaled figures 
served as the data for students to develop a rule that explains how scale factor affects the 
perimeter and area of a shape—if they affect the perimeter and area differently, what was the 
reason? While these contrasts between sim and non-sim lessons were important, Linda’s 
takeaway from this experience was worthwhile, as discussed below.  
What Problems of Practice Linda Identified and How She Framed Them? 

Regarding Linda as a thinker, there was a shift in Linda’s attention from problems of practice 
related to students to problems of practice related to teaching. At the beginning of the study, 
Linda heavily focused on problems of practice related to students (e.g., students not engaged) 
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(89% of the problems of practice). In Year 2, by contrast, Linda focused on problems of practice 
related to her teaching (e.g., ask good questions) (62.5% of the problems of practice) (Table 3).   

 
Table 3: Number of Problems of Practice Related to Students and Teaching 

 

Number of Problems of 
Practice related to Students 

(%) 

Number of Problems of 
Practice related to Teaching 

(%) 

Total Number of 
Problems of Practice 

(%) 

Pre-Interview 8 (89%) 1 (11%) 9 (100%) 
Year 1 13 (52%) 12 (48%) 25 (100%) 
Year 2 9 (37.5%) 15 (62.5%) 24 (100%) 

 

Aligned with Linda’s increasing attention to her teaching, in the post-interviews, Linda 
talked about her struggle in asking good questions, limitations in her content knowledge, and 
how much to tell students to scaffold their thinking (Table 4a and 4b). In addition to these new 
problems of practice emerged, Linda’s description of these problems got more sophisticated. For 
example, in Year 1, Linda framed the importance of teacher questioning especially for students 
who might struggle, whereas, in Year 2, Linda reframed teacher questioning as a tool to support 
student learning, not only for students who struggle but also for expanding student thinking as 
she said: 

Coming up with the right questions to ask them. Like both ends of the spectrum … when 
they are struggling but also … when they think they got it … there is always more. I mean, 
aside from the generic “explain your thinking,” … how to encourage them… and also like 
“can you find another way,” … for ones who are struggling but also when they do get it. And 
how to push them but not just give them more work to do. (Post-interview, Year 2) 

Although these percentages show a shift in Linda’s attention, it is important to note that an 
increase in the number of problems of practice related to teaching does not necessarily indicate a 
positive change over time. It is equally important to examine Linda’s framing of these  

 
Table 4a: Problems of Practice Related to Students Over Two Years 

 Students 

not 

engaged 

Students 

not 

motivated 

Students 

have a 

mindset of “I 

am not good 

in math” 

Some 

students 

struggle 

more 

Some 

students 

play 

schooling 

Do not 

notice 

patterns 

Linda 

expects 

Struggle 

with 

working on 

open-ended 

tasks 

Struggle with 

understanding 

math concepts 

(e.g., coming 

up with a rule) 

Pre-

interview 

3 1 2 2 0 0 0 0 

Year 

1/Sim 

0 1 1 2 1 2 6 0 

Year 

2/Sim 

0 0 1 0 1 0 4 3 

 

Table 4b: Problems of Practice Related to Teaching Across Two Years 

 Attend 

student 

experience 

Avoid mis-

conceptions 

Know 

your 

goal 

Anticipate 

student 

struggle and 

responses 

Teacher’s 

limited 

content 

knowledge 

Ask 

good 

questions 

Decide 

how 

much to 

tell 

Anticipate 

what 

students 

know 

Step 

back 

Pre-

interview 

1 0 0 0 0 0 0 0 0 

Year 

1/Sim 

1 2 1 1 2 3 2 0 0 
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Year 

2/Sim 

0 0 1 1 1 9 1 1 1 

 
problems of practice related to students and teaching. Our analysis of Linda’s framing of these 
problems of practice showed evidence that Linda’s conception of what it meant to be a good 
student was challenged. She was surprised about students who were typically on track and 
following instructions because these students struggled with new expectations in sim lessons and 
expected Linda to tell them what to do. In a post-interview, Linda said,  

Often in the sim activities, they [students] are asked a question that they do not know how to 
answer right off their head. So, there is an immediate pushback; well, I do not wanna do this, 
I do not wanna do this… but when I just stop giving them how to, there has been a 
difference. (Post-interview, Year 2) 

Linda was also surprised by students who were typically unengaged because in sim lessons, 
these students made important contributions to the discussions. In her written reflections in Year 
1, Linda wrote, “The students that surprised me the most were the students that are usually the 
‘unmotivated’ ones.” Thus, Linda’s prior framing of students who were on track or unengaged 
was challenged. Another reframing was about student engagement. In the pre-interview, Linda 
expected sims and sim-based materials to increase engagement; however, she was not clear about 
what aspects of sims would make that difference. Starting in Year 1, Linda framed student 
engagement in connection to the curricular materials she used. In a post-interview, Linda said,  

I realized that me going over problems at the board and asking the students questions 
required little from the students… That is what I am trying to say in a sim lesson versus a 
non-sim lesson. There is not much opportunity for them to contribute their ideas, whereas, in 
sim lessons, there is much more opportunity, which is also a part of more engagement. (Post-
interview, Year 2) 

Students were contributing their ideas and figuring things out by themselves rather than 
following Linda going over the problems on the board, and that was the reason for increased 
student engagement in sim lessons.   
The Interplay Between What Linda Did and Thought as Evidence of Professional Growth 

Regarding the last research question, we identified three flows of change evident in the 
interplay between what Linda did and thought over two years. The first flow of change was 
about Linda’s seeing students as more capable and problematizing who were motivated and 
engaged. As Linda started using sims and sim-based materials—external domain—she practiced 
not telling students what to do and encouraging them to explore—domain of practice. In 
response, she observed students figuring things out by themselves, especially the ones who were 
considered unmotivated and unengaged—domain of consequences. This consequence created an 
opportunity for Linda to reflect on her assumptions about who was engaged and motivated to 
learn mathematics and what students were capable of doing—personal domain. Overall, induced 
from her observations in her classroom, Linda started seeing students more capable and student 
engagement in connection to the curricular materials she used.  

The second flow of change started with Linda stepping back and listening to students—
domain of practice. Consequently, students brought different ideas and thoughts, often different 
than what Linda expected to hear—domain of consequences. Linda repeated her questions 
hoping that students would bring what she expected to hear; however, this did not happen, and 
Linda ended up limiting student thinking by asking close-ended questions through the end of the 
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lessons—domain of practice. This flow was reflected in Linda’s personal domain as an expressed 
struggle in asking good questions to leverage student thinking. Importantly, not telling students 
what to do created a need for some practices that Linda was not readily comfortable with, and 
she showed ownership of the problems of practice (e.g., asking good questions).   

The final flow of change was about teaching mathematics with a conceptual orientation. As 
Linda started using sims and sim-based materials, the nature of mathematics they were working 
on became more about the concepts, relations, and connections rather than procedures and 
computations. Thus, in sim lessons, she more frequently asked “why” and “how” questions to 
uncover student ideas—domain of practice. In addition to Linda, students also asked questions to 
make sense of the mathematical ideas and concepts (e.g., “What does random mean?”) part of 
their effort to make sense of the mathematics. However, Linda and her students struggled in 
coming up with those explanations—domain of consequences—and this struggle was resolved 
with Linda’s shift to procedural focus through the end of the lessons. Again, Linda identified this 
as a problem of practice related to her personal domain by identifying limitations in her content 
knowledge in connection to her struggle in maintaining the mathematical focus on conceptual 
ideas—personal domain. Although Linda was not readily capable of maintaining the conceptual 
focus, she developed an awareness and, more importantly, a need to improve her content 
knowledge.  

Discussion and Conclusion 
These findings support the recent findings on the potential of supplementary curricular 

materials in creating shifts in teachers’ instructional roles and doubt induced by their own 
teaching (Matewos et al., 2019). Linda started using sims and sim-based materials with the 
intention of increasing student engagement; however, “the classroom had simultaneously and 
unintentionally become a learning environment” (Wood et al., p. 588) for her as well. She 
showed some shifts in her instructional practices, in the problems of practice she identified, and 
in her framing of these problems of practice. Using sims and sim-based materials created a rich 
experience where she problematized her previous conceptualization of student engagement as 
stable and connected it to the nature of work students are tasked to do. She started seeing 
students as more capable, became critical of her own instructional practices and content 
knowledge, and identified areas for improvement. These shifts, especially seeing students as 
more capable and student engagement in connection to what students are tasked to do, are 
important steps to engage in efforts to improve teachers’ instruction (Jackson et al., 2017).  

As discussed before, creating learning environments aligned with reform recommendations—
more equitable learning opportunities for students—is not an easy task for teachers (Horn, 2012). 
Teachers’ experimentation with student-centered pedagogy as they use well-designed 
supplementary curricular materials can create opportunities for teachers “to rethink their 
teaching” (Horn et al., 2017, p. 51), identify what particular practices need to be improved in 
their own teaching, and a desire to improve (Horn & Kane, 2015). Given the teachers’ more 
frequent use of online resources and social media with the pandemic (Aguilar et al., 2021), 
teachers are becoming more aware of the available resources on online platforms. Thus, there is 
a need to understand the influence of these materials on what teachers do in their classrooms and 
what teachers think about their experiences with these materials. Doubt induced by teachers’ own 
teaching and ownership of problems of practices (e.g., asking good questions) has the potential 
to further teachers’ efforts to improve their instructional practices. In future work, we aim to 
explore the role of interactive simulations, tasks, and student contributions in affording the shifts 
we identified in what Linda did and thought over two years.  
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In the wake of national movements calling for attention to equity, colleges, departments, and 
instructors are now faced with various responsibilities to implement practices and structures to 
support diversity, equity, and inclusion (DEI). This project aims to design a professional 
development program for mathematics graduate teaching assistants (MGTAs) by helping them 
learn evidence-based teaching practices to support diverse groups of learners in engaging 
mathematics activities. Part of these efforts included investigating department leaders’ 
understanding of equity. This paper focuses on interviews with department leaders at a large, 
public, research university. Our analysis shows that despite the implementation of university 
structures focused on improving equity, department leaders had very different understandings of 
equitable teaching, and reported differences in how equity factors into their roles. 

Keywords: Professional Development, Equity, Inclusion, and Diversity  

Introduction 
The majority of mathematics graduate teaching assistants (MGTAs) spend between 12 to 20 

hours each week working for mathematics departments as instructors or teaching assistants 
(Selinski & Milbourne, 2015). In some departments, MGTAs have the opportunity to teach their 
own courses, while in other departments, MGTAs do not teach their own courses but instead lead 
recitations or lab sessions that support large enrollment courses taught by faculty members. 
During a two-year master’s degree program, MGTAs might have the opportunity to teach as 
many as seven classes or lead as many as 24 recitations, and in a six-year doctoral program 15 
classes or 60 recitations. At some doctoral-granting institutions, MGTAs teach up to 68% of 
Calculus I courses (Selinski & Milbourne, 2015). This means that during their graduate 
programs, MGTAs contribute to the learning experiences of hundreds, if not thousands, of 
undergraduate students. 

Because of their significant impact on the teaching and learning of undergraduate 
mathematics (Ellis, 2014; Miller et al., 2018; Selinski & Milbourne, 2015), it is important to 
address MGTAs’ development as educators. One important piece of this preparation is 
addressing equity and inclusivity in their classrooms. To this end, we have designed a 
professional development (PD) program specifically for MGTAs focused on equitable, inclusive, 
and engaging teaching practices. Our vision is to have this PD program adopted as a permanent 
department structure, with the aspiration of creating more equitable learning environments 
through a larger systemic change process (Reinholz et al., 2020). Change initiatives benefit from 

                                                 
1 The ELITE PD Team: Mary Beisiegel and David Fifty Oregon State University; Mary Pilgrim and Sloan Hill-

Lindsay at San Diego State University; Rani Satyam and Rebecca Segal at Virginia Commonwealth University; 
Stacey Zimmerman at Western Carolina University; Hayley Milbourne at University of San Diego. 
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department-level implementation because departments represent relatively coherent units of 
culture (Reinholz & Apkarian, 2018). This coherence may support innovation efforts more 
broadly and can contribute to the sustainability and effectiveness of the implementations 
(Reinholz et al., 2018). 

Departments are not monolithic, though, and contend with differing goals and varying 
cultural and institutional issues. Consequently, the first stage of this project is to investigate 
perspectives of faculty members serving in departmental leadership roles to learn about various 
supports and barriers that might impact an MGTA PD program. This requires “exploring clashes 
of values that may lie at the heart of institutional resistance to change” (Reinholz et al., 2020, p. 
3), as transformation efforts need to unite stakeholders in an ongoing and cyclical process to 
adapt to changing contextual factors (Reinholz & Apkarian, 2018; Smith et al., 2021). 

In this report, we address two research questions that inform the development of the MGTA 
PD program: 

1. How do department leaders conceptualize equitable teaching? 
2. What role does equity have in department leaders’ positions and considerations?  

Theoretical Framework  
We utilize Reinholz and Apkarian’s (2018) adaptation of Bolman and Deal’s (2008) four-

frame model of organizational change to study departmental cultures and change within them. 
This framework provides context for exploring how department cultures may support or hinder 
change initiatives by taking into consideration institutional structures and norms through a 
systems approach (Henderson et al., 2011; Kezar, 2011). In particular, the four constructs, or 
frames, explored are: structures, symbols, power, and people. Reinholz and Apkarian (2018) 
define these frames: 

Structures are the roles routines and practices of a department; their enactment and meaning 
are dependent on symbols, which are the norms, values and ways of thinking in a department; 
changes are ultimately enacted by people whose individuality impacts their intentions and 
perceptions; and the distribution of power determines who makes certain decisions and 
influences interactions (p. 7) 

For this report, we focus on the people frame, which is also referred to as the human resources 
frame (Bolman & Deal, 2008). This frame highlights that each department is composed of 
individuals that have their own goals, agency, needs, and identities (Reinholz & Apkarian, 2018). 
The department needs people (and vice versa) and exists to serve human needs, especially those 
of students, who have their own unique goals (Bolman & Deal, 2008). Tensions within the 
people frame can be caused by the differing needs, goals, and values amongst various 
stakeholders within the department. Department chairs, in particular, are well positioned to 
provide leadership in navigating these differences, such as by creating an inclusive and 
supportive culture for faculty, staff, and students (Bystydzieński et al., 2017; Fried, 2003; Hecht 
et al., 1999; Wergin, 2003). 

Data Sources and Methods 
We report on the analysis of baseline interviews with leadership in one mathematics 

department at a large, public, PhD granting university prior to implementing a PD program for 
MGTAs focused on equitable and inclusive teaching practices. We characterized department 
leaders as those who we identified as powerbrokers with the ability to influence department-level 
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decisions regarding MGTA PD. For example, the department chair, the graduate chair, 
experienced coordinators, and those who contribute to existing MGTA PD within the department 
received invitations for interviews. Our focus on these important figures is in recognition that 
“change effort requires sanction from the appropriate power holders to succeed” (Reinholz & 
Apkarian, 2018, p. 5). Three of the six department leaders accepted our invitation and were 
interviewed. These interviews were audio recorded and transcribed. For this report, we refer to 
these interviewees by their roles: (1) the department chair whose role is to oversee the entire 
department in its research and teaching missions, (2) the associate chair whose role is mostly to 
support the department chair and take on tasks delegated by the department chair, and (3) the 
graduate chair whose role is to oversee graduate admissions and the progress of graduate 
students through either the master’s or doctoral program. Each of the participants are 
mathematicians who had either been invited to serve in their specific role or volunteered to serve 
in their role when the position became vacant. 

The semi-structured interview protocol focused on learning about how equity and inclusivity 
were addressed by the department as a whole and with respect to the MGTAs’ teaching practices, 
how equity and inclusivity were understood by department leadership, and the department 
leaders’ perceptions of the department and its direction. Some questions that were asked 
included: How would you like MGTAs to engage with students?; What is most important to you 
for MGTA professional development?; How would you describe equitable teaching?; and, In 
what ways does the department or college value equity and inclusivity? 

Analysis 
For our first phase of analysis, we used an inductive open-coding approach (Miles & 

Huberman, 1994) for interview responses that related to our research questions regarding 
department leaders’ conceptualization of equity and the role of equity in their position. Our 
second phase of analysis incorporated an axial coding method to surface emerging patterns and 
distinctions from our codes. Additional consideration in this phase was given to the department 
leaders’ positions in the department. Lastly, we utilized the people frame as an explanatory 
construct to make sense of what we were seeing in the data. In particular, we referenced this 
frame to conceptualize how department leaders were contending with the varying needs, goals, 
and values of the stakeholders that their position was responsible for addressing, as well as their 
own. 

Findings 
There was a noteworthy difference in department leaders’ responses to questions about 

equitable and inclusive practices. In particular, the department chair expressed significant 
institutional pressures, such as how the department would be ‘measured’ in whether and how it 
supported diverse groups of students. In comparison, the other department leaders expressed 
little, if any, institutional pressures in their respective roles. Thus, we saw their different 
leadership roles as moderating their views and descriptions of equitable and inclusive teaching 
practices. We address each leader’s responses to questions related to equity and inclusivity and 
the context of their roles in those responses. 
The Department Chair  

When the department chair was asked “How would you describe equitable teaching?” he did 
not provide a direct answer, instead describing the pressures he felt from society as a whole as 
well as those from the institution. With regard to societal pressures, he stated “our society is just 
rigged in a way [that] makes it really hard for some people to succeed… I’m keenly aware from 
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my position right here that the forces that affect all of those things are way deeper than anything 
that happens when they set foot in my classroom.” With this in mind, he went on to describe 
“equitability” in his own teaching as “[making] sure that I’m not accidentally saying something 
that’s going to make someone doubt whether they belong … And so, for me, it's just, you know, 
don’t inflict more damage.” 

The department chair shared that much of his work and how he directs some of the focus of 
the department is mandated by the dean’s and the institution’s focus on DEI. One example of this 
was the requirement that each department in the college needed to establish a DEI committee. 
The department chair shared, “I can’t claim … that I was the instigator of this, although, you 
know, eventually we would do it. But the dean requires this.” Because of the mandate, the 
department chair had assembled a committee of faculty and graduate students who had each 
expressed interest in DEI issues in the department. The department chair had given the 
committee an assignment to write a mission statement for the department that focused on DEI. 

In comparison to the two other department leaders, the department chair experienced 
significant institutional pressures and scrutiny. His voiced his frustrations several times during 
the interview, noting:  

Every now and then I get held accountable. You know, math departments are very vulnerable 
in this regard because, you know, D-F-W rates and graduation rates. I can’t tell you how 
many times I’ve sat around a table with [de-identified]... And we get going on student 
success or failure rates in classes and next thing I know, everybody in the room is looking at 
me going what are you going to do about that? […] And-and one of the things that has upset 
me most is that every now and then a crusading high-level administrator walks into my office 
and throws some statistics down in front of me about how achievement gaps are particularly 
bad in mathematics. And you know, I don’t deny or debate any of that. 

Consequently, the department chair’s focus on equity was mostly based on “hard-nosed 
measurables” because that was the lens by which his performance would be measured by the 
institution. 

As a result, he described some of the work in his leadership position consists of advocating 
for the mathematics faculty and the DEI work and training that they engage in. These efforts 
seemed to come with disheartenment over his view that the university’s president reiterates the 
existing inequities instead of acknowledging the work that is done: 

[I]t’s extraordinarily demoralizing. Because I know that my faculty are … going to the 
seminars and the workshops where they are being trained … in developing the ways to be 
inclusive and to implement teaching practices that promote equitability and inclusivity. I 
know they're doing that work. But when I hear my president saying those things over and 
over again, as if it's … endemic to the institution, it’s a blow … But I think it’s important … 
to see and acknowledge the people who are doing the work … even if it’s not showing up in 
the measurables yet, to acknowledge that it is happening. 

This focus on measurables led to his recognition of a need to collect and track data for his 
department. He shared that this would enable him to guide his department with regard to PD to 
ensure they are collectively “making any progress.” Consequently, he suggested that when 
evaluating equity related efforts, “one looks for impacts and sort of measurable effects.” 
The Graduate Chair 

When the graduate chair was asked “How would you describe equitable teaching?” he shared 
that he perceived equity to mean equality, that “every student is treated in the same fashion in a 
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classroom.” He characterized inclusive teaching as “you can’t leave anybody out.” However, he 
described that “the system” should not be changed for students, stating “the kid that for whatever 
reason doesn’t show up half of the time, or, … for whatever reason [is] the one that, you know, 
looks funny to you or act[s] weird. No you can't … change the system for any of those people.” 
The graduate chair did not view DEI as a principal component of his role and he expressed little 
accountability towards equity in his position. This was interesting given that the department chair 
proudly noted that the department had worked “very hard to make sure that our graduate 
admissions policies and practices are inclusive and holistic. And we are keeping track of our 
progress in terms of diversity and in terms of, you know, what-what the demographics of our 
incoming classes [of graduate students] are.” 

When asked about whether he encourages faculty and MGTAs to engage in opportunities 
focused on inclusivity and equity, the graduate chair responded: 

I personally don’t do it … I really don’t think in these terms, so it’s funny. I try to run the 
graduate program, okay.. [laughter]. You know, which is a very different thing than leading a 
college or department. So personally, I do not do that. I do not encourage faculty members or 
TAs to go and engage in those types of opportunities. But I see the leaders, you know, above 
… me. I see those do it definitely, and I think it’s their role. I mean I’m not trying to duck 
responsibility. 

In this statement, he implicitly acknowledged that his role as graduate chair had different 
requirements than the department chair’s role, and so he did not feel similar pressures to attend 
to DEI-related issues. Yet, he eventually recognized that there are aspects of MGTAs’ potential 
future careers that could involve DEI, such as academic tenure, promotion, and hiring practices; 
he expressed, “I think those have really tightened up already and have at least in my opinion 
become equitable and inclusive.” 
The Associate Chair  

Unlike the department chair and graduate chair, when the associate chair was asked “How 
would you describe equitable teaching?”, he was able to explicitly reference various student 
supports, such as the need to create a welcoming environment that would promote access and 
accommodate different learning styles. He suggested the need to contend with various barriers to 
student learning. One point of emphasis, his response contrasted with the graduate chair’s 
conceptualization because he suggested providing flexibility for students, especially during the 
COVID-19 pandemic. He added that flexibility was also needed due to other aspects of students’ 
lives, such as other jobs and pressures that might interfere with their learning. 

The associate chair described the various ways in which DEI related to different aspects of 
his position prior to becoming associate chair. He referred to advocacy training that was required 
to participate in various hiring committees, and similar training that was needed for his previous 
role as department chair. He also described roles he had served in that were directly related to 
department’s vision for DEI, such as being co-chair of a committee that established department 
acknowledgements regarding DEI values. Part of this responsibility required finding common 
ground amongst department members with regard to DEI values. 

The associate chair also discussed his efforts at promoting diversity within mathematics to 
the department community and emphasized the importance of this with graduate students. He 
acknowledged the overrepresentation of while male mathematicians and the need to “make a 
sustained effort to say this is not all there is, and bring up a contribution of female 
mathematicians.” These efforts included organizing department colloquia and events, such as 
one to show a movie on a prominent mathematician from an underrepresented background, 
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which was followed by “long conversations.” Similarly, he discussed the memberships that the 
department has with various regional and national alliances and described his participation.  
Department Leaders’ Views of PD for MGTAs 

The leaders were asked questions about MGTAs’ teaching roles and professional 
development. The associate chair was the only department leader to mention equitable teaching 
when discussing the important teaching outcomes for MGTA PD. He described the need for 
MGTAs’ teaching to be responsive to the needs and backgrounds of the student body, and to be 
able to provide a classroom environment that is welcoming and accessible: 

For professional development I think-well two things come to mind: one is, you know, 
pedagogical tools to-to-to address different backgrounds in the students, to accommodate 
different teaching styles. And together with that is, you know, tools for providing a 
welcoming environment and an environment that promotes the access and equity. 
This sentiment was in opposition to what the graduate chair suggested. To him, an ideal 

outcome would be a successful continuation of the status quo. He described this as: “[W]e want 
to give it along, pass it along to the next generation … you know, try to see yourself as a little 
link in a chain, you know, where you pass on from the next, to the next generation. And then 
they’ll do it again, hopefully.” Lastly, the department chair had a more individualized 
conceptualization than the other two leaders. He suggested that the most important outcome of 
MGTA PD would be for better career preparation, sharing: “I have to view graduate study as a 
professional pathway. You know, this really is something that you’re doing because you think it 
leads to a career. You’re not doing it for personal growth or, you know, to become a better 
citizen or stuff like that.” 

Discussion 
While the college and department have explicit diversity action plans and statements, and 

despite awareness of various department and institution DEI initiatives, the three department 
leaders shared very different visions of equity and equitable teaching. This embodies Gutiérrez’s 
(2002, 2017, 2018) description of the word equity as being complicated by a long history of 
conceptualization. In her work, she shares that this often results in the word equity retaining 
simplistic or superficial definitions that refer to a wide range of meanings and contexts that have 
led many to believe that they are speaking of the same ideas/topics despite having different 
definitions. The differing viewpoints, values, and goals of these department leaders highlight 
possible tensions that change initiatives might have to contend with, as described by the people 
frame.  

Because of his unique position, we were particularly interested in the department chair’s 
views on equity. The department chair's communications about equity seemed largely influenced 
by other university officials, including his dean. He adopted language that he attributed to these 
leaders, especially his focus on “measurable outcomes.” Similarly, the department chair’s view 
on equity seems to be shaped by, or aligned with, his description of the university president’s 
focus on “endemic” deficiencies instead of the work that faculty are doing. He shares a bleak 
view that efforts within the classroom could only hurt students instead of help. Yet, this 
understanding of equity does not serve the students of the department, nor does it respond to the 
students’ needs and identities. The department chair’s seeming indifference towards explicitly 
addressing equity in the classroom does not bode well for departmental change and innovation 
efforts in this regard; especially as he is uniquely positioned to provide leadership in directing 
support towards such efforts.  
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One key aspect of the people frame that surfaced with the individual goals and agency 
amongst the three department leaders. A range of accountability towards integrating or 
encouraging DEI efforts emerged in our analysis. On one end of the spectrum, the graduate chair 
seemed to shun any responsibility for advocating for DEI, sharing that he thought it was the 
responsibility of those “above” him, saying that “I think it’s their role.” Meanwhile, the 
department chair felt it was his responsibility to advocate for the DEI-related work of those in the 
department. And lastly, the associate chair recounted various ways that they supported DEI in 
their work, both explicitly in their actions or implicitly by participating in related PD. 

Conclusion 
We conclude with thoughts about how this work may influence the development of our 

MGTA PD program focused on equitable teaching practices. Through our analysis we found 
several tensions within the people frame that were caused by the differing needs, goals, and 
values amongst the department leadership. Our analysis yielded several barriers and supports for 
our planned implementation of the MGTA PD program. First, the different understandings of 
equity and equitable teaching demonstrate challenges of explaining the program and its learning 
outcomes to various leaders and stakeholders within the department, including leaders, faculty, 
and MGTAs. The MGTA PD program focuses more on qualitative measures of teaching (e.g., 
engaging students and creating welcoming environments) and might not be accepted and 
supported by a department chair who feels under pressure to produce “hard-nosed measurables.” 
Second, given that the graduate chair does not view it as his responsibility to encourage 
opportunities focused on equity, such a PD program may experience challenges with MGTA 
recruitment and sustainability. Similarly, his view that ideal PD outcomes would enable the 
perpetuation of current teaching practices is in opposition to our project’s vision of changing 
teaching practices.  

The interviews also surfaced various supports for the implementation of our PD program. 
Department leaders shared that college and university leadership are focused on avenues to 
leverage DEI efforts. Although the graduate chair demonstrated disinterest in advocating for 
equity-related opportunities, the other department leaders highlighted that there are faculty 
members who value these experiences and efforts. Leveraging such college- and university-level 
support will be instrumental in building, and maintaining, a sustainable MGTA PD program.  
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Emotions come into play as teachers make decisions, act, and reflect on the different purposes, 
methods, and meanings of math teaching. In order to learn more about the emotions of 
mathematics teachers, this paper shows the emotions experienced by 81 Mexican teachers who 
teach mathematics in middle school and high school. Emotions are contextualized by the theory 
of the cognitive structure of emotions, narrative and drawings were used to express their 
emotions. According to the results, three frequent and common emotions were identified in the 
teachers, happy-for, satisfaction, and disappointment. Fear was the only frequent emotion in 
high school teachers; it occurred at the beginning of their teaching, due to the lack of 
pedagogical content knowledge. 

Keywords: Emotion, Teacher Educators. 

Emotions and Mathematics Education 
In recent years there has been a growing interest in the study of emotions in education 

(Graesser, 2020). In particular, the field of mathematics education classifies the emotions of 
teachers into two groups: negatives and positives. Negative emotions imply unpleasant 
experiences during the teaching moment; stress, demotivation and burnout syndrome are among 
these emotions. Burnout syndrome is an emotional disorder caused by job stress which leads to 
experience anxiety or depression (Schutz & Zembylas, 2009; Rodríguez, Guevara & Viramontes, 
2017). Experiencing high levels of intensity of this group of emotions could even lead to 
abandoning the profession (Hannula, et. al, 2007). The most frequent negative emotion 
experienced by mathematics teachers is mathematics anxiety (Fennema & Sherman, 1976; Brady 
& Bowd, 2005; Bekdemir, 2010). On the contrary, positive emotions imply pleasant experiences 
when leading a class; some of these emotions are enthusiasm, joy, satisfaction, and interest (Di 
Martino & Sabena, 2011; Anttila, et. al, 2016). 

According to the results of the investigations, there are two triggering situations for negative 
emotions in mathematics teachers: (a) emotional experiences as students: generally, those who 
experienced negative emotions related to mathematics continue to experience them after they 
become mathematics teachers, retaining the belief that mathematics is difficult (Coppola, et. al, 
2012); and (b) the knowledge of the academic discipline: many of the teachers in charge of 
teaching mathematics are not specialists in the contents of the school curriculum (Philipp, 2007). 

In order to expand and communicate what teachers feel while teaching mathematics, this 
paper presents 81 cases of mathematics teachers who communicate their emotions through 
narrative and drawings. This communication was carried out collectively in four different 
workshops, coordinated by the author; these workshops were held outside the teachers’ working 
hours. The aim of the workshop was to create a place where the mathematics teachers could talk 
about their emotions during teaching with colleagues from other places and from the same or 
different school levels. Feeling heard and listening to other teachers, they find similar emotional 
histories and are allowed to reflect on how emotions affect their teaching. 
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OCC Theory and Emotional Knowledge 
Because language is a functional means to talk about emotions, this work makes use of the 

Theory of the Cognitive Structure of Emotions (Ortony, Clore & Collins, 1987), also named 
OCC theory after the initials of the authors, to study emotions. OCC theory analyzes emotions 
from the narrative of a person about their emotional experience; it ignores completely the 
behavioral and physiological evidence that are also recognized as sources to investigate 
emotions. OCC theory defines emotions as “valenced reactions to events, agents or objects, with 
their particular nature being determined by the way in which the eliciting situations is construed” 
(Ortony, Clore & Collins, 1987, p.13). This definition implies that an emotion appears when a 
person values a specific situation; this situation is recognized as a triggering situation, and the 
appraisal is expressed by an emotion word. 

The analysis of emotions in OCC theory is not only focused on the emotion words, although 
linguistic evidence is taken into account, but also considers the triggering situations. This is 
because daily language has several words that could be used to refer to different aspects of the 
same type of emotion. For example, the word distress refers to a moderate fear, while the word 
panic gives evidence of an intense level of fear, but they definitely refer to same type of emotion, 
fear. The OCC considers some emotion types (OCC typology of emotions, Table 1), and gives a 
generic definition for each of them, focusing on the triggering situation and the emotion word. In 
this way, the analysis of an emotion depends on its interpretation based on the proposed 
definition. 

 
Table 1. Emotion types according to the OCC theory. 

Class Group Types (sample name)  
Reactions to 

events 
Fortunes-of-

others  
Pleased about an event desirable for someone 

else (happy-for) 
Pleased about an event undesirable for 

someone else (gloating) 
Displeased about an event desirable for 

someone else (resentment) 
Displeased about an event undesirable for 

someone else (sorry-for) 
Prospect-based  Pleased about the prospect of a desirable event 

(hope) 
Pleased about the confirmation of the prospect 

of a desirable event (satisfaction) 
Pleased about the disconfirmation of the 
prospect of an undesirable event (relief) 

Displeased about the disconfirmation of the 
prospect of a desirable event (disappointment) 

Displeased about the prospect of an 
undesirable event (fear) 

Displeased about the confirmation of the 
prospect of an undesirable event (fears-

confirmed) 
Well-being 

 
Pleased about a desirable event (joy) 

Displeased about an undesirable event 
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(distress) 

Reactions to 
agents 

Attribution 
 
 

Approving of one’s own praiseworthy action 
(pride) 

Approving of someone else’s praiseworthy 
action (appreciation) 

Disapproving of one’s own blameworthy 
action (self-reproach) 

Disapproving of someone else’s blameworthy 
action (reproach) 

Reactions to 
objects 

Attraction 
 

Liking an appealing object (liking) 
Disliking an unappealing object (disliking) 

Reactions to 
events and 

agents 
simultaneously 

 

Well-being 
/Attribution 

 
 

Approving of someone else’s praiseworthy 
action and being pleased about the related 

desirable event (gratitude) 
Disapproving of someone else’s blameworthy 
action and being displeased about the related 

undesirable event (anger) 
Approving of one’s own praiseworthy action 
and being pleased about the related desirable 

event (gratification)  
Disapproving of one’s own blameworthy 

action and being displeased about the related 
undesirable event (remorse) 

Ortony, Clore and Collins (1987). 
 
On the other side, Emotional Knowledge is a construct that refers to the information teachers 

have about their own emotions while teaching mathematics (García-González, 2020). This 
emotional knowledge is developed, as the mathematical and didactic knowledge, and the 
development implies the following abilities: 

1. Recognize that we feel, because emotions are part of our human nature.  
2. Be able to recognize the emotion we experience in a specific situation. 
3. Put a name to the emotion; this is knowing the emotion word that clearly represents what 

we feel. 
4. Recognize the triggering situation for what we feel.  
5. Distinguish the negative emotions from the positive ones.  
6. Regulate the emotions we experience, being able to act in consequence. 
7. Be capable of helping others, like our students, on their self-knowledge emotionally. 
In this paper, the focus is on the first five abilities of emotional knowledge. 

Methodology 
This study involved 81 Mexican teachers who teach in middle school (students from ages 12 

to 15), and high school (from ages15 to 18). These teachers attended voluntarily four different 
virtual workshops carried out from July 2020 to November 2021. Attendance to the workshop 
was as follows: workshop 1, 30 teachers, workshop 2, 15 teachers, workshop 3, 15 teachers, and 
workshop 4, 21 teachers. The data collection was carried out through two techniques, drawing 
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and narrative, both of which have been tested for their functionality to express emotions through 
written and pictorial language (García-González & Martínez-Padrón, 2020).  

Teachers are asked to draw, individually, a drawing of an emotional experience while 
teaching mathematics, but this drawing should not include emotion words. Then, they show it to 
other teachers who will identify the emotion expressed. After the observers talk about the 
emotion in the drawing, the teacher that draws should say if it was the actual emotion he or she 
wanted to communicate. Most of the times the observers match the correct emotion. Finally, the 
teacher that draws is asked to write the emotion word associated to the drawing, and to describe 
the situation that triggered the emotion. In other activity, teachers are asked to take considerable 
time to write their histories as mathematics teachers. Each one of them reads it in an intended 
session; from this narrative the listeners should comment on a positive or negative emotional 
experience. Both techniques were carried out in the workshops to develop emotional knowledge.  

The drawings were collected in drive files for later analysis. The teachers were asked to 
authorized the dissemination of their products for research purposes, taking care of anonymity.  

According to OCC theory, a type of emotion is identified by 2 specifications: 1) Concise 
phrases that express all the eliciting conditions of the emotional experiences. The evidence 
highlights these phrases in bold. 2) Emotion words that express emotional experience. The 
emotion words are highlighted in italics. 

Therefore, emotion words and triggering situations were identified in the drawings and 
narratives. Then, with the help of the OCC typology, a reinterpretation of the evidence was 
carried out based on the definitions of the emotions, and the emotion type that better describes 
the evidence was selected.  

The teachers are listed from 1 to 81, and it is highlighted whether they are male (M) or 
female (F). In the evidence, the code T1-M means male teacher listed with number 1, and T48-F 
means female teacher listed with number 48. 

Results 
Figure 1 shows twelve emotions identified along with their frequency (number of teachers 

having that emotion), the same teacher experienced several types of emotions. No distinction is 
made between educational levels because fear was the only emotion experienced just by the high 
school teachers and not by the middle teachers. Table 2 shows the triggering situations of these 
twelve emotions. 
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Figure 1. Teachers’ emotions. 

Table 2. Triggering situations of the emotions. 
Emotion type Triggering situation 

Happy-for Students’ learning, Scores/text, concept understanding. 
Resentment Problem solving. 
Sorry-For Students’ indifference to the understanding of concepts, 

internet access, students’ problem-solving 
Satisfaction Students’ problem-solving, participation/paying attention 

in class, appropriate teaching resources. 
Disappointment When students’ learning is not achieved, the lack of 

students’ paying attention/participation online, low 
students’ scores, excess of work in virtual mode.  

Fear Lack of pedagogical content knowledge. 
Joy The management of the classroom, the attention of 

students. 
Distress The resolution of the test by the student. 

Pride Acknowledgement of the work of the teacher, students 
attending to recommendations, achievement of personal 
academic goals. 

Self-reproach The lack of pedagogical content knowledge, students’ 
lack of understanding. 

Reproach Distraction in virtual class, dissatisfaction with the score, 
the unwillingness of students. 

Liking Teach using technology, the application of mathematics. 
 

Below it is focused the presentation of results on the two most frequent emotion types, 
satisfaction and fear. 
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Satisfaction 
All teachers have expectations of their students. Two expectations were identified in the 

participants, solving problems and participation or attention in class. When these expectations 
become real, teachers experience the emotion of satisfaction (pleased about the confirmation of 
the prospect of a desirable event). In addition to their expectations of students, also were 
identified expectations for themselves, such as those associated with online teaching. With 
respect to students' problem-solving the drawing of T48-F expresses her happiness (pleased) 
because the student solved the problem; it can be noted the smile that is drawn on her face. 

T48-F: I feel happy when the student managed to solve the problem (Figure 2). 

 

Figure 2. Satisfaction emotion-problem solving. T48-F. 

Fear 
Fear is defined as being “displeased about the prospect of an undesirable event”. This emotion 
was only identified in high school teachers, and it was a consequence of the lack of Pedagogical 
Content Knowledge (PCK, Shulman, 1987) at the beginning of their teaching practices. The 
teachers were surprised when they recognized that teaching mathematics required more than just 
knowing mathematics (T15-M). 

T15-M: I felt a bit of fear when I knew that I was in charge of a large number of students 

(50), I was uncertain if I would be able to control them, … I was attacked by the fear of 

knowing if my ideas and my way of teaching could be correctly understood and 

assimilated by my students, … I thought I had a huge advantage: I knew mathematics, but 

my didactic was weak. 
Discussion and Conclusions 

Figure 1 shows the range of emotions that a teacher can experience when teaching 
mathematics, and is made up of positive and negative emotions. The case of the emotions of 
reproach and self-reproach is striking, where the agents that trigger them are the teacher himself, 
in the case of self-reproach, due to low PCK, and the student is reproached for his distraction in 
class, and his unwillingness to learn. Recognizing what we feel, putting a name to the emotion, 
and knowing the situation that triggers it, account for our emotional knowledge. 

Previous studies have documented mathematical knowledge as a triggering situation of 
negative emotions in a Mexican middle teacher (Diego’s history García-González & Martínez-
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Sierra, 2020) due to his teaching training. In this case, were identified PCK as the triggering 
situation of fear in high school teachers; we can also explain it from teacher formation. In 
Mexico, most of the high school teachers have a strong mathematical training because they study 
for a mathematical career or a related college degree as physics or actuaries. However, PCK is 
not always part of the curriculum for these degrees. 

Fear was triggered at the beginning of their teaching practices by their poor PCK. This group 
of teachers recognized their extensive mathematical knowledge but they felt powerless regarding 
to the teaching part. So, they had to look at how to change this triggering situation by means of 
courses and their own practice, which gave teachers more confidence, as T15-M said. 

Having emotional knowledge becomes as important as having mathematical knowledge and 
PCK, because emotions guide the actions of the teachers. For example, teachers who are afraid 
because of their lack of PCK may, in the worst case, abandon their teaching labor. On the other 
hand, the results make us reflect on the need to develop emotional knowledge in their training, as 
the mathematical and didactic knowledge is developed. In this sense, Marbán, Palacios & Maroto 
(2020) underline the need to establish specific mathematics affective intervention programs and 
incorporate them into the didactic training process of pre-service teachers. 

The previous excerpts confirm that teaching mathematics requires not only mathematical 
knowledge but specialized knowledge to teach it, in the words of Carrillo-Yañez, et. al (2018). 
This matches with Pekrun (2021) who points out that teachers need more than knowledge in the 
discipline to teach, referring specifically to the emotion and motivation of the teacher. With 
regard to this result, it is relevant to mention that the lack of mathematical knowledge triggers 
negative emotions in primary educators because many of the teachers in charge of teaching 
mathematics are not specialists in the contents of the school curriculum (Philipp, 2007). The data 
on this study point out that the triggering situation of negative emotions in high school is the 
PCK and not the mathematical knowledge; as mentioned earlier, these cases can be associated 
with the formation of both groups of teachers. 
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This paper examines the impact of an intensive professional development on practicing teachers’ 
mathematics discussion-leading practice. A tool for examining specific discussion-leading moves 
was used to measure change in teachers’ practice as observed through submitted video 
recordings of mathematics discussions. Participants included 33 teachers from three school 
districts who submitted a total of 193 videos across the study. The findings reveal that the 
professional development had differential impact on participating groups. We explore group 
attributes that could contribute to these differential outcomes. 

Keywords: Professional development, classroom discourse 

Improving the teaching of mathematics remains a national priority and is critical for 
improving the learning opportunities for mathematics students. Reforms designed to improve 
teaching and learning have often centered on curriculum and standards, though studies 
demonstrate that “no in-school intervention has a greater impact on student learning than an 
effective teacher” (p.1, NCATE, 2010), indicating that closer attention to teaching quality is 
essential. This is no small task, given the scale of the teaching force. There are simply not 
enough teachers with the knowledge and teaching skills needed to reach all students (NCTQ, 
2008; Ball & Forzani, 2009). This challenge requires robust professional development that can 
contribute to improving the teaching and learning of mathematics.    

We argue that teachers profit from well-designed opportunities to develop new visions for 
practice, learn more about students’ thinking, or work on specific mathematical topics. However, 
such opportunities are often insufficient to support teachers with the complexity of classroom 
teaching. These kinds of professional opportunities focus on critical resources for instruction, but 
not on the details of practice itself. The professional development (PD) that is the focus of this 
research was an effort to address the challenge of supporting the learning of practice, specifically 
mathematics discussion-leading practice. We situated the PD in a “common text” for working on 
practice, where participants engage in a form of “legitimate peripheral participation,” followed 
by structured opportunities to enhance their capabilities with discussion-leading practices.  

Theoretical Framework 
Our work is grounded in three bodies of work – conceptions of teaching and learning, teacher 

learning, and discussion-leading practice. We conceive of quality teaching as critical in 
advancing mathematics education. Mathematics teaching is something that people do; it is not 
merely something to know. Teachers must use knowledge flexibly and fluently as they interact in 
specific contexts with students, with the aim of helping those students become proficient with 
mathematics. Conceptualizing the work of teaching as interactions among teachers, students, and 
content, in environments (Cohen et al., 2003) has important implications for the design of PD. It 
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means that simply knowing a lot of math is not enough to be able to help students learn 
mathematics. Teachers must understand mathematics content and practices in specialized ways 
that are attuned to their learners. Simultaneously, teachers must be able to engage in teaching 
practices that enable them to interact with subject matter and students in multiple organizational 
formats, and support students’ interactions with the mathematics being studied. Furthermore, the 
complex nature of mathematics teaching and the ever-changing nature of the environments in 
which teaching happens, also require a commitment to, and means of, professional learning in, 
from, and for practice. Thus, teaching requires the integrated use of specific knowledge and 
skills in particular contexts of instruction. This emphasis on (a) knowledge use, (b) attention and 
responsiveness to learners, and (c) context forms the basis of our approach. 

Decades of research have demonstrated that many approaches to PD do not adequately 
support increases in teachers’ capabilities (e.g., Coalition for Evidence-Based Policy, 2013; 
Cohen & Hill, 2001; Garet et al., 2001; Jacob et al., 2017). Often, teachers participate in a 
patchwork of sessions where presenters share ideas and raise enthusiasm without sufficient focus 
on teachers’ opportunities to develop mathematical knowledge (Little, 2001; Wilson & Berne, 
1999), adequate engagement in practice (Darling-Hammond, 1998), or connection with practice 
(Ball & Cohen, 1999; McLaughlin, 1990; Olson & Craig, 2001). Typically, U.S. teachers’ PD 
opportunities are neither sufficiently “curricular” nor effective for improving practice. In 
contrast, the structure of our PD reflects the five elements of effective PD identified by 
Desimone and Garet (2015). First, our PD had a “content focus,” --the practice of leading 
discussions in elementary mathematics, focusing on number and operation, which spans 
elementary grades. Second, the PD was designed to be “active” with opportunities to engage in 
leading discussions. Third, the PD was “coherent” in focus, centered on building skill with 
leading mathematics discussions. Fourth, the 36 hours of PD is aligned with the “sustained 
duration” associated with positive outcomes for teachers and students (Lynch et al., 2019; Yoon 
et al., 2007). Finally, “collective participation” was embedded across the PD. 

The PD was designed to support the learning of teaching practice by situating learning inside 
of elementary mathematics classroom instruction. The PD used a classroom as a “common text” 
for working on practice, where participants were not only watching and discussing, but were 
engaged in developing and learning practice. This common text creates opportunities for 
participants to 1) examine lesson plans and student tasks, 2) discuss the plans and tasks with the 
teacher of record, making adjustments together, 3) observe the enactment of the discussed lesson, 
including deviations from and adjustments to the planned lesson, 4) collaboratively review 
students’ daily work in response to the teaching, and 5) debrief the teaching of the lesson, 
unpacking together adjustments and deviations from the plan, the mathematics that unfolded 
during the lesson, and moves the teacher made to engage students in mathematics discussion (see 
Shaughnessy et al., 2017).  

In addition to engaging in this collective legitimate peripheral participation, the PD involved 
a focused work designed to improve skill with leading mathematics discussions. Our definition 
of mathematics discussions entails a period of sustained dialogue among students and the teacher 
where students respond to and use one another’s ideas to develop collective understanding. This 
requires teachers to engage in areas of work, including launching and concluding the discussion, 
recording and representing content, and orchestrating the discussion by eliciting and probing 
student thinking, orienting students to one another’s thinking, and making contributions. For a 
detailed description of this work, see Shaughnessy et al. (2021). Our study investigates the 
impact of the described PD on teachers’ enacted discussion-leading practice. 
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Methods for Studying Professional Development Impact on Practice 
Participants 

The full study spanned three iterations of the professional learning involving variations of the 
setting of the PD (on site or remote) and the components of the PD (peripheral participation with 
and without the focused discussion-leading session). This paper focuses on three participant 
groups from iterations 1 and 2 and reports on the impact of the full PD (both peripheral 
participation and the focused discussion-leading session) on their discussion-leading practice.  

Group H1 consisted of 12 teachers from one school district in the midwestern United States, 
10 of whom had completed more than three years of mathematics teaching. This group attended 
on site. Two researchers co-facilitated the practice-based discussion session. 

Group H2 consisted of 10 teachers from one school district in the midwestern United States 
(different from the district in Group H1), seven of whom had completed more than three years of 
mathematics teaching. This group attended on site and one of the facilitators from Group H1 led 
the practice-based discussion session. 

Group A2 consisted of 11 teachers from a large urban district in the northeastern United 
States, nine of whom had completed more than three years of mathematics teaching. This group 
gathered in one location with the other Group H1 facilitator to live-stream and engaged via a chat 
function in the peripheral participation portion before engaging in the practice-based discussion 
session with the facilitator. 
Data Sources 

The PD goals were multi-faceted, taking on many aspects critical to the teaching of 
mathematics. These goals included teaching practice, mathematical knowledge for teaching, 
language for talking about teaching, and skill in close observation of teaching and students. 
However, the primary goal was to increase participants’ skills with leading mathematics 
discussions. The additional foci of enhancing language for talking about teaching, building skill 
with close observation, and building mathematical content knowledge were in service of this 
primary goal of improved discussion-leading practice.  

This focus on improving mathematics discussion-leading practice necessitated the collection 
of participants’ mathematics discussion-leading practice before and after the intervention. Six 
videos were collected from each of the 33 participants in the months immediately preceding and 
immediately following the PD, three pre-PD (in the last two months of school prior to the PD) 
and three post-PD (in the first two months of school). The set of three videos consisted of two 
lessons identified by participants as examples of mathematics discussions and one lesson 
provided by the research team. The selection of mathematical tasks used in a discussion and the 
content focus impacts the moves that teachers can make when leading discussions as well as the 
overall trajectory of the discussion, so the third video record of a mathematics lesson used a 
provided task accompanied by a detailed lesson plan. The video recording of the provided lesson 
also allowed for a more direct comparison across participants. The topic, task, and lesson 
structure were constant across participants and across time periods (pre and post). A small 
number of videos were not included in the analysis. Four videos from Group H1 and one video 
from A2 were not included in the analysis due to the format of the lesson (lecture only, 
completing practice problems, or small group instruction only).  

Data was also collected around the supporting foci, both to measure incoming skill in these 
areas and to measure potential changes resulting from the intervention. One such measure was 
utilized for examining changes in teachers’ mathematical knowledge for teaching. The Learning 
Mathematics for Teaching survey (LMT, 2008), was selected as a pre- and post-intervention 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1400



measure of teachers’ mathematical knowledge for teaching. The PD itself had multiple content 
strand foci as the PD encompassed both peripheral participation in a grade 5 mathematics 
program focused on fractional reasoning, operations with integers, and mathematical 
argumentation as well as a practice-based discussion session focused on number and operations. 
The trajectory of the classroom content is naturally dependent on students’ progression and 
uptake of the content alongside the teachers’ decisions about the trajectory of the work. For that 
reason, an LMT form focused on the Number and Operations was used. The LMT was 
administered in the same time frame as the video collection.  
Selection of Tools for Data Analysis 

Many measures exist for evaluating student outcomes of mathematics lessons, but fewer 
measures exist for measuring mathematics teaching practice, specifically mathematics 
discussion-leading practice. To determine changes in both the overall quality of the mathematics 
and in the specific moves that teachers were using in their discussion-leading practice, tools that 
are oriented on these qualities were needed.  

Mathematical Quality of Instruction. The Mathematical Quality of Instruction instrument 
was selected to measure the overall mathematical quality of the lessons (Hill et al., 2008). This 
tool is not aligned with any particular orientation to the teaching of mathematics (e.g., reform-
oriented instruction) or to a particular lesson structure, but rather to the depth and quality of the 
mathematics content available to students during instruction allowing us to discern, for each 
lesson, the richness of the mathematics, the precision and accuracy of the mathematics 
instruction, students’ involvement with content through Common Core-aligned mathematical 
practices, and the teacher’s ability to interpret and respond to students’ mathematical ideas.  

Discussion Leading Checklist. A complimentary tool was designed to examine teachers’ 
specific discussion-leading moves. In prior work, a discussion-focused checklist tool was 
developed to formatively assess beginning teachers’ practice. Using the tool entailed recording 
the presence or absence of particular discussion-leading moves to support the noticing of the 
work done by teachers in a specific discussion. A previous study showed that the tool was able to 
reveal variations in practice across teachers and provide fine-grained detail about the skill of 
teachers in leading mathematics discussion while also accounting for existing classroom norms 
(Shaughnessy et al., 2021). Because our PD involved practicing teachers, we expanded the list of 
possible moves in the checklist to more accurately capture the range of moves made by 
experienced teachers. These additions included advanced areas of work, such as supporting 
students to make connections and extending and revising student ideas. The checklist tool was 
designed to capture the presence or absence of particular moves. The tool was not designed to 
judge the skill with which the move was enacted or students’ responses to the move. This is in 
tension with our desire to capture the quality of teaching. However, the decision was made to 
account for teachers’ attempts to enact different discussion leading moves as we are considering 
the learning of teachers. Our main goal is to determine whether teachers are trying out new work 
to improve their practice. We know that trying out new work often results in less than perfect 
outcomes, particularly in early implementation. We did, however, want to capture problematic 
implementation to determine whether problematic enactment increased, decreased, or stayed the 
same before and after the intervention. To that end, the checklist tool also included a section for 
“issues” such as consistently ineffective probes, as well as an overarching rating indicating 
whether the instruction in the video was aligned with our definition of a discussion. This 
overarching rating is meant to serve as an acknowledgement that discussion-leading is more than 
the sum of the parts that can be captured in a checklist tool. 
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The tool necessarily focuses on specific observable moves that teachers make while leading a 
discussion, categorized both by the phase of the work (e.g., task set-up, discussion launch, 
orchestration, conclusion) and by the buckets of work that teachers must do (e.g., eliciting and 
probing student thinking, orienting students to one another’s thinking, supporting students to 
make connections). This organization allowed for observations about the density of work in a 
particular area (e.g., the number of different moves a teacher used to orient students to one 
another’s thinking) and the spread of work across a discussion (e.g., whether a teacher was doing 
work in all possible areas or if the work was concentrated in one or two areas). Each observable 
move was marked as present, not present, or not applicable (NA). The code of NA was used 
judiciously in cases where the move was unnecessary. For example, NA could be used if the task 
selected precluded a range of responses or methods to be shared or if the teacher did not need to 
further probe student contributions due to the level of detail of the contribution. Many moves had 
possible available codes of “once,” “more than once,” and “student initiated” to support the 
ability to analyze the frequency and the extent to which established norms seemed to be 
influencing the work of the teacher. For our analysis, these three codes were collapsed to present.  
Data Analysis Methods 

Mathematical Quality of Instruction. The 193 videos in this study were coded using the 
discussion checklist tool and the MQI. MQI coders attended MQI training and were certified as 
raters. Videos were double-coded for both instruments using associated coded books. Coders met 
to reconcile discrepancies for each video prior to entering final codes and resolved differences 
via discussion and referencing the codebooks. MQI coding was applied to equal-length chapters 
of the full video (approximately 7.5-minute segments), with the number of chapters determined 
by the length of the video. Each chapter was scored on five domains. The full video was scored 
on nine factors and assigned one overall score for the lesson. Chapter scores were used to create 
aggregate video scores for the chapter-specific points. In addition, aggregated pre- and post-
intervention MQI scores were created for each participant using mean scores.  

Discussion Checklist. The discussion checklist coding was applied to videos. Composite 
scores were created for each area of work represented in the discussion checklist tool. For those 
areas where work was consistently possible, sum scores or scaled mean composite scores were 
used to represent the amount of possible work that occurred relative to the available work. For 
example, an Orienting composite variable was created using the sum of the “present” moves. 
There were five possible moves - posing questions to students about others’ ideas, asking 
students to restate another’s idea, responding to another student’s idea, adding to an idea, and 
interpreting the strategies of others – that could be observed. For eliciting, a scaled mean score 
was used to represent that there were four possible moves - eliciting multiple ideas, eliciting a 
range of responses, engaging several students in sharing ideas, and eliciting students’ 
mathematical processes. A scaled mean was used to enable comparison between teachers who 
had all four moves available and those who only had three moves available due to task selection 
(e.g., a range of student responses is unlikely given the task). Composite variables included task 
setup, discussion launch, eliciting, probing, orienting, generic orienting, connecting/ extending/ 
revising, concluding, and issues. A detailed description of the checklist items associated with 
each composite score can be found in Table 1.  
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Table 1: Composite Variable Descriptions 
Variable Description 
Task Set Up Composite score takes into account the work the teacher does to help students 

make sense of the task (including reading, restating, and unpacking context), 
whether the teacher maintains cognitive demand of the task, and whether the 
students are sufficiently prepared to begin the mathematical work. 

Launch Sum score takes into account whether the teacher had the attention of all 
students before launching the discussion, is concise and on-task during the 
launch, and explicitly states the goal of the discussion. 

Eliciting Scaled mean score takes into account the work of eliciting multiple ideas, 
eliciting a range of responses, engages several students, asks about processes. 
Because not all tasks allow for a range of responses, a conditional mean was 
calculated based on whether a range was possible, then the mean was scaled. 

Probing Score takes into account the work of posing questions to get students to 
explain their understanding of relevant mathematical content or processes, or 
follow-up questions focused on why a student did particular work. 

Orienting Sum score included posing questions to students about others’ ideas, asking 
to restate another’s idea, responding to another’s idea, adding to an idea, and 
interpreting the strategies of others. 

Generic 
Orienting 

Sum score accounted for generic orienting moves such as encourages the 
class to attend/listen/respond, uses turn-and-talk to encourage discourse, 
elicits student to student discourse, and uses moves that require all to respond 
to others’ work. 

Revising Score focuses on moves to supports students to revise their work. 
Connecting/ 
Extending/ 
Revising 

Composite mean takes into account moves including asking students to 
identify similarities/differences, supporting students to connect to past work, 
supporting students to connect to the problem context, supporting students to 
connect between representations, examining efficiency, generating 
hypothetical situations to extend thinking, and supporting students in revising 
their thinking. 

Concluding Sum score accounting for the teacher making a closing statement, supporting 
students in remembering a key idea, and taking stock of the discussion. 

Issues Sum score accounting for problematic moves such as inaccurate revoicing, 
mathematically problematic contributions, over-scaffolding, consistently 
using ineffective probes. 

 
Aggregated pre- and post-intervention discussion checklist scores were created for each 

participant using mean scores. Kruskal-Wallis tests and independent samples tests were 
performed on pre-data to determine whether differences between participants by study group 
existed. Significantly different distributions were found for study groups, indicating that separate 
analysis of these groups is necessary. For each group of teachers, independent samples tests were 
examined for the discussion checklist score pre and post PD. These tests included Levene’s test 
for equality of variances and t-tests for equality of means. Paired samples t-tests for aggregated 
case data were examined by study. 
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Findings 
Examining the data disaggregated by study group, we noticed differences in outcomes of 

three groups who received the full PD. Next, we unpack the features of these groups, their 
experiences, and their outcomes to investigate factors that influence participant outcomes. 

Group H1. The first group of participants received PD in the first iteration of the study. The 
content of the peripheral participation experience focused squarely on setting up tasks for 
productive work, eliciting and probing student thinking, and supporting students to engage with 
others’ ideas, the foundation for orienting students to one another’s thinking. The participants 
observed minimal full-class mathematics discussion-leading work. The student group was not 
accustomed to engaging in discussions and the teacher had extensive groundwork to do to move 
toward productive discussions. The focused discussion-leading session supported participants in 
building their knowledge and skill with launching discussions, orienting students to one 
another’s thinking, representing and recording content, and concluding discussions.  

This group entered the professional development with a group LMT score of approximately 
0.51 standard deviations above the mean. Overall, few discussions were led prior to the PD, with 
approximately 20% of the submitted pre-videos rated as aligned to our definition of discussion. 
Despite a low number of discussions being led, the mean score of the submitted lessons (M = 
3.222, SD = 0.43) on the MQI Whole Lesson Mathematical Quality of Instruction was slightly 
above the middle rating of 3.0 on a 1-5 scale. 

Following the PD, this group showed a nearly significant (p = 0.053) increase on paired t-
tests in the number of discussions led, with approximately 36% of submitted post-videos 
demonstrating a discussion. This group also showed significant increases in task set-up (p = 
0.012), eliciting (p = 0.009), and concluding (p = 0.016). Nearly significant increases were 
shown in probing (p = 0.077), generic orienting (p = 0.084), and revising (p = 0.056). 

Group H2. The second group of participants received PD in the second iteration of the 
study. The content of the peripheral participation focused on the full spectrum of discussion-
leading practice, beginning with work on setting up tasks for discussion and eliciting student 
thinking, followed by orienting students to the thinking of others, with the sophistication of 
orienting moves increasing across the experience. The content of the focused discussion-leading 
session was identical to the first iteration. 

This group entered the professional development with a group LMT score of approximately 
0.27 standard deviations below the mean. Overall, few discussions were led prior to the PD, with 
approximately 15% of the submitted pre-videos rated as aligned to our definition of discussion, a 
slightly lower percentage than Group H1. The mean score of the submitted lessons (M = 2.7407, 
SD = 0.49) on the MQI Whole Lesson Mathematical Quality of Instruction was slightly below 
the middle rating of 3.0. 

Following the PD, the group showed no significant difference in the number of discussions 
(p = 0.347) or any category captured by the checklist tool. Near significant increases were seen 
in generic orienting (p = 0.069). 

Group A2. The third group of participants received PD in the second iteration of the study. 
The peripheral participation was completed via live-stream and the focused discussion-leading 
session was delivered by the facilitator who co-facilitated the session in the first iteration of the 
study. The content of the peripheral participation was identical to that of Group H2.  

This group entered the PD with a group LMT score of approximately 0.65 standard 
deviations above the mean. A high number of discussions were led prior to the PD, with 
approximately 89% of the submitted pre-videos rated as aligned to our definition of a discussion. 
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Additionally, the mean score of the submitted lessons (M = 3.8611, SD = 0.54) on the MQI 
Whole Lesson Mathematical Quality of Instruction was well above the middle rating of 3.0. 

Following the PD, the group showed no significant difference in the number of discussions 
or categories captured by the tool. Nearly significant increases were seen in 
connecting/extending (p = 0.055) and revising (p = 0.080). 

Discussion and Implications 
There were clear differences in the outcomes of the three study groups, with study group H1 

showing the most gains from the PD. We hypothesize three potential reasons for these 
differences. The first potential hypothesis focuses on the content of the peripheral participation. 
Group H1 experienced peripheral participation where the discussion-leading work of the teacher 
was slower in pace, more repetitive, more deliberate, and more challenging than that of the 
peripheral participation of Group H2 and A2. It is possible that the pacing and repetition made 
this work more accessible to participants than the smooth, quickly progressing work of iteration 
2, thereby allowing participants to consider the specific moves the teacher was making and how 
they might be incorporated into their own classrooms. They may also have identified directly 
with the challenges of this work and were ready for the same challenges in their own classrooms. 

A second possible hypothesis for the differences is related to incoming knowledge and skills. 
Groups H1 and A2 both entered the PD with above average mathematical knowledge for 
teaching and above average mathematical quality of instruction as measured by the whole lesson 
MQI score. Group H1, however, was not engaged in consistent discussion-leading, unlike Group 
A2. One explanation for the changes seen in Group H1 is that they had the mathematical 
knowledge to lead discussions and strong general mathematical instructional skill, but did not yet 
have discussion-specific skills, but improved in this area following the PD. In contrast, Group 
A2 brought mathematical knowledge, general mathematical instructional skill, and high 
discussion-leading skill and so they had less room for improvement. Group H2, on the other 
hand, entered with low mathematical knowledge, below average mathematical quality of 
instruction as measured by the whole lesson MQI score, and the lowest level of discussion 
leading practice of the three groups. It is possible that low mathematical knowledge combined 
with below average mathematical quality of instruction meant that these teachers were not yet 
ready for the pace of the PD or to focus on discussion-leading practice.  

One final hypothesis is related to contextual factors, which were not measured by the 
instruments described in this paper. The teachers in Groups H1 and A2 were in consistent school 
environments where their grade level assignments were stable and their administrators appeared 
to support their involvement in the PD. Participants in Group H2, on the other hand, discovered 
during the PD that they would all be changing grade-level assignments due to administrators’ 
decisions based on student outcome data. Learning about this change likely distracted their focus 
and a grade change can be challenging for implementing new techniques. 

Further analysis is needed to determine which of these factors most impacted the PD 
outcomes. However, the current results do point to the importance of teachers’ incoming 
knowledge and skills to the outcomes of mathematics professional learning. 

Acknowledgements 
This work was supported by the National Science Foundation under Grant No. 1621104. Any 

opinions, findings, and recommendations expressed are those of the authors and do not reflect 
the views of the National Science Foundation. 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1405



References 
Ball, D. & Cohen, D. (1999). Developing practice, developing practitioners. In L. Darling-Hammond and G. Sykes 

(Eds), Teaching as the learning profession (pp. 3–22). Jossey-Bass.  
Ball, D. L., & Forzani, F. M. (2009). The work of teaching and the challenge for teacher education. Journal of 

Teacher Education, 60(5), 497–511.  
Coalition for Evidence-Based Policy. (2013). Randomized controlled trials commissioned by the Institute of 

Education Sciences since 2002: How many found positive versus weak or no effects. Retrieved from 
http://coalition4evidence.org/wp-content/uploads/2013/06/IESCommissioned-RCTs-positive-vs-weak-or-null-
findings-7-2013.pdf. 

Cohen, D. K., & Hill, H. C. (2001). Learning Policy: When State Education Reform Works. Yale University Press.  
Cohen, D. K., Raudenbusch, S., & Ball, D. L. (2003). Resources, instruction, and research. Educational Evaluation 

and Policy Analysis, 25(2), 119–142.  
Darling-Hammond, L. (1998). Teacher learning that supports student learning. Educational Leadership, 55(5), 6–

11.  
Desimone, L. M., & Garet, M. S. (2015). Best practices in teacher's professional development in the United States. 

Psychology, Society, & Education, 7(3), 252-253. 
http://repositorio.ual.es/bitstream/handle/10835/3930/Desimone%20En%20ingles.pdf?s 

Garet, M. S., Porter, A. C., Desimone, L., Birman, B., & Yoon, K. S. (2001). What make professional development 
effective? Results from a national sample of teachers. American Educational Research Journal, 38(4), 915–
945.  

Hill, H.C., Blunk, M., Charalambous, C., Lewis, J., Phelps, G.C., Sleep, L., & Ball, D.L. (2008). Mathematical 
knowledge for teaching and the mathematical quality of instruction: An exploratory study. Cognition and 
Instruction, 26, 430–511.  

Jacob, R., Hill, H., & Corey, D. (2017). The impact of a professional development program on teachers’ 
mathematical knowledge for teaching, instruction, and student achievement. Journal of Research on 
Educational Effectiveness, 10(2), 379–407. 

Learning Mathematics for Teaching. LMT measures of Mathematical Knowledge for Teaching: Elementary Number 
Concepts and Operations, 2008. Ann Arbor, MI: Authors.  

Little, J. W. (2001). Professional development in pursuit of school reform. Teachers caught in the action: 
Professional development that matters, 3, 23–44.  

Lynch, K., Hill, H.C., Gonzalez, K.E., & Pollard, C. (2019). Strengthening the Research Base That Informs STEM 
Instructional Improvement Efforts: A Meta-Analysis. Educational Evaluation and Policy Analysis, 41(3), 260–
293 

McLaughlin, M. (1990). Staff development and school change. In A. Lieberman (Ed.), Schools as collaborative 
cultures (pp. 213–232). Teachers College Press.  

National Council for Accreditation of Teacher Education (NCATE). (2010). Transforming Teacher Education 
through Clinical Practice: A National Strategy to Prepare Effective Teachers. Author.  

National Commission on Teacher Quality (2008). No common denominator: The preparation of elementary teachers 
in mathematics by America’s education schools. Author.  

Olson, M., & Craig, C. (2001). Opportunities and challenges in the development of teachers' knowledge: The 
development of narrative authority through knowledge communities. Teaching and Teacher Education, 17, 
667–684.  

Shaughnessy, M., Ball, D. L., & Garcia, N. (2017). A laboratory approach to the professional development of 
elementary mathematics specialists. In M. B. McGatha & N. R. Rigelman (Eds.), Elementary mathematics 
specialists: Developing, refining, and examining programs that support mathematics teaching and learning (pp. 
123–131). IAP. 

Shaughnessy, M., Garcia, N. M., O'Neill, M. K., Selling, S. K., Willis, A. T., Wilkes II, C. E., Salazar, S. B., & Ball, 
D. L. (2021). Formatively assessing prospective teachers' skills in leading mathematics discussions. 
Educational Studies in Mathematics, 108, 451–472. 

Wilson, S. M., & Berne, J. (1999). Teacher learning and the acquisition of professional knowledge: An examination 
of research on contemporary professional development. Review of research in education, 173–209.  

Yoon, K. S., Duncan, T., Lee, S. W.-Y., Scarloss, B., & Shapley, K. (2007). Reviewing the evidence on how teacher 
professional development affects student achievement (Issues & Answers Report, REL 2007-No. 033). 
Washington, DC: U.S. Department of Education, Institute of Education Sciences, National Center for Education 
Evaluation and Regional Assistance, Regional Educational Laboratory Southwest.  

 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1406

http://coalition4evidence.org/wp-content/uploads/2013/06/IESCommissioned-RCTs-positive-vs-weak-or-null-findings-7-2013.pdf
http://coalition4evidence.org/wp-content/uploads/2013/06/IESCommissioned-RCTs-positive-vs-weak-or-null-findings-7-2013.pdf


RESPONSIVE RESEARCH AND PROFESSIONAL LEARNING:  
COMING TO KNOW ADULTS AND CHILDREN IN A NEW PARTNERSHIP 

Lynsey Gibbons 
University of Delaware 

lgibbons@udel.edu 

Anne Wilhelm 
Southern Methodist University 

awilhelm@mail.smu.edu 

Latrice Marianno 
University of Delaware 

latricem@udel.edu 

Robyn Pinilla 
Southern Methodist University 

rpinilla@mail.smu.edu 

The analysis reported here examined the initial relationship-building activities a research team 
engaged in with educators and children at a local elementary school, as they began to develop a 
partnership. In our initial interactions and activities with educators, we had three goals: 1) to 
develop relational trust, 2) to get to know the institutional settings in which teachers worked, and 
3) to design responsive professional learning alongside teachers and leaders. In this brief report, 
we focus on the second goal and examine the following question: How do you come to know the 
adults and children in a school in order to design professional learning? We discuss our findings 
in relation to understanding school leaders’ vision for teaching and teacher learning; teacher 
support structures and accountability; and teachers’ experience, dispositions, and practices. 
Implications for improving learning conditions for each and every learner are discussed. 

Keywords: professional development, elementary school education 

In this brief research report, we discuss findings from an analysis that examined the initial 
relationship-building activities a research team engaged in with educators and children at a local 
elementary school, as the practitioners and researchers began to develop a partnership. The 
school reached out to the university for assistance in supporting teachers’ instructional practices 
in mathematics. Simultaneously, the researchers were interested in finding a school partnership 
where they could study how teachers learn to facilitate classroom discussions. The larger goal is 
to develop a long-term collaboration with mutual aims to engage in school-wide learning and 
transform educational outcomes for students. Thus, we had three goals in our initial activities 
with teachers and school leaders: 1) to develop relational trust (Bryk & Schneider, 2002), 2) to 
get to know the institutional settings in which teachers worked, and 3) to design responsive 
professional learning alongside teachers and school leaders. In this brief report, we focus on the 
second goal and examine the following question: How did we come to know the adults and 
children in a school in order to design professional learning in partnership? 

Perspectives 
Research-practice partnerships (RPPs) are defined as “long-term collaborations aimed at 

educational improvement or equitable transformation through engagement with research.”  
(Farrell et al., 2021, p.5).  Scholars have identified five principles of RPPs: 1) RPPs are long-
term collaborations, 2) RPPs work toward educational improvement or equitable transformation, 
3) engagement with research is a leading activity in RPPs, 4) RPPs intentionally organized to 
bring together a diversity of expertise, 5) partners in RPPs employ strategies to shift power 
relations in research endeavors to ensure all participants have a say (Farrell et al., 2021). 

 Aligned with each of these principles in different ways, our goal was to get to know an 
elementary school and build relationships to support the development of a research-practice 
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partnership. This is important for three reasons. First, by learning about the school and working 
to build relationships, we aimed to build trust and encourage the partnership to become a long-
term partnership that is mutually beneficial to ourselves and our school partners (Henrick et al., 
2017).  Second, becoming familiar with the students and teachers supported our endeavors to 
design professional learning aimed at more equitable instructional practices. Third, developing 
relationships with teachers and school leaders helped exemplify our desire to center and honor 
the expertise of school staff, which helps amplify teachers’ voice and shift power relations.  

The analytic approach that we take views schools as lived organizations (Cobb & Smith, 
2008), which means we are trying to understand the work that teachers and school leaders are 
accomplishing, and the interconnections between them. It is important to uncover teachers’ 
workplace practices to understand possibilities for the ways in which teachers can interact with 
students and with the content they teach (Cobb et al., 2003; Cohen et al., 2003; Resnick, 2010). 
Examining the institutional setting can include understanding: 1) for what teachers are held 
accountable; 2) what set of supports teachers currently receive, 3) the curriculum materials and 
messages around what is valued in teaching and learning; 4) how the instructional program is set 
up (e.g., whether there is tracking for mathematics); 5) teachers current opportunities for 
collaboration and access to expertise and key resources; and 6) individual teacher’s current 
stances, dispositions, and instructional practices (Cobb & Smith, 2008; Diamond, 2007). 

Methods 
Context and Data Collection  

This study is part of a larger project focused on understanding how elementary school 
teachers facilitate classroom discussions. As part of this project, we partnered with Partner 
Elementary School (PES; a pseudonym) to provide job-embedded professional learning 
experiences using the Learning Labs structure (see Kazemi et al., 2018) centered on enacting 
classroom discussions. For this study, we leveraged data from pre-interviews with teachers and 
school leaders, observations of weekly grade-level meetings, and observations of Learning Lab 
planning meetings and events. Interviews with school leaders were conducted that focused on 
their goals for students’ learning and teaching, conceptions of teacher learning, and instructional 
leadership. Interviews were conducted with teachers who agreed to participate in the research 
activities prior to their first Learning Lab. Interviews lasted approximately 45 minutes and 
included questions regarding teachers’ perceptions of classroom discussions and about the 
settings within which they work. Learning Labs were conducted in half-day sessions with grade-
level teams; each team participated in two Learning Labs (for a total of 12 Labs). Prior to each 
Learning Lab, in order to be responsive to teachers’ current instructional realities, the research 
team met with the teachers during their grade-level team meetings to understand the mathematics 
content in the upcoming unit. Field notes were captured after each weekly meeting. With 
information gathered from the teachers, the research team then met to plan the upcoming 
Learning Lab, identifying goals for teacher learning based on our understanding of teachers’ 
needs. Finally, each Learning Lab was video- and audio-recorded and teachers were asked to 
complete exit tickets at the end of the Learning Lab. 
Data Analysis 

We examined a subset of the data through iterative rounds of qualitative data analysis to 
explore teacher support structures and teachers’ experiences, dispositions, and instructional 
practices within the institutional setting. First, we read all sources in the subset, recording 
preliminary jottings (Saldaña, 2016) as a form of pre-coding. We next re-read the sources and 
applied a priori provisional codes informed by Cobb & Smith’s (2008) proposed support 
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structures to improve mathematics teaching and learning. This a priori scheme provided structure 
to the data before we engaged in open coding to locate emergent themes within and across 
provisional codes (Saldaña, 2016). Open coding was conducted by teams of two, during which 
we convened in small groups recursively to engage in consensus conversations. We finalized the 
codebook and used axial coding to create substantive themes that aligned with and illustrated 
components of getting to know a school partner (Maxwell, 2005; Saldaña, 2016). 

Results 
Understanding School Leaders’ Vision for Teaching and Learning 

 Understanding how and why principals enact leadership within particular school 
improvement and change efforts is important (e.g., Leithwood, 2019). Thus, we wanted to 
understand how the school leaders at PES considered goals for students’ learning in 
mathematics, the envisioned mathematics instruction they wanted taking place in classrooms, 
and their vision for how teachers improve their mathematics teaching and how they conceived of 
teacher learning. We also were interested in understanding how they enacted instructional 
leadership practices that were intended to support the teaching and learning of mathematics, 
including what they were holding teachers accountable for and their role in supporting teachers 
to make sense of policy messages from the district and state. While we do not have room to 
detail responses here, we learned that the school leaders’ main mechanism of direct support for 
teachers was “doing walk-throughs and giving feedback, being in [grade-level meetings], so that 
I can hear what the teachers are saying and feeling and talking about, but then also I can help 
throw in those questions to help them think about some ideas….” (Principal Interview, 34:30) 
The principal also talked about the utility of a notice and wonder protocol for pushing teachers to 
think differently. 
Teacher Support Structures and Accountability Expectations  

Through our interviews with teachers and the school leaders, we learned about a number 
of supports and related expectations, including professional learning opportunities, weekly 
collaborative time, and curricular support. When we inquired about teachers’ current 
opportunities for professional learning, we found out that the school received university-
supported literacy coaching, with visits approximately 3-4 days per month. Most teachers 
reported not having support in mathematics during the current nor prior school years. There were 
no school, university, or district-based mathematics coaches, nor were there district-wide 
professional development opportunities in mathematics.  

With respect to collaborative time, we learned that teachers had one 45-minute block of 
time each week to work in grade-level teams. This was a shift from prior years when grade-level 
teams met twice per week. During this time, there was an expectation that teachers would follow 
a particular agenda and discuss particular ideas, guided by the school leaders. There appeared to 
be time for teachers to discuss current problems of practice. 

The teachers were expected to use the district-adopted Bookworms curriculum for 
English language arts and the online version of Eureka Math curriculum (called “Zearn”) in 
mathematics. Teachers described the challenge around returning to the classroom in Fall 2021 
amidst the pandemic and the requirement that each day students would spend time on the 
computer engaging in fluency practice, watching an actor explain the mathematical ideas of the 
lesson and solving a related task online.  One teacher described: 

Our Math block is 70 minutes, which sounds unbelievable. Woo. But really, the amount of 
time that I have to do the instruction is really 30 minutes…  I've got to get through the word 
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problem and my little lesson and then Zearn [online computer program] starts at 1:00. And 
then they do their Zearn. And during the time that they're doing their Zearn, then I'm pulling 
my RTI small group instruction. So I look at that 30 minutes of time. (Ms. C, 18:43) 

Other teachers similarly expressed concern with the amount of time students’ spent on computers with the 
online curriculum, and whether and what they had opportunities to learn about mathematics. However, 
teachers shared with us that their teaching evaluations were tied to the amount of time each week students 
completed online mathematics lessons (a district mandate) and most felt that they had no choice but to do 
what was being asked of them by district leaders. 
Teachers’ Histories and Instructional Approaches 

Through our one-on-one interviews with teachers and visits to classrooms, we learned 
about their histories, their current instructional practices as well as their dispositions related to 
teaching. While many of the teachers we interviewed were quite experienced in the classroom, 
they were greatly influenced by the district expectations for using the online Zearn curriculum. 
Despite these constraints, teachers were committed to “doing what was best for the students”, a 
refrain we heard often across teachers. We were especially curious how whole-class discussions 
were happening in classrooms, which was part of our project goals. For example, we saw an 
opportunity for more whole class discussion in the context of Ms. C’s explanation of a “little 
lesson” that she leads ahead of the students’ work time on the computers. Other teachers 
similarly felt that they could not lead whole class discussions because of the demands of the 
math block and because their curriculum was not organized around students engaging in whole 
class discussions. 

We also learned about interesting variation in the extent to which teachers were adhering 
to district expectations around curriculum, and wondered about how to capitalize on those local 
productive adaptations (Russell et al., 2020). For example, one teacher chose to use a more 
inquiry-oriented curriculum to support her mathematics instruction instead of the district-adopted 
curriculum. She was asking her other same grade-level teachers to consider joining her. 

We analyzed teachers' responses to instructional vision questions to get a sense for 
whether teachers shared a vision for mathematics teaching. We also attended to common 
language that they used so that we could make explicit connections to their ways of talking and 
their goals when appropriate. This allowed us to consider initial teacher learning goals that are 
appropriate for different groups of teachers in the school.  

Discussion 
We set out to provide other mathematics education researchers with ideas for the types of 

activities and interactions that we used and found helpful in getting to know our school partners. 
Through our interactions, we identified aspects of the current institutional setting where there 
were synergies through existing expertise or initiatives we could take into account (e.g., weekly 
grade-level team meetings, principal instructional leadership through pressing teachers during 
planning or feedback after watching instruction). We also identified points of tension where we 
would need to actively think with our partners about how to navigate the competing demands 
(e.g., teacher evaluation system emphasizing computer curriculum coverage which was perhaps 
at odds with leaders and teachers’ desires to support student discussion). While the analysis 
examined one case of relationship building, our findings have broader impacts on society as we 
consider the relationships necessary in partnerships that work to improve learning conditions for 
each and every learner. In a subsequent analyses, we plan to examine how we used these 
relationship building activities and what we learned about teachers’ institutional settings to 
design professional learning that will challenge a settled mathematics learning status quo. 
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We examine in-service high school teachers’ journals to explore the emerging themes in a 
mathematics content course for their professional development. We use a sociocultural 
perspective and characterize journals as signifying teachers’ communication and written 
discourses about their thinking and experiences in the course. We use applied thematic analysis 
to analyze the emerging themes. Our results demonstrate the complexity of teacher thinking and 
suggest that teachers do not necessarily separate their thinking about themselves or mathematics 
from their thinking about their students; similarly, they can take different roles as teachers and 
learners in a given context. Our results indicate exercising caution about potentially operating 
with an oversimplified picture of teacher thinking via compartmentalized pieces, especially if 
such frameworks are used to measure teacher thinking, knowledge, and development.  

Keywords: Communication, discourse, professional development, calculus  

Introduction 
Journal writing has been used in mathematics education for various purposes. Our literature 

review about journaling revealed that, in the context of mathematics education, journals were 
mostly used with students. Such work examined students’ mathematical thinking and cognitive 
skills; problem solving; their beliefs and attitudes about mathematics, and rarely, their 
mathematical communication (e.g., Baxter, 2008; Farmer et al., 2003; Liljedahl, 2007; Rolka et 
al., 2006).  Journals have also been used in teacher education, particularly in relation to reflective 
thinking and practice (e.g., Schön, 1987). Considered mainly as reflection tools,—although what 
is meant by reflection is rarely defined in these works— researchers used journals to examine 
teachers’ professional knowledge and experience; professional identity; dispositions and beliefs 
in teaching and learning; pedagogical and professional development; their reflective and critical 
thinking on various issues; and experiences in their teacher education programs and courses (e.g., 
Joseph & Heading, 2010; Garmon, 2001; Mewborn, 1999; Snyder, 2012). Compared to the 
literature on journaling in the context of general teacher education, the literature on journaling 
specific to mathematics teacher education is sparse and primarily focuses on pre-service teacher 
education at elementary levels. Our work focuses on examining in-service high school 
mathematics teachers’ journals in the context of a mathematical content course they took as part 
of their professional development since what teachers take from their experiences in professional 
development remains a challenging issue to address in mathematics education research (Farmer 
et al., 2003).  

Regarding the theme of PME-NA, our work challenges (a) the dominant cognitive approach 
that is often used while examining reflection as well as student and teacher journaling, and (b) 
the traditional psychological approach that views participants’ accounts of events and their 
experiences as unreliable, implying a mistrust towards “subjects” of a study. We will use a 
sociocultural approach to conceptualize reflection and journals and consider our participants’ 
accounts of their experiences as authentic sources through which we can gain more information 
about their thinking and development in professional development settings. We address the 
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following questions: What themes emerge in high school teachers’ journals in relation to their 
thinking in a calculus content course they took for professional development? What do the 
emerging themes in these teachers’ journals indicate regarding their thinking, knowledge, and 
development? Our findings challenge the dominant trends in mathematics teacher education 
research that view teacher knowledge as consisting of distinct types or pieces of knowledge that 
can be identified and measured through multiple-choice tests, mainly conceptualized from the 
perspective of the researchers (rather than those of teachers), and mainly utilizing cognitive 
perspectives. 

Theoretical Framework 
The study uses a sociocultural perspective that conceptualizes thinking as communicating 

and discourse as a “special type of communication made distinct by its repertoire of admissible 
actions and the way these actions are paired with re-actions…discourses in language are 
distinguishable by their vocabularies, visual mediators, routines, and endorsed narratives” (Sfard, 
2008, p. 297). From this lens, thinking and communicating are not viewed as separate but 
connected activities; examining learners’ discourses (communication), is tantamount to 
examining their thinking. Consistently, we characterize journal entries as written endorsed 
narratives involving the reflections (defined as meta-level discourses, i.e., discourses about 
discourses) of the teachers with respect to mathematics, their pedagogical approaches and 
practices, and their overall experiences and thoughts in the course. We view journals as written 
discourse with a communicational function (with one’s self or others). By examining journals, 
we explore the (emergent) thinking of teachers in relation to the professional development 
course. Rather than viewing journals as signifying potentially “unreliable” accounts of 
participants’ thinking, we view them as consisting of narratives that provide us with authentic 
information, from the participants’ perspectives, of what they consider to be an honest account of 
their thinking and experiences.  

Sociocultural approaches also highlight the interpretive aspect of research and the importance 
of context in meaning-making (Denzin & Lincoln, 2000). Consistently, we do not consider the 
narratives of the teachers in their journal entries as proxies for (often decontextualized and 
generalized) entities such as their cognitive schema, knowledge (or lack thereof), metacognition, 
beliefs, or attitudes. We consider these narratives as contextual indicators of teachers’ discourses 
and thinking, keeping in mind that, while these narratives signify the authentic voices of the 
teachers, research is also an interpretive process that includes the researchers’ presuppositions, 
theoretical perspectives, and personal stories (Denzin & Lincoln, 2000).   

Background 
This work is part of a larger study that took place in a postsecondary mathematics content 

course on calculus taken by in-service high school teachers as part of their professional 
development requirements (in our case, there was also one pre-service teacher taking this course, 
which was a programmatic exception). The researcher was the instructor of the course. The 
larger study hypothesized that an instructional approach that specifically attends to the tacit 
aspects of the mathematical discourse on various calculus concepts could support teachers’ 
learning of those concepts (Güçler, 2016). A critical component of instruction was to elicit rich 
classroom discourse as well as reflection on and explication of teachers’ mathematical discourses 
to promote learning. 

Since we wanted reflection (meta-discourse) to be a continuous and consistent aspect of the 
course, the teachers also kept weekly journal entries throughout the course where we asked them 
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to reflect on any aspect of the course that they wanted. We collected these journals thinking that 
they would give us more information about how the teachers’ thinking about calculus concepts 
evolved over time and help us triangulate the data we obtained. Further, we wanted to elicit 
teachers’ authentic voices about their own experiences independent of the potential constraints of 
the questions we posed to them in the pre- and post- explorations. Although the primary focus of 
the original study was on teachers’ mathematical discourse, the journals gave us richer 
information that went beyond teachers’ mathematical thinking and learning. This paper only 
focuses on the discursive themes that emerged from the teachers’ journals as they reflected on 
their experiences in the course and the implications of the results in terms of teacher thinking, 
knowledge, and development.  

Methodology  
The participants of the study were 1 pre-service, 7 in-service high school teachers taking a 

mathematics content course on calculus over the course of 13 weeks. Except for the pre-service 
teacher, the participants’ experiences ranged 4–12 years. The journal entries were collected in 
the course of a semester and consisted of 11 entries for each teacher. In these journals, the 
teachers were asked to reflect on any aspect of the course or classes without any specific prompt 
from the researchers. This task was deliberately left open-ended so that the teachers could write 
about whichever issue interested them or puzzled them from week to week, at their discretion, to 
elicit their authentic voices. Most teachers kept their journals electronically, as a text document.  
Three kept physical journals in the form of written notes, which were scanned and transcribed 
(verbatim) to electronic text documents at the end of the course. These electronic journals were 
later transferred to the NVivo 9 software package and all the emergent coding took place in this 
software environment.  

We used applied thematic analysis (Guest et al., 2012) to examine the emerging discursive 
themes in the teachers’ journals. Unlike the initial focus of the study which put teachers’ 
mathematical discourses at the forefront through an a priori coding structure (we do not report on 
those in this paper), the emerging themes helped us identify the discursive patterns which put 
teachers’ mathematical discourses at the background. In other words, in the context of these 
emerging themes, the teachers could still be communicating about mathematics, but our focus 
was not on their mathematical discourse per se but on the larger theme that included the 
mathematical communication.  

In addition to the researcher, four doctoral students were involved in the coding and analysis 
of the data. The project team met each week; reported on and discussed the emerging themes; 
and compared the coding of the previous week and elaborated on the specific instances and cases 
in which our coding differed until we reached agreement. This iterative, generative, and 
interpretive process was repeated until saturation, eventually resulting in about 90% interrater 
agreement.   

When coding, our first focus was on segmentation, which concerns how to bound the text 
(Guest et al., 2012). To assure our coding did not ignore the contexts in which the discourse 
emerged, we characterized a segment as consisting of an excerpt that signified a complete 
thought so that the meaning of the segment can “clearly be discerned when it is lifted from the 
larger context” (Guest et al., 2012, p. 52). Therefore, in our analysis, segments often consisted of 
multiple sentences, which also helped us avoid overrepresentation of themes and promoted 
exploring relationships among the themes.  

The first themes in our initial examination of the journals emerged from contexts where the 
teachers referred to themselves as teachers (SAT: self as teacher) or learners (SAL: self as 
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learner). Future iterations of coding resulted in the emergence of subcategories under these two 
categories. We noted that, within the context of SAL, the teachers discussed their own content-
related (mathematical) difficulties (CD) and communicated about their enhanced learning (EL) 
in the course. Under the theme of SAT, three sub-categories emerged: TC, which refers to the 
contexts in which teachers wrote about the factors they thought constrained their teaching; SD, 
which refers to the contexts in which the teachers wrote about their students’ difficulties about 
mathematical content they either experienced before or can now anticipate; and TS, which refers 
to the contexts in which the teachers wrote about their teaching strategies.  After further 
examination, two subcategories emerged under TS: ES, where the teachers wrote about their 
existing strategies, and FS, where they wrote about the strategies they would use in the future as 
a result of their experiences in the course. Other emerging themes included the contexts in which 
the teachers’ talked about the influence of the instructor (II) and the influence of their peers (PI) 
in the classroom in shaping their thinking and experiences in the course.  

Results  
Space constraints do not allow us to elaborate on all the emerging themes and their 

relationships in detail, so we primarily focus on the themes SAL, SAT, and some of their 
subcategories and relationships since they were the most dominant themes in teachers’ 
discourses in their journals. We want to highlight that we do not make claims about teacher 
identity in the context of our study because, although some aspects of the teachers’ discourses in 
the themes SAL and SAT may give us some insights about their identities, we believe that the 
data we have about SAL and SAT is insufficient to provide a rich and meaningful depiction of 
the teachers’ identities, which are multi-faceted and require a data collection process that goes 
beyond merely examining their journal entries.   

In teachers’ journal entries, we identified 166 occurrences of the theme SAL and 156 
occurrences of the theme SAT. We identified 71 occurrences in which the participants referred to 
themselves as teachers and learners in the same context (SAL ∩ SAT). Therefore, in about 43% 
of all SAL contexts, the participants also referred to themselves as teachers and in about 46% of 
all SAT contexts, the participants also referred to themselves as learners. The following excerpts 
provide examples for the themes SAL, SAT, and SAL ∩ SAT. All the names used in the study 
are pseudonyms and Steve is the only pre-service teacher in the course.  

[1] Lea: I now understand that ‘one to one’ means simply that each x value is paired with 
exactly one y value, with no two x’s being paired with the same y (injective). Also, ‘onto’ 
is when all elements in both sets are used (surjective). I am glad that I learned about these 
terms and their definitions. (SAL) 

[2] Carrie: As a teacher, my experience shows that modeling is very challenging for students.  
They struggle analyzing graphs to create a story and creating graphs for verbal models. 
Today’s class activity would lead into a great discussion regarding modeling, slopes, 
displacement, velocity, acceleration, etc. This is an activity that I will use in many of my 
classes as well as share with many of my colleagues. (SAT) 

[3] Martin: I am continuing to struggle with the concept of derivative. I am grasping the 
rules, but I am having trouble with the concepts and applications.  I can now understand 
where students can have trouble when I teach this. The main issue I am having deals with 
the concept of continuity. There was a question on homework that dealt with whether the 
first derivative was defined but the second derivative was not. I still am having trouble 
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understanding that concept, so as a teacher I can now understand that my students may 
have trouble with similar issues as well. (SAL ∩ SAT) 

As can be seen from these excerpts, the teachers’ discourses indicate that they can take 
different roles as teachers and learners in a given context. In addition, their discourses also 
indicate that there may also be other themes or subthemes embedded in a given context in 
addition to SAL, SAT, and SAL ∩ SAT. For example, in excerpt [1], which is coded as SAL, 
Lea also mentions that she “now understand[s]” the terms and “learned about these terms and 
definitions”, which indicate enhanced learning and/or understanding as a component of SAL. 
Therefore, we also coded excerpt [1] as EL, based on our definition of this theme. In excerpt [2], 
Carrie refers to herself as a teacher (SAT) but she also mentions the activity in her professional 
development course as an activity she will use in her own teaching as a future teaching strategy 
as a component of SAT. Therefore, we also coded excerpt [2] as FS. In excerpt [3], Martin refers 
to himself both as a teacher and a learner (SAL ∩ SAT). When writing about himself as a learner 
(SAL), Martin mentions his content-related struggles and difficulties, so this excerpt also 
provides a context for CD as a component of SAL. On the other hand, he associates the 
difficulties he has with derivative with the difficulties his students would have about the concept, 
so we also see the theme SD as a component of SAT in the same excerpt. The examinations of 
the segments we identified as signifying a complete thought reveal the complexity and dynamic 
characteristics of teacher thinking, knowledge, and development. Excerpts [1-3] show that, even 
in such a small set of exemplars, we can see the emergence of themes, subthemes, and how they 
can be intertwined in complex but crucial ways.  

In this paper, we want to also focus on CD, SD, and contexts in which both themes occurred 
(CD ∩ SD). Note that excerpt [3] shows how a teacher can think about his own difficulties and 
his students’ difficulties in the same context, and provides an example for the theme CD ∩ SD. 
In what follows, we provide examples for the themes CD and SD:  

[4] Fred: Oh, I have to get out of the habit of thinking of a function as a single rule or rigid 
model describing a situation – think piecewise! I struggled with the functions defined 
piecewise in today’s class. (CD) 

[5] Sally: This week, we talked about why continuity and limits were connected and how 
they related to each other. Most students have difficulty understanding that if you have a 
continuous function then the limit exists but that doesn’t necessarily mean that if the limit 
exists then the function is continuous. It is a one-sided relationship and tends to be 
misconstrued as relationship that works both ways. (SD) 

We identified 91 occurrences of the theme CD, 86 occurrences of the theme SD, and 50 
occurrences of the theme CD ∩ SD in the teachers’ journals. Therefore, in about 55% of all CD 
contexts, the teachers also mentioned their students’ difficulties and in about 58% of all SD 
contexts, they also mentioned their own content-related struggles in the course. This major 
overlap may be interpreted in various ways. This finding may be an indicator that teachers’ own 
difficulties with calculus concepts can significantly inform their thinking about their students’ 
difficulties and vice versa in a context. If that is the case, a potential association of CD with 
teachers’ mathematical content knowledge and the association of SD with teachers’ pedagogical 
content knowledge can be very problematic. The characterization of teachers’ own mathematical 
thinking and knowledge as aspects of their mathematical content knowledge and their knowledge 
of student thinking as an aspect of their pedagogical content knowledge is quite common in 
mathematics education research focusing on teachers, where these “types” of knowledge are 
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characterized as distinct, albeit related, components of teacher knowledge. Our results, however, 
show that these constructs may be almost inseparable within a given context in a way that may 
make it very challenging to  identify or measure which “type of knowledge” teachers may have 
at a given time, especially if such measurement is being made through one-shot multiple-choice 
tests or decontextualized assessment problems and/or instruments .  

Another potential explanation for the major overlap may be due to the teachers’ profound 
struggles in this calculus content course and, in the absence of familiarity with the conceptual 
aspects of calculus and rich thinking about student difficulties about calculus concepts, the 
teachers mainly referred to their own struggles as resources and means for anticipating most of 
the student difficulties about calculus. In fact, there is some evidence in our data that the teachers 
who struggled most with the content were also those whose discourses included a larger number 
of occurrences for the theme CD ∩ SD.     

Within the context of SAL, the relationship between CD and EL may also be worthy of some 
elaboration. In teachers’ journal entries, we identified 91 occurrences of the theme CD, 53 
occurrences of the theme EL, and 27 occurrences of the theme CD ∩ EL. In about 30 % of all the 
CD contexts, the teachers also mentioned enhanced learning or understanding and in about 51% 
of all the EL contexts, they also mentioned their content-related difficulties. The following 
excerpts provide examples for the themes CD, EL, and CD ∩ EL.  

[6] Milo: I had a bit of confusion today when we started discussing derivative. If I recall, 
finding the derivative of basic functions is not too difficult, but understanding the 
meaning behind it and why-that’s created a headache for me today since I don’t know 
those meanings. (CD) 

[7] Steve: I believe I am leaving this class with a better understanding of every calculus 
concept we covered, and for that I feel like I am prepared to be an efficient and effective 
teacher of calculus. Thank you for helping me attain a greater understanding about these 
topics, topics I already thought I was knowledgeable in. (EL) 

[8] Lea: As we continue our discussion of limits in class, it is clear that I struggle and have 
much to learn conceptually about limits and other concepts of calculus.  Although I am 
thoroughly enjoying the challenges brought forth each week, at times I am very humbled 
in the realization that there is a lot that I still struggle and need to learn about these 
calculus concepts. For example, this week I learned that we can view a limit being a 
process or a product or both depending on context! (CD ∩ EL) 

The results and the excerpts indicate that challenging teachers mathematically can be a good 
strategy to promote teacher development (enhanced learning). Although teachers may not realize 
every occasion where they experience a difficulty as an opportunity to learn, our results suggest 
that when they reflect on their learning and explicitly mention enhanced learning, they seem to  
have a tendency to think about the contexts in which they struggled with mathematics. 
Professional development environments which do not only put teachers in a teacher role 
reflecting on student thinking but also in a learner role where they genuinely struggle with 
content and reflect on their own mathematical thinking have the potential to provide rich learning 
opportunities for teachers. In addition, the existence of the theme EL as an emergent theme in the 
journals, which is elicited through the teachers’ own voices and discourses, can also suggest that 
journal entries may be useful resources for teacher educators in assessing teacher learning or 
development in professional development situations. We promote the use of journals as potential 
teacher assessment tools because we believe they may provide context regarding teacher 
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thinking, which is a critical component when examining their development and also because of 
the connections we observed between the themes EL and FS as will be discussed next.  

In teachers’ journals, we identified 53 occurrences of the theme EL (as a component of 
SAL), 43 occurrences of the theme FS (as a component of SAT), and 21 occurrences of EL ∩ FS 
(as a component of SAL ∩ SAT). In about 40% of all the EL contexts, the teachers also 
mentioned pedagogical strategies they would use in the future and in about 49% of all the FS 
contexts, the teachers mentioned enhanced learning or understanding. Excerpt [7] provides an 
example for the theme EL. The following excerpts provide examples for the themes FS and EL 
∩ FS.  

[9] Ron: I liked in class how you asked the class to use one word to define function and then 
asked the class to use those words to form a definition.  I feel that in teaching algebra II, I 
will use this approach since this could really get the students thinking. Students can take 
their previous knowledge of functions or any other concepts and reason through that 
when defining the concept. (FS) 

[10] Sally: I can now say that when I start teaching functions next year, I will approach this 
topic completely different. I will now open my students up to a more discussion-based 
approach where we can openly look at the definition of function and talk about what 
makes something a function and what makes something not a function. This way they 
aren’t trained to only know linear or quadratic functions. They won’t consider a function 
just the “equation” or “graph” or “table” but know why the table represents a function or 
why the rule represents a function. My own learning and understanding of the topic in a 
deeper way helped me think about changing how I teach functions. (EL ∩ FS) 

The results and the excerpts suggest that, although the teachers did not necessarily consider 
all the contexts in which they mentioned enhanced learning as opportunities to also reflect on the 
teaching strategies they would use in their future practice, almost half of their discussions about 
their future pedagogical strategies included teachers referring to their enhanced learning in the 
context of the course. This also suggests that changing teacher practice may be closely related to 
teachers changing their thinking (enhanced learning) about mathematical concepts.     

Discussion  
The results of the study demonstrate the complexity as well as the dynamic and situational 

nature of teacher knowledge, thinking, and development. A contextual analysis of teachers’ 
(meta) discourses based on their authentic voices indicate that the teachers in our study did not 
separate their thinking about themselves or mathematics from their thinking about their students; 
similarly, they took different roles as teachers and learners in a given context. These findings 
challenge the existing trends in defining and measuring teacher knowledge, where such 
knowledge is often characterized as consisting of compartmentalized pieces (e.g., mathematical 
content knowledge, pedagogical knowledge, pedagogical content knowledge, mathematical 
knowledge for teaching). Contextually, these distinctions can be blurred, much more integrated, 
and complex. The emerging themes in the teachers’ journals provide a cautionary tale regarding 
the potential dangers of providing an oversimplified picture of teacher thinking, knowledge and 
development (Beswick et al., 2012).  

Schoenfeld (2007) highlights the importance of exploring which type(s) of knowledge that 
the measures assess and notes that “much needs to be done in fleshing out the relevant 
knowledge base to be tested and determining how well the items used actually reflect the desired 
competencies” (p. 204). Fauskanger (2015) found that the multiple-choice responses teachers 
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provide in the assessments of their mathematical knowledge for teaching may not reflect their 
knowledge as expressed in their open-ended, constructed responses and noted that a teacher 
could give an incorrect response to the test item but demonstrate conceptual understanding in the 
latter context. There may also be clashes between the researchers’ and teachers’ expectations and 
interpretations of the test items, their goal, and what they are supposed to measure (Fauskanger, 
2015). Beswick et al. (2012) note that the precise way in which different types of teacher 
knowledge are conceived and “how aspects of such a conception beyond 'facts that are known' is 
incorporated” in such models is not clear (p. 133). It is important to note that, despite their 
problematization of the current approaches towards assessing teacher knowledge, researchers 
may still operate from only a cognitive view and may still provide attempts to “refine” or 
“expand” the characteristics of different types of teacher knowledge for better and more reliable 
assessment (e.g., Fauskanger, 2015; Beswick et al, 2012; Schoenfeld, 2007).  

Characterization and assessment of teachers’ knowledge or development based on knowledge 
compartmentalization and on the cognitive “knowledge-as-acquisition” metaphor (Sfard, 2001) 
can be problematic since this may not reflect the multi-faceted, dialogical, social, cultural, and 
contextual nature of teachers’ thinking, knowledge and development, especially when viewed 
from sociocultural lenses which often characterize learning and development as occurring 
through enhanced participation in mathematical communities of practice (Lave & Wenger, 1991) 
through the “knowledge-as-participation” metaphor (Sfard, 2001). Our findings suggest that the 
theoretical frameworks that go beyond cognitive constructivism can be useful in our explorations 
and (re)interpretations of what we mean by teacher knowledge, thinking, and development and 
whether, and how, to assess them through standardized instruments. We believe sociocultural 
frameworks have a lot to offer to the field as we continue thinking about these critical issues, 
particularly if we want to put the voices of the teachers at the center of our discussions about 
teacher education in mathematics education research.  
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In this study, we examined one group of elementary mathematics teachers’ experiences in 
connecting mathematics to the real world. The professional development collaboration was 
designed to connect mathematics to the real world, particularly connecting to students’ funds of 
knowledge. We interviewed seven elementary teachers about their experiences in connecting 
mathematics to the real world and to what they knew about their students. We categorized the 
teachers' responses resulting in the Connecting Mathematics to the Real World framework. Our 
findings show that while almost all teachers had implemented typical word problems as a way to 
connect mathematics to the real world, none had incorporated contexts relevant to their 
students’ lives. However, most of the teachers expressed interests in developing lessons that were 
more relevant to their students’ lives.  

Keywords: Social Justice, Culturally Relevant Pedagogy, Elementary School Education, Equity, 
Inclusion, and Diversity. 

Purpose of the Study 
The purpose of this study is to examine one group of elementary mathematics teachers’ 

experiences in connecting mathematics to the real world before engaging in a professional 
development. Research question: What are teachers’ experiences in connecting mathematics to 
the real world at one elementary school? 

Literature & Theoretical Framing 
What Does Connecting Mathematics to the Real World Mean? 

Extant scholarship has explicated several ways that teachers can connect mathematics to the 
real world. These include a) situating problems in story contexts (typical word problems), b) 
analyzing real-world data or real-world situations (that may or may not matter to the students per 
se), or c) connecting to students’ funds of knowledge (both mathematically and with the context). 
We discuss each of these below. 

Word/Story problems. One common way to connect mathematics to the “real” world is 
through story problems (Gainsberg, 2008). However, these story problems are often created with 
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common but unimportant contexts, for example, a focus on “apples, puppy dogs, and ice cream” 
(Koestler, 2012) rather than on issues students really care about. These word problems might be 
about 2 trains that meet somewhere or purchasing 42 watermelons and so forth. Though the math 
is put in a story context, these problems are often simply exercises to do, not real problems that 
students are motivated to solve. When asked to create word problems with real-world 
connections, most teachers tend to focus on the math rather than the context (Lee, 2012). 

Analysis of real data, bring in real-world issues (not necessarily relevant to the students 
in the class). Teachers can bring in real data or real-world issues to connect mathematics to the 
world (Gainsberg, 2008; Gutstein, 2006). However, this data may not always be meaningful to 
students or focus on problems they care about solving. These data might focus on measuring 
physical objects, census data, examining a newspaper article, etc. The problem contexts or data 
may be designed to support students’ development of a sociopolitical disposition (Frankenstein, 
2012; Gates & Jorgensen, 2009). However, teachers may not use a critical lens when 
implementing such tasks (Bartell, 2013; Lee, 2012) 

 Connecting to students’ funds of knowledge (FoK). Another approach is creating 
problems designed to build on children’s mathematical thinking (CMT) and Cultural Funds of 
Knowledge (CFoK) (González et al., 2005; Turner & Drake, 2016). Problem types that fall into 
this category connect to the students’ mathematical knowledge bases as well as to the students’ 
and their communities’ interests, experiences, and backgrounds (Civil, 2007; Wager, 2012). 
Turner and colleagues (2012) studied how prospective teachers (PTs) develop their 
understanding of students’ multiple mathematical knowledge bases. As PTs develop meaningful 
connections between students’ multiple knowledge bases and their instruction, they can 
“facilitate ongoing and purposeful incorporation of multiple mathematical knowledge bases” (p. 
78).  

Prior frameworks (Gainsberg, 2008) for connecting math to the real world have distinguished 
between the first two but have not yet incorporated the third: an explicit focus on the students’ 
FoK. We build on the first two categories and add students’ FoK to emphasize the relevance of 
students’ lives to create the framework for this paper (see Table 1). 

Methods 
Participants and Contexts 

Seven elementary teachers from one public elementary school in the Pacific Northwest of the 
United States participated in the study. These teachers were at the beginning of a professional 
development collaboration designed to connect mathematics to the real world based on 
connecting to students' funds of knowledge. The teachers spanned grades K-5, a student success 
coach, and a special education teacher.  
Data Collection 

The research team conducted individual 30-minute semi-structured interviews with each 
participant. Interview questions focused on the teachers’ experiences in connecting mathematics 
to the real world and what they knew about their students, the students' families, and the 
community. For example, we asked:  

 Tell me what you know about your students’ interests and experiences outside of the 
classroom.  

 Tell me about your students as math learners.  
 What experiences, if any, do you have with connecting math to the real world?  
 What are some real-world topics that you are interested in exploring with kids in math? 
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The interviews were recorded and transcribed. 
Analysis 

Analysis began with one research team member carefully reading all the transcripts and 
highlighting keywords and sentences from each transcript to fit into existing categories: Typical 
Word/Story Problems, Analysis of Real Data/Bringing Real-World Issues, Connecting to 
Students Funds of Knowledge. During this same initial reading, the researcher also highlighted 
new keywords that indicated new categories. For example, several teachers highlighted that they 
followed the curriculum and as such, we added “following curriculum” as a category. Another 
category that emerged was “cross-curricular connection to the real-world outside mathematics.” 
Once the initial categorization was completed, additional research team members discussed the 
categorizations and came to an agreement on all categorized segments. Below we discuss each 
theme. 

Results 
Table 1 shows the summary of the teachers’ experiences in connecting math to the real 

world. Below we discuss each theme.  
 

Table 1: Teachers’ Experiences in Connecting Mathematics to the Real World 
Teachers’ Experiences in Connecting Mathematics to the Real World Number of 

Teachers 
Following Curriculum 4 

Typical Word/Story Problem 6 
Analysis of Real Data/Bringing Real-World Issues That Might Not be Relevant to 

Students Personally 
2 

Connecting to Students’ Funds of Knowledge 0 
Bringing the World into the Classroom 

(Cross-Curricular Connection to the Real World Outside Mathematics) 
3 

 
Following Curriculum 

Four teachers began their responses by mentioning that their curriculum provides 
connections between math and the real world and they followed it. Teacher A mentioned, “I kind 
of just go with like… the stories in the curriculum.” Teacher F said, “I know that the curriculum 
attempts to do somewhat of it.” These four teachers’ experiences with typical word/ story 
problems were closely related to the curriculum. The three teachers who did not mention the 
curriculum each shared at least one example in another category. 
Typical Word/Story Problem 

Six teachers shared their use of the typical word/story problems as their experiences in 
connecting math to the real world. Teacher A and Teacher F used bunk beds and apple boxes for 
10 frames since the curriculum provided them. Teacher A said, “Our first unit was like bunk 
beds and apple boxes, so we are really focusing on 10 frames and manipulating numbers within a 
10 frame.” Some teachers considered using students’ names in the word problems as a way of 
connecting math to students: “I’ll pick like some student names and put it in the word problems” 
(Teacher C) and “I’ve also tried to connect problems to students lives actually using students in 
the problems just throwing out names” (Teacher D). Teacher E shared that he used ice cream 
shops and shopping mall contexts for decimal operations. He said, “ice cream math and shopping 
mall math or whatever with the decimals to kind of like help them through things a little bit.” 
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Analysis of Real Data/Bringing Real-World Issues That Might Not be Relevant to Students 
Personally 

Two teachers shared analysis of real data or bringing real-world issues as their experiences in 
connecting math to the real world. Teacher E said he has implemented the ‘Million Dollar 
Project’ many times. He said, “I sent them to a site for houses… gave them million-dollar… they 
had to spend exactly a million dollars or else they don’t get their million dollars.” Teacher G 
shared her experiences in creating a small classroom economy: “They have to come in and they 
have to do the work, do the math, show their work, explain, help someone, and then you are paid. 
You are a math consultant, and so they have their own banks… at the end of the week, they can 
buy a goodie.”  
Connecting to Students’ Funds of Knowledge 

None of the teachers shared their experiences in connecting math to students’ funds of 
knowledge. However, six teachers shared that they want to find and implement real-world 
connections that are relevant and connected to their students on a personal level (their interests), 
as well as family and cultural levels.  
Bringing the World into the Classroom (Cross-Curricular Connection to the Real-World 
Outside Mathematics) 

Three teachers shared their experiences in bringing the real world into the classroom outside 
mathematics. When Supreme Court Justice Brown Jackson was confirmed, Teacher A 
introduced the confirmation debate to her students. Students read about the story of the justice 
and saw the picture of the Supreme Court Justices. She commented that “I had not thought about 
how to bring math into that but I bet we could figure out a way.” Teacher C shared her 
experience in scavenger hunts: “I’ve done scavenger, like a nature scavenger hunt, like finding 
shapes in nature.” Teacher E’s students were interested in Pokémon Cards, so he regularly 
provided time to his students for Pokémon cards trading.  

Conclusion and Discussion 
In response to our research question ‘What are teachers’ experiences in connecting 

mathematics to the real world at one elementary school’ we found that while almost all teachers  
had implemented typical word/story problems as a way to connect mathematics to the real 

world, yet none had used contexts relevant to their students’ lives. However, most of the teachers 
were interested in developing lessons that would be more relevant to their students’ lives. 
Teachers A and D explicitly stated that they were interested in making their mathematics lessons 
relevant to their students. Teacher B was interested in culturally relevant and social justice 
related mathematics lessons. Teacher C wanted to develop lessons related to time and money 
because her students showed interest in time and money. Teacher E was aware of his students’ 
interests outside of mathematics, but he was more interested in how to connect mathematics to 
his own interests to make it real-world mathematics. Teacher F expressed her interest in 
connecting math lessons to students’ cultural and family heritages. Teacher G shared that she 
wants to help her students to understand how math is in their daily lives. 

Understanding how teachers think about connecting mathematics to the real world was 
important as we began our professional development collaboration. Just as we wanted our 
teachers to build on their students’ funds of knowledge (González et al., 2005), we wanted to 
build on the teachers' funds of knowledge when working with them. Knowing where they started 
helped us develop an opening activity to develop a shared understanding of how we thought 
about connecting mathematics to the real world.   
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Although the effects of Lesson study (LS), a teacher collaborative professional development 
approach, on teacher professional learning and students learning have been widely documented, 
the theories for understanding of LS has just emerged as a research field. Interconnected Model 
of Teacher Professional Growth (IMPG) and Documentational Approach to Didactics (DAD) 
have been used individually to document teachers’ professional learning. In this study, a 
networked framework is proposed by locally integrating these two theories. A lesson study 
facilitated by a researcher was conducted in Shanghai China. The data sets including all 
videotaped meetings and research lessons are collected and analyzed. The results show that the 
teachers’ resource system evolved from adoption to adaptation with consideration of student 
learning. This study contributes to networking theories and its usefulness in LS context.  

Keywords: Professional development, Teacher educators, teacher knowledge and beliefs.  

Introduction 
Lesson study (LS), a collaborative teacher professional approach, originated in Asia, has been 
adopted around the world (e.g., Huang et al., 2019). Although the effects of LS on teacher 
professional learning (knowledge, beliefs, disposition), teacher professional learning community, 
and students learning have been widely documented (Cheung & Wong, 2014; Willems & 
Bossche, 2019), the theories for understanding of process and products of teacher learning 
through LS have become an emerging research field (Huang et al., 2019; Lewis et al., 2009); 
Specifically, various theories have been utilized to frame and understand LS (Borko & Potari, 
2020). Yet, most previous studies use a single theoretical lens for understanding LS (Widjaja et 
al., 2017; Clarke & Hollingsworth, 2002; Pepin et al., 2017; Trouche et al., 2019). Due to the 
complexity of teacher professional learning in collaborative LS settings, a networking theories 
approach may provide an alternative way to deepen understanding of the complex phenomena 
(Prediger et al., 2008; Shinno & Mizoguchi, 2021; Trouche et al., 2019). In this study, we aim to 
frame our study from a networking theories approach through which the Documentational 
Approach to Didactics (DAD) model (Trouche et al., 2020) is enriched by incorporating the 
ideas from Interconnected Model of Teacher Professional Growth (IMPG) (Clarke & 
Hollingsworth, 2002).  

Research Background and Theoretical Framework 
Chinese lesson study and teacher learning  

Chinese LS has some unique features (Huang et al., 2017), including (1) the repeated 
teaching of the same content to different students, with immediate feedback from their 
colleagues and knowledgeable others; (2) a focus on refining the teaching of particular content or 
improving teachers’ particular instructional skills; and (3) knowledgeable teaching researchers’ 
involvement who are officially responsible for organizing school-based teaching activities and 
evaluating teachers’ teaching and students’ learning. Overall, Chinese LS provides a platform for 
improving teaching practice (Chen, 2020; Wei & Huang, 2022), developing teachers (Fang, 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1426



 2 

2017), implementing new curriculum (Qi et al., 2021), and linking theory and practice (Huang et 
al., 2016).   
Theoretical framework  

Both DAD and IMPG models are rooted in the sociocultural perspective. They have been 
used to capture different aspects of teacher learning (Clarke & Hollingsworth, 2002; Trouche et 
al., 2019).  

DAD theory. Resources refer to what has the potential of ‘re-sourcing’ teacher activity 
(Adler, 2000) at the core of instruction. To capture the features of mathematics teacher 
professional development through the lens of their interactions with resources, a specific 
conceptual framework, named Documentational Approach to Didactics (DAD) has been 
developed over the past decade (Gueudet & Trouche, 2009; Trouche et al., 2020). This study 
focuses on dialectical relationship between the teacher and the resources: the teacher 
permanently adapts the resources s/he is working with (this is the instrumentalization process), 
while these resources, their constraints and affordances, contribute to configuring teacher’s 
activity (this is the instrumentation process). In DAD, a document is defined as the outcome of 
joint resources combined with knowledge guiding usage, and the process of developing the 
document is called documentational genesis (Pepin et al., 2013), which occurs through iterative 
processes of preparation/design and enactment (Trouche et al., 2019). Understanding teacher’s 
documentation work needs to consider resources evolving process through successive 
implementations for addressing different issues which is named as documentational trajectory 
(Trouche et al., 2020).  

IMPG model. Situated in a social and cultural perspective, the IMPG model (Clarke & 
Hollingsworth, 2002) posits that teacher change happens through enactment and reflection in 
four domains: Personal Domain (PD), Domain of Practice (DP), External Domain (ED), and 
Domain of Consequence (DC). PD includes teacher knowledge, beliefs, and attitudes and/or 
orientation, DP refers to teacher’s experimentation (classroom practices), ED involves the 
external source of information or stimulus, and DC refers to the salient outcomes of 
experimentation perceived by the teachers. To emphasize collaborative learning during 
professional development programs, Prediger (2020) proposed an adapted IMPG model for 
portraying teacher professional development in collaborative contexts. In her model, the Personal 
Domain is extended to a Collective Domain (CD, Shared practice and orientation) and the 
Domain of Practice is extended to a Domain of Inquiry (DI, collective inquiry of new teaching 
practice).  

A way for networking the two theories. We use integrating locally as a strategy for 
networking the theories of DAD and IMPG. The DAD model portrays the dynamic relationship 
between teachers and resources to generate documents, but the mechanism of documentational 
genesis remains unknown. The feature of IMPG model which emphases the dynamic among the 
different domains including the collective domain and external domain could be integrated into 
the DAD model to strengthen the model. Yet, based on the modified IMPG model by Prediger 
(2020), the documentational genesis can be seen as a dual process between the Collective 
Domain and Resources (External Domain, and Domain of Consequence) through Domain of 
Inquiry. Thus, we proposed a model for networking DAD and IMPG (see Figure 1): Teachers in 
the DAD theory are regarded as the collective domain from the IMPG perspective and resources 
in the DAD theory are the same as the External Domain (ED) and Domain of Consequence 
(DC), which includes textbooks, online resources, concrete models, students’ performance in 
pretest, as well as advice and materials provided by researchers outside the teacher community. 
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Documents in the DAD theory are regarded as the outcomes (resources and ways of using them) 
of Domain of Inquiry, which mainly include the agreed ideas in meetings and resulting products 
of lesson plans and enacted lessons. The Documentational Genesis in the DAD theory therefore 
triggered by the dynamics (enactment and reflection) between the Domain of Inquiry and other 
three domains. The Domain of Inquiry is a collective and collaborative process during lesson 
planning meetings, research lesson observation, and post-lesson debriefing meetings in an LS 
Group. 

 

 
 

Figure 1. An Adapted DAD Model by incorporating IMPG ideas  

From this adapted framework, this study aims to explore how teachers’ growth by their 
documentation works by addressing the following research questions: 

(1) How does the documentational genesis work through the enactment and reflection 
between the Domain of Consequence and the others? 

(2) How does teachers’ document system develop during the lesson study process? 

Methods 
The participants and the process of the LS 

The researcher, Dr. Huang, from a teacher education university and seven mathematics 
teachers in an urban elementary school in Shanghai form an LS group.  Dr. Huang works with 
pre-service mathematics teacher education program and research on mathematics teacher 
professional development, and teachers are from a Teaching Research Group (TRG, an 
institutionalized Chinese teacher professional learning community, see Yang, 2009) in the 
school. Mrs. Miao, the lead designer of teaching plans and enactor of research lessons, and the 
other six teachers Mr. Bao, Mr. Tan, Mr. Li, Mrs. Ji, Mrs. Wen, and Mrs. Zhao were all 
experienced teachers with teaching experience from 6 to 15 years. This lesson study went 
through four phases over four weeks. The first phase-study (29 April, 2021) involved the 
researcher and his graduate students sharing relevant research literature and the presentations of 
angle measures in different mathematics textbooks with the teachers. The teachers discussed the 
possible and specific content and task design on the size of angles. After the meeting, the 
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researcher designed a pretest for the teachers to understand their students' learning readiness and 
provide the foundation for designing the lesson. The second phase-plan (6 May, 2021) began 
with a brief presentation by the researcher on students' misconceptions about angles and the size 
on the pretest and their strategies for comparing angle size. Then, Mrs. Miao presented her lesson 
plan and the TRG discussed the lesson plan. In the third phase -teaching and reflection, based on 
the feedback from the LS group, Mrs. Miao revised the lesson plan and enacted the lesson in her 
own class (12 May, 2021). The researcher and other teachers in the LS group observed the 
lesson. A post-lesson discussion followed immediately. The teachers and the researcher 
evaluated the enacted lesson and identified issues that occurred and provided specific 
recommendations for improving the lesson. In the fourth phase – re-teaching and reflection (19 
May, 2021), Ms. Miao again enacted the lesson in another class, which the researcher and other 
teachers observed together. The post-lesson reflection followed. Finally, a post-test was 
conducted for students' learning outcomes in the second class.  

Data sources. In this study, the data consisted of three components. The first is the four 
videos of teachers' group meetings; the second is the two videotapes of enacted research lessons; 
and the third is the lesson plans and slides designed by teachers before the lesson study, and the 
lesson plans and slides developed during the lesson study.  

Data analysis. Teachers' lesson plans and slides and the meeting videos at each stage were 
used to analyze and describe teachers’ document system and paint documentational trajectory. 
Based on the research questions and the adapted DAD model, Dr. Huang generated an analytical 
frame for identify participating teachers’ documentational genesis. The frame focuses on the 
actors’ roles in meetings and classrooms (researcher, teachers, and students) surrounding the 
interactions (enactment or reflection) between the Domain of Inquiry and each of other three 
domains. Four research assistants watched the videos (meetings and lessons) and took notes 
independently. After watching each video, the researcher and the assistants had a group meeting 
to identify the major features of document work and document system at each individual phase. 
Any disagreements during the meeting were resolved through extensive discussion. The 
documentational genesis is summarized in a Table 1. The same process was applied to analyze 
all the videos in different stages. Finally, a diagram for presenting teachers' documentation work 
during the LS (Trouche et al., 2019) was created, which includes five major stages for the 
teachers' documentation works in line with the four phases of the LS. In the Results that follow, 
the document system and documentational genesis will be presented in narrative and 
documentational trajectory development over the stages will be summarized.      

Results 
The results are presented in five stages in line with the four lesson study phases. These are: 

0)(pre-lesson study): Previously developed materials by TRG and e-resources identified by the 
teachers to support their inquiry into lesson design before the lesson study; 1): the resources 
provided by the researcher and misconceptions occurred on the pretest promoting the teachers’ 
consideration of concrete manipulatives used for developing a lesson plan; 2): The resources 
used to produce and revise the lesson plan through the collective inquiry, and the questions from 
the researcher eliciting the teachers’ rethinking about learning goals of the lesson; 3): The 
enactment of research lesson facilitating the teachers’ reflections on students’ learning, resulting 
in further refinement of the lesson plan; 4): Reenacting the research lesson facilitating the 
teachers’ reflection on how to use students’ misconception as teaching resources. The following 
narratives demonstrate how the results are supported by empirical data.  
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Stage 2: The resources used to produce and revise the lesson plan through the collective 
inquiry, and the questions from the researcher eliciting the teachers’ rethink the lesson 
goals. 

Documentational genesis. At this stage, the researcher’s ideas (ED) impacted on the 
teachers’ inquiry. The researcher questioned whether recognizing acute, right and obtuse angles 
should be included as one of the learning objectives in this lesson. He believed that the most 
challenging part is to establish the concept of the size of the angle, which lays the foundation for 
comparing the size of the angle and identifying acute, right and obtuse angles. Inspired by the 
researcher’s question, the teachers further discussed and agreed that after developing the concept 
of the size of the angle, angles could be compared, and acute and obtuse angles could be 
developed through comparing with right angles. Mr. Tan believed that students could perceive 
that the size of angle is related to the openness of the angle but are difficult to understand that it 
is irrelevant the length of the two sides.  They finally agreed on the use of strips to construct 
angles and to help students develop the concept of the measure of angles through manipulative 
activities: (1) using the strips (with same length) helps students to experience that the rotation of 
one side of an angle creates different angles, and to recognize the two perspective toward an 
angle: a shape (formed by two rays from the same vertex, static) and a rotation (process of 
generating the angle, dynamic); (2) using the strips with different lengths to construct angles 
with in the same and/or different sizes to help students realize that the length of the sides of angle 
is nothing to do with the measure of the angle.  

In summary, the triggered by the researcher’s questioning, the teachers collectively discussed 
their ways of helping students’ development of the concept, finally resulted in a new design of 
lesson plan. Thus, the collective domain (teachers’ knowledge and beliefs about teaching the topic) 
changed and the domain of consequence developed, which contributed to the development of their 
document systems (see Table 1). 

 
Table 1. The teachers’ documentational genesis during the Stage 2 

Documentational Genesis  
 
Domain 

of Inquiry 
(DI) 

Teacher 
(CD) 

Reflection The teachers’ inquiry facilitated them to develop their 
knowledge of the measure of an angle and beliefs 
concerning with teaching and learning of the topic. 

Resource 
(ED) 

Enactment The researcher’s question resulted in the teachers’ 
inquiry into the objective of the lesson. The concrete 
model also impacted teachers’ inquiry into designing 
tasks for student learning 

Document 
(DC) 

Enactment The teachers’ inquiry resulted in the new design of the 
lesson plan (new objectives of learning and newly 
designed tasks). 

 
Document system. In this stage, the analysis of documentational genesis (Table 1) shows the 

teachers' documentation work. Firstly, there is the instrumentation process, where the 
researcher's question as a Resource directly triggers the Domain of Inquiry (of the LS group), 
and then Domain of Inquiry facilitated the teachers’ rethinking and reflection. Second, it is the 
instrumentalization process, where Mrs. Miao with her colleagues further improved their 
documentation system with refining the lesson plan. In the revised lesson plan, the learning goals 
of the lesson focused on recognizing and comparing the size of angles only while removing the 
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content of acute, right and obtuse angles to the next lesson. Correspondingly, they modified the 
activities to explore the size of the angle based on a more refined learning progression, i.e. from 
constructing angles in different sizes through manipulatives, to comparing two angles that are 
close in size using concrete tools. 

Summary. Based on the adapted DAD model, this study paints the learning of a group of 
teachers in a lesson study as the process of their development of document system and uncovers 
their learning mechanism through documentational genesis. The results show that the teachers' 
documentational trajectory went through four stages. Teachers become active resource adapters 
and producers. The teachers' document system has been developed through the reflections and 
enactment. Both the instrumentation and instrumentalization process are reflected during the 
dynamics between the Domain of Inquiry and the other three domains. Overall, the teachers' 
document system developed from adopting traditional resources (e.g., the textbook and shared 
materials in TRG) with a focus on delivering of subject content to designing the lesson creatively 
by adapting both traditional and additional online resources (e.g., online videos and 
manipulatives) with a focus on student-centered active learning.   

Conclusion and discussion  
In the section, we highlight the contribution of this study in three aspects as follows: 

Document system and its development as an effect of LS 
    The Chinese LS process provide an effective mechanism for teachers to develop their capacity 
in instruction design through the enrichment and refinement of their document system as 
demonstrated in this study. Thus, this study contributes teachers’ learning through LS by 
extending their learning as document system development. Moreover, this study also 
demonstrates the critical roles played by the researcher. For example, how to provide  the 
resources (both ideas and resources) with teachers, and how to facilitate teacher discussion and 
reflection by raising meaningful questions. This finding about the critical role of knowledgeable 
others played in the lesson study is aligned with other studies (Gu & Gu, 2016; Li, 2019).  
Enrichment of DAD by uncovering the documentational genesis process 

According to DAD, teachers’ learning is regarded as the development of document system 
through the interactions between teachers and resources. The interactions are featured by 
instrumentation and instrumentalization process. Although DAD's theory recognizes a collective 
perspective and explores the development of teacher document systems within a community of 
practice (Wenger, 1998), the process of interaction between teachers and resources are not 
appropriately explored (Trouche et al., 2019). In this study, we examined documentational 
genesis as a process of enactment and reflection between Domain of Consequence and the other 
from the IMGP perspective. With the cycle of LS, the documentation genesis process is 
described in detail, thus, both document system and its development through lesson study are 
revealed vividly.  Therefore, his study contributes to enriching DAD by illustrating the 
documentational genesis.   
Networking theories by locally integrating two theories 

The strategies of synthesis and local integration focus on developing theory by combining a 
small number of theoretical approaches into a new framework (Prediger et al., 2008). In this 
study, we adopted a locally integrating strategy by incorporating the interactions among four 
domains in the IMPG model into DAD theory to explore the mechanisms of documentational 
genesis. As demonstrated in this study, by employing the adopted DAD model, teachers’ 
learning through LS has been extended and described in great detail. Therefore, the locally 
integrating framework in this study could, on the one hand, explain the mechanisms of teacher 
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documentational genesis and, on the other hand, describe teachers’ professional development 
through the changes of the document system. 
Limitations and further studies 

Since there is no follow-up data (after the lesson study) nor interviews with the teachers, we 
are unable to make any claims about how teaching this specific topic can sustain the teaching of 
other topics. In further studies, these two data sets should be purposefully collected and analyzed 
to explore teacher document system development through LS.  
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This research report describes new insights into how teachers develop empathy for learners and 
build capacity for more responsive teaching. To develop empathy, we introduce an epistemic 
activity for teachers involving an unfamiliar base system that promotes the construction, 
communication, and critique of knowledge. Teacher responses from two professional learning 
groups provided data for analysis. A phenomenographic approach was used to analyze survey 
data and report teachers’ experiences. This study suggests that teachers developed empathy—
putting themselves into a students’ sense-making experience and seeing the value in their work. 
Additionally, specific interactions that arose from the investigation influenced teachers’ future 
teaching practices. Results show that teachers recognize and appreciate students' feelings and 
desire further sense-making opportunities for their future practice. 

Keywords: Professional Development, Teacher Noticing, Affect, Emotion, Beliefs, and Attitudes 

Objectives 
What does it feel like to be a learner of mathematics? How can teachers build empathy for 

the learning experiences of their students? This research report answers calls in the literature for 
more course activities that provoke pre-service teachers’ expression of empathy—seeing the 
merits of how students make sense of mathematics (e.g., Jaber, Southerland, & Drake, 2018). In 
our own work, we have also considered activities that aim to build empathy with in-service 
teachers. The purpose of this research report is to describe a study involving teachers’ 
experiences solving one addition question: 13 + 6 using a base 7 place-value system. In our 
activity, we used the context of “living on Mars” to create dissonance and support teachers as 
they transitioned to thinking and working in an unfamiliar base system. This is important 
because normally teachers are familiar with the math they are aiming to teach in their 
classrooms. Mathematics education researchers (e.g., Lin & Hsu, 2018; Zazkis, 1999) 
recommend teachers work on questions in different base number systems because the experience 
puts them in a students’ shoes and thus can develop empathy for mathematics learners. PMENA 
has invited us to consider notions of dissonance and harmony. This study aims to help teachers 
develop empathy through experiencing their own sense of dissonance (working in an unfamiliar 
base system) to appreciate the journey to harmony (meaningful learning). We believe such 
experiences help to build teacher capacity to support the learning conditions for all students. 

Developing empathy for how students grow mathematics understanding is an important part 
of teacher education because of its promise for supporting teachers to be more responsive in their 
practice (Jaber et al., 2022). Research in mathematics education often associates responsive 
teaching with developing a practice of noticing. Teacher noticing has become a highly valued 
practice for effective teaching of mathematics because of its potential to reframe what a teacher 
looks for, interprets, and takes up in the classroom (Jacobs, Lamb & Philipp, 2010). For 
example, responding to student thinking by noticing student strengths (Jilk, 2016) or identifying 
moments in a lesson that are conducive to building on student thinking (Leatham, Peterson, 
Stockero, & Van Zoest, 2015). Yet, responding to students’ ideas in the moment is challenging 
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for teachers because of the unpredictability of student thinking (Foster, 2014; Rowland & Zazkis, 
2013). The question guiding this research is: How do educators respond to activities that aim to 
help them to develop epistemic empathy? 

To prepare for lessons that are responsive to mathematical thinking emerging from activities, 
teachers are encouraged to anticipate multiple solution strategies, listen to and observe students’ 
ideas during activities, and respond by selecting student samples that orchestrate discussion 
around a lesson goal (Smith & Stein, 2018). While a lesson goal may be the focus when aiming 
to develop content, in this study, educators were more inclined to think about the kinds of 
emotions taking place in the classroom and the teacher moves to facilitate rich learning 
experiences in their own work. While the lesson activity elicited empathy for students’ sense-
making experiences in number, it also provoked ways that teachers might respond to student 
thinking by anticipating actions they can use with future learners.  

Conceptual Perspective 
To frame this study, we draw on the concept of epistemic empathy. Educational researchers 

(e.g. Horsthemke, 2015) have previously used this concept to talk about knowledge 
development. Specifically, for mathematics and science educators, Jaber et al., (2018) define 
epistemic empathy as “the act of understanding and appreciating someone’s cognitive and 
emotional experience within an epistemic activity, meaning an activity aimed at the construction, 
communication, and critique of knowledge” (p.14). A conceptual perspective involving empathy 
fits well with the objective of elementary teachers learning in a different number system because 
the experiences aim to grow their perspectives on how students develop mathematical 
understanding in our base 10 system. For example, teachers working on questions in a base 7 
place value system can help build a teacher’s appreciation for students’ “cognitive and emotional 
experience” by putting themselves in students’ shoes to learn how adding works in an unfamiliar 
base system. In terms of the epistemic activity, the context of learning in a base 7 world (e.g., 
Mars) for adding 13 and 6 aimed to provoke the following actions: a) working in small groups to 
construct multiple solution strategies and representations, (the construction) b) engaging in peer-
to-peer and peer-to-instructor dialogue (the communication) and c) developing and critiquing 
mathematically convincing arguments (the critique).  

Methods 
This study used a phenomenographic approach that collects data to study participants’ 

experiences and perceptions of that experience. Mason (2002) says that “[t]he aim [of 
phenomenography] is to describe and characterize different ways of experiencing” (p.162). 
Phenomenography is a qualitative research approach with a long history in higher education. The 
approach develops qualitatively different categories of experiencing a phenomenon from the 
collected data through an iterative process (Kinnunen & Simon, 2012). Data is derived from a 
wide range of experiences/conceptions of the same phenomenon. This is accomplished by asking 
people to describe, in their own words, the phenomenon and how they 
experienced/conceptualized it personally. In the sessions, we provided the teachers with the 
following reflective question: How does working in a base 7 context influence your practice? 
The first author started the analysis by identifying statements related to the research question. As 
we examined the data, we began to see trends in what teachers shared. Our first iteration of the 
analysis showed largely that responses were either emotional or pedagogical in nature. These 
themes are described in this paper; yet we intend to deepen our analysis through further iterations 
to examine themes within these broader categories. 
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Data Sources:  
We generated data from two sources: one group of 20 math educators, coaches and mentors 

participating in monthly virtual professional learning (VPL) meetings and another group of 
fifteen elementary teachers participating in a 10-day in-person professional learning (IPL) 
course. All teachers in both groups agreed to participate in the study. In the second year of the 
VPL group, teachers worked individually on 13 + 6 in base 7 before sharing solution strategies 
with the whole group. The teachers in the IPL group were randomly assigned to blackboard 
workspaces in five groups of three on the third day of the course. Teacher reflections on their 
experiences working with base 7 were collected as written data (IPL) and audio/video data 
(VPL) and analyzed for this research.  

Results 
Many teachers in the VPL and IPL mingled in base 10 while working with base 7 during the 
investigation. In other words, the task challenged them to use what they knew about adding in 
base 10 in novel ways. In both groups two strategies emerged as possible solutions (see figure 
1):  a) Mingling in base 10, the teacher moves one unit from the 6 to make 14—two 7’s in 14 and 
5 more is 25; and b) The teacher uses regrouping and/or counting strategies in base 7 to get 22.  
 

 
Figure 1: Two solution strategies for 13 + 6 in base 7 

 
Based on both groups of teachers’ oral and written reflections working with base 7, the 

following two categories emerged from analyzing the data: (1) recognizing and appreciating 
students’ feelings in learning mathematics, and (2) desiring similar sense-making opportunities 
for future students. These categories are related insofar as both involve valuing students’ 
mathematical thinking, but they have distinct features. The first category focuses on, identifies, 
and talks about feelings that emerge through their process of determining an answer, often 
aligned with dissonance. For example, the following comment made by a teacher in the IPL 
group talks about the disappointment she felt from realizing her answer was incorrect, “After 
finding out my answer was actually incorrect, I experienced a sense of disappointment because I 
guess I really wanted to be right and was proud of my group for going through so many steps to 
get to where we did.” She elaborated on how her own feelings of disappointment made her think 
about the ways “students will feel disappointed when they have worked so hard and end up 
getting the incorrect answer.” Here, she recognizing the dissonance her students experience as 
she builds empathy.  In a similar way, a teacher in the VPL group said that the experience “put 
[her]self in the place of kids and what they might be struggling” to understand.  She went on to 
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connect her feelings about struggling in the base 7 activity with “what [students are] going 
through every day when we are trying to teach place value”. Again, this recognizes dissonance.  

The second category is distinctly different because comments under this category identify 
teaching actions that support sense-making and share the characteristic of teachers’ desiring 
similar learning opportunities for future students. In other words, they are seeking harmony. For 
example, a teacher in the IPL group commented that peer “dialogue, disagreements, and prompts 
from our teacher” provided opportunities to “self-correct…misconceptions” that their group 
faced. This teacher goes on to say that she intends to provide “similar experiences for [her] 
students to engage in discourse with their peers with building new mathematical learning.” 
Engaging with peer ideas that are different from your own was also important to a teacher in the 
VPL group.  After comparing his work to how his colleagues “approached the [base 7] problem 
differently,” he said that students also need “opportunities to see how someone did something 
different [because] it gives you a more holistic approach to solving math problems in general.” 
These moves promote harmony seeking. 

Discussion 
Through creating dissonance for teachers, we put them in a situation where they needed to 

strive for harmony. Working in base 7 allowed teachers to develop empathy for appreciating 
students’ cognitive (e.g., getting an incorrect answer, understanding) and emotional experiences 
(e.g., feeling disappointed, struggling). Teachers’ comments also valued the interactions they 
experienced while solving the question (e.g., peer dialogue) and expressed a desire to provide 
similar experiences for their future students (e.g., comparing different strategies). This 
experience provoked teachers to envision themselves enacting practices like the ones they 
experienced as learners during the activity. Instead of preparing to respond to students’ ideas by 
anticipating multiple solution strategies (Smith & Stein, 2018), teachers in this study prepared to 
respond to students’ mathematical ideas by anticipating teaching actions like peer dialoguing and 
using different strategies for comparing and analyzing student work. Of particular significance in 
this study is how the nature of living and learning in base 7 supported Jaber et al.’s, (2018) call 
for more course activities that provoke expressions of epistemic empathy and extended this to in-
service teachers. That is, the base 7 task initiated the construction of multiple solution strategies, 
communication between peers and their instructor, and a critique of two different solutions that 
emerged during the investigation. Overall, we see that this work put teachers in a state of 
dissonance that invited them to seek harmony in much the same way their students experience 
learning. This develops epistemic empathy. While the epistemic empathy provides teachers with 
a perspective on how their students are experiencing learning, engaging in this task also provided 
teachers with insight into pedagogical practices that can move their students from dissonance to 
harmony. 
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As mathematics teacher educators working to better understand how to train teachers to enact 
justice-oriented practices, we situate our work in the guiding question: “How does your work 
have an impact on society more broadly, beyond individual mathematics classrooms and school 
districts?” Results from our development and implementation of a semester-long course for 
teachers shows that teachers can be supported to find reasonable avenues for action to take up 
in their classrooms, though they begin without a sense of empowerment or understanding of 
resources to do so. Our teacher participants are eager to leverage their unique knowledge and 
role in their contexts to advocate for the changes they envision—changes that create more 
socially just contexts for learning and teaching mathematics. 

Keywords: Social Justice, Teacher Educators, Equity, Inclusion, and Diversity, Instructional 
Vision  

Introduction 
Reform documents (e.g., NCTM, 1989; 1991; 2000; 2006) call for making classrooms more 

equitable in the sense of making mathematics accessible to all students. Many have argued (e.g., 
Gutstein, 2003; NCSM & TODOS, 2016), it is also necessary to address broader social, political, 
and ideological issues present in classrooms, schools, and communities to reach these content 
goals. Mathematics teacher educators (MTEs) are tasked with fostering well-prepared teachers 
who “are equipped to question existing educational systems that produce inequitable learning 
outcomes for students” and are able “to advocate for themselves and challenge the status quo on 
behalf of their students (AMTE, 2017, p. 21-24).” Practicing classroom teachers bring an 
abundance of expertise and knowledge of their students, content, profession, and communities. 
However, due to their perceptions of their role and responsibilities, some teachers feel ill-
equipped or powerless when working to make changes within and beyond their classrooms 
(Picower, 2011; Raygoza, 2016). MTEs can come alongside such teachers to support them to 
leverage their unique knowledge and positions to advocate for the changes they envision.  

We describe a graduate-level course for in-service teachers intended to interrogate issues of 
justice in teaching. Teachers entered the course with a desire to make their classroom instruction 
more equitable but had not always found opportunities to do so. As described by one teacher-
participant, Josh (all teacher names are pseudonyms):   

Given the structures of state-mandated high stakes testing, funding that is tied to those test 
scores, and the tyranny of centrally designed scope & sequence requirements, teachers barely 
have time to find new research-based ideas for their students let alone the freedom to 
implement strategies on their own. 
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Given this starting point, the course aimed to support the teachers’ inquiry and actions into their 
own contexts. The purpose of this brief report is to disseminate the opportunities teachers found 
to envision and act after being supported with structures and tools to investigate their 
positionality, settings, and goals. Specifically, we ask, when teachers are provided support to 
investigate their positionality, settings, and goals in relation to social justice, what avenues for 
action do they take up in their classrooms? 

Framing 
NCSM and TODOS (2016) propose a three-stage cycle of acknowledgement, action, and 

accountability (AAA) to tackle issues of inequity. They call for those working in the field of 
mathematics education to use the AAA cycle to first acknowledge that mathematics education is 
unjust, then they call for action to “re-frame, re-conceptualize, intervene, and transform” 
mathematics education, and finally they demand accountability to ensure change endures (p. 1). 
By implementing an AAA cycle to promote change, teachers look to address harmful practices 
that range from issues in their individual classroom to school or district policies.  

When addressing harmful practices teachers must understand how their positionality is 
impacted by contextual and historical factors (Tien, 2019). Teachers must be supported to not 
only understand their individual identities and their impact within the context they teach, but 
they must also know how the socio-political histories have shaped the experiences and issues 
they seek to dismantle. By developing political knowledge for teaching (Gutiérrez, 2013), 
teachers begin to see how historical, political, and ideological factors interact. This awareness 
allows for teachers to implement justice-oriented pedagogies to help students become advocates 
for social justice. The Learning for Justice Social Justice Standards (2018) provide a framework 
that teachers draw upon when planning to address injustices within their context. In this paper we 
draw upon the AAA cycle as a structural framing to analyze how teachers take up the social 
justice standards to imagine new possibilities in their contexts.     

Methods 
Positionality 

We are all White-female mathematics teacher educators in tenure-track positions teaching 
undergraduate and graduate mathematics and mathematics education courses. We intentionally 
name our Whiteness because we are aware of the privilege given to us in a society dominated by 
White supremacy. Our work has evolved to better understand how to train teachers to enact 
justice-oriented practices, especially in areas of the United States where such practices may be 
unwelcomed by people in power. We have continually reflected on how our positionality has 
influenced the creation and analysis of the course presented in this paper. 
Context and Participants 

We draw from the AAA cycle for this work, in a three-level, nested way (see Figure 1). At 
the first level, is our (as the teacher educator-researchers and instructor) use of AAA. Our 
acknowledgement includes our positionality and activities to determine the needs of our teacher 
participants. This knowledge, coupled with our analysis of the current climate towards 
addressing inequities in schools from a global and geographically specific lens, informed our 
action: the intentional design and implementation of a master’s level course for PK-12 practicing 
teachers. This course–described as an advanced study of and design of curriculum models for 
diverse learners–was taken by eight students pursuing a master’s in education in curriculum and 
instruction, all of whom are current or former teachers. Roughly split into thirds, each portion of 
the class concentrated on either the concept of acknowledgement, action, or accountability, as 
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detailed in the middle column of Figure 1. And as a culmination of learning and experience (and 
course accountability), students in the course ended with an acknowledgment-action-
accountability project of their own.  

 

 
Figure 1: Nested Levels of Acknowledgement, Action, and Accountability 

Data and Analysis 
For this analysis, we draw data from our teachers’ culminating projects (see Figure 1), 

specifically their acknowledgement and action pieces. The acknowledgement includes a write-up 
of their positionality, a problem statement, and articulated relationship between their work and 
the Learning for Justice Social Justice Standards (2018). Using narrative inquiry, “research 
[which] aims to explore and conceptualize human experience as it is represented in textual 
form…aiming for an in-depth exploration of the meanings people assign to their experiences” 
(Salkind, 2010, p. 1004), we look at the interplay between teachers’ acknowledgement and 
action. Due to time constraints of the course, the action and accountability were mostly 
theoretical and not enacted. Our choice to exclude analysis of the accountability piece is due to 
the purely theoretical nature of many of the submitted reports. While teachers had time in a 
single semester to consult peers, administrators, and other community stakeholders to develop 
their action plans, they did not have time to implement them.  

Results 
To understand the ways that teachers imagined possible actions of social justice in their 

teaching, we first identified the Learning for Justice Social Justice Standards (2018) that were 
named within their culminating projects. Next, we focus on two teachers’ specific projects to 
illustrate how the same standards were addressed in different contexts. Table 1 displays the 
standard addressed in each teacher’s culminating project. The standards are organized by 
Domain, with most teachers choosing to address diversity in their project, and standard 6 being 
the most common standard, “Students will express comfort with people who are both similar to 
and different from them and engage respectfully with all people” (p. 3).   

To highlight the different approaches to the standard, we share findings from two teachers, 
Gloriana and Amy. Gloriana’s culminating project proposed the school-wide solution of using 
restorative circles to address her school’s infraction system of discipline. Her experience as a 
classroom teacher has led her to believe that “student-teacher relationships are heavily involved 
in students’ disciplinary issues and in how they are addressed. A mistake in addressing these 
issues may harm the student-teacher relationships...” Consequently, Gloriana sought to set up 
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restorative circles to provide students opportunities to express themselves with their peers and 
teachers in ways that are respectful, productive, and contribute to positive classroom 
relationships.  

Amy’s culminating project addressed the same standard, but within her individual classroom. 
As a high school geometry teacher, Amy shared that her students struggled with conditional 
statements. Additionally, as an African American woman who grew up in a predominately White 
space, Amy never had the opportunity to integrate her culture and lived experience into her 
schooling. She chose to address these two concerns by creating a lesson on conditional 
statements that guided students to explore the relationship between a statement’s hypothesis and 
conclusion through a cultural lens. Students were directed to create their own statements, such 
as, “If you were Cesar Chavez, then you dedicated your life to la causa.” In a Socratic seminar, 
students share their statements and share their culture with their classmates.  

 
Table 1: Target Learning for Justice Social Justice Anchor Standard and Domain 

Teacher 
Identity Diversity Justice Action 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Holly        x    x x x   x    
Kida x x x x x x x              
Gloriana    x  x   x            
Amy      x  x             
Sarah      x    x           
Kaitlyn                 x    
Josh          x           
Caroline x x x x x x x x x x x x x x x x x x x x 

Discussion 
We envisioned teachers’ first act towards taking up justice-oriented work in their classrooms 

and contexts as what could be reasonably accomplished in a semester-long gradate course. Using 
NCSM and TODOS’s (2016) AAA cycle as a frame, teachers’ culminating projects were an 
acknowledgement and plan for action. We found teachers’ foci on social justice standards varied 
by their own positionality, contexts, and identified needs of their students and schools. Close 
examination of teachers’ culminating projects show that mathematics educators seek to address 
social justice at both the classroom level (e.g., Amy) and system levels (e.g., Gloriana), which 
would directly impact the culture and climate of their mathematics classrooms as well. Teachers’ 
second acts are to come; enactment of their action and accountability pieces. Through this work, 
we anticipate our teachers will move from being “equipped to question existing educational 
systems that produce inequitable learning outcomes for students,” which we found them to be at 
the end of the course, to being able “to advocate for themselves and challenge the status quo on 
behalf of their students” (AMTE, 2017, p. 21-24). While these results are preliminary, we are 
encouraged by the possibilities of teacher learning experiences that are framed using the AAA 
cycle towards combating harmful practices and promoting justice-oriented change at both the 
classroom and systems level.  
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This paper reports on a correlation analysis of two cohorts of mathematics teachers’ patterns of 
participation in online asynchronous discussions and their persistence in a sequence of 
professional development workshops. Findings indicate that increased access to colleagues’ 
knowledge resources and more frequent dispersion of these resources across the social network 
related to persistence. We discuss how variations in the design of our online workshops may 
have impacted teachers’ potential to persist in the professional development. The findings have 
implications for network-based instructional strategies that could increase mathematics 
teachers’ potential to persist in online professional developments.  

Keywords: Professional Development, Online and Distance Education 

Objectives and Purpose 
Developing discourse-rich instructional practices that are responsive to student mathematical 

thinking is a challenging process. Learning to implement such practices takes time and is 
unlikely to occur in “one-shot” professional developments or even a short workshop. Indeed, 
there is consensus that sustained duration is a feature of effective professional development that 
supports teacher learning and instructional improvement (Darling-Hammond et al., 2017; 
Desimone, 2009; Dille & Røkenes, 2021; Sztajn et al., 2017; Sancar, Atal, & Deryakulu, 2021). 
Online settings afford sustained professional development because they allow for flexibility in 
when, where, and how teachers participate (Fletcher et al., 2007). Further, online settings are less 
susceptible to local norms and instructional practices that can influence the focus of teacher 
collaboration (Cobb et al., 2001) and have counterproductive effects on their instruction (Munter 
& Wilhelm, 2020). Despite the importance of sustained professional development and the 
benefits of online settings for supporting teacher collaborative learning, little is known about the 
extent to which teachers persist in online professional development and how various factors, 
events, and conditions impact their persistence. In this paper, we report on our examination of 
relationships between patterns in teachers’ interactions in our online professional development 
and their persistence in the workshops. 

Theoretical Framework  
We draw from social capital theory to frame our investigation of teachers’ persistence in 

online professional development. A central assumption of social capital theory is that individuals 
have social, cultural, and intellectual resources and increased access to these resources through 
participation in a social network has many benefits for “upward mobility” (Burt, 1992; Coleman, 
1988). Resources flow through a social network as individuals interact with one another (Light & 
Moody, 2020) and different positions in a network can support or constrain individuals’ actions 
and access to resources (Burt, 2004). For example, those who emerge as central members of a 
network by interacting with a large proportion of colleagues have increased access to resources 
and a role in dispersing them throughout a network (Freeman, 1979).  

Although there is no research we are aware of investigating relationships between teachers’ 
centrality and persistence in professional development, studies of undergraduate education have 
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illuminated such relationships (Dawson, 2008; Thomas, 2000; Tinto, 1975). For example, 
Zwolak et al. (2017) found that students with higher centrality in an undergraduate physics class 
social network were more likely to enroll in the next class in the program. Furthermore, in a 
randomized control trial, Turetsky et al. (2020) implemented an intervention that supported 
students in becoming more central in a “gateway” bioscience course social network. Students in 
the intervention group that increased their centrality were more likely than the control group 
students to take the next course in the bioscience sequence. Drawing from these studies and 
social capital theory, we conjecture that teachers’ increased access to and engagement with 
colleagues’ resources in online discussions could impact teachers’ overall interest in professional 
development and potential to persist. The current study takes a first step at investigating this 
conjecture by correlating teachers’ centrality in online asynchronous discussion forum 
conversations with their persistence in a sequence of three online workshops.  

Methodology 
This research was conducted as part of an online synchronous and asynchronous professional 

development that featured a sequence of three 6-week workshops. The workshop goals included 
supporting mathematics teachers in shifting towards more student- and discourse-centered 
instructional practice by engaging in problem-solving, examining student math work, and 
connecting these experiences to models of mathematics lessons, including the “Launch, Explore, 
Summarize” model, 5 Practices for Orchestrating Productive Mathematics Discussions, and the 
“5-E” model. Each workshop built on the previous one by further connecting teachers’ work to 
their classroom practice. Workshop one included four week-long online asynchronous discussion 
forum conversations that connected teachers’ collaborative problem-solving and analysis of 
student work to their classroom practice. These discussions prompted participants to make an 
initial post and to submit at least two response posts to their colleagues. Workshops two and 
three used teachers’ collaboration in workshop one as a context for thinking about how to 
provide effective feedback to students.  

We recruited two cohorts of participants to complete the professional development 
workshops. The first cohort (C1) included 16 participants who completed workshop one together 
in the spring of 2021. The second cohort (C2) included 10 participants who completed workshop 
one together in the summer of 2021. The primary difference between the spring and summer 
version of workshop one was that the spring 2021 version was six weeks and the summer version 
was two weeks. We implemented the accelerated summer workshop so that participants could 
potentially take two workshops (one and two) in the summer. We offered the second workshop 
in summer 2021 to both cohorts and 13 of the 26 participants completed the workshop. We 
offered the third workshop in the fall of 2021 to the 13 participants who completed workshop 
two. Nine of these 13 participants completed the third workshop. The 26 participants have 
between 4 and 9+ years of teaching experience across K-16 grade bands and their geographical 
locations vary across the United States. 75% of the participants identified as female and 25% 
identified as male. The racial breakdown of participants is as follows: 70% White, 18% Black, 
2% Latino, 8% Asian, 2% Native Pacific Islanders.  

The two data sources for this study included participants’ interactions from workshop one 
discussion forums and persistence data across the three workshops. We defined an interaction as 
an occasion where a participant responded to their colleague’s post on the discussion forum. We 
modeled this collaboration with two social networks (one for C1 and one for C2), where the 
nodes represented participants and directed edges represented a response post from one 
participant to another. Using social network analysis, we generated the following basic network 
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characteristics for C1 and C2. C1: edges=153, density (the proportion of edges to possible 
edges)=52%, and reciprocity (the proportion of interactions that are reciprocated)=50%. C2: 
edges=77, density=56%, and reciprocity= 48%. We used a three-point scheme to denote 
participants’ persistence in the workshops. Specifically, if a participant only completed 
workshop one (did not persist), we denoted their persistence with a zero. We denoted completion 
of workshop one and two with a one and completion of workshop one, two, and three with a two. 
We imported the interactional and persistence data into R (R Core Team, 2021) and used the 
statnet package (Butts, 2020) to conduct the analysis.  

The analysis involved measuring participants’ centrality in workshop one social networks 
and then correlating centrality measures to their persistence. Given the lack of research on 
teachers’ persistence in online professional development, we used a range of centrality 
procedures such as out-degree (the number of posts sent), in-degree (the number of posts 
received), betweenness (a measure of dispersing information across the network), out-closeness 
(a measure of access to other’s posts), and in-closeness (a measure of other’s access to one’s 
posts). Table 2 provides an overview of several participants’ centrality measures (top and bottom 
rank ordered according to outdegree). Finally, we calculated the Pearson correlation coefficient 
and corresponding significance levels between participants’ centrality measures according to 
their cohort and their persistence in the sequence of workshops.  
 

Table 1: Centrality and Persistence Data 
Cohort Participant Outdegree Indegree Betweenness Out-Closeness In-Closeness Persistence 

C1 P1 17 9 0.100788 0.761905 0.571429 1 
C1 P2 15 16 0.079033 0.695652 0.666667 2 
C1 P15 2 6 0.016052 0.457143 0.551724 0 
C1 P16 1 2 0 0.410256 0.470588 0 
C2 P17 18 7 0.131638 0.916667 0.55 0 
C2 P18 15 9 0.389121 0.846154 0.785714 1 
C2 P26 1 4 0 0.37931 0.578947 2 
C2 P27 1 4 0.004798 0.478261 0.578947 0 

Results 
Table 2 presents results from the correlation analysis. We found a positive and significant 

correlation (p<.05) between cohort one’s betweenness centrality and their persistence in the 
sequence of workshops. Betweenness centrality quantifies the number of times a participant falls 
on the shortest path (in terms of connections) between two other, unconnected participants in a 
network. In online discussions, this means that a participant with high betweenness centrality is 
responding to posts authored by participants who are not communicating with one another and 
increasing the dispersion of knowledge resources across the network. Thus, this correlation 
means that cohort one participants who more frequently dispersed knowledge resources across 
the network in workshop one were more likely to persist in the sequence of workshops. 

We also found a positive and significant correlation between cohort one’s out-closeness 
centrality and their persistence in the sequence of workshops. Out-closeness centrality is 
calculated by taking the sum of the reciprocal of participants’ shortest outwardly directed path 
lengths (the number of “jumps” one makes in a network to get to their peers). In online 
discussions, this means that a participant with high out-closeness centrality has increased access 
to colleagues’ knowledge resources through direct engagement with their posts or engagement in 
a thread initiated by a peer who they did not directly interact with. Thus, this correlation means 
that cohort one participants who had increased access to and engagement with colleagues’ 
knowledge resources in workshop one were more likely to persist in the sequence of workshops.  
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Table 2: Correlation of SNA Measure and Persistence 
SNA Measure Cohort 1  Cohort 2  SNA Measure Cohort 1  Cohort 2  

Out-degree 0.4953055 -0.4804152 Betweenness 0.5720269* -0.5694836 
In-degree 0.4300999 0.04415746 Out-Closeness 0.5010315* -0.5337503 

   In-closeness 0.4885712 -0.2476399 
     *p<.05 

Discussion 
This report provides initial support for our conjecture regarding the importance of teachers’ 

social capital through access to and engagement with peers’ knowledge resources for their 
persistence in online professional development. These findings suggest that there are 
implications for central participation in a network that are in addition to those documented 
elsewhere (e.g., academic success (Saqr et al., 2020), development of MKT (Silverman, 2012)). 
Further, our findings extend research correlating centrality in discussion networks with 
persistence in college to the context of online mathematics teacher education. Establishing a 
research base that documents factors, conditions, and events that impact teachers’ persistence in 
professional development can inform design and implementation strategies. For example, we 
plan to test a strategy for impacting teachers’ persistence that includes increasing peripheral 
participants’ betweenness centrality by prompting them to share connections they notice in 
colleagues’ ideas on a discussion forum.  

Our findings also showed that centrality was not correlated to persistence for cohort two. One 
explanation for this could be differences in the timeframes of workshop one. As noted above, 
cohort one participated in a 6-week version while cohort two participated in a 2-week version of 
workshop one. Our ongoing analysis indicates that the structure of cohort two’s network was less 
reflective of a community than cohort one’s network. Even though there was a range in centrality 
measures for cohort two, the accelerated timeframe may have reduced opportunities for teachers 
to engage deeply with their peers’ resources; thus, impacting how they perceived the potential 
benefits of participation and perhaps their “sense of belonging” (Baumeister, & Leary, 1995). 
This opens up a question about how the length and quality of initial professional development 
experiences impact teachers’ potential to persist in the professional development.  

As the need remains for sustained and effective professional development that supports 
mathematics teachers in developing discourse-rich and student-centered instructional strategies, 
additional research is required to gain deeper insight into factors, events and conditions that 
impact teachers’ persistence in professional development. One future area of inquiry that could 
extend this work might include investigating relationships between teachers’ centrality in online 
discussions, individual attributes (i.e., gender, MKT, etc.), network structures (e.g., cliques 
(Joksimović et al., 2016)), and persistence. We are currently exploring statistical network models 
such as exponential random graph models to investigate these relationships (e.g., see Bjorklund 
& Daly, 2021; Lusher et al., 2013). 
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The purpose of this report is to elucidate a common professional learning opportunity in Japan, 
instructional circles, that has not yet been studied systematically or described in detail. Through 
an in-depth look at these instructional circles, I provide a detailed description of how Japanese 
teachers identify instructional problems and how they analyze them as a group to improve their 
teaching practices. Data was gathered through an ethnographic approach to better understand 
how these instructional circles function for the teacher participants. Categories for observation 
were based on literature about professional development and my own experiences with Japanese 
professional learning. Learning about instructional circles can also provide a pool of new ideas 
about professional learning. Understanding new ways of doing things, and the conditions in 
which they operate might help us whether and how we want to adapt them for our own practices.  

Keywords: Teacher Knowledge, Instructional Activities and Practices, Mathematical Knowledge 
for Teaching   

Introduction 
In the last two decades, Japan has had a strong performance in international mathematics 

assessments. Beginning with early international studies of mathematics and science (FIMSS, 
SIMSS), to more recent iterations of the study International (TIMSS), Japan has scored in the top 
five spots in both the fourth grade and eighth-grade mathematics assessments (McKnight, 1987; 
Hiebert et al., 2005, McFarland et al., 2017). Because Japan has consistently performed high in 
these assessments, its instructional systems have become the focus of many studies.  

Researchers have attempted to understand instruction through studying various aspects of 
Japanese educational systems. Some of the aspects that have been studied include examining 
classroom structure (Stigler & Hiebert, 1999), looking at the influences and usage of textbooks 
and other curriculum materials (Melville, 2018), and highlighting the quality of instructional 
features (e.g., Hiebert et al., 2005; Corey et al., 2010). Although instruction is only one factor 
that might account for high achievement, researchers have identified patterns in instruction in 
these countries that are often aligned with recommendations for best practices (Stigler & Hiebert, 
1999; Takahashi, 2006; Watanabe et al., 2008).  

Learning about the teaching methods in Japan that include many practices recommended for 
U.S. classrooms has led to an interest in how teachers learn these methods. Most studies have 
pointed to lesson study as the driving factor of Japanese teachers learning these high-leverage 
teaching practices. Based on my experiences living in Japan and continuing to interact with 
Japanese teachers, I have identified other professional learning opportunities that might 
contribute significantly to Japanese teachers’ practices. One opportunity that could be especially 
influential I will call instructional circles. These are voluntary meetings of teachers in which 
participants learn about and discuss instructional problems they bring to the group.  

The goal of this report is to elucidate a common professional learning opportunity in Japan 
that has not yet been studied systematically or described in detail. Because this study is 
embedded in Japanese culture, the aim is not to provide descriptions that can be imported to 
other cultures. However, descriptions of professional learning in other cultures can be used to 
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reflect on one’s practices and provide new ideas or insights that can be adapted to achieve 
professional learning goals in local settings. 

To better understand these instructional circles, this study was guided by the following 
research questions: 

1. How are Japanese instructional circles designed to provide learning opportunities for 
teachers? What structural features do they include that could contribute to teachers’ 
learning opportunities?  

2. How do teachers engage in the features of instructional circles and with each other to 
support their learning opportunities? 

Through better understanding how instructional circles are designed to provide learning 
opportunities, and how teachers can support those learning opportunities through their 
engagement in the professional learning opportunity, I have been able to find evidence of 
practices that differ from normal professional learning practice.  

Literature Review 
The purpose of this literature review is to determine what aspects of Japanese instructional 

circles should be investigated. I first looked at what features of professional learning 
opportunities (PLOs) other researchers have found to be important to study. Then I considered 
additional features of PLOs I identified from participating in learning circles. Using these 
features, I can develop guiding features to look for when answering the first research question. I 
then looked at different features of teacher learning to guide what evidence I should pay attention 
to when addressing the second research question.  
Consensus Features of Effective Professional Development 

 Although there is no complete agreement about what constitutes effective professional 
development, there are a small set of features around which consensus is building. Desimone 
(2009) and Gusky (2003) have synthesized research and have identified the following five 
features: Content, Active Learning, Coherence, Duration, and Collective Participation. These 
five categories have often been used to determine the types of features of effective professional 
development; however, further research has been done to better define some of these features. 
Gibbons and Cobb (2017) state that the feature of Active Learning covers a broad range of 
activities and further defines that category as the pedagogies of investigation and pedagogies of 
enactment. Whereas pedagogies of investigation focus on the analysis and critiquing of 
classroom practice, pedagogies of enactment focus on planning for, enacting, and rehearsing 
high-quality teaching practices. Furthermore, there has also been a greater emphasis on attending 
to student thinking during professional learning opportunities (Gibbons & Cobb, 2017; 
Grossman et al., 2009).  
Observed Features of Instructional Circles.  

 My previous experiences have allowed me to become familiar with many different types 
of professional learning in Japan. The professional learning opportunities in Japan have some 
features that differ from those commonly found in the United States. I am interested in whether 
and how Japanese instructional circles include these features.  

Knowledgeable Other. In Japanese professional learning opportunities, the role of 
“knowledgeable other” is commonplace (Takahashi et al., 2013; Takahashi & Yoshida, 2004; 
Yoshida, 1999). Some knowledgeable others that I have observed being present include the 
district math specialist, vice principals, principals, the superintendent, or university professors. I 
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am interested to know if and how the role of knowledgeable other is important in Japanese 
instructional circles. I am also interested to know if the role of the knowledgeable other is like 
the other types of professional learning found in Japan.  

Teacher preparation. When attending a PLO, Japanese teachers often prepare extensively 
(Melville, 2021). The planning that they conduct during lesson study is one of the main features 
that transfers to teachers’ everyday practices (Melville, 2017). This idea that teachers need to 
prepare to attend professional development is something that is not commonly discussed in the 
research.  

Administrative aspects. The most well-known form of professional development found in 
Japan is lesson study (Takahashi et al., 2013). One interesting feature of lesson study is the 
complex organizational structure. Lesson study can be operated at the school level, district level, 
regional level, and national level. Lesson study takes on a different form depending on these 
levels as well. Because of the intricacies of the organizational structure of lesson study, I am 
interested to learn about the organizational structure of Japanese instructional circles.  
Features of Teacher Learning 

De Jong et al. (2019) studied aspects of teacher groups that enable teacher learning that I 
thought were pertinent to instructional circles based on my familiarity with this specific learning 
opportunity. The categories include the content of teachers’ conversations, roles and 
responsibilities teachers adopt, community features that typify the teacher groups, 
interdependency of the teacher interactions, and motivation for teachers to attend the learning 
activity. 

Methods 
Data was gathered through an ethnographic approach. Specifically, I followed the 

ethnographic guidelines for mathematics education outlined by Eisenhart (1988), namely, 
participant observations, interviews, artifact collection, and researcher introspection. From the 
literature on effective features of professional development and features of teacher groups that 
encourage teacher learning, I developed a guidebook of important features to look for when 
coding the observations, interviews, and artifacts. While coding, I separated claims about 
important features of instructional circles from the structural aspects of the professional learning 
opportunities that enabled learning opportunities.  

Results 
For this proposal, I provide one exemplary instance of an instructional circle to provide a rich 

description of both the structural aspects, as well as how the teachers engage with these features 
of instructional circles.  
Teacher-Led Improvement Practices 

Instructional circles prioritize teachers in all aspects of the professional learning opportunity. 
For each instructional circle session, one teacher provides a problem of practice to be 
investigated, while the other teachers offer previous experiences or research to suggestions 
solutions to that specific problem. The problems of practice selected by the teachers are also very 
specific, or at a very fine grain-sized problem. The discussions around these problems of practice 
lead to collective interpretation from all those involved, which connections to their future work 
(Horn et al., 2017). For example, Figure 1 is a board work plan provided by one of the teachers 
to set up his problem of practice. Mr. Kinjo included his question of the day, possible student 
solution methods, and the learning goal he wanted to achieve. Mr. Kinjo posed two problems of 
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practice for discussion from the group, A) He wanted to know how to better launch his task 
through asking a better thought-provoking question (Hatsumon) and B) he was worried that his 

 
Figure 1: Boardwork Plan 

students would not be able to understand the second potential student solution method. The 
teachers then took turns discussing potential ways to engage students in the lesson through a 
good thought-provoking question, as well as providing insight as to why students should be able 
to engage in the potential solution method. In conclusion, the teachers did not come up with 
mandatory questions Mr. Kinjo should use, or even if he should include the second solution 
method should be used. Instead, they provided their thinking and rationale and then left Mr. 
Kinjo to make the decisions that will best serve his class.  

Educational Significance 
 In general terms, I see two main contributions of this study. The field of education has 

researched professional learning/professional development rigorously. New ideas, such as 
coaching, have emerged as interesting features that can also be effective methods of professional 
development. Learning about instructional circles will provide an opportunity to step back from 
the current research and look at professional learning from a different perspective. The benefit of 
taking this reflexive step is to learn new and interesting ways to benefit our teachers. Learning 
about instructional circles can also provide a pool of new ideas about professional learning. 
Understanding new ways of doing things, and the conditions in which they operate might help us 
whether and how we want to adapt them for practice in U.S. settings.  
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This study examined how the social interactions that mathematics teaching assistants (TAs) have 
within their institution influenced their professional identity development as early-career 
undergraduate instructors. We drew on a sociocultural perspective of professional identity 
development in higher education to examine TAs’ interactions with students, faculty, and other 
TAs. We qualitatively analyzed five mathematics TAs’ responses to semi-structured interviews 
and found that some dimensions of their identities were more frequently situated within specific 
relationships, while others were evident in multiple relationships. Overall, the social interactions 
were sites for professional identity development. Identity is a complex construct, and a better 
understanding of how professional identity is developed can inform higher education institutions 
on ways to support positive identity development of future mathematics instructors.  

Keywords: Professional Identity, Teaching Assistants, Higher Education 

Introduction 
Research on classrooms and pedagogies in recent decades has elucidated the central role of 

professional identity in teachers’ learning and development (Beijaard et al., 2004). We draw on 
this research, particularly the notion that identities are complex, dynamic, social, contextual, 
multi-faceted constructions (Solari & Ortega, 2020) and that they underscore teachers’ 
pedagogies, affect their motivations to teach, inform their instructional approaches, and guide the 
way they navigate their profession and execute their roles (Berger & Lê Van, 2019; Sachs, 
2005). A large body of research has explored the identity development of mathematics teachers 
in teacher education programs and K-12 contexts (e.g., Sachs, 2005), however, there is still 
limited work examining the professional identity development of individuals involved in higher 
education mathematics instruction - particularly mathematics teaching assistants (TAs).  

Mathematics TAs play a crucial role in undergraduate instruction and are, in many ways, 
early-career mathematics instructors. After their graduate studies, many TAs continue to teach in 
higher education, but historically, STEM graduate programs have inadequately prepared their 
students to teach and have done little to help them develop their identities as educators (Hancock 
& Walsh, 2014). Thus, examining graduate students’ development of their professional identities 
is especially important and can inform the ways mathematics departments, and broadly, 
institutions, prepare their graduate students to be future educators. We drew on a sociocultural 
perspective of professional identity (Beauchamp & Thomas, 2009; Solari & Ortega, 2020) 
development in higher education (Clarke et. al, 2013) to frame this study. A sociocultural lens 
accounts for the institutional contexts that TAs navigate, the social domains that exist, 
interactions with members of their community that occur, the roles individuals perform, and the 
intrapersonal domain, or identities they assigned to themselves. Our research questions were: (1) 
How did mathematics graduate students reflect on their developing professional identities? (2) 
How did TAs’ professional identities develop within social interactions? 
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Framing and Literature Review 
Researchers have previously defined and classified the construct of identity in numerous 

ways. Identities can be institutional, based on an affiliation with a group, or even discursive 
(Gee, 2001). Additionally, identities can be independent or interdependent (Fryberg & Markus, 
2003), and they can be based on others’ perceptions (Markus & Wurf, 1987; Sfard & Prusak, 
2005). Drawing on these notions, we view identity as: “a dynamic view of self, negotiated in a 
specific social context and informed by past history, events, personal narratives, experiences, 
routines, and ways of participating” (Bishop, 2012, p. 38). Framing these ideas in a professional 
environment, we define professional identity as an ever-changing view of one’s obligations, role, 
and attitudes situated in institutional, social, and cultural contexts. A professional identity 
includes emotional components such as attitudes and beliefs (Wenger, 1999), which are often left 
out when considering one’s self-perceptions. Factors that influence professional identity include 
the direct work environment, the wider context of higher education, interactions with students, 
and professional development activities (van Lankveld et al., 2017), which serve as a basis for 
examining how situated contexts can affect graduate students’ professional identities. 

More specifically, we drew on a sociocultural perspective of professional identity 
development in higher education to frame this study (Beijaard et al., 2004; Gee, 2001; Clarke et 
al., 2013). The formation of professional identity in higher education is a social and contextual 
process, and the other actors with whom an individual interacts play salient roles in helping an 
individual build identities and meanings for themselves as a professional (Solari and Ortega, 
2020). Mathematics TAs navigate a complex interpersonal network that involves students, 
faculty, and other TAs, all situated within a broader institutional context and the mathematics 
discipline. The expectations of this community, the institution, and the discipline can shape the 
roles that TAs perform, thus affecting their professional identity development as higher 
education instructors. Situated within a specific institutional context and the mathematics 
discipline, we examined emerging professional identities that resulted from four key 
relationships (See Figure 1). We acknowledge that factors outside of the institutional context, 
mathematics discipline, and the four key relationships we have identified here (e.g., family, 
relationships, stress of the profession, etc.) can also affect professional identity.  

 

 
Figure 1: Teaching Assistants’ Relationships within an Institution  
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Method 
This study was conducted at a Minority-Serving Institution in California. It was a part of a 

larger project that examined the experiences of transfer students enrolled in a set of courses 
designed to develop proof-construction competencies and support transfer students’ transition to 
a four-year university. Purposeful sampling (Creswell, 2013) was used to recruit five PhD 
students in the mathematics department who served as TAs for an introductory proof course, 
which was situated in number theory and set theory. All participants facilitated online sections of 
the course, were in the 2nd or 3rd year of their doctoral program and had prior experiences as 
TAs. Three self-identified as male and two self-identified as female. We use the pseudonyms 
Federico, Nestor, Wyatt, Kaitlyn, and Lisa to refer to the five TAs interviewed for this research 
project. We conducted semi-structured interviews (Rubin & Rubin, 2011) over Zoom that 
focused on the TAs’ experiences enacting sections remotely, the ways the course supported 
underrepresented and non-traditional (i.e., transfer) students, and the TAs’ perceptions of their 
identities and roles as TAs and early-career educators. The research team first open-coded the 
TAs’ responses and identified themes in the TAs’ reflections. The team recoded the corpus of 
data using the following second round codes to describe the complexity and multidimensionality 
of their professional identities: content-deliverer, sensemaker, community-builder, assistant, 
supporter, mentor, resource sharer, learner, beliefs and values, and demeanor. The research 
team discussed and wrote memos about emergent themes in how the TAs described their 
professional identities, and also coded for the individuals that TAs described as salient to each 
facet of their identities (i.e., students, faculty, and other TAs). 

Findings 
We found that graduate students reflected on their developing professional identities in a 

number of different ways, with their professional identities developing within certain social 
contexts (e.g., Student-TA relationship, TA-Faculty relationships, Student-TA-Faculty 
relationships, TA-TA relationships) in which the TAs were situated (e.g., content deliverer was 
most associated with the Student-TA relationship). It is important to note that professional 
identity is a complex construct, and all interactions and relationships are influential in developing 
identity. However, we only present the most salient professional identities that emerged from the 
TAs’ reflections on the four relationships. 
Professional Identities That Developed from the Student-TA Relationships 

In this section, we highlight the important aspects of the TAs’ professional identities most 
situated in the relationship between students and TAs: content-deliverer, sensemaker, 
community-builder, supporter, and beliefs and values. The TAs noted that they were engaged in 
these different relationships with students as part of their roles. We describe each aspect of their 
identity and highlight examples of instances when the TAs revealed their perceptions of their 
identities as it relates to students.  

Content-Deliverer. As content-deliverers, the TAs viewed themselves as individuals who 
delivered mathematics content to students, whether presenting the same content professors 
lectured on or reviewing material from previous classes. For instance, Wyatt explained, “I found 
that I’m more effective as a TA when I can just cover a lot of material, because my strength is 
being able to explain it in a digestible way.” Here, Wyatt identified himself as someone who 
delivers content and he saw his effectiveness in this role. Another TA, Nestor, described his 
identity as a content-deliverer, saying that “I should just be like a - not literally but, like a bit of a 
copy paste of what the professor has said in lecture. Sometimes just repetition.” Nestor believed 
his role is to reinforce the same content to students in section that the professor delivered during 
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lecture. We found that content-deliverer was an important aspect of TAs’ professional identities 
illustrated by all participants. 

Sensemaker. The professional identity of sensemaker emerged as TAs described engaging in 
sensemaking efforts of the circumstances and individuals around them. In the social context of 
Student-TA relationships, the TAs engaged in sensemaking to better understand their students’ 
experiences including students' content knowledge, emotional well-being, challenges related to 
their university experiences, and difficulties associated with the remote-instruction brought upon 
by the COVID-19 pandemic. For instance, Kaitlyn made sense of the challenges the students in 
her class faced noting: “There's also an intensity that comes with Math A that maybe make 
students feel a little bit more, I don't know fearful about doing perfect in the class or whatever.” 
In another instance, Lisa remarked about the unique challenges students of a particular gender 
face when she said, “The people who speak out are male, but there [are] definitely a few female 
students who were talkative. But yeah so that's all I really noticed.” In this moment, Lisa made 
sense of the gender and social dynamics in her classroom and how those affected their 
participation. We found many instances of sensemaking centered around students’ experiences 
and this illustrates that a salient part of TAs’ professional identities involved how they noticed, 
made meaning, and took action to attend to their students.  

Community-Builder. Community-builder referred to the instances when TAs described 
taking action to build community with students or among students. Most instances of a TA 
building community took on one of two forms. The TA either worked to create community 
among students or the TA would talk with students about non-mathematics related topics during 
office hours. For example, Lisa commented, “I tried to do a lot more of like breakout sections 
and like try to get students to talk to each other, because I was like you don't ever see each other, 
trying to talk to each other.” Lisa engaged in community-building efforts to get her students to 
interact with one another on Zoom and to become more familiar with one another. Later, Lisa 
commented that she often tried to start class with a question to get to know what and how her 
students were doing outside of the class. She expressed that she was able to best engage with 
students on a personal level during office hours: “I’ll mostly be, like ‘Anyone do anything fun on 
the weekend?’ and then usually be met with silence. But in office hours, I had students like 
linger around and talk to me, so that was fun.” Many of the efforts related to building community 
were in response to the challenges presented by the pandemic, as TAs would often express 
difficulties with building community in the online learning environments in which they taught. 

Supporter. TAs reflected on how they supported students through encouragement, offering 
emotional support, and advocating for their students; these encompassed the professional identity 
of supporter. TAs reported capitalizing on the interactions with students in office hours and 
sections to support their students. They recognized that part of their professional identities and 
roles included attending to students’ affect and emotions, and they were cognizant of providing 
students with support throughout the quarter. For example, during the remote instruction brought 
upon by COVID-19, TAs recognized that it was an extremely difficult time for students and 
described themselves as being someone to whom students could talk, beyond just discussing the 
mathematics content of the course. For example, Nestor described an interaction during one of 
his synchronous office hours when he conversed with a student about aspects of each other’s 
lives that did not directly relate to the mathematics content. He said, “I don’t know exactly how 
we ended up there, but I guess she just needed someone to talk to that night, and I was the one 
for whatever reason, because in Zoom you can’t really reach out to anybody else. Right?” He 
recognized a student’s need and was able to provide her with some emotional support. Other 
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ways that TAs provided support for the students was to advocate for them. Federico described 
listening to students’ requests and complaints during office hours and relaying that information 
to the faculty. Through advocacy, offering encouragement, and overall, showing care, we found 
that TAs were active supporters of their students. 

Beliefs and Values. As they reflected on their relationships with students, we also found a 
set of beliefs and values that described what TAs believed about their students, how they 
understood their students learned, and how TAs thought they should help their students engage 
with mathematics. Federico, for example, shared that his students did not learn in the same ways, 
and TAs should be able to support and teach all students. This belief affected his approach to 
teaching. In another example, Wyatt described how in his past experiences as an undergraduate 
student, he was taught mathematics through a narrow lens, and he believed that students needed 
to be allowed to be creative in mathematics for them to learn well. A common belief that many 
of the participants held was that a TA should help students engage with mathematics by creating 
learning spaces where students would feel comfortable to participate, make mistakes, ask 
questions, etc. This idea of fostering a comfortable space for students was the most prevalent 
belief that the TAs held. For example, Kaitlyn said, “I think there's a little bit of gaining that trust 
in your students. That they could come, they feel like they can come to you with all their 
questions…You want them to feel comfortable.” This belief about how TAs should teach 
mathematics can influence their pedagogies and the ways they interact with students. 
Professional Identities That Developed from the TA-Faculty Relationships 

Next, we focus on the interactions between TAs and faculty. In this social context, faculty 
were the instructors on record for the sections the TA managed. The three key facets that TAs 
reflected on related to their professional identities that were most evident in this relationship 
were assistant, learner, and sensemaker. Evidence of these professional identities included the 
TAs assisting with grading, answering students’ questions, sharing their own learning of content 
(and enjoyment in learning this content), and making sense of their relationships with faculty. 
The professional identities of assistant and learner only occurred in the TA-Faculty relationship, 
while sensemaker also occurred in the Student-TA relationship. 

Assistant. Quite frequently, the TAs would position themselves as individuals whose 
purpose and role was to assist the faculty. This notion underscores the professional identity of 
assistant. The TA used words like “helper” or “grader” to signify their role as an assistant to the 
faculty member with whom they worked. For instance, Lisa shared, “[I] just do some of the grunt 
work of the grading and background work that needs to get done. You know, it shouldn't lie fully 
on the professor’s hands. Just a helper, a solid helper.” In this instance, Lisa identified and gave 
merit to helping and assisting the faculty she was working with through grading exams and doing 
background work. Additionally, Kaitlyn, reflected on her role and expectations as an assistant 
and said, “As far as the professor goes, you know, they expect you to go through homework 
problems and answer questions that students have and grade a little bit.” In this moment, Kaitlyn 
acknowledged that many faculty members had specific expectations of their teaching assistants. 
Additionally, Federico described his relationship as an assistant to his faculty member, noting, 
“He told me things to do. That’s what I did.” The consistent use of language, such as “He told 
me things to do,” and “grunt work,” and the description of TAs’ self-described roles frequently 
occurred across the data set. The professional identity of an assistant was only observed in the 
context of TA-Faculty relationships. 

Learners. We observed another dimension of professional identity that only appeared in the 
social context of relationships involving TAs and faculty: learners. TAs described their 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1458



experiences as learners, both past and present. This illustrated that they were not only teachers 
and individuals meant to deliver content or support students. TAs saw themselves as learners of 
content, learners of pedagogical methods, and learners of resources. Nestor described his 
experience of learning content in a new way, explaining, “I feel like every time I revisit a 
concept… I always learned something new, just for myself or like a different perspective, 
different angle, because the professor looks at it from a different, in a different way.” Nestor 
identified himself as a learner through his exposure to former content through a new lens, 
expressed his enjoyment of having the opportunity to be a learner, and engaged with the content 
differently from how he previously learned it. This professional identity signifies an important 
role that TAs can take up and it is their capacity to see themselves as both instructors and 
learners.  

Sensemaker. TAs reflected on their professional identity as sensemakers within Student-TA 
relationships in instances when the TAs tried to better understand students’ experiences. Within 
the social context of TA-Faculty relationships, sensemaker describes how TAs noticed and made 
meaning of their relationships, interactions, and experiences with faculty. For example, Wyatt 
made sense of a faculty’s pedagogy and instructional practices, saying, “Well, you know, in an 
ideal world, of supposing that they had more time to concentrate, I think one thing they could do 
is just help TAs better know how to grade assignments.” This moment highlighted Wyatt making 
sense of how a faculty member interacted with him and could support him as a TA. He was 
forming thoughts on the pedagogical practices of faculty from past and current experiences while 
making sense of what could be done to better assist TAs. In another instance, Lisa commented on 
her experience with faculty and what she felt would best benefit her as a TA. She explained, “I 
think just more communication of like what is actually expected of us. Sure, you're supposed to 
teach four sections, do certain amount office hours, work the math lab, but, how do you do all 
those jobs?” Lisa was actively making sense of her past and current experiences with faculty, 
while also considering how to improve that relationship. She identified areas where faculty could 
improve their practice through understanding TAs’ challenges and reflecting on their experiences 
working with these students. Broadly, the professional identity of sensemaker entails the active 
process of understanding, making meaning, and taking action within a TA’s social context. 
Professional Identities That Developed from the Student-TA-Faculty Relationships 

We distinguish the Student-TA-Faculty relationship from just the Student-TA relationship 
and the TA-Faculty relationship because we observed that TAs often described themselves as 
individuals who bridged students and faculty. Therefore, these aspects of their professional 
identities and roles were the result of understanding how they mediated the various expectations, 
perceptions, and needs of both students and faculty. As Kaitlyn noted, “it’s kind of exactly what 
it seems: like you’re this middle ground between the professors and the students.” TAs identified 
two aspects of their professional identities in relation to both faculty and students: content-
deliverer and demeanor. TAs delivered content in order to meet their students’ needs, in light of 
what the faculty member had taught, and they presented themselves to students often in response 
to how they understood their students perceived the faculty.  

Content-Deliverer. Although TAs reflected on their professional identities as content-
deliverers within the Student-TA social context, TAs revealed that faculty delivered content in 
one way, but as TAs, they should deliver the content differently to better attend to the needs and 
expectations of students. Often, TAs reflected that offering the content in ways that were 
different from the faculty would be beneficial to the students. Nestor shared, “If you revisit 
the…same concept, maybe through a different angle, then you can understand it better.” 
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Demeanor. The second aspect of TAs’ professional identities within the Student-TA-Faculty 
social context was demeanor. TAs acknowledged students’ perceptions of faculty (usually in a 
negative way), and TAs portrayed themselves in ways that differed from faculty. When asked 
about her primary role, Lisa said, “Just to be someone who is less scary than the professor. My 
job is just to be approachable.” Here, Lisa noted that approachability was an important 
consideration for TAs because of the common perception that professors were “scary.” Similarly, 
Kaitlyn shared, “I think part of our role as a TA is just to, sort of, be that middle ground between 
the scary professor and any intimidation.” The ways in which Lisa and Kaitlyn portrayed 
themselves, particularly as caring and approachable to students, shed light on their understanding 
of demeanor. How TAs presented themselves to students was an important part of their 
professional identities, particularly in relation to mediating students and faculty. 
Professional Identities That Developed from the TA-TA Relationships 

Lastly, the ways that TAs navigated their responsibilities and roles alongside other TAs 
highlighted their capacities to be resource sharers and supporters of each other. Reflecting on 
her experiences with remote instruction, Kaitlyn revealed how the TAs in the mathematics 
department supported each other by giving advice, and they used various online platforms to 
share resources that may be useful to address the challenges of conducting sections online. She 
explained, “I think we gave advice to each other, and we have a Discord [online platform] for 
our math grads, so people talked about teaching advice and…what programs they like to use, 
apps they like to use to teach.” TAs supported each other by offering advice and directing each 
other to teaching resources. These relationships illustrate the dimensions of their professional 
identities best described as resource sharers and supporters.  

Discussion 
Through a sociocultural perspective on professional identity development, we found that the 

relationships and interactions that TAs have with members of their mathematics community and 
institution were sites for identity development. Beauchamp and Thomas (2009) wrote that 
identity “is shaped and reshaped in interactions with others in a professional context,” and we 
found that TAs reflected on a range of professional identities. Certain aspects of their identity 
were more frequently situated within specific relationships such as supporter most often 
occurring within the Student-TA relationships, and resource sharer most often occurring within 
the TA-TA relationships. However, other dimensions of their professional identities such as 
content-deliverer and sensemaker were evident in multiple relationships such as the Student-TA, 
TA-Faculty, and Student-TA-Faculty relationships. We found that the Student-TA relationship 
was not only the most frequently mentioned interaction but also through which multiple 
dimensions of their professional identities were revealed.  

While the key tenets of each professional identity remain the same across the relationships 
(e.g., sensemaker refers to noticing, making meaning, and taking action), the ways TAs 
perceived themselves as such depended on their company (e.g., the student or the faculty). For 
example, in the context of a Student-TA relationship, being a resource sharer may look like a 
TA providing resources to students to support and engage learning. However, in the context of a 
TA-TA relationship, being a resource sharer may entail a TA sharing instructional resources 
with other TAs. This is consistent with existing research that acknowledges that the construction 
of professional identity development is complex, and that different relationships and interactions 
influence different aspects of their identity (Berger & Lê Van, 2019). Moreover, as the TAs 
reflected on their experiences and interactions, we noted how their professional identities were 
linked to their instructional practices and pedagogies. Each TA exhibited a unique set of 
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identities, and this was revealed through the ways they individually reflected on their roles and 
interactions. 

We extend the literature on professional identity development in higher education by 
examining mathematics TAs as early-career undergraduate instructors. A sociocultural 
perspective on professional identity development affords an exploration of the key interactions 
that TAs engage and the dimensions of their identity developing and intersecting across these 
relationships and interactions. Limitations of this study include the limited number of 
participants (five) and that the participants of this study served as TAs for the same introductory 
proof course. In addition, all five participants were TAs for online sections of the proof course 
and this environment could elicit different aspects of TAs’ professional identities than in-person 
instruction. Future research can examine more mathematics TAs across a broader range of 
courses, such as calculus, linear algebra, etc. Furthermore, for this study, we only focused on 
four key social context relationships, but TAs professionally interact with many other individuals 
including peers in other departments, staff, various organizations, and professionals outside of 
the institution. Future research can more closely examine the larger, complex network that TAs 
navigate and how identity is developed within this network, can focus on just one type of 
interaction (e.g., TA-TA), or can focus on one aspect of professional identity (e.g., community-
builder). 

Conclusion 
The professional identities of mathematics instructors in higher education is still a largely 

under-researched area of mathematics education. With many mathematics graduate students 
continuing to become teaching faculty themselves, it is imperative that we examine how their 
professional identities are developed, particularly related to their experiences as TAs. The 
professional identities that mathematics TAs develop through their social interactions and 
relationships with members of their professional community not only influence their current 
positions as TAs but provide a foundation for their future careers, pedagogies, and practices. 
Identity development is a constant process throughout the careers of mathematics educators, and 
it is important to acknowledge that even prior to formal appointments as a teaching faculty, their 
experiences – such as serving as TAs during their graduate programs – have already shaped their 
professional identities. A sociocultural perspective of identity development affords a lens 
through which researchers can identify and examine the extent to which experiences related to 
being a teaching assistant impact the development of professional identity as a mathematics 
instructor. Understanding the nuances and complexities of how professional identities of future 
educators are developed can inform higher education institutions on how to better develop 
positive professional identities of mathematics graduate students.  
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Mathematics professional development (PD) has had many small victories but has not brought 
about a widespread change in what constitutes typical mathematics instruction. This theoretical 
essay argues that many PD projects have been based on an assumption that the aims of the PD 
should be ambitious, but ambitious PD requires that a large set of criteria be satisfied (active 
learning, coherence, duration, teacher buy-in, etc.). Even then, ambitious PD may only reach a 
minority of teachers who are ready to make the transformation. An alternative approach is 
incremental PD, which starts with a teacher’s contextual constraints and ubiquitous practices, 
offering modest but meaningful “nudges” for their instruction. These nudges are intended to be 
easily taken up by teachers, providing a sense of success that leads to them sustaining the 
practices and being portable enough to be easily shared with other teachers, allowing for scale. 

Keywords: Professional Development, Instructional Activities and Practices 

There have been vast investments of both time and money for teacher professional learning, 
yet despite these investments, mathematics instruction in the United States has remained largely 
unchanged (Karp & Schubring, 2014; Stigler & Hiebert, 1999). Professional development (PD) 
focused on teachers’ instructional practice often faces three overarching challenges: (1) making a 
direct impact on the teachers in the PD, (2) sustaining outcomes beyond the life of the PD 
project, and (3) scaling up the PD (Heck et al., 2019; Karsenty, 2021). In attempts to overcome 
these challenges, scholars have made progress studying the characteristics of effective PD (e.g., 
Desimone, 2011; Wilson & Berne, 1999) and mechanisms by which the PD might spread (e.g., 
Morris & Hiebert, 2011). Still, despite these efforts, the lack of widespread reform in 
mathematics instruction persists (Wilkie, 2019). 

We contend there is an important assumption underlying these challenges—namely, that PD 
should be targeted at instructional change that is ambitious or transformational (e.g., Kazemi et 
al., 2009; Kraft & Hill, 2020). Ambitious instruction, characterized by being disciplinarily rich 
and student-centered (Cohen, 2011), is something many mathematics education scholars strive 
toward and make the centerpiece of their PD for teachers. But what if we instead start with a 
more modest goal? Like Star (2016) and Litke (2020), we argue incremental changes could also 
be the goal of PD. In this paper, we discuss how this shift from ambitious to incremental goals 
for PD changes the instructional foci (Litke, 2020; Star, 2016) and leads to redefining success, 
rethinking the starting points for PD, and new mechanisms for sustainability and scaling. 
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Starting Points for Incremental PD 
Teachers’ Constraints 

Many professional developers adhere to researchers’ recommendations for effective PD in 
format, duration, and contextual features (e.g., Desimone, 2011, Feiman-Nemser, 2001). It is 
generally agreed upon, though with some dissent (Sims & Fletcher-Wood, 2021), that attending 
to criteria such as active learning, coherence, substantial duration, and teacher buy-in are 
necessary for implementing PD aimed at promoting ambitious instruction; however, it is unclear 
that PD aimed at modest incremental improvements needs to meet these same criteria. Central to 
the idea of incremental PD is that professional developers offer small suggestions for 
improvement—which we refer to as nudges—based on a teacher’s current practice. Thus, we 
argue the starting place for incremental PD is teachers’ constraints and contextual realities, 
which typically include limited planning time, conventional curriculum and resources, 
conventional expectations from students and parents, limited professional collaboration 
structures, and more. 

Many of these constraints are often at odds with the criteria for effective PD. For example, 
Desimone (2011) and others have suggested PD requires a substantial investment of time, but we 
also know that many teachers do not have enough time for planning (Steen-Olsen & Eikseth, 
2010). An incremental approach to PD would be designed with such constraints in mind. For 
example, the PD may simply offer a small nudge that does not take much time and that 
supplements existing curriculum materials, nudging toward a conceptual connection or a brief 
opportunity for student choice on their problems. These nudges, though small, could be more 
impactful than a teacher whose constraints prevent them from engaging with ambitious PD at all. 
If the nudge fits within the teacher’s time constraints and aligns with the curriculum and their 
community expectations, and seems to be a slight shift in a positive direction, we hypothesize 
that this will yield high levels of buy-in, which is perhaps a necessary criterion for ambitious PD 
and incremental PD alike, but the latter can generate the buy-in from more teachers. 
Ubiquitous Practices 

Often PD is designed to promote ambitious practices such as robust classroom discourse 
(Herbel-Eisenmann et al., 2017), enacting cognitively-demanding tasks (Smith et al., 2008), 
argumentation, and reasoning (NCTM, 2009), and many others. These PD efforts aimed at 
ambitious practice are worthwhile. Yet, ambitious practices are difficult to achieve, typically 
resulting in pockets of success because they often require major shifts in teachers’ existing 
practice. This discrepancy between current practice and ambitious practice can potentially 
position teachers in a deficit manner. We bear in mind Spangler’s (2019) call to “consciously 
respect teachers and…avoid deficit approaches in our thinking about teachers” (p. 3). 

Thus, in contrast, incremental PD would focus on the commonplace, daily pedagogical 
practices teachers are already comfortable with. For mathematics teachers, such practices might 
include demonstrations with worked examples (Atkinson et al., 2000), students’ independent 
work time on problem sets (Otten et al., 2021), or the teacher going over homework at the board 
(Otten et al., 2015). An example might be comparing two procedural worked examples instead of 
simply doing one after the other (Litke, 2020). Another example is adding a single reversibility 
problem (Dougherty et al., 2015) to an existing exercise set. The intention is that teachers can 
immediately understand how they would incorporate these nudges into the practices they already 
employ, but also understand the nudges bring some modest yet meaningful benefit. 
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Sustaining and Scaling Incremental PD 
Sustaining Modest Changes 

Sustaining teacher change, especially ambitious change, has long been a challenge in teacher 
education (Liu & Phelps, 2020). We contend that an incremental approach can lead to 
sustainable change in at least two ways. First, incremental PD will focus on changes close 
enough to teachers’ existing practices that the change is less disruptive and can be incorporated 
regularly. As Thaler and Sunstein (2008) have found regarding human change in general, if we 
want a change to take hold, we need to make it easy for people to do. Moreover, by attaching the 
incremental changes to common occurrences in the classroom, those changes can carry forward 
for the teacher by becoming their new instructional “habits,” so to speak. As Star (2016) noted, it 
can be powerful to make a 10% improvement in a typical practice a teacher uses in 90% of their 
lessons rather than seeking a 90% improvement in a practice they only use 10% of the time. 

Second, sustainability can come from the incremental PD delivery mechanism itself. When 
grant-funded (ambitious) PD projects are completed, the resources to continue teachers’ learning 
are often depleted. The PD may involve summer workshops and follow-up sessions throughout 
the school year. Such models may impact teachers’ instruction, but sustaining the change is 
challenging as projects end and teachers, administrators, and curriculum materials come and go. 
Instead, by aiming for incremental improvements to PD, delivered in small packages, teachers 
can learn them in a short time or more flexible formats (e.g., videos) and can try them relatively 
quickly. This would also allow the creation of artifacts that can be reviewed on demand. Thus, 
sustainability is gained from the low resource cost associated with delivering incremental PD, 
which also allows it to be shared among practitioners, leading us to the issue of scale. 
Scaling Modest Changes 

Another long-standing challenge for the field is the ability to scale PD initiatives (Heck et al., 
2019; Karsenty, 2021). Here, we consider scale in terms of reaching a large number of 
practitioners. Because of the profound change entailed for most teachers concerning ambitious 
mathematics instruction and the confluence of factors needed for this change to occur, it seems 
optimistic to expect that ambitious PD might eventually scale to 10% or more of mathematics 
teachers. But again, as Star (2016) pointed out, it can also be beneficial to many students if 90% 
of (conventional) teachers make some small improvements to their instruction.  As mentioned 
above, PD aimed at incremental changes would not require the same extensive resources as more 
ambitious efforts. The freedom to deliver specific, actionable practices via on-demand formats, 
such as videos, downloadable documents, or social media suggestions will allow for the scaling 
of those efforts by the PD creators and practitioners themselves. Moreover, by offering an 
incremental improvement to a ubiquitous teaching practice, we are increasing the likelihood that 
the improvement can be shared from person to person because many other teachers will also 
recognize the applicability of the suggestion to their own teaching.  

A second notion of scale is the consideration of whether or not the incremental practices will 
scale toward future, substantial changes. It seems plausible that when teachers enact small 
improvements, they may gain confidence and feelings of success, which may lead them toward 
the addition of more small improvements. These small improvements may eventually lead them 
quite far from the conventional instruction they began with. This is not to say that the 
accumulation of incremental changes is necessarily equivalent to an ambitious change, but 
sustained improvements that have the potential to spread to other teachers should be welcomed, 
nonetheless. And the relationship between multiple incremental changes and larger ambitious 
changes can be explored empirically, which is where we now turn. 
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Questions and Final Considerations 
What are some of the empirical questions that we can ask about incremental PD for 

mathematics instruction? There are a few that are of immediate interest to us: 

1. Because incremental PD should be rooted in a teachers’ unique contexts and built upon 
their existing ubiquitous practices, to what extent will certain nudges work across 
multiple contexts and for various teachers? There are some commonalities in many 
teachers’ situations, so we hypothesize some generality for certain nudges. Still, we have 
to examine the balance between the general applicability of nudges and the individualized 
preferences of teachers (what aspects of their teaching do they want to be nudged on?).  

2. What are some of the characteristics of teachers who are likely to respond positively to 
incremental PD, and what are the characteristics of those who are able to proceed directly 
to ambitious PD? As discussed above, we hypothesize that a majority of mathematics 
teachers can be well served by incremental PD, particularly those who may be resistant to 
ambitious PD. Still, if teachers respond positively to ambitious efforts, then we would 
support ambitious PD in those particular cases. Further research is needed, as well as 
further input from teachers themselves, to help us understand the differences. 

3. In what ways can we measure the incremental changes in teachers’ instructional practice 
when some of the changes are designed to be subtle or modest? Some of our current 
methods for assessing the impact of PD hinge on larger changes, but with incremental 
PD, we will need to be able to track the small changes and whether they are sustained.  

4. Can deep, systemic issues of inequity and injustice in mathematics education be 
meaningfully addressed in an incremental manner? We agree that, in many ways, 
transformational change is needed and time is of the essence, but is there a role for 
incremental change in immediately bringing about some equitable practices or in setting 
the stage for later, more profound changes? 

5. Given the multitude of small changes that could be proposed to a teacher, how will we 
decide which to employ and when? Relatedly, what are the sequences of incremental 
changes in instruction moving toward? Perhaps incremental instruction could be guided 
by the larger goals of ambitious instruction. It is an open question, however, whether and 
how an accumulation of such small changes yield (or not) a more substantial change 
long-term. Munter (2014) found teachers’ visions of high-quality mathematics instruction 
can gradually increase in sophistication, but can one type of vision or pedagogy gradually 
shift into a different type altogether? One hypothesis is that incrementally improving 
conventional instruction will eventually increase the likelihood that teachers will respond 
positively to ambitious PD. A second hypothesis is that improving conventional 
instruction will lead to teachers feeling more confident and affirmed in what they do, so 
they will not transform away from conventional instructional models. A third hypothesis 
is that the incremental changes are simply independent from ambitious goals for 
instruction. 

In embracing an incremental approach to PD, meant as a complement to the ongoing 
ambitious PD efforts, we contend that many of the persistent challenges in relation to the limited 
impact, sustainability, and scale of efforts to improve mathematics teaching may be addressed, or 
at least explored and understood from a perspective distinct from the ambitious approach. 
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We explored how elementary teachers designed argumentation-based lessons in the context of 
robotics-integrated mathematics classrooms. We analyzed data collected from two teachers who 
taught elementary mathematics and robot programming during their engagement with a 
professional learning course. In the course, teachers learned to use argumentation in teaching 
mathematics, science, and programming. We analyzed their lesson plans to understand how they 
structured their lessons to use argumentation in robotics-integrated mathematics classrooms. We 
also examined the teacher interview data collected after the course ended to capture their 
understanding of argumentation. Our data analysis results showed that the ways that teachers 
designed argumentation-based mathematics lessons with robotics and programming were 
largely aligned with their interpretations of argumentation. The study findings are discussed and 
future studies are suggested.  

Keywords: Professional Development, Integrated STEM / STEAM, Computing and Coding, 
Classroom Discourse 

Current K-12 standards and mathematics education researchers emphasize the importance of 
learning and teaching argumentation in mathematics classrooms (e.g., National Council of 
Teachers of Mathematics, 2014; National Governors Association Center for Best Practices & 
Council of Chief State School Officers, 2010; Staples & Newton, 2016). Collective 
argumentation occurs in the classroom when students and teachers work together to make a 
claim and support it with evidence (Conner et al., 2014). The benefits of using argumentation in 
the classroom include the development of student conceptual understanding of mathematical 
ideas, mathematical autonomy, communicative skills, and authentic mathematical practice (e.g., 
Andriessen, 2006; Staples & Newton, 2016; Yackel & Cobb, 1996). We believed that teaching 
programming through argumentation also could have benefits such as conceptual understanding 
of programming ideas, especially when teachers use pedagogical practice already in use in their 
mathematics classrooms to teach programming, thus increasing the possibility that teachers 
incorporate programming in mathematics classrooms.  

In this paper, we report our study of elementary teachers who learned to teach mathematics 
and programming through argumentation. The following research question was addressed: How 
do elementary teachers design argumentation-based lessons for robotics-integrated mathematics 
instruction at the end of a professional learning course in which they were introduced to use 
argumentation in teaching programming? 

Related Literature and Theoretical Framing 
There is a natural connection between programming and mathematics (Savard & Highfield, 

2015). The merits of using programming and robotics in mathematics education have been well-
documented. For example, research has shown that mathematics activities integrated with 
programming and robotics can support student understanding of mathematics (e.g., Wei et al., 
2011), develop student spatial abilities (e.g., Keren & Fridin, 2014), and provide students 
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opportunities to express their mathematical thinking and reasoning (e.g., Ke, 2014). However, 
there is little research on the experiences of teachers who teach both programming and 
mathematics in their classrooms. The present study explored how teachers designed 
argumentation-based mathematics lessons with programming and robotics. To understand 
teacher learning about the use of argumentation in teaching programming and mathematics, we 
analyzed their lesson designs and interviews considering the context that they were situated as 
elementary teachers using a situative perspective (Peressini et al., 2004). 

Methods 
This study examined how elementary teachers designed argumentation-based mathematics 

lesson plans integrated with robotics toward the end of a semester-long professional learning 
course. The course occurred in a school district in the southeastern United States. Nineteen 
elementary teachers recruited from five different elementary schools were enrolled in the course. 
The course consisted of four face-to-face meetings (approximately 10 hours in total) and eight 
online exercises. Three instructors co-taught programming and robotics as well as the use of 
argumentation in teaching mathematics, science, and programming. 

During the first two face-to-face class meetings, participating teachers 
discussed argumentation in mathematics and science classrooms and analyzed examples of 
classroom episodes identifying components of an argument (e.g., claim, data, and warrant) and 
focusing on teacher actions in argumentation. Throughout the course, teachers learned a variety 
of robots using block-based programming language. Before the last face-to-face class meeting, 
teachers were assigned to design and teach a mathematics lesson focusing on argumentation in 
their classrooms. They video-recorded a part of their lesson and discussed how they supported 
student argumentation during the fourth face-to-face class meeting with other teachers. After this      
meeting, teachers were asked to design a unit plan including three to five lessons integrating 
robotics and argumentation into mathematics classrooms. Our focused data to answer the 
research question was these integrated lessons.  

We focused on two teachers, Cari and Malia (pseudonyms), as they implemented robotics 
and argumentation in their mathematics classrooms. Cari was an experienced teacher, and Malia 
was a novice teacher (see Table 1 for teachers’ background information). Their robotics-and-
argumentation-integrated mathematics lesson plans and post-interviews were analyzed. Using 
open coding (Strauss & Corbin, 1990), we first examined their robotics-and-argumentation-
integrated mathematics lesson plans line by line, focusing on the parts in which they described 
student argumentation activities. We then made a memo for each teacher describing the ways 
that they designed lessons to create argumentation in their classrooms. Finally, we examined 
how each teacher understood and interpreted argumentation using the interview data. We also 
made a memo for each participant describing their views on argumentation. 

 
Table 1: Teachers’ Background Information 

Teacher Grade Years of Teaching 
Experience 

Previous Experience with 
Programming and Robotics 

Previous Experience 
with Argumentation 

Cari 3rd  16-20 years Little Little 

Malia 5th  3-5 years Intermediate Little 
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Results 
This section reports how Cari and Malia designed their argumentation-based robotics-

integrated mathematics lessons and their conceptions of argumentation in elementary 
classrooms.  
Cari’s Lesson Designs for Creating Argumentation in the Robotics-Integrated 
Mathematics Classrooms 

Cari designed 2-day-long robotics-integrated mathematics lessons for 3rd graders focusing 
on the concepts of perimeter and area. The learning goal of the first-day lesson was that students 
would be able to program robots to trace the perimeter of a given square. Cari created the 
second-day in-class activity to engage students in programming their robots, drawing different 
shapes with the same perimeter but different areas. Cari expected her students to work on these 
activities in pairs and make claims for each movement of the robots. She anticipated that 
argumentation would occur between and among students when they work together to figure out 
the area or test out their code with their robots and also when they disagree with each other. She 
emphasized that when team members agree on a claim suggested by a team member, the team 
can move on to the next step for solving a given task.  
Cari’s Conceptions of Argumentation 

For Cari, argumentation was perceived as the process of arguing, proving, justifying, 
convincing others, and building a consensus within a classroom community. She believed that 
the benefit of engaging students in argumentation was to help students gain the confidence of 
speaking out their voices in public places (e.g., classrooms) and sharing their ideas with others. 
She believed that the more confident students become, the more student participation occurs in 
argumentation. She also noted that student claims might not always be correct but giving them 
opportunities to experience defending their claims in class helps students develop their skills of 
arguing and convincing others, which she saw as necessary life skills.  
Malia’s Lesson Designs for Creating Argumentation in the Robotics-Integrated 
Mathematics Classrooms 

Considering her 5th graders, Malia designed 2-3 day class activities for her mathematics and 
robotics integrated lessons. The lesson goal of the first-day activity was to have students graph 
points on a coordinate plane and program their robots to move from one point to another. Malia 
expected students to find the area and perimeter of a geometrical shape they created by 
connecting the points on the plane. She designed the second- and third-day activities to have 
students explain their knowledge of graphing points on the plane and using the robots. Malia 
expected students to work with their groups collaboratively during the activities and specified 
how she wanted students to complete the activities. However, she did not discuss when, how, 
and what arguments would occur during student participation in the activities within her written 
lesson plans. 
Malia’s Conceptions of Argumentation 

Malia saw argumentation as a process of explaining and agreeing or disagreeing with others’ 
ideas. She thought that the critical component in argumentation was the justification part. Malia 
saw the use of argumentation in teaching programming would be relevant when prompting 
students to explain why their code works or does not. She noted that making arguments might be 
challenging for students when they did not know how to explain or justify their answers (claims). 
She also thought that students might not see justifications necessary, particularly when they think 
something is obviously true. She believed that engaging students in argumentation could 
improve their writing skills as they learn to justify with evidence.  
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Discussion and Conclusion 
Both Cari and Malia saw argumentation as a transferable skill that students can develop in 

both mathematics and programming classes. They thought that engaging students in 
argumentation would help students learn how to argue and reach a consensus in the classroom. 
We also found the way that the teachers designed argumentation-based robotics-integrated 
mathematics lessons was largely aligned with their conceptions of argumentation. This finding is 
aligned with many prior studies that have shown the close relationship between teacher 
pedagogical conceptions and classroom practice (e.g., Kim et al., 2013). Another finding was 
that Cari specified when, what, and how student argumentation would occur during the robotics-
integrated mathematics activities that she designed. In contrast, Malia, a novice teacher did not. 
We conjecture that for a novice teacher, it might be challenging to anticipate student 
argumentation in the classroom.  

In their lesson plans, both teachers did not clearly describe their expectations of how students 
would use mathematics or programming knowledge when justifying their claims about each 
robot movement during the activities. They also did not plan on how they would facilitate 
student argumentation. Future studies are needed to see how teachers actually enact 
argumentation in their classrooms based on their lesson plans and explore the support teachers 
need in planning integrated lessons for productive classroom argumentation.  
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Understanding and utilizing the Five Practices for Orchestrating Productive Mathematics 
Discussions (Smith et al., 2009; Stein et al., 2008) has grown in importance as teachers continue 
to be challenged to engage their students in student-centered, discourse-based instruction. We 
argue that by engaging in rehearsals of the five practices and decomposing practice, the 
teachers are not only able to advance their understandings of each of the five practices, but also 
gain knowledge of its value in their classroom practice and its role in the supporting student 
development. Preliminary results from analysis of our online professional development suggest 
that participants learned more about utilizing the five practices within their classrooms and are 
able to share the role they believe it has in their classroom practice. 

Keywords: Instructional Activities and Practices, Professional Development, Teacher 
Knowledge 

Objectives and Purposes 
Our work focuses on the design and implementation of a three-part online professional 

development devised to support teachers as they (1) work collaboratively to develop 
mathematical and pedagogical knowledge and (2) seek to integrate this knowledge and 
experience into their classroom. Specifically, the professional development activities feature a 
continual interplay between activities focused on the development of mathematics knowledge for 
teaching (Renninger et al., 2011; Shumar, 2017) and classroom practice, increasing the 
likelihood that teachers’ online experiences will connect to and support changes in their 
instructional practices. In this paper, we report on one component of this work which seeks to 
help teachers unpack the Five Practices for Supporting Productive Mathematical Discourse 
(Smith et al., 2009; Stein et al., 2008) using rehearsals (Anthony et al., 2015, Kazemi et al., 
2016), which provide “a space where teachers can deliberately experiment with practices in less 
complex settings” (Webb & Wilson, 2022, p. 129). The current paper documents teachers’ 
participation and experiences in rehearsals and explores their use of the five practices within 
their classroom practice. 

Theoretical Framework 
According to Smith et al. (2009), the five practices for mathematical thinking and discussion 

are: 
(1) anticipating student responses to challenging mathematical tasks, (2) monitoring students’ 
work on and engagement with the tasks, (3) selecting particular students to present their 
mathematical work, (4) sequencing the student responses that will be displayed in a specific 
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order, and (5) connecting different students’ responses and connecting the responses to key 
mathematical ideas. (p. 550) 
These practices help teachers to think about and utilize their students thinking to advance 

mathematical understandings of the entire class. The practices encourage teachers to spend more 
time in the planning phase to be better able to facilitate productive discussions among the 
students (Smith & Sherin, 2019). Stein et al. (2008) encourage teachers to utilize the five 
practices as a “method for slowly improving the quality of discussions over time” (p. 26). 

In this project, teachers’ engagement with the five practices within the professional 
development was situated in a rehearsal (Anthony et al., 2015, Kazemi et al., 2016) of the five 
practices during the course of the workshop. The design of the professional development 
workshop was built on allowing the teachers time to practice and experiment with the five 
practices in a non-threating way (Webb & Wilson, 2022) and allowed the teachers to analyze and 
reflect on each of the Five Practices without the constraints or pressure of time or “live” students. 
Each module in the workshop was designed to allow teachers to engage with a different practice:  

Module 1 – Talking Notice/Wonder and Doing the Math represents the work of anticipating 
student thinking; 

Module 2 – Looking at Student Work represents monitoring students’ work; 
Module 3 – Reacting to Student Work represents selecting and sequencing; and 
Module 4 – Connecting to the Classroom represents connecting responses to others and 

mathematical ideas. 

This design essentially decomposes each of the Five Practices into 1–2-week online modules. 
Therefore, we argue that by engaging in these structured rehearsals and with the support of both 
colleagues and facilitators, teachers can learn about the practice, use it to analyze a set of student 
work, and develop conjectures for potential instructional moves. Thus, the teachers are better 
positioned to do this work in their own classrooms. 

Methods 
We investigated teachers thinking about and unpacking of the five practices in two iterations 

(C1 & C2) of an online professional development workshop. The workshop included four 
modules designed to scaffold the rehearsal process as well as utilize the five practices. Teachers 
engaged in solving and discussing solutions to a problem (anticipating), noticing and wondering 
about a set of student work (monitoring), organizing their notices and wonders in meaningful 
ways (selecting and sequencing), and making decisions about what to do next for individual 
students and whole class discussions (connecting). The two iterations of the workshop differed in 
length and methods of engagement. C1 (n=13) participated in a two-week workshop consisting 
of six discussion boards, three synchronous sessions, and four journal entries. C2 (n=9) 
participated in a six-week workshop consisting of five discussion boards, six synchronous 
sessions, and four journal entries. In this research, we explore the research question: In what 
ways do teachers see the role of the five practices for mathematical thinking as a means to 
providing feedback to students? In particular, we seek to understand teachers thinking about and 
use of the five practices in their classrooms. 

Data for this paper consisted of participating teachers’ posts to one discussion board, one 
journal entry and transcripts from two synchronous sessions (see Table 1 for prompts provided to 
the teachers for each data set). Data analysis included a three-phase process, beginning with pre-
coding, where the entire project team reviewed the entire data corpus multiple times to become 
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familiar (Ravitch & Carl, 2015). The second phase featured open coding of the data by at least 
two members of the research team. In this phase, every effort was made to capture the 
theoretically significant ideas (such as terms from the Five Practices and student-centered, 
research-based classroom practices). In the final phase, the research team resolved any 
inconsistencies in the coding and developed and tested conjectures regarding themes in the coded 
data. They met to generate a theoretical memo that was be based on both the field notes and the 
patterns and themes from the coded data (Miles et al., 2014). 

 
Table 1: Analyzed Prompts 

 C1 (summer 2021) C2 (winter 2022) 
Discussion Board #5 Share something from the 

article (Smith et al., 2009) that 
connects to what we have been 
working on. How might you 
implement a version of it in your 
classroom? 

 

Imagine that you are using 
EnCoMPASS to help you 
implement the 5 practices in your 
classroom.  Brainstorm ways in 
which you think this might be 
accomplished.  (You might share 
examples using the work you have 
done with the Driving to Work 
student responses.)  

 
Journal #4 What do you see as the role of 

the 5 practices for mathematical 
thinking in providing feedback to 
students? 

What do you see as the role of 
the 5 practices for mathematical 
thinking in providing feedback to 
students? 

Results 
While we continue to code additional data and revise and refine our conjectures regarding 

emergent themes, preliminary findings reveal a connection to the five practices, a desire to utilize 
them more within their classrooms, and challenges they have faced. Four themes are discussed. 

The first theme that emerged was teachers beginning to see the how and why they might use 
the five practices in their classrooms. Examples of excerpts in this category included, (1) GA 
noted, “I have also learned that structuring class discussions around solutions (incorrect and 
correct) should work towards the larger learning goal. The five practices serve the role of 
structuring discussions around challenging tasks and providing a framework for building 
complex mathematic ideas.” (2) MJ noted, “I think their [the five practices] role is to keep us 
teachers focused on the ‘mathematical ideas at the heart of the lesson.’ It's a sturdy, efficient, 
organized framework on which to build our feedback and plan our lessons and direct the course 
of mathematical discourse during class.” These excerpts indicate that while math teachers are 
aware of the five practices, they need more support to build their foundation for success and 
professional development is the space for this work to be conducted. 

The second theme was that while five practices are hard to do, it was even harder to learn, 
especially in real time. As an example, KL stated, “I like that we are getting this practice in this 
scenario as selecting is one step of the 5 practices that I find difficult to do in real-time in the 
classroom. Practicing in isolation is helpful.” Teachers appeared to recognize the benefit of 
engaging in practice or rehearsal of the five practices so that they can gain understanding of their 
use in low-stakes environments. By participanting in professional development that encourages 
and supports this practice, teachers can feel more confident utilizing the five practices in their 
classrooms.  
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The third theme indicated an awareness that in addition to learning more about the five 
practices, teachers needed support with how to get access to student thinking (and not just 
student answers). As an example, MD noted: 

If I were to implement a version of this [marble problem] in my classroom… I'd do this 
initial notice/wonder activity at the end of a lesson on Friday. I'd collect the students' 
notices/wonders, and then use those over the weekend to build my anticipated 
answers/approaches and prepare for the actual lesson on the problem for the following week. 
Out of all the five practices, anticipating the responses is probably the trickiest, and I think it 
really gets better with experience or as they mentioned, using work produced by prior 
classes, publishes responses, etc. No one has the actual time in school to have several 
teachers work the problem and get feedback (what a pipedream), so I think this prelude with 
notice/wonder would be very useful for this purpose.  
This category highlights the importance of students engaging in the tasks assigned before the 

five practices can be thought about and that utilizing noticing and wondering as an engagement 
practice is useful for planning and implemenation.  

The fourth theme was the need for expanding the five practices to support equity in the 
classroom. As an example, SS stated: 

I work with students with disabilities so explaining their thinking can be challenging. 
Sometimes I see students struggle to find the right words to explain their work/answers. I am 
going to try to highlight what they did correctly to alleviate some of the anxiety they may be 
feeling. In our group discussion the other night it came up that written feedback should be 
both specific and doable. I am thinking these same guidelines apply to classroom 
conversations with students. I am going to try to ask more specific questions about their 
work.  
While the five practices provide a structure of guiding productive and supportive classroom 

discussions, there are still students who may be left behind depending on the implementation 
utilized by the teacher. It is important for teachers to realize that while monitoring, selecting, and 
sequencing, they also need to be aware of students who may not be in a place to be chosen and 
how to they keep those students engaged in the discussion. 

Discussion 
Based on the preliminary findings, the teachers not only enjoyed learning more about the five 

practices and their implementation, but also felt as if it provided thoughtful ways to continue the 
engagement within their classrooms. They felt that by participating in the rehearsals or “practice 
in isolation” they were able to build their skills before working with their students. They 
demonstrated the need to engage all students by allowing them entry into the problem utilizing 
notice and wonder processes. Finally, they noted that to be implemented equitably teachers need 
to be aware of the students and how they are engaging in the discussions. 

These findings demonstrate the potential for online professional development to provide 
experiences that allow teachers to think deeply about common frameworks for student-centered 
instruction, such as the Five Practices, and for them to reflect on the details of implementation. 
Current work includes further analysis of these online workshops as well as analysis of teachers’ 
reflections on their post-workshop goals for instruction. We expect to see additional support of 
these themes within the teachers’ reflections as well as the possibility for new themes to emerge. 
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In this paper we examine how facilitators' prior experiences as mathematics teachers frame their 
work when facilitating a practice-based professional development (PD) for the first time. We 
focus on the experiences of a novice facilitator of StoryCircles, a professional learning process 
in which teachers collectively script and visualize a problem-based lesson, arguing about their 
rationales for different decisions connected to discussions of students’ work. We situate the 
challenges the facilitator encountered by identifying the expectations that were not met while she 
was facilitating and offer possible connections to the PD design. We close by suggesting a 
perspective to account for facilitation challenges. 

Keywords: Problem-Based Learning; Professional Development; Teacher Educators. 

Background and Theoretical Framing 
In recent years, research on the facilitation of professional development (PD) programs has 

received growing attention due to facilitators’ key role in the implementation of educational 
initiatives (Rösken-Winter et al., 2021). Within this emerging field, scholars have discussed the 
preparation of facilitators (Lesseig et al., 2017), their knowledge and practices (Borko et al., 
2014; Karsenty et al., 2021), and facilitators’ professionalization processes (Schwarts et al., 
2021). When referring to novice facilitators who are also practicing mathematics teachers, the 
main difficulties described in the literature are related to their limited capacity to lead in-depth 
discussions with teachers (Borko et al., 2014) and to the complex navigation between their 
multiple identities as facilitators, teachers, and colleagues (Knapp, 2017). PD facilitators find it 
difficult to gauge the extent of their involvement in managing participant discussions (Lewis, 
2016) and they struggle to enact their ambitious goals when designing and implementing 
activities (Jackson et al., 2015). Overall, these results support the argument that “being a good 
teacher does not necessarily imply the ability to help others develop their teaching” (Even, 2005, 
p. 334). In spite of this work, there is still much to learn regarding the underlying factors that 
constrain facilitators working in the context of practice-based PD. In particular, it is important to 
understand in what ways complexities of the activity of facilitation rather than deficits of the 
facilitators themselves, might account for difficulties observed. 

This paper seeks to frame the challenges of facilitation as rooted in facilitators’ implicit 
expectations about learning in practice-based PD settings. For that purpose, we refer to 
facilitators’ challenges in the context of the PD triangle offered by Carroll and Mumme (2007, 
see Figure 1). This triangle embeds the well-known instructional triangle (Cohen et al., 2003), 
including its claims about the interconnections between the different components of instruction, 
into the facilitators’ level. The PD triangle includes the three vertices: the facilitator, the teachers 
(hereafter, referred to as participants or practitioners), and the practice of teaching and learning 
mathematics in the place of the content (see Figure 1). As in the case of the instructional triangle, 
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we can hypothesize this PD triangle to be situated in environments, particularly the institutional 
environments that enable practitioners to participate. This framing allows us to situate 
facilitators’ expectations with respect to the other components of the PD environment. The 
expectations we are interested in refer to how and what participants are supposed to learn 
(participants-practice arrow), and the facilitator’s role with respect to this learning (how the 
facilitator relates to practice, or the facilitator-practice arrow, and how the facilitator relates to 
the participants, or the facilitator-participants arrow). We hypothesize that facilitators’ years-long 
experiences as practicing mathematics teachers who have also participated in PD inform these 
expectations and influence facilitators’ practices in ways that are not always discernible for them 
and for developers of PD environments.  

 

 
Figure 1. The PD triangle (adapted from Carroll & Mumme, 2007, p. 11) 

This paper focuses on facilitation in a practice-based PD, where practitioners “learn in and 
from practice” (Cohen & Ball, 1999, p.18) by collaboratively inquiring on artifacts of practice, 
analyzing them and arguing about them. In such settings (i.e., ones that center on practitioners’ 
reflections and where there is no specific content to be taught), the facilitator’s role as a 
moderator of practitioners’ discussions is even more complex (Schwarts et al., 2021). In this 
context we ask, how do facilitators’ expectations based on their prior experiences shape their 
work facilitating a practice-based PD?  

Context: The StoryCircles process 
The context of this study is StoryCircles (Herbst & Milewski, 2018), a process of teacher 

collaboration that aims to engage practitioners in collective scripting, visualizing of, and arguing 
about a problem-based lesson. StoryCircles has evolved over its various iterations, but it has 
consistently maintained the goal of having practitioners represent their practice through 
storyboarding a collective lesson (see Brown et al., 2021; Milewski et al., 2018, 2020 for 
examples). Inspired by Japanese lesson study (see Herbst & Milewski, 2018), the main design 
concepts of StoryCircles include opportunities for rapid prototyping of lessons and a user-
centered design (Herbst & Milewski, 2020). Thus, the discussions that are at the core of 
StoryCircles position practitioners as experts and support them in talking with one another about 
their rationale for making certain, sometimes competing, decisions in the classroom.  
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Figure 2. Scenes at the beginning and the end of the Tangent Circle lesson  
(© 2021, The Regents of the University of Michigan, used with permission) 

 
In the iteration of StoryCircles considered in this report, that took place between February 

and April 2021, secondary geometry teachers engaged over six weeks in discussions focused on 
a problem-based lesson aimed at introducing the tangent segments theorem. This lesson starts 
with the posing of a problem (see Figure 2, left) and ends with the statement of the instructional 
goal of the lesson (Figure 2, right). The lesson is illustrated in a storyboard using cartoon 
characters to represent a teacher and their students. Given the problem and the instructional goal 
of the lesson and one potential instantiation of the lesson provided to them in advance, 
participants started this StoryCircle at the visualization phase, annotating what the provided 
version of the lesson looked and felt like to them and inserting comments where they thought the 
teacher might have done something differently. During six weeks they prototyped alternatives to 
those moments including alternative moves to manage whole class discussions and review 
students’ work. Participants were expected to collectively argue about alternative ways in which 
the teacher could have handled events in the lesson, scripting the alternative scenes, which would 
also be storyboarded and visualized. As they scripted potential instantiations of how the lesson 
might unfold, it was expected they would engage in argument about decisions the teacher would 
make in the lesson. Connecting it to the role that experimentation plays in Clarke and 
Hollingsworth’s (2002) model of teachers’ professional growth, Milewski et al. (2020) have 
described StoryCircles as “virtual professional experimentation” (p. 624). During StoryCircles, 
practitioners worked on the different segments of the lesson in a combination of synchronous and 
asynchronous activities. These different forms of interaction permit practitioners to dedicate time 
to tinker with particular moments in a lesson and consider alternative ways of handling various 
contingencies that might arise in an instance of the lesson. 

The avowed goal of each cycle of StoryCircles is to produce a representation of a 
collaboratively developed lesson. Although the particulars of the entire design of StoryCircles 
are beyond the scope of this paper, we describe three different design features unique to the 
present iteration of the StoryCircles design. First, participants were not expected to attend every 
synchronous meeting – each participant was scheduled to attend only three or four out of six 
such meetings, so every synchronous meeting included a subset of participants (and not always 
the same people in each subset). Second, the meetings were not intended to build on one another; 
instead, each of them focused on a specific segment of the lesson. Third, by design, the facilitator 
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is not responsible to use the software to prototype the lesson scenes the participants propose; 
rather two assistants (undergraduates skilled in the storyboarding software) are present in every 
synchronous meeting. These storyboarders represented suggestions participants made in real 
time during discussions. The resulting storyboards served as collective artifacts the participants 
could use to visualize what the lesson looked and felt like so as to argue about decisions the 
virtual teacher had made later on and possibly occasioning new scripting or revisions.  

Method 
This study is part of a five-year research project focused on teachers’ learning about 

discussion-based teaching of Algebra and Geometry lessons. The facilitators for the 2021 
iteration of StoryCircles were practicing secondary school teachers in their content area. For 
Geometry, the facilitator was Quincy, an experienced teacher who had been a participant in a 
previous iteration of StoryCircles, and this was her first time facilitating the work. Fourteen 
participants took part in this cycle.  
Data collection and analysis 

To identify how the facilitator’s prior experiences in teaching and professional development 
framed her management of the StoryCircles process, we searched in our records for evidence 
that her expectations were not being met. This approach builds on the idea that individuals’ tacit 
expectations can be revealed through their reactions to deviations from customary practices 
(Herbst et al., 2011). The data corpus for the 6-week cycle includes, among other things, 
recordings and transcriptions of six synchronous meetings and follow-up debriefs (6*90 
minutes). Using thematic analysis (Braun & Clarke, 2006), records were inspected for evidence 
that the facilitator’s expectations were not fulfilled. This evidence included moments during 
facilitation or in the follow-up debriefs in which the facilitator expressed (using statements or 
gestures) surprise, confusion, conflict, discomfort, or puzzlement. We also searched for the 
sources of these expressions as could be inferred from the facilitator’s expression (e.g., when she 
said “It’s a different mindset here, having help”, we inferred that her expectation to work 
individually, rather than have storyboarders representing the lesson that participants script, is 
related to her classroom experience in which she does not have assistants). After the 
identification of these moments, they were organized according to themes and were mapped to 
highlight the interrelations between the facilitator’s expectations, the experiences that were likely 
to shape those expectations, and the design principles of StoryCircles. 

Findings 
The following are two prominent themes from the analysis that are representative of the 

facilitator’s expectations.  
Theme 1: The traditional turn taking that animates the PD triangle 

The first theme illustrates the facilitator’s difficulty in adjusting herself to work in 
collaboration with the storyboarders and to manage time. To illustrate this difficulty, we provide 
some more details on the work of storyboarders during PD discussions. StoryCircles 
synchronous meetings usually open with a question that the facilitator poses about a scene in the 
lesson at hand (for example, “Are there things that the teacher might say in their introduction of 
that student work?”, Turn 242, second meeting). While participants raise alternatives, the 
storyboarders create images that represent the participants’ suggestions and incorporate them 
into the representation of the lesson (see example in Figure 3). These images are an essential 
component of the argumentative process in StoryCircles since they provide a shared 
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representation on which participants can argue. However, after Quincy’s facilitation of the first 
meeting, she reflected that the use of these new images was in fact overwhelming for her:  

So I guess the part that I felt most awkward about was like transitioning between that, and 
then like jumping down to the depictions [...]. Partly I was worried like I… did I give them 
[the storyboarders] enough time to depict before jumping down? so I was stalling on that a 
little bit (Turns 546-547, first meeting debrief). 
This quote reveals the facilitator's difficulties in managing a discussion while simultaneously 

considering the materials the storyboarders were creating and the time they needed to create 
them. In addition, she mentions that moving between slides and referring to ad-hoc ideas was 
“awkward”. She expressed similar feelings two weeks later, after the third meeting: 

Not sure how to like really utilize what you guys [talking to the storyboarders] are doing on 
the depicting, like I can see you're like going crazy, I don't know if I need to like just dive 
into the depiction earlier (Turn 601, third meeting debrief). 
 

 
Figure 3. Image created by the storyboarders during the third synchronous meeting 

(© 2021, The Regents of the University of Michigan, used with permission) 

Beyond knowing when to use the images, another source of tension for Quincy was how to 
use them: In this meeting, the storyboarders represented almost every comment made by 
participants. Doing so resulted in many new images, illustrating different pathways in the lesson, 
that Quincy felt obliged to “utilize”. All of the above evidence points to Quincy's expectations of 
having control, both on the timing and on the mediation and interpretation of participants’ 
contributions. This claim is supported by another comment made in the debrief of the third 
meeting, where Quincy compared facilitation to teaching:  

When I'm teaching off of the Google slides right now, like every day, I’m in control of them 
or I’m having the students interact with them, so it's very [...] It's a different mindset here, 
having help (Turn 681, third meeting debrief). 
These moments suggest that Quincy’s expectation of having full control is informed by her 

experiences as a mathematics teacher, used to working individually (“It's a different mindset 
here, having help”, Turn 681). That is, “having help” is something she is unaccustomed to, and 
perhaps, at that moment, she felt that the work of the storyboarders did not help her at all. This 
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challenge points to a disruption in the traditional turn taking between teachers and students (e.g., 
McHoul, 1978), or between facilitators and participants. In the latter case, the facilitator is 
commonly the only one who is responsible for the interpretations of the participants’ 
contributions and their mediations with the PD content. Even if participants raise unexpected 
ideas, the facilitator knows (even if only tacitly) that it is her job to address them. However, in 
StoryCircles, the participants’ ideas are also interpreted by the storyboarders. The expectation 
that her facilitation role is similar to that of a teacher seemed to activate in Quincy the 
expectation that her job included managing more interactions—namely ensuring that: (1) 
participants’ ideas are explicit enough for the storyboarders to depict, (2) the storyboarders have 
accurately captured participants’ ideas. In addition, as described above, she appeared to take 
responsibility for pacing the discussion according to the time depicting took, even though 
storyboarders were not part of the conversation. It follows that even for practitioners who are 
familiar with managing discussions and allocating turns of talk, facilitating a StoryCircles 
discussion is a challenging task as it may involve a decreased sense of control. We posit that 
such disruption, although challenging for facilitators, is an important feature of the learning 
environment offered in StoryCircles: It requires participants to explicate their arguments, specify 
them, and explain how they relate to previous comments. That is, because the participants are 
able to see their own and others’ contributions represented visually in real time, the participants 
are in an environment in which they have greater opportunities, and perhaps feel more 
accountable, to engage with and reflect on one another’s comments. This, along with the 
facilitator’s prompting, recruit participants’ attention to others’ arguments, and sharpens the 
ways they communicate and argue about their practice. For the facilitator, however, it adds 
layers of complexity.  
Theme 2: The agreed-upon goal of the meetings  

The second theme alludes to the ways the facilitator envisioned the goals of StoryCircles, 
which were sometimes in conflict with the program design and the participants’ goals. This 
tension was manifested in Quincy’s goal to improve the storyboarded lesson in a certain way, 
including her expectation to build on previous meetings while doing so. As mentioned above, a 
main design feature of StoryCircles is that only subsets of the enrolled participants engage in 
each synchronous meeting. Accordingly, all but one of the participants who attended the second 
synchronous meeting had not been present in the previous meeting. Quincy planned to work in 
this meeting on part of the lesson where the students were stuck and the teacher redirected them 
by discussing with them pre-selected students’ work, as had been decided by the group who 
participated in the first meeting. However, when she asked the participants which pieces among 
the pre-selected student work they would like to present, they did not answer her question, but 
instead wanted to work on improving the beginning of the lesson. The facilitator, while surprised 
by this initiative, followed the participants’ lead. Nonetheless, in the end of the meeting, she told 
the participants:  

I sort of… I mentally… I guess [I] was expecting to pick up the conversation where we left 
off with a totally different group of people, and maybe that wasn't the most realistic 
expectation. You guys brought different ideas to tonight, and so we had a little different 
conversation (Turns 540-541, second meeting). 
The facilitator’s expectation was to continue visiting the lesson chronologically picking up 

where it had been left by participants the prior week, however, the participants in this second 
week might not be ready to deliver to that expectation inasmuch as they had not necessarily 
reviewed what the prior week’s group had done. Quincy followed the participants’ ideas, 
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although her expectation had been that the participants would go along with her goal, and 
contribute to the group’s common attempt to improve the lesson. When reflecting on this 
meeting, she noted that, “I just didn't expect it with adults, for some reason” (second meeting 
debrief, Turn 703), “it” refers to the derailing from the original plan. This expectation is also 
evident in the following reflection, taken from the debrief of the fourth meeting: 

Project leader: So you started saying that you were worried at the beginning, what do you 
mean? (Turn 553, fourth meeting debrief). 

Quincy: Well, when they were like “we don't do proofs”.[...] Oh well, that's the 
premise of this lesson. If we're not gonna play that game I don't know 
where we're going. But they came around, I think it was nice that Quintin 
[one of the participants] could help bring everybody in (Turns 554-557, 
fourth meeting debrief). 

This statement indicates that Quincy was disrupted by the participants’ divergence from the 
path she envisioned (i.e., discussing proving), which suggests that she had in mind the 
expectation that their scripting of the lesson during the meeting should contribute to the direction 
that had been set in the prior meeting (“If we're not gonna play that game I don't know where 
we're going”). This highlights a tension present in StoryCircles and related to the role of the 
lesson as a motif for the work (representing the lesson is the avowed goal of the activity) but not 
the outcome of activity (learning with and from colleagues is the outcome of the activity). Along 
those lines, the lesson serves as a resource that enables participants to learn how to work together 
and communicate on their practice, under the premise that the lesson itself can evolve in multiple 
ways, each having its own merits, and participants can ponder on their decisions without being 
encumbered by the expectation to enact best practices. The facilitator’s uneasiness with the 
takeover by the participants showed that she expected to be able to maintain alignment between 
the avowed goal and the expected outcome, as a teacher usually does. Interpreting this tension 
with the PD triangle, the facilitator seemed to take for granted the equivalence between avowed 
goal (which refers to content) and expected outcome (which refers to having conversations and 
arguments about practice among colleagues) and found that equivalence disrupted by the 
participants’ desire to construct yet an alternative lesson. We hypothesize that her expectations 
may stem from her experience as a teacher who is used to having students agree with her on the 
purposes of lessons.  

Discussion 
Above we described two implicit expectations a facilitator had when leading StoryCircles for 

the first time. These results corroborate previous findings about facilitators’ difficulties to lead 
PD activities (Borko et al., 2014; Jackson et al., 2015; Jacobs et al., 2017). The method used in 
this study shows that such challenges can stem from the expectations facilitators bring with them 
from their prior experiences as mathematics teachers in the classroom and as participants in other 
PD programs. Although some of the disruptions described above (such as the presence of 
storyboarders) represent idiosyncratic characteristics of StoryCircles, situating them in the PD 
triangle (Carroll & Mumme, 2007) allows us to generalize into broader themes. That is, the first 
theme illustrated a disruption in the communication among participants and facilitator about 
practice, while the second showed disruptions in the facilitator-practice edge of the triangle. We 
highlight that both disruptions were features of the original design, aiming at defamiliarizing 
practice in a way that would encourage practitioners to collaborate (Herbst & Milewski, 2020). 
StoryCircles is not purposefully designed to disrupt facilitators, yet the observation that 
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disruptions happened offers insights into how the innovative nature of practice-based PD 
programs is complicated and cannot be simplified to a train-the-trainer model. The analysis 
above leads us to suggest that the implicit expectations the facilitator held, which surfaced only 
when she facilitated StoryCircles for the first time, point to implicit norms that shape facilitating 
and participating in PD settings. These norms are related to the instructional norms that are 
obtained in mathematics classrooms. The analysis suggests that teachers-become-facilitators 
carry with them the norms of the instructional triangle as they strive to make sense of the activity 
of running professional development. The facilitator’s implicit expectations seem to align to the 
expectations instruction imposes on classroom teachers and that have been described using the 
theory of the didactical contract (Brousseau, 1997; Herbst, 2003).  

This framing can help situate and explain the challenges of novice facilitators, by revealing 
the complexity involved in the work of facilitation. In the same way that improvement or change 
in teaching is bounded by regularities that are difficult to depart from (Herbst, 2003), we showed 
how facilitators’ practices are constrained by implicit expectations that exist even if they are at 
odds with the explicit design of the intervention. These results can contribute to the current 
discussions on issues of fidelity, integrity, scaling up, and implementation (e.g., Jacobs et al., 
2017; Karsenty, 2021): Rather than assuming that the PD design principles and goals are 
transparent for facilitators, that all they need is training and good will to implement PD programs 
with fidelity, this study shows that considerations of implementation require attending to the 
background expectations teachers-become-facilitators bring with them to the job. The same 
capacities and experiences that give them street credibility to lead practice-based professional 
development can hamper their capacity to manage practitioners’ learning of practice. 
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In this paper, we discuss the case studies of two professional development (PD) participants: 
Nhung Tran and Stella Miller. This data comes from an NSF-funded grant studying inquiry and 
equity within mathematics instruction at a two-year college. We analyze participant 
conceptualizations of equity using Gutiérrez’ (2009) equity framework. By considering the 
dominant axis (Access and Achievement) and the critical axis (Identity and Power), we identify 
places of dissonance, or Nepantla, that emerge for each participant. We discuss how these 
tensions give us valuable information as we consider future iterations of PD on the MPIE 
project.  

Keywords: Equity, Professional Development 

Community colleges often do not have the infrastructure and culture for supporting 
professional development that focuses on instruction (Edwards, Sandoval, & McNamara, 2015). 
Further, professional development that is offered are often one time workshops that do not 
provide meaningful and sustained opportunities for faculty to improve their practice (Bailey & 
Smith Jaggers, 2015; Huber, 2008). This places much of the responsibility of instructional 
improvements on the shoulders of the instructors themselves. This issue coupled with state 
mandates to redesign remedial mathematics courses (e.g., California, Tennessee, Florida, etc.) 
and initiatives to increase participation of mintorized learners in STEM raises two important 
questions: 1) How do faculty shift their practices as it relates to equity in response to attending 
PD and 2) How should professional development be designed to support faculty in two-year 
college practice? In this paper, we take up the former question and characterize how participants 
describe their beliefs about equity and how they shift over time.  

Theoretical Framework 
We drew upon Guttieréz’ (2009) framework of equity. This framework is composed of 

two axes – the dominant axis concerning Access and Achievement, and the critical axis 
concerning Identity and Power. These elements help us understand how to “play the game” of 
education in order to “change the game”. In other words, in order to move towards more 
equitable and liberatory systems, one must understand and leverage the current systems and 
structures in place. The framework also discusses the important concept of Nepantla, which 
resides at the intersection of the dominant and critical axes, highlighting the dissonance that 
inherently occurs between dominant and critical axes (Gutierrez, 2009; Gutierrez, 2017).  
 The dominant axis is so labeled as it is perceived as representing the most fundamental 
aspects of equity; in other words, it represents the elements often required for students to “play 
the game” in traditional education settings. The dominant axis is composed of Access, which is a 
“precursor” for the other pole of the dominant axis–Achievement. Access represents the 
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opportunities that students have to engage in their education. Equitable access implies that all 
students have the resources they need to to learn. Achievement cannot occur without this Access, 
but Achievement also represents a distinct and important element of this framework. The reality 
is that providing students with the resources to learn (i.e., access) does not guarantee successful 
outcomes (i.e., achievement). Students deserve support along their journeys, in addition to 
access, to help them accomplish tangible results–to reach achievement. Research also shows that 
even when controlling for measures like access and achievement, equity gaps still exist (Oakes, 
1986; Spencer et al., 2016). This introduces the necessity of the critical axis.  

The critical axis is made up of Identity and Power, where Identity is a “precursor” for 
Power. The goal of this axis is to utilize the unique frames of references, backgrounds, and 
resources of students in a way that empowers them to become critical citizens who can 
ultimately change the game. Oftentimes, many students feel that they have to give up parts of 
their identity in order to assimilate in the classroom. In order to ensure that students, particularly 
students who are historically discriminated against, are not leaving parts of themselves out of the 
classroom, issues surrounding identity are essential to consider. Identity can be attended to by 
leveraging the history of the students as well as their cultural and linguistic resources. When 
students are given the opportunity to fully leverage their identities, they are afforded a greater 
wealth of Power from which to draw upon. The dimension of Power considers the social 
transformation at different grain sizes ranging from moment-to-moment interactions within the 
classroom to helping to create societal agents of change. Additionally, the Power dimension can 
be measured in the reconceptualization of education as a humanistic pursuit. 

Within the Gutiérrez (2009) equity framework, tensions exist at the intersection of the 
dominant and critical axes. To address this, Anzaldúa (2015) discusses the Aztec concept of 
Nepantla, which refers to “a space of tensions, of multiple realities” (Gutierrez, 2017, p. 13). In 
this space, several conflicting views are held simultaneously. For example, instructors may see 
the need to change their practices while also preferring their current routines, and being resistant 
to implementing new ideas in the classroom. This allows the opportunity to leverage ideas from 
each perspective and to collate them, creating a “third space.” Within this coalescent space, an 
individual is opting to exist within the dissonance, rather than simply choosing one view over the 
other. This dissonance may be uncomfortable, but if one is able to stay with the tensions long 
enough, new perspectives and knowledge have the potential to emerge. While Access, 
Achievement, Identity, and Power are each important, attending to one alone does not constitute 
equity; yet, leveraging all four of these is no easy feat. Therefore, Nepantla gives perspective to 
the messy process that occurs along the journey towards equity. More broadly, considering 
Nepantla in the work that we do allows us to more fully understand the ideas and perspectives 
across and within individuals that at first glance might seem contradictory. By considering 
Nepantla within professional development, we are more able to leverage the beliefs and ideas 
that participants currently hold, and use them to guide further growth along each individuals’ 
journey. 

Methods 
This study is part of the Mathematics Persistence through Inquiry and Equity (MPIE) project 

at a local two-year college– Southern Hispanic Serving Institution (SHSI). The MPIE project is 
studying SHSI’s response to a state-mandated change regarding mathematics courses. 
Specifically, the state mandate requires that students enroll in transfer level mathematics by the 
end of their first year. Using cycles of design research, the MPIE project aims to build the 
capacity of math instructors in the two-year college to foster student success, and investigate the 
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effects of the capacity-building effort. The primary focus of this project’s capacity building effort 
is on the professional development (PD) for two-year instructors. The MPIE project is a regional 
partnership between a two-year and four-year institution, both Hispanic Serving Institutions 
(HSIs) located in the same region and serving the same student population. A key outcome of 
our work will be improved understanding of how department-based mathematics course reform 
can be accomplished at a two-year HSI. 

There were a total of 7 participants in the PD. Participants were math instructors at the 
college, most of whom taught a variety of courses including gateway courses. Participants met 
six times, two hours each in the fall (for a total of 12 hours). The PD consisted of activities that 
shared resources that could be used in their courses (e.g. Desmos, mathematical tasks, norms, 
etc.) and practices that could be implemented during classroom whole group discussions. The 
five practices from Smith & Stein (2018) and Gutiérrez’s four dimensions of equity (2009) were 
discussed during PD and provided a guide for understanding the intersection of equity and 
inquiry in participants’ practices. Instructors also had assignments outside of PD centered on 
inquiry and equity, such as taking an equity lens to their syllabi, as well as modifying and 
implementing tasks that were inquiry-oriented.  

For this paper we conducted case studies focusing on two participants, Stella Miller, a 
middle-aged white woman, and Nhung Tran, a middle-aged Vietnamese man. We selected them 
as cases because they appeared to have similar views about equity and worked frequently 
together during the PD sessions. Where race and gender played a role in these conversations, we 
find it relevant to include the identities of these two participants. Given their similar perspectives 
on equity, we found their cases to provide insight about their trajectories during the course of 
PD. Further, each provided a unique perspective from their instructional roles as part-time 
(Stella) and full-time (Nhung) instructors.  

The data for this study are comprised of professional development session artifacts, 
participant reflections, interviews, Application, Collaboration, and Exploration (ACE) 
assignments, Zoom recordings of PD sessions and PD facilitator and observer debriefs. Drawing 
upon our theoretical framework we analyzed the data of our two participants, Nhung Tran and 
Stella. We split into pairs to analyze the PD artifacts. Both pairs then split up, such that each 
individual was focused on one participant’s data (Stella or Nhung). Pairs then met to compare 
and verify analysis. Our analysis process consisted of looking through the PD artifacts in 
chronological order to understand how the participants were thinking about equity over the 
duration of the PD. We then identified open-coded themes related to the participants’ trajectories 
and presented data to support the themes, which were shared with all of the authors (Miles & 
Huberman, 1994). Below we unpack the themes for each participant.  

Findings 
Case 1.  
 Stella has been an educator for nearly 30 years. She has been an instructor at SHSI for 
over 20 years. She is, by choice, an adjunct instructor. She teaches introductory math courses 
including liberal arts mathematics, college algebra, and trigonometry. During PD, Stella actively 
participated and was willing to share her ideas with the group; she also consistently engaged with 
the in-between session ACE assignments, giving the different prompts attention, though not in 
the way we had anticipated. We illuminate her story over the course of professional development 
next. 

Stella Miller at the start: Equity is Equality (Pre-PD, Session 1). In an interview prior 
to professional development, Stella described herself as an “organized, consistent, rule follower”. 
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When asked about equity, she said that students would describe her as equitable because 
regardless of student situations, she treats everyone the same. Because of this, Stella described 
her class as being a place where regarding personal beliefs and identities: 

there’s going to be a time where we’ve got to just turn that off and go with what you're doing 
and what am I doing in this classroom? I am teaching all the students here…And I’m going 
to do that to the best of my ability. And that's how I feel like I'm being equitable. 

Stella in these instances describes her beliefs of equity as equality, which, from her perspective, 
justifies looking over various aspects of student experiences or identities. So long as she is doing 
her best to engage all of her students in mathematics, and to treat them all equally, that is what 
she constitutes as a learning environment that attends to equity. 
 While there are certain aspects of students’ identity that Stella perhaps does not prioritize 
in the classroom, in early professional development sessions, she also shared thoughts informed 
by her personal experiences with students by discussing the importance of “getting to know your 
audience”. She demonstrated an example of how this has impacted her practice by sharing that 
she chooses not to talk about traveling with her students, because through experience of getting 
to know her students over the years, she recognizes that this topic may not be relatable for them, 
implying a recognition of socioeconomic differences. In a debrief survey after session one, Stella 
expressed an eager interest to learn from her peers by listening to their ideas and experiences, 
also stating the need “to recognize our own personal strengths and weaknesses and see how we 
can best work with/around them. That take[s] a lot of listening to others for sure.” 

Stella Miller at middle: Resistance emerges (PD sessions 4 & 5). When Stella was 
introduced to the student profiles in the fourth PD session, she demonstrated resistance to 
accounting for student profiles for selecting and sequencing students’ mathematical work. She 
describes it as “an extremely hard task,” because reading the profiles did not in any way inform 
who she would choose. She asserts that “the reality is I am not colorblind, but I try to think that 
the profile of the students, their color, their gender, their this or that, does not matter to me!” To 
Stella, the dimension that she finds relevant with respect to equity is how students participate in 
the class– “the quietness versus the outspokenness.” In the next PD session, facilitators followed 
up on the same task and asked participants specific questions regarding identity in relation to 
student profiles. We continued to observe resistance during this activity. When asked what 
identities the PD participants noticed about student profiles, Stella responded that the “identities 
were that half the students talked and half did not.” When we pair this response with her earlier 
response about not being colorblind, it becomes more clear that Stella values verbal participation 
of students in her class when considering equity rather than gender or race. For Stella, student 
participation relies heavily on the agency of each individual student– from her perspective, 
students engage to learn in the way that best serves them. If a student is participating in a class 
discussion, they should not be discouraged from doing so. Similarly, if a student is silent and 
chooses not to participate in class, she assumes that is best for their learning style and she does 
not want to force them to speak up.  

When Stella was asked if she was familiar with narratives that are relevant to student 
profiles, she stated that if there is a certain profile that is congruent with historical narratives, it 
should not be ignored. She states that “...after being in the classroom for 25 years, that is just 
reality… I think it would be silly to not use prior experience, it’s like ignoring history.” 
However, she also mentions that each individual is a new person coming into each class and that 
they may not conform to the dominant narrative. This tension between expecting students to 
behave a certain way versus breaking the mold highlights Stella’s resistance but also willingness 
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to change her mind based on experiences. 
 Stella Miller at end: Equity is justification for existent practices (Session 6 and after 
PD interview). Towards the end of the semester, Stella shared some of her thoughts about PD in 
an exit interview. When asked about equity, she shared, “now this one, I have to say, this one has 
been more of a learning for me”. Stella went on to share how she had not previously considered 
equity in relation to participation within her classroom. While Stella had discussed previously 
how she “works the crowd” by working with students who are louder and more quiet in the class, 
she now saw and described how these practices were related to equity because it was attending to 
various and differing student needs. While this marks a shift in how Stella describes equity 
compared to her first interview, a shift which Stella herself recognized was present, there was not 
strong evidence of any major shifts in her actual teaching practices. Rather, she saw how her 
existing practices could be viewed as equitable practices.  
 Stella also shared in the interview a recent personal experience in the classroom that had 
her thinking about shifts that could occur within her teaching practices. She discussed how she 
had recently come to realize that a student in her class did not speak English fluently, and had 
been utilizing a peer in the class to translate what was going on during class time throughout the 
semester. When she realized towards the end of the semester that this was occurring, she 
expressed feeling “embarrassed” and “ashamed” for not knowing the student better. She then 
discussed how had she known sooner, she could have made some adjustments to her teaching to 
better accommodate this student. While Stella did not articulate these ideas in connection to 
equity, we again see how her personal experiences do impact her teaching practices, and that 
they also are slowly moving her towards a direction of more equitable practices in the classroom. 
Case 2.  

Nhung Tran has been teaching at the two-year college level for over 10 years. He is 
currently a full time instructor at SHSI where he teaches a variety of introductory mathematics 
courses including college algebra and statistics. In addition, he often teaches courses for 
preservice mathematics teachers. Throughout the PD sessions Nhung constantly asked questions 
and was vulnerable with his own practice. His inquisitiveness and curiosity help us in 
understanding his views about equity in practice. Below we unpack Nhung’s trajectory with 
respect to his equity development into three phases, the beginning of the PD, the middle of the 
PD, and the end of the PD.  

Nhung Tran at the start: Inquiry is easier to talk about than equity. (Sessions 1 & 
2). The PD began with having participants share their ideas about inquiry and equity. For Nhung 
Tran, inquiry was easier to speak to than equity. He had concrete ideas about teaching practices 
that fostered inquiry, but only vague notions about equity. This was reflected in PD artifacts, 
where Nhung brought up questioning strategies and the use of multiple representations to 
promote inquiry. However, for equity, he did not generate any ideas when reflecting on equity on 
his own, and only offered sufficient work time for all students as a way to attend to equity as 
“not everyone works at the same pace” when Nhung was thinking about equity with his PD 
partner. The reason for this was Nhung’s belief that mathematics is universal, meaning that it is 
objective and accessible by anyone. This lack of consideration for equity was reinforced in a post 
classroom observation of Nhung. During the interview Nhung described how he had not thought 
about equity specifically, instead he just focused on aspects of his practice that he thought 
teachers should provide, such as equal opportunities and ensuring the content was accessible. 
After the third author raised different questions about decisions Nhung made during instruction 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1492



that were equity related, Nhung began to reflect on why he had not considered them. This 
marked a shift in how Nhung described equity in the following sessions.  

Nhung Tran at the middle: Tensions begin to surface (Sessions 3 & 4). Tensions 
began to surface in Nhung’s mind about how to both attend to equity oriented practices 
simultaneously with students’ identities and work. This point is evidenced by two activities in 
session 4. The first of which asked participants to consider classroom norms that were inquiry- 
and equity-oriented. During this activity Nhung agreed that norms such as students asking 
questions, getting help from each other, and not being afraid to make mistakes are important. In 
the next activity PD participants were provided with a collection of student work with student 
identity profiles. Stella and Nhung were paired for this activity, and when Stella shared her 
thoughts about student identity, and this activity being challenging, Nhung agreed. Nhung 
expressed struggling to see how an instructor could select and sequence mathematical work for 
sharing with the class using students’ mathematical work while simultaneously attending to the 
students’ identities. Despite some of the student profiles including characteristics such as being 
afraid to share ideas during whole-group or making mistakes, which he named in the previous 
activity as important, he still struggled to see how those aspects and students profiles are 
connected to equity (e.g., students' identities, their work, and past experience should play a role 
in who is selected and when during whole-group discussion). Additionally, his personal 
verbalized biases about students’ identities (e.g., Asian females being quiet), reflect this 
disconnect.  

Nhung Tran at the end: (Session 5 & 6). In the last two sessions of  PD we continued to 
focus on the intersection of student profiles and teacher practice. We revisited the activity that 
had participants select and sequence students' work. Instead of selecting and sequencing the 
work of the students, Nhung and Stella, who were partnered together again, decided to have all 
of the students share their work at the board and have their peers ask questions and make 
comments. In practice this move is not necessarily bad, however, in the context of the activity it 
is an example of the participants not using their power as instructors to think about how and why 
they may call on students. Additionally, when probed, Nhung and Stella mentioned if they had to 
call on a student they would call on John, a White male in the class who is always the first 
student to have his hand raised, has an A in the class, likes to work by himself and only seems 
engaged when he is talking. In Nhung’s last interview he continued to talk about equity in the 
ways he described in the beginning (e.g., good teaching is equitable), but he also described 
needing to understand some of the biases he had and wanting to be more intentional about his 
practice.   

Discussion 
We first discuss our findings as they relate to the elements of the dominant axis from 

Gutiérrez’ (2009) equity framework. For Stella and Nhung, Access plays a key role in both of 
their conceptions of equity. Both believe that if they provide quality mathematics instruction for 
students and establish classroom environments that encourage participation, then students have 
equitable access to learning. However, this places the agency upon the students to engage in 
class. For Achievement, it is not clear from the professional development sessions or interviews 
how Stella and Nhung make sense of this element, other than the fact that it is apparent that they 
care for their students to succeed. Participants' lack of attention to Achievement could be a result 
of the PD facilitators’ emphasis on inquiry and equity using the five practices from Smith & 
Stein (2018), which focuses more on teacher practices that lead to more productive classroom 
discussions. While we see these conceptions of Access as a starting place for understanding 
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equity, the lack of attention towards Achievement raises questions for the accountability that 
Nhung and Stella take with regards to their students’ success. Findings related to the critical axis 
further expand upon this idea. 

When considering the critical axis, we see mostly superficial or partial attention from 
Nhung and Stella towards Identity and Power. With respect to Identity, Nhung does briefly 
describe the importance of addressing his biases; however, he struggled in making a connection 
between the identities of students and how those identities can impact their classroom 
experiences. Stella sees Identity differently, wherein she seems to conflate or reduce the 
identities of her students to their type of classroom participation. Instead of considering the 
identities and experiences of her students, she focuses more on her own lived experiences with 
students and how that relates to her teaching. The second part of the critical axis is the Power 
dimension which is leveraged differently by Nhung and Stella. While Nhung acknowledges and 
describes the power he has in practice to be more equitable, Stella focuses more on the power 
that students have–they must choose to engage in a way that is best for their own learning. Stella 
relinquishes the power and responsibility she has as an instructor and focuses instead on the 
power of student agency as a means for success in the classroom, which aligns with Stella’s 
consistent focus on the Access dimension. With regard to Identity, we again see both Nhung and 
Stella struggling to take responsibility for attending to the identity of their students in the 
classroom. For Power, we see Nhung acknowledging the role he plays in the classroom, but is 
unsure of how to leverage his power to support his students. Stella acknowledges her role as 
well, but highlights she only provides students with resources, leaving them to exercise their 
agency and control over their own success. 

With respect to the dimensions of the equity framework, Nhung and Stella hold several 
conflicting views. Nhung and Stella both focus heavily on Access, and not as much on 
Achievement, Identity, and Power. In Gutiérrez’s framework, Nepantla refers to the tension 
between these different dimensions. With Nhung, in particular, we see Nepantla with his 
tendency to be easily convinced by Stella during breakout sessions, which leads to shifts in his 
thinking. Due to his uncertainty, Nhung had a difficult time exploring and establishing beliefs 
regarding equity. There is a dissonance for Nhung between his open-mindedness to hearing 
others' ideas, and his own personal beliefs regarding what equity should entail within the class. 
For Stella, Nepantla is most evident in her resistance to acknowledge Identity. Her strong 
emphasis on student agency seems to serve as a barrier to considering other ways of being 
responsible for her students and their success, creating a dissonance between her sincere care for 
student success, and her responsibility to supporting them in their mathematical endeavors. By 
identifying these instances of Nepantla, we see these tensions for Nhung and Stella as 
opportunities for future growth within our continued PD efforts, which we discuss next. 

When considering these findings in relation to what they mean for PD efforts, a few 
questions and reflections arise. When considering our first research question– how participants 
shift their practices from PD– these case studies of Stella and Nhung highlight an important 
follow-up question: how does the resistance of one participant affect the progress of other 
participants? While we see growth in both Stella and Nhung over the course of professional 
development, we also identified resistance, particularly from Stella, when attending to ideas 
relating to the critical axis (Gutiérrez, 2009). Because Stella and Nhung were paired together in 
several of the PD sessions for breakout room discussions, we wonder how this might have 
impacted Nhung’s experience, and how the conversations around equity and identity might have 
looked different if he had been paired with a less resistant partner. There were multiple moments 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1494



during PD where Nhung raised an idea and Stella pushed back, which in response, Nhung would 
walk back on his thoughts to agree with Stella. How might Nhung’s thoughts regarding equity 
have evolved otherwise if paired with a partner that took up his ideas in ways that pushed him to 
think about the ideas he raised and how they might impact his practice? Where Stella often 
expressed the value in hearing her peers’ experiences, we also wonder how pairing her with 
various other partners might have differently impacted her perspectives regarding equity. We 
plan to explore this research thread further, and use these findings in the design of PD in 
upcoming semesters. 

This reflection also relates to our second research question–how should PD be designed 
to support two-year college faculty. As we continue to use design cycles to improve our PD 
efforts, we can strategically pair participants with partners in future sessions to see if we notice 
any changes in how participants shift their practices compared to this first semester of PD. These 
cycles of design also allow us to reflect on the growth that we have observed of participants thus 
far, and to adjust our efforts and plans to better foster further growth in coming semesters. As 
these two case studies have outlined, we see dissonance between where participants currently 
think and engage with the concept of equity and where we hope they will eventually conceive 
equity. We see this dissonance as an important opportunity to reflect upon, and thus an 
opportunity to improve our efforts with PD moving forward.  

Conclusion 
The case studies of Nhung Tran and Stella Miller provide insight about two-year college 

instructors’ beliefs about equity and ways such beliefs might shift. Using Gutiérrez’ (2009) 
dimensions of equity as an analytical lens we gained further understanding about how these 
instructors think about equity and the influence they can have upon each other’s thinking. In 
particular, this work highlights tensions, or Nepantla, that emerges from the discussion of these 
topics. We see such dissonance as opportunities for further growth as we work towards building 
harmony between equity and mathematics education. This work will inform future PD design 
that attends to activities and group pairings which can support instructors to see equity in ways 
that attend to both the critical and dominant axes.   
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This 5-year mathematics professional development project involves 27 elementary teachers 
prepared and supported as Elementary Mathematics Specialists (EMSs) in high-need urban 
schools. They complete a university’s K-5 Mathematics and Teacher Supporting & Coaching 
Endorsement programs and participate in Professional Learning Communities and individual 
mentoring. Described here are data collected at the end of Year 1, illuminating the ways in 
which they are engaging in teacher leadership, especially coaching. The EMSs are a distinctive 
population as informal teacher leaders, with a primary responsibility of teaching students. 
Central to the project is the university-school-community partnership, with findings illuminating 
reciprocity with mutual benefits, such as high quality clinical experiences for teacher candidates, 
coaching for novice teachers, and engagement with families and caregivers.    

Keywords: Professional Development, Instructional Leadership, Elementary School Education 

Purpose of the Study 
The context of this study is a 5-year professional development project for 27 elementary 

teachers in high-need urban schools who are prepared and supported as Elementary Mathematics 
Specialists (EMSs). They are completing a university’s K-5 Mathematics and Teacher 
Supporting & Coaching Endorsement programs and participating in Professional Learning 
Communities and individual mentoring. This study specifically examined the ways in which they 
engaged in teacher leadership during Year 1 of the project. This question guided the inquiry: 
How are the EMSs providing teacher leadership, including self-reported coaching practices? 

Theoretical Perspectives and Related Research 
The specific roles and responsibilities of EMSs vary (Baker et al., 2021), dependent upon the 

contextual needs and plans of schools, school systems, and states (McGatha et al., 2015). EMSs 
can serve as classroom teachers, instructional interventionists, and informal or formal teacher 
leaders. Within these wide-ranging responsibilities, EMSs’ work as a teacher leader often 
involves coaching other teachers. This coaching can occur in a variety of one-on-one and group 
contexts. Productive activities for mathematics coaches with groups include: engaging in the 
discipline (e.g., mathematics through worthwhile instructional tasks), examining student work, 
analyzing classroom video, and participating in lesson study, while those with individuals 
include co-teaching and modeling instruction (Gibbons & Cobb, 2017). Further, McGatha (2015, 
2017) examined related studies and determined that coaches’ ways of interacting with individual 
teachers could be considered on a continuum from more-directive (e.g., modeling lessons, 
providing resources) to less-directive (a process of collecting data from observed lessons, 
providing feedback, and engaging teachers in thought reflection), with the latter more powerful 
for prompting changes in teachers’ instructional practices. There are a number of coaching 
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models evident in the extant literature, including content-focused coaching, instructional 
coaching, and cognitive coaching (Yopp et al., 2019). Cognitive coaching, which was 
emphasized in this project, is a particularly powerful approach that relies heavily on coaches’ use 
of reflective questions to encourage teachers to refine their professional knowledge base through 
self-assessment and self-direction (Costa et al., 2016). All in all, context and need drive EMSs’ 
highly varied ways of working, providing a warrant for studying their differing roles and 
responsibilities.    

EMS preparation programs should focus on the in-depth and multidimensional development 
of content knowledge for teaching, pedagogical knowledge for teaching, and leadership 
knowledge and skills (AMTE, 2013). Programs should have a two-fold emphasis: fostering 
expertise as a teacher of mathematics and as a teacher leader who serves as a more 
knowledgeable other, supporting colleagues’ instruction and other efforts within mathematics 
education such as curriculum development and community connections. When it comes to 
leadership knowledge and skills, specialized courses should prepare EMSs to “take on collegial, 
non-evaluative leadership roles within their schools and districts. They must have a broad view 
of the many aspects and resources needed to support and facilitate effective instruction and 
professional growth” (AMTE, 2013, p. 8). Several years of program development, 
implementation, and evaluation have revealed the salience of program experiences being 
embedded in practice, with strong connections and enactment within EMSs’ classrooms, schools, 
and/or districts (Reys et al., 2017). When considering states offering pathways for advanced 
specialist certification, there are notable differences in EMS preparation programs related to 
duration, number of course hours, course emphases, field practicum experiences, and delivery 
(EMS and Teacher Leaders Project, 2022; Spangler & Ovrick, 2017). This variability is linked to 
differences in program goals and provides a warrant for study of EMS preparation programs. 
More inquiry needs to focus on the development of teacher leadership and how EMSs engage in 
this work, including coaching and associated practices (Yopp et al., 2019).       

Methodology 
The design of this study includes a descriptive, holistic singular-case approach (Yin, 2014). 

The inquiry occurred during the COVID-19 health pandemic, which had changed the functioning 
of schools and classrooms, thus influencing the EMSs’ efforts as teachers and teacher leaders. 
The researchers were mindful of this contextual element throughout the study.   

This study’s context is a mathematics professional development project focused on the 
development of 27 elementary teachers as EMSs in high-need urban schools. Multiple partners 
are involved, including a university, school district, and non-profit organization. Project goals 
include the development of EMSs who deliver ambitious mathematics instruction and serve as 
mathematics teacher leaders in a variety of ways, such as coaching university teacher candidates 
(henceforth called teacher candidates), providing professional development to their peer teachers, 
mentoring novice teachers at their school sites, supporting the non-profit’s after-school tutoring 
program, and engaging in community connections that promote key relationships and shared 
responsibility for students’ learning. The project also aims to promote equity and access in 
mathematics, support teacher retention in high-need schools, and situate teacher candidates in a 
hiring pipeline. Since the EMSs’ primary responsibility is teaching students, their role as a 
mathematics teacher leader is an informal one. The project is 5 years in duration and at the time 
of this study, the participants had completed 1 year and were emergent teacher leaders.   

The teachers were selected to participate in the project based on criteria that identified them 
as successful, experienced teachers of mathematics with interest in and aptitude for teacher 
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leadership. All are employed in a large, urban school district in the southeastern USA. They 
teach in 22 elementary schools, which collectively serve 91% students of color, with the largest 
populations being 44% Hispanic and 36% Black; 69% of students are eligible for the federally-
funded free and reduced lunch program. The participants self-described as 24 females and 3 
males, with 70% self-identifying as persons of color (41% Black, 7% Hispanic, 7% Asian, 7% 
Hispanic/White, 4% Hispanic/Black, 4% Black/White). They were a highly educated group, with 
100% having a master’s degree and 33% holding an educational specialist degree; further, they 
were experienced teachers, on average having 10.5 years of teaching experience (range of 5-22 
years). Teaching positions varied widely and included: three kindergarten, one first grade, two 
second grade, five third grade, one fourth grade, seven fifth grade, four STEM/Math Specials, 
one English to Speakers of Other Languages, one Special Education, one Early Intervention 
Program, and one Accelerated Content. Of these participants, two taught in Dual Language 
Immersion settings, including Spanish (2nd grade) and French (5th grade). Within these differing 
grade levels and foci, all taught mathematics, including some for part of the day and some for all 
of the day. Notably, this group of participants represents the diversity of teachers from which 
students learn mathematics in elementary schools.  

In this project, the participants are prepared and supported through completion of a 
university’s K-5 Mathematics Endorsement (K-5 ME) and Teacher Support & Coaching 
Endorsement (TSCE) programs during the first 2 years, along with participation in Professional 
Learning Communities (PLCs) and individual mentoring for the entire 5 years. See Table 1 for 
these elements, along with the timeline. The endorsement programs include four elementary 
mathematics content courses integrating pedagogy, one course focusing on teacher leadership 
and coaching, and two internship courses, with one focusing on mathematics and the other 
coaching. Overall goals of both programs (AMTE, 2013, 2017) are development of: effective 
and equitable mathematics instructional practices (NCTM, 2014, 2020); deep and broad 
knowledge of elementary mathematics, including specialized content knowledge (Ball et al., 
2008); productive mathematical beliefs and professional agency; and teacher leader capabilities, 
including coaching skills.  

 
Table 1: Timeline and Project Elements Aimed at Preparing and Supporting EMSs 

 
In addition to preparation for teacher leadership in the endorsement programs, support for the 

EMSs as they serve as teacher leaders is provided through a PLC and individual mentoring, both 
facilitated by the project’s program director. PLCs and individual mentoring generally focus on: 
building a community of learners within each PLC, augmented support for developing effective 
and equitable mathematics instruction, and targeted support for what is called in this project 

Year 1 Year 2 Years 3-5 
Fall 2020 Spring 2021 Summer 2021 Fall 2021 Spring 2022 

1 TSCE course 
(Teacher 
Leadership & 
Coaching) 
 
 
 
PLC and 
Mentoring  

1 K-5 ME 
course (Number 
& Operations) 
 
 
 
 
PLC and 
Mentoring  

1 K-5 ME 
course (Data 
Analysis & 
Probability, 2-
week summer 
institute) 
 
 

1 K-5 ME 
course (Algebra 
& Rational 
Number) and 1 
TSCE course 
(the Internship)  
 
PLC and 
Mentoring  

2 K-5 ME  
courses 
(Geometry & 
Measurement  
and the 
Internship)  
 
PLC and 
Mentoring  

 
 
 
 
 
 
 
PLC and 
Mentoring  
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teacher leader activities. The three PLCs are clustered around grade levels/teaching focus, with 
each having nine EMSs, and meet monthly eight times across the school year.  

 To lead instructional change and support wide-ranging improvements, the EMSs engage in a 
number of teacher leader activities across the 5 years in their school, district, community, and 
other contexts, applying their teacher leader strategies and skills learned in the K-5 ME and 
TSCE programs and the PLC. Two primary teacher leader activities include coaching a teacher 
candidate each year and supporting the nonprofit’s after-school tutoring program for at least 1 of 
the 5 years. Other teacher leader activities are selected based upon the needs of the school and in 
consultation with school leadership. The PLC serves as a context for collaborative selection, 
planning, and reporting on teacher leader activities, in addition to individual conferences with the 
program director. Toward the beginning of the school year, each EMS proposes 3-6 specific 
teacher leader activities in writing to the program director, describing in detail the activities 
anticipated content, duration, frequency, and outcomes. The program director consults with the 
project’s leadership and collaboratively refines with each EMS a plan for specific teacher leader 
activities to accomplish across that school year. Check-ins related to progress across the school 
year are included in both PLC meetings and individual conferences. Each EMS provides 
documentation at the end of each year of this work in a Teacher Leader Record.  

Data were collected at the end of Year 1 in two ways. All participants completed a Teacher 
Leader Record (TLR), documenting various aspects (i.e., content, duration, frequency, and 
outcome) of their teacher leader activities across the year. For this study, only the aspect of 
content is included as data. The content section includes a detailed description of the teacher 
leader activity and the rationale for implementation, including what exactly the activity was and 
why they chose to do that activity. Data were also collected from all participants via a survey of 
mathematics coaching practices (Coaching Practices Survey [CPS], Yopp et al., 2019). The CPS 
is designed to capture the extent to which a coach uses certain practices related to instructional 
coaching in mathematics that were drawn from coaching models in the extant literature (Yopp et 
al., 2019). The instrument contains 20 items and uses a 7-point Likert type scale, with a higher 
rating indicating more self-report of particular coaching practices (ranging from very descriptive 
of my coaching to not at all descriptive of my coaching). This collection of 20 items exhibits 
good internal consistency (Cronbach’s alpha estimated at 0.81).  

The research team includes four university professors and the project’s program director, 
collectively holding expertise in a variety of methodologies, along with two doctoral students. 
The analysis of the TLR focused on the content of the teacher leader activities, which largely 
involved examination for frequency of activities and clustering into categories when possible. 
Data from the CPS were dichotomized for analysis in order to identify practices that are 
descriptive or not of participants’ coaching. For an item, if the response was descriptive at all 
(rating of 7, 6, or 5) it was assigned a 1, and the other responses of not descriptive or equally not 
descriptive/descriptive (rating of 4, 3, 2, or 1) were assigned a 0.  

Results 
The analysis of the TLR shows all participants provided teacher leadership in a number of 

ways, with each participant reporting 3-6 distinct teacher leader activities, dependent upon the 
scope and scale of each activity. Each participant coached a teacher candidate, serving as a 
classroom mentor teacher and/or university coach, with a total of 27 teacher candidates 
impacted.   

The analysis of the TLR also shows that during Year 1 over one-third (n=10) of the EMSs 
supported the non-profit’s after-school tutoring program. This support was driven by the needs of 
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the after-school tutoring program, based upon consultation with the program’s leaders. The 
EMSs’ initial efforts largely focused on collecting and organizing tools and resources to support 
remote learning, then broadened to include curriculum analyses with revisions. All of this work 
had an intentional focus on supporting mathematical content that students were concurrently 
learning in their classrooms. The curriculum analyses involved careful review of the existing 
guidelines and materials used in after-school tutoring sessions, starting in August and spanning 
the entire school year, and providing feedback on how to increase cognitive demand during 
instruction, implement tasks that are worthwhile and engaging for students, and utilize more 
manipulatives and tools to improve conceptual understanding. Further, the EMSs provided 
additional resources and supplements to that curriculum, with the continued aim of increasing 
rigor, conceptual understanding, and enjoyment of mathematics.  

Additional teacher leadership is evident from the analysis of the TLR. Eleven of the 
participants reported leading professional development of some kind for fellow teachers at their 
schools that focused on mathematics education (e.g., PLC, grade level planning sessions, district-
wide and school-wide workshops). Ten formally mentored new teachers at their schools, in 
addition to coaching a teacher candidate. Other teacher leader activities focused on outreach to 
parents and families. Twelve EMSs facilitated a Math or STEM Community Event for families 
and students in their respective schools. Twelve led workshops or created resources for parents 
focused on mathematics as a direct response to remote learning struggles or language barriers 
(e.g., instructional videos, bilingual resources). While the fore-mentioned categories were the 
most frequently reported, the EMSs engaged in a number of other mathematics-focused 
activities. Examples include co-presenting at national conferences, serving on leadership teams 
within the school district, creating original content for use with teachers and students, facilitating 
after-school boot camps or tutoring for students, and writing grants to procure resources.  

Based on these findings from the TLR the participants were engaged in coaching in a number 
of ways, and a descriptive analysis of data from the CPS provides insights into their mathematics 
coaching practices. Since these participants were informal teacher leaders and serving as EMSs 
in a variety of ways, with their coaching focusing on both teacher candidates and colleagues, 
these descriptive data show variability and provide contrast with those who serve in a 
mathematics coach role of primarily working with fellow teachers. The analysis shows that three 
participants rated 18 of the 20 items as descriptive of their coaching practices and at the other 
extreme, four participants rated five or fewer of the 20 items as descriptive. Twenty of the 27 
participants rated 10 or more items as descriptive of their coaching practices, with seven 
participants rating fewer than 10 items. The distribution of the dichotomized data is near normal 
with a negative skew. 

An item analysis comparing the identification ratings indicated that 56% of the items are 
descriptive of mathematics coaching practices. Interestingly, the four lowest-rated items, which 
were rated by 26%, 26%, 30%, and 33% of participants as descriptive of practices, all focus on 
collaboration and communication with the principal or other school administrators about 
mathematics coaching (e.g., discussing the school’s vision for mathematics instruction, progress 
being made toward that vision, and teachers’ needs; collaborating to ensure a clear message 
about effective mathematics instruction). This seems to indicate that the principal or 
administration at these school sites is not actively involved in the coaching practices of the 
participants. Since the participants are informal teacher leaders, with a focus in part on coaching 
teaching candidates, it is not surprising that there is variability in how much they work with 
school leaders in their coaching responsibilities. In contrast, Table 2 shows the seven highest-
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rated items, which 70% or more of the participants indicted as descriptive of their coaching 
practices.  

 
Table 2: Most Prevalent Coaching Practices on the CPS (≥70%) 

3. I coach teachers on needs that I observe in the teacher, even when the teacher is unaware of these 
needs 
5. I always make sure that coaching conversations with mathematics teachers are grounded in the 
mathematics content 
9. I try to provide the teachers I coach with an understanding of how the mathematics they teach 
supports learning beyond the grade level they teach 
11. I encourage the teachers I coach to reflect on similarities and differences among mathematics topics 
in the curriculum 
12. I help teachers plan their lessons 
16. I reflect on state assessment data to identify curriculum areas that need to be strengthened 
19. I encourage teachers to set personal improvement goals for mathematics 

Discussion 
Given the notable variability of EMS preparation programs across the USA (EMS and 

Teacher Leader Project, 2022), there has been a call for “developing a knowledge base for the 
preparation of EMSs”, including how “elements of an EMS program are necessary for 
productive outcomes” (Reyes et al., 2017, p. 231). Teacher leadership, including coaching and 
associated practices, have not been widely studied (Yopp et al., 2019). Further, EMSs ways of 
working are highly varied, driven by need and context, which provides a warrant for study of 
their roles and responsibilities. Accordingly, this inquiry focused on how EMSs in a preparation 
program are engaging in teacher leadership, especially coaching. The participants’ primary 
responsibility is teaching students, thus they are a distinctive population as informal teacher 
leaders. Further, they were largely teachers of color, working in urban schools that served 
students historically marginalized in mathematics. Notably, these EMSs were selected for this 
project based upon a rigorous process and are subsequently participating in a rigorous 
preparation program, which contrasts with the too often practice of those who are simply the 
most effective mathematics teacher being selected to serve as a teacher leader or coach. 

Our project provides an example of a preparation program guided by standards and research, 
with this study’s findings illuminating the important outcome of teacher leadership. The findings 
of the CPS show mathematics coaching practices that they were and were not using, providing 
considerations for how they can better communicate and collaborate in their coaching with 
school administration. The findings of the TLR provide insights into their teacher leader efforts. 
Each EMS coached a teacher candidate, serving as a classroom mentor teacher and/or university 
coach. A total of 27 teacher candidates were impacted, strengthening the university-school 
partnership, contributing to high quality clinical experiences for teacher candidates, and building 
teacher capacity for coaching and mentoring others at the school sites. The project provides a 
pipeline of teacher candidates to be hired at the high-need, urban schools, addressing a teacher 
shortage in school district. For these teacher candidates, program data show 70% are from 
underrepresented groups in the teaching profession, contributing to the much needed diversity of 
the teacher workforce as recent data show 78% of public school teachers in the USA are White 
(National Center for Education Statistics, 2021).  

In addition, their teacher leader endeavors supported community connections and intentional 
interactions with parents and caregivers, which are important for fostering these key 
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relationships and shared responsibility for students’ learning in mathematics. Notably, their work 
focused on curriculum development in the after-school tutoring program aims to improve 
mathematical learning experiences for students. Since some of these students are in the EMSs’ 
classrooms, the EMSs should receive direct benefits from this work via their students. 
Additionally, their teacher leader efforts focused on coaching and facilitating professional 
development, positioning them as a more knowledgeable other for a community of practice 
within a school, aiming to influence teachers and the school’s mathematics program as a whole 
(Campbell & Malkus, 2014). All in all, their teacher leader efforts across the 5 years of the 
project and beyond aim to have a wide-ranging effect on mathematics teaching and learning at 
their school sites. Further, their support for a novice teacher at their schools should foster teacher 
retention during the novice teachers’ induction period in the profession. A body of research 
shows that individual mentoring of those in the first 3 years of teaching is critical for retention in 
the profession (Desimone et al., 2014; Ingersoll et al., 2012; Ingersoll & Smith, 2004; Stanulis & 
Floden, 2009).  

It is hoped that the proximal goals of improving EMSs’ mathematics instruction with them in 
turn supporting others (e.g., fellow teachers) in doing the same, should influence the distal goal 
of enhanced student learning and understandings in mathematics. This project intentionally 
supports students who have been historically marginalized and under-served in mathematics 
education. These students are largely from traditionally underrepresented groups, and selection 
criteria for the project ensured the EMSs are a diverse group, with 70% identifying as persons of 
color. This is significant as increasing research shows students of color benefit from having 
teachers of color (Carver-Thomas, 2018). Further, during the K-5 ME program the EMSs are 
immersed in mathematics teaching and learning that supports equity, diversity, and inclusion and 
provides explicit and intentional opportunities for all children to learn rigorous mathematics 
(Aguirre et al., 2013; Bartell et al., 2017; NCTM, 2020, 2021; National Council of Supervisors 
of Mathematics [NCSM] and TODOS, 2016). They learn about enacting lessons that leverage 
children’s mathematical, cultural, and linguistic strengths, while nurturing positive student 
identity in mathematics. For example, not only should instructional tasks have high levels of 
cognitive demand, they should hold cultural relevance whenever possible and draw on students’ 
home, cultural, and language experiences (NCTM, 2014, 2020). Emphasized are culturally 
responsive and sustaining pedagogies, instruction for multilingual learners, and mathematics 
serving as a lens for understanding and critiquing the world (Harper, 2019; NCSM and TODOS, 
2016; Rubel, 2017). Equity and access within mathematics education are through-threads of this 
project, supporting students who have been historically under-served.    

This project also aims to support teacher retention of the EMSs, an aspect that is addressed in 
the high-quality preparation and support as well as the community of teacher leaders being 
cultivated. Notably, the extant literature shows that teachers who engage in teacher leadership 
have feelings of an upward professional trajectory, thus increasing their own satisfaction and 
retention in the teaching profession (Tricario et al., 2015). With this project occurring in the 
context of the COVID-19 health pandemic, the sudden, unanticipated shift to emergency remote 
teaching followed by concurrent instruction of face-to-face and virtual learners have generated 
tremendous challenges and angst for K-12 teachers. Those were and continue to be trying times 
for teachers, testing their resilience, fortitude, and persistence in the profession. Throughout, the 
EMSs have found community and comradery with one another. The project is providing a space 
for supportive and open, safe conversations as they grapple with the tremendous demands placed 
upon them as educators, which has been illuminated through both anecdotal data and initial 
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interview findings. Their passion for and commitment to mathematics education are apparent, 
which brings us hope that our goal of retaining EMSs in the school district will be successful.  

Given the numerous and various ways the EMSs are serving as teacher leaders, the results 
show they are making a difference for a number of stakeholders, including fellow teachers, 
novice teachers, teacher candidates, students, school administrators, parents and families, and 
community partners. When considering these various stakeholders, critical to this project is the 
strong partnership between the university, school district, and non-profit organization. Notably, 
robust school-university-community partnerships support simultaneous renewal (Goodlad, 1994) 
of all partners. This renewal is a process of partners concurrently changing, growing, and 
improving, with a focus on innovative, high leverage, research-based pedagogical practices 
(American Association of Colleges for Teacher Education [AACTE], 2018). Central to these 
partnerships is reciprocity, where there are mutual benefits for all involved (National Association 
for Professional Development Schools [NAPDS], 2021). Figure 1 displays some of the fore-
described mutual benefits, with supporting students and their mathematical capacity for success 
at the center.  

 

 

 

 

Figure 1: Project Partners and Mutual Benefits 
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This paper describes a self-study conducted by two K-8 teacher educators in relation to their 
shift to teaching synchronous online mathematics education courses. They each wrote three 
independent self-reflections for a total of four courses (one undergraduate, three graduate) that 
they later analyzed and discussed for common themes in relation to the following topics: 
challenges (online teaching in general and for mathematics education courses), instructional 
adjustments, favorable aspects of teaching mathematics education courses online, skills gained 
that would benefit future teaching in any mode, equity considerations in teaching courses online, 
and recommendations for future online mathematics education courses. They report their 
findings in relation to these broad categories and use structured reflection on their experiences 
to recommend practices for online mathematics education teaching and learning.  

Keywords: Online and Distance Education; Teacher Educators; Instructional Activities and 
Practices  

The purpose of this study was to investigate our own practices as mathematics teacher 
educators during a required shift to online teaching, without sufficient experience and 
preparation, during the COVID-19 pandemic. To do this, we engaged in self-study. 

Self-study in teacher education involves investigating one’s own practice from one’s own 
perspective, with the intent to draw conclusions about both general and specific practices (Berry 
& Kitchen, 2020; Pinnegar et al., 2020). This self-examination, which takes place with an 
understanding that teacher educators’ practice occurs within interactions among human, material, 
and non-tangible elements and within an environment that is uncertain in many ways and is 
always subject to change, can contribute to the research base on the pedagogy of teacher 
education (Hordvik et al., 2020). In particular, Berry and Kitchen (2020) note, “Self-study has 
important contributions to make in these times [the COVID-19 pandemic] for documenting the 
experiences and insights that come from radical educational change” (p. 123). 

Online synchronous teaching via videoconference technology has been shown to be 
challenging for teachers due, in part, to lack of adequate preparation for this type of instruction in 
relation to such areas as possessing appropriate technology skills and facilitating interaction 
among course participants (Cassibba et al., 2021; Rehn et al., 2018). Further, online instruction 
has been shown to increase teacher workload and challenge teachers emotionally, and that it 
must be designed carefully in order to provide equitable education rather than exacerbating 
educational inequities (Cassibba et al., 2021; Kaden, 2020). In a study of mathematics teacher 
educators, Huang and Manouchehri (2019) found that some of the challenges include posing 
appropriate tasks, selecting appropriate online tools and technologies, and engaging all students. 
Despite these challenges, those who teach mathematics have hastily learned to adapt new 
technology uses, such as writing tablets and mathematics software, and to take advantage of 
online applets and videos in efforts to simulate in-person classes (Cassibba et al., 2021; Huang & 
Manouchehri, 2019). 
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Methods 
We, two long-time mathematics teacher educators, investigated our own shift to synchronous 

online teaching in 2020 and 2021. The two investigators have been teaching preservice and in-
service mathematics education courses for 26 and 18 years (first and second author, 
respectively). For this study, we reflected on four mathematics education courses, three graduate 
and one undergraduate. One graduate course was taught by the first author, and the other three 
courses were taught by the second author. The graduate course topics were advanced K-8 
mathematics methods, fractions/proportional reasoning, and problem solving. The undergraduate 
course was K-8 mathematics methods for preservice teachers.  

During our online teaching, we first individually responded in writing to a set of four 
questions that we considered relevant to our shift in teaching mode. In a second wave, we added 
three questions to which we also wrote responses individually. Finally, after examining each 
other’s responses to look for common themes, we wrote more detailed narrative responses to the 
questions we determined to be most salient in our initial reflective writings. In total, the 
questions focused on challenges (online teaching in general and for mathematics education 
courses), instructional adjustments, favorable aspects of teaching mathematics education courses 
online, skills gained that would benefit future teaching in any mode, equity considerations in 
teaching courses online, and recommendations for future online mathematics education courses. 
The final set of questions after the first two rounds of writing were: 

1. Which aspects of switching to synchronous online teaching were most challenging? 
2. What were some drawbacks or challenges of teaching a math education course online 

synchronously?  
3. What instructional adaptations did you make in order to conduct effective synchronous 

online teaching?  
4. What were some favorable aspects of teaching a math education course online 

synchronously?  
5. What are some professional skills you gained by teaching online synchronously, such as 

skills that might transfer to your in-person teaching or other work responsibilities?  
6. What equity issues, if any, did you notice while teaching online synchronously? 
7. What suggestions can you make for teaching a synchronous online math education course 

effectively? 

In the third and final round of our data collection, we wrote more “fleshed-out” responses to 
numbers 3, 4, and 7 in order to focus on data-based recommendations for online mathematics 
education courses. 

To analyze our data, we read each other’s three rounds of writing and compared them to our 
own, looking for major themes. We revisited the data (written reflections) several times until we 
believed the identified main themes accurately reflected the data (Strauss & Corbin, 1998). We 
then discussed our understanding of those themes and specific examples – or others generated 
through discussion that we had neglected to include in our writings – to illustrate them. 

 
Results 

Some key findings from our self-study include: 

 Challenges: appropriate and effective use of technology; adjustments to class instruction, 
class assignments, and class policies and expectations; maintaining student engagement 
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 Pros: ability to see all students close up (except when spread onto more than one screen); 
ability to place students into groups quickly and randomly; incorporation of technology into 
class sessions due to its immediate access (e.g., to research information and to explore 
websites); greater ease of facilitating equitable whole-group participation (students muted 
and acknowledged in order to speak); easier access to guest speakers 

 Cons: variable learning settings for participants; students appearing on more than one screen; 
joint mathematics tasks that involve drawing, use of physical materials, and sharing work 
that can’t be shown side-by-side; limitations and potential failure of technology 

 Instructional adjustments: greater use of technology and potentially breaking up material 
more by independent and group work; use of Zoom’s whiteboard feature, Jamboard, Google 
Docs, and the video camera in doing mathematics tasks; greater pre-planning so that students 
can be provided needed materials in advance or asked to come to class with particular 
materials that would normally be housed in the classroom 

 Equity considerations: variable settings that are more conducive or less conducive to class 
engagement; differing access to technology (e.g., inability to keep video on without high-
speed internet) and different levels of technology skills; potential to engage all students to a 
more equitable degree (e.g., see earlier comment in “pros”); potential social stratification 
based on “window” into each other’s personal lives 

Our trepidation regarding how to have students engage in collaborative mathematics learning 
involving discussion and drawing was eased by students immediate jumping to use of tools that 
served those ends. In terms of drawing tools, students used the videoconference whiteboard in 
small groups and saved their work to show when we returned to the whole-group setting. They 
also used Jamboard, Word drawing tools, and other technological drawing tools, copied images 
from online into Word documents, and made drawings they took photos of to share in the 
videoconference system or simply held their work up to the camera. For example, one small 
group working to solve a word problem about which of two lemonade recipes would have a 
stronger lemonade flavor (a proportional reasoning problem) in a breakout room saved the 
following whiteboard work to share when we returned to the whole group to share and discuss 
problem solutions (they were expected to seek multiple solution methods): 

 
 

Discussion and Conclusions 
The findings of our self-study support some existing research results, for example, the fact 

that technology use can benefit teaching and learning (Alenezi, 2017) but that technology skills 
can be a drawback to online teaching Fransson et al., 2018) and instructors must be prepared to 
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teach students how to use needed technologies (Bryans-Bongey & Graziano, 2016). However, 
the fact that our shift in practice was sudden and the nuance with which we self-reflected on our 
practice yielded important additional insights into online teaching for mathematics teacher 
educators. 

One thing we observed in our writing and discussions was that the rapid and substantial 
learning we engaged in during our shift to online mathematics education classes is likely to 
influence our in-person teaching. For example, we will be more likely to consider use of online 
tools and resources in the classroom and supplemental online course platforms and to consider 
use of laptop and tablet computers and even smart phones in the physical classroom. 

Despite the challenges we experienced in hastily switching to teaching mathematics 
education courses online, we were surprised to find that we believed this type of teaching could 
be highly effective. However, we noted that we needed sufficient time and preparation to learn to 
do this well, similar to that which has been reported by others (Cassibba et al., 2021; Rehn et al., 
2018). We also learned that we must draw on our students for assistance in how to navigate good 
practices in online teaching and to observe and listen to their preferred methods of learning and 
demonstrating their knowledge online. Our own learning during this experience was favorably 
influenced by our students’ awareness of technologies and tools to use that we had not been 
aware of previously. The benefits of quick and varying groupings for collaborative work and 
easy access to online learning resources (e.g., applets and videos) thrust us into new ways to 
support students’ learning, which mirrors what others have experienced in teaching mathematics 
online (Cassibba et al., 2021; Huang & Manouchehri, 2019). However, we acknowledge that we 
need to continue to examine the implications of this relatively new instructional mode on 
different students in relation to equity considerations. Our thrust into structured, collaborative 
self-examination was a good start toward exploring new ways of teaching in a technological 
world that will benefit us in both online and face-to-face teaching now and in the future. 
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As critical race theorists would remind us, those most impacted have the greatest insight to 
create change. This paper applies a critical race theory framework to explore the leadership 
experiences of two African American and one Latinx American mathematics teacher educator 
and how they address issues of race, racism, and (in)justice in teacher professional development. 
Data analysis from semi-structured interviews, publicly available webinars and podcasts, and 
other published materials from the educators (eg. articles and books) reveal how they engaged 
teachers to attend to issues of race and racism by challenging persistent masternarratives about 
mathematics and mathematics ability; centering on counternarratives on the cultural identities 
and mathematical understanding of students of Color, and engaging in community-based 
pedagogies to promote coalitional resistance.  

Keywords: teacher educators, social justice, professional development, equity, inclusion, and 
diversity  

Study Purpose 
Critical race theory (CRT) has seen steady growth in use as an interpretive lens to analyze 

and challenge racism in K-20 context and policy (Ladson-Billings & Tate, 1995; Solorzano & 
Yosso, 2002). Yet, a gap exists in applying CRT in mathematics education and the actions 
mathematics teacher educators must take to address racial and social (in)justice in teacher 
professional development. Martin (2019) discussed this point in his critique of the silence of 
anti-Blackness and white supremacy logic in the politics of mathematics. Gholson & Wilkes 
(2017) builds on similar claims to highlight the prevalence in mathematics education of racial 
scripts which divide, sort, and stratify, along a caste hierarchy placing whites at the top and 
Black at the bottom (Wilkerson, 2020). 

As educators, scholars, and community organizers with deep commitments to equity and 
racial justice, our work is situated by the impact of a legacy of educational injustices (Ladson-
Billings, 2006) in which the mathematics education system must be reimagined. We draw on 
CRT as it specifically acknowledges racism as endemic and actively confronts white supremacy 
within mathematics education. We extend and apply this framework to chronicle the paths of 
mathematics educators of Color whose scholarship addresses the racial challenges thrusted upon 
teachers and learners of Color and the gatekeeping nature of the mathematics discipline. 
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Specifically, this study explores the leadership experiences of two African American and one 
Laxinx mathematics teacher educator and how they address issues of race and racism in teacher 
education. Data include semi-structured interviews, publicly available webinars and podcasts, 
and other published materials (eg. articles, books) to answer the research question: What 
knowledge can we gain from the stories/narratives of mathematics educators of Color as they 
explore their experiences in, with, and for creating professional development that attend to race, 
racism, and racial justice in mathematics education? Study findings reveal the ways in which 
educational histories, cultural and ancestral roots, the students served, and current equity 
leadership informed their perceptions and engagement with racial justice. Our paper raises 
questions to the field about how we understand social justice leadership in mathematics 
education and support current and aspiring leaders of Color who seek to promote racial equity in 
their work.  

Theoretical Framework and Literature Review  
Our project is motivated by pressing issues in mathematics education: 1) longstanding racial 

injustices that have come to the fore in U.S. society and mirrored in mathematics education 
(Gholson & Wilkes, 2017; Martin, 2019), 2) mathematics teachers and teacher educators are 
majority white, while serving a disproportionate number of students of Color (deBrey, et al, 
2019); and 3) mathematics serving as a gatekeeper to nearly all aspects of success. As such, we 
are interested in interrogating and disrupting the role mathematics education plays in 
perpetuating white supremacy. With few exceptions (e.g. Battey & Leyva, 2016; Martin, 2015, 
2019), the literature has not significantly examined how whiteness and white supremacy culture 
function in mathematics education (see Martin, 2015, 2019). We draw on Critical Race Theory 
(CRT) (Ladson-Billings & Tate, 1995) to interrogate aspects of whiteness in mathematics 
classrooms, schools, and the education system. CRT has its origins from Critical Legal Studies, 
developed in the mid-1970s from the work of legal scholars of color, such as Derrick Bell, Mari 
Matsuda, and Kimberle Crenshaw, interested in investigating and transforming the injustices that 
were brought about due to issues of race, racism, and power in our society (Delgado & Stefancic, 
2001). Although CRT began in legal studies, it expanded to other disciplines, including 
mathematics education. Within the field of education, CRT scholars (Davis & Jett, 2019; 
Solorzano & Bernal 2001) outlined several key tenets which inform our research methodology, 
including (a) centrality of racism; (b) intersectionality and anti-essentialism; (c) commitment to 
social justice; (d) voices and counterstories; and (e) interdisciplinary perspectives. 
Centrality of Racism  

The first tenet of CRT is the notion that racism is not a random, isolated act of racist 
individuals; rather, racism is a normal feature and embedded within systems and institutions. 
According to Delgado and Stefancic (2001), racism “is the usual way society does business” 
(p.7). Mathematics education by design has a legacy of systemic epistemicide of communities of 
Color—the erasure of knowledge systems, including languages, experiences, and interpretations 
of the world, and ways of coming to know and understand—through exclusion from its 
functions, curriculum, and pedagogy (Yeh et al., 2021; Louie, 2017; Martin et al., 2010). 
Intersectionality and Anti-Essentialism  

CRT recognizes multiple identities – race, class, gender, sexuality, ability - and their 
positions within intersecting relations of power. According to Delgado & Stefancic, 
“intersectionality means the examination of race, sex, class, national origin, and sexual 
orientation and how their combinations play out in various settings” (2001, p. 51). Identities are 
not fixed; anti-essentialism acknowledges the fluidity and constant shift of cultural identities 
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within an oppressive system (Gillies, 2021). While our society and mathematics education are 
often organized along binaries (e.g. right or wrong, math smart or not, innate or social), CRT 
scholarship sees the complexities required to examine and abolish systems of oppression. For 
example, racism and ableism are interwoven in mathematics education, in which mathematical 
“smartness” is an ideological system that perpetuates whiteness and serves as a tool for 
stratification (Yeh et al., 2020; Leonardo & Broderick 2011). Ability is commodified and seen as 
property; success is measured in terms of achievement of numerical target, and such data are 
used to construct and constitute some students as “mathematically smart” while simultaneously 
constructing and constituting others as “not-so-smart,” deficient, or learning dis/abled (Yeh, et 
al., 2020). CRT tenets of intersectionality and anti-essentialism challenge these binary systems 
and instead seek ways to counter these paradigms that uphold inequities in education. In 
challenging these definitions, we are not only incorporating intersectionality and anti-
essentialism but challenging dominant ideologies themselves. 
Commitment to Social Justice 

CRT is about empowerment. Anzaldúa (1987) refers to the term borderland consciousness, 
the ways of knowing and being Peoples of Color produced in multiple and often contradictory 
physical, social, and political spaces. Their worldviews as students and educators of Color 
include homegrown ways of knowing as well as western epistemes. These approaches empower 
educators and students of Color in that they recognize the advantage of having insights into the 
experiences of the Oppressed and the Oppressors and can reveal the cracks that support social 
change (Anzaldúa, 1987; Collins, 2000; hooks, 1989). Our work here is to attend to and leverage 
the multiple ways of knowing mathematics educators of Color to offer recommendations for 
ways to take action for social justice.  
Voices and Counterstories 

Dr. Mari Matsuda (1987), one of the legal practitioners from the original movement, argues 
that the work of justice must center on  the voices that have been left out. Matsuda refers to them 
as “voices from the bottom,” Anzaldua (1987) calls them “mestiza,” and hooks (1990) advocates 
for using these excluded voices to produce transformative knowledge. Counternarratives build 
from the belief that communities of Color hold deep resources and ways of knowing and being 
that are particularly important in disrupting colonial ideologies pervasive in mathematics. Yet, 
much of these rich and collective ways of knowing and being have not yet been made visible. It 
is through centering the voices of communities of Color to offer historical accounts, 
interpretations, and cultural practices as resources to question and challenge dominant narratives.  
Interdisciplinary Perspectives 

CRT scholarship challenges ahistoricism and the unidisciplinary focus of most research 
analyses. It is predicated on analyzing race and racism in both historical and current contexts 
from an interdisciplinary or transdisciplinary approach (law, sociology, education, psychology, 
ethnic/gender/disability studies, etc.) which is needed to better understand the systemic nature of 
racism and white supremacy. For example, few scholars explore mathematics as an agent of 
carceral state; yet, violence is enacted through institutionalized policies, such as school 
disciplinary practices that offer brutality, suspension, expulsion, and detention often occurs in 
STEM classrooms (Bullock & Meiners, 2019; Gholson & Wilkes, 2017). An interdisciplinary 
perspective recognizes, interrogates, and then disrupts systems of violence and trauma 
experienced in and beyond mathematics classrooms.   
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Method 
Critical Race Theory served as our methodological framework. We understand that race is a 

sociohistorical and political construct, created to empower whites and oppress people of Color; 
as such, we use counterstorytelling (Delgado and Stefancic, 2001) to capture experiences in 
discussion and praxis that attend to race, racism, and racial justice. This study includes one 
African American male math educator, one African American female math educator, and one 
Latinx female mathematics teacher educator in which their self-selected pseudonyms are Francis 
Cox, Etta Falconer, and Katherine Johnson, respectively. The criteria for participant selection 
included the following: 1) self-identification as an educational leader of Color; 2) extensive 
experience (20+ years) as a classroom teacher and mathematics instructional coach; and 3) 
research and teaching that focuses on examining the ways education intersects with issues of 
race, equity, and justice in communities that have historically been, and continue to be, 
underserved by schools (e.g. Black, Latinx, Indigenous, or immigrant populations).  

Attending to story, theory, and praxis, the data sources include three semi-structured, in-
depth interviews (roughly 1 hour each), three publicly available webinars and podcasts (1 hour 
each), and other published materials written by the participants (e.g., articles, books). Analysis 
began with the webinar and podcasts. For the webinar and podcasts, we created an 
accompanying transcript. Each transcript was divided into talk segments, where each segment 
represented a central idea the interviewee focused on during a posed question or activity. At least 
two of the seven members of the research team coded and categorized each webinar and podcast 
through a critical race analytical lens and tenets of CRT (e.g., centrality of racism; 
intersectionality and anti-essentialism; commitment to social justice; voice and counterstories; 
and interdisciplinary perspectives) as well as from the K-12 and higher education scholarship on 
racialized experiences of teachers and students of Color cited in the literature review. Example 
codes included definitions of mathematics, racial hierarchy, transformational resistance, 
intersectionality, and color blindness. Coding allowed us to categorize the data into overall 
themes as codes that were repeatedly used across the three cases, which were then placed into 
overarching themes. After the research team member coded the podcast/transcript, coding was 
discussed by the research team of seven for agreement. Disagreements were resolved through 
discussion. After coding each educator’s podcasts and workshops, we interviewed three of them . 
Interviews were about 60 minutes each. Interview questions began with: 

1. What should mathematics instruction look like when it centers on the mathematical 
brilliance of Black, Indigenous, Latinx, and multilingual students and their communities?  

2. How do we support the creation of school systems or structures for teachers to have the 
school-wide support to implement and learn equitable practices in math ed? 

3. Most of our workshop consultants are white mathematics teacher educators, what 
resources would help them to be able to authentically engage in racial justice work? 

Interviews were transcribed and analyzed using the same codes as described above. 
Triangulation of data allowed us to gain a better understanding of the experiences of the three 
educators. We used publicly available podcasts, webinars, interviews, and published articles as 
methodological procedures to triangulate the data.  

Results 
Our findings reveal three major themes. All three educators of Color discussed the need to 

situate education within broader societal contexts and the need to challenge white 
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masternarratives that position mathematics and mathematics ability as singular, individualistic, 
and ahistoricized. They described their own and students’ cultural identities and understanding 
and its connection to mathematics teaching and learning and the need for coalitional resistance to 
disrupt whiteness in mathematics teacher education.  
Challenging Persistent Masternarratives.  

All three described specific ways in which mathematics education itself functions as a white 
space in historicized context, naming the contemporary forms of institutional, structural, and 
everyday racism in the here and now rather than just the past. Specifically, they called to rethink 
what constitutes mathematical knowledge and what constitutes knowledge production in 
mathematics education. In his interview, Francis highlighted the need for mathematics teacher 
educators to explicitly shift away from the white frame:  

I would say that it should look the same or similar as when it centers on the mathematical 
brilliance of white students right, so it should have examples and images of people that 
reflect their culture and the contributions that people from their history and culture have 
made to the field of mathematics, it should include examples that also reflect students that are 
African American, Latinx, Indigenous, multilingual students.  
In the quote above, Francis highlights that racial equity work in mathematics teacher 

education requires us to examine critically whose histories, cultures, and experiences are 
centered in mathematics curriculum and the ways in which whiteness is made hegemonic as it is 
positioned as the normative and communities of Color as the exception. He further explains that,  

Looking at mathematics from a kind of diverse Black perspective, there's a book called “The 
Crest of the Peacock: the Non-European Roots of Mathematics.” Now [it] does get into some 
pretty heavy mathematics, at some point, you know so it's not for the faint of heart right, but 
you know I think anyone can [at] least engage in it to get an idea to dispel the myth that you 
know mathematics is a European invention and endeavor right? That it is a human endeavor 
right? Rochelle Gutiérrez says mathematics needs people, just like people need math 
mathematics right and, and I think we've moved too far away from that notion that 
mathematics is a human endeavor that all humans engage in right, whether they realize it or 
not. 
All three math educators explicitly called to broaden curricula, classroom environments, and 

school cultures to explicitly attend to the voices, perspective, histories and experiences of 
communities of Color. In the webinar led by Francis Cox and Etta Falconer, the workshop 
opening mathematical task asks participants to match the professions of Black dentists, Black 
professional athletes, Black doctors, and Black lawyers to “the corresponding number of Black 
professionals in the United States”. The opening task explicitly attended to participant bias and 
public narratives around Black professions. During the interview, Etta Falconer stated, 
“representation really does matter. So it's important that you make sure that all students can see 
themselves reflected in the curriculum.” Every mathematical task and student vignette used in 
the professional development workshop focused on the agency and identity construction of Black 
youths and the ways in which social structures mediated their mathematical identity formation.  
Cultural Identity and Understanding.  

The mathematics educators used storytelling to center on the experiences of communities of 
Color and as examples to generate action. Both Katherine and Francis began interviews sharing 
their mathematics experiences as students and teachers in which their experiences shaped their 
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work and commitments. As a student, Katherine “felt dehumanized in class. I felt invisible. I use 
the word invisible when I talk about my schooling” and Francis worked in “neighborhoods that 
had experienced poverty and other kinds of trauma, and, you know, large numbers of students 
who have been underserved.” While their experiences could be viewed as “challenges”, their 
stories testify to the normalization of such experiences for children and teachers of Color AND 
the strength and resilience communities of Color developed. They saw themselves in the students 
and teachers of Color they served.  

All three educators talked about the importance of developing mathematics learning 
experiences that shift from damaged based narratives to student strengths by building from their 
cultural identities and understandings. Katherine in a podcast interview talks about the 
importance of recognizing the brilliance of children and embedding their culture in the 
mathematics classroom:  

So we expect that all students are brilliant. That's a mindset issue. We talk about growth 
mindset. This is more than that. This is knowing that all students and believing that they're 
brilliant, and they bring knowledge, mathematical knowledge into the classroom, right. So 
that's one of the pieces. The other piece is also bringing that cultural competence, right. I'm 
caring enough about the math that you're doing, and I want to learn about it. And, and I want 
to share the math that I do, too, you know. We talk about real world math all the time. It's 
really not real world, many of the problems that we see in books are contrived. Real world 
math is the math that kids are actually doing with their families. And so, how do we tie that 
into the standards and bring those into the classroom, like my colleague [anonymized] said, 
as tasks, as activities, because that's going to build students' cultural competence. And I think 
sometimes it brings, well, I know it brings the community together, cause the more I know 
about Maura, Joe, and Stella, the better I get to perform as a student, because now I know 
how they best understand math, what they care about, the math they do in their everyday life. 
Katherine in a webinar describes how she was able to learn more about her students by 

having them draw their own multiplication array, describing context from their families and 
family experiences. In particular, she gives the two following examples:   

One is about a student talking about his uncle, how they played baseball, and his array was a 
3 by 10. Then another student who actually was a multilingual learner and talking about her 
Vovo, and how they may visualize the tacos together in Brazil. 
Similarly, in their workshop and interviews, Etta and Francis centered on stories of Black 

students to expose, analyze, and critique the racialized reality of Black youths in mathematics 
education. Etta described an experience where she felt challenged by a female student, and some 
of those challenges stemmed from her strengths being directed at Etta. Instead of conceptualizing 
it negatively, Etta reassessed these as strengths. During her interview, Etta shared her thinking 
out loud, “How can I leverage that? How can I leverage that strength, that leadership and tenacity 
that she has in mathematics?” The counterstories used followed a similar format of centering on 
the standpoint of Black students, critiquing unfair practices and ideologies, and pointing to 
possibilities and actions. 
Coalitional Resistance  

All three educators discussed the importance of organizing forms of learning for mathematics 
teachers and students that provided new identity pathways where people work together to 
critique, re-imagine, strategize, design, and re-make how they can engage with the mathematics 
and each other. The community was identified as a site for learning, organizing, and activism. A 
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central theme is the importance of community responsive pedagogies in which mathematics 
educators must begin by learning from the community to develop curriculum and pedagogy 
responsive to community needs, strengths, and contexts. Francis explicitly attends to this during 
his interview when he shares a story how teachers were wary of having community members 
come to the educators’ homes even though the teachers visited the community members' homes. 

It's a two way street. Right? It's like we want, you know, the community to come into the 
school, but we don’t want to go into the community, you know? I remember in the teacher 
education program at UCLA, they really were encouraging the teachers to do home 
visits…And they have this meeting afterwards, and you know this gathering and after 
gathering the parents asked the teachers if they could come visit their home. And the teachers 
were often, “Wait, whoa wait a minute,” right. And so you know we want, we, it seems like 
we only want this relationship to be one way right. We have, it has to be doable by, it has to 
go in both directions right, we have to be willing to go out into the community and into and 
find out what are the, the the assets.  
     During the interview in which Katherine was asked to share ways to create school systems 

or structures to implement and learn equitable practices in mathematics education, she shared: 
So when we talk about dismantling racism, the way we do that is to humanize all of our 
neighborhoods and our kids by bringing them there. Like our teachers need to come out of 
the schoolhouse and really go into places. There's so much to be learned, actually, seeing and 
learning and listening and then not talking. Don't talk, just ask questions and listen. 

During a teacher professional development workshop, Francis stated, “And our definition of 
expert is anyone who can contribute to the knowledge of the group. Therefore any one of your 
students can be an expert, given the opportunity.”  

In the quotes above, Katherine and Francis describe how connecting to and learning from 
students’ and in communities are critical to countering masternarratives of who and what 
mathematics is and for and who can be seen as the experts and teachers of mathematics. This 
also includes challenging masternarratives in teacher professional development in which the 
mathematics educator or consultant are seen as the expert to professional learning spaces in 
which the mathematics educator begins by learning in, for, and with the school teachers to move 
towards collective action. For example, in a podcast interview Francis talks about his PD 
practices. 

Anytime that I write a grant with a district or get a request from a school to do professional 
development, one of the first things I want to do is meet with the teachers themselves, or 
represent, representatives of the teachers to find out, what are their concerns? What is it that 
they want? What is it that they need, right, so I think that's the most, because teachers want to 
feel important. 

Discussion 
As critical race theorists (Davis & Jett, 2019; Dixson & Rousseau, 2005; Matsuda, 1987) 

would remind us, those most impacted have the greatest insight to create change. In this paper, 
we extend and apply this framework to chronicle the paths of mathematics educators of Color 
whose scholarship addresses the racial challenges thrusted upon teachers and learners of Color 
and the gatekeeping nature of the mathematics discipline. What knowledge can we gain from the 
stories of the three mathematics educators of Color as they explore their experiences in, with, 
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and for creating professional development that attend to race, racism, and racial justice in 
mathematics education? All three mathematics educators of Color discussed the need to situate 
mathematics education within broader socio-political contexts and the need to challenge white 
masternarratives that position mathematics and mathematics ability as singular, individualistic, 
and ahistoricized.  

As we think about creating culturally sustaining spaces for students and teachers of Color, we 
are also reminded to consider how mathematics teacher education is supporting mathematics 
educators of Color. School administrators and leaders in the United States are disproportionately 
white. As a field, we need to consider the practical, on-the-ground support provided to in-
practice and in-preparation leaders of Color. Dr. Patel’s (2017) notion of token or incremental 
inclusion is helpful. How much of current equity efforts are token change? For example, having 
a lone teacher leader of Color assigned to an all-white equity committee or to expect 
collaboration simply by putting a group of educators and families in a room, without 
acknowledging that the same hierarchical power dynamics responsible for long-standing 
inequities will quickly reassert themselves. How often are we socializing nondominant students 
and educators into norms, expectations, and agendas that have been set without their perspectives 
or input?  

As mathematics educators and education researchers, we are trained in academic spaces in 
which Western intellectual culture is espoused as “objective science”. When whiteness and white 
supremacy serve as the marker of what is considered normative and excellence, there is a deep 
need for unlearning and relearning of the possibilities to engage with students, teachers, and 
communities in more ethical ways. These activist-educators have taught us powerful lessons 
about historical injustice as well as community resistance, cultural practice, and ethical 
responsibilities that should fundamentally shape how we approach mathematics teacher 
education and research. This necessitates an examination of the mathematics teacher education 
system and the ways it reproduces racial injustice. Particularly in devising practices, structures, 
and policy interventions to address racial (in)justice, CRT calls for considering unintended 
consequences of proposed remedies, addressing intersecting policies and structures, and acting 
intentionally to ensure that harm is not further replicated within our mathematics education 
system.  
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We have designed and implemented an innovative online video-based professional 
development model for mathematics coaches in rural contexts that includes an online course, 
one-on-one video coaching with a mentor coach, and video clubs. As a part of this project, we 
were interested in the coaches’ professional noticing (e.g., Jacobs et al., 2010; van Es & Sherin, 
2008; van Es, 2011) as evidenced primarily through video clubs (i.e., Walkoe, 2015). The intent 
of the poster will be twofold: (a) share the design of our online video club for coaches and (b) 
share our process for researching coach noticing during video clubs as well as at the beginning 
and end of the project. 

Video clubs provide collaborative learning opportunities for teachers (Barnhart, 2016; Dobie & Anderson, 

2015) and have shown to be beneficial for mathematics teachers in rural contexts (Choppin et al., 2019). Our project 

focused on mathematics coaches in rural contexts, so we adapted the typical video club focus on classroom 

instruction, to coach-teacher interactions in coaching conversations (Carlson et al., 2017). The coaches in our project 

watched excerpts from one-on-one coaching cycle conversations and engaged in small group discussions, facilitated 

by an experienced mathematics coach. We were interested in the role of video clubs to support the development of 

the noticing of mathematics coaches, so the following research questions guided our work: (1) How did coaches 

exhibit noticing in written records of video clubs?, and (2) How did coach noticing change from the beginning of 

their participation in the project to the end? 

To answer the first research question, we collected written data from coaches as they watched video 

excerpts in eight video clubs across two years. We provided a specific see, think, and wonder protocol that prompted 

participating coaches, in writing, to identify (see) specific moments in the coach-teacher interactions, create 

interpretations (think) about the thinking of the teacher and coach within this moment, and pose questions (wonder). 

The methodology to examine coach noticing through written records is in its infancy, so the poster would report on 

our most current data analysis processes and findings to the point that we have results. To answer the second 

research question, we interviewed each coach prior to participating in project learning experiences. As a part of the 

interview, we provided coaches with three vignettes from transcribed one-on-one coaching conversations, each 

representing a range in coaching styles. Coaches were asked a series of questions about what they noticed about 

teacher thinking and the coach’s interaction with the teacher. The analysis for this process is underway. We will 

report findings from a subset of our data for the poster. Our focus on video clubs for coaches adds to the existing 

literature base on both noticing and video clubs in mathematics education.  
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While teacher education research has coalesced around features of effective professional 
development (PD), there exists a persistent gap between PD and practice, which we argue is 
driven by the decontextualization of teacher learning opportunities. PD designs, even those that 
adhere to principles for efficacy, often provide learning opportunities out of context, away from 
the teachers’ own students, school, curriculum, leaders, and, ultimately, the constraints and assets 
stemming from each. Teachers learn about practice and learn to enact practice in a more clinical 
setting and then must translate their emerging learning into real and complex settings that present 
their own challenges. Separated from their local contexts, teachers may not have the opportunity 
to learn to negotiate those challenges during their professional learning experiences.  

Guided by Rogoff (1995), we hypothesize that the disconnect between professional learning 
opportunities and teachers’ contexts may explain some of the failure of PD to lead to meaningful 
changes in practice. Teacher educators have been moving toward embedding teacher learning 
opportunities in classrooms (e.g., Gibbons et al., 2021; Munson et al., 2021). However, we do 
not yet know how deepening the connection between PD and instructional contexts might 
influence teacher learning, or how PD might be designed to support teachers in negotiating the 
practices they want to implement and the contextual constraints they face in doing so. In this 
study, we analyzed one practice-based PD program for 22 early career secondary mathematics 
teachers serving lower income communities across the US to address the following question: In 
what ways do teachers make their local contexts visible during practice-based PD?  

Teachers participated in a two-week summer residential institute. They returned to their 
schools and attempted to implement the practices they learned, while participating in monthly 
video coaching, both one-on-one and in small groups. This design included opportunities for 
concentrated teacher learning separated from context (i.e., summer institute) and support in 
context (i.e., coaching). We analyzed recordings from the summer institute and the coaching 
sessions to identify instances in which the participants described features of their local teaching 
context when engaged in professional learning. We inductively coded these instances by topic 
and then categorized them based on the activity during which they occurred (e.g., rehearsal 
planning, one-on-one coaching). Each instance was also coded by the speaker and the listeners.  

In our preliminary analysis, we found several patterns regarding when and what context 
became public. First, all participants were asked to describe their contexts during the summer 
institute, and while what they shared varied (e.g., student population, courses, administrative 
support), they frequently shared contextual challenges. Second, some teachers continued to bring 
their contexts into the summer institute’s professional learning discussions, but several did not, 
indicating a gap in how, and possibly to what degree, teachers were grappling with their contexts 
as they engaged in learning away from their settings. Finally, all teachers brought their contexts 
into the school-year coaching, discussing barriers they faced, assets they could and did leverage, 
and strategies for negotiating both toward the goal of pedagogical change. These findings 
highlight the importance and challenge of promoting connections between teachers’ pedagogical 
learning opportunities and the contextual realities of implementation.  
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Researchers have begun to explore professional development (PD) aimed at incremental 
improvements to instruction (Litke, 2020; Star, 2016). The intention of such an approach is to 
enact modest improvements to teachers’ existing instruction in ways that recognize and build 
from teachers’ current practice. If we are to seriously entertain the notion of incremental PD, we 
must identify and study practices that would undergird such an approach. Our purpose is to 
propose a definition for such practices which we term high-uptake practices. 

We define high-uptake practices as pedagogical actions that are readily and frequently utilized 
by teachers. Consistent with three potentially overlapping dimensions of practicality theory, high-
uptake practices are clearly articulated teacher actions (instrumentality), aligned with a teacher’s 
current instructional approach and context (congruence), and the expected benefit from 
implementing the practice exceeds the effort and resources to enact it (cost) (Doyle & Ponder, 
1977; Janssen et al., 2013). High-uptake practices are not contingent upon the quality of the action, 
but rather by the rate at which teachers incorporate them into their instructional repertoire. 
Consider if we were to suggest teachers adjust students’ independent work time to include not only 
solving individual problems but also selecting two problems that contrast with one another. We 
hypothesize that the practice of choosing contrasting problems would be a high-uptake practice 
because it is: 

● a specific action that can be implemented without delay (i.e., teachers do not have to 
wait for a certain lesson or content topic to try it out; instrumentality & cost); 

● presented to teachers who already employ independent work time and is close enough 
to current practice that teachers have confidence in enacting it (congruence); and 

● a change that aligns with teachers’ underlying goals (e.g., higher student engagement 
by avoiding monotony, helping students to identify bigger ideas rather than only 
procedural execution; cost and congruence). 

Presently we are working to determine whether practices we hypothesize as high-uptake 
actually are high-uptake. We will specify what separates a high-uptake practice from, say, a 
medium- or low-uptake practice. This process will allow us to understand what and why 
practices are high-uptake so we can then study how such practices impact students’ learning. 
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Lesson study (LS), a teacher-centered and student-focused professional development 
approach, has been adopted around the world (Huang et al., 2019). Research has documented the 
positive effects of LS on teacher professional learning (Cheung & Wong, 2014; Willems & 
Bossche, 2019). Recently, cross-cultural lesson study has been utilized to expand teacher 
collaborative learning (Huang et al., 2021; Isoda et al., 2021). However, the machinimas of and 
effect of teacher learning through lesson study cross-culturally is still largely unknown (Huang et 
al., 2021). This study aimed to examine participating teachers’ learning through a cross-cultural 
lesson study from the Cultural-History Activity Theory (CHAT) perspective (Engeström, 2001). 

The CHAT portrays a collective and dialectical perspective of learning that included 
interactions between different single systems within a single activity, different tools that are 
mediated by the cultural and historical roots of the system such as community, the rules and 
division of labor that are interplayed to achieve the goals. Contradiction is denoted as the 
‘historically accumulating structural tensions within and between activity systems’ (Engeström, 
2001, p. 137) and CHAT views contradictions as driving forces of expansive learning when new 
goals/objects, concepts and motives emerge (Engeström & Sannino, 2010).  

In this study, two lesson study teams collaborated. A lesson study team in Shanghai, China 
included six mathematics teachers from a public middle school. A lesson study team in Ohio, 
USA included six interdisciplinary teachers from an arts school, two of whom focus on teaching 
mathematics. All teachers had completed their bachelor’s degree and had more than five years of 
teaching experience. Each team was facilitated by a researcher from a local university and cross-
cultural meetings were mediated by a third researcher. The cross-cultural lesson study took place 
including study, plan, teach, and reflect over six months. The activities included two meetings 
devoted to identifying learning goals and content commonly taught across cultures; one meeting 
for sharing lesson plans; developing a public lesson of the identified topic by each team; 
reviewing the shared videos of research lessons by each individual team; and one meeting for 
discussing the videos of research lessons cross-culturally. The data collected were lesson plans, 
meeting notes, videos of research lessons and cross-culture sharing meetings, and final teacher 
interviews. From the CHAT perspective, the data analysis focused on identifying the 
contradictions and the ways of dealing with them through the different phases of LS. 

The identified contradictions included: (1) concrete activity (USA) vs. variation practice 
(China); (2) making sense of the concept through exploring real life situation (USA) vs. applying 
knowledge and skills in real life situations (China); and (3) fully active engagement, 
communication and sense making (USA) vs. heavily mathematics knowledge and skill 
application and problem solving. Through addressing the contradictions over the LS process, 
teachers from the two countries have learned and intended to adopt some new ideas and effective 
strategies from each other to improve their own teaching.  
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We see the need for professional development research to explore how teachers initially 
make sense of students’ mathematical thinking. Using the core principles of Cognitively Guided 
Instruction to support teachers in understanding student thinking (Carpenter et al., 1996; 
Carpenter et al., 2015), we interviewed elementary students and shared the reports of their 
strategies and thinking with their teachers. In an analysis of the teachers’ discussions about the 
reports, we respond to the following questions in our study: How do teachers make sense of 
students’ mathematical thinking in reports that attend to student strategy use? 

Students across an entire elementary school who were present in October (K-5, N=334) 
engaged in cognitive interviews (see Kazemi et al., 2016; 3-5 tasks were given depending on 
age) with researchers (including the authors). Results of each interview were compiled by 
classroom and grade level. The reports highlighted trends in student strategy use across problems 
as well as recommendations to support future student learning. Facilitated by the first author, 
sixteen teachers met as grade level teams to explore the report, discuss noticings about student 
work, and consider future steps. Data included audio recordings, transcripts, and researcher 
memos of the meetings. Analysis examined teachers’ perceived constraints and imagined 
possibilities for taking up practices that center student sensemaking, given their context for 
teaching (e.g., Goh et al., 2017; Knapp & Peterson, 1995). The first two authors independently 
coded data then met to come to consensus on categories of teachers attending to student thinking.  

With regards to student thinking, the teachers initially attended to student correctness within 
the different problems (e.g., “no one in my class can count to 80”). With continued focus on 
student sensemaking and strategies used in the reports and prompted by the facilitator, teachers 
shifted to consider student understanding. For example, when pointing out how her 1st graders 
attempted to add 6 + 7, Leah commented that one student “had some sort of understanding of 
‘we’re putting things together.’” We found that teachers’ reflections included constraints for 
incorporating the practices from the reports that showed a tension between district expectations 
and what teachers recognized as best practices for supporting student sensemaking. For example, 
many teachers believed that the curriculum’s pace was too fast and encouraged students to rush 
through activities, with little emphasis placed on understanding. Overall, reports like these can 
help teachers collectively inquire into students’ thinking and consider opportunities for students 
to make sense of and discuss cognitively demanding mathematics tasks in their instruction. 
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This poster presents a proposal for an addition to an ongoing study in which students (n=34) 
in a mathematics teacher education program have completed autoethnographies over the past 3-4 
years. As these students are now entering the teaching profession, we feel the autoethnographic 
activities from the preservice program can be extended into the experiences of the teaching 
profession to help in-service teachers develop their identities as mathematics teachers.   

Statement of the Problem 
The first years of teaching are some of the most critical years of teaching, and if teachers do 

not feel confident in who they are as a teacher, they are at risk for experiencing burn out and end 
up leaving the profession (Beauchamp & Thomas, 2009; Hodges & Hodge, 2017; Losano et al., 
2018; Lutovac & Kaasila, 2014; Molfino & Ochoviet, 2019; Pillen et al., 2013; Ruohotie-Lyhty, 
2013). Identity is a key component in teachers feeling confident in their role of teaching 
mathematics. Researchers have studied identity formation in educators but have not found an 
agreed upon definition of identity. However, many agree that identity is socially formed, 
constantly changing, and consists of multiple subidentities (Akkerman & Meijer, 2011; 
Beauchamp & Thomas, 2009; Chung-Parsons & Bailey, 2019; Darragh, 2016; Noonan, 2019; 
Ruohotie-Lyhty, 2013).  

Purpose 
Autoethnography is self-reflective cultural narrative requiring the author to reflect upon, and 

analyze experiences to understand culture and the impact it has on identity; both a process and a 
product (Anderson, 2006; Austin & Hicky, 2007; Duarte, 2007; Ellis et al., 2011; Hains-Wesson 
& Young, 2017; Hamilton, 2021; Pinner, 2018; Yung, 2020). This gives teachers space to 
understand how their culture and lived experiences impact how they fit into the teaching 
profession.   

Qualitative methods, including interviews with teachers, can be informed by developing 
autoethnographic activities within Bronfenbrenner’s Ecological System (Cross & Hong, 2012) 
and Gee’s views of identity (Carrier et al., 2017; Tsybulsky & Muchnik-Rozanov, 2019). 
Bronfenbrenner’s Ecological System breaks down environments in which people are situated 
while Gee illustrates different parts of identity (Carrier et al., 2017; Cross & Hong, 2012; 
Tsybulsky & Muchnik-Rozanov, 2019). Our purpose is to illustrate our theoretical framework 
that situates autoethnography within these two existing frameworks (Bronfenbrenner’s 
Ecological System and Gee’s views of identity) in identity formation. Ultimately, we aim to 
design reflective questions to engage mathematics teachers in examining their lived experiences 
in each level of environment and identity through our created framework.  
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We present an interview study of 6th grade math and science teachers’ expressed goals for 
engaging their students with data. We explored this across disciplinary boundaries to contribute 
to a body of knowledge that can support the development of a more coherent experience for 
students across math and science classes. Our teachers were all highly motivated to engage their 
students with data, and all wanted their students to see things with their data models. However, 
we observed consequential differences in the kinds of things they wanted students to see. Here we 
describe these differences and discuss potential implications for practice. 

Keywords: Data Analysis and Statistics, Modeling  

What do students see when they build, revise, and use data models to carry out statistical 
investigations? After all, professional researchers use data models to set the “conditions for 
seeing” the phenomenon they are studying (Lehrer & Schauble, 2010). And seeing with data 
models is always an interdisciplinary accomplishment because it is a “meta-discipline” that 
stretches across many different communities (Wild, Utts, & Horton, 2018). The interdisciplinary 
coordination necessary for seeing the world with data models means this is a challenging 
learning goal for students. Although standards documents across different STEM education 
communities now include significant focus on data and statistics (AAAS, 2011; Franklin et al., 
2007; National Governors Association Center for Best Practice & Council of Chief State School 
Officers, 2010; NRC, 2012), little is known about how to coordinate these experiences for 
students across diverse disciplinary contexts. If students are to be supported to see with data 
models in ways that support them to generate knowledge about the world around them, then 
much work is needed to better understand how to coordinate learning across disciplinary 
boundaries. 

Here we contribute to this need by exploring middle school mathematics and science 
teachers’ expressed goals when they engage their students with data. We conducted this study 
within a larger design-based research project where we are developing and studying a 
coordinated approach to teaching data across math and science classes. In our early work we 
quickly developed a felt sense of some differences among our teachers in their motivations for 
using data in classes. To better understand their perceptions of their own practice we interviewed 
all math and science teachers in the 6th grade at our partner school. In these interviews we 
identified significant differences in the types of things teachers hope their students “see” when 
working with data, which we think are consequential for teachers’ practice during these lessons. 
We share these findings here with two goals in mind. First, we hope that a better understanding 
of teachers’ instructional goals related to data and statistics across different disciplinary 
communities will be a small contribution toward building a more coherent learning experience 
for students. And second, we aim to provoke a conversation about extending the contexts for 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1534



research on teaching and learning data beyond mathematics and statistics classes to better 
understand how these ideas take shape across more diverse disciplinary communities. 

Interdisciplinary Coordination in Seeing with Data 
How do plants grow? Are temperatures increasing across the planet? Does this new treatment 

help patients recover from this illness? Empirically grounded answers to questions like these 
require a specialized form of seeing where practitioners work to create a data model that 
amplifies features of a phenomenon relevant to the question while reducing the features deemed 
irrelevant (Latour, 1999). This means data are not simply numbers, they provide a lens to see the 
world in in new ways and the correspondence between the context of the data and the numbers 
themselves provides justification for the meaning generated from the data (Cobb & Moore, 
1997).  

Although research on teaching and learning of data and statistics has almost exclusively 
taken place in the context of mathematics or statistics classes, data models involve coordination 
among a complex set of interdisciplinary ideas and decisions such as posing a question, deciding 
upon appropriate attributes to measure, establishing operational measurement techniques, 
designing sampling plans, structuring variable data to create distribution, measuring features of 
the distribution with statistics, and building probability models of sampling variability to inform 
claims about difference (e.g. Arnold, Confrey, Jones, Lee, & Pfannkuch, 2018; Petrosino, 
Lehrer, & Schauble, 2003; Lehrer, Kim, Ayers, &Wilson, 2014; Lehrer & Romberg, 1996; 
Lehrer, Kim, & Schauble, 2007; Konold & Pollatsek, 2002). Take for example the phrase 
commonly used to describe a critical aspect of building a data model, “collecting data.” This 
phrase suggests that the data are simply “out there”, and that a researcher’s job is to gather them 
in the same way one might “collect” leaves, or coins, or baseball cards. However, data are not 
collected, but are created. Mathematizing the world requires any number of decisions about 
measurement and sampling that can create significant differences in the data produced. And the 
knowledge necessary to make these decisions in justifiable ways almost always stretches across 
disciplinary realms.  

Research Methods 
In our larger project we aimed to engage students with data modeling across math and 

science classes in ways that are consistent with the interdisciplinary work STEM professionals 
engage in when they see the world through data. We conducted this work in partnership with 
middle school teachers, so it was important for us to begin our work by working to understand 
their goals for their students when they engage them with data in their classes.  

We conducted individual interviews with each of the 6th grade math (N=5) and science 
(N=3) teachers at our partner school. We also interviewed one special education teacher that 
worked in math and science classes as inclusion support. The teachers have a wide range of 
backgrounds, with most teachers having degrees in education, and some with degrees in non-
education fields such as Leadership and Ethics, Biology, Recreational Management, and 
Accounting who obtained alternative licensure. The teachers have between 1 and 22 years of 
teaching experience in subjects including mathematics, science, social studies, and English, and 
have taught students between elementary and middle school age ranges. The teachers work at a 
large middle school in the South-Central Region of the United States of America with a diverse 
student body. For example, 28% of students in the school are English learners and 50% are 
considered low-income. Our sample represents a group of teachers that are committed to 
improving their practice, weekly collaborate on their lessons in PLC meetings, and are motivated 
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to partner with projects like ours to develop new approaches to teaching in their school. In 
addition, the math teachers had been working for over four years on improving their teaching 
about data and statistics using an innovative approach called Data Modeling (Lehrer, Kim, 
Ayers, & Wilson, 2014).  

We conducted individual, semi-structured interviews over video calls in the summer of 2020. 
Each interview took approximately 40 minutes to complete, and asked teachers to share 
information about their backgrounds, classroom practices, perspectives on using data in their 
classrooms, and how they plan their lessons. To understand how they thought about engaging 
their students with data we asked them about how important they feel it is for their students to 
learn to use data, and what their learning goals are for students using data displays, statistics, 
probability, and modeling.  

Members of the research team transcribed all interviews verbatim and inductively analyzed 
transcripts of the interviews. We used an inductive approach to create in-vivo codes, 
characterizing responses in the teacher’s own words. Then we discussed our initial findings and 
identified major categories to characterize in the data. Once we coded independently, we met to 
agree on consensus codes and then worked together to identify themes. Throughout this process, 
our research team regularly came together to share and discuss coding results, and in instances 
where discrepancies arose between codes, the team worked until we had a consensus. 

Results 
Teachers often wanted students to “see” many different things with their data. Although we 

did not use this word in our questions, all our teachers used it extensively in describing their 
goals. Teachers thought that it was important for students to learn to see things with data, but 
there were significant differences in the types of things they want students to see. We describe 
these different goals here in two categories: Unproblematic Seeing and Problematic Seeing.  
Unproblematic Seeing 

Sometimes teachers wanted students to see things in a straightforward, unproblematic way. 
These comments often ignored or minimized the complexity of seeing with data to emphasize the 
desired goal of seeing some important learning goal. So, the goal aims for students to see things 
with data in unproblematic ways without the view being obstructed by complexity or uncertainty. 
Within this category there were two different things teachers wanted students to see in 
unproblematic ways. 

Teachers sometimes wanted students to use their data to see conventional principles or 
explanations of a phenomenon under investigation. For example, one of our science teachers 
named Ms. Manchester described a goal of her lab in the following way. 

“Probably, a concrete example we do with that is the elephant toothpaste lab and the, 
recording the temperatures... through recording the, the temperatures and graphing, that they 
can see, see a chemical reaction taking place... they can actually track that huge increase in 
temperature, and then how it slowly drops off. And that kind of is the, the number form of, 
you know, what's going on with, with the chemical reaction.” 
Seeing change in temperature and interpreting them as chemical reactions requires a complex 

arrangement of ideas and practices. Here though, Ms. Manchester aims for her students to see the 
change in temperature in a straightforward manner without the uncertainty and complexity that 
would come with building and using a data model to do this work. 

Other times teachers described a desire for students to see statistical or mathematical practice 
in a straightforward way that minimizes complexity. For example, another science teacher in our 
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project named Ms. Kent articulated significant complexity in the ways her students choose to 
generate data, but once she began talking about data analysis, she said students would “graph or 
show it [the data] in some way so that they can use it as evidence to justify whatever their claim 
was at the end of that lab or experiment.” She did not elaborate on complexity in the work 
students would do, although she had just emphasized the complexity in creating data. 
Problematic Seeing 

When teachers wanted their students to engage in problematic seeing they aimed for them to 
see the complexity and uncertainty in making claims with data models. Instead of wanting 
students to draw a straight line from their data to a phenomenon or particular analytic technique 
they wanted them to problematize this line by encountering challenges, uncertainty, and 
multiplicity in data models and claims. For example, Mr. Trumbull described the following goals 
for his students when working with measures of center. 

“But help them see that the average is not the only way to calculate a best guess… But like 
I’d really like more than to see like the power of median. … And I think that, that is made 
really visible in in data where you’re right, you calculate the mean, but what on earth is that 
really telling you? It’s basically telling you nothing. Or, yeah, you calculate the mean, but 
look at what these outliers are doing to it, they’re making it inaccurate.”  
He wanted his students to not only use mean and median, but to encounter the complexity of 

multiple ways to index center, and relations among distributional characteristics and these 
methods. At other times the teachers described a desire for students to see and question 
investigation protocols to better understand the challenges associated with creating data. Mr. 
Houston said he wanted students to ask questions like the following with data. 

“…what happened? How does my data compare to somebody else's data? Why did that 
happen? I guess just basic, basically, understanding what, you know, what we did and why it 
happened. Could it be something in the procedure? Could it be an error? Could it be an 
outlier? You know, how do we make sense of that? Should we do this again, you know, to 
see if we get the same results?” 
In these examples, and across the comments in this category, teachers described a desire for 

students to see challenges and uncertainty in modeling the world with data.   

Discussion 
We believe that these differences in goals for teachers are consequential for the ways they 

engage their students with data. For example, if a teacher’s goal is for students to primarily see a 
phenomenon in an unproblematic way, then they are likely to find complexity and uncertainty as 
a distraction. However, if a teacher aims for students to problematize the work of seeing with 
data models, then these features of an activity will be seen as productive. However, more work is 
needed to better understand the relationship between these different goals and teaching practice. 

Finally, we do not see these categories as static characteristics of a teacher. All our teachers 
made comments across these two categories. However, there were differences in the proportion 
of comments made in one category or the other. So, although we don’t believe these are static 
characteristics, we do think that they are consequential for teachers and influence their practice. 
If we are going to make progress in supporting students to learn about modeling data across 
disciplinary boundaries, then it will be important for us to continue to develop an understanding 
of how teachers conceive of their teaching practice as it relates to data and statistics across 
disciplinary boundaries of schooling. 
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Psychoanalysis is largely overlooked in mathematics education, yet is relevant to many aspects 
of the field, such as the institution of the school, curriculum and instruction, and content. 
Specifically, one content area where psychoanalysis is both exceedingly relevant and absent is 
that of probability education. In this critical literature review, I resurface important literature on 
the topic of psychoanalysis and probabilistic thinking, providing a Lacanian synthesis of its 
relevance in the future of probability education research. Important concepts such as 
subjectivity, epistemology, and linguistics are explored, all of which hold massive implications 
for probability education researchers in their interpretations of students’ probabilistic thinking. 
The purpose of the paper is to demonstrate the relevance of psychoanalytic theory to probability 
education research, and to introduce the idea of such an alignment to researchers. 

Keywords: Research Methods, Probability 

The purpose of this literature review is double. First, literature on the topic of psychoanalysis 
and probabilistic thinking is resurfaced and synthesized for the mathematics education research 
audience. Second, a synthesis of the literature and related psychoanalytic concepts are elaborated 
and discussed from a Lacanian point of view apropos probability education research.  

Psychoanalysis is a theory—juxtaposed against positive psychology—that acknowledges the 
existence of the unconscious and thus understands itself through its own limits; it can be thought 
of as the “first psychiatry” that existed before modern psychoactive medicines. The work of early 
pioneers such as Sigmund Freud is well-known in popular discourse although it is widely 
misunderstood by those who do not study it professionally. Perhaps the second most well-known 
psychoanalyst coming out of the Freudian tradition was the French psychoanalyst Jacques Lacan 
whose work is notoriously difficult to understand. Much of his published work comes from the 
transcriptions of his yearly Seminars. Despite Lacan being trained in medical school as a 
Freudian, he built on or reinterpreted many of Freud’s foundational ideas after he began his own 
practice. As a result, Lacanianism has largely become its own school of thought in 
psychoanalysis, although it is based in the Freudian tradition rather than in the other major 
school of psychoanalytic thought—the Jungian tradition (see Bailly, 2009). The word 
“Lacanian” has come to represent “courageous and radical commitment to understanding the 
depth and vastness of the human condition, with full acceptance of the impossibility and 
ineffability of that task” (Gerson, n.d.).  

Psychoanalysis is different from other types of psychological theories because it is largely 
based on speculative analysis of the analysand and their speech, and the interaction between their 
conscious and unconscious desires. An analysand can be an individual person, a group of people, 
or an institution (e.g., the state). In the case of mathematics education, all three are relevant: for 
example, a student or teacher, a classroom, and the curriculum or school itself as situated within 
a particular political and cultural context. While the case of the unconscious in a single subject 
(e.g., a student) might be obvious, the unconscious is also present in groups of people and 
institutions: in the form of spirit (e.g., Hegel’s notion of world spirit), through the economy of 
ideology (see, for example, Žižek, 1989/2008), and by that which conditions discourses (Lacan, 
1993). Additionally, psychoanalysis is not concerned with mathematical concepts’ existence as 
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such or what might be described as “out there” or as ontologically positive in-and-for 
themselves. Indeed, Lacan even used mathematics to develop a system of Lacanian Algebra that 
he used to describe concepts so that people would not fall prey to intuitive understandings of 
psychoanalytic concepts—a trap of the Imaginary (see next section; also see No Subject, 
2019)—because there is no metalanguage that would guarantee the universality of mathematics 
through the conferral of meaning.1 In other words, according to Lacan, the ingenuity of 
mathematical symbols qua signifiers is that you have “to explain what you are going to do with 
them” (Lacan, 1991, p. 2). 

Background on Relevant Lacanian Concepts 
Signifiers and Signifieds 

The incorporation of Saussurean linguistics into psychoanalysis was one of Lacan’s major 
contributions to psychoanalytic theory. Signifiers are, for Lacan, mental images of the sound of a 
sign. In other words, signifiers are the meaning(s) psychically assigned to a symbol, word, idea, 
or other sign by a subject, as interjected into an already-constituted network of meaning made up 
of other signifiers. Jöttkandt (2016) describes this relationship as: 

What one hears in speech is the signifier rather than the signified. The signified is not what 
we hear (in the auditory sense) but something that must be read. In order to signify, the 
signifier must undergo an act of signification. This process can be described as the signifier, 
S, becoming shot through or injected with signifieds, s, that have undergone a certain 
operation: a transfer occurs whereby a signified crosses over the bar [in Saussurean notion, 
S/s,] that separates signifier and signified to be a signifier, S. (p. 145) 

A crucial property of signifiers is that they are meaningless and belong to a closed system of 
constantly re-conferred meaning, following the transference of meaning back to a signifier that 
signifies nothing:  

The signified is something quite different – it’s the meaning [… that] always refers to 
meaning, that is, to another meaning. The system of language, at whatever point you take 
hold of it, never results in an index finger directly indicating a point of reality; it’s the whole 
of reality that is covered by the entire network of language. (Lacan, 1993, p. 32) 

However, this meaninglessness is what gives signifiers their power: “The more [a] signifier 
signifies nothing, the more indestructible it is” (Lacan, 1993, p 185). Moreover, the signifier is 
what constitutes2 the subject: he3 is merely a system of signifiers that, for himself, structure the 
ways in which he interprets the meaningfulness of signs in everyday life. Because signifiers qua 
signifiers are meaningless and closed, acting as a subject for another signifier to confer meaning 
onto, there is always one signifier missing at the beginning of the chain, thus rendering the whole 
chain meaningless. A string of signifiers only makes sense in retrospect by reaching the end by 
punctuating it, as evidenced by the necessity of having to hear an entire sentence before one can 
                                                           
1 Elaborating more on this point is outside the scope of this paper. Readers interested in more relevant discussion of 
philosophy of mathematics may find Jöttkandt (2016) to be of interest. 
2 The field of the signifier is related to the field of l’Autre, which is the precarious Symbolic entity that—among 
other things—confers onto each person his subject position; it is only from this position that one begins to speak. 
3 I acknowledge the failings of the English language apropos gendered pronouns. I use he/him/his in this paper in 
the admittedly archaic general sense to mean an individual Subject (one person), regardless of gender. I do not use 
they/them/their for that purpose because of the linguistic detraction that it makes from conceptualizing the Subject in 
their subjectivity, viz. situating the identifying voice in the radically-subjective first-person view (of the Subject). 
The distinction between he/him/his and they/them/there is purely linguistic.  
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retroactively assign/understand the meaning of the entire sentence, beginning back with the first 
word and the string of all words comprising the sentence.  
The Structure of the Ego 

In Freudian and Lacanian theory, the ego consists of three parts: the ideal ego, the ego-ideal, 
and the superego. The ideal-ego “stands for the idealized self-image of the subject (the way I 
would like to be; how I would like others to see me)” (Žižek, 2007, p. 80). The ego-ideal is “the 
agency whose gaze I try to impress with my ego image, the big Other who watches over me and 
propels me to give my best, the ideal I try to follow and actualize” (Žižek, 2007, p. 80). The 
Superego is 

the same agency (l’Autre) as the ego-ideal, but in its revengeful, sadistic, punishing aspect. It 
is what pushes us towards the expectation of certainty, even if certainty is absent—which it 
always is in actuality. Nothing forces anyone to enjoy except the superego. (Žižek, 2007, p. 
80) 

Further, the superego makes enjoyment an imperative. Jouissance qua enjoyment—in reality—
brings as much pain as it does pleasure, so the superego is also responsible for things like the 
drive to do things that bring us pain. In late capitalism, Lacanian psychoanalysis elucidates that 
enjoyment is not only an imperative but has also become a “kind of weird and twisted ethical 
duty” (Žižek, 2007, p. 80).  
The Psychic Registers: Imaginary, Symbolic, and Real 

Lacanian theory is largely based on the structure of three psychic registers or realms of 
Lacan’s theory of psychic reality: the Imaginary, the Symbolic, and the Real.  

The Imaginary is the register of images (“picture thinking” or Vorstellung) and their relation 
to the ego. The Symbolic is the register of logic, meaning, and symbols as they determine the 
subject; for example, the Symbolic contains language and law, since they are always-already 
constituting the people who raise children into the same ordering structures. The Real is the 
register that resists representation, what cannot be symbolized, logically represented, or 
represented through pictures or Vorstellung, where words fail, “gut” feelings, anxiety, that 
residue that cannot be reduced, the foreclosed element that can be “approached but never 
grasped: the umbilical cord of the symbolic” (Lacan, 1979/1998, p. 280). In short, the Real is 
that which does not rely on my conception of it. Lacan describes it algebraically using Lacanian 
algebra because it is simultaneously already here and continuously emerging, and thus “cannot 
be conceived” (u/wokeupabug, 2015).  

A newborn baby enters the Imaginary through not knowing that she is a separate person from 
the mother or primary caregiver; “as it gains a visual image of the world and itself”—for 
example, the first time she recognizes herself in a mirror—she “starts to understand that [she] is 
a distinct object” (u/wokeupabug, 2015).  

The Symbolic can be described by the interactions experienced with other subjects: “Those 
we come in contact with use language to communicate and tell us how to see the world (how to 
Symbolize it). Eventually all experiences are filtered through language” (u/wokeupabug, 2015). 
This starts when the baby enters into language. 

The Real cannot be defined but can be described through examples and metaphors. For 
example, the Real is evidenced in “[A]n experience or thought occurs that creates a response so 
sudden or inexplicable and that language we have does not have time or sufficiency to explain it 
and we experience something primal—it cannot be Symbolized” (u/wokeupabug, date). 

Reddit user u/wokeupabug described the three registers as follows, using lay terminology and 
metaphor to craft a useful triad of examples: 
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The Imaginary is like this: Suppose you think you're working late at the office and you think 
you're alone, and you start absently picking your nose while you work, then in the middle of 
it you realize your co-worker hasn't left yet and has totally caught you in the act. You 
suddenly feel very different about yourself, right? That's the Imaginary. 
The Symbolic is like this: Suppose you're at a party and you're meeting people for the first 
time, and after some basic introductions when you settle into the conversation, they ask what 
you do. Unfortunately, you've been depressed for the past year, you were doing school, but 
you failed a couple courses and didn't go this year, and you haven't been able to find a job in 
the meantime. You're kind of embarrassed and don't really know what to tell them. A couple 
years later you're at another party and the same thing happens, only now your situation has 
changed, and you report that you just finished your degree and are working a help desk job in 
an IT department with some good opportunities for advancement. You feel differently about 
yourself after giving this report about what you do, right? That's the Symbolic. 
The Real is like this: You're getting ready for work in the morning, running late, but you've 
got to iron your shirt. Ok, you iron it, get ready to head out, as you're putting your jacket on 
you remember you may not have turned off the iron. So you go check; actually, ok it's off. 
You head out the door but think you were actually a bit hasty, you barely glanced at the iron 
when you checked, and you're not really confident you saw it right. It'll only take a minute, 
you jump back in to check the iron; yup, it's off. So you head out, the whole time down the 
street you're thinking gee you probably should have unplugged it to make sure, you start 
imagining it catching something on fire and think about what an asshole you'd feel like if 
your house burnt down over something simple like this, and it drives you a bit nuts all 
morning. That's the Real. (u/wokeupabug, 2015) 

Lacanian Synthesis of the Literature Results 
Signifiers and Vindication, and the “Types” of Probability 

Psychoanalysis first reveals that the misrecognition of signifiers—e.g., “probability” and 
“chance”—in probabilistic thinking is an important topic of study. This is not a novel focus of 
probability education research; quite the contrary, as probabilistic thinking is well-known to 
contain complicated disjunctions of meaning in the minds of students (e.g., Abrahamson, 2014; 
cf. Chassan, 1956; Jones et al., 2007). Chassan (1956) published one of the first papers on the 
matter. As with any writing, his claims must be considered within the historical context in which 
they were written. At the time, the emergence of quantum mechanics had created something of a 
philosophical crisis within the physics and mathematics communities, as the foundational tenets 
of determinism on which both fields had been built were up for question.4 The development of 
probability theory had always been somewhat separate from the rest of the mathematics 
community. The philosophy that had guided the development of probability up until the middle 
of the 20th century had been mainly deterministic in nature before the advent of quantum 
mechanics created questions about determinism apropos mathematical philosophy. Chassan 
claimed that this existential crisis that the physics and mathematics communities were facing—
the main contest of which was the philosophy of probability theory—could be solved through the 
use of psychoanalysis. “Probability theory is applicable when the initial state is so complicated 
that it is impossible in practice to ascertain it accurately enough to determine the final state 
uniquely…” (p. 56). This is precisely the same case as in the unconscious and thinking about 
                                                           
4 For example, the debate of Heisenberg’s Uncertainty Principle.  
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probabilistic events such as causality and chance: that “nothing malfunctions more than human 
reality […] One is always being fooled” (Lacan, 1993, p. 82). 

Chassan drew primarily on Freud’s work describing the connection between determinism, 
chance, and superstitious beliefs,5 in which he separates the commonly committed conflation of 
real chance with psychic accidents. For Chassan, the difference between “real” chance in the 
external world and the psychic reality of the person doing the thinking about it was not 
delineated in any mathematical literature. This naïve conflation was the cause of the 
philosophical conflicts developing over the (in)determinism of probability. Chassan, using 
Freud, sought instead to suss the external and psychic realities apart, one being a product of 
psychology and the other being a product of the conditions of the physical external reality. 
However, Chassan broke with Freud over his claims of causality, instead articulating a position 
that would later become more aligned with Lacan. Lacan’s work was just becoming available in 
published form at this time; for example, Lacan’s major break with the established Freudian 
psychoanalytic school had only occurred three years prior to this paper’s release, in 1953, and at 
the time was only available as a French transcript of a talk he had given in Paris that year. That 
same year, in 1953, Chassan had written an analogous paper6 to the 1956 paper, but focusing on 
the interrelation of statistics with psychoanalysis. Chassan stated that, “The acceptance of the 
usefulness of thinking in terms of probabilities in psychoanalysis confronts the research 
investigator who would seek to establish probability statements with considerations of 
observation and objectivity” (p. 58). The most relevant point he makes in both papers is that of 
intuition and a priori judgments—and how subjective experiences are the determining limits of 
them for an individual.  

To shore up the relevance of signifiers to probabilistic thinking, I next discuss the concept of 
vindication—elucidated in the located literature— which implicates the importance of using 
psychoanalysis in research on students’ probabilistic thinking. Moncayo and Romanowicz 
(2015) discuss the interesting psychological relationship between “certainty” of quantitative 
measurement in the soft sciences (such as education) against the—as they argue—more 
appropriate concept of probability. The chapter is a critique of the famous adage by Edward 
Deming: “In God we trust; all others bring data.” The authors argue that within the quantitative 
paradigm, probability is the only appropriate numerical concept for measuring “the things that 
cannot be measured” in the soft sciences—as opposed to the “hard” causality. “Lacan 
distinguished between lawful regularity and causality and placed causality on the side of chance. 
On the side of chance, causality is the same as the absence of causality or causality in the form of 
a gap” (Moncayo & Romanowicz, 2015, p. 77). Here we begin to see the relationship between 
the unconscious and probability: the word “probability” was chosen when probability theory was 
developed out of the mathematical study of games as opposed to the rowdier term “chance,” 
which connotes gambling and so forth. The signifier probability and the signifier chance 
ostensibly connote different things happening but in reality are the same. By my reading, the 
article shows that probability and the mirage of certainty are psychic products of the Real; thus, 
the normal distribution is a Symbolic distribution, representing regularities within the 
randomness. 

A “personal” probabilistic understanding was further developed by van Fraassen (1983), who 
wrote about the difference between personal probability and frequentist probability in an edited 
volume that connected physics with psychoanalysis. At that time, with the advent of quantum 
                                                           
5 Viz. Freud (1938). 
6 Viz. Chassan (1953). 
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mechanics becoming more salient, psychoanalysis was beginning to be seen as a useful tool in 
understanding the existential nature of the horizon towards which mathematics and physics were 
heading. In the chapter, van Fraassen (1983) attempted to establish connections between the 
frequentist approach to probability (counting frequencies of occurrences) and the personal 
approach to probability (subjectivist or Bayesian, dealing with degrees of belief in an event 
happening), stating that “the use of probabilistic language to express personal opinion about a 
single event can be understood in a way that avoids the major problems with which frequentists 
have struggled” (p. 295). He begins the chapter with a vignette:  

Yesterday I said, ‘I promise to give you a horse.’ But I did not give you anything, and today 
you accuse me of the heinous immorality of breaking a promise. No, I reply, I am not guilty 
of that at all, but only of the much lesser offense of lying. All that happened was that 
yesterday I stated falsely that I was promising to give you a horse. (p. 296) 
Evaluating this vignette, van Fraassen argues that there are two ways to analyze attitudes: 

reasonableness and vindication. The former concerns the present, and the latter concerns the 
future. Further, reasonableness requires vindication: “Let the frequentist equate probabilistic 
expression of opinion with something else; and let him investigate the conditions under which 
such vindication is not a priori excluded” (van Fraassen, 1983, p. 297). Use of reasonable and 
vindication to analyze statements of personal or subjective probability address the failings of 
language apropos probabilistic concepts through what van Fraassen calls calibration. Calibration 
is a way of measuring or “frequentizing” one’s subjective judgments apropos probabilistic 
statements “as indicators of actual frequencies” (van Fraassen, 1983, p. 300). It consists of 
evaluating one’s personal probabilistic claims afterwards to see how well they fit the observed 
frequencies of events. Adjusting one’s personal probability through calibration leads one towards 
what van Fraassen calls coherence. We can then assume that coherence is a frequentist’s way of 
intentionally adjusting an individual’s signifying chains apropos the language associated with the 
frequentist’s claims and the subjectivist’s claim. Through calibration, van Fraassen attempts to 
unify the divide between personal and frequentist probability, although the implications for 
psychoanalysis are not well sussed out in the chapter.  

Joyce (2005) extended van Fraassen’s arguments about the analytic potential of subjectivity, 
employing the notions of specificity, ambiguity, and sufficiency. In his paper, he focuses on 
evidence for probabilistic events, and claims that types, weight, and balance of evidence form a 
basis for subjective interpretation of probabilistic events. Consider a probability word problem 
that describes some conditions of an event, and perhaps an existing knowledge about how some 
of the events have already turned out. The problem is providing evidence in the form of those 
given statements. The individual subjectively interprets the statements of evidence, evaluating to 
what extent each piece of evidence exhibits specificity towards the probabilistic situation being 
considered, how much ambiguity there is around the conditions of the situation, and the extent to 
which the evidence given is sufficient for making a personal probabilistic statement (as informed 
by the non-personal evidence given) about the situation. It seems that Joyce’s extensions of van 
Fraassen’s arguments provide a finer grain of the subjectivist’s reintegration to frequentism.   

We can build on our understanding of Chassan through van Fraassen’s intervention and 
Joyce’s elaboration, in that psychoanalysis not only splits apart probability into what is “out 
there” and what is “inside us,” but that psychoanalysis also allows us to reunify them through an 
interpretation of events a posteriori. In my interpretation the psychic registers of psychoanalysis 
reveal the following homology: Frequentist = Imaginary, Theoretical = Symbolic, 
Personal/Subjective = Real. Thus, psychoanalysis gives us a framework for understanding these 
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three forms of probability in relation to each other. 
The Superego and Desire 

Britton (2021) argues that the “should” of superegoic expectation is used heavily in 
probabilistic thinking. Britton develops the notion of Belief/Doubt as an ego function that is 
mediated by the superego’s expectations of “should.” Crucially, these are psychic constructs 
which are separate from the material, external reality. This leads to implications for the way we 
understand what people think “should” happen, including the relations of causality with belief 
and counter-belief. The author gives an example of a case study patient: “She could not derive 
any security from belief unless she regarded it as knowledge; probability did not exist for her, 
only certain doubt or certainty” (p. 72). Thus, probability leads to anxiety because its 
signification is at conflict with the psychic reality of certainty and doubt. In external reality, there 
is only probability, but we psychically insist on certainty in our interpretation of the world (e.g., 
the superego’s assertions). Thus, the superego filters the way in which the signifiers of 
probabilistic concepts (e.g., likelihood, chance) are being chained together in the unconscious.  

Connecting desire and the superego, Rohy (2019) elucidates the connection between 
probability, psychoanalysis, and sexuality:  

Comparing the detective’s investigative task to the process of psychoanalytic interpretation, 
Slavoj Žižek argues that ‘every final product of the dream work, every manifest dream 
content, contains at least one ingredient that functions as a stopgap, as a filler holding the 
place of what is necessarily lacking in it.’ This is the crucial clue, the telling symptom (p. 
50).  

Like a detective in one of Poe’s mystery stories, the psychoanalyst’s task is to transform what 
“appears to be accidental or random into a narrative of motivated causality. The difference is to a 
large extent one of perception: an anomaly that weak thinkers dismiss as ‘coincidence’ may in 
fact be nothing of the sort” (Rohy, 2019, p. 46). An example of this is the gambler’s fallacy. The 
gambler’s fallacy confronts the Real and the Symbolic through the failure of notions such as the 
anticipation of “being owed” or “being due.” For Lacan, the Real cannot be represented or 
assimilated, whereas the symbolic is precisely the register of representation and assimilation. The 
Real, which creates the tension of the gambler’s fallacy, opposes meaning, including causality. 
Our difficulty in thinking probabilistically might be related to the fact that we are socialized as 
gendered and sexualitied7 people from childhood, assuming heterosexual necessity instead of 
queer accidentality, vis-à-vis suppression of the Real (see Jöttkandt, 2016; Tomšič, 2016). If true, 
this engendered orientation towards heteronormativity would function as a technology for 
predisposing us to think about “what should be the case” (heterosexuality and cisgenderism as 
“normal” or “standard”; what “should” be the outcome of a probabilistic event) when really there 
is no such thing: there is only maximum probability—viz. that most people, for biological 
reasons, are indeed heterosexual and cisgender—underlaid by motivated causality. My argument 
for this homology comes from the irreducibility of sexuality, in psychoanalysis, to meaning.8 

                                                           
7 Elsewhere (Moore, 2021), I have used this term in parallel with the term gendered to denote categorical 
determinations of the process of sexual identification, such as the same process that occurs in human socialization 
apropos gender.  
8 Due to space limitations, I will not elaborate on this further here, although interested readers may find Zupančič 
(2017) of interest. I have been exploring this connection in my work elsewhere (e.g., Moore, 2022). 
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Conclusion: Towards a Future of Psychoanalytic Probability Education Research 
Psychoanalysis possesses the potential to enhance the study of the teaching and learning of 

probability. There are several key concepts from psychoanalysis that provide a useful and 
innovative reframing of issues in probability education research. The first is the logic of the 
signifier and the three registers of psychic reality; they are both related to vindication and the 
different “types” of probabilistic thinking. The second is the superego and its complexification of 
the signifiers in probabilistic concepts.   

To briefly recapitulate and close with an imperative takeaway, probability learning leads to 
anxiety because its signification is at conflict with the psychic reality of certainty and doubt. The 
superego drives towards certainty when it is not there. Thus, psychoanalysis affords a unique yet 
crucial perspective on understanding probabilistic thinking. Future studies into students’ 
probabilistic thinking should take up these psychoanalytic concepts in theoretical orientation and 
methodological considerations.  
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The frequentist and classical models of probability provide students with different lenses through 
which they can view probability. Prior research showed that students may bridge these two 
lenses through instructional designs that begin with a clear connection between the two, such as 
coin tossing. Considering that this connection is not always clear in our life experiences, we 
aimed to examine how an instructional design that begins with a scientific scenario that does not 
naturally connect to theoretical probability, such as the weather, may support students’ bridging 
of these two models. In this paper, we present data from a design experiment in a sixth-grade 
classroom to discuss how students’ shifts of reasoning as they engaged with such a design 
supported their construction of bridges between the two probability models.  

Keywords: Probability, Design Experiments, Middle School Education, Integrated STEM.  

There are distinct views of probability in the literature which differ not only in the way they 
define probability but also in the nature of their emerging solutions to the solving of problems 
(Batanero et al., 2016). The classical view of probability is one of the earliest approaches and is 
connected to chance in games. From this view, probability is considered as a fraction of the 
number of favorable cases divided by the number of all possible cases. This definition was 
created on the assumption that “all possible elementary events were equiprobable” (Batanero et 
al. 2016, p. 5), which is applicable to most situations in games. However, this view has been 
criticized because the idea of equiprobable outcomes is not always valid in natural phenomena. 

The other most common approach, the frequentist view, sees probability as a convergence of 
relative frequency when a random experiment is repeated infinitely many times. According to 
Cosmides and Tooby (1996), humans have more experience with encountered frequencies in 
their observation of the world, therefore students would be more receptive to frequentist 
probability where data is collected through experience. In contrast to the connection to real-life 
experiences, the frequentist ideas of probability are not appropriate when discussing a single 
event or when the experiment cannot be repeated multiple times under the same conditions. This 
frequentist view is only an estimation of probability that results from a series of repetitions.  

Considering the above, Lee et al. (2010) claim that since most everyday probabilistic 
situations (such as weather forecasting) “do not allow for the classical approach to probability” 
(p. 91), it is necessary for students to examine situations where it is possible to both calculate 
classical theoretical probability and make the connection to the frequentist experimentally 
collected empirical probability. Similar to Lee et al. (2010), many researchers have claimed that 
developing a connection between the classical and frequentist views is helpful for students to 
fully grasp the concept of probability (e.g., Henry & Parzysz, 2011; Ireland & Watson, 2009). 
During the learning process, students need to distinguish between the two models and understand 
when each one can be used for solving problems (Batanero et al., 2016).  
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Prodromou (2012) argued that while the two models differ, they are complementary and not 
mutually exclusive. She engaged pre-service teachers (PTs) in dice rolling tasks related to both 
theoretical and experimental probability and examined how they developed a bidirectional 
relationship between the two, explaining that “PTs perceived the theoretical probability as the 
intended outcome and the experimental probability as the actual outcome. In the opposite 
direction, PTs considered the theoretical probability as the target towards which the experimental 
probability is directed” (p. 866). This notion was also highlighted by Stohl and Tarr (2002), who 
reported that the tasks that engaged students in bidirectionality of probability helped students to 
develop robust inferences about probability. To engineer this bidirectionality, they started with 
coin tossing and dice rolling designs, and then used three different computer simulation tasks, 
two of them using experimental probability as a tool to evaluate theoretical probability and the 
other using theoretical probability as a tool to anticipate the result of the experiment.  

 Many supported that the connection between classical and frequentist probability is 
grounded in the Law of Large Numbers (LLN) (e.g., Drier, 2000; Prodromou, 2012; Stohl & 
Tarr, 2002), which states that larger numbers of trials performed for a given event lead the 
relative frequency for that event to approach the theoretical probability. A study by Aspinwall 
and Tarr (2001), examined how sixth graders’ understanding of experimental probability related 
to sample size and the LLN using designs with flipping chips, spinners, and dice. They 
demonstrated that probability simulations can challenge students’ preexisting conceptions. 
However, they also noted that there were challenges in developing the understanding of the role 
that sample size played in determining experimental probability through the LLN. Aspinwall and 
Tarr (2001) claim this theorem has been shown to be challenging and nonintuitive for students. 
Students may not recognize when to use the LLN (Fischbein & Schnarch, 1997), or they may 
believe that the LLN applies to small numbers as well (Tversky & Kahneman, 1971).  

Researchers found that offering students multiple representations of data supports their 
understanding of the connection between theoretical and experimental probability. Stohl and Tarr 
(2002) reported that the use of graphs and tables enables students to see bidirectionality of 
probability by involving them in representing and analyzing data with different forms. Similarly, 
Ireland and Watson (2009) claimed that multiple representations in computer simulations can 
help students perceive how theoretical probability is connected to experimental probability. In 
their experiment with digital mixers and spinners, students made a connection between 
theoretical and experimental probability by comparing data in various representations. 

Using computer simulations as a mode of representation provides students with the 
opportunity to collect large amounts of data in shorter periods of time, which addresses the 
limitations of time constraints and resources that Biehler (1991) argued students encounter as 
they explore the concept of probability. Computer simulations also support students’ connection-
making between classical and frequentist approaches of probability (Ireland & Watson, 2009; 
Prodromou, 2012). Abrahamson and Wilensky (2005) used modified coin flipping computer 
simulations to help students develop their understanding of experimental probability by bridging 
the gap of theoretical probability with simulating and collecting large amounts of experimental 
data. Paparistodemou (2005) conducted a study where students were able to manipulate aspects 
of the computer environment to affect the generation of random events. The students 
manipulated the simulation in multiple ways to make use of the LLN to achieve the target 
probability.  

While many studies have examined how students construct bridges between the two models 
of probability, their designs involved beginning with a clear connection between the two, such as 
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coin tossing or dice rolling scenarios (e.g., Abrahamson & Wilensky, 2005; Prodromou, 2012). 
However, our real-life experiences of probability, such as predicting the weather, do not always 
have clear theoretical probabilities that can be calculated. Consequently, we started with the 
conjecture that it is possible to support students’ bridging of these two models by first engaging 
them with probability scenarios situated in the context of science. We hoped that this would 
make use of students’ realistic experiences to construct more meaningful connections between 
the two models. Specifically, we explored: (a) What kind of design that starts with the 
frequentist perspective without a clear connection to the theoretical probability and moves to the 
classical perspective would support students’ bridging between the two models? (b) How may 
students’ reasoning progress as they shift between the frequentist and classical perspectives? 

Methods 
In this paper we report on the results of a whole-class design experiment (Cobb et al., 2003) 

in a sixth-grade classroom in the Northeastern U.S. The class met in ten 15- to 50-minute 
sessions via Google Meet due to COVID-19 restrictions. To test our conjecture we designed two 
simulations, one based on the frequentist and one on the classical model, along with investigation 
and interview questions. We chose a scientific context because our previous work (e.g., 
Panorkou & Germia, 2021; Panorkou & York, 2020) showed that sixth-grade students can 
engage meaningfully with mathematical concepts in a setting integrated with science concepts. 
We focused on the topic of weather because research showed that students consider weather 
events as a relevant context for probability discussions (Chick & Baker, 2005).  

The Weather Forecast simulation (Figure 1) is based on the frequentist model and generates 
the results of an imaginary weather forecast. The chosen Data Set determines the forecasted 
percentages of days that are expected to be rainy and sunny. The Run Size determines how many 
times the simulation runs the experiment. The larger the chosen Run Size the more accurate the 
resulting forecast will be for the chosen Data Set. After exploring this simulation, students were 
asked to gather data about the results of different Run Sizes in a table and graph these values on 
a log-scale plot of Percentage of Rainy Days versus Run Size to observe how the results tend 
towards certain probabilities for each Data Set as the Run Size increases. 

 

   
Figure 1: The Weather Forecast Simulation Showing Different Run Sizes for Data Set 1 

 
The Chance of Rain simulation (Figure 2) is based on the classical model and represents 

weather data for every day during the month of June for 20 years in a certain location. The data 
is not based on a real location but was instead chosen to provide certain ratios of the different 
outcomes. Each of the 600 individual data points indicates if that day was sunny, cloudy, rainy, 
or stormy. The student can view a random day, a specific day, an entire specific month, or a bar 
chart summarizing all 600 days. As in the classical model, the probability of each weather 
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outcome for any given day can be described by a fraction with the total number of days in the 
denominator. After exploring the simulation, the students were asked to gather data by clicking 
on the View Random Day button 100 times, recording what the weather was for each of these 
random days, and then comparing this to the probability fractions for each type of weather. 

 

 
Figure 2: The Chance of Rain Simulation Showing the Different Data View Screens 
 
In this paper, we focus on the analysis of one pair of students, Violet and Anne, to describe a 

chronological account of the progression of their reasoning about probability and the design 
decisions that the researcher made to support the development of their reasoning further. Of the 
three pairs of students recorded, this pair was chosen for an initial analysis due to completeness 
of data and their work with the research team member who was also part of the design team. 

Findings  
At the beginning of the design experiment, Violet and Anne were asked to state if they knew 

anything about weather reports or the concept of chance in predicting rainy or sunny weather. 
Violet made a connection to a recent snow day and mentioned weather forecasters talking about 
the chance of snow, saying, “There’s a 50% of snow, 50% chance that snow might come. Well, 
when they say that they're not completely sure if it’s going to come though.” Her reasoning 
shows a classical understanding of probability as a percent. 

Next, students were asked to explore the Weather Forecast simulation. First, they examined 
Run Size 1 for Data Set 1 (30% rainy, 70% sunny) and identified that it was sometimes rainy and 
sometimes sunny. As Violet said, “it only got rainy two times so it’s not always rainy” showing 
the classical perspective of considering two rainy times out of the total number of runs. They 
then tried Run Size 5 and identified that it was now more likely for the predictions to be sunny 
than rainy. As Violet stated, this is because “it mostly shows that it’s going to be more percent 
chances of being sunny than rain,” illustrating that she was starting to notice a pattern in the data. 
Subsequently, students were asked to explore the larger Run Sizes (10, 50, 100, 500, 1000, 5000, 
10000, 50000, 100000) and observed that there are usually more sunny than rainy days. 
However, they were not yet ready to bridge the connection to a specific theoretical probability. 

In the next task, students were asked to use the simulation to record data in a table with the 
percent rainy and percent sunny for a single run for each size (Figure 3). When asked if they saw 
a pattern, Violet replied “I got 30 and 70, 3 times. … But I’m a little surprised I got the same one 
three times because I thought I was gonna get different more but then I got the same.” This 
collection of data was challenging Violet’s preconceptions about the expected probability. 

They then graphed the data from their tables and compared their graphs to each other (Figure 
3). Violet identified that their graphs were similar, but not the same: “When I got to 100 my 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1551



number, her number, like the Run Size started to get a little different from 100 to 1000. But then 
when we got into the even bigger numbers, we had the same again.” Violet was beginning to 
identify patterns in the Run Sizes, but the limitations of collecting random data was impeding her 
ability to make a claim that larger Run Sizes are more precise than smaller Run Sizes. 
 

 

 

 

Figure 3: Recreation of Tables and Graphs of Data Set 1 
 

 

 
 

Figure 4: Recreation of Tables and Graphs of Data Set 2 
 

The students went through the same process for Data Set 2 (90% rainy, 10% sunny). As 
Figure 4 shows, Anne got 100% rainy for Run Size 1 and 10, and 90% rainy for Run Sizes 1,000 
to 100,000. When asked to make a numerical prediction about the chance of rain Violet replies, 
“there is 100% chance in the beginning of the day in the graph. But then it gets lower. So, I’ll put 
it between, like 99 and 100%, it’s gonna rain.” Her reasoning shows that she erroneously 
considered the x-axis to represent time of day rather than Run Size and this led her to struggle in 
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identifying what the different probabilities represented. The researcher then intervened to clarify 
this and asked her to explain what happens when the Run Size increases: 

Violet:   I think you should run the simulator, seven times. Or a lot of times, because the 
number you get the most is probably the percentage of rain or the chances of rain, you’re 
gonna get that day. Because if you run it one time, you’re probably not going to get the 
right answer. Cause it could say that it’s going to be 100% sunny when you run it one 
time, but it’s probably going to be rainy that day. But when you run it like seven or more 
times, you’re gonna get probably the same number like two or three times. But if you get 
it more than that, it means that it’s probably going to be that weather that day. 

Violet identified that there was a “right answer” or target theoretical probability that the 
experimental data should approach. She was also able to observe the limitations of small Run 
Sizes. However, for her a Run Size of “seven” or “a lot of times” was large enough to make a 
claim about the effect of the increased Run Size.  

At this point the researcher modified the original design and discussed coin flipping and dice 
rolling aiming to examine whether the focus on the classical approach would help them in 
developing their frequentist understanding. Violet was able to bridge the connection between 
flipping a coin and its theoretical probability by saying there was “a 50% chance because there’s 
like half a chance you’re going to land on tails.” They struggled with understanding the 
theoretical probability of the dice, but Violet used her understanding of experimental probability 
to bridge the connection to the theoretical probability by explaining the chances of rolling a one: 

Violet:   Yeah, six possibilities, you can get it, but most of the time, you’re not gonna get 
it. It’s like, 10 out of 100, that you’re probably going to get one. When you roll the dice, 
you’re not going to get the number, most of the time, you’re not going to get the number 
you wanted. 

After this introduction to classical probability, they engaged with the Chance of Rain 
simulation and used the bar graph (Figure 2) to calculate the theoretical probability for each 
weather type in June (Figure 5, left). The students then collected 100 data points using the View 
Random Day button (Figure 5, right).  

 

 
Figure 5: Theoretical and Experimental Probability for Chance of Rain Investigation 

 
Working with the probabilities in fraction form required that they use strategies to compare 

fractions, which made connecting the probabilities more difficult. They discussed rainy and 
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stormy which each had a theoretical of “one-eighth” and then created 12.5/100 as an equivalent 
fraction to compare it to their experimental 10/100 and 13/100. As Violet stated, “I tried 
simplifying some of them to see if I got closer to the same number.” They were able to connect 
the experimental to the theoretical probabilities. As Anne stated, “they’re all in the same thing 
cause like 10, if it was 11 it would have been more closer, like 11, 12, 13. But I think they’re 
like, equal.” They were then asked why they collected 100 data points, and not more or less: 

Anne:   So that you could get a good amount of like, sunny, stormy, rainy, and cloudy. 
And, it won’t have to only be sunny, cause maybe if you did 10, it would maybe be like 
30 sunny maybe like two stormy, three rainy. 

 Violet:  I do prefer 100 more than 10. But I tried it out. I clicked the view Random Day 
button 10 times. And I actually got rainy, stormy and cloudy. But I only got like two 
chances of sun. 

They both saw the limitations of a small sample size and Violet even used experimental data to 
help support her point. At this point the researcher brought up the example of coin flipping again 
in another modification of the experimental design, to help illustrate what happens as the sample 
size increases. They discussed how it was more believable that they would get heads repeatedly 
with small sample sizes, but Violet explained: 

Violet:   When the number gets bigger, the more unbelievable it gets that you’re gonna get 
tails, or heads like that much. I mean, it could be possible to get heads or tails, like three 
or two times the same. … Because if I take a few minutes to flip my small watch 100 
times, I’m most likely going to get tails and heads at the same time. Because like I said, 
there’s two sides of a coin. 

Violet showed some understanding of the LLN and the advantages of larger sample sizes by 
using her understanding of experimentally flipping a coin and connecting it to the target 
theoretical probability of flipping a coin, bridging the frequentist and classical perspectives. 
Anne then showed similar reasoning when talking about the possibility of a computer simulation 
flipping heads 100 times in a row, saying, “there might be a 50% chance that the computer might 
just get like heads 100 in a row and then there’s like the other 50% chance,” showing that with 
large samples, she would expect the results to approach the target theoretical probability. 

At this point they were asked to return to the Weather Forecast to continue their discussion 
on the LLN in a modification of the design. The researcher bridged the transition by continuing 
the discussion on the 100 data points collected and what they thought would happen if they 
collected more data. Both students agreed that collecting more than 100 would have been better 
with Violet saying, “if we did 200, the higher we go, I think it might be the easiest to compare 
them,” and Anne saying, “maybe if we did more than 100 maybe it would be like, close to each 
other. A little bit.” They had both explained the limitations of smaller sample sizes and agreed 
that larger sample sizes could make it easier to compare to the theoretical target. 

However, when asked to draw conclusions about what happens as the Run Size gets larger 
from the graphs of the Data Sets, they still had difficulty connecting those thoughts to their 
analysis of the graphs. As Violet stated, “sometimes it goes higher, and then lower, and then it’s 
gonna go higher,” and Anne said, “it was one at the bottom, then at the top, then at the center, 
then at the top again.” Here they were focused on the variation of the data points and had not 
developed the covariational reasoning to connect their data to the Run Size. The researcher 
decided to prompt them to discuss the ‘gaps’ between their data points (Figure 4), which was a 
productive design modification: 
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Violet:   [Looking at the right of the graph of Data Set 2, Fig. 4] Well, for the first three, 
there’s not as big a gap because they’re all 90. [Looks at the left of the graph] That’s a 
big gap. Because for the last one here, it’s 89. But this one’s 100. That’s sort of a big gap. 

Anne:  [Referring to Data Set 1, Fig. 3] Because you were comparing like there was a big 
gap or if they were closer to each other. Most of them were closer to each other, 
especially the 30 and the 29 and stuff. 

This discussion was productive in helping them distinguish the pattern with smaller Run Sizes 
compared to larger Run Sizes. Violet was able to summarize this: 

Violet:   Because as larger as it gets, it shows how likely the number you picked is going to 
be the answer. Like in my graph as the numbers got bigger, it showed 30, two times. So 
that means it’s gonna be 30% chance of rain. So as larger as the number is, is how it’s 
going to be or how it may be. … Because the run number did get larger, and it did show 
why it’s gonna be that percentage. 

Violet’s explanation shows her understanding of the LLN and how it can be used to approach the 
target theoretical probability or “answer.” Anne mostly agreed with Violet’s thinking but 
questioned what amount of data was sufficiently large. Despite this continuing limitation, Violet 
and Anne developed their understanding of experimental probability to predict a theoretical 
probability using the LLN, through their bidirectional engagement with the two simulations and 
the use of multiple representations of probability. 

Discussion  
Our results show that our design that started with a frequentist perspective without a clear 

connection to theoretical probability and moved to the classical perspective supported students’ 
construction of a bidirectional link (Prodromou, 2012) between the two probabilities. While 
engaging in the simulations, the students’ learning process was not linear but rather it was their 
transitions between the different representations that helped them develop bridges of the two 
models. Through these transitions, students developed an understanding of the LLN by 
emphasizing the strength of large numbers and the limitations of smaller Run Sizes.  

The scientific context of the weather showed to be productive in illustrating the utility of 
probability for understanding phenomena in the real world. Bringing in examples of flipping 
coins and tossing dice helped bridge the gap for students in connecting the two probability 
models. Interaction with data by engaging with multiple modes of representations, including 
simulations, tables, and graphs, also fostered the students’ understanding of this connection.  

This experiment was limited as we only analyzed the reasoning of one pair of students. Thus, 
for future research, we would like to investigate other pairs to see how their connection of 
theoretical and experimental probability would develop. We would also plan to continue revising 
our design by exploring further how we can support students’ struggles related to reading graphs, 
comparing fractions, and understanding what Run Size is sufficiently large.  
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In this paper we address the following questions: How in-service teachers use simulation to 
solve p-value problems? And how do teachers reason when solving significance test problems 
with simulation? The answers to two p-value problems by 19 in-service teachers who worked in 
teams on an on-line update course are analyzed. The course was conceived as a design 
experiment. Teachers were able to learn to use the Fathom software, but some resistance to the 
informal approach is observed in teachers’ need to make more calculations than necessary to 
solve the problems. Misconceptions about significance level, and the documented verificationist 
conception of statistical tests were also observed. 

Keywords: Professional Development, Data Analysis and Statistics, Problem Solving, 
Technology. 

Introduction 
Significance tests have been subject of controversy. Some dissonance critique comes from 

their widespread use in experimental areas and users’ overconfidence in its results, however most 
of the criticisms do not regard the tests themselves, but to the misuse of tests by experimental 
researchers (Batanero, 2000, p.75). Resonant harmony may come from statistical education that 
might contribute to the better understanding and application of statistical inference. Simulated 
sampling distributions (SSD) offer an alternative to teach significance tests that avoid its 
theoretical complexity emphasizing the statistical logic of its procedure. It seems that, after some 
instruction, high school students can achieve well within this so-called informal approach. 
However in-service high school teachers are not familiarized with it and little research has been 
done about their related reasoning. It is well known that hypothesis tests are complex and hard to 
understand because they relate multiple concepts (e.g., sampling, population, p-value, sampling 
distribution) and are not intuitive in nature (Lane-Getaz, 2017; Vallecillos, 1995). This 
complexity is usually avoided by university teachers by means of exposing the theme to its 
students as a mechanical series of steps that must be followed which helps to draw ‘scientific’ 
conclusions. However, a big part of the method and important details of the whys of this process 
remains unknown to a big amount of the population that yields to a misuse of tests, even from 
experimental researchers (Batanero, 2000). For over 20 years (e.g., Hesterberg, 1998), statistical 
education research has promoted the use of simulated sampling distributions (SSD) to teach an 
informal approach of hypothesis tests because "technology allows students to be directly 
involved in the 'construction' of the sampling distribution focusing on the process involved, 
instead of being presented only with the final result” (Ben-Zvi, Bakker, & Makar, 2015, p.298). 
However, and maybe due to the little time allocated in the curriculum to hypothesis tests at the 
university level, the classical approach is still the most common way to teach it. This has led to 
researchers in statistics education to explore the possibility of teaching the fundamental ideas of 
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this topic from high school level (e.g., García-Ríos, 2017; Matuszewski, 2018) to foster the 
reasoning of students of those grades about samples and sampling (Ben-Zvi et al., 2015), 
empirical sampling distributions (Noll & Shaughnessy, 2012), and statistical inference (Saldanha 
& Thompson, 2014). But, as previously said, high school teachers are still not familiarized with 
this informal approach to significance tests. With the general objective of exploring this 
possibility, our research questions are the next two: How in-service teachers use simulation to 
solve p-value problems? How do teachers reason when solving significance tests problems with 
simulation?  

Conceptual Framework 
Simulated Sampling Distribution (SSD) 

“The term empirical sampling distribution (ESD) refers to a finite distribution of sample 
statistics from repeated samples of a population” (Noll & Shaughnessy, 2012, p.514). An 
important feature of an ESD for teaching is that it can be obtained through a series of repeated 
sampling actions that the student can perform from a few instructions done in a rudimentary way 
with manipulatives and pencil and paper. An SSD refers to a simulated distribution, in our case, 
in Fathom (Finzer, 2014). An SSD is a concrete, simplified and approximated version of a 
theoretical sampling distribution. It depends only on three given conditions: 1) The sampling is 
random and with replacement, 2) A determined sample size and, 3) The proportion in the 
population of the attribute under study.  
Significance Tests with Simulation 

An SSD allows the researcher to calculate the probability that a randomly chosen sample will 
have a proportion p or another more extreme proportion. Such a probability is called the p-value. 
If the p-value of a given sample is less than a significance level α (small) the sample is unusual, 
and technically, the sample is said to be significant. That is, if it is assumed that a population has 
a proportion for an attribute (null hypothesis) and for some reason the researcher suspects that 
this has changed, a significance test is a process to argue in this sense. The logic of this test is to 
assess how unusual a given sample is, assuming the null hypothesis to be true. To accomplish 
this, it is necessary to generate an SSD with the proportion indicated by the null hypothesis. This 
SSD will permit us to estimate the p-value and compare it with a significance level α. An 
unusual sample (p-value < α) would support the decision to reject the null hypothesis, otherwise 
there would not be enough evidence to reject it. In the present report we use the expressions 
significance test problems and p-value problems as synonyms. 

Note: Both random sampling and sample size are crucial to ensure the quality of the 
inference. However, in this study they are considered implicitly, without promoting an explicit 
discussion with teachers about it. 
Informal Inferential Reasoning 

Informal inferential reasoning (IIR) is increasingly gaining significance in statistics education 
research (e.g., Bakker & Derry, 2014). In this study we follow Schlinder & Seidouvy (2018) 
adopting the definition by Zieffler et al. (2008, p.44) who described IIR as “the way in which 
students use their informal statistical knowledge to make arguments to support inferences about 
unknown populations based on observed samples”. It is important to acknowledge that this is a 
construct to describe the way in which “students use their knowledge to argue and make 
statistical inferences about an unknown population based on observed samples, and without 
using the formal methods or techniques of inferential statistics, such as the use of the theoretical 
sampling distribution, standard deviation, standard score, etc” (García-Ríos, 2017, p. 31). One of 
the purposes of this research is to explore how teachers react to this paradigm switch, that is, 
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how easy it is to them to adopt the alternative informal approach and the use of SSD to make 
inferences, discarding formulas and traditional approaches. 
Statistical Knowledge for Teaching (SKT) 

With the overall purpose of organizing the course we divided the activities into two different 
categories. The first kind of activities assess the teachers’ subject matter knowledge, related with 
their own conceptions and reasoning about significance test and the second, the pedagogical 
content knowledge, related with the students’ conceptions, the teaching strategies and the 
curriculum knowledge. Both categories are part of the statistical knowledge for teaching (SKT) 
(Groth, 2007, 2013). It is convenient to mention that this framework was used as a theoretical 
guide to classify the activities, and that the tasks presented on this report are only related to the 
subject matter knowledge, which we can subdivide into two kinds of knowledge: common 
content knowledge, which is represented by teachers conceptions on significance tests, and 
specialized content knowledge, related with the software use and the generation of an SSD 
within it. 

Background 
It is known that students can establish relationships between the sampling distribution and 

the parameter with which it was generated and evaluate the probability of a statistic (Jacob & 
Doerr, 2013) and that high school students may achieve a good understanding of the relationship 
between the theoretical proportion in the population and the proportion in the sample (Batanero 
et al., 2020). Some of the findings when working with high school students with p-value 
problems similar to the proposed on this report are that they intuitively take the decision of 
rejecting or not the null hypothesis in three different ways: a) They look for the majority in the 
SSD forgetting the sample proportion; b) They compare the  mode of the SSD with the null 
hypothesis, or; c) They do not use the SSD to take the decision, and only evaluate the sample 
proportion (Sánchez, García-Ríos, Silvestre, & Carrasco, 2020). The first two could be explained 
with the hypothesis that students interpret the SSD as a simulated population, this means that 
they are learning something which they will have to repeat (repeated sampling) with real 
populations if they want to make inferences. However, those conceptions seem to be overcomed 
when confronted with similar problems and teachers’ feedback. 

Little research has been done with in-service teachers at high school level. Matuszewski 
(2018) worked with three in-service teachers and found that it is important for teachers to have 
“some form of multiplicative sampling reasoning” (p. 223) in the sense of Saldahna and 
Thompson (2002) and to possess statistical vocabulary before being confronted with those kinds 
of activities. Matuszewski also found that after a few activities with simulation, teachers can 
improve their understanding on the logic of hypothesis tests. In our case, to design the course, it 
was also assumed that teachers may have the same conceptions of students when confronted with 
significance test problems (Thompson, Liu, & Saldanha, 2007). 

Method 
A twenty-hour on-line course with 19 high school in-service teachers was carried on in 

December 2021 by the authors. The purpose of the course was to instruct teachers on the SKT of 
the informal approach to significance tests. This report discusses only the first part of the course 
related to the subject matter knowledge and focuses on the observed teachers’ reasoning on 
significance tests with simulation. 
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The course was imparted trough the Zoom platform. Sessions were divided into two types, 
plenary sessions and team working sessions. Plenary sessions were useful to expose the subject 
and instructions, and to discuss the solutions for the problems. 

The overall course has been planned as a design experiment: with pragmatic as well as 
theoretical purposes, with carefully designed tasks based on discussion and existing literature, 
and with produced data that could be analyzed at several levels within a learning ecology that 
“include the tasks and problems that [teachers] are asked to solve, the kinds of discourse […], the 
norms of participation […], the tools and related material means provided, and the practical 
means by which classroom [instructors] can orchestrate relations among these elements.” (Cobb 
et al., 2003, p.9). 
Participants 

The course was presented to professors under an inter-semester update scheme at a public 
high school in México. In addition to their particular interest in the content of the course (since 
they have many courses to choose from), teachers had the incentive to obtain points with which 
they would be benefited at work. Teacher’s experience varied from two to twenty-five years 
teaching statistics at high school level. 

From the nineteen in-service teachers, sixteen claimed to have studied hypothesis tests. 
However, only eleven professors indicated that they had taught hypothesis tests, perhaps because 
it is the last topic on their agenda. Only six teachers reported being familiar with Fathom. 
Thirteen teachers are engineers, five are physicists or mathematicians, and one is an actuary. In 
addition, among the participants there was one professor with a doctorate degree, fifteen with a 
master's degree and three had only a major's degree. 
Tasks and activities 

As an introduction to the course teachers were familiarized with Fathom with an exposition 
about how to simulate some basic probability models. Specifically, the simulation of tossing a 
coin and creating the relative frequency graph and graphing the sampling distribution of tossing a 
die. Then, they were taught how to create an SSD with the example of tossing ten times a coin 
and received a step-by-step pdf manual of how to create an SSD. 

This report presents the analysis of the answers to two significance test problems (see 
Appendix A). With the overall purpose of presenting an informal simplified version of 
significance test to teachers, proportion problems with categorical variables were chosen. Those 
kinds of problems permit the teachers to confront students with a simpler version of significance 
tests avoiding explanations about, for example, statistics parameters or more complex statistical 
tests as means of comparison. 

Those problems were presented to teachers after the introduction session in the 2nd and 3rd 
sessions. Teachers had one hour to answer each problem. Six teams of teachers were formed. Not 
all the teachers were present during the sessions, so teams had two or three participants. Teams 
were created trying to equilibrate the experience of teachers, so almost all teams had at least one 
ten or more years’ experienced statistics teacher. Team working served teachers to answer the 
problems and create a report that they were asked to upload to a shared folder. Between the first 
and the second problem we had a plenary discussion in which two teams of teachers exposed 
their answers and received feedback. Only the plenary sessions were videotaped, and only one 
answer was received by each team, which, with the videotaped sessions, composes the material 
of analysis for this report. 
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Analysis 
Answers were analyzed at two different levels. The first one was with a focus on the use that 

teachers made of the software. The second with a focus on their reasoning about significance 
tests. For the first analysis five specific items were chosen to measure how teachers used the 
software. Those were the simulation of the urn, the simulation of one sample, the repeated 
sampling simulation, the generation of the sampling distribution, and the use that teachers made 
of the SSD to make inferences (see Table 2). Each team received a 1 if evidence of the item was 
present in their response or a 0 if not. The totals per problem were calculated to compare how 
they evolved between the first and the second problem. Two different phenomena were observed 
in the teachers’ answers. Some of the teachers already had experience with Fathom, so they used 
more tools than necessary to make the decision. On the other hand, some teams were not 
familiarized with it, so they misused the software. Those characteristics were coded as “over 
simulated” and “under simulated” respectively (see Table 3). Finally, a brief description of how 
teachers used the technology was done. Combined, those three items permitted us to better 
understand how the teachers used technology to simulate distributions and make inferences. 

For the analysis of the teachers’ reasoning about significance tests, a two-way reading was 
carried on over the answers teachers gave to both problems. The first consisted of the 
description, comparison, and coding of answers to observed patterns. Then, the codes were 
transformed into categories that formed the basis of the review on a second way analysis. Each 
answer was then analyzed systematically through this lens, receiving a 1 point if the code could 
apply to the answer or a 0 if not. This permitted us to dismiss the codes that only appeared once.  

Once this classification was made, more specific descriptions of the categories were done, 
and answers were chosen that were representative of each code. A theoretical interpretation of 
those codes is discussed in the conclusions. 

Results 
Table 2 shows the totals that teams obtained per item in simulation. Precise descriptions of 

how teachers missed the points are given down. 
 

Table 2: Teachers’ use of simulation 
 Urn simplified 

representation 
One sample 
simulation 

Repeated 
sampling 
simulation 

Generation 
of SSD 

Correct use 
of SSD as a 
measure of 
variability 

Total 

Problem 1 3/6 6/6 5/6 5/6 4/6 23/30 
Problem 2 6/6 6/6 6/6 6/6 4/6 28/30 

 
On Problem 1, since the null hypothesis was a half-divided population, it was sufficient to 

simulate an urn with two balls. One of the teams simulated this hypothesis with a 1000 random 
pick of balls (p=0.5), which gives an approximation of the null hypothesis, but is more complex 
than the necessary. This team received a 0 in the “urn simplified representation” and was 
classified as “over simulation” in Table 3.  

 
Table 3: Under and over simulation 

 Under-simulation Precise simulation Over simulation 
Problem 1 1/6 2/6 3/6 
Problem 2 0/6 3/6 3/6 
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Table 4 shows the codes that we obtained with a short description on the second column and 
a brief example of a representative answer for each code in the third column. 

 
Table 4: Codification 

Code Description Example 
Correct H0 Teachers correctly define the 

null hypothesis (In Problem 1 p=0.5 
and in Problem 2 p=0.1) 

On Problem 1, teachers 
simulate an urn with two balls, one 
with an “N” and another with a “P”. 
This is enough to simulate a half 
divided population. 

Correct answer Teachers correctly decide to 
reject or not the null hypothesis (In 
Problem 1 they must reject it, and 
in Problem 2 not) 

Team 4 responded to the first 
question of Problem 1: “We 
consider that the information 
obtained from the sample is 
sufficient to reject the hypothesis 
that the population is divided in 
half” 

Hypothesis tests Teachers transform the 
significance test problem on a 
hypothesis test problem proposing 
an alternative hypothesis 

Team 3 answer to the first and 
second questions of Problem 1: 

“Null hypothesis: p=0.5 
 Alternative hypothesis: p>0.5 
The null hypothesis is rejected 

(p=0.5), the alternative hypothesis 
is accepted (p> 0.5), so what is 
stated in the problem is correct” 

Verificationism Teachers understand 
significance tests as a process to 
verify or tests a hypothesis 

Team 5 answer Problem 1 
arguing that: 

“The information obtained 
from the histogram proves that the 
probability of consumption is 
greater for the consumption of coca 
cola.” 

Misconception about 
significance level 

Teachers understand 
significance level as an interval, if 
the proportion of the sample falls 
within this interval they said it is 
‘significant’, so they do not reject 
the null hypothesis 

Team 2 answer Problem 2 
arguing that: 

" Of 5000 samples of size 120, 
drawn from a population where 
10% of the items are defective, in 
14.64% of them the items are 
defective, therefore, the number of 
defective parts that came out in the 
sample is within the level of 
significance” 

Mistrust on sample or sampling 
size 

Teachers argue that ‘if the 
sample size was bigger, results 
were better too’. Some of them 
reason that if the simulated samples 
were more, the results were better 
too. 

Team 4 answered the 4th 
question of Problem 1 arguing: 

“We cannot be certain that this 
is how the general population 
behaves. We could increase the 
sample size (over 180) and the 
number of cases in the simulation 
(over 500) to increase certainty” 

 
Another example of “over simulation” was one team that, on Problem 1, having correctly 

simulated the SSD also used Fathom to calculate the means and standard deviation of samples. 
This team took the decision of rejecting the null hypothesis based on those calculations, and not 
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on the proportion of samples that fell in the queue of the SSD. This team also received a 0 in the 
“Correct use of SSD” in Problem 1. One team, in Problem 1 only simulated 100 samples in the 
repeated sampling simulation item, which is not enough to approximate the normal distribution, 
so this was classified as under-simulation. Their decision of rejecting the hypothesis was made 
only based on the proportion of the real sample (a misconception observed in high school 
students too (e.g., Sánchez et al., 2020)). In general, the plenary discussion of the first problem 
led the participants to have better results in the second problem as shown in Tables 2, 3 and 5. 
An extended discussion about those results is presented in the conclusions. 

Table 5 shows the frequency of appearance of each code in each of the problems. The two 
first codes could be considered as qualitatively different to the others because they could be 
measured as a yes or no answer. However, both types of codes are presented in the same table to 
contrast them. 

 
Table 5: Frequencies of Codes 

Code Problem 1 Problem 2 
Correct H0 5/6 6/6 
Correct answer 4/6 6/6 
Hypothesis tests 2/6 2/6 
Verificationism 3/6 0/6 
Misconception about significance level 1/6 3/6 
Mistrust on sample or sampling size 2/6 1/6 

 

Discussion and Conclusions 
Our research questions were the next two: How in-service teachers use simulation to solve p-

value problems? How do teachers reason when solving significance test problems with 
simulation? Most research on statistical knowledge for teaching has been done with pre-service 
teachers (e.g., Batanero et al., 2018; Thompson et al., 2007) but little with in-service teachers. 
Part of our work was made based on the hypothesis that in-service teachers may have the same 
misconceptions as students when confronted with similar problems. We found that this could 
apply in some cases, as in the difficulties presented to understand significance value 
(misunderstood as an interval of acceptance of the null hypothesis), in the intuition that bigger 
sample sizes are more representative of the population, and in the verificationist conception of 
statistical tests (see Table 5). However, important differences were observed when working with 
experienced in-service teachers. It seems that, contrary to the students, and to pre-service 
teachers, in-service teachers reasoning about p-value problems may be strictly procedural and 
conceptually misunderstood, that is, their intuition is to use calculations and formulas (as 
standard deviations and standard scores) and specific concepts as significance level, even if 
sometimes misused (see Table 5). This phenomenon could generate resistance when confronted 
with a different approximation to the same theme. The approach to significance tests with 
simulation promotes the generation, visualization, and interpretation of an SSD. Fathom offers 
the possibility to reduce calculations to the minimum (replaced with knowledge of commands), 
favoring the understanding of the logic of significance tests. But in-service teachers’ intuitions 
made them calculate the exact values, maybe, as looking for certainty to corroborate the 
observed in the SSD. How would this mistrustfulness about the process manifest in front of 
students? Positive observations are that in-service teachers already interpret SSD as a 
mathematical entity to measure variability that may replace the normal distribution, and that, 
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after a little feedback, they start to substitute their formal knowledge by the alternative informal 
approach to significance test. 

Informal and formal approaches to significance tests are not presented as contrary versions, 
but they are the opposite and complementary sides of a continuum in which formality and 
informality become relative. One of the objectives of this course was to show to teachers the way 
in which students can go from one side to the other, following a more intuitive way aided by 
technology. It was observed that the manipulation of the software was not a barrier for in-service 
teachers. Limitations are in the interpretation teachers made of SSD, and more research must be 
done in this sense to reduce the gap between students’ intuitions and teachers’ procedural 
formality. That is, it must be understood by researchers and teachers that the use of this 
alternative approach to significance test does not guarantee by itself the correct interpretation of 
the logic behind statistical inferences. 

Some limitations of our design were that the chosen problems only confronted teachers with 
a part of the statistical cycle (the inference), and not with the overall scientific process of posing 
questions, planning an experiment, collecting, and organizing data, and obtaining conclusions. 
Since our research is centered on statistical reasoning and not on statistical thinking this is not a 
problem to us; yet it could be from the part of teachers since it is recommended to teach all the 
cycle and not only present to the students the inferential logic. One suggestion is that problems 
could be accompanied with theoretical text and discussions to familiarize teachers with results of 
research, for example, about the misinterpretation of significance value. During the last session 
teachers expressed their interest to use this informal approach with their students. 

Appendix A 
Problem1 

It is traditionally believed that half of the population that drinks cola prefers Pepsi, and the 
other half prefers Coke. However, for advertising purposes, Coca Cola advertising presumes that 
the majority (more than 50%) of the population that consumes cola prefers Coke instead of 
Pepsi. To support this claim, he surveyed 180 randomly selected people who regularly consume 
soft drinks. Of the 180 participants, 104 people preferred Coca Cola. Is the sample information 
obtained sufficient to reject the hypothesis that the population is divided in half at a 5% level of 
significance? 

Correct answer: Null Hypothesis (H0): p=0.50, N=180, p-value=0.021, H0 is rejected. 
Problem2 

If the daily production of a factory machine has more than 10% defective items, it needs to 
be repaired. To check the quality of the machine, the supervisor takes a random sample of 120 
pieces of the day, and this contains 16 defective pieces. With these data and a significance level 
of 5%, should the supervisor request to repair the machine? 

Correct answer: Null Hypothesis (H0): p=0.10, N=120, p-value=0.143, H0 is not rejected. 
Both problems were accompanied by the following questions 

1. Answer the problem 
2. Explain your conclusion 
3. Detail step by step how you arrived at your answer. You can use images of the program 

(print screen) to have a complete report. 
4. How sure are you of your conclusions? 
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Simulations play a key role in statistics and probability education, and are important tools for 
students and teachers. This report presents preliminary findings from design research 
investigating the impact of computer simulations on learners’ approaches to tasks involving 
probabilistic modeling, sampling, and stochastic reasoning. Five preservice secondary 
mathematics teachers engaged with a series of seven tasks, with a goal of understanding their 
use of the computer simulations in the course of problem solving. The designed simulation 
environments were created using the Common Online Data Analysis Platform (CODAP). 
Analysis of one participant’s approaches suggests that the simulation was used in several 
distinct ways; in particular it was used to confirm, to test, and to investigate/refine. 

Keywords: Technology, Data Analysis and Statistics, Probability, Design Experiments 

Instruction in statistics and probability has long relied on the use of both physical and virtual 
simulations. Research suggests that these tools can be used for a variety of purposes, including to 
test/develop hypotheses about probabilistic models (English & Watson, 2016; Konold & Kazak, 
2008), develop understanding related to sampling and variation (Saldanha & Thompson, 2014; 
van Dijke-Droogers et al., 2020), and understand or apply randomization-based procedures 
within statistical inference (Garfield et al., 2012; Watson & Chance, 2012). In some instances, 
learners may utilize or design a simulation environment to model a setting where the underlying 
probability distribution is known (Ferreira et al., 2014; Kazak et al., 2015), while in other 
instances learners may be asked to make inferences in a scenario where the underlying model is 
“hidden” in some way (Konold et al., 2011; Stohl & Tarr, 2002).  

While all of this research showcases the many uses for computer simulations in statistics and 
probability instruction, less is known about why learners may use a simulation in the course of 
problem solving. This is especially important to consider in light of recent advances in software 
like the Common Online Data Analysis Platform (CODAP, https://codap.concord.org) which 
gives students the ability to easily engage with designed simulations or create their own models. 
Both researchers and teachers must consider why and when students might utilize these tools. 
This design research used clinical interviews to investigate the following question: for what 
purpose do learners use a computer simulation environment to tackle tasks involving 
expectations, likelihoods, and drawing inferences based on both known and unknown 
distributions? 

Theoretical Perspective 
This research considers the ways that learners (specifically secondary preservice teachers) 

engage with computer simulation technology in probabilistic and stochastic contexts. From a 
sociocultural perspective, tools play a key role in mediating learning (Vygotsky, 1987); it is of 
interest to understand how specific simulation tools are utilized by learners in these contexts 
(Kazak et al., 2015), especially as these tools become more widely available. Researchers must 
also consider the affordances of the specific tool being used (for example, what representations 
are available and what variables can be manipulated), and how these may impact learners’ 
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approaches and use of the technology (Bumbacher et al., 2018). It has been suggested that 
computer simulations can play a key role as learners engage in inquiry based on constructivist 
principles including discovery learning and conceptual change (Lane & Peres, 2006). In 
discovery learning, learners are asked to hypothesize about what they believe will occur, test it 
empirically, and then attempt to explain their results, especially any conflict between their 
observations and predictions (Ireland & Watson, 2009; Sharma, 2016). We attempted to gain 
understanding of how learners use specific simulation environments in the course of problem 
solving, including whether/when they propose solutions or make predictions and how the 
simulation impacts their conclusions and/or confidence. 

Methods 
Design principles were utilized in this investigation. This type of research attempts “to 

develop a class of theories about both the process of learning and the means that are designed to 
support that learning” (Cobb et al., 2003, p. 10). This methodology is highly interventionist, and 
utilizes cycles of implementation and reflection to iteratively test hypotheses about thinking and 
learning, often through the use of designed tasks and activities. Theory which is built within 
design research is expanded and/or refined as it is tested in new contexts. 

A series of five semi-structured clinical interviews (Goldin, 2000) was implemented virtually 
via Zoom with five preservice secondary mathematics teachers in Summer 2021, investigating 
their approaches to a designed sequence of seven tasks using the CODAP sampler tool. This tool 
allows the user to adjust the type of sampler, along with the number of items/samples drawn, and 
create/organize various representations of data gathered by the sampler. The designed tasks fell 
into two primary categories. Some tasks involved known theoretical distributions (like the 
binomial distribution), while for others the distribution was unknown (and involved a mystery 
sampler). Five of the designed tasks involved known distributions, while two involved unknown 
distributions. The tasks were selected, modified, or created based on contexts found in prior 
research related to sampling and probabilistic/stochastic modeling (i.e. Ferreira et al., 2014; 
Kazak et al., 2016; Konold et al., 2011).  

Data included video recordings of the Zoom sessions, along with still images of any written 
work and CODAP screenshots. Following principles of design research, analysis was both 
prospective and retrospective (Cobb et al., 2003). After each round of interviews, the research 
team met and considered changes to the order of tasks or specific prompts based on what 
occurred. After the interviews were complete, more in-depth analysis of the data began, 
highlighting when and how simulation was utilized by the participants. For this paper, we will 
consider the work of one participant, Bridget (a pseudonym).  

Preliminary Findings 
Three distinct uses of simulation emerged as Bridget engaged with the designed tasks: 

simulation as a tool for confirmation, simulation as a tool for testing, and simulation as a tool for 
investigating and refining. These uses were related to the task context (known vs. unknown 
distributions) and Bridget’s confidence in any solution she had prior to accessing the simulation. 
Simulation to confirm 

In several instances, the simulation was utilized primarily as a confirmation tool after Bridget 
had reached a solution she was confident in. When considering Katie’s Walk, a task which 
prompted Bridget to investigate the fairness of Katie’s plan to visit one of five friends based on 
the results of four coin flips (traveling north or east after each flip), Bridget created a systemic 
list prior to accessing the designed simulation environment which included all 16 possible 
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outcomes and which friend would be visited (Figure 1, left side). She used this information to 
justify her conclusion that Katie’s plan is not fair by calculating the likelihood that each friend 
would be visited and connecting it to the number of heads flipped. 

 

  
Figure 1: Bridget’s initial work (left) and graphs in the simulation (right) for Katie’s Walk 

When Bridget finally accessed the simulation, she already had a solution that she was very 
confident in. In this instance, the sampler was already created with a pre-made spinner 
representing heads/tails, along with a graph which would showcase the number of “Heads” for 
each set of four flips. Bridget collected trials until her data “matched” the solution she had in 
mind. When her initial data (31 trials, top graph) did not have Carlos (2 Heads) visited the most, 
Bridget said, “I don’t think this simulation is wrong, but I don’t think what I wrote is wrong 
either . . . I would have liked for them to match”. She then collected 20 more trials (bottom 
graph), and felt much better about this result, saying, “Aha! This is kind of the picture I had in 
my head”. At this point, she felt no need to collect additional data because “there’s nothing really 
that I’m questioning”. She only felt the need to collect data until it confirmed her expectation.  
Simulation to test 

Another use of simulation occurred in situations when Bridget was testing a proposed 
solution. This involved contexts where she was less confident. One example of this is the Chip 
Bag task, which asked her to consider what would happen if two poker chips were drawn from a 
bag containing 3 green chips and 1 blue chip (theoretically the likelihood is 50/50 to draw two 
greens versus one of each color). Bridget’s initial hypothesis was that she would be most likely 
to draw two green chips because of how many greens were in the bag, but she struggled to 
explain why this would be the case. She then stated that she would like to “set the situation up on 
the website” (CODAP), and created a mixer which modeled the context. In this instance, the 
simulation was not being used to confirm a solution she had high confidence in, but to test an 
idea that she was unable to explain outside the simulation.  

Bridget first collected 20 samples, and found that getting two greens was more frequent (12 
vs. 8). This appeared to align with her hypothesis, but she noted that 20 was not very many 
samples. She then collected another 80 samples and was surprised to see two greens become 
slightly less frequent than one of each color. She then collected an additional 200 trials which 
continued this pattern. This caused Bridget to reconsider her original hypothesis. She said, “I 
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don’t really feel like that’s my hypothesis anymore; I kind of want to let that go”. Utilizing the 
simulation gave Bridget evidence to reject her idea that drawing two greens was the most likely 
outcome, but the simulation did not provide her with insight on what a new hypothesis might be. 
She said she wanted to “go back to the math” and consider how she might model the context. 
Simulation to investigate/refine 

The third distinct way that Bridget utilized simulations in her task approaches was as a tool 
for investigating and refining her ideas. This primarily occurred as she engaged with tasks 
involving an unknown distribution. In these instances, Bridget was content to present an 
approximation as her “final” solution. She gained confidence in her ideas/approximations with 
increasing data.  

For example, as Bridget engaged with the Mystery Marble Bag task, which involved 
sampling from a hidden bag of marbles of various colors in CODAP, the mystery nature of the 
task led Bridget to immediately begin her investigation in the simulation. She collected 10 
marbles, then 15, then 30, and finally several sets of 50 as she considered what she might be able 
to say about the bag’s contents. Based on her first sample of 50 including 31 greens, and being 
told that the bag had 180 total marbles, she first predicted 111 green marbles using a proportion, 
stating that this would be “a rough estimate”, and to get a more precise solution she could “do 
more samples”. This eventually led her to take nine additional samples, calculate the average 
number of greens (32.4), and use a proportion to get a more “exact” estimate of 117 greens. 
Bridget believed that she could continue this process and make her estimate more precise, but 
seemed confident that this approximation was close to the true value. For Bridget, use of the 
simulation as a tool for investigation and refinement was characterized by increased confidence 
as she collected more data, a willingness to provide approximations as solutions, and a belief that 
while she could continue to collect data, what she had was enough to make tentative inferences. 

Discussion/Limitations/Next Steps 
This paper provides initial analysis of one participant’s use of the designed computer 

simulations. Bridget utilized the CODAP simulations in three ways. In instances where she had a 
clear solution, she collected data to confirm her theoretical ideas. She also utilized simulation as 
a tool for testing her ideas when she had less confidence; this provided evidence as to whether 
her hypothesis had merit or if she should let it go. Finally, in cases where Bridget considered an 
unknown distribution, she investigated the context and gained confidence through collecting data 
to refine her ideas. She was content in these instances to provide approximate values as her 
solutions. Understanding the ways that learners may utilize simulation technology in 
probabilistic and stochastic settings is important for researchers and teachers as they attempt to 
understand student thinking in these areas and develop appropriate simulation-based activities. 
For example, collecting data in pursuit of a specific results (simulation to confirm) is not 
acceptable practice when performing statistical analysis and inference; this is something teachers 
and researchers may need to consider further. 

However, this analysis represents only one learner’s approaches, limiting the scope of these 
tentative/preliminary conclusions. The research team is currently considering the other four 
participants and how they compare to Bridget. Initial analysis has shown some similarities to her 
work (especially the use of the simulation as a confirmation tool), but more in-depth analysis is 
needed. In addition, this study considered one specific group of learners (secondary preservice 
mathematics teachers). In order to create a more comprehensive model of how learners use 
computer simulations in probabilistic/stochastic settings, future iterations of this design research 
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will investigate different groups (for example K-12 students, other groups of undergraduates) 
and contexts (for example students working in pairs/groups or in a classroom setting).  
References 
Bumbacher, E., Salehi, S., Wieman, C., & Blikstein, P. (2018). Tools for Science Inquiry Learning: Tool 

Affordances, Experimentation Strategies, and Conceptual Understanding. Journal of Science Education and 
Technology, 27(3), 215–235. https://doi.org/10.1007/s10956-017-9719-8 

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design Experiments in Educational Research. 
Educational Researcher, 32(1,), 9–13. 

English, L. D., & Watson, J. M. (2016). Development of Probabilistic Understanding in Fourth Grade. Journal for 
Research in Mathematics Education, 47(1), 28. https://doi.org/10.5951/jresematheduc.47.1.0028 

Ferreira, R. D. S., Kataoka, V. Y., & Karper, M. (2014). Teaching probability with the support of the R statistical 
software. Statistics Education Research Journal, 13(2), 135–147. 

Garfield, J., delMas, R., & Zieffler, A. (2012). Developing statistical modelers and thinkers in an introductory, 
tertiary-level statistics course. ZDM, 44(7), 883–898. https://doi.org/10.1007/s11858-012-0447-5 

Goldin, G. A. (2000). A scientific perspective on structured, task-based interviews in mathematics education 
research. In Handbook of research design in mathematics and science education (pp. 517–545). 

Ireland, S., & Watson, J. (2009). Building a connection between experimental and theoretical aspects of probability. 
International Electronic Journal of Mathematics Education, 4(3). 

Kazak, S., Fujita, T., & Wegerif, R. (2016). Students’ informal inference about the binomial distribution of “bunny 
hops”: A dialogic perspective. Statistics Education Research Journal, 15(2), 46–61. 

Kazak, S., Wegerif, R., & Fujita, T. (2015). The importance of dialogic processes to conceptual development in 
mathematics. Educational Studies in Mathematics, 90(2), 105–120. https://doi.org/10.1007/s10649-015-9618-y 

Konold, C., & Kazak, S. (2008). Reconnecting Data and Chance. Technology Innovations in Statistics Education, 
2(1). 

Konold, C., Madden, S., Pollatsek, A., Pfannkuch, M., Wild, C., Ziedins, I., Finzer, W., Horton, N. J., & Kazak, S. 
(2011). Conceptual Challenges in Coordinating Theoretical and Data-centered Estimates of Probability. 
Mathematical Thinking and Learning, 13(1–2), 68–86. https://doi.org/10.1080/10986065.2011.538299 

Lane, D. M., & Peres, S. C. (2006). Interactive simulations in the teaching of statistics: Promise and pitfalls. 
Proceedings of the Seventh International Conference on Teaching Statistics: Working Cooperatively in 
Statistics Education, 6. 

Saldanha, L. A., & Thompson, P. W. (2014). Conceptual issues in understanding the inner logic of statistical 
inference: Insights from two teaching experiments. The Journal of Mathematical Behavior, 35, 1–30. 
https://doi.org/10.1016/j.jmathb.2014.03.001 

Sharma, S. (2016). Probability from a socio-cultural perspective. Statistics Education Research Journal, 15(2), 126–
144. 

Stohl, H., & Tarr, J. E. (2002). Developing notions of inference using probability simulation tools. Journal of 
Mathematical Behavior, 21, 319–337. 

van Dijke-Droogers, M., Drijvers, P., & Bakker, A. (2020). Repeated sampling with a black box to make informal 
statistical inference accessible. Mathematical Thinking and Learning, 22(2), 116–138. 
https://doi.org/10.1080/10986065.2019.1617025 

Vygotsky, L. S. (1987). Thinking and Speech. In R. W. Rieber & Carton, A. S. (Eds.), The Collected Works of L. S. 
Vygotsky (Vol. 1). Plenum Press. 

Watson, J., & Chance, B. (2012). Building intuitions about statistical inference based on resampling. Australian 
Senior Mathematics Journal, 26(1), 6–18. 

 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1570



INVESTIGATING CRITICAL STATISTICAL LITERACY HABITS OF MIND 

Nina G. Bailey 
University of North Carolina at Charlotte 

nbaile15@uncc.edu 

As data drive our world and decisions, there has been a consistent call for statistical literacy 
(SL) and data science in K-12 mathematics by researchers and professional organizations over 
the last few decades (e.g., Craig, 2018; Gal, 2002; Gewertz, 2020; National Governors 
Association Center for Best Practice & Council of Chief State School Officers, 2010; Wallman, 
1993). More recently, this call has shifted toward including SL from a consumer orientation and 
has been amplified by the need to consume statistical information and avert misinformation 
amidst the COVID-19 pandemic (e.g., Engledowl & Weiland, 2021; Watson & Callingham, 
2020). SL is conceptualized from the consumer orientation as the skills needed to effectively 
make sense of statistical messages in the real world. Despite this growing emphasis on SL and 
data science, there is a disconnect between the skills needed to effectively consume real world 
statistical messages and what is taught in schools (e.g., Nicholson et al., 2019). All of which 
illuminates the need for articulating Critical Statistical Literacy Habits of Mind (CSLHM) for 
making sense of such messages, particularly using a critical lens. The purpose of this study is to 
explore the similarities and differences of how people enact CSLHM when presented with data 
representations from the media. 

This study draws on Gal’s (2002) SL model and Weiland’s (2017) framing of critical 
statistical literacy (CSL). Gal’s work provided a solid starting point for describing the habits of 
mind needed to enact CSL. Weiland’s CSL framing more explicitly stressed the importance of 
placing emphasis on sociopolitical inequity and the actions needed to disrupt and dismantle such 
inequity. Specifically, I use the CSLHM (Authors, 2019, under review) which operationalizes the 
habits of mind needed to enact CSL. The CSLHM framework has seven components: 
questioning sample size and methods, recognizing appropriate statistics, desiring additional 
information, acknowledging alternate explanations, recognition of one’s own sociopolitical 
consciousness, employing active citizenry, and acknowledging ethical considerations. 

In this instrumental multiple case study (Yin, 2018) there were four cases; each defined as a 
group of individuals with similar backgrounds with respect to statistical knowledge, statistical 
self-efficacy (Finney & Schraw, 2003), and critical consciousness (Diemer et al., 2020). There 
were five participants in each case. Each participant took part in a semi-structured task-based 
interview (Goldin, 2000) in which they were asked to make sense of data representations shared 
on Twitter. All tweets included a static or interactive graph and were related to social justice 
issues. Data were first coded using the CSLHM framework (DeCuir-Gunby et al., 2011). Next, I 
looked for emerging themes across the codes to write up case summaries. Preliminary findings 
suggest that statistical knowledge, statistical self-efficacy, and critical consciousness appear to 
influence the enactment of CLSHM. The poster will share further detail on the operationalization 
of Gal’s (2002) and Weiland’s (2017) framings to develop the CSLHM, the case criteria, 
findings specific to each case, a cross case comparison, and implications for how to best support 
learners in developing CSLHM in any environment. 
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Poster Proposal 
In today’s age of information and data, data science literacy is necessary. Students in all 

disciplines need basic data science skills to be successful at their jobs. The need for data 

scientists has expanded well beyond the tech industry to many other disciplines, for example 

business and the humanities (Irizarry, 2020). There is widespread acknowledgment that the job 

market for people who have data science skills is strong, and there is evidence that demand for 

this type of labor far exceeds supply (Baumer, 2015). However, data science skills and 

conceptual understanding of data science topics are not only necessary to prepare students for 

being employees, but also for being citizens (Finzer, 2013). In other words, it is important for 

college students to become critical consumers and producers of data who know how to answer 

real world questions, think about the implications of data science, and make decisions under 

uncertainty both in the workforce and in their everyday life. The skills that students learn in their 

data science courses empower them to understand the world, question the status quo, and think 

about important issues of social justice and equity. However, social justice issues are typically 

not emphasized in data science courses. In their recent book, Data Feminism, D'ignazio and 

Klein (2020) discuss how data science needs feminism and that we need to rethink the way that 

data science is taught.  

Using this book as motivation, I designed a curricular study using design-based research 

methods (Brown, 1992; Collins, 1992) to improve the labs in a large college-level introductory 

data science course. Using the theory of distributed cognition, I designed labs that contained 

scaffolds and artifacts that help students to develop communication skills and increase awareness 

of using data science for social justice. The goal was for students to gain computational action by 

engaging with coding exercises, individual reflections, and group discussion questions in the 

labs. Computational action is a relatively new construct for computing education that emphasizes 

the idea of ensuring the skills that students learn inside the classroom can help them outside the 

classroom (Tissenbaum et al., 2019). The labs were designed to be collaborative, and the 

students worked together in small groups to use data science to explore social justice issues. I 

specifically focused on two labs that occurred during week five and week nine of the 16-week 

semester. The first lab covered visual displays of data and explored salary discrepancies among 

different genders. The second lab covered simulation and had the students simulate jury selection 

and analyze a trial where the random jury selection was in question. Throughout the iterations of 

this study, I collected pre and post lab survey data, audio recordings to understand how the 

students gained computational action during the labs, and I conducted interviews with the 

students after completing these labs. I had two research questions guiding this study. The first 

looked at the design process and the second looked at how the students gained computational 

action. Most of the data collected was qualitative and was analyzed using different types of 

discourse analysis and thematic analysis (Braun & Clarke, 2006). The outcome of this study is a 

set of design principles for improving labs in data science courses. 
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The purpose of this preliminary study was to investigate how students in one 9th grade earth 
science classroom reason about data when constructing evidence-based scientific explanations 
during Data Story assignments using an online data platform. A critical component of science 
learning is developing the ability to obtain meaning from a set of data, critically evaluate it, make 
a claim, and effectively communicate scientific ideas (National Research Council, 2012). 
Multiple studies have shown that students find it difficult to connect data to the real world 
(Pfannkuch, Regan, Wild, & Horton, 2010; Whitacre & Saul, 2016).  

A Data Story is an interdisciplinary, scaffolded written argumentation assignment that 
requires students to analyze and graph authentic, real-world data to draw their own conclusions. 
Students worked with datasets assigned via TuvaLabs.com, a commercial data visualization 
platform, to analyze authentic, real-world data, select graphs, and to draw their own conclusions 
(Tuva, 2022). It allows students to easily explore and manipulate data by dragging and dropping 
variables on axes and selecting any kind of graph or statistical calculation. Students had to select 
an earth science dataset and construct a Data Story for their chosen data set. All Data Story 
assignments were analyzed with a rubric and then four purposefully selected students were 
chosen for follow-up interviews who represented a range of scores from high to low. During the 
interview, students were asked to explain how they created their Data Stories, and to create one 
while the interviewer was watching and share their thinking in the moment. These interviews 
were transcribed and analyzed using coding techniques guided by grounded theory (Corbin & 
Strauss, 2008) to identify themes. 

Findings indicate that how students approach the variables in the data sets from the online 
platform, and what preconceived notions about graphs they have influence the quality of their 
Data Stories and reasoning skills. The student who created the most successful story, looked 
through all possible variables in the data set and thought about which variables could tell an 
interesting story. The student also mentioned things like, “If I was the scientist who collected this 
data, what would I be interested in?” They would drag and drop the carefully chosen variables on 
the axes and interpret the graph. Students who were less successful with their Data Stories tended 
to drag and drop variables on the axes seemingly at random until they liked how the graph 
looked. They would then try and interpret their graph. This often led to variable choices that did 
not tell a sensible story about the science data. Thus, thinking about the variables within the 
science context seems to be an important step that needs to be explicit when working with online 
platforms. Students also shared that they ‘had to find a correlation’. They wanted their graphs to 
fit a picture they had in mind. Students did not seem to be comfortable with data that showed 
relationships that differed from correlated variables. These findings are currently being used to 
inform teacher professional learning experiences. Some science teachers might not be aware of 
what types of challenges students can face when reasoning quantitatively about data from a 
mathematical perspective. Thus, helping science teachers develop more interdisciplinary 
teaching skills can enhance their students’ quantitative reasoning and data literacy skills. 
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Recent world events have focused on current systemic inequities present in society. These 
problems are not new to scholars in education. One way to help students both explore and 
potentially overcome such systematic biases is Teaching Mathematics for Social Justice (TMSJ; 
Wager & Stinson, 2012), which has become a well-documented practice in mathematics 
education. Hackman (2005) claimed that understanding multiple perspectives and narratives 
allowed ideas like TMSJ to be successful. One way to include multiple perspectives is to use 
narratives from non-dominant sources. A second way is to explore the identities and experiences 
present in a classroom community. Hahn Tapper (2013) described identities as composed of two 
types of labels: ascribed and subscribed. Ascribed labels come to an individual from others and 
are typically related to appearance and status. Subscribed labels are labels individuals choose for 
themselves. Hahn Tapper (2013) stated that subscribed labels were more influential than ascribed 
labels in determining the effects on the behavior of individuals. One particular way to think 
about students’ narratives is to focus on the roles that lived experiences and subscribed labels 
play in interactions with complex multivariate datasets. 

Findings from the statistics education literature can help understand how lived experiences 
can influence student interaction in a social justice context. Wroughton and colleagues (2013) 
found that when the study’s findings aligned with participant beliefs, the students were more 
likely to accept the sampling method, regardless of bias. Similarly, Queiroz and colleagues 
(2017) explored the role of affect in students’ interpretation of social statistics. In this study, one 
striking example documented how a student nearing completion of formal training responded 
negatively to a statistic about bicycle safety due to personal experience with the loss of a loved 
one in a bicycle accident. These are single-point evaluations of fine-grained statistical content, 
but they indicate that statistics content and experience cannot be separated. 

This interview-based study explored how participant subscribed identity influenced their 
interaction with a sizeable multivariate dataset. Participants were prompted with the general 
statement, “Use the provided data to find a noticeable difference or demonstrate there is no 
noticeable difference between groups represented in the data.” Participants used variables 
associated with their subscribed identities to serve as an entry point to the task. This choice 
meant that variables selected by participants were related to their identities. This relationship 
between identity and selected variables gave a unique insight into how participants reason with 
data that contradicts their personal experiences. Participants’ use of data to make sense of these 
contradictions takes different paths depending on the level of the contradiction. For minor 
discrepancies that can be considered only a small fraction of the data set, participants tended to 
dismiss the cases represented as different from the perceived trend. For more significant 
discrepancies that can be thought of as entire classes, participants were more actively engaged in 
developing explanations for why the class may not follow the anticipated pattern. These patterns 
can help understand how students may engage in TMSJ tasks that are based on data.  
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When mathematics educators work towards making mathematics more relevant, they often think 
about including more real-world applications into mathematics lessons. But what happens when 
a lesson is devoid of real-world contexts? In what ways can students find it relevant? This study 
explores how high school students perceived relevance when they were asked to describe their 
experiences during decontextualized mathematics lessons. Students highlighted how they found 
certain characteristics of the lessons to be useful in their learning and how they perceived 
relevance through different feelings experienced in the lessons. This, in turn, broadens our 
understanding of what relevance means to students. 

Keywords: Affect, Emotion, Beliefs, and Attitudes, Curriculum, High School Education 

For many years, educators have attempted to incorporate relevant-increasing strategies and 
interventions in the classrooms, as they have been shown to increase student motivation and 
performance (e.g., Lazowski & Hulleman, 2016). However, mathematics educators often assume 
that to be relevant, mathematical content must be connected to real-life contexts with a wide 
emphasis on incorporating mathematical content that students can see and apply in the world 
around them (e.g., NRC, 2003; Wilkerson, 2021). While this association is important in its own 
regard in helping students connect with mathematics and see its importance in their everyday 
lives, it blinds us from looking at other ways of conceptualizing relevance. One way of 
expanding our understanding of relevance is to examine it from the perspective of students in 
order to develop better intervention strategies that will help them find meaning in what they learn 
(Albrecht & Karabenick, 2018).  

This study forms a part of a larger research project which is studying the characteristics of 
decontextualized high school mathematics lessons that were specially designed to increase 
aesthetic opportunities for the students (referred to as Mathematically Captivating Learning 
Experiences, or MCLEs). Since the lessons were decontextualized, and because relevance is 
tightly connected with contextualization, we predicted that students would not find MCLEs 
relevant. However, surprisingly, using the relevance measure from surveys given to students 
after lessons, no association was found between the relevance measure and the type of lesson, 
suggesting that students viewed the decontextualized MCLEs to be as relevant as the non-
MCLEs, some of which were contextualized (Dietiker et al., in progress). These results 
motivated us to look deeper into the views of the students regarding the decontextualized lessons 
to broaden conceptions of relevance from their perspective.  

In this paper, we describe the different categories that emerged from student interviews 
conducted after the MCLEs, giving examples of their statements that explain what or how they 
found some aspect of the lesson as relevant, in order to begin to answer the question: In what 
ways do students perceive decontextualized high school mathematics lessons to be relevant? We 
end with a discussion on how the findings of our study can help expand perceptions of relevance, 
and what this can mean for the mathematics education community.  
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Theoretical Framework                                                                                              
Various definitions of relevance have surfaced within the past years (Albrecht & Karabenick, 

2018). While some researchers relate relevance with utility value (e.g., Hulleman et al., 2017), 
others frame relevance in terms of meaningfulness (e.g., NRC, 2003) or the fulfillment of 
intrinsic and extrinsic goals (e.g., Keller, 1983). Schamber and Eisenberg (1988) argue that most 
of the notions used to describe relevance, such as usefulness and satisfaction, depend on the 
perception of an individual. By presenting relevance as a complex cognitive phenomenon which 
involves the relationship between an individual and their surroundings, Schamber and Eisenberg 
suggest exploring relevance by questioning the individuals to describe their own perceptions of 
how they form connections with the topic of information (Schamber & Eisenberg, 1988). In this 
paper, we define relevance as an individual’s perception of how an experience was useful in 
meeting their needs and desires, such as how an activity evoked a sense of satisfaction, which 
further facilitated a student’s learning. When the experience fails to fulfill the individual’s needs 
or desires, then the perception of the relationship is defined as irrelevant. 

Recent educational studies that have incorporated student perspectives related to relevance 
reflect similar notions of fulfillment of an individual’s needs and desires. For example, the 
concept of satisfaction formed the basis for a study that asked college students to produce a list 
of strategies used by their instructors that increased course relevance for the students (Muddiman 
& Frymier, 2009). Drawing from Keller (1983), Muddiman and Frymier (2009) define relevance 
to be a “student’s perception of whether course content satisfies personal needs, personal goals, 
and/or career goals” (p. 131, italics added). They identified four ways educational activities 
could be viewed as relevant by students: how the content was linked to examples drawn from 
students’ lives beyond the classroom, how the teaching style of the instructor helped students 
relate with the material, methods and activities that encouraged participation and group work, 
and course supports provided by the teacher that helped them improve their performance. 
Similarly, Dobie (2019) questioned middle school students about their perceptions of how 
mathematics lessons were “useful” (p. 28). Student responses from this study fell under two 
broad categories: applicability of content and features of the learning experience. Both these 
studies suggest that in addition to relating relevance with how the content was applicable in their 
outside lives, students also found relevance in certain teaching strategies, methods, and activities.  

We aim to add to what is known about what can make mathematics learning relevant by 
looking at the perceptions of high school students on mathematics lessons which were specially 
designed to be decontextualized.  

Methods 
The current study analyzes perceptions of relevance from statements students made when 

asked to describe important aspects of their learning experience during an MCLE. Eighteen 
MCLEs were implemented in six different classrooms from three high schools in the 
Northeastern region of the United States. One school was a small charter school in the city with a 
predominantly Latinx student population, the second school was a large urban public high school 
with diverse racial and ethnic groups, and the third school was a large suburban public high 
school with a predominantly white student population. Immediately after each MCLE, two to 
five students were selected as a representative sample in terms of gender and ethnicity and 
interviewed about their aesthetic experiences during the lesson. The audio recordings of the 
interviews were then transcribed for data analysis. The current study analyzed a total of 44 
interview transcripts from ninth to twelfth grades in the 2018-19 academic year.  
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During the interviews, students were asked to describe their lesson experiences with the aid 
of, but not limited to, a given list of positive, neutral, and negative aesthetic descriptors. While 
none of the questions asked by the interviewers concerned relevance, student perspectives on 
certain needs and desires often emerged from student remarks. 

The data analysis consisted of three major coding passes through student interview 
transcripts. Each pass consisted of multiple cycles where two coders first independently 
scrutinized student utterances and then came together to align any differences. During the first 
pass, the researchers read through the interviews to identify student utterances that included 
elements of perceived relevance or irrelevance, asking, “In what ways is this student expressing 
how the experience met their needs and/or desires (or not)?”  

The major criteria for evaluating utterances for this pass included highlighting the 
connections to relevance by placing primary focus on the quality of usefulness. One student’s 
remark clearly reflected one of such instances:  

We told each other what we knew about trigonometry before we went into the lesson. ... It 
kind of gives you an idea of how people around you know and, like, how they understand the 
topic. It makes you feel more safe talking to people about it. 

For this student, the interaction with their peers through the conversations on the topic prior to 
the main lesson was useful as a way to understand how others perceived the topic. Such an 
interaction fulfilled their need by rendering a sense of safety within the in-class discussions.  

Also included were statements where students lamented the lesson’s failure to meet their 
needs or desires, which in turn implied how a different aspect of the lesson could have helped 
fulfill those missing needs or desires. For example, a student explained how they felt less curious 
in the lesson as they already had an idea of what they were learning, indicating the missed 
opportunity where the lesson could have been relevant for this student if their desire to learn 
content outside of their prior knowledge was fulfilled.  

On the other hand, while student utterances with positive aesthetic reactions were initially 
selected as potential candidates for reflecting relevance, many of them were excluded because of 
a lack of conclusive connection to relevance. For example, a student stated: “I actually really 
enjoyed this lesson because it was, like, something I never thought would actually occur during a 
math problem, and the calculator didn't actually have another solution.” While this student 
expressed excitement and enjoyment over the unexpected outcome of the calculator, these 
reactions did not indicate how this desire was useful to the student. Therefore, this statement was 
excluded from further analysis.  

The first pass resulted in the identification of 55 utterances where students highlighted 
different aspects of the decontextualized lesson as being relevant to them. After the student 
utterances relating to relevance were identified, the researchers made a second pass at creating 
categories of relevance. Since our lessons were decontextualized, Dobie’s (2019) major category 
of applicability of content was excluded from our framework and we started with her four 
subcategories: method of interaction, structure of the activity, representation being utilized, and 
value of learning new or important things. However, unlike Dobie’s (2019) study, our student 
population was not asked explicitly about the ways in which they found the mathematics lessons 
relevant. In addition, all the MCLEs involved particular characteristics of sequencing activities in 
order to spark student curiosity with some portion of collaborative small-group problem solving. 
With such differing characteristics of our study, all of Dobie’s (2019) categories needed 
adjustment to accurately represent the themes that emerged from the student statements. In 
particular, we modified the subcategory structure of the activity because, while some students 
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found particular activities to be useful, a greater number of utterances highlighted that the 
sequence of activities throughout the lesson was perceived as relevant. Since the sequence of the 
activities was a feature of the entire lesson and not of a particular activity, we broadened the 
category as structure of lesson.  

On the occasion of encountering utterances that expressed needs and desires that were not 
captured by the modified categories, we developed new categories to reflect the new themes, by 
looking for patterns across the interviews to find expressions of similar needs and desires. For 
example, when we noticed that multiple students described how they valued making meaningful 
progress in the lesson on their own, we created the category: sense of accomplishment.  

With a new set of categories, a final coding pass of the data was carried out to solidify 
categories that captured the emerging themes of the selected utterances. We then selected 
representative student utterances for each finalized category.  

Findings 
The student perceptions of the relevance of decontextualized mathematics lessons can be 

classified into two broad categories: characteristics of the lesson students perceive as relevant 
and ways in which relevance is experienced by students during the lesson. Each of the broad 
categories consist of multiple subcategories. While there were many instances where students 
talked about what or how something was relevant, there was at least one instance in each 
subcategory where students expressed a lack of fulfillment of their needs or desires. Many ways 
students discussed relevance also fell under several subcategories, both within and across the two 
main categories. We now describe each category in greater depth.  
Characteristics of the Lesson Students Perceive as Relevant 

This category describes aspects of the lesson that students identified as enabling them to 
develop a deeper understanding of and connection with the subject of the lesson. Four 
subcategories emerged under this category: interaction with others, representation, structure of 
lesson, and learning new and unexpected ideas.  

Interaction with others. Students stated that small group interactions with their classmates 
or guidance from their teacher was often useful in furthering their understanding or helping them 
get closer to an answer. This interaction was sometimes in the form of a remark or question from 
either their teacher or one of their peers, or even both, that redirected them to better ideas for 
solving a problem. For example, a student mentioned, “[The teacher] gave me an idea when she 
told us how to draw the figure, she came to my group and said, ‘try to describe it like you're 
trying to describe it over the phone.’” Many students also valued collaborative activities that 
helped them discuss ideas and share thoughts with each other, as evident in this statement: “it 
was enjoyable too, cause I got to talk about it with the people in my group, … it helped me 
understand it better.” This utterance highlights interactions with other students as an effective 
medium to fulfill the student’s need for greater understanding.  

Some students, though, further explained how certain features curtailed the effectiveness of 
these peer interactions. As one student stated: “When a student describes it, it actually confuses 
me more. And, like, the way that they explain it is confusing because they put a lot of words into 
it.” For this student, the wordiness and ambiguity in the explanation provided by a fellow student 
did not allow the interaction to be effective. Thus, having clarity in the exchange of ideas and 
thoughts emerged as a feature that supported the interactions to be relevant for the students.  

Representation. The different ways in which mathematical ideas were presented were often 
perceived by students as useful in helping them build conceptual understanding and figuring out 
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how to solve problems. The following utterance highlights a student’s appreciation for physical 
representations in developing understanding of the meaning of a formula: 

I like using the little triangles and the diagrams because it showed you how it was going to 
work instead of just saying “oh, this is the formula that she showed on the board with the 2x 
thing.” Instead of showing us that and how it works, we get to see and physically feel how 
that works. 

This student statement reflects the fulfillment of their need of a visual and tangible representation 
to understand the concept rather than simply being given a formula with which to work. 

In addition, students also appreciated forms of representation that facilitated pattern 
recognition. For example, a pattern apparent in area models helped one student make sense of 
polynomial division. Other students highlighted how finding patterns usually meant that 
“something's right.” A student avoided having “holes” (i.e., gaps) in tile patterns because “it 
wouldn't have looked nice I feel like. … it would have been like ‘oh that looks wrong or 
something.’” One student struggled with “letters and words” that came up in a lesson on 
logarithm identities, but eventually figured her way out “because of the pattern that makes 
sense.” For these students, finding patterns in these different representations turned out to be a 
useful way to evaluate their strategies while solving problems. 

Structure of lesson. Students expressed how they valued several features involving the way 
mathematical content (e.g., statements, activities) unfolded across the lesson. They explained 
how revisiting a topic before diving into the actual lesson, how seeing their teacher perform a 
calculation, or how being able to derive formulas on their own instead of having them being 
written on the board increased their understanding of a topic. Several students appreciated having 
a “hands-on” activity in the lesson which involved cutting, drawing, or playing with shapes, as it 
increased engagement in the activity, which in turn facilitated their learning process. For 
instance, a student stated, “I like what we’re doing, like, all these different activities and stuff, 
because if you make it fun then it helps us learn even more.” 

While these students described particular structural aspects of the lesson, such as a fun 
activity or a good launch, as being useful in furthering their learning, other students highlighted 
how the overall flow of the lesson contributed to a meaningful lesson experience. A student 
particularly pointed out how the slower pace of the lesson helped him process the new concepts: 
“It was, just, like, a smoother class. It went, like, slower, and, like, we actually took time to 
explain. And I'm like, ‘okay, I understand this,’ and I knew the new formula and all the stuff.” 

Students also described how their teacher can misdirect them into mistakenly assuming 
something which later results in a surprise or can question them in ways that build their curiosity, 
as captured by the following student remark: “I felt this lesson was pretty interesting because, 
like, we have expectations, and she, like, leads into our expectations and then we find out, like, 
it's wrong. And I'm like, ‘now we need to learn why it's wrong.’” This element of 
unexpectedness that was achieved through the ways these lessons were structured turned out to 
be important in captivating students as it satisfied their desire to be curious about what they were 
learning.   

Learning new and unexpected ideas. Many students expressed a desire to learn about new 
and surprising content and valued lessons that presented them with such opportunities. For 
example, a student mentioned how not knowing about the content beforehand pushed them to 
want to know more about a new idea: “Today I was a little bit curious because we didn't really 
know a whole lot about the material.” Other students described how the mathematics lessons had 
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shown concepts that were contrary to their previous understandings, therefore finding the value 
of unexpected ideas. Below is one example of such an instance: 

I would say [the lesson was] surprising because we had two solutions, and the calculator said 
something else. I would say, for once the calculator disagrees with us, or something like that, 
where the calculator's right, and we're wrong, or something like that. And I guess I would say 
[I was] frustrated at some points because it was like, “wait, but, like, how does that work?”, 
which made me want to listen to [the teacher] more. 

Notice that, in these student statements, their curiosity (i.e., their desire to learn more) was 
spurred through learning new (i.e., not knowing about the material) or unexpected (i.e., 
discrepancy between the solutions derived by the students and their calculator) ideas. In 
particular, as shown in the utterance above, such new and unexpected ideas can accompany the 
element of surprise. 

On the other hand, the inverse of such instances also emerged in one interview, where one 
student explained how their existing content knowledge interfered with their learning experience: 

It was interesting to kinda, like, learn them, but at the same time, I kinda had a guideline 
already of what I was learning ... because, to find triangles, it’s always base times height 
divided by 2. [Having prior knowledge made me] less curious, because, like, I already knew 
what it was.  

Had the element of new and unexpected ideas been present in this lesson, this student’s desire to 
learn something outside of “the guideline” may have been fulfilled. 
Ways in which Relevance is Experienced by Students during the Lesson 

This category explains the ways in which students perceived a lesson experience as useful or 
satisfying. All such remarks emerged as feelings, which were subcategorized into: sense of 
accomplishment and sense of belonging. 

Sense of accomplishment. Many students perceived resolving challenging tasks on their 
own or getting them right as a feeling of accomplishment. In particular, while getting the correct 
answer was mentioned and valued by many students, the sense of achievement was not simply 
derived from getting the correct answer; it also involved making meaningful progress in spite of 
prior negative feelings (e.g., fear, frustration). The student utterance below highlights one such 
instance: 

I began the class period very frustrated and uninteresting because I didn't get the answer right 
away, like I usually do. But then, towards the end, I was mostly amused. … I actually got an 
answer at the end. … Any time that I have a problem, and I don't get it right away, and it 
takes me some time, like it did today, I feel like once I get it right, even if it's something 
small, then I'll get excited.” 

Although this student was initially frustrated, their progress towards the solution, despite being 
small and time-consuming, evoked a sense of accomplishment.  

Likewise, the emergence of a self-belief that they were able to “figure it out” (i.e., the belief 
that the fear of getting something wrong could be surmounted) was the main element that 
contributed to students’ sense of accomplishment. One student, after explaining how they were 
“just kind of nervous” and worried “what if that was wrong?”, continued: 
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And then I was like, “look! this is, like,” I'm thinking, “this is similar to what we were 
looking for, even if it was wrong,” I was thinking. And I figured out something, and I was 
like, “oh, that's interesting” … I was proud. 

This student came to a realization that even if their answer was wrong, it could work as a 
meaningful aspect of problem-solving. Such remarks often involved explanations of how they 
were “proud” that they were able to do something on their own and contribute to something 
worthwhile.  

Sense of belonging. Having a sense of belonging within the classroom or a student group 
was also identified as a way for students to perceive relevance. Their desire to not be alone was 
fulfilled by finding common interests or sharing a wholesome and engaging class experience 
with their peers. One student explained how often their peers’ disengagement to the class 
prevented their learning: “some people are just, like, sleeping, they're just tired, ... some people 
have side conversations [when] I'm trying to learn.” However, they proceeded to indicate how, in 
this particular lesson, their classmates were more engaged, which created a “drive to actually 
understand [the lesson].” In other words, for this student, what they desired and needed was to be 
in sync with their classmates and to have a sense of community.  

Other times, such a sense of belonging accompanied other aforementioned categories such as 
interaction with others or structure of lesson. For example:  

I felt more comfortable with [this way of teaching], and helped me learn, and like working in 
groups helped me, like, interact with other students, and, like, hearing their ideas and, like, 
make everything, like, make sense, putting it all together. … So, working, like, with other 
students and the teacher going back and forth, like, working in pairs and the teacher explains 
and then, like, discussing with the whole class. It, like, makes me feel comfortable in the 
class. Like, sometimes I'm in class, [it] can get kind of stressful, and it makes you feel like 
you're with other people and you're not alone, and it just feels like relief. … We had, like, 
different ideas and points of views, and then going on the paper and actually doing it out and 
realizing, like, what each person was thinking and seeing what they thought and what I 
thought, like, I feel like that really showed how people think and how you can, like, come 
together as a team, as a group. 

The above statement captures the way in which the structure of the lesson (i.e., collaborative 
work followed by teacher explanations and then a whole class discussion) facilitated interaction 
with other students (i.e., a discussion of different thoughts and ideas), leading to a sense of 
belonging (i.e., feeling comfortable and relieved):  

Overall, this category highlights the importance of having a community where students can 
come together, even with different perspectives, leading to a sense of relief and comfortableness.  

Discussion  
We are gratified to see that high school students can find mathematics lessons meaningful 

and are able to connect with them, even when the content is decontextualized. While we do not 
discount the importance of using real-world applications in our mathematics lessons to allow 
students to see mathematics in the world around them, our research sheds light on other ways 
mathematics can be perceived as relevant by students. This new way of looking at relevance 
opens up ways for mathematics educators to rethink pedagogical approaches that aim to increase 
relevance in classrooms. For example, teachers can structure lessons in ways that present 
elements of surprise, as our research suggests that students tend to value content that goes against 
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their expectations, and that surprise often led to an increased curiosity in what they were 
learning. Moreover, since our study concentrated on high school lessons only, the varied 
perceptions of relevance pave the way for making even abstract advanced mathematics content 
meaningful to students, without necessarily making a connection to the real world –– especially 
when such a connection is difficult to make or is divergent from students’ actual life experiences. 
Furthermore, many of the students connected relevance with positive aesthetic experiences and 
identified irrelevance with negative or neutral feelings, suggesting a potential connection 
between aesthetic experiences and perceptions of relevance.   

 While our study identifies varied perceptions of relevance, the nature of our study presents 
some limitations. Although our schools had diverse student populations, our data only comes 
from schools located in the Northeastern region of the United States. Furthermore, since we were 
able to interview only a few students after each lesson, our study potentially limits the number of 
different views obtained. More research with varied school settings could help expand these 
findings. 

We hope that this research study will help the mathematics education community recognize 
the ways relevance can be conceptualized from the perspectives of students, in turn making 
mathematics more meaningful for all students.  
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Over half a century has passed since Bruner suggested his three-stage enactive-iconic-symbolic 
model of instruction. In more recent research, predominantly in educational psychology, 
Bruner’s model has been reformulated into the theory of instruction known as concreteness 
fading (CF). In a recent constructivist teaching experiment investigating two undergraduate 
students’ combinatorial reasoning, we utilized an instructional approach that maintains the 
enactive-iconic-symbolic stages of CF, but through a gradual and much elaborated process. We 
found that our theory of levels of abstraction explicated the “fading” effect that is central to CF. 
In this theoretical report, we discuss how CF can be elaborated by our instructional approach 
and theoretical perspective. 

Keywords: Learning Theory; Instructional Activities and Practices; Advanced Mathematical 
Thinking; Mathematical Representations 

Introduction 
Substantial research points to the potential affordances of using manipulatives in 

mathematics teaching (Bouck & Park, 2018; Carbonneau et al., 2013; Domino, 2010; Moyer-
Packenham & Westenskow, 2013; Peltier et al., 2020). However, how should manipulatives be 
used to benefit student learning? From a constructivist perspective, manipulatives—by which we 
mean physical or virtual objects on which sensory-motor actions may be performed—do not 
carry inherent mathematical meaning (Ball, 1992; Wheatley, 1992). Students must construct the 
meanings that they come to associate with representational forms, even when, from a more 
knowledgeable person’s perspective, those forms “look like” the concepts they are intended to 
represent. Thus, the shift from using manipulatives to using formal symbols for a given concept 
needs to be given careful consideration (Clements & McMillen, 1996; Fennema, 1972; Resnick 
& Omanson, 1987).  

Research suggests one effective means for introducing abstract symbols and ways of 
operating on them in ways that are meaningful to students is the three-stage enactive-iconic-
symbolic “concreteness fading” (CF) instructional model, originally proposed by Bruner (1966), 
and similarly the concrete-representational-abstract (CRA) model. Within the CF model, a 
concept is first represented using “concrete” materials on which students may perform sensory-
motor actions, followed by “iconic” representations which may include graphic or pictorial 
forms, and lastly “symbolic” representations such as words or letters for the concept. 

The purpose of this theoretical paper is to suggest a potential elaboration of the CF model 
using a theory of levels of abstraction (Battista, 2007), and an elaboration that emerged from a 
teaching experiment investigating two preservice teachers’ combinatorial reasoning (Antonides 
& Battista, under review). Our instructional approach utilized concrete/enactive tasks in that 
students were asked to enumerate permutations represented as “towers” by constructing towers 
using physical, multi-colored connecting cubes (cf. Maher et al., 2011). Our students used these 
manipulatives to enumerate towers 3-cubes, 4-cubes, and 5-cubes-high, all the while constructing 
numerical symbols and computational expressions that were explicitly linked to their tower 
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constructions. Gradually, the students’ reasoning shifted from operating on towers to operating 
primarily on symbolic representations, which they could later use to reason in novel situations. 
This theoretical report seeks to establish two claims: (a) that our instructional approach 
represents a case of a much-elaborated instantiation of CF, and (b) that our theoretical 
framework focusing on students’ levels of abstraction serves to explicate the “fading” effect that 
is central to CF. 

Concreteness Fading and Related Perspectives 
Bruner argued for a theory of instruction that includes three broad representational forms: 

enactive, iconic, and symbolic. According to Bruner (1964), “Their appearance in the life of the 
child is in that order, each depending upon the previous one for its development, yet all of them 
remaining more or less intact throughout life” (p. 2). Enactive representations are characterized 
by sensory-motor actions within experiential situations; Bruner suggests examples of riding a 
bicycle, tying knots, or driving a car. Iconic representations “[summarize] events by the selective 
organization of percepts and of images, by the spatial, temporal, and qualitative structures of the 
perceptual field and their transformed images” (p. 2). To reason about an experience, such as 
riding a bicycle or tying a knot, a student can call forth internalized mental representations as 
material on which to operate. Symbolic representations include, in particular, words that are used 
to point to particular conceptual referents. Symbols, unlike icons, typically do not bear a 
perceptual resemblance to the objects that they represent.  
 Goldstone and Son (2005) introduced the term “concreteness fading” to refer to the 
process of successively decreasing the level of concreteness of a simulation for a scientific 
concept, with the eventual goal of “attaining a relatively idealized and decontextualized 
representation that is still clearly connected to the physical situation that it models” (p. 70). 
While Goldstone and Son related CF to Bruner’s theory of instruction, their formulation of CF 
did not specify a three-stage representational sequence.  

McNeil and Fyfe (2012) formulated CF as a three-step gradual fading process, similar to 
Bruner’s recommended model. They conducted the first study to experimentally test the benefits 
of such a three-stage progression, specifically within the context of undergraduate students’ 
learning and transfer of the properties of an abelian group of order three (associativity and 
commutativity, and the existence of inverse elements and an identity element). The students were 
randomly placed into one of three instructional conditions: generic, which used abstract symbols 
(two-dimensional shapes); concrete, which used iconic representations of measuring cups; and 
fading, which used a concrete-to-generic approach with an explicit linking of the two 
representations through an intermediary, Roman numeral-based representation. Their results 
showed that students in the fading condition performed significantly better than students in the 
generic or concrete conditions. 

Notably, McNeil and Fyfe’s “concrete” condition did not involve perceptual materials on 
which sensory-motor actions were performed—a distinction from Bruner’s characterization of 
the enactive. However, Bruner’s focus in his original formulation of the three-stage model 
seemed to be on children’s intellectual development, whereas McNeil and Fyfe’s study focused 
on undergraduates. This raises important questions about the nature of “concrete” and “enactive” 
representations. What do these terms mean? Fyfe and Nathan (2019) “use the term concrete 
representation to refer to any external representation” (p. 410), which they suggest may vary 
along at least two dimensions: physicality and perceptual richness. The physicality of a concrete 
representation refers to whether it is two-dimensional (such as a drawing, consistent with 
Bruner’s term iconic) or three-dimensional (such as physical cubes). Perceptual richness 
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typically refers to the visual features maintained by a representation, such as colors, patterns, or 
texture. Fyfe and Nathan defined CF “as the three-step progression by which a concrete 
representation of a concept is explicitly faded into a generic, idealised representation of that 
same concept,” which they suggested is accomplished “by removing perceptual and conceptual 
information either within or across lessons until one arrives at the representation that involves the 
least effort to infer and generalise the invariant relation” (p. 411). Fyfe et al. (2014) also 
suggested “fading” may occur “by encouraging structural recognition and alignment” (p. 19). 

CF is related to additional theories of instruction and learning. For instance, CF is a form of 
the more general notion of progressive formalization (PF), a model of instruction in which 
students first gain experience about a concept through concrete materials, then transition to 
operating on symbols that are conceptually grounded in these initial concrete experiences 
(Nathan, 2012). According to Nathan, the PF model combines advantages of both concrete and 
abstract representations: 

Concrete entities are meaningful to learners early on and so provide accessible entry points, 
abstractions transcend the applicability of the representations and rules from any one context, 
and grounded abstractions support learners understanding of what the formalisms “say” and 
how they apply widely to new application areas. (p. 139) 

CF is also related to the types of mathematical activity suggested by Gravemeijer (1999; see also 
Gravemeijer, 2002). Students operating at the level of referential activity use models that are 
conceptually grounded in experientially real task settings. At the level of general activity, 
students transcend from operating with “models of” to operating with “models for,” meaning 
“students’ reasoning loses its dependency on situation-specific imagery,” which Gravemeijer 
suggests “can be seen as a process of reification” (p. 164). 

Context of Our Proposed Elaboration 
We conducted one-on-one constructivist teaching experiments (Steffe & Thompson, 2000) 

with two preservice middle school teachers with the goal of developing second-order models of 
the students’ concepts and actions/operations for enumerating permutations. To help make our 
students’ reasoning salient, and to provide sensory-motor experiences that we hypothesized 
would serve to conceptually ground our students’ developing mathematical meanings, the tasks 
included in our study generally represented permutations of n objects as n-cube “towers,” each 
tower comprised of n different colors of cubes connected together with a vertical spatial 
orientation (see also Maher et al., 2011).  

As noted in the Introduction, we claim that our instructional approach represents an 
instantiation of CF. Indeed, both students (DC and NK, neither of whom had studied 
combinatorics previously) initially counted tower possibilities by constructing towers 1-by-1 
using the available perceptual materials—consistent with Bruner’s descriptions of enactive 
representations, as well as Fyfe and Nathan’s (2019) definition of the broader term, concrete. As 
the tasks became increasingly complex, DC and NK transitioned from relying on 1-by-1 
construction techniques alone to constructing partial sets of towers before generalizing 
multiplicatively. They could mentally imagine towers that they had not yet constructed, 
consistent with Bruner’s meaning of the term iconic representation. Each student progressed to 
constructing multiplicative operations without needing to first operate on towers, but justified 
using (and thus conceptually grounded in) this sensory-motor cube-towers context. This is 
consistent with Bruner’s characterization of symbolic representations, as well as Nathan’s (2012) 
description of abstract representations in the PF model of instruction. Ultimately, each student 
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was able to construct, through a process of guided reinvention (Gravemeijer, 1999), a 
generalized formula for counting permutations. The instructional sequence through which our 
students constructed their formulas, and a brief summary of each student’s reasoning, are 
provided in Table 1. Note that students were provided with physical cubes to construct 3-, 4-, 
and 5-cube towers, and more than enough cubes were available to construct all 3- and 4-square 
towers (but not 5-square towers, of which there were 120 possibilities). 

 
Table 1: Instructional Sequence and Summary of Students’ Reasoning 

Task Summary of DC’s Reasoning Summary of NK’s 
Reasoning 

1. Counting 3-cube towers each 
containing 3 colors of cubes 

Constructed towers 
systematically one-by-one 
using physical cubes 

Constructed towers 
systematically one-by-one 
using physical cubes 

2. Counting 4-cube towers each 
containing 4 colors of cubes 

Constructed 12 towers one-
by-one, organized by base 
color, then multiplied 
6 4 24   

Reasoned there are six 3-
cube towers for any 3 
colors, and 4 possible top-
cube colors, so there are 
6 4 24   towers 

3. Counting 5-cube towers each 
containing 5 colors of cubes 

Used enactive processes to 
enumerate 4-cube 
permutations with a fixed 
cube in the fifth position, then 
multiplied 24 5  

Reasoned there are 24 4-
cube towers for any 4 
colors, and 5 possible top-
cube colors, so 24 5 120   
towers 

4. Counting 6-cube towers each 
containing 6 colors of cubes 

Multiplied 120 6  Multiplied 120 6  

5. Counting 9-Cube towers each 
containing 9 colors of cubes 

Multiplied 720 7 8 9    Multiplied 720 7 8 9    

6. Counting 20-cube towers each 
containing 20 colors of cubes 

Multiplied 
362,880 10 19 20    

Described the multiplication 
20 19 2 1    

7. Counting 100-cube towers each 
containing 100 colors of cubes 

Described the multiplication 
1 2 99 100    

Described the multiplication 
100 99 2 1    

8. Counting n-cube towers each 
containing n colors of cubes 

Described the formula 
1 2 n   

Described the formula 
( 1) ( 2) 2 1n n n       

 
Theoretical Perspective  

We adopted a psychological constructivist view of mathematical knowing and learning (cf. 
Piaget, 1970; von Glasersfeld, 1995). Within this view, a concept is a mental representation of a 
phenomenon that is stable enough to be re-presented (e.g., visualized or described) in the 
absence of relevant sensory-motor input (von Glasersfeld, 1991). An action refers to either a 
physical transformation on perceptual material or a mental action on imagined/re-presented 
material. An action constitutes an operation when (a) it is internalized (so that it can be 
performed mentally), (b) it is reversible, and (c) it can be composed with other mental actions 
(Piaget, 1963). A scheme is a way of operating under certain situations. It consists of an 
assimilatory mechanism for recognizing situations along with an integrated set of abstractions 
used to mentally represent the situation at hand (i.e., a mental model); a sequence of 
actions/operations associated with the assimilated situation; and a set of expectations or 
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anticipations about possible results from those actions (Battista, 1999; see also von Glasersfeld, 
1995).  
Levels of Abstraction 

To frame and analyze our students’ conceptual progressions, we used Battista’s (2007) 
theory of levels of abstraction, a reformulation of Piaget’s theory of abstraction via Steffe and 
von Glasersfeld (Steffe, 1998; Steffe et al., 1988; von Glasersfeld, 1995). Battista’s original 
levels of abstraction were generally stated and could be used to analyze and interpret student 
understanding of concepts and operations across a wide range of mathematical domains. At the 
perceptual/recognition level, an item from one’s experiential flow is isolated and entered into 
working memory. Sensory properties necessary to recognize future instantiations of the item are 
empirically abstracted. At the internalized level, abstracted object-concepts may be re-presented 
(i.e., visualized) in the absence of relevant perceptual input, or abstracted actions and action 
sequences may be re-enacted in the absence of relevant kinesthetic signals prompting the 
abstracted action sequence.  At the interiorized level, the student’s understanding of the 
abstracted item becomes generalized in that they can apply the item to reason in novel situations. 
It is at this level that structures, patterns, and abstract forms are abstracted from particular 
sensory-motor contexts (Steffe et al., 1988). In particular, it is at the interiorized level that 
actions can be come operations, as the action can be performed in thought, is reversible, and can 
be composed with other mental actions. At the second interiorized level, the student constructs 
symbols as conceptual “pointers” to interiorized material, and these symbols are used as 
substitutes for the originally abstracted material in reasoning. At the third interiorized level, 
more complex operations can be performed on these symbols, such as curtailing sequences of 
symbolic operations into more condensed forms.  

We used the original levels to explicate students’ progressively abstract conceptualizations 
of, and operations on, spatial material within permutation enumeration contexts. However, 
through our data analysis, we found a need to elaborate the theory by developing an additional, 
empirically supported set of levels of abstraction. This new set of levels served to explain 
students’ abstractions of computational operation schemes (COS), and we found the original set 
of levels occurred in parallel with this new set of levels. When a sequence of symbolic 
computations has been perceptually abstracted, the student can re-enact the action sequence step-
by-step, but only with external cues such as instructions or a formula. The student can activate 
this COS when they recognize a situation as being similar to the original one in which they 
abstracted the sequence of computations. Once internalized, the sequence of computations can be 
performed, step-by-step, without such external cues. At the interiorized level, a student’s 
understanding of a COS shifts from its step-by-step performance to analyzing the meanings and 
results of each computational operation, enabling them to apply meaningful deviations from the 
original and to adapt their COS to reason about novel situations. At the second interiorized level, 
the student can treat the sequence of operations of their COS as a conceptual symbol, meaning 
they can operate on the COS itself. For instance, they could reverse the sequence of operations, 
or they could decompose its constituent components and rewrite each computation in terms of 
this decomposition. At the third interiorized level, the student can algebraically generalize their 
COS using variable expressions. At the fourth interiorized level, the student can construct and 
conceptually operate on written/verbal symbols as pointers to their algebraically-generalized 
computations (e.g., n! as a symbol for ( 1) ( 2) 2 1n n n      ).  

To summarize, the levels of abstraction sequence occurs first on actions/operations on 
objects, then reappears as an individual transitions to numerical, algebraic, and other forms of 
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symbolic mathematical reasoning. The inter-relationship between the original set of levels for 
actions/operations on objects and the levels for computational operations is illustrated in Figure 
1.  

 
Figure 1: The Two Sets of Levels of Abstraction, Linked via S*NLS 

Links between the two sets are made via S*-numerical linked structuring (S*NLS). S*-
structuring is the mental process of constructing an organization or form for sequences of 
physical/mental actions on perceptual/imagined material; numerical (or N-) structuring is the 
process of constructing an organization or form for a set of numerical/algebraic symbols; and 
S*NLS is a form of reasoning that coordinates S*-structuring and N-structuring consistent with a 
learner’s understanding of the relevant spatial/numerical properties (Antonides & Battista, 2022). 

Discussion 
As noted in the Introduction, we believe that our instructional approach and theoretical 

perspective provide an elaborated description of both the cognitive mechanisms that underlie CF 
and its instructional implementation—two sites in which Fyfe et al. (2014) called for additional 
research. First, incorporating multiple levels of abstraction greatly elaborates the notion of 
concreteness “fading,” with each abstraction level fading some of the “concreteness” of the 
previous level, as illustrated in Figure 2. 

 

 
Figure 2: Elaborating Concreteness Fading Using Levels of Abstraction 
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At the perceptual and internalized levels of abstraction, student reasoning about a given 
mathematical concept is constrained to the original perceptual context in which the concept was 
initially encountered, with relevant figurative (or “concrete”) materials perceptually available. 
We hypothesize that even in the shift from perceptual abstraction to internalization, many of the 
sensory properties initially registered into memory become “faded.” Upon reaching the 
interiorized level, mathematical ideas can be extended beyond this initial sensory-motor context, 
and more abstract representations, such as drawings and motor-kinesthetic items (e.g., counting 
using fingers), become available to the student. Interiorization affords the construction of a more 
generalized structure from a student’s actions on sensory-motor material, enabling a shift from 
concrete/enactive to iconic/enactive representations. For instance, DC and NK interiorized the 
structure of a 3-cube tower; for DC, this was reflected in his spatial structuring [base cube] + 
[reversible 2-cube tower]. He used gestures and verbal descriptions to describe aspects of his 
reasoning, but still strongly linked to the cube-towers context. At the second interiorized level, 
DC and NK constructed and operated on symbols, such as NK’s enumeration of 4-cube towers 
by multiplying 4 6  without needing to construct towers one-by-one. 

At the third interiorized level, students’ focus of attention begins to shift from 
actions/operations on the context-specific spatial material to their computational processes 
themselves, thus emerging upon the symbolic stage within CF theory. DC and NK, at this level, 
performed more complex symbolic computations, such as enumerating 9-cube towers by 
multiplying 720 7 8 9   . Our students’ reasoning then focused entirely on their computational 
operation schemes, without reference to cube-towers (though they could, if asked, explain their 
reasoning in terms of towers).  

Second, our theory uses S*NLS (Antonides & Battista, 2022) to elaborate Fyfe et al.’s (2014) 
discussion of structuring and linking to elaborate the connection between concrete and formal 
symbolic representations. This connection is illustrated by the levels of abstraction occurring in 
parallel in Figure 2, with concrete representations on the left and formal symbolic representations 
on the right, linked via S*NLS as illustrated in Figure 1. Our S*-structuring perspective 
emphasizes the importance of providing students with opportunities to act on sensory materials 
when forming their initial combinatorial conceptualizations and reasoning; for us, S*-structuring 
represents a cognition-based elaboration of Lockwood’s (2014) set-oriented perspective, as 
students draw on their concrete/enactive S*-structuring experiences to conceptually ground 
symbolic computational formulas and expressions. 

Lastly, our investigation and theoretical framework which draws on mental models 
elaborates Fyfe et al.’s claim that “the concrete stage enables learners to acquire a store of 
images that can be used when abstract symbols are forgotten or disconnected from the 
underlying concept” (p. 13). In fact, while mental images may be a constituent part (such as 
stored mental representations of particular towers or sets of towers), it is mental models that 
enable students to conceptually operate with the combinatorial composites and symbolic 
manipulations (Battista, 2007). 

Furthermore, returning to Fyfe et al.’s (2014) call for describing ways to optimize the fading 
technique, using the theory of levels of abstraction to guide CF seems to have great potential for 
optimizing its instructional use. As opposed to the representations used by Braithwaite and 
Goldstone (2013) in their concreteness-fading study of combinatorics with undergraduates 
(specifically, letter sequences followed by arithmetic explanations for factorials), we provide a 
very different and much elaborated interpretation of concrete versus abstract representation, as 
well as CF, for combinatorial reasoning. Indeed, our “fading” is accomplished by starting with 
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small-number permutations of physical cubes and incrementally increasing this number so that 
actual manipulation of cubes becomes impractical and necessarily needs to fade into the 
background as symbolic representations are abstracted and come to the fore. At this point, 
students start operating on symbolic representations, first with simple arithmetic operations, then 
with pre-algebraic to algebraic operations, with the fading being accomplished by increasing 
levels of abstraction, generalization, and consequent symbolic representation. All-the-while 
during our fading, the students were encouraged and supported, via S*NLS, to directly connect 
reasoning on each new problem to reasoning on the previous problem using the powerful 
mathematical reasoning of recursion. 

Finally, we view the process of generalization to be a critical component of CF. Drawing on 
Ellis et al.’s (2021) research synthesis of generalizing actions, CF often involves “deriving 
broader results from particular cases to form general relationships, rules, concepts, or 
connections” as well as “extending one’s reasoning beyond the range in which it originated” (p. 
2), which the authors connected to the process of abstraction. Thus, in our teaching experiments, 
an essential component of our CF is progressive formalization (Nathan, 2012) in which students 
incrementally generalized their reasoning, again via S*NLS, as they moved from considering 
small-number to large-number towers. Consistent with our instructional approach, we 
hypothesize that the enactive stage of instruction may be more effective when it becomes 
impractical or impossible for the student to completely model the task situation using concrete 
materials, which would create an intellectual need for a transition to a different symbol system. 
This hypothesis is one potential avenue for future research. Fyfe et al. (2014) similarly argued 
that CF enables concepts to be “generalized in a manner that promotes transfer” (p. 12). 
Consistent with this claim, in later teaching-experiment sessions, DC and NK transferred their 
cube-based reasoning about permutations to permutation tasks not involving cubes, with both 
students referring back to their reasoning about permutations of cubes. This suggests the 
perceptual context of constructing and enumerating permutations of cubes provides powerful 
mental models for applying and transferring one’s reasoning about permutations. 

Conclusion 
In this theoretical report, we have suggested a potential elaboration of CF theory using our 

recent teaching-experiment research and theoretical perspective. Our elaborated theory of levels 
of abstraction explicates the fading mechanism central to CF, with multiple levels of abstraction 
occurring within enactive-iconic-symbolic representational stages and with specific levels of 
abstraction at the transition between stages. Our investigation provides a case of implementing a 
much-elaborated instantiation of CF in the context of one-on-one instruction. We acknowledge 
that the one-on-one nature of our investigation is a limitation of our study, and it could explain 
our positive findings. However, significant research has found CF to be a powerful instructional 
method for supporting transfer of mathematical and scientific concepts (Bouck & Park, 2018; 
Fyfe et al., 2014). In future research, we intend to investigate how our instructional approach 
(with appropriate adaptations) may support student learning in classroom-based contexts.  
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Worked examples have been shown to improve student learning in algebra. However, less is 
known about how to design worked examples to support student learning in online settings. We 
explore how college students react to worked examples that vary in their degree of extensiveness 
and dynamicness. In an online, within-subjects study, 109 college students viewed six worked 
example presentations: 1) static concise, 2) static extended, 3) sequential concise, 4) sequential 
extended, 5) dynamic history, and 6) dynamic no history. Students rated the helpfulness of each 
worked example and explained their rating. We found that students rated the static concise 
presentation as the most helpful and the dynamic no history presentation as the least helpful 
example. Responses were coded by researchers for common themes and revealed insights that 
may inform how researchers and teachers design worked examples for online environments. 

Keywords: Learning Theory, Instructional Activities and Practices, Metacognition, Technology. 

Purpose of the Study 
Worked examples are an effective means of instructional support for math education (e.g., 

Booth et al., 2015; Carroll, 1994; Foster et al., 2018). However, worked examples have primarily 
been presented the same way, with research focusing on how static images of worked examples 
that display major derivations align with students' underlying cognitive mechanisms and in turn 
support learning (e.g., Sweller, 2006, 2020). Recently, Scheiter (2020) called for broadening the 
research on example-based learning beyond pure cognitive mechanisms to incorporate non-
cognitive theories. While some affective factors have been investigated in relation to example-
based learning (Hartmann et al., 2020; Tempelaar et al., 2020), we propose that analyzing 
students’ perceptions of online worked examples may also a) advance our understanding of how 
worked examples impact student thinking and b) inform future iterations of worked examples 
that optimize support for student learning in online settings.  

Previously, we tested the effectiveness of six worked example formats that varied in 
presentation but matched in content and found that grade-school Algebra I students improved in 
their ability to simplify equations after completing instructional practice with any of the six 
worked example formats (Smith et al., 2022). Since all of the worked example formats led to 
comparable learning gains among Algebra I students, we now aim to understand how different 
features of worked examples affect students beyond learning gains alone. In this study, we assess 
college students’ perceptions of the six worked example formats on simplifying equations to 
gather student feedback that might inform future designs of worked examples for online math 
learning environments. Specifically, we ask: 1) Which worked examples are rated as the most vs. 
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least helpful? 2) What themes emerge in students’ explanations for their rating? 3) How do 
students’ explanations for the most helpful and least helpful worked example presentations 
provide further insights into the features to which students attend? 

Theoretical Framework 
Frameworks of self-regulated learning (SRL; e.g., Bjork et al., 2013; Dunlosky & Ariel, 

2011; Nelson & Narens, 1990) broadly model learning as a cycle between students monitoring 
and controlling learning tactics based on self-assessments of their progress in developing content 
knowledge or skills. Recent evidence showed that students were able to self-regulate learning by 
deciding if and when to use worked examples or practice problem solving (Foster et al., 2018). 
However, students tended to underutilize worked examples, and were more likely to study 
worked examples after problem solving. These student behaviors contrast with evidence that 
studying worked examples is more effective prior to problem solving (Leppink et al., 2014; Van 
Gog et al, 2011). Although students are able to self-regulate learning, Foster and colleagues 
(2018) call for more research on how students’ self-regulation decisions are related to learning 
outcomes. More broadly, we posit that students’ perception of worked examples may influence 
the ways in which they regulate learning and impact learning outcomes. 

Here, we compare students’ reactions to six different formats of worked examples varying in 
their extensiveness and degree of dynamicness based on cognitive load theory (Sweller, 2006) 
and perceptual learning theory (Gibson, 1969; Goldstone et al., 2017), respectively. We reason 
that there are two primary competing hypotheses as to which worked example format students 
will perceive as most helpful. First, based on cognitive load theory, students may prefer the 
concise static worked example as it provides only the major derivation steps to a problem 
without splitting their attention across multiple sources of information in worked examples. 
Second, based on perceptual learning theory, students may prefer the dynamic worked examples 
that show fluid transformations between each derivation step. Aligned with perceptual learning 
theory, the additional visual cues may help direct students’ attention towards relevant actions for 
problem solving and raise awareness of perceptual cues to aid with problem solving. However, it 
is unclear how much detail and animation may be helpful, prompting us to also explore the effect 
of studying dynamic compared to static and sequential (an intermediate version that presents 
each equation line as a new animation) worked examples that vary in their amount of detail. As a 
first step towards understanding students’ perception of the worked examples, we asked college 
students to rate the helpfulness of the worked examples as well as to explain their ratings. 

Methods 
A total of 109 students from a private university in the Northeastern U.S. participated for 

partial course credit. The sample afforded 80% power to detect the effect of f > 0.35 at p < .05.  
Students completed a 30-minute online, within-subjects study designed as an assignment in 

ASSISTments, an online homework and research platform (Heffernan & Heffernan, 2014). 
Within the assignment, students completed six pairs of worked examples and practice problems, 
with each pair followed by two survey items, in a randomized order. For each worked example, 
students were instructed to study the worked example then enter the solution as an answer. On 
the following page, students completed a practice problem that matched the equation structure of 
the worked example without any instructional support or feedback. Immediately following each 
pair, students were asked how much they agree with the following statement: “The worked 
examples were helpful for learning how to solve equations”. Students rated their perceived 
helpfulness on a 6-point Likert scale (1=Strongly Disagree; 6=Strongly Agree). They were then 
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prompted to explain their rating in an open-response textbox that appeared below on the same 
screen which said, “Please use the open response to explain your answer.” 

We designed six worked example presentations that varied in their visual features but not in 
content. Specifically, we manipulated the degree of dynamicness (static, sequential, or dynamic) 
and extensiveness (concise or extended) of each worked example. We adapted six worked 
examples that were designed for seventh-graders from Rittle-Johnson and Star (2007), so they 
were similar in content and difficulty. Previously, we also used these worked example 
presentations to investigate their differential effects on learning among Algebra I students; we 
found that students did improve from pretest to posttest on simplifying equations after 
completing instructional practice with any of the six worked example presentations (Smith et al., 
2022). In this study, students viewed all six of the following formats in a randomized order.  
 

 
Figure 1: Static Concise Presentation (Left) and Static Extended Presentation (Right) 

The first four conditions were based on a 2×2 design, differing in (a) length (i.e., concise or 
extended), and (b) the dynamicness of the worked example, (i.e., static or sequential). The 
concise worked examples displayed only the major steps in the derivation while the extended 
worked examples showed every step in the derivation. Static presentations mirrored the most 
commonly used design of worked examples in math (e.g., Rittle-Johnson & Star, 2007), 
presenting each worked example as images (Figure 1). The sequential worked examples were 
displayed as a looping GIF video that presented the static worked examples line-by-line in 
approximately 3-second intervals, creating a step-by-step history of the derivation over time. By 
varying the length and dynamicness, we created four different worked examples: static concise, 
static extended, sequential concise, and sequential extended.  

Additionally, we created two presentations which displayed dynamic transformations of the 
expression and varied in whether the history of the derivation was displayed or not. The dynamic 
history worked examples showed looping videos of the transformation process through a screen 
recording. For example, to transform 2(t−1)+3(t−1)=10 to 2t−2+3(t−1)=10, students watched 
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as the 2 was dragged over the parentheses to enact the transformation and record the result of the 
action on a new line (Figure 2). Each step of the problem was shown on the following line and a 
history of the steps taken was displayed sequentially. The transformations in the dynamic no 
history presentation were identical to those in the dynamic history presentation, but all occurred 
on one line of the equation without creating a derivation history. 
 

 
Figure 2: The Dynamic History Presentation Shows the Process of Each Transformation 

Approach to Analysis and Results 
Research Question 1: Perceived Helpfulness Ratings of Worked Example Presentations 

To first compare how students rated the different worked example formats, we treated 
students’ ratings (on a 6-point scale) as a continuous variable (Robitzsch, 2020). A one-way 
ANOVA revealed a significant effect of worked example presentation on students’ rating, F(5, 
648) = 5.76, p < .001. Post hoc comparisons using Bonferroni correction indicated that the mean 
rating for the static concise presentation (M = 5.17, SD = 1.21) was significantly higher than the 
dynamic no history (M = 4.22, SD = 1.56), sequential extended (M = 4.59, SD = 1.44), and 
dynamic history (M = 4.60, SD = 1.53) presentations, ps < .05. Further, the mean rating for the 
static extended presentation (M = 4.92, SD = 1.31) was significantly higher than the dynamic no 
history condition (M = 4.22, SD = 1.56), p < .01 (Figure 3). There were no significant differences 
in students’ rating between the sequential concise presentation (M = 4.61, SD = 1.38) and any of 
the other presentations.  

 

 
Figure 3: Average Perceived Helpfulness Rating of Each Worked Example Presentation 
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Research Question 2: Themes Among Students’ Explanations 
Next, we identified common themes in students’ explanations of why they found each 

worked example helpful or unhelpful. Two researchers independently coded the 654 
explanations with 79% initial agreement and then resolved discrepancies together to create the 
final codes. The following themes emerged: amount of content, video speed, dynamic coherence, 
and visual features (Table 1). Importantly, students’ explanations were coded as whether they 
included a reference to one or more of the themes rather than whether students found each 
feature to be a positive or negative feature of the worked example presentation. 
 

Table 1: Themes Identified Across Students’ Explanations  
Theme Definition Student Example 

Amount of 
Content 

Comments on the quantity of information 
presented in the worked example 

“I like seeing each step in the 
problem (regardless of how "trivial" 
the step is). It helps me see the train 
of thought that I'm supposed to be 

having while solving the problem.” 

Dynamic 
Coherence 

Comments on the presence or absence of 
fluid transformations and transitions that 

connect steps and actions. 

“The transitions may have helped 
but made it more visually 

confusing” 

Speed Comments on the speed of the 
animations 

“It was very slow and hard to focus 
on” 

Visual 
Features 

Comments on visual features such as 
font, spacing, styling, and format 

“…The font is very clear…” 

 
The themes identified were not exhaustive or mutually exclusive: students’ explanations 

could be coded as pertaining to none, one, or more than one theme. As a result, 303 of the 654 
explanations were not labeled as matching any of the above themes. For example, one student 
explained the problem-solving process rather than describing why they found the example to be 
helpful or unhelpful: “By using the distributive property, the 3 was multiplied to the h and the 
−2, and the 5 was multiplied to the h and the −2. Like terms were added together, and h was 
isolated by simple algebra.” Conversely, another student’s reaction to the sequential concise 
worked example referenced amount of content, video speed, and dynamic coherence:  

While this animation laid out all the necessary steps to solve the equation, the steps were 
revealed somewhat spastically and it was almost startling to the eye to watch the equation 
being solved. Additionally, this animation left the viewer with little time to slowly work 
through the problem at their own pace and go back to a previous step if they were confused. 
This is because the format of this animation was a bit stressful. 
Table 2 presents the frequency of explanations that were labeled as containing one or more of 

the described themes by condition and overall. Students commented most often on the amount of 
content presented followed by the dynamic coherence of the worked examples and speed of the 
worked example. Miscellaneous visual features such as font and format were less often noted.  
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Table 2: Frequency of Themes Across Conditions 
 Theme 

Worked Example 
Condition 

Amount of Content Dynamic 
Coherence 

Speed Visual 
Features 

Static Concise 15 20 18 6 

Static Extended 30 11 5 6 

Sequential Concise 33 17 30 9 

Dynamic History 16 36 12 9 

Sequential Extended 16 24 19 6 

Dynamic No History 31 31 21 7 

Total 141 139 105 43 
 

 Research Question 3: Students’ Explanations for Most and Least Helpful Presentations 
Finally, to delve deeper into how students attend to features of worked examples and to 

contribute findings to cognitive load and perceptual learning theories, we explored how students’ 
reactions to the static concise and dynamic no history presentations may explain their highest and 
lowest helpfulness ratings, respectively (Table 3). A closer inspection revealed that students 
found the static concise worked examples familiar and helpful because students could self-pace 
how they studied them. Twelve students praised the opportunity to self-pace themselves; further, 
four students noted that they would have preferred to also have instructional explanations 
accompany the static concise worked example. On the other hand, nine students positively noted 
that the dynamic no history presentations were helpful by providing explicit transitions between 
derivation steps while 38 students noted that the format caused confusion, and the derivation 
disappearing as each new line appeared required more effort and time to process. 

 
Table 3: Sample Explanations for Static Concise and Dynamic No History Presentations 

Static Concise Dynamic No History 

“the worked example was very helpful 
because steps were concise and 

understandable and the numbers didn't 
move around or disappear.” 

“Having all of the steps on the same line during 
the animation can be cumbersome if a student 

trying to learn the process has a specific question 
about a particular set and has to wait for the full 

animation to finish for it to restart.” 

“The example showed the steps, so I could 
understand the process. However, if I did 
not know how to do it already I may have 

been confused because there were no 

“This worked example really helped as it would 
physically move each number around so you 

would physically see what was happening and 
then show what it would produced so you would 
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written instructions of what the person 
did.” 

know where each number was going. This 
helped with visualizing what was taking place.” 

“With few steps, this is not too hard to 
follow. But with larger numbers or more 
written steps, this would easily become 

overwhelming!” 

“I think it would have been more helpful to see 
the steps written out statically rather than in a 

gif. It could be difficult to keep up, especially if 
you didn't understand a step right away.” 

“I could look at the whole problem at my 
own pace.” 

“Was way harder to follow what was happening 
without everything written out; once the 

directions disappeared I couldn't follow the 
solution anymore” 

Discussion 
This study is a foundational effort to explore how students respond to worked examples in 

ways that may not be reflected through learning gains alone. To integrate students’ perspectives 
on worked example designs for algebra, we asked college students to rate the helpfulness of six 
worked example presentations and to explain their ratings. We found that students rated the 
static concise presentation as the most helpful and the dynamic no history presentation as the 
least helpful. Students’ explanations for their ratings revealed that they commonly attended to the 
following elements of the worked examples: amount of content, dynamic coherence, speed, and 
other visual features. On the one hand, students revealed that the static concise presentation was 
familiar to previous classroom experiences and allowed for self-pacing, potentially supporting 
students’ chances to self-regulate their learning. On the other hand, the dynamic no history 
presentation required more effort to process, rendering it less helpful. These findings advance 
cognitive theories of mathematics learning and provide implications for researchers and teachers. 

Our finding that students rated the static concise presentation as the most helpful aligns with 
cognitive load theory and explanations for the worked example effect. Specifically, students 
preferred the presentation with the least amount of information and content which likely 
prevented students from feeling as though they were studying redundant information or splitting 
their attention between different areas of the worked example (Sweller, 2020). This presentation 
is also a commonly used format for algebra worked examples (e.g., Rittle-Johnson & Star, 2007) 
and multiple students commented that they found it familiar with their past experiences. 

Further, the finding that students found the dynamic no history presentation the least helpful 
aligned with prior work comparing different formats of worked examples. In particular, Lusk and 
Atkinson (2007) exposed college students to worked examples on proportional word problems 
that were: fully-embodied with an animated parrot that used gesture and gaze, minimally 
embodied with a static parrot who could only talk, or voice-only worked examples that provided 
only an audio description for the worked example. They found that while learning gains were the 
highest in the fully-embodied condition, students who studied the minimally embodied worked 
examples had the lowest levels of cognitive load. Lusk and Atkinson’s (2007) results suggest 
that extra information presented through animation and dynamic videos may support learning but 
may also present more challenges to students as they study worked examples with animations. 
Although ample research has demonstrated the benefits of perceptual scaffolding in math to 
direct students’ attention towards important cues in notation (e.g., Goldstone et al., 2017), 
perhaps the fluid transformations displayed in the dynamic no history worked example 
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presentation provide extraneous distractions that increase demands on, rather than offload, 
students’ working memory.  

Students’ explanations for the static concise and dynamic no history presentations indicated 
important visual features to consider when modifying these worked example presentations in the 
future. Namely, students indicated that they would find the worked examples more helpful if 
accompanied by written explanations for each step in the derivation. Further, if researchers or 
instructors choose to use a dynamic version of worked examples in classroom instruction or 
online practice, slowing the video speed or providing students with the autonomy to pause videos 
may reduce the cognitive effort and time that students indicated needing to process the dynamic 
no history presentations. 

Importantly, we acknowledge that students’ ratings and explanations for the helpfulness of 
the worked examples may be influenced by their own content knowledge. Specifically, the study 
materials were developed based on middle-school math content and might have been too easy for 
our sample of college students. However, by conducting this study with college students, we 
received thoughtful reactions to the worked example formats that still provide insights that may 
inform future iterations of worked examples used for online instructional practice.  

Looking ahead, conducting comprehensive studies with algebra students may help delineate 
cognitive and non-cognitive mechanisms of learning and inform the design of worked examples 
for online learning environments. For instance, the six worked example presentations here were 
modeled after principles of cognitive load theory and perceptual learning theory; future studies 
should measure how students’ cognitive load is impacted and how students may be impacted by 
studying different worked example presentations at different stages of learning. Further, it may 
be worthwhile to investigate the relation between students’ learning gains, cognitive load, and 
perceptions of helpfulness. For instance, Whitehill et al. (2019) found that learners’ subjective 
ratings of various tutorial videos (i.e., how helpful the videos would be for others) were highly 
correlated with their later learning gains. Participants who found the videos helpful learned more 
than those who did not find the videos helpful, confirming their initial bias towards the videos. 
These findings suggest that learners might be able to gauge the effectiveness of instructional 
support or that learning may be modulated by learners’ perceived helpfulness. Regardless of the 
directionality of the influences, students’ perceived helpfulness of the instructional materials may 
be closely related to learning outcomes, warranting further investigations of how this effect may 
impact the effectiveness of worked examples. 

Analyzing students’ perceptions of six worked example formats revealed that students prefer 
worked examples with minimal instructional content in a static image rather than worked 
examples with animations and fluid transformations between steps. These findings provide 
insights for researchers and teachers as they design algebra worked examples for online settings. 
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This study explores a spatial reasoning learning trajectory of a student with difficulty in 
mathematics. Using a teaching experiment methodology across 15 instructional sessions, we 
observed how the student responded to instruction based on an established 2D shape 
composition learning trajectory (Sarama & Clements, 2009). A narrative microgenetic analysis 
identified conditions that were likely to have promoted learning. The analysis shows the 
student’s actual trajectory was similar to that of the hypothesized learning trajectory. 
Challenges to progress emerged around teacher-guided components of instructional support. We 
describe how a student-centered approach and mathematizing through specific praise was 
generative of learning, while explicit guidance was not. We discuss how the guiding conjecture 
of the teaching experiment evolved and how it is situated within the broader literature base. 

Keywords: Learning Trajectories and Progressions, Students with Disabilities, Geometry and 
Spatial Reasoning.  

Students with learning disabilities and math anxiety often experience dissonance in 
mathematics learning spaces. The “clamor” created for the individual as they interact with 
mathematics and with others in the mathematics environment can, at times, be intense. This work 
centers the learning experience of Eva, a nine-year-old student with learning disabilities and 
anxiety. We wish to take an anti-deficit stance and refer to Eva as a student who has experienced 
considerable difficulty in mathematics learning situations. 

An approach to instruction that has potential for harmonizing the learning environment for 
students who have experienced difficulty in mathematics is the use of learning trajectories (LTs). 
We conducted a teaching experiment with Eva that investigated spatial reasoning LTs. Here, we 
present a narrative microgenetic analysis of one of those trajectories, Eva’s actual 2D shape 
composition LT and describe features of the experience that were supportive of and hindrances 
to her progress. 

Theoretical Framework 
In the United States, mathematics interventions are commonly supplemental programs 

intended to provide more intensive and individualized support (Powell et al., 2013). There is a 
consensus among researchers that students in interventions benefit most when this support is 
designed to be systematic (Fuchs et al., 2021). Systematic instruction includes features such as 
connecting to previously learned mathematics, using accessible number and visual 
representations, and gradually increasing complexity.  

However, there are disagreements around instructional delivery format and what should 
structure the increasing complexity across lessons. Many researchers contend that instructional 
delivery must incorporate explicit, direct methods (e.g., Grigorenko et al., 2020). In contrast, 
other researchers are using carefully structured sequences of tasks that build on students’ 
thinking and direct their attention to mathematical relations without initial explicit guidance 
(e.g., Hunt et al., 2020; Xin et al., 2016).  
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LTs offer another potential way to provide structure to support the learning of students who 
have experienced difficulty in mathematics learning situations. Research has shown positive 
effects of mathematics instruction based on LTs for young students at risk for later difficulty in 
mathematics (Clements & Sarama, 2007; Clements et al., 2019; Clements, Sarama, Baroody et 
al., 2020). Further, research indicates that instruction based on geometry trajectories can support 
learning in other mathematical domains and support executive functions which have been shown 
to be important to mathematics achievement (Clements et al., 1997; Clements, Sarama, Layzer et 
al., 2020; Schmitt et al., 2018). 

LTs structure learning through developmental progressions, sequenced learning goals based 
on the progression, and tasks designed to support progress toward the goals (Sarama & 
Clements, 2009; Simon, 1994). The systematicity provided by the developmental progression is 
something that distinguishes instruction based on LTs from instruction that is more typical of 
intervention contexts for students who have experienced difficulty in mathematics. Whereas a 
typical intervention approach is to identify components of the target knowledge or skill and 
provide instruction for each component, instruction based on an LT focuses on intermediary 
phases of reasoning or acting that culminate in the desired knowledge. Simply put, rather than 
breaking a mathematical task down into smaller parts in order to learn how to do it, the ability to 
perform the task is built up “naturally” based on a students’ current knowledge. Tasks can be 
designed to draw on a variety of instructional delivery formats–explicit instructional principles, 
incorporate multi-modal delivery and response, or first elicit student thinking before guiding that 
thinking toward more sophistication and abstraction.   
2D Shape Composition as a Developmental Progression 

The 2D shape composition LT (Clements & Sarama, 2021; Sarama & Clements, 2009) 
involves children gradually developing understanding of and attending to geometric attributes 
and mentally anticipating results of combining shapes. At an early stage of the trajectory, Piece 
Assembler, when children begin to put smaller shapes together to compose larger shapes, they do 
so through trial-and-error. At the next level, Picture Maker, children can combine several shapes 
to make part of a picture but still use trial-and-error. They select a shape based on a general 
shape or approximate side length, and can fill in puzzles that indicate the placement of the shape 
(interior lines are present). When children reach the Shape Composer level, they can anticipate 
shapes that are needed to fill in a larger region and choose shapes considering angles and side 
lengths. They can also intentionally use rotation and flipping to correctly orient shapes. This is 
followed by Substitution Composer in which children use trial-and-error to make multiple 
versions of a composite shape by combining shapes in different ways. The subsequent levels, 
Shape Composite Repeater and Shape Composer--Units of Units, involve understanding 
composite shapes themselves as part of larger shapes and working with patterns that combine 
composite shapes.   

Method 
We describe a teaching experiment with Eva, followed by a narrative microgenetic analysis. 

Teaching experiments apply methodological consistency within a naturalistic setting (Confrey & 
Lachance, 2000; Steffe et al., 2000). A guiding theory or conjecture is tested through intentional 
teaching, data collection, and on-going analysis. The conjecture that guided this teaching 
experiment is that an established LT supplemented with individualized supports can facilitate 
learning in a student who has experienced difficulty in mathematics learning situations.  

This narrative microgenetic analysis had two important elements: (a) focusing on identifying 
conditions that might promote learning (Lavelli et al., 2005; Siegler, 2006), and (b) identifying a 
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plot that links data as unfolding temporal development (Polkinghorne, 1995). The first element, 
conditions that promote learning, is based on a density of observations during a period of time 
during which we hope to see change. These observations can describe types of statements or 
behaviors, how the statements or behaviors change, the rate at which change occurs, possible 
sources of change, and how widely generalized the knowledge (Siegler, 2006). The second 
element, the resulting “story,” gives shape to a multitude of factors that are at play. 
Participants 

Eva is a multi-racial girl living in the western United States. At the time of this teaching 
experiment, Eva was nine years old and in grade 3. Two years prior to this study, Eva underwent 
a neuropsychological evaluation which identified the following challenges: attention deficit with 
unspecified impulse-control and conduct disorder, speech-sound disorder, specific language 
disorder with impairments in written language and mathematics, and generalized anxiety. Eva 
attends a public charter school in a small city and has received special education services in a 
pull-out program (“resource room”). Upon meeting with Eva’s mother, we discussed Eva’s 
difficulties in mathematics and talked about ways to provide her with additional academic 
support without increasing her anxiety. We gained informed parent consent and student assent 
following guidelines established by the university’s Institutional Review Board.  

We recognize our roles as participants in this research. As a teacher, one of us conducted 
the teaching experiments in relationship with Eva and her mother, who was present for all the 
sessions. This relationship involved negotiating goals, activities, what was to be attended to and 
what was not, as well as negotiating interpersonal interactions and trying to establish trust. As 
researchers, we both continue this relationship with Eva through our interpretations of the 
videos, transcripts, and memos. We take the position of bracketing ourselves into this narrative, 
rather than attempting to position ourselves outside (Connelly & Clandinin, 2006). 
Teaching Experiment Procedure 

The first author, Angie, conducted all of the teaching experiment sessions. The sessions took 
place in the winter and spring of 2020 amidst the COVID-19 pandemic. The meeting dates were 
flexible to allow for family needs and local quarantining requirements. All sessions took place at 
Eva’s home, and Eva’s mother was present to support Eva’s well-being and engagement. There 
were 15 teaching experiment sessions, each ranging from 30-45 minutes. Due to the pandemic 
and to limit factors that might contribute to Eva’s anxiety, it was not possible to have an 
additional researcher present during the sessions. During each session, Angie asked Eva’s 
permission to video record the activity and only recorded when Eva stated she was comfortable 
with it. We recorded nine of the 15 sessions. 

Tasks described in this paper come from the 2D shape composition LT (Clements & Sarama, 
2021; Sarama & Clements, 2009). These tasks involved placing pattern blocks (colored, wooden 
blocks in shapes of triangles, squares, trapezoids, hexagons, and two different rhombuses) into 
“puzzles” that provided outlines of a composite shape (puzzles may contain all, some, or no 
interior lines). We were open to adjusting the sequence of tasks and delivery format as needed to 
support Eva’s engagement and documented the nature of and rationale for any changes to the LT. 

We used a planning protocol for documenting instructional decisions and reflections on 
Eva’s activity. The protocol included prompts for observations, outcomes, adjustments made, 
and rationale for adjustments. These plans were shared with two colleagues. One colleague, with 
expertise in early mathematics instruction for students with learning disabilities, advised on the 
tasks and supports. A second colleague, with experience with children with anxiety, advised on 
the plans in light of Eva’s affective responses. 
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Data Sources 
Data sources were the planning protocols previously described, field notes from each session, 

photographs of student work, videos and transcriptions, and a post-hoc observation protocol. The 
second author, Aysia, completed the post-hoc observation protocol as a way to triangulate 
observations and interpretations of Eva’s responses. This protocol recorded several features of 
the interactions: the task description, student behaviors (strategies, demonstrations, comments), 
teacher behaviors (explanations, providing time to work without interruption, additional 
supports), and any other observations. Aysia completed the protocol for each video. It was 
common to pause and re-watch segments of a video file multiple times to capture all necessary 
data. 
Data Analysis 

We used a form of narrative analysis adapted for microgenetic studies that can account for 
the multidimensional nature of learning in individuals (Lavelli et al., 2005). This approach 
comprises five stages. The first involves viewing videos repeatedly to identify a list of potential 
“frames,” the specific viewpoints or phenomena which could be a focal point for analysis. In the 
second stage, we constructed descriptive, chronological narratives, one for each session of the 
teaching experiment to document the sequence of events. To ensure accurate and comprehensive 
narratives, we each wrote an initial narrative for half of the sessions and then reviewed and 
revised the narratives written by the other. Thoughts related to frames, explanations, 
interpretations, questions or reflections were recorded in a parallel set of memos. In the third 
stage, we used the chronological narratives to discuss possible configurations of frames that 
seemed profitable ways of portraying learning. This study presents the frames of Eva’s activity 
within the 2D shape composition LT and Eva’s response to components of instructional support. 
The fourth stage involved re-reading the chronological narratives to look for evidence of stability 
or change over time and to develop stories that synthesize a preliminary “plot.” Evidence to 
confirm or refute this plot was then gathered through an in-depth analysis of the data sources 
with particular attention to overt behaviors and strategies. In the fifth and final stage of analysis, 
the stories and evidence were used to create a narrative that synthesizes our views on Eva’s 
experience.  

Findings 
We conducted a microgenetic study of Eva’s learning experience with LTs. We present the 

frames of 2D shape composition activity and Eva’s response to components of instructional 
support in narrative form, highlighting Eva’s responses we believe are representative of Eva’s 
experience.  
The Story of Eva’s 2D Shape Composition Trajectory 

Sessions 1—4: Piece Assembler. In the first session, Eva did not want to solve puzzles, and 
she abandoned the activity. She returned when asked if she wanted to create her own picture, and 
she created a figure from a favorite cartoon with each block playing a unique role in the picture 
(i.e., one shape for each part of the picture, no shared sides). In the next sessions, Eva’s activity 
suggested she recognized triangles, squares, and hexagons, but she did not name them. She used 
trial-and-error to fill shape outlines. When asked why she picked a particular shape, she would 
describe the shape as “skinny” or point at an angle or single side without further responses. We 
used “mini-puzzle” task cards with outlines of 2 shapes to control complexity and encourage 
Eva’s intentional selection of shapes and her use of turning to orient them appropriately. Eva 
created her own picture of a dog in which three shapes combined to make a part of the picture 
(dog’s head and ears). See Figure 1 for photos of Eva’s work at this level. 
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Figure 1. Images of Eva’s work at Piece Assembler level (sessions 1—4).  

 
Sessions 5–7: Picture Maker. Eva placed several like shapes together to create sections of a 

puzzle when the interior lines were provided. She found this “easy” and asked for harder puzzles. 
We provided puzzles that had fewer interior lines but with some exterior line “cues” such as 
clear indicators of a triangle or rhombus. She continued to select recognizable shapes first. For 
example, she filled a rhombus with two triangles, thus composing without an interior line, but 
also shared she could have used “the red piece” instead. See Figure 2 for images of Eva’s work 
during these sessions.  
 

 

Figure 2. Images of Eva’s work at Picture Maker level (sessions 5—7). 

Sessions 8-14: Shape Composer. Eva described puzzles with interior lines provided as easy, 
and now she began to fill in those with fewer interior lines and more shared sides. During the 
first sessions at this level, Eva was showing more evidence of intentional actions by looking at 
the picture and then selecting a particular block. When a selected shape did not work at first, 
rather than try to turn and orient it differently, Eva would return to the container and look for 
something else. She showed more perseverance, trying several blocks before abandoning the 
task. Once she placed a block that appeared to fit but in combination with additional blocks no 
longer did so. Rather than replace any, she added a block that overlapped others to fill the empty 
space. 

In later sessions at this level, Eva spent more time thinking about what would fit before 
selecting a block. Eva began to intentionally turn the blocks to orient them. Also, she began to 
see herself as an expert and wanted harder puzzles. We introduced pentomino puzzles, and Eva 
returned to trial-and-error and resisted guidance or suggestions. In session 14, though she still 
used trial-and-error, she did use rotations and flips to try different orientations of the pentomino 
to see if it fit. Images of Eva’s work at Shape Composer level are shown in Figure 3. 
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Figure 3. Images of Eva’s work at Shape Composer level (sessions 8—14). 

 Session 15: Substitution Composer. Despite her previous confidence, on this day Eva did 
not feel ready for “expert” puzzles. She did complete a pentomino puzzle with two pieces and no 
interior lines which shared a two-unit long side by applying turns and flips. She filled a pattern 
block puzzle two different ways, but she became frustrated on the third attempt and said she 
“tried her hardest.” 

  
Figure 4. Image of Eva’s work at Substitution Composer level (session 15). 

The Story of Eva’s Response to Instructional Supports 
Having learned that Eva was very anxious about math and that math instruction usually 

focused on numbers, we decided to focus on spatial reasoning tasks. Perhaps unsurprisingly, a 
challenge arose during the first session. Eva tried a few pattern blocks to fill in a puzzle and did 
not find they fit and said she wanted to do something else. Angie suggested looking at another 
section of the puzzle, but Eva got mad, stood up from the table, grabbed a scooter, and rode 
around her home’s patio. Eva returned when Angie said they would do something different and 
brought out a whiteboard and markers. At the end of the session, Angie asked if Eva would make 
any picture she wanted with the pattern blocks. Eva made an image of a cartoon character she 
liked.  

Based on interactions like that just described, Eva’s engagement was a primary factor in task 
selection and instructional decisions. We selected activities that would be accessible to her and 
provide her with quick successes. For example, in the second session, we gave Eva a puzzle with 
no shared sides and easily recognizable shapes (i.e., square, triangle, and hexagon). For the next 
few sessions, we gave Eva mini-puzzle cards, each with two blocks, gradually increasing the 
proportion of the shared sides and gradually introducing less recognizable shapes (i.e., trapezoid 
and two rhombuses). Eventually these cards only provided the outline with no interior line. After 
Eva completed a few of these mini-puzzles, we offered her a larger puzzle that incorporated the 
shapes she had just worked with and asked if she wanted to try it. Using this approach of offering 
accessible puzzles and choices, Eva began filling in more complex shapes, perhaps due to 
increasing confidence or awareness of attributes or both. 

We initially planned to discuss mathematics involved in tasks and to mathematize her 
activity to support her naming of shapes, noticing and describing attributes, and orienting shapes 
to compose a larger shape. However, when Angie discussed how many blocks were used in a 
section or tried to show the difference between angles of different shapes, it elicited avoidant 
behaviors–stopping participation, leaving the table, and expressions of frustration, anger, or 
sadness. This was even more evident when Angie asked Eva for a verbal response in return. Eva 
expressed that she didn’t know how to answer Angie’s questions or answered by repeating what 
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Angie had just said. The following transcript illustrates one of the times when Eva was upset by 
Angie’s approach to providing guidance:  

Angie: But you know what I see? I see lots of gaps and holes. I wonder if there's another way 
that might work better. Is there another way that will work better?... [Eva starts making 
humming noises] I just want you to show [Angie pauses]…. Does that work? …[Eva 
makes a noise like “grrr”] 

Eva: This is right. 
Angie: This is right? [Eva makes a noise like “grrr”] How do you know that? 
Eva: [sounds as though she is growling out the words] It looks just like it. 
Angie: It looks just like it? 
Eva: [loudly] Yes it does. 
Angie: Okay. Okay, all right. 
(Simultaneously) Angie: Eva, I'm gonna use that description that you just used…   Eva: I’m 

in the yellow.  
(Simultaneously) Angie: I'm going to ask you to….   Eva: I’m in the yellow!  
Eva: I…am...in…the…yellow! 
Angie: Yes, I heard you say that. 
Eva: You don’t continue if you're in the yellow. 

Angie stopped and looked to Eva’s mother who explained that when at school ‘in the yellow’ 
means that Eva is upset, and it is a time to bring in tools to help Eva regulate her emotions. 

Eva consistently responded negatively to guidance in the form of explicit explanations, 
discussion of math involved in the tasks, or corrective feedback. However, if mathematizing 
Eva’s activity came in the form of specific praise, such as, “Wow! What great problem solving! I 
saw you turn the block to find out if it would fit another way,” it had a much more positive 
effect. Angie would mimic Eva’s activity while giving the praise, emphasizing important terms 
and motions. Eva would then continue to draw on that behavior or strategy in future puzzles. Eva 
also appeared to learn the names of some of the pattern block shapes after hearing them in the 
context of praise across several sessions.  

We settled on an approach that offered Eva choices of puzzles that very gradually increased 
in complexity and which were likely to elicit some of the behaviors or strategies we hoped to see. 
We then used praise to draw her attention to those elements. Thus, our conjecture needed to be 
revised: engagement and progress would be supported by a gradual, systematic increase in 
complexity allowing for student choice and mathematizing through specific praise. 

Over the course of the sessions, Eva began to express confidence. In session 7, Eva said she 
wanted “a very, very hard one.” When Angie asked what she would do if it was too hard, Eva 
said she would “think hard about the shape.” In session 8, she said, “Give me all challenge.” In 
session 11, she picked a puzzle she said “would be hard for other people.” By session 14, Eva 
said she was an expert and didn’t know why she had to do the puzzles again. For this session, we 
had also planned to switch to puzzles that involved pentominoes rather than pattern blocks to 
encourage her attention to “turning” and “flipping.” Eva’s interest in the new puzzles was 
piqued, but it was clear when these were introduced, that her persistence with these still 
depended on early successes. 

Discussion 
This microgenetic study provides information on several different aspects of Eva’s learning: 

presence of change, rate, stability, sources of change, hindrances, and generalization (Siegler, 
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2006). Eva’s actual trajectory in 2D shape composition aligned with the established LT 
(Clements & Sarama, 2021; Sarama & Clements, 2009). Eva demonstrated increasing ability to 
use multiple pattern blocks to compose larger composite shapes with fewer lines as interior cues. 
She spent more time working in Shape Composer level than in the previous levels as she became 
more intentional in selecting and rotating blocks to complete the puzzles. Rather than suddenly 
demonstrating multiple actions that comprise a higher level in the progression in a single session, 
Eva demonstrated gradually more sophisticated actions-on-objects across sessions. These 
changes also appeared to be stable. In fact, Eva found tasks of a similar level of difficulty “too 
easy.” Eva also appeared to be close to generalizing some use of attributes and transformations 
(i.e., turning and flipping) to solve problems with pentominoes. 

A teaching experiment intentionally applies and tests a conjecture in real teaching and 
learning interactions (Confrey & Lachance, 2000; Steffe et al., 2000). Teaching, data collection, 
and analysis are responsive to the students, and conjectures are evaluated and revised 
accordingly. We found that Eva quickly abandoned tasks for which she did not possess a ready 
solution strategy. We also found that directing Eva’s attention prior to activity, providing explicit 
explanations or demonstrations, or drawing attention to challenges were ineffective in engaging 
her with the task. Our conjecture evolved to state that a gradual, systematic increase in 
complexity which allowed for student choice and mathematizing the student’s activity through 
specific praise would support engagement and progress. As we adjusted instruction to align with 
this conjecture, we found Eva expressed growing confidence and willing engagement in 2D 
shape composition tasks. We ensured she had the opportunity to choose puzzles and begin to 
solve them without any guidance at first, allowing her the opportunity to approach the task in 
whatever way made sense to her. We ensured systematicity by carefully selecting or creating 
puzzles that gradually increased in difficulty. We supported her continued use of strategies or 
vocabulary by providing specific praise when strategic thinking was observed and naming the 
shapes she had used.  

A noteworthy aspect of these findings is that the revised conjecture problematizes 
recommendations that instruction intervention contexts should incorporate explicit explanations 
and specific corrective feedback (Grigorenko et al., 2020; Fuchs et al., 2021). A direct, explicit 
instructional approach did not encourage Eva’s engagement with mathematical tasks. Rather, this 
study adds to other research which has shown students who have experienced difficulty in 
mathematics learning situations can benefit from instruction which elicits and builds on student 
thinking (e.g., Hunt et al., 2020; Xin et al., 2016). In Eva’s case, that guidance was most 
successful when it also celebrated her successes. We are continuing to analyze Eva’s responses 
to better understand how guidance impacted her engagement in other LTs. We believe these 
findings add to the literature which suggests LTs can provide a structure for establishing more 
“harmonious” mathematics learning situations for students like Eva. 
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Drawing from a sample of 63 fifth grade students in one school setting, we conducted a pilot 
study exploring students’ self-reported mathematics identity and how it correlated with math 
achievement and experiences in their mathematics classroom. Data were analyzed using linear 
modeling to determine which variables were predictive of mathematics identity. Results indicate 
that achievement and students’ classroom experiences associated with assessments, a focus on 
memorization, and teacher strategies were predictive of their mathematics identity. This work 
informs the field by expanding on our understanding of how important aspects of students’ 
classroom experiences contribute to their mathematics identity development.  

Keywords: Affect, Emotion, Beliefs, and Attitudes; Mathematics Identity 

Decades of research has shown that non-cognitive factors matter when it comes to student 
persistence in mathematics (e.g., Boaler & Greeno, 2000; Maltese & Tai, 2011; Sasson, 2021). 
More specifically, mathematics identity is connected to students’ career choice in mathematics 
and mathematics-related fields (Cribbs et al., 2020; Godwin et al., 2016). Recent research 
suggests that students’ ninth grade mathematics performance, high school STEM GPA, and their 
mathematics identity are a strong predictor of twelfth grade students’ mathematics achievement 
(Brohrnstedt et al, 2021).  Further Zhang and colleagues (2021) found that when compared with 
other affective measures (self-efficacy, math interest), “mathematics identity had a significant 
relationship with mathematics achievement” (p. 60). These studies highlight the essential role 
that mathematics identity has on students’ engagement and continued participation in 
mathematics. However, little research explores this construct quantitatively to better understand 
trends in identity development throughout students’ K-12 schooling experience or how teachers 
are supporting students’ mathematics identity development for students in general (expanding 
beyond small groups of students). Graven and Heyd-Metzuyanim (2019) indicate that all but two 
studies in their review of literature on mathematics learner identity had eight or less participants. 
Additionally, middle grades mathematics (5th-8th grade) is a pivotal time in a student’s schooling 
as it is often a time when attitude and interest toward mathematics begins to drop (Harter, 1981; 
Marsh, 1989; Zhang et al., 2021). However, there have been calls for teachers to help students’ 
develop a productive mathematics identity, seen through various NCTM publications (Aguirre et 
al., 2013; Fernandes et al., 2017) as well as in the new CAEP standards for preparing secondary 
mathematics teachers (NCTM, 2020).   

Theoretical Framework 
In our study, mathematics identity draws from Gee’s (2001) work framing identity in terms 

of being a certain kind of person and  Cobb and Hodge’s (2011) extension of that work into 
specific aspects of identity – with this study focusing on core identity. Core identity is described 
as being a more enduring sense of identity, which becomes more stable as experiences 
accumulate (Cribbs et al., 2022). The construct of mathematics identity is comprised of three 
sub-constructs, recognition, interest, and competence/performance, and has been shown to be a 
valid and reliable measure with adults (Cribbs et al., 2015). Interest is defined as an individual’s 
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desire or curiosity to think and learn about mathematics. Recognition is defined as how the 
individual views themself and how the individual perceives others view them in relation to 
mathematics. Competence/performance is defined as an individual’s beliefs about their ability to 
understand and perform mathematics.  

With these studies and calls from NCTM in mind, the purpose of this study was to develop a 
mathematics identity instrument that could be used with middle grade students and explore how 
this measure could be used to examine how mathematics identity correlates with other variables 
of interest, such as achievement and teacher practice. For the purpose of this paper, the 
instrument development component is not included. Aligned to this purpose, the following 
research question guided the current study: Are students’ mathematics achievement and 
classroom experiences in their mathematics classroom predictive of their mathematics identity? 

Methods 
Participants 

This study include 63 students in grade 5 in one school in a mid-western state. These students 
were in different blocks with the same mathematics teachers. Sixty-three percent of the students 
identified as male, 35% identified as female, and 2% did not respond. Forty-nine percent of the 
students identified as White, 14% as multicultural, 13% as American Indian/Native American, 
13% as Other, 5% as Black/African American. Additionally, 5% indicated they did not know 
their race. The average age of students was 11 with a range of 10 to 12 years old.  
Data Collection and Analysis 

Paper and pencil surveys were administered at the end of the spring semester by one member 
of the research team. Survey items included demographics (e.g., age, race), a measure for 
mathematics identity, student math achievement, and items related to students’ experiences in 
their mathematics classroom. 

The measure for mathematics identity included 11 items on a Likert-scale (1= not at all, 
5=very much so). Four items aligned with the sub-construct recognition (e.g., I see myself as a 
math person). Three items aligned with the sub-construct interest (e.g., Math is interesting), and 
four items aligned with the sub-construct competence/performance (e.g., I understand the math I 
have studied). Mathematics identity items drew from prior research indicating that these items 
were valid and reliable for adult students (Cribbs et al., 2015). The mathematics achievement 
variable was measured with the question “on average what grade did you make in math this 
year” with responses ranging from 1=A to 5=F. Students’ responses to classroom experiences 
included items related to technology (e.g., I used a calculator on tests), conceptual versus 
procedural learning (e.g., …during math class this year…required memorization of procedures in 
math class), mathematics teacher characteristics (e.g., my teacher was enthusiastic about 
mathematics), collaboration and discussion (e.g., we worked in small groups), connections and 
relevance of content (e.g., my teacher makes connections to real-life math applications), and 
classroom environment (e.g., students were disrespectful to you). These items were on a Likert 
scale (1=Never, 5=Always) and drew from prior research (Cribbs et al., 2020).  

Linear modeling was conducted to address the research question, exploring if students’ 
mathematics achievement and classroom experiences in their mathematics classroom predicted 
students mathematics identity.  

Results 
Table 1 details the results of the linear model. The dependent variable was the mathematics 

identity construct and the independent variables included students’ mathematics achievement and 
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perceptions of classroom practices. Only significant variables, with a significance level of p < 
0.05, were included in the final model. Gender was also tested in the model as a potential control 
variable but was also removed as it was not significant.  

 
Table 1 Linear Model Predicting Students’ Mathematics Identity  

(n=63) Estimate SE t 
value 

p-value Effect size 

Intercept -4.21 5.56 -0.76 0.45  
Mathematics Achievement1 6.16 0.95 6.46 *** 0.59 
Classroom Experiences  
Required memorization of procedures in 
math class 

2.56 0.63 4.03 *** 0.40 

Tests or quizzes required new insight and 
creativity 

-1.97 0.70 -2.83 ** -0.30 

My teacher highlighted more than one way 
of solving a problem 

3.55 0.79 4.48 *** 0.44 

My teacher made mathematical errors -1.68 0.75 -2.23 * -0.21 
*p<0.05    **p<0.01 ***p<0.001 
Note: 1 this variable was reverse coded so that a higher value indicated a higher grade in the mathematics course 

 
The results indicate that students’ mathematics achievement (as shown by their math grade for 
the current academic year) was highly predictive of students’ mathematics identity. Additionally, 
four classroom experiences reported by students predicted mathematics identity. Two of these 
practices were negative predictors “tests and quizzes required new insight and creativity” and 
“my teacher made mathematical errors.” Positive predictors were “required memorization of 
procedures in math class” and “my teacher highlighted more than one way of solving a 
problem.” These results will be discussed in more detail in the next section.  

Discussion 
 While achievement predicting student outcomes is not a new finding, this study adds to 
literature by providing evidence of the correlation between student achievement and mathematics 
identity. Of the variables in the model, mathematics achievement had the largest effect size at 
.59, indicating a moderate to large effect. This finding is consistent with other research noting 
that students’ prior achievement was predictive of 12th grade students’ mathematics identity 
(Bohrnstedt et al., 2021). While that study explored prior achievement from 9th grade, this study 
indicates that this relationship exists even at the elementary level.  

The predictive classroom practices are more challenging to interpret. Three of the significant 
items, “required memorization”, Tests and quizzes”, and “mathematical errors” might align to 
the idea that students experiencing clear instruction could help them feel more competent with 
the math concepts. For example, prior research notes that students who experience instruction 
where teachers “explained ideas clearly” was predictive of students mathematics identity (Cribbs 
et al., 2020). These results could be representative of students need for a foundational 
understanding mathematical concepts in order to build their sense of competence and reduce 
their sense of anxiety. The last significant item related to the students’ teacher highlighting more 
than one way of solving a problem. It is worth noting that this item had the largest effect size 
after student achievement, indicating the influence it had on students’ mathematics identity. 
Having a chance to see different ways of thinking could be correlated to students’ mathematics 
identity in several ways. While seeing these various methods may aid in students understanding 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1618



(competence) with the content, this practice could also help students feel as if their ideas are 
being represented and shared with the class – potentially receiving validation from the teacher 
and/or their peers (recognition).  
 It is important to note that these results are very preliminary as the mathematics identity 
instrument has undergone additional revisions based on the findings from this pilot study. In 
addition, mathematics achievement and classroom experiences were self-reported by the 
students. However, students’ perceptions of what occurs in the classroom are essential to 
exploring and understanding students’ mathematics identity.  

Connecting to the Conference Theme 
This line of research, along with other work connected to mathematics identity, helps to 

provide a picture for how classrooms can serve as spaces for students to feel valued and 
supported. It is my hope that this unique approach to exploring identity through quantitative 
methods will serve to move the field forward and provide a lens for improving “learning 
conditions for each and every mathematics learner.” A measure for mathematics identity could 
provide an efficient way for researchers and/or educators to assess influences on students’ 
identity development. This could include interventions such as informal STEM programs for 
students or teachers embedding recommended equity-based practices based on professional 
development or literature.  
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This article presents the results of a research related to identifying and analyzing how university 
students built, modified, and refined their models to make sense of a situation where the step 
function underlies. A Model Eliciting Activity [MEA] was designed and implemented in an online 
environment. The participants in this study were 12 college-level first-term students. The 
theoretical framework that was used for the design of the activity, the implementation and the 
analysis of the results was the Models and Modeling Perspective. As a result, it was observed 
that the students were able to modify and extend their histogram models to step functions. 

Keywords: Problem solving, modeling, precalculus, technology. 

Introduction 
Among the different types of functions, we can find the step function. This type of function is 

important in the economic and social areas, among others, since it allows describing, 
manipulating, and predicting various phenomena close to everyday life (Kaput & Roschelle, 
2013). Furthermore, in calculus courses, the concept of a step function is a preamble to topics 
such as limits and continuity. 

Researchers such as Doerr, Ärlebäck & Stanic (2014), Kaput & Roschelle (2013), Mochón 
and Maroto-Cabrera (2002) have identified that students –at different educational levels– present 
difficulties in modeling situations close to real life associated with piecewise functions. As well 
as interpret graphs of this type (Mochón & Maroto-Cabrera, 2002). 

The objective of this research was to identify and analyze, based on models and modeling 
perspective [MMP] by Lesh & Doerr (2003), the models that university students built, 
developed, and externalized during the resolution of an MEA associated with the step function. It 
was interesting to know how the MEA could contribute to the development of students' 
knowledge about this function. The research was carried out through the virtual environment 
Zoom, as a consequence of the COVID-19 pandemic. The research question was, what models 
did the students build and externalize when solving the MEA "The Tokyo 2021 Olympic Games" 
in which the concept of step function underlies? 

Conceptual Framework 
Learning mathematics, based on the MMP of Lesh & Doerr (2003), involves a process of 

building, modifying, and refining models by students by engaging them in solving MEAs (Brady 
& Lesh, 2021; Sevinc, 2021). The models that are built at the beginning are often unstable, but 
these are continually refined and evolved to become shareable and reusable. Models are 
"conceptual systems (consisting of elements, relationships, operations, and rules that govern 
interaction models) that are expressed by external notational systems, and are used to construct, 
describe, or explain the behaviors of other systems" (Lesh & Doerr, 2003, p.10). 
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From the MMP, the design and implementation of MEAs are proposed as tools to engage 
students in the need to build models that enable them to describe, manipulate or predict 
phenomena close to everyday life. MEAs are designed based on the six principles for designing 
activities (Lesh, Cramer, Doerr, Post & Zawojewsky 2003): a) The Reality Principle, b) The 
Model Construction Principle, c) The Self-Evaluation Principle, d) The Model externalization 
Principle, e) The Simple Prototype, and e) The Model Generalization Principle. 
Lesh (2010) proposes a Quality Assessment Guide to analyze some criteria as shareability and 
reusability of tools and artifacts that students produce during MEAs. Shareability and reusability 
“are among the most important criteria which are emphasized implicitly or explicitly in MEA 
problem statements” (p. 17). The guide permits analyze the types of models that students build, 
develop, and externalize when solving an MEA. These can be of five levels of action: 1) the 
model requires redirection, 2) it requires major extensions and refinements, 3) it requires only 
minor editings, 4) it is useful for this specific data given, and 5) it is shareable and reusable. 

Based on the results of an investigation, based on the MMP and the covariational reasoning 
framework (Carlson et al., 2002), Montero-Moguel & Vargas-Alejo (2022) proposed a "Guide 
for the evaluation of models related to the concept of function [GEMF], which allows classifying 
the type of models built by students when solving MEAs that encourage the construction, 
modification, extension, and refinement of the function concept” (p. 226). Two of the models 
that the researchers proposed as part of the GEMF are as follows (Table 1): T1 Model, and T2 
Model. 

 
Table 1: Classification of models (extract taken from Montero-Moguel & Vargas-Alejo, 

2022, p. 227) 
Model T1. The model requires direction 

The model is not associated with the function (exponential, in this case) that allows to 
better describe, interpret, predict, and control the situation. Students associate a linear 
behavior to the situation. Students need additional comments from their classmates or 
questions that encourage reflection by the teacher, that allow them to redirect their way of 
thinking. 

In relation to covariational reasoning, students show level 1 of Carlson et al. (2002, p. 
358): “the images of covariation can support the mental action of coordinating the change 
of one variable with changes in the other variable (MA1)”. 

 
Model T2. The model requires major extensions or refinements 

The model is associated with the (exponential) function that best describes the situation; 
however, students are unable to dissociate linear behavior. The student needs to work 
further to obtain greater extensions or refinements. 

Regarding covariational reasoning associated with the function that best describes the 
situation, the student shows coordination and direction of the variables. Students’ reasoning 
relates to level 2 of Carlson et al. (2002, p. 358): " the images of covariation can support the 
mental action of coordinating the direction of change of one variable with changes in the 
other variable ". 
 
In this classification, the results of Carlson et al. (2002) about that the learning of functions 

requires students develop their covariational reasoning are considered. Covariational reasoning is 
defined as "the cognitive activities involved in the coordination two varying quantitative while 
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attending to the ways in which they change in relation to each other" (p. 357). Carlson, Larsen, 
and Lesh (2003) identified that involving students in solving MEAs allows revealing the 
development of their covariational reasoning. The MEAs "can be designed to promote a 
significant development of covariational reasoning in a short period of time, they have the 
potential to provide valuable information for researchers and teachers" (Carlson et al., 2003, p. 
470). That is, they allow observing the processes that students use to differentiate, integrate, and 
refine relevant constructs (Lesh & Doerr, 2003). 

Methodology 
The research was qualitative because one of the objectives was to know the type of models that 
the students built and how these were modified and refined when solving the MEA. In particular, 
the teaching experiments research (Lesh & Kelly, 2000) was used. This type of research focuses 
on “focus on development that occurs within conceptually rich environments that are explicitly 
designed to optimize the chances that relevant developments will occur in forms that can be 
observed”. (Lesh & Kelly, 2000, p. 192. One of the characteristics of the teaching of experiments 
is that the teacher is an integral part of the system he studies. By interacting with it, the teacher 
can observe how the student modifies, expands, and refines her knowledge when solving MEA 
(Lesh & Kelly, 2000).  

The participants were 12 students, from 18 to 20 years of age. They were starting the 
Mathematics I course in the first semester of the Bachelor of Economics, so they had not seen, as 
part of the curriculum, the concept of step function. The modality was online.  

The implemented activity (Figure 1) was designed based on the six principles for developing 
MEAs (Lesh & Doerr, 2003). The context was close to the students' career. The MEA was made 
up of three parts: a journalistic note of the context of the problem, questions about the context, 
and one problem. The mathematical idea behind the MEA is the step function. The students had 
to write a letter addressed to Alexa Moreno, as well as to gymnasts with similar difficulties to get 
a hotel accommodation which expense was the minimum possible from certain assigned budget 
as a loan. Data from three different hotels were provided (Figure 2). 

 

 
Figure 1: Extract from the MEA “The Tokyo 2021 Olympic Games”  
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Figure 2: Extract from the MEA. Data provided of the situation  

 
The implementation of the MEA was carried out in four phases, in an online environment. 

1. Resolution of the warm-up activity. During the class, the teacher sent the file with the 
journalistic note to the students through Zoom. Individually they read and answered the 
questions. The answers were discussed in a group session. 

2. Resolution of the Situation. The students were grouped into teams of four students to 
solve the MEA (teams A, B, and C). The teacher interacted through questions, constantly, 
with each team. 

3. Group discussion and closing of the session. The teams presented their letters, 
discussed, and evaluated them with the support of the teacher and the group. 

4. Resolution of the MEA as an extra-class task. The teacher asked the teams to build a 
new letter based on the final contributions –models–. 

The duration of the MEA implementation was approximately 110 minutes. The data sources 
were a) the video recording of the session, b) the letters, c) procedures by the students and d) the 
teacher's notes. For data analysis, two categories of the GEMF (Montero-Moguel and Vargas 
Alejo, 2022) were adapted to the characteristics of the step function. Two researchers analyzed 
the results. 

MT1, the model requires redirection. The model is not associated with the step function 
that allows describe and manipulate the situation. Students identify the variables and how they 
vary but have difficulty describing the relationship between them. Students can draw polygon 
graphs or histograms, even they can do only operations. They need additional feedback from 
their peers or the teacher to allow them to redirect their thinking. 

MT2 The model requires major extensions and refinements. The model is associated with 
the function that best describes the situation; however, students have difficulty dissociating the 
histograms from the step function. Even when they observe the relationship between the 
variables, they do not identify or find difficult to describe and interpret the relationship between 
the variables, for example in the points associated with the extremes of each interval of the step 
function in its different representations. 

Results and Discussion 
This section describes and discusses the results obtained by implementing the MEA. In 

particular, the types of models that were built, modified, and refined by the students of team B 
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are described and discussed. The evolution of the models of this team B is representative of what 
happened in the group.  
First Model  

Team B initially analyzed how much it would cost the gymnast to stay in each hotel for two 
weeks. The team found that she would have to pay $25,500 to stay at the first hotel, $24,500 at 
the second hotel, and $25,000 at the third hotel. As a result of the results obtained, the team 
carried out the following conversation. 

𝑏1: I think gymnasts can't stay in just one hotel… how much budget do we have? 
𝑏2: It is $21,500… if we consider that Alexa stays the first three nights in the first hotel, the 

next three nights in another hotel and so on? 
After these questions, the team redirected its way of proceeding. The team considered that 

the budget could be optimized if the gymnasts booked in two or more hotels during their stay. 
Observations to the first model. Team B related data based on their initial interpretation to 

the question posed in the problem. The model was not associated with the step function, it was a 
MT1. According to MMP “early models are expected to be relatively barren and distorted 
compared with later models” (Lesh, 2010, p. 17), “the things students see in a given activity 
often varies a great deal from one moment to another—as attention shifts from one perspective to 
another, from the big picture to details, or from one type of detail to another” (Lesh, Cramer, 
Doerr, Post & Zawojewsky 2003, p. 54). Also, the models that students built are shaped through 
interactions with their peers and the teacher. 

Second Model 
Team B rethought how the gymnasts would be housed and considered proposing a stay that 

included more than one hotel to fit the budget. 
𝑏4: Look, if Alexa and the others stay three nights at the Shinjuku hotel, they are only going 

to pay $6,000, then if she stays another three nights now at the Dragon Palace then she 
only will pay $4,500… that is already $10,500. 

𝑏3: Then you must consider the price for every three nights in the hotels and that it is… just 
see what happens from Sunday to Monday. 

𝑏1: From Sunday to Monday, you only pay $500 at the Tokyo Hotel… let is take that for the 
first week and that it is, we have week one and we do the same with week two. 

Once the team had finished comparing the accommodations costs for the gymnasts during 
their stay, team B plotted the number of nights on the x-axis and the price on the y-axis (Figure 
3). The team first plotted the points associated with the price per night of the plan of lodging and 
then joined the points using line segments. The team related the variables (number of nights and 
the price) by means of a polygonal-type graph, without giving meaning to the line segments 
drawn. That is, the team had difficulty coordinating the change in one variable with changes in 
the other variable (Carlson et al., 2002). 

Observations on the second model. According to Vargas-Alejo et al. (2016), it is common 
that students plot points and join them to represent situations of this type. Team B's model was 
not associated with the step function. The students needed to interact with their teacher, who 
through questions made them reflect on the relevance and meaning of the segments that joined 
the dots. The model was MT1 but compared to the first model, it has more representations where 
the identification of variables and how they are related is observed. 
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Figure 3: Polynomial type graph built by Team B 

 
Third Model 

Team B changed its way of thinking, since the teacher intervened in the discussion by asking 
the following questions: what is price? What do the plotted points mean in the context of the 
problem? What do the segments connecting the dots mean in the context of the problem? The 
team answered the first question as follows. 

𝑏3: Well, the price that Alexa is going to pay due to the hotel accommodation, right, teacher? 
𝑏2: The price is not... it would be the cost, right? It's just that the microeconomics’ teacher 

told us that the cost is what the good cost or the product [the student was trying to explain 
the concepts] and the price is the cost plus the profit. 

𝑏3: You are right teacher; it is the cost.  
The team answered the second question as follows.  

𝑏2: Look, where it costs three on the axis below [He pointed to the x-axis] there are three 
nights teacher, and there the gymnasts must pay $6,000, where there are six nights there 
they must pay $10,500 and so on. 

To answer the third question, the team had difficulties. 

𝑏4 : we don´t know teacher, they always come together, right? 
Based on this interaction, Team B changed their thinking and wrote their gymnasts' 

accommodations proposal in terms of cost per number of nights. The Team constructed a 
histogram (Figure 4). 

Observations to the third model. According to De Villiers (1988) and Vargas-Alejo et al. 
(2016) the students often create histograms to model problems like the one discussed in this 
document. It was necessary for team B to interact with their classmates and the teacher, during 
the group discussion (phase 3), so that they could analyze, redirect their way of thinking, and 
modify their model, which was still MT1. The team still had difficulty representing the 
coordination of the change of one variable with changes in the other variable (MA1, Carlson et 
al., 2002). 

 

Price 
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 Figure 4: Extract from Team B Letter 
 
Fourth Model 

During phase 3, the teacher asked the students to present their models and discuss them for 
review, comparison, and evaluation. The students identified that the step function model was the 
best to describe the situation. Team B presented the following model as an extra-class task 
(Figure 4 and Figure 5). 

 

 
Figure 4: MT2 of Team B  
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It can be seen in Figure 4 that team B modified the plan of lodging, in such a way that the 
gymnasts could pay a lower amount. The team proposed a stay of $18,500, that is, $1,000 less 
than the budget described in the third model. Figure 5 shows how the team described the 
planning through graphical and tabular representations. It considered that the gymnasts should 
pay $6,000 for the first three nights, then they should pay $3,000 for the next two nights, and 
finally they should pay $500; $9,500 for the first week. While, for the second week, the team 
considered that for the first three nights they should pay $6,000, for the next two nights they 
should pay $2,400 and, finally, for the fifth, and sixth nights they should pay $600. 

 

 Figure 5: MT2 of Team B 
 

Observations to the fourth model. Team B identified and related the variables that were 
involved in the situation through verbal, written, tabular, and graphic representations. The total 
cost was considered constant for each interval of number of nights. The team optimized the total 
cost of the gymnasts' stay compared to its previous proposal. It had difficulty denoting the 
endpoints of each interval of the step functions on their graph; however, the team managed to 
coordinate the direction of change of one variable with respect to the other variable (Carlson et 
al., 2002). The model that the team B built was associated with the step function, it can be 
classified as MT2. According to Kaput and Roschelle (2013), it is natural that students have 
difficulties in constructing graphs of the step function. Especially when they have not been 
taught in their math courses to model problems involving the use of constant and discrete 
functions. 

Final thoughts and conclusions 
In response to the question, what models did the students build and externalize when solving 

the MEA "The Tokyo 2021 Olympic Games" in which the concept of step function underlies? 
Team B students built and externalized two types of models: MT1, which was modified and 
extended from group interaction to become MT2. Although this last model still requires 
refinement, the model was no longer a histogram, it had characteristics of the step function. The 
reported findings show us how the students developed knowledge about the step functions and 
gave it meaning in terms of the proposed situation. 
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This paper describes the conceptions about complex numbers that a group of university students 
has, these were built from the application of an activity sequence centered on these numbers. 
This sequence is based on the APOS theory, some aspects of semiotic representation theory, and 
the use of digital technology. Particularly, both the general results of a pretest and a posttest are 
shown and compared. Additionally, the example of a student is analyzed to show evidence of how 
the mental structures and mechanisms that define the students' conceptions are built through the 
implementation of the sequence. The results show how the activity sequence allowed students to 
coordinate algebraic and geometric processes on complex numbers to improve their 
conceptions. 

Keywords: Complex Numbers, APOS Theory, Conceptions, Undergraduate.  

 Introduction 
Researchers who have taken the teaching-learning of complex numbers as an object of study 

have reported various difficulties in students and trends in the teaching of this concept (Panaoura 
et al., 2006; Pardo and Gómez, 2007; Randolph and Parraguez, 2019). In teaching, they have 
identified an emphasis on the algebraic register, which results in a loss of essential characteristics 
of complex numbers (Distéfano et al., 2012). This teaching approach limits students in the 
construction of mental structures and mechanisms related to the geometric representation of 
complex numbers in their different forms. Therefore, the need to include the geometric register 
in teaching is established to favor the conversion and coordination of processes (Aznar et al., 
2010) for the characterization of the elements of the concept under study. Derived from this 
problem, the research objective was to improve the conceptions about the complex numbers of 
students who start their university studies from the design and implementation of a teaching 
sequence based on the APOS theory, the use of digital technology, and with a focus on the 
geometric representation of those numbers. In this way, we provide an answer to the following 
question: how do students' conceptions of complex numbers change when they participate in a 
teaching sequence with the aforementioned characteristics?  

Theoretical Framework 
In order to become the objective of this research, we consider the elements of the APOS 

theory, initially developed by Dubinsky and a group of researchers (Arnon et al., 2014), as well 
as some elements of the theory of semiotic representations (Duval, 2006). From the APOS 
theory, a student's conceptions are developed in a context when he is faced with solving 
problems that involve the use of mental structures and mechanisms (Dubinsky, 2014). The 
structures are actions, processes, objects, and schemes that are transformed from the use of 
mechanisms such as: internalization, coordination, reversion, encapsulation, decapsulation, 
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among others. These transformations and their relationships are shown in Figure 1, which is 
adapted from the work of Arnon et al. (2014).  

 

 
Figure 1: Mental structures and mechanisms cycle 

 The cycle begins with actions on previously constructed mental objects. In this conception, 
the student needs external help, which is why they require explicit steps for execution. When the 
actions are reflected, they are internalized and result in a process. Another way to build processes 
is through the coordination and reversal of two or more previous processes. In this conception, 
the student can explain the generality of the concept and describe its characteristics. To favor the 
development of this mental structure, we consider, like Duval (2006), that mathematical activity 
needs the articulation between the different semiotic representation systems, and this is achieved 
when the student can make treatments and conversions, these transformations allow the 
construction of processes and consequently when these processes are encapsulated, mental 
objects are achieved. 

 The object is established when the process can be seen in its entirety, that is, the student can 
perform actions on this object through encapsulation and it can be returned to the processes that 
made up the object through decapsulation. Thus, if the set of these structures is consistent, it 
allows the construction of the scheme. This cycle of structures and mechanisms constitutes the 
theoretical aspect of the APOE theory, but the same theory contemplates methodological 
elements, which is called the research cycle. 

Methodology 
 For the development of the research, the research cycle proposed from the APOE theory 

(Asiala et al., 1996) was followed. This cycle is made up of three elements (Figure 2). The first 
element is the theoretical analysis, which is developed from the epistemology of the 
mathematical concept and results in the construction of a genetic decomposition. Arnon et al. 
(2014) defines genetic decomposition as a hypothetical model that describes the structures and 
mechanisms that an ideal student requires to understand a concept. The second element is the 
design and implementation of the instruction, this design addresses the characteristics of genetic 
decomposition, and leads and transforms the previous conceptions of the students, which is 
explained from the cycle of mental structures and mechanisms. The third element is the 
collection and analysis of data, this enables the comparison of the preliminary genetic 
decomposition and the developments obtained in the analysis. It is worth mentioning that this 
cycle is repeated with the intention of perfecting the genetic decomposition. 
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Figure 2: Research cycle and ACE Teaching Cycle 

The implementation of the activities was developed from the ACE teaching cycle (Arnon et 
al., 2014). The acronym for this cycle (Figure 2) presents its elements: (A) activities, (C) class 
discussion and (E) exercises. In the first moment of the cycle, the activities are guided and 
elaborated tasks to favor the construction of mental structures arranged in the genetic 
decomposition, from this moment it is suggested to incorporate teamwork. The second moment 
is the discussion in class, here it is possible for the students to work in small groups, and that the 
discussions are guided by the teacher and complemented through worksheets and technological 
tools. The third moment considers the exercises, whose purpose is to help to consolidate and 
evaluate the conceptions that have been developed in the activities and the discussion in class. 
Therefore, the activities of this research were designed taking into account the genetic 
decomposition and the ACE cycle, for reasons of space and the focus of this writing, no details 
are given about the design, but they can be consulted at the link: 
https://www.geogebra.org/m/zx5ww8bf.  
Population and method  

The investigation began with the application of a pretest, later the sequence of activities was 
implemented considering the ACE teaching cycle, and finally a posttest was applied. The 
questionnaires have the same characteristics and are made up of two parts, their application was 
made individually. The sequence has ten activities and has two teaching cycles. The first cycle 
comprised of activity 1 to activity 6 with discussions every two or three activities, as required by 
the group, and ended with activity 7. The second cycle is made up of activities 8 and 9, a general 
discussion, and ended with activity 10. Activities 7 and 10 were considered exercises. The 
activities were carried out in teams. The general study was developed with a group of 15 first-
semester students of the degree in electrical mechanics from a public university in Mexico. The 
application of the questionnaires and the sequence of activities was carried out in the hybrid 
modality. 

To carry out the analysis, initially a general comparison was made between the pre- and post-
test results of the entire group. Subsequently, and to account for how the conceptions of the 
students changed throughout the implementation of the sequence, one student (E1) was chosen. 
According to the teacher's criteria, E1 was characterized by having a performance below the 
group average, but was responsible, participative, showed interest in learning mathematics and, 
in addition, showed interest during the implementation of the sequence. Given that E1 teamed up 
with another student who was characterized by having an above-average performance (E2), this 
last student will also be mentioned in the results. 

Result 
In the first part of the pretest, students were inquired about previous objects related to 

complex numbers. That is, to solve a quadratic equation whose solutions are complex, 
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and perform two operations in which the imaginary unit had to be recognized. In the 
general results, the students did not perform actions on the imaginary unit object from the 
square root of a negative number, so there is no imbalance in their mental structures. This 
is because 9 of 15 students recognized the square root of a negative number as a solution 
to the equation (Figure 3a). Another 4 of 15 students recognized the imaginary unit, but 
had errors in the algebraic treatment (Figure 3b).  

 

 
Figure 3: students’ responses of the first part of the pretest  

 The second part of the pretest includes explicit elements of complex numbers. 3 reagents 
were proposed, in the first and second it was asked to determine the module and the argument of 
a complex number: first from its representation in the complex plane, and then from its binomial 
form. In question 3, it was asked to determine the real part and the imaginary part of a complex 
number given its module and argument. The results show that 13 of 15 students did not answer 
that part of the questionnaire (Figure 4a) and only 2 of the 15 presented actions on the object 
prior to distance to establish the value of the module (Figure 4b). In general, most of the students 
did not present previous conceptions related to complex numbers.  

 

 
Figure 4: students’ responses of the second part of the pretest 

In general, the results in the pretest allowed us to conclude that the students had 
difficulties and did not associate their previous objects with the complex numbers, and therefore 
did not perform actions on them. On the other hand, in the post-test there is evidence of the 
construction of new mental structures such as actions, processes and objects. In the first part, 11 
out of 15 students presented approximations to the imaginary unit more frequently than in the 
pretest (Figure 5). There are processes on complex numbers (Figure 5a); however, in the first 
question, 8 of 15 students showed difficulties in operating with fractions associated with the 
imaginary part of the complex number (Figure 5b). In the operative part, second question, 6 of 
15 students presented difficulties in the properties to operate with the imaginary unit (Figure 5c).  

 

 
Figure 5: students’ responses of the first part of the postest 

In contrast, in the second part of the post-test, 14 of 15 students presented an important 
evolution in the construction of new mental structures through the characteristics of complex 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1633



numbers in their algebraic and geometric registers. Geometric and algebraic actions are 
evidenced on objects such as: coordinates, angle, distance between two points, trigonometric 
ratios, among others (Figure 6a). The students identified the explicit elements of each notation 
and used the different complex number notations in their treatments, in particular ordered pair, 
polar and trigonometric (Figure 6b). 

 

 
Figure 6: students’ responses of the first part of the postest  

In the second part of the post-test there is evidence of algebraic and geometric processes and 
their combinations that allowed the students (13 out of 15) to develop generalities for the 
representations of complex numbers. It is worth mentioning that the group discussion and 
teamwork guaranteed these generalities, since in the post-test questionnaire the students worked 
with specific cases. The geometric processes allowed the students to represent the elements of 
the complex number in the different quadrants of the complex plane, as well as to convert to the 
algebraic register with the use of the trigonometric ratios and the distance between two points. 
The students performed treatments on the algebraic register to find the values of the module and 
argument. They used generality to find the argument from the arctangent with the real part and 
the imaginary part, the students added 180° when considering that the complex number is located 
in the second or third quadrant (Figure 7a). Similarly, these processes are also explicit in the item 
in which the module and the main argument are explicitly given to obtain the real and imaginary 
part and represent the number in the complex plane (Figure 7b).  

 

 
Figure 7: Algebraic and geometric processes in student’s responses 

 The results allow us to establish that, in general, the students built new mental structures 
from the development of the sequence of activities. To detail these structures, the case of a 
student (E1) is exemplified, for this the trajectory of it is established and a description of its 
conceptions is made. In the results of the first part of the pretest, the student did not present 
actions on previous objects of complex numbers and presented difficulties on objects such as 
solutions of quadratic equations and properties of real numbers. E1 did not answer the second 
part of the pretest. 

As mentioned, in the development of the sequence of activities E1 worked as a team with E2. 
In activities 1 and 2, the students built actions on previous objects such as: angle, distance 
between two points, coordinates and trigonometric ratios. They identified in the complex plane 
each one of the elements of the complex numbers, these actions were established when they 
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represented different complex numbers in the quadrants of the plane through the applet. An 
example of these algebraic actions is shown in Figure 8, in which the students worked in the 
second quadrant. Also shown are the worksheets in which they determined the modulus and 
argument values for a specific complex number. 

 

  
Figure 8: E1 and E2’s response in activity 2 of the sequence 

The geometric actions of the students considered specific complex numbers within the 
complex plane, identified the different elements of the complex numbers, and found their values 
by means of the trigonometric ratios and the distance between two points (Figure 8). In 
particular, E1 participated in the team discussion mentioning the differences of the complex 
numbers when they are in each quadrant. From the reflection of the actions in each of the 
quadrants, the students established the generality to find the module, an argument (Figure 9), the 
real part and the imaginary part, which gave way to algebraic and geometric processes. 

 

 
Figure 9. E1 and E2’s response in activity 3 of the sequence  

Algebraic and geometric processes helped students build and relate the elements of complex 
numbers in each of these representations. The students started from the geometric register in its 
polar form and made the conversion to the algebraic register, this allowed them to characterize 
and find the real part and the imaginary part. These constructions were based on their previous 
knowledge about trigonometric ratios, in this way E1 and E2 found the generality through the 
reflection of examples that they chose with the applet. E1 systematized the particular cases raised 
by E2, this allowed E1 to raise the generality, which he expressed in the discussion with E2 
(Figure 10). This generality was achieved from the coordination of geometric and algebraic 
processes. Regarding the processes related to the module and an argument, the students worked 
in activities 5 and 6 with sets of complex numbers. The students were able to describe different 
sets of complex numbers with their elements in the cases of a constant modulus and argument.  
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Figure 10. E1 and E2’s response in activity 4 of the sequence 

In activity 7, E1 worked individually, evidencing processes that involve reversal, since in 
previous activities they usually started with the geometric register of complex numbers, but here 
they started with the algebraic register. E1 presented in the development of the questions 
algebraic and geometric processes, when using and describing the generalization of the 
characteristics of the complex number. Additionally, E1 presented a characterization of the 
representations, in particular the ordered pair and trigonometric form, and performed conversion 
and treatment to determine the values of the module and the argument of a number (Figure 11).  

 

 
Figure 11: E1 and E2’s response in activity 7 of the sequence  

The second cycle of teaching is made up of activities 8 and 9. These activities are focused on 
the arguments and the imaginary unit. In activity 8, students E1 and E2 presented difficulties in 
establishing the generality of the main argument when they worked as a team. However, in the 
general discussion some students presented different results, and in this way students E1 and E2 
reflected and were able to generalize the arguments from the main argument, and from additional 
questions asked by the teacher. In this sense, Oktaç et al. (2019) affirm that there is no division 
between the teacher and the researcher since they have the common goal of enabling the 
construction of mental structures. Additionally, the authors establish that the construction of 
mental structures does not always occur in a linear fashion. 

In activity 9 the students established the relationship between the modules and the arguments 
from the geometric register, and the students understood the binomial and trigonometric 
notations of complex numbers. This cycle concluded with activity 10, which was worked on 
individually and is called an exercise. Here, E1 coordinated previous processes to build new 
algebraic and geometric processes that allowed him to characterize elements of the new 
representations (Figure 12a), as in the post-test questionnaire where the construction of these 
mental structures in the student was evidenced, he identified and related those elements of the 
complex number, in addition, used and understood the different representations and notations of 
complex numbers (Figure 12b).  
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Figure 12. E1 and E2’s response in activity 10 of the sequence 

Conclusions  
The results show that most of the students built mental structures related to complex numbers 

from the development of the proposed sequence of activities, thus improving their conceptions. 
The sequence guided students to start from previous objects that led them to activate their 
mechanisms and articulate the different representations of complex numbers. This allowed 
generating and coordinating algebraic and geometric processes that in some students can be 
characterized as objects due to their argumentation in the discussions and their development in 
the worksheets. 

An important element in the design of the sequence of activities is the approach that was 
given to the registry of geometric representation of complex numbers to later make a conversion 
to the algebraic registry, and in this regard, evidence was given of how the conversion and 
treatment in this record allowed students to reach higher level mental structures. In addition, the 
interaction that the students had with the applets that make up the sequence gave rise to the first 
actions that led the students to internalize them to build processes on complex numbers. 
Similarly, the general discussions contemplated in the teaching cycle allowed the students to 
present their results and argue based on the work with their classmates. According to the results, 
it is essential that the teaching of complex numbers involves different representations where 
students have the possibility of expressing generalities about the different elements of these 
numbers. 
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This case study examined how a period of transition could affect a student’s mathematics self-
efficacy (MSE) and their ability to productively struggle on challenging mathematics problems. 
This study focused on a single student named Candice who was making the transition from high 
school to college. Candice initially reported high levels of MSE to start the semester but 
experienced difficulty adjusting to her first college mathematics class, which was taught in an 
active learning style. Interviews with Candice revealed that her initially reported high MSE was 
associated with her ability to successfully complete her high school mathematics courses. The 
structure of her active learning style classroom presented new challenges that did not align with 
this MSE. This potentially resulted in a lowered state of MSE and a lack of engagement with 
productive struggle both inside and outside the classroom.   

Keywords: Affect, Emotion, Beliefs, and Attitudes; Undergraduate Education; Computational 
Thinking; Problem-Based Learning 

Mathematics self-efficacy (MSE), or a person’s belief in their ability to perform or learn 
mathematics, has repeatedly been linked to positive outcomes such as achievement in 
mathematics (Hackett & Betz, 1989; Multon et al., 1991; Thomas et al., 1987; Usher et al., 2018) 
and persistence on mathematical tasks (Lent et al., 1984; Multon et al., 1991, Ruch et al., 2014). 
Despite the link to positive outcomes, little work has been done to examine how MSE changes 
during the transition from high school to college. This is especially important when considering 
that the transition to college can bring new levels of expectations and different types of tasks 
than what students may be used to. This case study focuses on a single first-year college student 
who reported high MSE to start the semester but struggled to adapt to the collegiate environment.   

Theoretical Framework 
MSE refers to peoples’ beliefs in their ability to perform or learn mathematics successfully 

(Bandura, 1986; Zimmerman & Cleary, 2006). Research suggests that judgements of self-
efficacy are task-specific (Bandura, 1986; Pajares & Miller, 1995), that is, self-efficacy for a 
class or the field of mathematics (generalized MSE) might not match MSE for solving specific 
problems (task-specific MSE).  However, those with high MSE for problem solving may also be 
more likely to hold high MSE for being successful in mathematics courses, which potentially 
explains why measures of MSE that are not task specific (generalized MSE) often predict 
problem solving outcomes. As put by Pajares and Miller (1995), “prediction is enhanced as self-
efficacy and performance correspondence more closely matches.” 

Productive struggle is defined by Hiebert and Grouws (2007) as the effort a student must put 
forth in order to understand a difficult mathematical concept. Hiebert and Grouws emphasize that 
the word struggle does not relate to any feelings of frustration or despair when facing overly 
difficult problems but is instead a reflection of an individual’s willingness to “muddle through” 
(p. 388). Self-efficacy is thought to play a major role in student’s willingness to engage with 
productive struggle. Research agrees that those with higher levels of self-efficacy will be more 
likely to persevere in the face of obstacles (Lent et al., 1984; Multon et al., 1991, Ruch et al., 
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2014). Research also agrees that students with high MSE are often more effective when facing 
difficult tasks that require them to analyze situations and choose appropriate mathematical 
techniques (Holenstein et al., 2021). 

Literature Review 
Research suggests that MSE is important as students with high levels of MSE are commonly 

associated with higher achievement (Multon et al., 1991; Thomas et al., 1987, Usher et al., 2018) 
along with the choice to pursue mathematics-related majors (Hackett & Betz, 1989). 
Additionally, research suggests that those with higher MSE are more likely to persist in both 
long-term and short-term situations. Research suggests that those with high MSE are more likely 
to persist within mathematics related majors (Lent et al., 1984) and are more likely to persist on 
mathematical tasks (Multon et al., 1991). Much of this previous research has been quantitative in 
nature and there is a need for qualitative support.  

In addition, for students undergoing the transition from high school to college mathematics 
courses, self-efficacy may play a vital role in this transition (Chemers et al., 2001); in particular, 
high MSE may be vital to help students overcome the struggle of transitioning to college 
mathematics. However, while MSE may aid transition, it should also be noted that the transition 
itself can have potential effects on MSE. Bandura (1986) suggested that periods of transition 
may be the time when self-efficacy levels are most likely to be disrupted. While research 
generally agrees that MSE is stable long-term (Bandura 1986; Middleton & Spanias, 1999), the 
issue of stability is rarely addressed in research (Lane & Lane, 2011).  

Research also puts particular importance on the role of productive struggle in generating 
deep mathematical understanding. Research suggests that the process of productive struggle is 
vital to understanding new conceptual ideas (Heibert & Grouws, 2007; Handa, 2003). Students 
who engage in productive struggle may develop higher levels of creativity and a greater ability to 
reflect on their own ideas (Nadjafikhah et al., 2012). Like with self-efficacy, periods of transition 
could affect a student’s willingness to engage in productive struggle. Previous research has 
mostly been devoted to conceptualizing the process of productive struggle or identifying whether 
it occurred (Zeybek, 2016). Little work has been done to examine how student engagement with 
productive struggle may change in new settings. In the present study, I will examine both MSE 
and productive struggle during a period of transition, specifically for a first-semester college 
student who experiences new task expectations.  

Methods 
This study focuses on a first-year calculus student named Candice who took part in a larger 

study examining transitionary effects on MSE and mindset for collegiate mathematics students. 
Students from three courses (intermediate algebra, calculus, and discrete) were invited to take a 
survey that focused on MSE and mathematical mindset. The survey was adapted from the self-
report questionnaire found in Pintrich and DeGroot (1990), the May (2009), and Blackwell 
(2003). Students responded on a 5-point Likert scale to MSE statements that included a mix 
related to mathematical tasks (such as “I am sure I can do an excellent job on the problems and 
tasks assigned for my math classes”) and success in math courses (such as “I expect to do very 
well in my mathematics classes”). Two interviews were conducted during the semester with 
students who scored significantly higher or lower (one standard deviation above or below the 
mean) than their classmates on the MSE portion of the survey. The present study focuses on 
Candice, whose survey results showed she held higher MSE than most of her classmates. 
Candice is a unique and illuminating case because her high MSE was rooted in her ability to be 
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successful in high school mathematics courses and this did not align well with the structure of 
her active learning style course. Over the course of the two interviews, this misalignment 
potentially caused a lowered sense of MSE and contributed to a lack of engagement with 
productive struggle. 
Interview Protocols 

The first interview served two purposes. The first purpose was to confirm what students 
reported in their surveys and establish baselines for each student’s MSE. The second purpose 
was to ask participants to solve two challenging mathematics problems and to examine whether 
they engaged in productive struggle. The two problems are listed below in Table 1.  

 
Table 1: Interview Session problems. 

Problem 1 
In a certain state, there are four towns, situated at the vertices of a square of side 10 
miles. The department of transportation wants to construct a road network 
connecting these towns, so that it is possible to travel from each of the four towns to 
the other three towns. Constructing a mile of road costs two million dollars. Due to 
a budget crisis caused by tax cuts, the department of finance can only grant 55 
million dollars for the project. Is this amount sufficient? 

 
Problem 2 
Find two numbers  and  such that 𝑥𝑥 − 𝑦𝑦, 𝑥𝑥/𝑦𝑦, and 𝑥𝑥𝑥𝑥  are all equal. (from 
Posamentier & Solkind, 1996).  

 
The two problems asked were ideal for determining whether students engaged with 

productive struggle. First, when students proposed solutions, students could easily verify whether 
their answers were correct. This eliminated the scenario where a student stopped working 
because they believed they had solved the problem. Secondly, these problems were non-typical, 
and participants chose the types of mathematical approaches they took in solving the problems. 
As previously discussed, MSE is expected to play a significant role in student success when this 
level of analysis is required (Holenstein et al., 2021).  

Participants were given each problem separately with Problem 1 being presented first. To 
allow for productive struggle, students were told that they could work on the problem for as long 
as they liked. Students could ask clarifying questions to help them understand the situation being 
presented. In Candice’s case, Candice asked clarifying questions like “We don’t know the size of 
each town right?” and “Does each town have to connect to a single point or can there be one long 
road?” The interviewer answered these clarifying questions to ensure students like Candice could 
grasp the problem being asked and choose whether to engage in productive struggle. After the 
first interview students were later invited back to a second interview to learn if their current 
courses or the transition to a college environment had affected their view of mathematics, their 
MSE, or their study habits. 
Coding and Reliability 

Candice’s interview (along with those from the larger study) was audio recorded and then 
transcribed. Four interviews were randomly selected from the larger pool and coded using codes 
developed inductively from the data (Seidman, 2013). To establish coding reliability, a method 
outlined by Campbell and colleagues (2013) was used. Coded sections were labeled with the 
appropriate code as well as brackets. The codes were then removed from the interview, leaving 
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the bracketed sections visible on the transcribed interview. A second qualified individual then 
coded the bracketed sections using the developed codebook. Coders initially agreed on 71% of 
the bracketed sections. Differences between codes were then negotiated and several codes were 
either combined or deleted. A fifth interview was then coded using the same method and the 
agreement percentage rose to 93.5%. The remainder of the interviews were coded by the original 
coder using the established codebook.  

For the problem-solving section of interview one, each student’s written work was saved in 
addition to the audio recordings. Each solution attempt was coded as showing no evidence, some 
evidence, or high evidence of productive struggle.  To establish trustworthiness for the problem 
portions, both coders each initially suggested the level of evidence they felt was present and then 
differences were debated until both coders agreed.  

Results 
In this results section, Candice’s initial MSE will be discussed along with some of the 

background information she provided about herself. From there, Candice’s solution attempts to 
Problem 1 and Problem 2 will be discussed and contrasted with the results seen from other 
calculus students in the study. Finally, Candice’s results from interview 2 will be discussed, 
specifically how her course had impacted her view on her MSE and how this had impacted her 
solution attempts during the first interview. 
Introduction to Candice 

Candice was one of seven calculus students recruited and was interviewed during her first 
semester of college in the fall of 2018 at a large midwestern university. Her first collegiate 
mathematics class was a calculus course that used discovery-based methods and active learning 
as its main method of delivery.  

Candice’s initial survey results suggested that she held relatively high MSE compared to 
many of her classmates. During her first interview, Candice confirmed her high MSE when she 
said, “I would say I'm pretty confident. I really enjoy math, so I like the challenge of it.” Candice 
prided herself on being a responsible student and favorably compared her study skills to other 
students. It became apparent during this first interview that Candice’s high MSE was rooted in 
her ability to successfully navigate mathematics courses, but not necessarily in her ability to 
complete mathematics problems. Candice said, “I expect to do well overall. I think there are 
some students who don't know how to study, or they don't want to study. So, I think compared to 
certain students, I'm going to do better.” Candice could not ever recall a time where she had not 
studied for an upcoming mathematics test or exam and saw her study skills as something that 
separated her from other students.  

Despite her high MSE, Candice acknowledged that she had been having difficulties to start 
the semester in her calculus course. Candice said, “I’m struggling a lot right now, but it is only 
the first couple of weeks… I know I’ll eventually get it. I feel like I just have to get back into 
school and get back into math, I guess.” Candice suggested that she was actively trying to rectify 
her early struggles but noted that she had less opportunity to interact with her college professors. 
Candice said, “In college you don’t get as much time with your teachers, so I’ve emailed my 
teacher already a couple times.”  
Candice’s Lack of Productive Struggle 

Candice showed no evidence of productive struggle on either of the problems presented 
during the first interview. This was already a surprising result considering Candice’s high MSE, 
but her results stood out even further when comparing her solution attempts to those provided by 
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calculus participants in the broader study. Specifically, Candice showed no productive struggle 
in situations where calculus students were generally more likely to (see problem 2).  

Problem 1. On the first problem, Candice provided a solution attempt that showed no 
evidence of productive struggle. Candice gave an initial attempt at the problem that connected all 
four towns in a square configuration. Candice’s initial configuration can be seen below in Figure 
1.  

 
Figure 1. Candice’s initial attempt at problem #1.  

 
Candice calculated the cost of her initial configuration and concluded that it would be too 

expensive. Candice spent a few minutes thinking before drawing a triangle on her paper. Candice 
then started entering numbers into her calculator. When the interviewer asked what she was 
entering in Candice said,  “I’m just trying to figure out, I guess, trying to make a line through the 
middle somehow. I’m trying to use the area of a triangle to figure out how long the line would 
be.” Candice had drawn a right triangle and incorrectly used the formula for the area of a triangle 
in an attempt to find the length of the hypotenuse (see figure 2). Candice then laughed and said, 
“This is a tough problem.” Candice spent approximately two more minutes in silence thinking 
about the problem before deciding to stop her attempt.  

 

 

Figure 2. Candice’s second drawing.  
 

Candice’s attempt was labeled as showing no evidence of productive struggle as she did not 
progress past the most common configurations (square and X configurations) that most students 
initially tried. Candice’s acknowledgement of the difficulty of the problem seemed to be a point 
where she had the option to “muddle through” but instead chose to end her attempt rather 
quickly.  

Problem 2. On problem 2, Candice again showed no evidence of productive struggle. Her 
entire attempt consisted of using her calculator to test values for x and y and at no point did 
Candice attempt to set up an equation or employ any algebraic techniques. Candice did not write 
down anything on her paper and stopped her attempt after about five minutes of working. 
Candice’s results here are especially interesting when considering the other calculus students 
interviewed in the broader study. Of the seven calculus students interviewed, Candice was the 
only participant who showed no evidence of productive struggle on problem 2. Further, all six 
solution attempts provided by the other calculus students incorporated algebraic techniques (such 
as setting up equations). It may be the case that the algebraic nature of the problem and the 
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presence of variables caused the problem to feel familiar to calculus students and had a positive 
effect on their willingness to productively struggle. The fact that Candice’s attempt did not 
incorporate these same techniques is curious and is perhaps explained by the source of Candice’s 
high MSE as well as by the difficulty she experienced in her calculus course. 
Possible Explanations for Candice’s Lack of Productive Struggle 

Candice’s results stand in contrast to what previous research has found. She entered the 
semester with higher MSE than many of her peers but showed less evidence of productive 
struggle on the problems presented in the first interview. This contradiction is potentially 
explained by the task-specific nature of Candice’s MSE, specifically that her high MSE was 
rooted in her ability to complete mathematics courses (and potentially only traditional lecture 
style courses). The problems presented in the first interview may not have aligned with 
Candice’s high MSE since the problems required Candice to choose her own mathematical 
techniques without the backdrop of a classroom lesson or unit. In other words, since the 
problems given in the first interview were devoid of a classroom context, Candice may not have 
felt that she had the resources she needed to complete the problems. Candice was asked if a lack 
of context affected her attempts to which she responded, “I think it does because say if that one 
(problem 1) is geometry, then I would know some basic equations to use versus if that one 
(problem 2) is algebra, then I would know the basic equations for algebra.” These responses may 
indicate that despite Candice’s lack of productive struggle, she may have been more confident in 
her ability to complete them in a setting with a more narrow focus (such as a classroom).  

There may have been additional misalignment between Candice’s MSE and the tasks 
presented in her calculus course. This potentially resulted in lowered MSE and engagement with 
productive struggle on mathematics problems, including the problems presented in the first 
interview. During her second interview (six weeks after the first interview), Candice said, “The 
majority of this semester, I haven’t known what’s going on.” Candice pointed to the active 
learning style of the course as a major reason for the difficulty she experienced. Candice said, “I 
don’t think the material is more difficult, I think the way it’s being taught is more difficult… I 
don’t think the rest of the math classes are taught in this way.” Candice elaborated and said “The 
teacher will talk about it conceptually and try to explain it conceptually. I can understand that 
part of it, but when it comes to the math, I don’t actually know how to do the math.” Candice 
backed up her claim by explaining: 

So, say we're looking at a graph and we're taking the second derivative of a function. I'll 
know that the second derivative is like the concavity of the original function, but I won't 
necessarily know how to find the concavity of the original function. I'll know what it means, 
but not necessarily how to find it. 

This seemed to suggest that Candice was able to understand many of the concepts and definitions 
but did not have a full understanding of the procedures needed to solve problems.  

Interestingly, Candice made an unprompted link between her struggles in calculus to her lack 
of productive struggle during the first interview. Candice said: 

I’ve felt unsuccessful a lot. Sometimes, I guess it affected how I worked on the problems. 
You know how we did that problem in the first session? I just wasn’t getting it and I was just 
like, I give up now. I feel like when I come to problems where I just don’t know where to 
start or what to do, I just kind of accepted my failure. 

While the other calculus students interviewed may have been encouraged by the algebraic nature 
of problem 2, Candice may have had the opposite reaction. Specifically, since the procedural 
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aspects of calculus seemed to be the primary points of difficulty for Candice, the presence of an 
algebraic problem may have actively dissuaded her from engaging in productive struggle. 

While Candice recognized that she did not fully understand the calculus content, she still 
seemed to pride herself on her ability be successful in a classroom setting. Candice said, “I don’t 
think because I’m doing bad in this math class, that I’m not a good math student anymore.” 
Candice’s choice of phrasing here is interesting in that she chose to say, “good math student” 
instead of something like “good at math.” This may provide further evidence that Candice’s 
MSE remained rooted in her ability successfully navigate mathematics courses. Further, her 
positive outlook for the long-term may be based on the idea that future courses may revert to a 
typical lecture style and her belief that she would be able to successfully navigate that type of 
course.  

Discussion 
While high MSE is generally associated with higher levels of persistence (Lent et al., 1984; 

Multon et al., 1991, Ruch et al., 2014), this study provides evidence that instances of transition 
(that potentially bring new task expectations) may disrupt this relationship. While Candice 
entered the semester reporting high MSE, it became clear that this was linked to her ability to 
succeed in mathematics courses and not necessarily to her ability to solve mathematics problems. 
Candice did not show evidence of productive struggle on either problem, but her effort level on 
problem 2 was noticeably less than that of her peers. This seems to be related to her lowered 
MSE for the procedural aspects of problems. This provides further evidence that self-efficacy is 
task-specific (Pajares, & Miller, 1995) and may also provide some insight into why previously 
successful students may struggle in environments that have different expectations (such as active 
learning). Students like Candice, whose MSE is tied to previous success in high school courses, 
may struggle adapting to the levels of analysis required in an active learning style class.  

This study may also provide insight into the stability of MSE. In this instance, a student 
making the transition to college experienced negative results which negatively impacted her 
MSE. This study provides support for Bandura (1986), who theorized that periods of transition 
could cause the stability of MSE to be disrupted. This study provides an example of a decline in 
MSE that occurred during the transition from high school to college and it is possible this period 
of instability had negative long-term ramifications as well. Candice reported that she was 
“accepting her failure” when encountering difficult problems, which inhibited her from 
developing a full understanding of certain procedures. This suggests that students’ first collegiate 
courses could potentially have long-lasting impacts on both MSE and achievement.  

Conclusion 
The results of this study elevate the theoretical importance of task-specific self-efficacy. 

While generalized MSE seems to hold positive relationships with academic success and higher 
levels of persistence, these results may be dependent on students remaining in environments that 
fostered the high levels of MSE to begin with. When students transition to new environments 
(such as high school to college or a lecture style to an active learning classroom), success may be 
directly tied to the specific tasks that will be required and their self-efficacy for those specific 
tasks.  

This in-turn has important implications for educators. The first implication is that educators 
need to appropriately model the ways in which students should engage with course content, 
especially if the course is “non-traditional.” Students may enter a classroom with limited 
experience analyzing advanced mathematical tasks and educators need be accommodating to 
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novices if this is the expectation. As put by Holenstein and colleagues (2021), educators should 
make sure that “tasks are taught in a way that allows for individual levels” (p.14). This also 
underscores the need for available resources (tutors, office hours, etc.) for students when they 
encounter difficulty. As Candice mentioned, face-to-face time with professors is often limited, so 
students need avenues by which they feel they can accomplish the work when outside the 
classroom.  

The second implication for educators is to be aware of the effect that transition can have on 
student MSE. Students who report traits that generally produce favorable outcomes (such as high 
MSE or growth mindset) can still experience declined states of MSE that affect their engagement 
with course material. As seen here, Candice had identified that she was struggling as early as 
three weeks into the course but had not yet decided that the course was out of her control. Six 
weeks later, however, she had come to decide that many components of the course were lost on 
her. This underscores the need for intervention at multiple points throughout the semester as it 
appears students may write off their chances well before the end of a course.  

References 
Bandura, A. (1986). Social foundation of thought and action: A social-cognitive theory. Englewood Cliffs, NJ: 

Prentice Hall. 
Blackwell, L. S. (2003). Psychological mediators of student achievement during the transition to junior high school: 

The role of implicit theories. 
Campbell, J. L., Quincy, C., Osserman, J., & Pedersen, O. K. (2013). Coding in-depth semistructured interviews: 

Problems of unitization and intercoder reliability and agreement. Sociological Methods & Research, 42(3), 294-
320. doi:https://doi.org/10.1177%2F0049124113500475 

Chemers, M. M., Hu, L. T., & Garcia, B. F. (2001). Academic self-efficacy and first year college student 
performance and adjustment. Journal of Educational Psychology, 93(1), 55. doi:https://doi.org/10.1037/0022-
0663.93.1.55 

Hackett, G., & Betz, N. E. (1989). An exploration of the mathematics self-efficacy/mathematics performance 
correspondence. Journal for Research in Mathematics Education, 20(3), 261-273. 
doi:https://doi.org/10.5951/jresematheduc.20.3.0261 

Handa, Y. (2003). A Phenomenological Exploration of Mathematical Engagement: Approaching an Old Metaphor 
Anew. For the Learning of Mathematics, 23(1), 22–29. Retrieved from: http://www.jstor.org/stable/40248406 

Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. Second 
handbook of research on mathematics teaching and learning, 1(1), 371-404. Charlotte, NC: Information Age 
Publishing. Retrieved from: 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.405.3591&rep=rep1&type=pdf 

Holenstein, M., Bruckmaier, G., & Grob, A. (2021). How do self‐efficacy and self‐concept impact mathematical 
achievement? The case of mathematical modelling. British Journal of Educational Psychology, e12443. 
doi:https://doi.org/10.1111/bjep.12443 

Lane, J., & Lane, A. (2001). Self-efficacy and academic performance. Social Behavior and Personality: An 
International Journal, 29(7), 687-693. https://doi.org/10.2224/sbp.2001.29.7.687 

Lent, R. W., Brown, S. D., & Larkin, K. C. (1984). Relation of self-efficacy expectations to academic achievement 
and persistence. Journal of Counseling Psychology, 31(3), 356-362. doi:https://doi.org/10.1037/0022-
0167.31.3.356 

May, D. K. (2009). Mathematics self-efficacy and anxiety questionnaire (Doctoral dissertation, University of 
Georgia). Retrieved from: https://getd.libs.uga.edu/pdfs/may_diana_k_200908_phd.pdf 

Middleton, J. A., & Spanias, P. A. (1999). Motivation for achievement in mathematics: Findings, generalizations, 
and criticisms of the research. Journal for Research in Mathematics Education, 30(1), 65-88. 
doi:https://doi.org/10.2307/749630 

Multon, K. D., Brown, S. D., & Lent, R. W. (1991). Relation of self-efficacy beliefs to academic outcomes: A meta-
analytic investigation. Journal of Counseling Psychology, 38(1), 30-38. Retrieved From: 
https://www.academia.edu/29900606/Relation_of_self_efficacy_beliefs_to_academic_outcomes_A_meta_analy
tic_investigation?from=cover_page 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1646



Nadjafikhah, M., Yaftian, N., & Bakhshalizadeh, S. (2012). Mathematical creativity: some definitions and 
characteristics. Procedia-Social and Behavioral Sciences, 31, 285-291. 
doi:https://doi.org/10.1016/j.sbspro.2011.12.056. 

Pajares, F., & Miller, M. D. (1995). Mathematics self-efficacy and mathematics performances: The need for 
specificity of assessment. Journal of Counseling Psychology, 42(2), 190. doi:https://doi.org/10.1037/0022-
0167.42.2.190 

Pintrich, P. R., & De Groot, E. V. (1990). Motivational and self-regulated learning components of classroom 
academic performance. Journal of Educational Psychology, 82(1), 33. https://doi.org/10.1037/0022-
0663.82.1.33 

Posamentier, A. S., & Salkind, C. T. (1996). Challenging problems in algebra. Courier Corporation. 
Ruch, W., Weber, M., Park, N., & Peterson, C. (2014). Character strengths in children and adolescents: Reliability 

and initial validity of the German values in action inventory of strengths for youth (German VIA-Youth). 
European Journal of Psychological Assessment, 30(1), 57-64. doi:https://doi.org/10.1027/1015-5759/a000169  

Seidman, I. (2013). Interviewing as qualitative research: A guide for researchers in education & the social sciences. 
New York: Teachers College. 

Thomas, J. W., Iventosch, L., & Rohwer Jr, W. D. (1987). Relationships among student characteristics, study 
activities, and achievement as a function of course characteristics. Contemporary Educational 
Psychology, 12(4), 344-364. doi:https://doi.org/10.1016/S0361-476X(87)80005-X 

Usher, E. L., Li, C. R., Butz, A. R., & Rojas, J. P. (2018). Perseverant grit and self-efficacy: Are both essential for 
children’s academic success? Journal of Educational Psychology, 111(5), 877. 
doi:https://doi.org/10.1037/edu0000324 

Zeybek, Z. (2016). Productive struggle in a geometry class. International Journal of Research in Education and 
Science, 2(2), 396-415. Retrieved from: https://files.eric.ed.gov/fulltext/EJ1110272.pdf 

Zimmerman, B. J., & Cleary, T. J. (2006). Adolescents’ development of personal agency: The role of self-efficacy 
beliefs and self-regulatory skill. Self-efficacy Beliefs of Adolescents, 5, 45-69. 

 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1647



COLLEGE ALGEBRA STUDENTS’ ATTITUDES TOWARD MATH AND GRAPHS: 
AN EXPLORATORY FACTOR ANALYSIS 

Livvia Bechtold 
CU Denver 

Livvia.bechtold@ucdenver.ed
u 

Courtney Donovan 
CU Denver 

Courtney.donovan@ucdenver
.edu 

Heather Lynn Johnson 
CU Denver 

Heather.johnson@ucdenver.e
du 

We report on results from a mixed methods study investigating a measure of students’ attitudes 
toward math and graphs. At the beginning of eight consecutive fall and spring semesters, we 
distributed a fully online attitude survey, adapted from Pepin (2011), to undergraduate College 
Algebra students. Our report includes two samples, Validation (n=1256) and Calibration 
(n=712). Our research team qualitatively coded students’ responses into five categories: 
positive, mixed, ambiguous, negative, detached (Gardner et al., 2019). Next, we quantitized those 
qualitative codes into a four category scale, which condensed the mixed and ambiguous 
categories. Conducting an Exploratory Factor Analysis, we found that students’ attitudes 
grouped by topics (math and graphs). We conclude with implications for research and practice. 

Keywords: Affect, Emotion, Beliefs, and Attitudes, Data Analysis and Statistics, Research  
Methods, Undergraduate Education 

We report on a mixed methods study in which we examine undergraduate students’ attitudes 
toward math and graphs. Our population is students who enroll in College Algebra, one of the 
earliest credit-bearing mathematics courses at U.S. institutions (Blair et al., 2018), with a history 
of challenges for student success (Gordon, 2008; Tunstall, 2018). Analyzing students’ responses 
to a fully online, open-ended survey, we investigate a measure of students’ attitudes. We aim to 
contribute to the field’s knowledge about the attitudes of College Algebra students. 

A key aspect of our study is the quantitizing of qualitative data (Sandelowski et al., 2009). 
Quantitizing is a process of assigning numerical values to non-numerical data. In so doing, 
researchers can illuminate patterns and peculiarities arising within large data sets via quantitative 
analysis strategies. Our quantitizing has allowed us to transform qualitative attitude codes into a 
four-category scale, which then afforded an exploratory factor analysis. 

Theoretical Framework 
We adopt Di Martino and Zan’s (2010) multidimensional perspective on students’ attitudes 

toward math. That is, students’ attitudes toward math comprise three interrelated dimensions: 
their emotional disposition toward math (e.g., how they like or dislike math), their perceived 
competence toward math (e.g., how they feel about their capabilities when it comes to math), and 
their vision of what math is (e.g., what they view math to be). This stance blurs boundaries 
between McLeod’s (1992) categories of beliefs, attitudes, and emotions as distinct components 
of mathematical affect.  

Drawing on this perspective, Pepin and colleagues (Ding et al., 2015; Pepin, 2011) developed 
a survey including three open-ended response questions, addressing each of these dimensions. In 
their analysis, they coded students’ responses according to three categories: positive, negative, 
and neutral. Yet, students’ attitudes toward math could have complexities beyond just a positive 
or negative attitude (e.g., Di Martino, 2019). For example, a student could feel that mathematics 
is “boring and cool at the same time.” Hence, future studies could make room for complexities in 
students’ attitudes, via instruments and coding mechanisms. 
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Methods 
The Attitude Survey 

We adapted the attitude survey that Pepin and colleagues (Ding et al., 2015; Pepin, 2011) to 
include five open-ended response questions and to be in a fully online format (Johnson et al., 
2019). Table 1 shows the survey questions. The first three questions were the same as those used 
by Pepin and colleagues. We added the last two questions to address students’ attitudes toward 
graphs in two areas: emotional disposition (like/dislike) and perceived competence (can/cannot). 
We decided to include students’ attitudes toward graphs, because students worked with graphing 
activities as part of the broader research projects of which this study was part. To allow for a 
range of responses, we did not require students to select like/dislike or can/cannot. Students were 
to type in responses to each of the questions; they could complete the survey on a mobile phone, 
tablet, or computer.  

 
Table 1: The Attitude Survey  

Attitude Survey Questions 
I like/dislike math because____ 

I can/cannot do math because_____ 
Mathematics is______ 

I like/dislike graphs because _____ 
I can/cannot make sense of graphs because_____ 

 
Data Collection 

We collected data in conjunction with two U.S. National Science Foundation funded research 
projects, examining undergraduate college algebra students and instructors. One aspect of both 
projects was to investigate students’ attitudes toward mathematics. The first project took place at 
a single institution and concluded in Summer 2020. The second project began in Fall 2020, and 
extended the efforts to four institutions. 

Across eight consecutive spring and fall semesters (Spring 2018 through Fall 2021), we 
administered the attitude survey to students enrolled in college algebra. In our broader study, we 
administered the attitude survey in both the beginning and end of the semester. For this analysis, 
we drew on only those responses from the beginning of the semester. We made this choice to 
allow for a greater sample size.  

We separated our data into two samples. The validation sample (n=1,256) was collected from 
students who responded between Spring 2018 and Spring 2021. The calibration sample (n=712) 
was collected from students who responded in Fall 2021. The Fall 2021 sample was greater than 
other semesters because student responses included a large, lecture style course at one of the 
institutions. Hence, we decided to use responses from that semester to calibrate our findings with 
the validation sample. 
Data Analysis 

We mixed qualitative and quantitative methods for data analysis. First, we engaged in 
qualitative coding, following the coding scheme put forward by Gardner et al. (2019). Second, 
we quantitized the qualitative data (Sandelowski et al., 2009), to turn qualitative codes into a 
scale via Rasch Analysis (Bond et al., 2015). Third, we conducted an Exploratory Factor 
Analysis (EFA) to examine construct validity. 

Qualitative Coding. We drew on students’ responses to the five questions in Table 1 as 
sources of data for their attitude towards mathematics. We coded their responses to extend 
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beyond binary choices of positive or negative (Gardner et al., 2019). Table 2 lists the five 
categories, including a brief description and sample response. Along with positive and negative, 
we added the codes of Mixed and Ambiguous, to indicate when student responses evidenced 
more than one code (Mixed) or when student responses could be coded as positive or negative 
(Ambiguous). In addition, we included the code of Detached, to indicate when a student 
separated the content of math or graphs from their connection to it. As cautioned by Di Martino 
(2019), students’ statements about the utility of mathematics (e.g., “math is useful” which we 
coded as detached) pointed to something other than a positive attitude toward mathematics. 

 
Table 2: Attitude Survey Qualitative Codes 

Code Description Sample Response 
Positive Like/Can I like graphs because they 

represent what a function will look 
like 

 
Mixed More than one of these codes: 

positive, ambiguous, and/or negative 
 

Mathematics is boring and cool at 
the same time.  

 
Ambiguous Code could be positive or negative 

 
It is hard for me. 

 
Negative Dislike/Cannot I cannot do mathematics because I 

forget the steps  
 

Detached Separates the content from their 
connection to it. 

Mathematics is filled with a lot of 
rules! 

 
For the validation sample, each question was coded by two trained coders. Each coder 

received training with a coding rubric, then independently coded responses. After coding, they 
met to identify disagreements, and then calibrated the disagreements via discussion, consulting 
with an expert coder if needed. As the data set grew, our team trained a machine to assist with 
the qualitative coding process. Beginning in Spring 2021, we used the machine learning program 
to assist with the qualitative coding process, verifying with human coders via the earlier process 
if there was less than 70% confidence by the machine coding.  

Quantitizing the qualitative codes: Rasch analysis. Via Rasch analysis (Bond et al., 2015), 
we transformed the qualitative codes into a mathematically supported scale, ordering the codes 
according to the level of positivity expressed by each category. This resulted in a collapsing of 
the Mixed and Ambiguous codes. Our scale was as follows: 0-Detached, 1-Negative, 2-
Mixed/Ambiguous, 3-Positive. Category probability curves indicated an even distribution of the 
four categories with clearly advancing steps.  Rasch-Andrich thresholds increased with category 
values with no evidence of step misfit. Per Linacre (2015), Mean Square (MNSQ) infit values 
should be less than 2.0; our values ranged from 0.91 to 1.24.  

Exploratory factor analysis (EFA). We conducted EFA to examine construct validity.  
Specifically, to explore how items grouped together mathematically compared to the intended 
theoretical groupings. We used Bartlett’s test of sphericity and the Kaiser–Meyer–Olkin (KMO) 
measure of sampling adequacy to assess the suitability of the items for factor analysis. We 
assessed dimensionality using principal components analysis.   
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Results 
Our analysis revealed that the samples were adequate and the items were suitable for factor 

analysis. The Validation sample (KMO = 0.549) and the Calibration sample (KMO= 0.524) were 
over the 0.5 minimum threshold. Bartlett’s test was significant at p < .001 with a χ²= 548.89 
validation sample, and a χ²= 282.17 for calibration sample.   

For the validation sample, two factors were retained, the first with eigenvalues of 1.698 and 
1.192, combined explaining 57.8% of the total variance (Table 3). Two factors were likewise 
retained for the Calibration sample (eigenvalues of 1.60 and 1.24), explaining 56.71% of the total 
variance.  Using a Varimax rotation, the first factor we called Attitude Towards Math; it included 
the first three questions from Pepin (2011, Table 1). The second factor we called Attitude 
Towards Graphs; it included the two new questions about graphs.  

 
Table 3: Attitude Survey Item Statistics  

Discussion 
The results of our EFA analysis reveal that items loaded by topic: math and graphs. Hence, 

students’ emotional disposition or perceived competence toward math and graphs may not align 
with each other. Our analysis points to interrelationships between dimensions of attitudes put 
forward by Di Martino and Zan (2010). 

We found a difference between the attitudes coded in the Validation (n=1256) and 
Calibration (n=712) samples. Interesting, the Validation sample had more negative codes while 
the Calibration sample had more positive codes. In the Validation sample, 28% of responses 
were coded positive and 41% negative. In the Calibration sample 46% of responses were coded 
as positive and 23% coded negative. We conjectured that the Calibration sample had more 
positive attitudes in part because students were returning to in-person learning that semester. 

We address two limitations. Because our data sources were limited to students’ responses to 
the attitude surveys at the beginning of the semester, our results report only students’ attitudes at 
the start of the course. Furthermore, our resulting attitude scale condenses Mixed and 
Ambiguous to a single code, potentially dampening some complexities in students’ attitudes. 

Our study contributes to research investigating attitudes toward math and graphs in an under-
studied population, undergraduate students in early credit bearing mathematics courses, such as 
College algebra. Students’ mean response codes (Table 3) indicate that they entered College 
Algebra with more positive than negative emotional dispositions and perceived competence 
toward both math and graphs. Future studies can investigate links between students’ attitudes 
toward math and graphs and their engagement in the course. 

Acknowledgement. This research was supported by U.S. National Science Foundation 
awards 1709903, 2013186. Opinions, findings, and conclusions are those of the authors. 

Item Calibration 
Mean 

Calibration 
Factor Loading 

Validation 
Mean 

Validation 
Factor Loading 

I like/dislike math because____ 2.09 0.68 2.07 0.66 
I can/cannot do math because_____ 2.39 0.61 2.35 0.61 

Mathematics is______ 1.81 0.13 1.85 0.21 
I like/dislike graphs because _____ 2.10 0.71 2.12 0.70 
I can/cannot make sense of graphs 

because_____ 
2.30 0.71 2.28 0.69 
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This study examined the role of student generated drawings to offload cognitive demands of a 
mathematical problem. We used Unit Transformation Graphs to compare students’ thought 
processes when they had to solve the problem mentally, and when they were allowed to use pen 
and paper. The results indicated that the possibility to rely on drawings helped the participants 
to free up working memory resources and complete a cognitively demanding fractional task. 

Keywords: Cognition; Learning Theory; Number Concepts and Operations; Problem Solving. 

Background 
A growing body of research within psychology of mathematics education has been aimed at 

understanding students’ cognitive affordances and constraints in doing mathematics (e.g., Bull & 
Lee, 2014; De Smedt et al., 2009). In particular, prior literature revealed an important role of 
working memory (WM) – a psychological construct for human’s ability to simultaneously store 
and process information (Baddeley & Hitch, 1974; Daneman & Carpenter, 1980; Ma et al., 
2014). WM is limited and varies widely among individuals. If the complexity of a cognitive task 
requires to operate with multiple items at the same time, students’ WM may be overloaded and 
they become unable to process the requested amount of information. In this case, it is natural for 
an individual to seek ways to offload the cognitive demands on their WM. Once information is 
offloaded into the environment, a student then has more mental space available to progress on 
task (Kirsh, 2009).  

A typical example of cognitive offloading is hand gesturing. For instance, Alibali and 
DiRusso (1999) investigated the role of gestures on the counting abilities of children. They 
suggested that finger counting allows children to physically instantiate some aspects of the task 
and, therefore, offload cognitive demands on their WM. Goldin-Meadow et al. (2001) measured 
the number of items students can hold in their mind when they are explaining a mathematical 
task. The results indicated that the participants are able to recall more items when they are 
allowed to gesture. Similar results supporting the beneficial effect of gesturing on WM were 
achieved in other studies (Cook et al., 2012; Ping & Goldin-Meadow, 2010; Wagner et al., 
2004).  

Drawings are considered to be a mediation tool for thinking and for meaning making. 
Vygotsky and Cole (1978) pointed out that human beings’ mental activities are supported and 
developed by means of signs that are the products of their internalization processes and are 
called psychological tools. Vygotsky (1981) then suggests a list of examples of psychological 
tools, including drawings. Therefore, as drawings are composed of systems of signs and, thus, 
physically represent the original properties of an object of thought, they allow an individual to 
transmit some pieces of information into the environment and, therefore, reduce cognitive 
demands, playing the role of an important offloading mechanism. 
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Empirical research was done to examine the impact of student generated drawings with 
regards to WM and cognitive offloading on college students’ understanding of science text. Lin 
et al. (2017) explored the levels of WM and the cognitive load that students bear when learning 
college level science material. In their study, three groups of students were instructed to study in 
particular ways: one group of students was told to create representations of the material being 
studied, another had a repeated reading method, and the other group simply had to imagine the 
relationships and reason through ideas in their heads. Evidence supported the conclusion that the 
study method of using learner-generated drawings facilitated schema construction to integrate 
prior knowledge with the new information that allows for easier transfer to storage in long term 
memory instead of simply with their WM. Learners who exhibited a lower prior knowledge of 
the course content demonstrated a deeper and higher level of understanding through the use of 
learner-generated drawings. It also found that students bore less of a cognitive load when they 
were able to draw out and connect their ideas on paper. By being able to draw out the 
relationships and make proper connections, students were able to offload the information learned 
during the study rather than attempting to make all of the connections mentally.  

Another study explored the components and effects of learner-generated drawing on 
subsequent testing. During the learning process, internalizing and externalizing the information 
can be difficult for students to retain, but once this information is offloaded into the environment 
it is not as difficult to keep track of (Schmidgall et al., 2019). The process of drawing out 
representations allows learners to engage in generative learning processes. This study found that 
the students who utilized the drawing methods for studying outperformed those who simply did a 
summary of the information to study.  

Despite the prior work and findings, drawings have received considerably little attention as 
being a reliable method for offloading cognitive demands on students’ WM when they are 
engaged in mathematical reasoning. The purpose of the present study is to examine the impact of 
using student generated drawings to offload the cognitive demands of mathematical tasks. 
Understanding mechanisms underlying the phenomenon of cognitive offloading will help to 
improve learning conditions for mathematics learners, which addresses one of the major goals of 
PME-NA. Specifically, we contribute to the existing body of research by answering the 
following research question: How do drawings lighten the load of students’ working memory 
when they are engaged in fractions tasks? 

Theoretical Framework 
In answering our research question, we adopt a Piagetian perspective on the construction of 

mathematical knowledge and a neo-Piagetian approach to WM. Following Piaget, we 
conceptualize mathematics as a coordination of mental actions (e.g., Beth & Piaget, 1966). In the 
context of fractional knowledge, these actions are well researched (Boyce & Norton, 2016; 
Hackenberg & Tilemma, 2009; Steffe & Olive, 2010; Steffe, 1991, 1992). The operations most 
germane to our study include unitizing (𝑈𝑛; taking a collection of 𝑛 units as a whole), iterating 
(𝐼𝑛; copying a unit 𝑛 times to form a new unit), partitioning (𝑃𝑛; breaking a whole into 𝑛 
identical units); disembedding (𝐷𝑛; taking 𝑛 equal units out of a whole without losing their 
connection to the whole), and distributing (𝑇𝑚:𝑛; inserting a collection of 𝑚 units of a whole into 
each of the 𝑛 units of another whole to create a unit of units of units). 

Pascual-Leone (1970) proposed a neo-Piagetian characterization of WM through a mental-
attentional operator, which is known as M-operator. Its capacity is called M-capacity and 
represents “the number of separate schemes (i.e., separate chunks of information) on which the 
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subject can operate simultaneously using his mental structures” (p. 302). It has been shown that 
an average adult’s M-capacity ranges from 5 to 7, meaning that they can activate 5-7 schemes at 
once, without offloading cognitive demands onto the environment. In the context of fractional 
tasks, we hypothesize that WM involves manipulating sequences of actions used to construct and 
transform units.  

Although an average person cannot activate more than 7 schemes during a cognitive task, 
these schemes differ in complexity and may contain other, “smaller” schemes. In particular, 
some of the units and unit transformations can be organized within “larger” units coordinating 
structures (Boyce & Norton, 2016; Hackenberg, 2007; Ulrich, 2016). Consider, for example, the 
construction of 1/12 as a unit, which has a one-to-twelve relationship to a whole unit. 1/12 may 
be obtained by partitioning the whole into 12 equal units (see the left part of Figure 1). Vice 
versa, the whole may be built by the mental action of iterating 1/12 twelve times. In the absence 
of structures to assimilate multiple levels of units, each unit or unit transformation poses separate 
demands on a student’s WM. However, the whole, the unit fraction, and the mental 
transformations between them may be chunked into a single cognitive unit, thus reducing 
cognitive demand of the task from three to one (see the right part of Figure 1).  

 

Figure 1: Units coordinating structures 

Our integrated framework explicitly accounts for students’ available structures in lightening 
cognitive load on their WM when solving fractional tasks. However, the increase in the number 
of units and mental transformations required to operate on may overwhelm one’s WM even for 
students with high WM capacity and advanced level of unit coordination. The utility of drawings 
in handling the situations of cognitive overload is the primary interest of this study.  

Data and Methods 
The data used in this paper is part of a larger project aimed to explore behavioral and 

neurological aspects of mathematical development. Here, we report on video recorded behavioral 
data and students’ written work. 
Participants 

The participants recruited for this project were pre-service elementary teachers (PSTs) at a 
large public research university in the southeastern United States, enrolled in one of two sections 
of Mathematics for Elementary School Teachers, taught by the same instructor. We chose to 
invite PSTs because they were encouraged to explain and reflect on their reasoning while solving 
elementary school mathematics tasks. In total, 12 students agreed to participate. In this paper, we 
report on two of them. 
Data Collection and Analysis 

Each PST participated in an individual clinical interview (Clement, 2000) with a member of 
the research team, lasting approximately 75 minutes. The interviews consisted of an assessment 
of students’ available structures (Norton et al., 2015), a WM assessment (backward digit span; 
Morra, 1994), and a set of fraction tasks (modified from Hackenberg & Tillema, 2009). In this 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1655



study, we focus on one of those tasks: Imagine cutting off 1/4 of 5/6 of a cake. So, how much is 
that of the whole cake? The analysis of cognitive demands of this task can be found in (Kerrigan 
et al., 2020). 

The participants were given the fraction task verbally and asked to initially solve it without 
using any figurative materials, so that we could determine the number of units and unit 
transformations each student could hold in their WM without relying on drawings. The 
participants were sometimes asked follow-up questions to clarify their reasoning. None of the 
PSTs were able to properly solve the task mentally. After they attempted to solve the fraction 
task in their heads, the participants were given the opportunity to use a pen and paper. All 
interviews were video and audio recorded, and all drawings were captured using LiveScribe 
pens.  

We qualitatively analyzed the behavioral video data, transcripts of students’ verbal 
reasoning, and data collected via LiveScribe pens. We built unit transformation graphs (UTGs; 
Norton et al., in press) to illustrate the sequences of actions the students’ used in attempting to 
solve the task mentally, and being able to rely on drawings. The comparisons of these graphs 
helped us to draw inferences about the impact of student generated drawings on cognitive 
offloading for fraction tasks.  

Results 
We report on two participants: PST A (with WM capacity of 6, operating at unit coordination 

stage 3) and PST B (with WM capacity of 7, operating at units coordination stage 2). We decided 
to choose these two students because both of them were assessed with high WM capacities, made 
the most progress on the task in the initial phase, and could come up with the correct answer 
when they were allowed to use drawings. Here, we present our analysis of their reasoning before 
and after drawing. 
PST A Before Drawing 

Researcher: This is the next task. Imagine cutting off one fourth of five sixths of a 
cake. So, how much is that of the cake. First just try to do it in your head then you can 
draw. 

PST A:   Ok, so [motions with hands] three fourths of the five sixths. 
Researcher:  One fourth of five sixths. 
PST A:   One fourth. One fourth of the five sixths. Ok, so I see six bars, but only 

five. So, one fourth of one… One fourth of the five sixths… Ok…. So, that would be… 
[pauses for twenty-six seconds.] Umm… Five… Twenty fourths? But you’re not using 
all six… It’s really hard to do in your head. I’m not sure. I’m like really messing up your 
experiment, I’m sorry. 

Researcher:  No, this is… I mean this is… We have to have ones where you’re… 
PST A:   Just complete dud. Um, so you have five sixths [Student motions with 

hands]. And one fourth of that… The fifths don’t go in evenly with the fourths. So that’s 
what is confusing to me. Is there some easy way to multiply these? Am I just, am I 
overlooking something? 

Researcher:  No. 
PST A:   Um… 
Researcher:  Do you want to draw it? 
PST A:   Yeah. 
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Figure 2: UTG for PST A before drawing. 

As evident in UTG (Figure 2), we inferred that PST A used a two-level unit coordinating 
structure. This means that she could partition the whole into 6 equal parts, while being 
simultaneously aware of the whole, a piece of the whole, and a 1:6 relationship between them 
(see the rectangle in Figure 2). Therefore, mental actions of partitioning and iterating, as well as 
the two quantities they connect, allowed the student to chunk these three units, reducing the 
cognitive demand of the task by two. She could further disembed 5/6 and attempted to operate on 
it through partitioning into four parts. However, the latter action led to considerable cognitive 
overload, which might impede the student’s progress on the task.  
PST A After Drawing 

PST A:   [Picks up pen and begins to draw.] So, you have six things… Or six… But 
you’re only using five of them. So, you need one fourth of this. 
[Student thinks and draws for fourteen seconds.] Split that into fours. 

Researcher:  Mhm. 
Student:   Ok so that means it’s one-fourth of that, so… One two three four five. Of 

the whole thing? No, just five sixths. So, five… 
Researcher:  Out of the- uh- original cake. 
PST A:   So, six sixths? 
Researcher:  Yes. 
PST A:   So, five out of, five twenty-fourths? 
Researcher:  Yeah. 
PST A:   Five twenty-fourths. 

 

 

Figure 3: LiveScribe Pen drawing of PST A after drawing. 

Being able to draw the problem out allowed PST A to complete the task. The student first 
drew a whole and split it into six pieces. She then cut each of the five pieces into four parts. After 
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that, she shaded in a fourth from each fifth, as shown in Figure 3. Finally, the participant counted 
the total number of fours in each sixth to find the total number of pieces to base her shaded 
portion out of.  
PST B Before Drawing 

PST B:   You’re cutting off one fourth of five sixths of a cake? 
Researcher:  Yes.  
PST B:   [uses hands to show number of pieces on the desk and begins talking to 

herself] So, you’d have, so you’d have six pieces…and out of those five…you want to 
cut off one fourth of that. Um…I guess you would…I mean I guess you could split those 
five pieces into four and get one of those, but I’m trying to think like numbers-wise what 
that would...I. well… [pauses for seven seconds] I guess of those five pieces you 
could…Split them into…Like you could get a…Split them into twenty pieces because 
five times four is twenty and then, um, you would take one fourth of that… I guess it 
would be five pieces. Yeah, it would be five pieces of that twenty to find the one fourth 
of the five sixth. Is that, do I need to explain it more? 

Researcher:  Okay, uh let’s… 
PST B:   Which would be, do you want me to draw it? [reaches towards paper] 
Researcher:  Well tell me the final answer and then we can draw it. 
PST B:   Um, oh gosh it would be… [pauses for four seconds] Splitting twenty, it 

would be five…Well it would be five twentieths, which would equal one fourth, so like 
five of those, but then I don’t know how to figure that out into sixths. I think that’s my… 

Researcher:  Yeah that’s cool, I like the way you’re reasoning. Let’s draw it, and I think 
you will figure it out. 

  

 

Figure 4: UTG for PST B before drawing. 

Similar to PST A, PST B began with the use of a two-level structure to conceptualize 1/6, 
then disembedded 5 copies of it (“so you’d have six pieces… and out of those five…”), and 
attempted to split them into four pieces (Figure 4). However, when constructing 1/4 of 5/6, the 
student lost track of the sixth part making up the whole. She, thus, ended up distributing four 
parts into each of the 5 pieces, producing 20 parts in total. Taking a quarter out of 20, with no 
relation to the whole, resulted in her final answer of 5/20, or 1/4.  
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PST B After Drawing 
PST B:   Okay, so there’s…This and then…Five, and we’re trying to find… We 

have five sixths and we’re trying to find one-fourth, and you… [Student works for fifteen 
seconds.] Okay, wait can I… can I cross this out? 

Researcher:  Sure. [Student crosses out picture.] 
PST B:   Okay this is five sixths, we want five of those and then you would, I guess 

divide… 
[Student writes on paper for twenty-four seconds.] So then yeah you would have twenty 
little pieces and then…One fourth of that…Would just be, one two three four five. 
[Student marks pieces.] So… so I guess in terms of sixths it would be like…Well, oh wait 
I guess, wait…In total it would be, twenty-five twenty-fifths…Okay so in terms of six 
that would be… [Student works for six seconds.] Five…Wait, yeah it would be five 
twenty-fifths would be one fifth. I don’t think that’s right. 

Researcher:  Why don’t you think it’s right? 
PST B:   I just think, I just don’t think one fourth of… I don’t know it just 

doesn’t… 
Researcher:  How did you get the twenty-five? 
PST B:   Um, I shaded in… Well I shaded in five of these because that’s one fourth 

of the five sixths, because there are… [Student counts on drawing.] Because that’s one 
fourth of that and then, when you turn the five sixths into terms of…Um…Twentieths, 
well, then I just… [Student reexamines paper.] …There are actually twenty-
four…There’s… So, it’s out of twenty-four then, I guess, so then it would be, five 
twenty-fourths. 

 

  
Figure 5: LiveScribe Pen drawing of PST B. 

 
Consistent with her original strategy, the participant partitioned the whole into six pieces and 

marked off five of them. From there, she went through her previous approach of fourthing 5/6 by 
dividing each fifth piece into four smaller pieces to make the total of twenty within the fives.  

Taking 1/4 of that, the student shaded in five pieces of that twenty, aligning with her previous 
final answer (Figure 5). However, this time, she was able to refer back to comparing that new 
piece to the whole cake by dividing the remaining 1/6 into four parts as well and counting the 
total number of pieces. The ability to draw the problem out and to refer to the depiction allowed 
PST B to maintain her perspective on the whole without losing the extra 1/6, and eventually 
come up with the correct answer of 5/24. 
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Discussion  
The partial solutions, presented by our participants before drawing, exhausted their WM 

capacities. Both of the students employed two-level units coordinating structures, which allowed 
them to alleviate the cognitive demands on their WM. However, the experienced cognitive 
demand of the task was too high, leaving no cognitive resources required to complete the task. 
PST A had potential to make greater progress on the task because she was assessed as having 
WM capacity of 6 and operating at unit coordination stage 3. Nevertheless, it is known that 
students do not necessarily construct all possible mental structures by virtue of operating at stage 
3 (Izsák, 2008). Similarly, it appears that people do not always use all their available WM 
resources (Eysenck & Cavo, 1992; Norton et al., in press).  

After being able to represent their thought processes pictorially, both students could continue 
with their original method of solving the problem. Although PST A and PST B produced 
different drawings, their final thought processes converged (see Figure 6). They both partitioned 
the whole into 6 pieces, disembedded 5 of them, which constituted a new whole. After that, they 
distributed 4 pieces into each of the 5 pieces, producing 20 parts, which were further partitioned 
into 4 parts, arriving at 5 smaller pieces. In order to conceptualize how much of the whole cake 
these 5 pieces were, the participants had to repeat the process for the remaining 1/6 (indicated by 
dashed lines, ovals, and cross-hashed circles in Figure 6). Because the first part of the solution 
was already drawn out, the students could focus on the second part without losing any of the 
previously obtained information. Thus, the possibility of relying on the picture allowed the 
participants to save mental resources and eventually come up with the correct answer, as 
predicted by the prior literature (Kirsch, 2009; Schmidgall et al., 2019).  

 

 

Figure 6: UTG after drawing for both PST A and PST B. 

Notably, in absence of other offloading tools, the participants actively produced hand 
gestures when reasoning through the task. Gesturing was used as a natural method to physically 
represent some properties of the object of thought and make the task less demanding (e.g., Ping 
& Goldin-Meadow, 2010; Wagner et al., 2004). However, the use of hand gestures did not help 
our participants to overcome the experienced cognitive overload. Future research should be 
conducted to compare the effects of gesturing and drawing on managing the cognitive demands 
of mathematical tasks. 
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Research on dyscalculia has focused almost exclusively on elementary-aged students’ deficits in 
speed and accuracy in arithmetic calculation. This case study expands our understanding of 
dyscalculia by documenting how one college student with dyscalculia understood algebra during 
a one-on-one design experiment. A detailed case study of 19 video recorded sessions revealed 
that she relied upon unconventional understandings of algebraic quantities and notation, which 
led to persistent difficulties. This exploratory case study provides new insights into the character 
of difficulties that arose and persisted for one student with dyscalculia in the context of algebra 
and suggests the utility of documenting the persistent understandings that students with 
dyscalculia rely upon, particularly in understudied mathematical domains, like algebra.  

Keywords: Students with Disabilities, Algebra and Algebraic Thinking, Design Experiments 

Although many students may have difficulties with mathematics, the 6% of students with 
dyscalculia (Shalev, 2007) have a neurological difference in how their brains process quantity 
(Butterworth, 2010). Research on dyscalculia has identified that students have difficulty 
processing both symbolic (e.g., 5) and pictorial (e.g., *****) representations of quantity 
(Butterworth, 2010). This neurological difference in number processing may render standard 
mathematical tools, like symbols or representations, less accessible for students with dyscalculia 
(Lewis, 2014; 2017). Currently, research on dyscalculia has predominantly focused on 
elementary-aged students engaged in basic arithmetic (Lewis & Fisher, 2016). It remains largely 
unknown what kinds of difficulties students may experience when encountering more complex 
mathematics, like algebra. This is a critical omission because algebraic reasoning is qualitatively 
different than arithmetic (e.g., Carraher & Schliemann, 2007; Kaput, 2008; Kaput et al., 2008; 
Kieran, 1992; Stephens et al., 2013), quantities are represented abstractly in a variety of forms 
(Kaput et al., 2008; Kieran, 1992), and failure to pass algebra can limit students’ academic and 
career opportunities (Adelman, 2006). 

Large-scale studies of students with dyscalculia in algebra are not currently feasible because 
of difficulties in accurately identifying students with dyscalculia. Researchers emphasize the 
importance of differentiating between students with dyscalculia and students who have 
mathematical difficulties that are due to environmental, language, instructional, or affective 
factors (Lewis & Fisher, 2016; Mazzocco, 2007; Mazzocco & Myers, 2003). Researchers also 
argue that it is essential to differentiate students with dyscalculia from other disabilities (e.g., 
dyslexia) who may struggle with math, because these students have different cognitive profiles 
(Lyon et al., 2003) and conflating these groups of learners may mask unique characteristics of 
each (Mazzocco & Myers, 2003). To establish whether students’ low mathematics achievement 
is due to cognitive or noncognitive factors, researchers often use longitudinal designs (e.g., 
Geary et al., 2012; Mazzocco & Myers, 2003; Mazzocco et al., 2013) or work with adult learners 
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(e.g., Lewis, 2014; Lewis & Lynn, 2018). For example, in the context of fractions, longitudinal 
research has found that the difficulties experienced by students with dyscalculia are qualitatively 
different than low achieving students (Mazzocco & Devlin, 2008), and that these difficulties 
have been found to persist over years (Mazzocco et al., 2013). Detailed analyses of adults with 
dyscalculia have demonstrated that these difficulties may be due to persistent, unconventional 
understanding and use of standard mathematical tools, which suggests that all mathematical tools 
are not equally accessible for students with dyscalculia (Lewis, 2014; 2016; 2017; Lewis et al., 
2020). Although both studies of adults with dyscalculia and those with a longitudinal design 
have identified characteristic patterns of reasoning students with dyscalculia demonstrate in 
fractions (Lewis 2016; Lewis et al., 2022; Mazzocco et al., 2013), no similar studies have been 
conducted in algebra.  

To extend work on dyscalculia into algebra, we conducted a detailed analysis of an adult 
learner with dyscalculia (“Melissa”) as she engaged in a weekly videorecorded one-on-one 
design experiment focused on algebra. We adopt an anti-deficit theoretical orientation to 
disability (Vygotsky 1929/1993), and we identify the understandings she relied upon rather than 
interpreting her data through a deficit frame. A detailed analysis of 19 weekly hour-long 
videorecorded sessions suggests that the student relied upon unconventional understandings of 
algebraic symbols. This exploratory case study provides new insights into the character of 
difficulties that arose and persisted for one student with dyscalculia in the context of algebra and 
suggests the utility of documenting the unconventional understandings that students with 
dyscalculia persistently rely upon.  

In this section we review research on algebra teaching and learning which has established 
both the common misconceptions experienced by all students when learning algebra, as well as 
instructional approaches intended to address these issues. We then present our theoretical 
framework – grounded in an anti-deficit Vygotskian framing of disability. We conclude by 
considering how this framing influenced the design decisions for our one-on-one learning 
environment. 

Prior Research on Algebra 
In this study, we aimed to extend research on dyscalculia to the mathematical topic of 

algebra. Algebra is a particularly appropriate content area to explore dyscalculia because algebra 
is representationally and conceptually far more complex and abstract than arithmetic (Kaput, 
2008). Kaput (2008) defines algebraic reasoning as generalizations within a conventional symbol 
system and syntactically guided action on those symbols. Because students with dyscalculia have 
difficulty both using symbols to represent quantities and manipulating those quantities in 
arithmetic (Piazza et al., 2010) – it is critical that we begin to explore how these difficulties 
emerge in algebra when symbol use and manipulation is core to the mathematical activity.  
Fortunately, research with nondisabled students offers considerable insight into the nature of 
common student difficulties and a wealth of instructional approaches for addressing these 
difficulties (e.g., Carraher & Schlieman, 2007).  For example, using real world problems, 
manipulatives, and two-sided scale models have been recommended to support students’ 
understanding of unknowns, equality, and algebra (e.g., Common Core State Standards, National 
Governors Association Center for Best Practices & Council of Chief State School Officers, 2010; 
van de Walle et al., 2016). Although common difficulties and effective instructional approaches 
have been identified for nondisabled students, it is unclear what kinds of unique difficulties 
students with dyscalculia may experience, as well as which mathematical representations and 
tools may be inaccessible.  
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Theoretical Perspective – Reconceptualizing Dyscalculia as Difference 
Although dyscalculia is typically conceptualized in terms of cognitive deficits (e.g., Geary, 

2010), we argue that it is more productive to conceptualize dyscalculia in terms of cognitive 
difference. Our perspective is derived from a Vygotskian perspective of disability (Vygotsky, 
1929/1993). Vygotsky argued that mediational signs and tools (e.g., language, symbols), which 
developed over the course of human history, were often incompatible with the biological 
development of children with disabilities (Vygotsky, 1929/1993). For example, the mediational 
tool of spoken language is not accessible to a Deaf child, and therefore does not serve the same 
role in supporting the child’s development of language as it would for a hearing child. In the case 
of students with dyscalculia, it is possible that standard mathematical mediational tools (e.g., 
numerals, graphs, equations), which support the mathematical development of most students, 
may be incompatible with how a student with dyscalculia cognitively processes numerical 
information (e.g., Piazza et al., 2010). Students may have difficulties accessing and using these 
standard tools and may understand representations and symbols in unconventional ways. 
Although all students may use standard tools in unconventional ways as they are first learning a 
topic, we propose that students with dyscalculia may experience persistent incommensurability 
because of the inaccessibility of these mathematical mediators. Therefore, in this study, we 
identify unconventional use or understanding of standard mathematical tools that persist across 
problems and contexts – we term these persistent understandings.  
 
Disability Through the Lens of a Design Experiment 

In this study, we capture the student’s attempts to learn during a design experiment (Cobb et 
al., 2003). A design experiment involves engineering learning environments and systematically 
studying the forms of learning (Cobb et al., 2003). In this design experiment not only do we 
capture the student’s unconventional understandings as she is engaged in attempts to learn, but 
we attempt to design instructional approaches which address her difficulties. It is through the 
iterative cycles of design, enactment, and analysis that we can understand both the student’s 
unconventional understandings and what instructional approaches are accessible for the student. 
The outcome of this design experiment is not a recommendation for a particular sequence of 
instructional activities or tools. Instead, the design experiment serves as the context through 
which we are able to better understand the kinds of inaccessibility this student with dyscalculia 
experienced in mathematics and what kinds of tools were more accessible. In this paper we focus 
on identifying the kinds of unconventional understandings of mathematical mediators that the 
student persistently relied upon during the design experiment (persistent understandings).  

Methods 
Case Study Participant History 

Melissa was a 31-year-old, woman, native English speaker, who identified as half Black and 
half White. We recruited Melissa from her pre-college mathematics class at community college. 
All students in the pre-college mathematics class were given a written fractions assessment 
(Lewis et al., 2022), which has been shown to identify students who demonstrate unconventional 
understandings, characteristic of dyscalculia (Lewis et al., 2022). Melissa demonstrated 
unconventional understandings on this assessment and was invited to participate in an interview, 
formal assessment, and design experiment focused on algebraic concepts. On the Woodcock-
Johnson Test of Achievement IV (WJ-IV; Schrank et al., 2014), Melissa composite math score 
was at the 19th percentile – which is below the 25th percentile – the most commonly used cutoff 
for determining dyscalculia eligibility (Lewis & Fisher, 2016).  An interview revealed that 
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Melissa had a long history of difficulties with mathematics through school, despite having 
sufficient resources (e.g., private tutor).  She had repeatedly failed pre-college mathematics 
classes at the community college.  She reported doing all her homework and practicing problems 
“over and over and over again,” but she still struggled to understand the content. She did not pass 
this class. She explained, “how my mind processes it, is quite different than the average person. 
It seems easy for other people, but for me you have to explain it in a different way.” She 
explained that she did well in all her other classes, “it’s just math that gets me.”  Given Melissa’s 
unconventional fraction understandings, low mathematics achievement score, and her history of 
continued mathematics failure despite sufficient resources, Melissa meets the dyscalculia criteria. 
One-on-One Design Experiment 

We conducted 19 videotaped design experiment sessions with Melissa. This design 
experiment involved iterative microcycles of design, enactment, and analysis (Gravemeijer & 
Cobb, 2006). Each microcycle involved designing and enacting an individual, one-on-one 
instructional session and then analyzing a video of the session in order to design the subsequent 
session. The first and third authors participated in the design microcycles and the first author 
(“Kelly”) was the tutor for all sessions. The goal of these sessions was to identify the ways in 
which Melissa used mathematical tools in unconventional and problematic ways and to provide 
Melissa with alternative mediational tools to support her understanding (for more details about 
this iterative approach to design see Lewis et al., 2020). In designing alternative mathematical 
mediators we (a) drew upon prior research on the teaching and learning of algebra with 
nondisabled students (e.g., Kieran, 2007), (b) leveraged instructional recommendations offered 
by an adult with dyscalculia who developed ways of compensating (Lewis & Lynn, 2018) and 
(c) built upon Melissa’s intuitive notations about mathematics and what she reported was more 
or less effective for her. In our design we aimed to provide Melissa with mediators that would 
help support a conventional understanding of algebra, specifically solving for an unknown, 
which is a core algebraic concept.  
Retrospective Analysis 

After the conclusion of data collection, we began our retrospective analysis. We transcribed 
all video recordings and scanned all written artifacts. We parsed each transcript into individual 
problem instances, which began with a question and ended with a student answer. The first and 
second author iteratively reviewed videos of each of the sessions and generated and refined 
analytic categories that captured the nature of the student’s understanding. We produced 
operational definitions for persistent understandings, specifying inclusion criteria and identifying 
prototypical examples of each. Five persistent understandings were related to Melissa’s 
understanding of algebra (see Lewis et al., 2020 for a description of persistent understandings 
associated with integer operations). Three coders (first, fourth, and fifth authors) systematically 
coded each problem instance for correctness, problem type, instructional approach, mediational 
tools, and any persistent understandings. Each problem instance was coded by at least 2 coders. 
Reliability for the coding of the 5 algebraic persistent understandings was 95.4%. Any 
discrepancies in coding were resolved during our weekly research team meetings by rewatching 
the video and discussing whether there was sufficient evidence to warrant the attribution of that 
operational definition (for a similar approach see Schoenfeld et al., 1993; Lewis, 2014).  

Findings 
The detailed analysis of video recordings revealed a collection of five persistent algebraic 

understandings that reoccurred, were unconventional, and led to difficulties. These persistent 
understandings were related to (1) the value of unknowns, (2) the equal sign, (3) coefficients, (4) 
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the meaning of “x=”, and (5) the value of zero. We begin by providing a high-level overview of 
the unconventional understandings and data about their prevalence throughout the sessions, 
which indicate that these unconventional understandings were often associated with an incorrect 
answer.  We then dive into detail for the first unconventional understanding to demonstrate how 
this unconventional understanding emerged in the data.  We then present a problem instance 
taken from the first session which shows how multiple unconventional understandings 
sometimes occurred in tandem and led to significant difficulties.   

We identified five persistent unconventional understandings based on the detailed analysis of 
Melissa’s video recorded data, these include:  

1. Expansive and static view of unknowns - When working with unknowns/variables, 
Melissa asserted that any non-numeral symbol (e.g., +, =) was a variable, that x could be 
different values in the same problem, and that x was a static value equal to 1.   

2. Equal sign as a bridge - When working with equations, Melissa treated the equal sign as 
a symbol which indicated the result of a calculation, so she often used intermediate equal 
signs between solution steps or had equations with more than 1 equal sign.  She often 
made invalid transformations of the equations moving terms from one side to the other 
across “the bridge”, and did not object to invalid equalities (e.g., -4=5). 

3. Unconventional manipulation of coefficients - When working with coefficients, 
Melissa often assumed an additive relationship between the coefficient and the unknown 
and would subtract the coefficient away from the unknown (e.g., 6x-6=x).  At other 
times, she would resolve coefficients by dividing by the entire term, rather than the 
coefficient value (e.g., to solve 6x=12, diving by 6x rather than 6). 

4. x = the answer - When working with unknowns, Melissa understood x to equal the 
answer, so would often ignore the location of x in an equation and tack “x=” in front of 
the answer she calculated, regardless of whether it represented the value of the unknown. 

5. Zero is not a value - When solving algebra problems, Melissa treated the value 0 as if it 
were not a quantity.  At times she treated like any other constant, (subtracting it from 
both sides of the equation) and at other times she argued that it was not a valid value. 

Within these 19 individual sessions, 427 problem instances involved algebra content. Of the 
427 problem instances, 186 were coded as incorrect (44%) and 90% of these incorrect answers 
were associated with an unconventional persistent understanding.  Indeed, in problems where 
Melissa relied upon these unconventional persistent understandings, she often produced an 
incorrect answer (see Table 1).   

 
Table 1: Prevalence of Persistent Understandings and Correctness of Problem Instances 

Persistent Understanding Number of 
problem instances 

Associated with an 
incorrect answer 

1. Expansive and static view of unknowns 80 80% 
2. Equal sign as a bridge 110 59% 
3. Unconventional manipulation of coefficients 70 74% 
4. x = the answer 46 74% 
5. Zero is not a value  13 61% 

These five persistent understandings (along with the integer persistent understandings, Lewis et 
al., 2020) provided a relatively comprehensive explanatory frame for the difficulties that the 
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student experienced.  We now provide details for one persistent understanding, to illustrate how 
this emerged over the course of the sessions.  
  
Persistent Understanding #1 - Expansive and Static View of Unknowns  

The first persistent understanding – expansive and static view of unknowns – involved an 
unconventional understanding of algebraic unknowns and their values, that was both overly 
expansive and overly static. Melissa was overly expansive in her definition of unknowns, in that 
she used the term “unknown” or “variable” to refer to any non-numeral mathematical symbol. 
She explained, “a variable is a… an unknown number,” and that a variable could be an “addition 
or subtraction problem” and then identified a whole range of different mathematical symbols 
(e.g., +, 𝜋, [, 𝑥,𝑚,÷,<,=) as variables. She explained, “[The equal sign] is a variable, as well as 
an x is a variable, or a plus is a variable.” In addition to treating all symbols as variables, she was 
also overly expansive about her understanding of unknowns in that she believed that an unknown 
(e.g., x) could be different values within the same problem (e.g., 2x+4=3x), and argued that even 
after solving for x, that that unknown could still be anything.  

Although she was often overly expansive in her understanding of unknowns, she also 
demonstrated a static view of unknowns, and often asserted that unknowns were equal to 1. She 
explained, “The rule of x is 1, that’s most common unknown, in other words, for x to be 1.” For 
example, during one session Kelly asked her to write a value that was greater than x. She 
incorrectly determined that 2 was larger than x and explained, “because I look at x, or a letter, as 
1. And 2 is just bigger.”  

Believing that unknowns were static values equal to 1 was sometimes problematic when she 
attempted to solve for x. For example, when asked to solve 12=x+5, she replaced the x with a 1 
simplifying the equation to 12=6, then divided both sides by 6 to get an answer of 2. Melissa’s 
static understanding of x, being equal to 1, was used in this example to create an invalid equation 
12=6. She did not find this to be problematic and continued to procedurally manipulate the 
values, as if she was still solving for x, determining that the answer was 2.  

In another example, when she solved the problem x+3=8, she correctly determined that x=5, 
but when Kelly asked her what it meant that x=5 (a standard question), she explained that “one 
equaled five [writes 1=5; see Figure 1] because I see x as 1.” In this instance, even though she 
had just determined that x was equal to 5, her understanding that x=1 emerged. This resulted in 
her creating an invalid equality 1=5, which she did not find problematic.  

 

 
Figure 1. Melissa’s written work to solve the problem x+3=8 

Both Melissa’s understanding of x as a static value, equal to 1, and her overly expansive 
understanding of unknowns, which involved believing that x could be any value, even after 
determining the value of x, led to her unconventional use of unknowns and errors across the 
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sessions. This persistent understanding was evident in 80 problem instances across the sessions, 
and 80% of the time was associated with an incorrect answer. A similar pattern of prevalence 
and errors were found for the other 4 persistent understandings (see Table 1).  

 
Persistent Understandings Occurring in Tandem 
To illustrate how these persistent understandings often appeared together in the same problem, 
we illustrate how Melissa relied upon several persistent understandings as she solved the 
problem x/2+7=10. This episode was taken from the first instructional session as Kelly tried to 
assess her existing strategies for solving for x. The prevalence of these persistent understandings 
in this first section suggests that Melissa came to this design experiment with these persistent 
understandings. In Figure 2 we present the student’s work, along with the persistent 
understanding identified and the rationale for that attribution. This example illustrates how 
Melissa’s persistent understandings often occurred together and resulted in difficulties. 
 

 
Figure 2. Melissa’s written work, and illustration of multiple persistent understandings 

within one solution process. 

Discussion  
This detailed case study of Melissa, an adult student with dyscalculia, found that she had 

persistent unconventional understanding of standard mathematical symbols (e.g., unknowns, the 
equal sign, coefficients, x=, and zero). Unlike the kinds of difficulties that all students experience 
when first learning a topic, these unconventional understandings were persistent. We argue that 
the persistence of these unconventional understandings suggests that these standard mathematical 
tools – used to represent quantities and relationships between quantities – were at least partially 
inaccessible to the student. In other work (Lewis et al., in press) we explore how Melissa’s 
persistent understandings interacted with tools specifically designed to provide her with 
increased access.  Here we note that the persistent understandings continued to emerge as 
Melissa engaged with new tools, but reorientation to the tools enabled Melissa to reason in more 
conventional ways. 

This detailed case study extends prior research on dyscalculia in several important ways. 
First, this research demonstrates how number processing difficulties found in younger students 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1669



with dyscalculia (Landerl, 2013; Rousselle & Noël, 2007), occur in older students engaged in 
algebraic reasoning. Just as prior research has demonstrated that students with dyscalculia are 
slower and more error prone when asked to compare or manipulate arithmetic quantities (e.g., 
Desoete et al., 2012), Melissa often made errors (44% of algebra problems were incorrect) and 
she experienced persistent difficulties understanding, comparing, representing, and manipulating 
algebraic quantities. This study, therefore, extends findings that have been documented in 
students with dyscalculia, and begins to identify how these difficulties would emerge in an 
algebraic context. This kind of detailed case study can enable researchers to begin to explore 
mathematical topic domains beyond basic arithmetic, and provides much needed insight into 
dyscalculia across mathematical topic domains.  

Second, this study offers an anti-deficit framing of dyscalculia by providing a detailed 
depiction of a student engaged in the process of learning and doing mathematics, rather than 
describing the student’s performance from a deficit frame in terms of speed and accuracy. Unlike 
prior research on dyscalculia which infers learning difficulties based on patterns of errors on 
outcome measures (e.g., Bouck et al., 2016; Mazzocco et al., 2008), this study explored the 
student’s reasoning underlying these errors. This study documented the ways in which Melissa 
was understanding, representing, and manipulating quantities, while engaged in problem solving. 
This anti-deficit framing is critical for making progress in the field towards accurate 
identification of dyscalculia and offers new avenues to explore for re-mediation. 

Future research is needed to determine whether these understandings identified in this 
study are unique to Melissa, or if they are typical of students with dyscalculia. Building from 
case study research to large scale studies to examine the prevalence of these characteristics and 
to develop screening measures to accurately screen for dyscalculia has been demonstrated in the 
domain of fractions (Lewis et al., 2022).  

Conclusion 
This exploratory case study provides new insights into the character of difficulties that arose 

and persisted for one student with dyscalculia in the context of algebra. Findings suggests the 
utility of documenting the persistent understandings that students with dyscalculia rely upon to 
understand how dyscalculia may impact students learning of algebra. Beginning to understand 
dyscalculia in algebra is critical, as algebra often acts as a gate keeper, like it did for Melissa, 
limiting students’ academic and career opportunities. 
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Problem solving is a very important skill for students to learn (e.g., Bonilla-Rius, 2020; NGA, 
2010), and part of developing problem solving skills is learning to persevere. One strategy for 
learning how to persevere is by providing students with materials that allow them the 
opportunity to engage with challenging problems (e.g., Kapur, 2010; Middleton et al., 2015). 
This study of the Volume unit of the AC2inG materials analyzes students’ strategies for problem 
solving and persevering. Findings from these think-aloud interviews indicate that different 
students will utilize one or more methods for solving challenging problems, such as asking 
clarifying questions, talking themselves through the problem, and attempting various 
mathematical approaches.  

Keywords: Problem solving, middle school education, geometry and spatial reasoning, 
curriculum  

Theoretical Framework 
The first Standard for Mathematical Practice outlined in the Common Core State Standards 

(NGA, 2010) states that students should be able to “make sense of problems and persevere in 
solving them” (SMP.1). Perseverance and problem solving are also emphasized in standards 
outside the United States (e.g., Canada (Ontario, 2020); Mexico (Bonilla-Rius, 2020)). The 
ability to problem solve and persevere are highlighted as part of the skillset required to be 
successful in our modern society. According to Bonilla-Rius (2020), the recently re-envisioned 
national standards in Mexico outline eleven skills and characteristics necessary to be a successful 
citizen in the 21st century, including critical thinking and problem solving.  

Students also recognize the importance of perseverance when faced with a challenging 
problem. When asked what it takes to solve problems, one group of elementary students offered 
the following responses: “Be open minded.”; “Be able to defend your thinking.”; and “Don’t 
give up – persevere!” (Costello, 2020). However, while many stakeholders understand the 
importance of perseverance and problem solving abilities, researchers understand that these 
crucial skills are not always innate for students and, thus, must be modeled for them (Colgan, 
2020). One way to model these skills is through the materials and resources teachers provide for 
their students (Kapur, 2010; Middleton et al., 2015). Materials that utilize contrasting cases are 
one such set of resources that provide opportunities for students to practice problem solving 
(Loibl et al., 2020), an important part of which is persevering. 

The Animated Contrasting Cases in Geometry (AC2inG) Materials 
The Animated Contrasting Cases in Geometry (AC2inG) project has recently developed a set 

of materials that utilize contrasting cases to offer middle-grades students the chance to reason 
about various geometric topics in a relatively novel way. Contrasting cases are materials that 
present two or more methods for solving the same or similar problems, and research has shown 
that these types of activities can be effective for developing both procedural fluency and 
conceptual understanding (Rittle-Johnson & Star, 2009). Covering topics across the CCSS-M 
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Grade 8 standards, including angles, transformations, the Pythagorean theorem, and volume, the 
AC2inG materials are organized into four units, each covering one of the aforementioned topics, 
that include five or six Worked Example Pairs (WEPs) per unit. Each WEP presents students 
with two fictitious characters’ methods for solving a problem and allows students to explore the 
reasoning of these two characters side by side, providing them the opportunity to compare and 
contrast each character’s method. Furthermore, each WEP consists of five parts: (1) the first 
character’s method alone; (2) the second character’s method alone; (3) both methods side by 
side; (4) a series of discussion questions and practice problems about the concept covered in the 
WEP; and (5) a Thought Bubble page where one of the characters shares a revelatory idea about 
the concept. This design presents students with myriad opportunities to critique the reasoning of 
others (another of the Standards for Mathematical Practice, SMP. 3 (NGA, 2010)) while 
practicing their problem solving skills and challenging themselves to persevere.  

Methods 
Due to the constraints of the current pandemic, our team conducted individual think aloud 

interviews (Piaget, 1976) with 42 students in lieu of piloting these materials in classrooms. In 
each interview, students worked through one or more of the WEPs from a particular unit while 
discussing their thoughts about the methods of each character as well as how the students 
themselves would solve the problems and answer the discussion questions. These interviews 
were transcribed and independently coded by two members of our research team. After one 
researcher coded an interview, a second researcher then coded the interview to determine 
agreement. In the case of disagreements, a third researcher made a final determination about the 
code(s) in question.  

This report focuses on codes from the Volume unit pertaining to students’ original geometric 
thinking, particularly those where students struggled and persevered. The code ‘Persevered’ was 
a subcode of the code ‘Struggle,’ which was used when a student showed us they were having 
trouble working through a problem. We analyzed quotes tagged with the ‘Struggle’ code for 
similarities and differences and realized that, when students were confused, they took one of two 
possible pathways. First, the student could stop working and give up, an option students 
exercised approximately one-third of the time. Second, the student could choose to continue 
working through the problem, an option we observed the other two-thirds of the time and coded 
as ‘Persevered.’ These codes were further analyzed for similarities and grouped into two broad 
approaches, as outlined below. 

Findings 
Throughout the 14 think alouds covering WEPs from the Volume unit, students worked to 

solve a variety of problems. Many of these problems caused them to struggle, as indicated by the 
41 times we used the code ‘Struggle’ when analyzing transcripts from this unit. Given that 
perseverance was observed in eight of the 13 students who completed WEPs from the Volume 
unit, it is no surprise that this trait manifested itself in several different ways. Primarily, we 
noticed two broad approaches to persevering when problem solving: (1) the student tried to make 
sense of the problem; or (2) the student tried to use an alternate strategy. 
Making Sense of Problems 

Persevering through a challenging problem was seen when students attempted to make sense 
of the problem before proceeding. They did this in three distinct ways: (1) asked clarifying 
questions; (2) talked themselves through the problem; and (3) tried to recall something they had 
previously learned. 
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Ask clarifying questions. When students encountered difficult problems while working 
through the materials, one strategy they used to persevere was to ask the researcher clarifying 
questions about the problem. For example, when posed with the question, “Can two cylinders 
with different dimensions have the same volume?”, one student asked about the word 
dimensions. “Is that like height or depth or something?” Rather than give up on this problem due 
to a vocabulary issue, this student chose to ask a clarifying question and was able to craft a 
cogent, correct response.  

Other students asked clarifying questions and were able to correct their misconceptions 
through the act of asking their question aloud. One WEP prompt asked how much paint is 
necessary to paint the walls of Rachel’s room. Two of her friends, Damien and Sydney, offered 
to help her solve this problem. Damien used surface area to calculate his answer, and Sydney 
used volume. One student originally said that volume would be best because “Rachel painted the 
entire room, and it said that she used [volume].” This student had misassigned Sydney’s method 
to the fictitious character, Rachel, who was the friend in the scenario who needed help. This 
student asked the researcher to clarify what the question was asking and realized that they had 
made a mistake when interpreting the methods and solutions. They then changed their answer to 
surface area, realizing that volume would fill the room with paint. 

Talk through the problem. Another strategy students used was to talk themselves through 
the problem at hand. One student initially struggled to understand the method employed by one 
of the characters when attempting to find the volume of a cylindrical container. “It seems weird 
to me,” said the student. “I kept running through it. I was wondering why it was like that.” Then 
revelation struck. “Oh wait! I see now. This is B [the area of the base] - you’re trying to find the 
circle.” By walking through the problem and provided method several times, this student was 
able to understand the reasoning of the character in the WEP on their own. 

Recall previous learning. A third strategy we observed students using was to dig into their 
memories to recall concepts and information they had previously learned. Sometimes they were 
successful in remembering. One student knew that they had learned how to calculate the volume 
of a cylinder previously and thought their teacher would be “so angry with [them] if [they] forget 
these things.” Consequently, the student tried to think back to their previous work and finally 
recalled the correct strategy. Another student initially misread a problem about calculating the 
volume of composite figures and struggled to remember a specific formula before remembering 
that the figure could be separated into more common figures, the formulas for which the student 
was able to recall. 

Other students attempted to remember what they had learned but were not as successful. One 
such student stated that they “kind of forgot how to do the area of a cylinder” and cited this as 
the reason they were confused when trying to reason through the characters’ methods. Even 
though this student could not recall the knowledge necessary to solve the problem, we identified 
this as perseverance because they attempted and did not give up on the problem until they had 
attempted several times.  
Trying an Alternate Strategy 

When students would get stuck in the middle of a problem, we noticed that some of them: (1) 
tried a different mathematical approach; or (2) took an educated guess. 

Tried a new mathematical approach. Students sometimes decided to take a different 
mathematical approach than the one they originally thought of or tried. One student was 
confused by a problem that asked them to find the volume of a cylinder if the radius were scaled 
by a factor of three. The first thing they attempted was to find the height of the cylinder so they 
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could use the volume formula. When they realized the problem did not give them the height, they 
attempted to plug in what they were given and solve for the height. This strategy was more 
complex than they were expecting, and even though they did not find the correct answer, they 
persevered through their selected strategy and found a solution, albeit one that was incorrect. 

Took an educated guess. After exhausting other efforts, some students settled on offering a 
best guess. After talking through the problem of scaling the radius of a cylinder, one student 
offered an incorrect solution but was able to justify their guess and the steps they took to arrive at 
their guess. Another student, when trying to use one of the characters’ methods to find the 
volume of a cylinder, admitted that they did not fully understand the fictitious character’s 
method, and while they did not come to the correct solution, they did offer an explanation of 
their thinking and a guess as to what they thought it might be.  

Several times, students initially did not have any idea what to do with a problem, but when 
the researcher asked what they were thinking, they were able to offer a guess. When thinking 
about why scaling the radius by some number n causes the volume to scale by n2, one student 
tried to reason through the problem, after initially stating that they did not know how to answer 
it. “Um, I mean, you didn’t change the height, I guess, so that’s why the volume multiplied. I 
don’t know.” Even though this student was not able to completely articulate their thinking, they 
persevered and demonstrated a preliminary understanding of the relationship between the radius 
and the volume. 

Discussion and Future Research 
The math education community places great importance on problem solving and 

perseverance, as witnessed by the standards we set for our students (e.g., CCSS Standards for 
Mathematical Practice (NGA, 2010)). These skills are essential in the 21st century (Bonilla-Rius, 
2020), and students themselves recognize the importance of persevering when faced with 
challenging problems (Costello, 2020). In this study, we witnessed students using a variety of 
problem solving strategies and persevering to overcome questions that caused them confusion. 
They asked clarifying questions, talked through the problem, dug into their memories, tried 
multiple strategies, and even took educated guesses when necessary.  

The think aloud interviews allowed us to uncover ways in which students persevered when 
working with middle-grades volume concepts. Future research might analyze what type of 
materials best encourage students to persevere. It also might be pertinent to compare the students 
who persevered with those who did not and try to understand the differences between these 
students.  
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Mathematics and science identity has been shown to be a significant factor related to student 
achievement, course-taking, and college and career choices in STEM. However, less in known 
about how students’ mathematics and science identities change over time and how these changes 
relate to persistence in STEM programs. This study uses data from three waves of the High 
School Longitudinal Study of 2009 and latent growth curve modeling to investigate how STEM 
students’ mathematics and science identities change from high school through college. Results 
show that while male STEM students tend to maintain high levels of mathematics identity 
throughout, female STEM students’ mathematics identity tends to start lower and decline over 
time. 

Keywords: Affect, Emotion, Beliefs, and Attitudes; Gender. 

It is well established that despite having similar high school STEM achievement and 
coursework as their male counterparts, female students are less likely to enter and more likely to 
leave postsecondary Science Technology, Engineering, and Mathematics (STEM) degree 
programs (Chen, 2013). To explain women’s underrepresentation in STEM, the extant literature 
points to motivational effects of gender stereotypes and observed female gender disparities in 
positive self-perceptions about mathematics and science. Such motivational differences are 
typically examined at fixed time points, however a review by Wang and Degol (2013) argues 
that more longitudinal research is needed.  

One longitudinal study (Wang et al., 2017) employing expectancy-value theory, found that 
self-perceptions about ability, importance, interest, and usefulness of science tend to decline over 
secondary school more sharply for girls. These trajectories were linked to lower STEM 
achievement, course-taking, and career aspirations. More work is needed to see how these effects 
play out in postsecondary settings. The present study aims to address this gap by examining 
growth trajectories of two STEM-related self-perceptions that have garnered critical attention 
recently: mathematics and science identity. Trajectories for these self-perceptions were examined 
from high school through college and notable gender differences were found that offer 
explanations for female students’ lower interest and persist in STEM. 

Theoretical Framework 
This study employs expectancy-value theory (Eccles, 2009). In terms of identity, the theory 

argues that students tend to persist in the achievement-related tasks they view as consistent with 
their personal and collective identities (i.e., sense of self and sense of belonging to a group). In 
the context of STEM, this means that students tend to persist in STEM as long as they perceive 
the activities involved in STEM to be consistent with their view of themselves and others they 
identify with (e.g., gender and racial groups). Empirical research has agreed, finding that 
students who form and maintain strong mathematics and science identities persist in STEM 
degrees and careers (e.g., Aschbacher, Li, & Roth, 2010; McGee, 2015). However, currently 
most of these studies are small-scale and qualitative. This research aims to address this gap. 
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Methodology 
The present study seeks to answer the following research questions: (1) How do STEM 

degree pursing students’ mathematics and science identities change from high school through 
college? (2) Do these trajectories differ by gender, race, or first-generation college status? 
Data and Sample 

To answer these questions the present study employed data from the High School 
Longitudinal Study of 2009 (HSLS:09; Ingles et al., 2011). HSLS:09 is the most recent in a 
series of surveys administered by the National Center for Education Statistics (NCES) that 
follow nationally representative samples of young people as they transition from high school to 
postsecondary years. The first wave of HSLS:09’s data collection began in the fall of 2009 with 
over 23,000 ninth-graders from 944 public and private schools throughout the United States. 
Sampling involved a complex, two-stage design in which eligible schools were first randomly 
selected and then students within those schools were randomly selected (Ingles et al., 2011). The 
students were followed up in the spring of 2012, when most were in the eleventh grade (Ingles et 
al., 2014); in 2013, for high school transcripts and postsecondary plans (Ingles et al., 2015); in 
2016, when most college-attending students were in their fourth year of college (Duprey et al., 
2018); and in 2017, for postsecondary transcripts (Duprey et al., 2020).  

The analytic sample consisted of HSLS:09 students who participated in all five rounds of 
data collection listed above and were enrolled in a STEM degree program according to the 2013 
Update (Ingles et al., 2015). Majors considered STEM included computer, physical, and natural 
sciences; engineering; mathematics and statistics; and military and science technologies or 
technicians. The resulting sample is then representative of U.S. 2009 ninth graders who pursued 
STEM degrees after high school. 
Dependent Variables 

Mathematics and science identity were measured at three timepoints: 9th grade, 11th grade, 
and in the fourth year of college (Fall 2009, Spring 2012, and Fall 2016). In each of the three 
waves, two Likert-scale items measured students’ mathematics (science) identity: (a) you see 
yourself as a math (science) person and (b) other people see you as a math (science) person. 
Items (a) and (b) were combined to form a composite scale via principal components factor 
analysis. Reliability tests suggested good internal consistency between the items in each scale (α 
> .80). The scales were standardized (M = 0, SD = 1) over all (STEM and non-STEM) students. 
Time-Invariant Predictors 

Prior achievement in mathematics was measured using the ninth-grade algebraic reasoning 
assessment score. The assessment was developed by NCES using an item-response theory (IRT) 
design. Prior coursework in mathematics and science was measured using the highest-level 
mathematics course and highest-level science course variables gathered from the high school 
transcript file. The above were each standardized (M = 0, SD = 1) in the analytic sample. 
Additional student background variables included student’s gender (1 = female, 0 = male); 
race/ethnicity (Asian, Black or African American, Hispanic or Latino, Native American, two or 
more races, and White was used as the reference group); and first-generation college status (1 = 
parents do not have a college degree; 0 = parents have at least an associate’s degree).  
Estimation 

To estimate the mathematics and science identity growth trajectories the researcher used 
latent growth curve modeling (Byrne, 2011). The analysis was conducted in Mplus 8.4 with the 
MLR estimator which is robust against non-normality and accounts for missing data (Muthén & 
Muthén, 1998-2017). Due to the complex sampling design of HSLS:09, a balanced repeated 
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replication (BRR) weighting procedure was employed, and model fit was assessed with the 
standardized root mean square residual (SRMR) index (Asparouhov & Muthén, 2010, 2018). 
SRMR values less than .05 and .08 are considered excellent and acceptable fits, respectively (Hu 
& Bentler, 1999). The HSLS:09 survey weight W5W1W2W3W4PSTRANS was used in 
combination with its corresponding 200 BRR weights (see Duprey et al., 2020). 

Results 
The sample of STEM degree pursing students included N = 1,931 students of which 33.3 

percent were female and 66.7 percent male. 6.9 percent of the sample identified as Asian, 8.9 
percent as Black or African American, 16.0 percent as Hispanic or Latino, 1.4 percent as 
Indigenous (Native American, Native Hawaiian, Alaska Native), and 7.5 percent identified with 
two or more races. 26.5 percent were reported to be first-generation college students. 

The growth curve analysis began by estimating the unconditional linear model (intercept, 
slope, no predictors). The model fit was estimated to be excellent (SRMR = .025). The 
mathematics curve was estimated to have an intercept of 0.459 (p < .001) and a slope value of 
0.001 (p = .788). The science curve was estimated to have an intercept of 0.489 (p < .001) and a 
slope of 0.006 (p = .549). These estimates indicated that STEM degree pursuers on average have 
about a half of a standard deviation higher sense of mathematics and science identity initially 
compared to other college students and then maintain these levels of identity throughout high 
school and college. Quadratic growth curve models (intercept, linear, and quadratic terms) were 
estimated but the analyses found these models to not fit the data. Therefore, the growth curves 
were assumed to be linear. 

Next, predictors were added, all of which were modeled as time invariant. The model fit test 
suggested excellent fit (SRMR = .019). The covariate model analysis did not find race/ethnicity 
or first-generation status to be significant (p > .05) predictors on the intercept or slope, 
suggesting that students’ mathematics and science identity growth trajectories did not vary by 
race, ethnicity, or college generational status. However, there were significant gender effects on 
the intercept (p = .007) and slope (p = .020) for mathematics identity but not for science. In the 
interest of gender differences, Table 1 displays the model estimates for mathematics identity. 

 
Table 1: Parameter Estimates for Latent Growth Curve Model of Mathematics Identity 

Predictor Estimate p-value 
Intercept   

Female –0.193 .007 
Asian –0.182 .182 
Black or African American 0.168 .202 
Hispanic or Latino 0.077 .514 
Indigenous 0.080 .795 
Two or more races –0.209 .134 
First-generation to college 0.102 .279 
Prior math achievement 0.376 < .001 
Prior math coursework 0.107 < .001 
Prior science coursework –0.028 .456 

Slope   
Female –0.030 .020 
Asian –0.001 .960 
Black or African American 0.002 .927 
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Hispanic or Latino –0.009 .677 
Indigenous –0.021 .640 
Two or more races 0.011 .609 
First-generation to college 0.007 .719 
Prior math achievement –0.012 .142 
Prior math coursework 0.001 .949 
Prior science coursework 0.002 .814 

 

 
Figure 1: Mean Mathematics Identity Growth Trajectories for Male and Female Students 

 
To further analyze gender differences in mathematics identity growth trajectories, plots were 

generated of the estimated mean growth curves for each gender group (Figure 1). The estimated 
mean mathematics identity growth trajectory for male students had an intercept of 0.508 and 
slope of 0.015 while the mean growth trajectory for female students had an intercept of 0.397 
and slope of -0.016. Thus, while male STEM students’ mathematics identity started higher and 
increased over time, female students’ identity started lower and decreased, resulting in a further 
widening of the gender gap in mathematics identity in college. 

Discussion 
The preliminary results from this study provide large-scale evidence of gender disparities in 

women’s identity as a math or science person that may help to explain why they are less likely to 
enter and more likely to leave STEM degree programs in the United States. The study is waiting 
on future data from HSLS:09 to directly link changes in mathematics identity with STEM degree 
attainment. Other concerns to follow up on include how these results can inform initiatives for 
broadening participation in STEM and the degree to which this quantitative measure of identity 
is consistent with other conceptualizations of identity in the literature. 
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The development of modeling skills in mathematics is essential for individuals to understand, 
describe, control, and predict phenomena around them. This article describes the results of an 
investigation to find out how an activity based on a Models and Modeling Perspective 
stimulates the mathematics modeling skills of undergraduate students who are in the first quarter 
of a business degree. As a result, it was shown that the MEA enabled students to exhibit, develop, 
and refine different modeling skills, such as: identification of variables, assumptions based on 
the real-life context, identification of patterns, and construction of mathematical representations.  

Keywords: Modeling, higher education, precalculus. 

Introduction 
The pandemic generated by COVID 19 has highlighted the need for math education 

researchers and educators to reflect on the knowledge and skills that students must develop to 
understand, describe, control, and predict phenomena that impact humankind, and that also 
allows them to make decisions and take actions to relieve negative effects of these phenomena. 
Some educators suggest teaching strategies based on mathematics modeling that allow students 
to develop these skills and knowledge, as well as take active part on the solution process of these 
real-life problems (Lesh, 2010; Sevinc, 2021). Several authors, such as Lesh and Doerr (2003) 
and English et al. (2020), agree on the need to structure students’ experiences in ways that allow 
them to develop modeling skills. According to Niss et al. (2007), learning to model implies that 
students develop different skills, such as “ability to identify relevant questions, variables, 
relations or assumptions in a given real world situation, to translate these into mathematics and to 
interpret and validate the solution of the resulting mathematical problem in relation to the given 
situation” (p. 12). 

Project GAIMME indicates that “to understand how students grow in their ability to do 
mathematical modeling is a challenging task. Useful studies of mathematical modeling have 
been published, but this area has not yet been researched as deeply and systematically as other 
areas” (Garfunkel & Montgomery, 2019, p. 24). The National Council of Teachers of 
Mathematics (NCTM, 2018) mentions that mathematical modeling skills are part of modeling 
cycle processes that involve multiple steps and iterations. However, studies by Montero et al. 
(2021) and Touchstone (2014) highlight that word problems in math textbooks for higher 
education students in business careers have a single answer and don’t usually foster modeling 
processes. Therefore, we need to provide learning-teaching opportunities that are purposefully 
designed for university students in business careers to develop modeling skills to solve real-life 
problems. 

The purpose of this study is to understand how a model-eliciting activity (MEA) can 
contribute to students in business careers to develop and refine modeling skills. The research 
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question is What types of modeling skills do undergraduate students in business careers develop 
when they solve an MEA called Breaking barriers with yogurt investments? 

This research study used Model and Modeling Perspectives (MMP) as proposed by Lesh & 
Doerr (2003) by focusing on structuring students’ experiences that foster the development of 
modeling skills. 

Theoretical Framework 
Models and Modeling Perspectives propose the design of model-eliciting activities for 

students to develop, amplify, and refine their thinking by enhancing math and modeling skills as 
they solve real-life problems (Lesh & Doerr, 2003). MEAs are situations that are purposefully 
designed for students to generate models using specific mathematical ideas, and are situated in 
real-life contexts that are meaningful to students (Aliprantis & Carmona, 2003; Doerr, 2016; 
Sevinc, 2021). Models are conceived as 

conceptual systems (consisting of elements, relations, operations, and rules governing 
interactions) that are expressed using external notation systems, and that are used to 
construct, describe, or explain the behaviors of other system(s)—perhaps so that the other 
system can be manipulated or predicted intelligently. 

A mathematical model focuses on structural characteristics (rather than, for example, 
physical or musical characteristics) of the relevant systems. (Lesh & Doerr, 2003, p. 10) 
Models reside in the mind and representational media. These representational media can 

include written symbols, oral communication, diagrams, metaphors, tables, graphs, and algebraic 
symbols (Lesh & Doerr, 2003; Lesh & Harel, 2003).  

Modeling activities based on real-life contexts usually have many possible solutions. They 
can also involve irrelevant ideas or lack information which creates a need for students to develop 
modeling processes such as generating assumptions and evaluating situations based on specific 
contexts (Sevinc & Lesh, 2021). Research studies based on MMP have provided evidence that 
MEAs promote students’ development skills to solve problems related to their professional life 
in the field of business (Lesh & Yoon, 2007). According to Lesh (2010), MEAs foster students to 
show their thinking in ways that research can “to investigate the development of important 
aspects of students’ mathematical thinking” (p. 29). 

Methodology 
We used qualitative methods to conduct this research study involving a total of 13 

participants from a group of (male and female) students in their first quarter as freshmen enrolled 
in a business degree program. Students were registered in an in-person course on mathematics 
applied to business, which is the first mathematics course students take in the business 
undergraduate program. The topic on exponential functions had not been covered in this course 
previous to student participation in this study. 

The MEA called Breaking barriers with yogurt investments (Yogurt MEA) was designed in 
the context of a colony of bacteria and yeast that produce Bulgarian yogurt (Figure 1). This MEA 
was designed using six principles for the construction of an MEA as proposed by Lesh et al. 
(2000). The mathematical ideas embedded in the design of the Yogurt MEA are: exponential 
function, equation, variation, growth, and rate of change. The solution requires that students 
identify the problem, variables and relationships, relevant assumptions, interpretation, and 
validation of the solution. 
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a                                                                  b 

Figure 1: a) Yogurt MEA Newspaper article y b) Yogurt MEA Problem Situation  
 
For the implementation of the Yogurt MEA, students were organized in five teams: Team 1 

[T1] with two members, Team 2 [T2] with three members, Team 3 [T3] with three members, 
Team 4 [T4] with two members and Team 5 [T5] with three members. The Yogurt MEA was 
implemented in several phases:  

 Phase 1. Warm-up Activity (15 min). Students read page 1 of the MEA (Figure 1a), 
answered the warm-up activity, and discussed the context in their teams.  

 Phase 2. Team Solving the Yogurt MEA (90 min). Students worked in teams to solve the 
problematic situation in the MEA (Figure 1b includes the QR code with the video 
students watched). Students used tools such as spread sheets. 

 Phase 3. Teams presented their model solutions to the whole class (30 min). Each team 
presented their solution model and the process they used to construct it. After each 
presentation, the class had the opportunity to ask questions and provide feedback about 
the model.  

Data collection involved: video recordings of the group discussion about the model-
construction processes and presentation of the final solution model; the solution letters written by 
each team; log notes from class observations; and the electronic files that the students submitted. 
Data analysis was guided by an MMP, through a qualitative lens considering the iterative 
modeling process, which included each team’s final solution. We documented how students 
changed, extended, and refined their conceptual system during the solution process and during 
whole-class presentations and discussion. In particular, the analytical framework we used is 
supported in the skills as described by Niss et al. (2007), which include: the ability to identify 
questions, variables, relationships, relevant assumptions in a given real-life situation, 
interpretation, and validation of a solution.  

Results and Discussion 
Based on the models built by the students, we identified that the Yogurt MEA elicited 

modeling abilities, in particular, four: identification of variables, assumptions based on the real-
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life context, identification of patterns, and construction of mathematical representations (Table 
1). 

Table 1: Teams’ Modeling Abilities 
  Identification 

of variables 
Assumptions 

based on the real-
life context 

Identification of patterns Representations 

T1 They 
identified the 
relationship 
between the 
variables: 
amount of 
kefir grains, 
time, and 
temperature. 

Assumption A. 
The growth of 
kefir grains (G) 
depends on the 
temperature (T) 
and time (t). 
The temperature 
and time are 
variables. 

They described and predicted 
the growth of kefir grains. They 
identified a pattern of weekly 
cyclical growth.   

They included 
verbal, tabular, 
and graphical 
representations.   

T2 

T3 They described the growth of 
kefir grains. They multiplied the 
amount of initial kefir grains by 
a constant.   

They included 
verbal and 
tabular 
representations.  

T4 Assumption B. 
The growth of 
kefir grains (G) 
depends on the 
temperature (T) 
and time (t). 
They maintained 
the temperature 
constant, and the 
time was variable 
G(t). 

They described and predicted 
the kefir grains’ growth based 
on the number of jars. The 
growth estimation was 625% in 
four weeks.  

T5 They described and predicted 
the kefir grains’ growth. The 
daily growth rate estimated was 
33%.  

They included 
verbal, tabular, 
and graphical 
representations. 

 
Team’s Modeling Abilities 

Identification of variables. Based on the data provided and the Yogurt MEA video, all the 
students identified three variables related to the process of kefir grains growth. They focused 
their attention on the variables: growth, temperature, and time. For instance, team T3 mentioned 
the following in reference to their data table:  

[1] T3: Tenemos, en cuanto a los días, temperatura, mililitros y… esto es la diferencia entre 
un día y otro en cuanto a mililitros [We have, in relation to days, temperature, milliliters 
and... this is the difference in milliliters between one day and another]. 

The team T1 indicated the following while they pointed to the column headings of their table 
(Figure 2a).   

[2] T1: Nosotros intentamos resolver esto, primero, con los datos que nos habían dado [para] 
los primeros siete días. Viendo así, el cambio de temperatura y [cómo] los mililitros 
cambiaban. [We tried to solve this, first, with the data given for the first seven days. 
Looking at the temperature change and how the milliliters changed]. 
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After the team’s T1 presentation, T2 mentioned that they had found a different relationship 
among variables.  

[3] T2: Yo no estoy de acuerdo… nosotros que también nos basamos en la temperatura y en 
el porcentaje, nos dimos cuenta que para el día seis, siete el cambio no era de 10 10. Sino 
se elevaba al doble, pues, de hecho, sacamos como una tablita. [I do not agree… we also 
considered the temperature and the percentage, and noticed that on day sixth, seventh the 
change was not 10. Instead, it doubled, and we actually built a table]. 

[4] T1: Yo también hice esa secuencia [refiriéndose a un modelo inicial que había construido 
y posteriormente refinó con base en el contexto de la MEA]. [I also created this sequence 
[referring to an initial model that they initially build and refined later based on the 
MEA’s context]. 

         
a                                                                b 

Figure 2: a) T1’s Model and b) T4’s Model  
 

Discussion. The Yogurt MEA fostered an iterative discussion of the variables related to the 
kefir grains growth, [3] and [4]. According to Bliss et al. (2014), identification of variables is 
important because it allows students to determine the factors influencing the phenomenon they 
are analyzing and “distinguish between independent variables, dependent variables, and model 
parameters” (p. 7). 

Assumptions based on the real-life context. The students built their models by generating 
assumptions based on the real-life context; they contrasted their procedures with the actual 
growth of kefir grains and their personal and professional experiences. We identified two types 
of assumptions.  

Assumption A. The initial assumption of teams T1, T2, and T3 was that kefir grains growth 
(G) depends on the temperature (T) and time (t). They assumed that the temperature and time 
were independent variables. T2’s personal experience allowed them to identify the possibility of 
additional variables that could influence the growth. The following excerpt illustrates this idea. 

[5] T2: Yo, por experiencia que he cultivado muchos búlgaros, lo que platicaba con ellas, al 
tener siempre la misma temperatura, los búlgaros van reaccionando... lo ideal sería 
mantener la misma temperatura, para mayor crecimiento. Siento que depende mucho de 
varios factores. [I, from my experience growing kefir grains, what I was talking with 
them, because they always keep the same temperature, the kefir grains react… the best 
scenario would be to maintain the same temperature, for a higher growth. I feel that it 
depends of multiple factors]. 
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T3 showed the need to investigate the kefir growth to understand the phenomenon and the 
influence of time and temperature. The students made the following statement:   

[6] T3: Primero que nada, no sé si alguno de ustedes investigó un poco sobre este tipo de 
bacterias. Por medio de la investigación te das cuenta … que van creciendo solas 
dependiendo de la temperatura y el ambiente, y ese rollo. Se van reproduciendo, una se 
convierte en dos y así. [First of all, I don’t know if any of you investigated about this type 
of bacteria. Through investigation you realize… that they grow by themselves depending 
on the temperature and the environment, and all that. They reproduce, one becomes two 
and so on]. 

Assumption B. Assuming an entrepreneurial role, Teams T4 and T5 considered a constant 
temperature based on the MEA context and the precision of industrial refrigerators [9], and they 
focused on modeling the kefir grains growth depending on time, G(𝑡). For instance, T5 justified 
considering a constant temperature by contrasting their mathematical analysis with the factors 
that influence the growth of kefir grains in real-life.   

[7] T5: noté que cuando teníamos una temperatura menor de 20º el porcentaje de crecimiento 
se reducía, se volvía a elevar cuando la temperatura subía porque es una bacteria. Hace 
rato lo comentó, el otro Bryan; que al ser una bacteria, el ambiente, la cantidad de 
proteínas y lo demás que hay alrededor es influyente para que se reproduzcan. Si tienen 
más temperatura, igual aun no conozco mucho a que temperatura se mueran y demás, 
pero con los datos que nos dieron, a mayor temperatura o sea 21º se reproducen más, 
manteniendo el sistema de las bacterias en un estándar. Entonces, mantener una 
temperatura, sí es posible. Yo dije mantenemos siempre la temperatura, saco un promedio 
en el porcentaje del crecimiento que me daba de los días de, que teníamos 21º, pues me 
dio un promedio del 33%. Entonces si yo mantengo siempre mi temperatura a 21º 
porcentualmente, más menos, voy a tener un crecimiento del 33%. [I noticed that when 
we had a temperature lower than 20º [C], the growth percentage decreased, it increased 
again when the temperature rose because it is a bacterium. If they have a higher 
temperature, I still don’t know a lot about the temperature at which they die and so on, 
but with the data they gave us, the highest the temperature, i.e., 21º they reproduce more, 
maintaining the system of the bacteria in standard conditions. Then, maintaining the 
temperature is possible. I said, we always maintain the temperature, I obtain an average 
of the growth percentage from the days we had 21º C, and I got an average of 33%. Then 
if I always maintain my temperature at 21º C percentage, more or less, I will have a 
growth of 33%]. 

During the questioning phase, team T1 hesitated about the possibility of considering a 
constant temperature during the kefir grains growth. Based on their experience, T5 replied the 
following:  

[8] T1: Pero está difícil, la temperatura hace un cambio de un día para el otro. [But it is hard, 
the temperature changes from one day to the next]. 

[9] T5: sí, pero no es lo mismo el sistema de refrigeración industrial que el de un salón. [yes, 
but the industrial refrigeration system is not the same as a classroom]. 
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Figure 3: Mathematical Representations Included in T5’s Model 

 
Discussion. The fact that the Yogurt MEA includes three variables -time, temperature, and 

amount of kefir grains that influence their actual growth, allowed students to generate real-life 
assumptions to model the problematic situation. The whole group discussion created 
opportunities for students to revise and evaluate their assumptions and models. According to 
Garfunkel and Montgomery (2019), during the modeling process “we select ‘objects’ that seem 
important in the real-world question and identify relations between them. We decided what we 
will keep and what we will ignore about the objects and their interrelations” (p. 12).  

Identification of patterns. The MEA allowed students to exhibit and develop their ability to 
identify patterns and build various strategies to solve the problem. Teams T1, T2, and T3 
identified a “weekly cyclical growth” pattern.  

[10] T2: Cada siete días íbamos repitiendo el ciclo, hasta terminar. [Every seventh day, we 
repeated the cycle until finished].  

Team T3 described the kefir grains growth behavior, and teams T1 and T2 predicted the 
growth behavior in addition to describing it. For instance, the team T1suggested a growth pattern 
that established a relationship between time and temperature variation (Figure 2a). Even though 
the mathematical succession T1 developed requires further refinement to predict the growth in a 
way that is closer to the actual phenomenon, it provided a model to solve the situation.   

Team T4 identified a kefir grain growth pattern that was not strongly related to the 
temperature. They focused on describing and predicting the growth considering the contextual 
factors. They suggested that the company could use jars to replicate growth whichever number of 
times was necessary to obtain sufficient kefir grains to produce Yogurt (Figure 2b).  

[11] T4: Tomamos el crecimiento del primer día al día siete, y cerramos como semana. 
Volvimos a empezar en uno. Como al día siguiente teníamos 200, nosotros dividimos, 
200 entre 40ml y ya fijamos los cinco frascos (segunda fila, tabla Semana 2, Figura 2b). 
[We considered the growth from the first to the seventh day, and we finished the week. 
We started again like in day one. The next day we had like 200, we divided, 200 by 40 ml 
and then we have five jars (second row, Week 2 table, Figure 2b)]. 

Team T5 identified an exponential growth pattern. They calculated the daily kefir grains 
growth and the corresponding percentage. Next, they obtained the average growth percentage 
considering only the days in which the temperature was 21ºC. The team obtained an average rate 
of 33% and predicted the growth (Figure 3). The students found a growth pattern that 
corresponds to the expression.   

Discussion: The Yogurt MEA prompted students to organize and systematize information, 
recognize patterns, build various solution strategies and generate diverse models to estimate the 
growth. Sevinc and Lesh (2021) discuss that problems in realistic contexts can be solved through 
various solution strategies and “allow students to make mathematical and contextual inferences, 
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an essential activity for the development of problem-solving competence” (p. 4).  
Construction of mathematical representations. Given that the data included in the Yogurt 

MEA was included in various images embedded in a video (see QR code, Figure 1b), the 
students had to extract, interpret, organize and create mathematical representations to analyze the 
kefir grains’ growth. The students used diverse representations in their models. For instance, 
teams T1, T2, and T5 included verbal, tabular, and graphical (Figures 2 and 3), while teams T3 
and T4 included oral and tabular representations in their model. These representations allowed 
them to describe, explain and estimate when the kefir grain growth was sufficient to start 
thinking about selling yogurt (Figure 2b). The following excerpt illustrates the way they 
described it verbally and in their letters:  

 [12] T5: En un mes ya tengo un aproximado de 3600 litros que ya los puedo mandar a 
producción. Porque aquí tengo los mililitros en bacterias, más no tengo la producción en 
yogurt. [I have approximately 3600 liters in a month that I can send to production. 
Because this is the milliliters in bacteria, but I do not have the production of yogurt].  

Discussion: The Yogurt MEA fostered model-building using diverse representations to 
explain and describe the kefir grains growth phenomenon. The creation of the models reported 
by the students revealed their modeling abilities and the knowledge used and developed 
throughout the problem-solving activity. According to Lesh and Doerr (2003), “meanings 
associated with a given conceptual system tend to be distributed across a variety of 
representational media” (p. 12).  

Conclusions 
The analysis of the results supports the conclusion that the Yogurt MEA has the potential to 

support the development of diverse modeling abilities. In this study, students developed 
modeling abilities through model building, team interactions, and whole-group discussion. The 
abilities reported included: variable identification, assumptions based on the real-life context, 
identification of patterns, and construction of mathematical representations.  

The identification of variables was fostered through the inclusion of three variables in the 
Yogurt MEA. The students had the opportunity to identify, select and establish relationships 
among variables to solve the problem. The assumptions based on the real-life context emerged 
because the Yogurt MEA was situated in a context close to the students. Thus, it fostered 
opportunities to self-evaluate and contrast models with real-life experiences growing kefir grains. 
This is consistent with the fact -discussed in the MMP- that the ways of thinking or models built 
to make sense of situations, requiring realistic decision-making, integrate with frequency ideas 
from more than one discipline or theory. The teams identified patterns to describe and explain 
the kefir grains growth and estimate the time to decide when a sufficient amount of kefir grains 
would be available to start selling yogurt. The teams built mathematical representations to 
organize data, interpret the situation, identify patterns and explain their model.  

We observed students refine their modeling abilities during the MEA solution process, which 
was mediated by their understanding of the phenomenon, mathematical knowledge, personal and 
professional experience, and interaction with the environment.  
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The purpose of this report is to share the facets of a support program set in a mathematics 
department in a mid-sized comprehensive western university. This is an ongoing project and I 
use the social community framework (Mondisa & McComb, 2015) to compare the students in the 
mentoring program to a control group of students. The current results allowed me to examine the 
effect of the mentoring program on their community of practice during the 2020-2021 Covid-19 
pandemic. Results include overall effects of the pandemic on mathematics students, and 
interventions that could help encourage a sense of belonging through the pandemic environment. 

Keywords: Policy, Undergraduate Education, Systemic Change.  

The question of how to help support students in mathematics majors remains open (Lisberg 
& Woods, 2018). Research indicates that through the leaky pipeline, students intending to major 
in STEM are lost from high school to college (Snyder & Dillow, 2011) and 48% of students 
leave STEM majors during college (Chen, 2013). STEM majors are particularly vulnerable to 
attrition in their first year of college (Chen 2009; Higher Education Research Institute 2010). A 
goal of no attrition is unreasonable; undergraduates should change majors if they would like to. 
Unfortunately, research indicates that students may leave the major because they do not feel they 
belong and/or they have a poor instructional interaction (Seymour & Hewitt,1997). Additionally, 
both people of color and women are more likely to leave mathematics majors than white or male 
students (e.g. Anderson & Kim 2006; Hill, Corbett, & Rose, 2010; Griffith, 2010). These are 
stark disparities that indicate a need for more supportive mathematics departments. 

I worked with a team of mathematicians to design a mentoring program for mathematics 
majors at a mid-sized western comprehensive university. The mentoring program was open to all 
students, but was designed specifically to address issues faced by low-income students, students 
of color, and female students in our mathematics department. The purpose of this presentation is 
to describe changes and updates to the mentoring program, and to share the third year of results 
of what has helped our students, and what did not. The data from the third year was collected in 
Fall 2020, and as such, is heavily impacted by the Covid-19 pandemic and online learning.  

Literature Review 
There are two important questions related to designing/studying a mathematics support 

program: (1) What supports are most helpful for students?, and (2) What measures, quantitative 
and qualitative, are important for measuring the effectiveness of such a program? 

Lisberg and Woods (2018) found four areas of focus when designing support programs for 
STEM majors: (1) Peer & faculty mentorship, (2) Familiarity with programs & faculty, (3) 
Student mindset, and (4) Student learning techniques. In the first category, students are paired 
with a peer or faculty as a mentor; in studies of this model results indicated having mentors help 
students with the transition into the university community (Mondisa & McComb, 2015) and 
increased retention rates (Campbell & Campbell, 1997). Familiarity with programs & faculty 
includes helping demystify the academic structure and increase connections with faculty. Student 
mindset centers around providing students with evidence that intelligence is not fixed and 
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mistakes are necessary to learning (Dweck 2008) coupled with evidence that academic setbacks 
can be overcome (Walton & Cohen, 2011). Lastly, student learning techniques provided students 
with STEM-specific study skills. In their support program, Lisberg and Woods (2018) reported 
that under-represented minority students in first year mathematics were more likely to pass, and 
if they did not pass them, were twice as likely to retake them and persist during their first year. 

Karp (2011) conducted a metanalysis of non-academic supports and also found four main 
categories: social relationships, career options, college structure, and life issues (italics added 
for emphasis and to denote each category). Social relationships indicated programs that helped to 
encourage community building amongst students. Providing information about career options 
aided students in connecting their college experiences with long term goals. Similar to Lisberg 
and Woods (2018), Karp (2011) also found that it is necessary to illuminate the college structure 
for students. Lastly, life issues are the most difficult category to provide support for, however, 
when students were able to connect with resources, they can recover from life issues to remain in 
college. The metanalysis indicated that much of the research relied on Likert-style questions of 
how helpful students found particular supports, but did not delve into how or why. 

Mondisa and McComb (2018) described how the majority of studies of mentorship programs 
tend to focus on quantitative measures exclusively (i.e. comparisons of students’ GPA, attrition 
rates) while neglecting how these programs affect individual students on a social level. 
“Evidence is needed identifying what social elements contribute to the positive experiences of 
program members…and what characteristics may explain differences across member 
experiences (Mondisa & McComb, 2018, p. 94). 

In summary, we designed our program around Karp’s (2011) four categories: social 
relationships, career options, college structure, and life issues. We also integrated pieces of 
Lisberg and Woods (2018) categories in workshops. In creating the research design, we did 
include quantitative methods of comparison, such as attrition rate, but mainly focus on a 
qualitative understanding of how the program affects students on a social level. 

The Support Program 
The study was conducted at a mid-sized western comprehensive university with a student 

population including 67% first generation students, and 61% Pell-eligible. The overall student 
population demographics are: 3% African American, 14% Asian (mainly Southeast Asian: 
Hmong and Cambodian), 49% Hispanic, 6% non-resident students, 3% two or more races, 5% 
unknown, and 20% white. 

Previous research (Tague, 2021) described how focus groups were held and the themes from 
those were used to reinforce Karp’s (2011) four supports: social relationships, career options, 
college structure, and life issues. I worked with a team of three mathematicians, who will be 
referred to as mentors, to design the support program using research and the focus group data as 
a guide. The program has been running since Fall 2018 and includes four main facets: 
scholarships, advising, required office hours/tutoring, and weekly Friday meetings including 
workshops, problem solving challenges, homework help sessions, and socializing. 

Scholarships, weekly meetings, and required office hours are included in the social 
relationships category. Scholarships are included in this category because the tuition support 
allowed students to work fewer jobs, which provided time for students to build connections. The 
weekly meetings and office hours were designed to help students build relationships with one 
another and also with faculty members. Advising and workshops/guest speakers were designed 
to meet the career options category. Workshops (financial aid, health/mental health center, etc.) 
were designed to help students navigate the college structure. Life issues are the most difficult to 
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plan for, however, we hoped that providing students with a community and knowledge of 
resources would protect against this category. 

Theoretical Framework and Methods 
Mondisa and McComb (2018) proposed using the framework of Social Community as an 

answer to the gap in qualitative research results from mentoring programs in mathematics. The 
Social Community framework is designed to measure the effectiveness of the program based on 
level to which participants feel connectedness, resiliency, and communities of practice. 
Connectedness is how linked to the program each student feels (in the current study: do you have 
a mentor?). Resiliency is focused on students’ reactions to hardships or challenges (in the current 
study: what was an obstacle you faced this year, and how did you overcome it?). Lastly 
communities of practice are “collections of like-minded individuals sharing similar experiences 
and social resources as they interact with and support each other (Eckert, 2006; Wenger, 2000)” 
(Mondisa & McComb, 2018, p. 98). An example of a communities of practice question in the 
current study was: Do you feel like you belong as part of the math department? I adapted the 
questions from Mondisa and McComb’s (2018) work to form interview questions.  

 
Table 1. Participants 

 Second Year Third Year Total 
Scholars 10 6 16 
Control Group 9 5 14 

 
The participants are shown in Table 1 according to group and also year at the university. All 

participants were mathematics majors, the control group was chosen to be the same level in the 
program, and both groups were majority people of color. All students participated in semi-
structured interviews lasting 30 minutes (on average) in October-November of 2020. The audio 
recordings were transcribed verbatim, organized by question in a spreadsheet, and then coded 
according to connectedness, resiliency, and community of practice (Mondisa & McComb, 2018). 

Results 
The results will be presented categorically according to connectedness, resiliency, and 

community of practice (Mondisa & McComb, 2018). 
Connectedness 

The Scholars were significantly more likely (χ2=8.6277; p=0.003) to report feeling connected 
than the control group. In responding to the question of if they had a mentor, 14 out of 16  
(87.5%) of the scholars versus 5 out of 14 (35.7%) control group students cited a faculty member 
at the university as a mentor. A representative quote from one of the Scholars was: “She's 
literally there to help me with whatever I'm there for. And it makes me…even more comfortable 
now.” The scholars were also more likely to list one another, or a math student from the same 
university than someone outside of the university or from a different major. In contrast, the 
students in the control group did say they had mentors, but they were family members or friends 
outside of the university. This difference shows that the control group were less connected to 
members of the mathematics department community than the scholars. 
Resiliency 

The biggest challenges faced by all of the students were (1) time management, (2) 
motivation, and (3) social interactions. All three were brought on by the pandemic and the 
mental health fallout. The time management issue was brought on by lack of structure with not 
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having to be a physical place, causing students from both groups to disrupt their sleep schedules, 
and procrastinate working on school. The motivation drop was also prevalent in interviews with 
scholars and control group alike. They articulated that it was difficult to stay motivated when 
they were going to school and sleeping in the same physical location. Lastly, all of the students 
were missing social interactions. For the scholars, a bit of the social interactions were eased 
through the Friday weekly meetings. Many of them said that although they felt forced to meet on 
a Friday afternoon, they appreciated connecting with one another. 
Communities of Practice 

To rate the community of practice level for each student, I relied mainly on the following 
question: Do you feel like you belong in the math department? Out of 16 scholars 14 (87.5%) 
said they felt like they belonged, and out of 14 of the control group, 10 of them (71.4%) said they 
felt like they belonged. Thus there was not a statistically significant difference (χ2=1.2054; 
p=0.272). However, the reasons given for the sense of belonging were different. The scholars 
explained that they belonged because of their social connection and network within the 
department. One scholar commented, “The whole [scholar] community really helps you feel like 
you belong…They're very warm, welcoming. [T]here's things that the math department are now 
doing like they just…did the LGBTQ plus math day.” In contrast, the control group would make 
statements like, “Am I smart enough to be here? And then like, after the first test and stuff, I'm 
like, Oh, yeah.” This quote indicates that the control group drew their sense of belonging from 
their understanding of mathematics, which will likely be challenged during this time as a 
mathematics major. 

Conclusions 
All of the students expressed resiliency in working through the difficult times of transitioning 

to online learning and living through a pandemic. The scholars displayed higher levels of 
connectedness and communities of practice. The findings in the third year are consistent with 
those from the first and second years of the program (Author, year; Author, year). During the 
first year, scholars were more comfortable seeking out a faculty member for help with academic 
or life issues (6 out of 7 versus 1 out of 6). Similarly, in the second year and third years, scholars 
were more likely to consider a faculty member a mentor and seek them out for help (12 out of 16 
versus 3 out of 12; 12 out of 16 versus 5 out of 14). Additionally, the control group students 
persist in linking their sense of belonging in mathematics with their understanding of 
mathematics. In contrast, the scholar group links their sense of belonging in mathematics with 
their relationship with faculty members and social connections amongst the department. It seems 
that during the pandemic time, even having a one hour meeting each week can help students 
continue to feel a sense of belonging and community through the difficult issues they face.  

Future research reports on the results from the program will be forthcoming, however, pieces 
of the current model could be implemented to see if the results also hold in different context and 
if more mathematics departments could be more welcoming and supportive. 
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The primary aim of the present study was to examine whether the studs on LEGO® bricks act as 
irrelevant details when solving fraction division problems. We also investigated whether prior 
knowledge plays a role in the irrelevant details effect and in children’s problem-solving 
strategies. Fifth- and sixth-grade students (N = 38) first completed a fractions test to assess their 
prior knowledge. A video-recorded lesson then was delivered to all students on how to solve 
fraction division problems with LEGO® bricks. Most of the participants were not distracted by 
the studs on the LEGO® bricks when solving fraction division problems on a transfer task. Prior 
knowledge was related to accuracy on learning and transfer performance, with low prior 
knowledge students generating less accurate solutions than to high prior knowledge students. 

Keywords: Problem Solving, Mathematical Representations, Number Concepts and Operations 

Any quick search on the Internet reveals hundreds of webpages and videos that show how to 
use LEGO bricks in mathematics instruction (Tellos, 2021). Most of these illustrations target 
teachers and parents, who are often interested in how to make mathematics fun and interesting. 
Despite recent research on concrete objects (i.e., manipulatives) and their use in mathematical 
contexts (e.g., Carbonneau et al., 2013), it remains unclear if and how LEGO bricks can support 
children’s learning in mathematics. 

Our research program focuses on the conditions under which children can learn mathematical 
concepts and procedures with LEGO® bricks. Recent research has shown that the perceptual 
features of manipulatives can impact learning in different ways (e.g., Lafay et al., in press; 
McNeil et al., 2009). LEGO® bricks have perceptual features, too; they are colorful, and the 
studs (i.e., the bumps that connect the bricks together) add an interesting visual feature. Children 
may enjoy working with LEGO bricks because the perceptual features are appealing, but the 
features may be unrelated to the learning objectives (“irrelevant details”; Mayer et al., 2008), and 
thus detract from the concepts that the manipulatives are intended to represent (McNeil & Uttal, 
2009). Prior domain knowledge has also been found to moderate the irrelevant details effect: 
Magner et al. (2014) found that students with high geometry knowledge were better able to 
overcome irrelevant details in geometric illustrations than those with low prior knowledge. 

The Present Study 
The primary objective of the present study was to explore whether the studs on the LEGO 

bricks act as irrelevant details when fifth and sixth graders solve fraction division problems, and 
if prior knowledge of fractions is related to the irrelevant details effect. Because little is known 
about children’s thinking when they use LEGO® bricks in mathematical contexts, a secondary 
objective was to document students’ responses when using the bricks to solve fraction problems. 

In individual online sessions with a researcher, participants completed a fractions test to 
assess their prior knowledge, followed by a video lesson on how to use LEGO® bricks to 
represent fractions and solve fraction division problems (e.g., 1/4 ÷ 1/16). All examples in the 
lesson used a 1 x 1 brick (i.e., with one stud) to represent the divisor. Students were shown how 
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to count the number of divisor bricks that could fit on the dividend brick to find the solution. 
After the lesson, students solved fraction division problems with computerized images of 

LEGO® bricks on two tasks, namely learning and transfer (Panels A and B in Figure 1, 
respectively). On the learning task, only a one-stud divisor could be used to find the correct 
solution, as shown in the lesson. On the transfer task, the only brick available that would result in 
the correct solution was a 2 x 1 brick (i.e., with two studs). If participants counted the studs on 
the transfer task, we could conclude that the studs acted as a detractor from the measurement 
division concept demonstrated in the lesson. On the other hand, counting the bricks would show 
that the studs had no negative impact on their understanding of measurement division. 
 

   

Figure 1: Sample of a Learning Item (Panel A) and a Transfer Item (Panel B) 
 

Two research questions framed the current study: (1) Do the studs act as irrelevant details 
when solving fraction division problems, and is prior knowledge related to the irrelevant details 
effect? (2) What is the effect of prior knowledge on performance accuracy, and what is the effect 
of prior knowledge on the types of responses generated on the learning and transfer tasks? 

Method 
Participants 

Participants were 38 fifth- and sixth-grade students (14 girls; age: M = 11.6 years, SD = .59) 
from a private French school in a large urban center in Canada. 
Measures 

Fractions test. The fractions test was a paper-and-pencil test with 8 items based on Saxe et 
al. (2001). Designed to measure knowledge of fractions concepts, the test required students to 
represent and estimate fractional quantities depicted in area models, and to solve problems using 
drawings. A median split was conducted to create low and high prior knowledge groups. 

Learning and transfer. All five items on the learning task required the students to use a 
one-stud brick to find the solution, whereas all five items on the transfer task required a two-stud 
divisor (see Figure 1). To test the irrelevant details effect, we coded whether the student counted 
the studs or the bricks on the transfer task. Accuracy scores on each of the learning and transfer 
tasks were the mean number of correct responses. All online sessions were videorecorded for 
subsequent coding of the students’ use of the LEGO® bricks on the learning and transfer tasks. 

Results 
Irrelevant Details 

Seven students (18.4% of the sample) counted the studs rather than the bricks at least once on 
the transfer task, evenly distributed across the low- (3 students) and high-knowledge groups (4 
students). The same pattern was found using item as the unit of analysis: Of all responses 

A B 
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generated on the transfer task, 11.6% involved counting the studs to find the solution; in each 
prior knowledge group, the same proportion was observed (11.6%). Together, these results show 
that prior knowledge was not related to whether the students counted the studs or the bricks.  
Accuracy and Response Analysis 

Accuracy. Means and standard deviations for the accuracy scores are presented in Table 1. 
 

Table 1: Means and Standard Deviations for Accuracy Scores on the Learning and 
Transfer Tasks by Prior Knowledge 

Measure Learning accuracy Transfer accuracy 
n M SD n M SD 

Low prior knowledge 19 .67 .25 19 .74 .31 
High prior knowledge 19 .90 .14 19 .84 .29 

 
Using students as the unit of analysis, the results showed that there was a main effect of prior 

knowledge, F(1, 36) = 5.53, p = .02, with the high prior knowledge group (M = .87, SD = .20) 
outperforming the low prior knowledge group (M = .71, SD = .23). There was no main effect of 
task type nor a prior knowledge by task type interaction, however. These findings suggest that 
children with low prior knowledge had less accurate solutions than children with high prior 
knowledge, regardless of task type. 

Response analysis. We conducted a descriptive analysis of the types of responses generated 
on the learning and transfer tasks to provide additional insight on the reasons for the different 
accuracy levels observed between the low and high prior knowledge groups. Table 2 shows the 
number of times each type of response was generated on each task as a function of prior 
knowledge. On the learning task, participants either used the bricks correctly or chose the wrong 
brick to represent the dividend fraction. On the transfer task, participants either used the bricks 
correctly, or committed errors in three categories: (a) chose the wrong dividend brick, (b) 
counted the studs, or (c) chose the wrong dividend brick and counted the studs. 
 

Table 2: Responses on the Learning and Transfer Tasks by Prior Knowledge (N = 190) 
 

 
 

 
Knowledge group 

Counted studs Wrong 
dividend brick 

Wrong 
dividend brick 
and counted 

studs 

Correct 

n % n % n % n % 
 Learning 

Low prior knowledge — — 29 30.5a — — 66 69.5a 

High prior knowledge — — 8 8.4a — — 87 91.6a 

 Transfer 
Low prior knowledge 7 7.4a

 13 13.7a
 4 4.2a

 71 74.7a
 

High prior knowledge 11 11.6a
 4 4.2a

 0 0 80 84.2a
 

Note. Dashes refer to no data recorded. Coding of stud-errors applied only to the transfer task. 
aPercent represents the proportion of responses generated out of the total number of responses in 
each prior knowledge group (n = 95). 
 

Using item as the unit of analysis, almost a third of the responses in the low prior knowledge 
group consisted of choosing the wrong dividend brick on the learning task, whereas under 10% 
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involved this error in the high knowledge group, χ2(1, N = 190) = 14.8, p < .001. On the transfer 
task, the data show that the proportion of items completed by participants with low and high 
prior knowledge also differed by response type, χ2(3, N = 190) = 10.19, p = .02. Participants with 
high prior knowledge used the bricks appropriately 84.2% of the time, whereas participants with 
low prior knowledge did so 74.7% of the time. In addition, participants with low prior 
knowledge chose the wrong dividend brick on 17.9% of all responses on the transfer task, 
whereas participants with high prior knowledge generated this error 4.2% of the time. Also, the 
data in Table 2 show that students in the low-knowledge group used the wrong dividend brick — 
an error that we had not anticipated — more often than counting the studs (17.9% vs. 11.6%). 

Discussion 
The present study was the first step in our research program to explore the effects of LEGO® 

bricks in mathematics learning. Contrary to our prediction, the results revealed that most of the 
students solved the fraction division problems on the transfer task by counting the number of 
bricks, and not the studs, that fit on the dividend brick. This finding could suggest that the studs 
on LEGO® bricks did not distract the students from learning the conceptual underpinnings of 
fraction division. Alternatively, other factors, including those related to the instruction that was 
delivered, may account for the apparent absence of the irrelevant details effect. Anecdotal 
evidence from the students’ work on the learning and transfer tasks revealed that some repeated 
the instructions from the video lesson out loud to themselves (e.g., “Now, I have to count how 
many one-eighths are in one half”). Thus, how the conceptual underpinnings of fraction 
operations are emphasized in instruction and its relation to the irrelevant details effect, is a 
consideration for future research. Moreover, students with different degrees of prior knowledge 
may react differently to the perceptual features of LEGO® bricks under different instructional 
conditions. Finally, concrete LEGO® bricks should be used in future studies. Embodied 
cognition would imply that physically interacting with the bricks would generate different, and 
perhaps more pedagogically meaningful, results than working with images of the same objects. 

The positive relations observed between prior knowledge and problem solving points to the 
importance of fundamental fractions concepts when learning about fraction division. In the 
present study, accuracy suffered in the low prior knowledge group primarily because they used 
the incorrect brick to represent the dividend fraction. This implies that teachers may wish to first 
emphasize the conceptual foundations of fractions and how they can be represented with 
manipulatives, to prepare students to learn new fraction operations with manipulatives. 
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This case study explores self-regulation strategies used by Sunny, a high-achieving first-semester 
freshman student in calculus and aims to identify how she uses self-regulation strategies while in 
the course. Individual and group interviews were analyzed using categories of self-regulation 
strategies previously identified in the research literature. Findings suggest that Sunny’s specific 
self-regulation habits for mathematics centered on mastering course concepts and shifted from 
focusing on memorization to focusing on understanding. This provides leverage for continued 
efforts to help foster productive self-regulation strategies for success in first-semester calculus. 

Keywords: Calculus, Self-Regulation Strategies, Mathematics Self-Efficacy 

While transitioning into a college mathematics course, undergraduate freshmen often face 
challenges related to their mathematics background, mathematics self-efficacy, and study habits 
(Hernandez-Martinez et al., 2011 and Seymour & Hunter, 2019). To address these challenges 
students can use self-regulation strategies to promote academic success (Zimmerman & Pons, 
1986). Self-regulation strategies in mathematics can be defined as those actions that are used to 
overcome some obstacle when working on tasks associated with a mathematics classroom, 
whether in a specific problem context or in a more general response to tests and grades. High 
failure rates in college calculus in the United States (Rasmussen et al., 2019, Bressoud et al., 
2015, Seymour & Hunter, 2019) make it critically important to explore ways to increase success 
rates in this gateway course to mathematics-based disciplines. This includes exploring not only 
the mathematical understandings that support success in calculus (see Carlson et al., 2010, 
Carlson et al., 2015, and Thompson & Harel, 2021), but also the self-regulation strategies 
employed by successful calculus students. This case study presents data analysis on a high-
achieving freshman calculus student, Sunny, and the self-regulation strategies she used in a first-
semester college calculus course. We explore the research question: In what ways do successful 
first-semester freshman use self-regulation strategies in a first-semester calculus course? 

Conceptual Framework 
Zimmerman and Pons (1986) produced several categories of strategies primarily used by 

high achieving students from a middle-class suburban high school, where high achieving was 
based off test scores, GPA, and teacher and counselor recommendations. The categories they 
found are as follows: seeking information, keeping records and monitoring, organizing 
and transforming information, seeking teacher assistance, seeking peer assistance, seeking adult 
assistance, and self-evaluating. They highlight that as students use these strategies, further 
instruction could improve the use of strategies and inform students of available strategies. 

Wolters (1998) identified 14 separate categories of self-regulation strategies: performance 
goals, extrinsic rewards, task value, interest, mastery goals, efficacy, cognition, help seeking, 
environment, attention, willpower, emotion, other motivation, and other. These strategies were 
identified from open-response questionnaires administered to groups of psychology students at a 
large midwestern university. Wolters collected survey data from 115 college students which 
focused on how they would respond to different academic scenarios, gauging what motivational 
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or self-regulatory strategies were used. Focusing on mathematics, Johns’ (2020) study centered 
on the self-regulation strategies of 424 consenting first-semester calculus students and tested 
whether there were differences relating to gender and academic achievement. She found that 
high achievers both reported greater intrinsic motivation, task value, and self-efficacy than low 
achievers. High achievers also reported greater use of self-regulation strategies. From this, Johns 
found a correlation with the use of self-regulation strategies with student achievement. 

How self-regulation strategies are used and developed by undergraduates in mathematics 
courses has not been widely discussed especially within this transition. Gueudet (2008) outlined 
several of the challenges that arise during the transition to tertiary school, especially related to 
individual, social, and institutional phenomena. For the individual phenomena, Gueudet 
describes that undergraduates beginning the transition often lack flexibility of switching between 
different thinking modes, such as practical and theoretical thinking. Sonnert et al. (2020) found 
that high school preparation was a significant factor on retention and performance for first-year 
students, but as the distance from high school grows the influences lessens. Though for those 
first-year students it was preparation in mathematics, and to a lesser extent attitudes about 
mathematics, which had the largest impact on performance in a calculus class. This is attributed 
to the highly cumulative nature of mathematics as calculus relies on earlier concepts. 

Methods and Data Collection 
This case study focuses on a set of five interviews and an initial questionnaire for a first-

semester calculus student, Sunny. Sunny was one of six undergraduate calculus students who 
participated in five interviews throughout the Fall 2021 15-week semester. The study occurred at 
a large, urban research university in the Southwestern United States. All first-semester calculus 
courses meet two (for 80-minute lecture periods) or three (for 50-minute lecture periods) times a 
week for lecture. Two additional weekly 50-minute meetings enable students to engage in a 
collaborative lab activity facilitated by the instructor and graduate teaching assistant (GTA) for 
one class meeting and traditional recitation activities facilitated by the GTA during the other 
meeting. Each of the courses have departmentally coordinated exams written by the course 
instructors, these exams are typically offered the fourth full week of the semester, the ninth full 
week of the semester, and the final exam during the last week of the semester. Of the five 
interviews,  two individual interviews  occurred within a week of the first midterm and within a 
week of the final exam. These interviews lasted 20-30 minutes and focused on students’ 
mathematics background, self-efficacy, and identity as well as differences between their 
experiences in high school and college mathematics. The other three interviews were task-based 
group interviews, lasting 50 minutes to an hour, occurring a week before each midterm and the 
final exam. Each task-based interview involved at most three participants examining the past 
three group activities given in the collaborative lab periods. Students provided information about 
how they worked as a group during those lab periods and worked a specific problem from each 
lab during the interview to demonstrate their processes. In the second task-based interview, 
students provided information about specific self-regulation strategies used in this  course after 
being shown a list of strategies derived from Zimmerman and Pons (1986) and Wolters (1998).  

Initial surveys were sent to thirteen first-semester calculus sections which included 
approximately 800 students. Of those invited, 193 students completed the initial survey which 
included background information, the Motivated Strategies for Learning Questionnaire (MSLQ) 
(Pintrich et al. 1991), a survey to measure mathematical identity (Kaspersen, 2016), select 
questions from the Factors Influencing College Success in Mathematics (Sonnert & Sadler, 
2020), and a survey to measure the sources of self-efficacy (Usher & Pajares, 2009). To obtain 
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an interview pool of first-time first-semester freshmen with differing measures of self-efficacy, 
mathematics identity, and self-regulation strategy usage on the initial survey, 38 of the students 
were invited to participate in a sequence of five interviews. Of these, seven accepted and began 
the interview sequence, with one student dropping out after the third interview.  

A case study methodology was chosen to explore individual experiences of undergraduates’ 
transitions to college mathematics and their uses of self-regulation strategies. A mix of 
qualitative data from the interviews and quantitative data from the initial surveys was used to get 
a vivid picture of the students’ transition. For each interview an audiovisual recording was made 
and transcribed verbatim by the researcher. Participants were given pseudonyms.  Coding 
identified self-regulation strategies using codes from categorizations by Zimmerman and Pons 
(1986) and statements related to mathematics identity, self-efficacy, and differences between 
high school and college mathematics experiences.  

Results  
Sunny was a first-year calculus student majoring in computer science. From the initial 

surveys collected, she scored above average for both mathematics identity and mathematics self-
efficacy and reported moderate to high use of the self-regulation strategies identified on the 
MSLQ. Her high scores related to time and effort spent studying for a course. In particular, her 
highest score related to the belief that the effort given to learn course material will result in 
positive outcomes. Her responses from the initial survey also indicated that she used cognitive 
strategies to study for course material in the following ways: memorizing course material; 
elaborating material by connecting past ideas from the course to integrate and connect new 
information; and actively organizing information to understand the main concepts of the course. 
From both the individual and task-based group interviews we see instances of Sunny using these 
skills and considering how these skills aid in her understanding of the course material. 

In her first individual interview, Sunny reported she had taken Advanced Placement Calculus 
BC in high school. Although she received an A in the high school course, she felt she did not 
learn as much as she needed to learn, citing the course’s online format due to the COVID-19 
pandemic as the reason she did not master the material. She further explained that she did not 
feel prepared for her current calculus course because she “didn’t completely understand 
everything, I got kind of an idea of how things work…” but now she “can go back and really 
understand what’s happening in the equations.” From the five interviews, we noted that Sunny’s 
view that the course was an opportunity to master the material served as a primary motivator in 
how she studied for exams and solved mathematics tasks. In the second individual interview 
Sunny reported a change in strategies, rather than relying on memorizing material she found it 
helpful to be shown how to derive certain formulas, citing the formulas for the derivatives of 
inverse trigonometric functions specifically. She conveyed that she felt “more confident now, 
cause [sic] I feel like I understand more… and if I see something I can actually derive it instead 
of just having to memorize it.” She attributed the memorization method as a strategy shown in 
high school, while the university course required a deeper understanding of the concepts. 

Across each of the three task-based interviews Sunny reported that while she worked on the 
collaborative lab activities, she found it helpful for each member of the group to work 
independently until they were stumped before turning to collaborate with another group member. 
She found this helpful as it allowed her to work through each problem and also get help. Since 
all group members were also working the same problem, she could “check and see where you 
did [the problem] wrong.” This contrasted with her initial attitude of working mathematics tasks 
independently primarily, stating that that by working the problems herself “it helps [her] 
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understand [the problem] more.” When looking at specific tasks, Sunny often relied on 
organizing and transforming the problem into something more easily understood. For example, 
when shown the problem in Figure 1 below, Sunny first used a strategy that involved sketching 
the graphs of the functions as prompted by the problem, but then took the problem further by 
determining another set of functions that have the same behavior, presenting the piecewise 
function shown in Figure 2. Furthermore, Sunny is setting goals to master the content and 
leverages having successfully demonstrated the concept to extend the problem to functions with 
other attributes, in this case looking at finite discontinuities rather than infinite discontinuities.  

 

 

Figure 1: Lab Activity 2 Problem 2 

 

Figure 2: Sunny’s written work for Lab Activity 2 Problem 2 

Discussion 
Sunny had a strong mathematics background, a positive mathematics identity, and valued 

prolonged effort to master mathematics concepts. These somewhat ideal attributes supported her 
demonstrated methods and strategies typically used by successful mathematics students. Sunny’s 
intrinsic motivation for mastering the course content and enhancing her proficiency in the course 
content aligned with Johns’ (2020) findings that high-achieving students often exhibit greater use 
of intrinsic motivation. However, by identifying her self-regulation habits, including reflecting 
on notes taken, identifying alternative methods for solving problems, creating goals for 
mastering the material that focused on deeper understanding rather than memorization, this 
informs mathematics-specific self-regulation strategies for promoting academic success for 
students transitioning to university mathematics courses. While some of these strategies may 
relate to mathematical problem solving capacity (see Alvarez, et al., 2019), these findings 
support the importance of incorporating self-regulation strategies in tandem with foundational 
mathematics concepts in the teaching and learning of calculus. Further research is needed to 
examine how calculus instructors can foster their students’ development of these strategies.   
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Student experiences in first-year mathematics (FYM) courses are crucial to their success in 
college. In recent years, there has been a push to improve FYM courses by centering and 
engaging students. The purpose of this study is to examine how students perceive their 
experiences with active learning and standards-based grading in FYM courses. In this paper, we 
present our analysis from end-of-semester Mathographies written by students who were enrolled 
in FYM courses in Fall 2021. We discuss three preliminary findings: community, affect, and 
assessment. We compare these findings to a framework relating to students’ experiences with 
active learning and provide questions for future exploration. 

Keywords: Affect, Emotion, Beliefs, and Attitudes, Assessment, Instructional Vision, 
Undergraduate Education 

Students’ experiences in mathematics courses are a crucial part of their academic success in 
college (Adelman, 2006). In recent years, there has been a push to improve students’ experiences 
in first-year mathematics (FYM) courses by increasing the use of evidence-based instructional 
practices (Abell et al., 2017; Smith et al., 2021; CBMS, 2016; PCAST, 2012). In this paper, we 
present preliminary findings on students’ self-reported perceptions of their mathematics 
experiences after participating in FYM courses at the University of Nebraska at Omaha (UNO), a 
large metropolitan university. The Mathematics Department at UNO was recently tasked with 
redesigning the entire FYM program due to high failure rates. At UNO, “first-year mathematics” 
refers to any course below a standard Calculus 1 course. To support this initiative, the 
Mathematics Department hired a Director of FYM (Author 3) to oversee these courses. 
Following the Director’s vision and with the support of upper administration, the Mathematics 
Department hired 10 additional faculty members (including Authors 1 and 2) to redesign and 
teach FYM courses. 

The primary focus of our efforts was to transition our FYM courses from an emporium 
model (Twigg, 2011; Webel, Krupa, & McManus, 2017) to a more “traditional” classroom 
model. Our vision for these courses was to use evidence-based student-centered teaching 
practices to engage students in the learning process. (Henceforth, we use the term “active 
learning” to encompass this idea. A brief literature review of active learning is provided below.) 
We began redesigning two courses, Intermediate Algebra and College Algebra, in Summer 2021 
and piloted our changes in Fall 2021. Data for this study come from the final assignment in these 
redesigned courses. Class sections were capped at 40 students, and every section was assigned a 
full-time faculty member, a graduate teaching assistant, and an undergraduate learning assistant 
to help facilitate learning. Faculty worked together along with the Director of FYM to develop 
curricular materials. Both courses were coordinated and used the same instructional materials 
and assessments. Our overall goal in implementing these changes was to help our students 
develop a growth mindset towards learning mathematics (Dweck, 2006). 

Our course redesign involved two major components: 1) implementing active learning and 2) 
using standards-based grading. Active learning is a ubiquitous term in education. While several 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1707



definitions of active learning exist, it is commonly used as an “umbrella term to communicate an 
alternative to lecture” (Lombardi et al., 2021, p. 9). For this paper, we adopt Theobald, et al.’s 
(2020) definition of active learning: “any approach that engages students in the learning process 
through in-class activities, with an emphasis on higher-order thinking and group work” (p. 6480). 
In addition to implementing active learning, we also used standards-based grading to assess 
student learning (Elsinger & Lewis, 2019; Lewis, 2020). Under this grading system, students had 
multiple opportunities to demonstrate skill on content standards, which we called learning 
outcomes, throughout the semester. After redesigning these courses, we sought to gather 
feedback about students’ experiences in them to inform future work. The central research 
question guiding our study is: How do students perceive their experiences with active learning 
and standards-based grading in a first-year mathematics course? 

Theoretical Framework 
In this paper, we build on a framework that describes how students experience active 

learning (Uhing et al., 2021). This model was developed in the context of the SEMINAL project, 
a large study examining departmental change efforts to incorporate more active learning in first-
year college mathematics courses. The model consists of five overarching themes relating to 
students’ classroom experiences: student-to-student interactions, relationships with instructors, 
course format, assessment, and students’ affective experiences. These themes were originally 
developed by looking at broad, open-ended survey response questions across students at multiple 
institutions taking a variety of precalculus and calculus courses. In our study, we used this 
framework in our analysis to examine written student reflections to a specific set of questions 
dealing with their mathematical experiences in a particular course. Our findings expand on this 
framework to further characterize students’ experiences in first year mathematics courses. 

Methods 
The data in this study come from students at UNO who were enrolled in Intermediate 

Algebra and College Algebra during the Fall 2021 semester. Data were collected from all 
students who submitted a “Mathography” assignment at the end of the semester (228 
submissions from College Algebra and 241 from Intermediate Algebra). For this assignment, 
students responded to a set of questions that had them reflect on their mathematical experiences. 
These prompts were adapted from Drake (2006). For example, students were asked to describe 
both a “high point” and a “low point” that they had experienced in Intermediate Algebra or 
College Algebra. They were also asked more general questions such as “What do you think it 
takes for a student to be good in math?”. To analyze the data, we read through a subset of 
excerpts (54 from college algebra and 77 from intermediate algebra) and developed a list of 
preliminary codes using the themes from our theoretical framework as a guide. We then read 
back through these excerpts and systematically applied the codes. We are currently in the process 
of refining our codebook and analyzing the entire collection of Mathographies. We present our 
initial findings from the Mathographies below. 

Findings 
Five initial themes emerged from the data: community, affect, assessment, engagement, and 

personal growth. We discuss the first three themes below. In our discussion, we highlight 
connections between these themes and our theoretical framework.  
Community 

Several students commented on classroom community and culture. Students valued working 
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in groups and getting to talk with their peers. One student said, “I liked working in groups and 
talking through things with my group and conversing with my peers.” Another student reflected, 
“I think in math it's very important to talk to others and not try to do everything on your own. I 
learned a lot better by asking my group questions and asking them for help when I needed it.” 
Overall, students appreciated the ability to work with their classmates because they liked hearing 
other students’ ideas and helping each other learn. 

In addition to working with their peers, students commented on their relationships with 
instructors and the overall experience of feeling included in a community. One student 
explained, “The teacher helped me so much compared to other teachers, who just told me I 
should drop their class. It felt a lot more inclusive and much more like a community of students 
and teachers rather than a lecture.” Another student shared a similar comment about the 
classroom environment: “I always felt welcome in class. There was never a time I felt 
uncomfortable while I was learning. I think you should try and keep the positivity in the 
classroom, it really helps a learning environment in my opinion.” This sense of community 
helped students feel comfortable interacting with others in the classroom and is closely related to 
students’ affective experiences. 
Affect 

Affect was another significant theme that was present in several excerpts. Many students 
wrote about their emotions and how their experiences in these courses helped them enjoy 
mathematics and become more confident in their mathematical abilities. As one student wrote, “I 
really enjoyed my time in this class. It made me remember the fun of math.” Another student 
commented, “After taking [this course], I feel a lot more confident in my abilities.” For some 
students, the experience was transformative as explained by the student below: 

Besides learning the concepts, I got a new perspective on math. Prior to the class, I did not 
like math. I wanted to major in computer science but felt discouraged by the amount of math 
courses needed. All of that changed after [taking this course]. I found myself enjoying math. 
I changed my perspective of myself from not being a math person, to being one. I am no 
longer discouraged when I think of future math courses. I am excited! 
While the majority of excerpts relating to affect involved positive emotions, there were a few 

students who expressed negative sentiments towards mathematics. However, these excerpts often 
had a “silver lining” to them. For example, one student commented, “I still do not like math, its 
[sic] something that I will never get fond of. Compared to my other classes I did enjoy the way it 
was taught.” Another student conveyed a similar message, “I’ve never been a fan of math. [...] 
Mostly, in part because I’m bad at it, but this class made it easier to learn.” These quotes show 
that even though students may have had positive experiences in their mathematics class, these 
experiences were not always powerful enough to make them “enjoy” mathematics. 
Assessment 

When discussing their experiences in these courses, students often commented on assessment 
methods. To help students develop growth-oriented mindsets, we implemented standards-based 
grading, which most students had never experienced. While some students were confused or 
skeptical about it at first, many of them discussed how they felt less stressed about assessment 
and more focused on their learning. One student commented, “I liked how for our ‘tests’ we were 
able to attempt to get a [learning outcome] as many times as we needed before the end of the 
year. It made the class a lot less stressful.” Another student shared a similar sentiment: 
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The [assessments] really helped me realize that if I can’t get something on the first, second, 
or even third try, I can always try again and not get penalized. This also really helped me feel 
more relaxed while I studied for the [assessments] because I wasn’t constantly in fear that if I 
do badly on a test, my entire grade will plummet like in past math classes I’ve taken. 

Overall, students appreciated the opportunity to progress on learning outcomes over the course of 
the semester and felt like they were able to focus on understanding the material rather than 
“earning a good letter grade”. 

Discussion 
Many of our themes aligned with those found in the SEMINAL student experiences 

framework (Uhing, 2021). In this section, we discuss similarities between our findings and this 
framework, discuss implications of our research, and propose some ideas for future work. 

In our analysis, we found that it was helpful to combine student-to-student interactions and 
relationships with instructors into a single theme: community. While the original student 
experiences framework separated these two themes, we discovered that the types of interactions 
that students experienced led several of them to comment about how they felt “included” and 
unafraid to participate in the mathematical community. It was through these interactions with 
peers and instructors that the classroom community and culture emerged. Thus, we felt 
compelled to encompass student-to-student interactions and relationships with instructors under 
the larger theme of community. 

Our findings also paralleled the affective dimension of the student experiences framework. 
Students wrote about both positive and negative emotions associated with their learning 
experiences. From the excerpts we analyzed, students were, as a whole, more positive about their 
experiences in these redesigned first-year mathematics courses, although analysis on the entire 
data set is still ongoing. This finding reinforces the notion that affect is ever present in the 
classroom and can have a huge impact on student learning (Hannula, 2006). 

Finally, as in the student experiences framework, assessment practices were a central focus 
for many students. Our findings suggest that the standards-based grading system helped (at least 
some) students focus less on grades and more on their learning. Compared to assessment theme 
discussed in the original framework, students seemed to have a more positive outlook on 
assessment practices, although several offered suggestions for how to improve specific class 
assignments. 

Overall, our findings align well with the SEMINAL student experiences framework. One 
strength of our work is that it draws on student responses to a focused set of questions about 
specific FYM courses, rather than broad, open-ended survey questions. Our study also highlights 
areas that are important to examine, as both researchers and educators: the themes that emerged 
from the data come from experiences that students have deemed important enough to share in 
response to the Mathography prompts. Our findings suggest that teachers should incorporate 
learning opportunities that foster a sense of community in the classroom, attend to student affect, 
and consider alternative grading strategies that promote growth-oriented mindsets. 

As we continue to analyze our data, we expect to find additional ways to expand the original 
framework. In particular, we pose the following questions for further exploration: What 
additional insights can be gained from analyzing students’ perceptions of their classroom 
experiences? How do these insights further inform the student experiences framework? Through 
our work in answering these questions, we will better understand how to create a classroom 
environment that promotes success for all students taking FYM courses. 
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Hundreds charts are an essential tool for teachers in the mathematics classroom. The present 
study investigated the effects of spatial configuration in hundreds charts on children’s place-
value knowledge and their strategies for solving arithmetic word problems. Kindergarten and 
first-grade students were assigned to three instructional conditions in which they worked with a 
researcher to solve arithmetic problems. The charts in the conditions differed by spatial 
configuration. Results showed that the children improved their place-value knowledge and were 
more likely to use strategies based on place-value concepts when the numbers in the chart 
increased from top to bottom than when the numbers increased from bottom to top. 

Keywords: Problem Solving, Mathematical Representations, Number Concepts and Operations 

Visual representations are often used in elementary school classrooms to illustrate abstract 
concepts (Schraw et al., 2013). The hundreds chart is an example of a visual representation that 
teachers often use to teach concepts such as counting, arithmetic, and place value. These 10 x 10 
grids contain the numbers from 1 to 100 (or sometimes from 0 to 99) in increasing order. A “top-
down” arrangement puts the lowest numbers in the top row, with the numbers increasing with 
downward movement by rows in the chart. Another variation of the chart (i.e., “bottom-up”) is 
inversely configured, with lower numbers at the bottom and larger ones at the top.  

Previous research indicates that the spatial configurations of instructional materials impact 
how children learn and think about number. Board games that display numbers in linear 
arrangements provide better support for the development of children’s number magnitude than 
games with circular arrangements (Siegler & Ramani, 2009). Moreover, Navarrete et al. (2018) 
found that when preschoolers viewed numbers in a linear arrangement that increased from left to 
right, their performance on an estimation task improved relative to those who saw the same 
numbers arranged from right to left. Findings from both studies can be explained using processes 
of analogical reasoning: Mappings made between the spatial configuration of the materials and 
the desired mental representation (i.e., the mental number line) supported children’s numerical 
performance. Further, the more the structural features in the materials are highlighted, the more 
likely the target mental representations will be constructed (Gentner et al., 2007).  

No systematic studies have been conducted to test the spatial structure of hundreds charts, 
however. Some anecdotal observations have suggested that moving down in the chart when the 
numbers increase can be confusing to children (“When we put more milk in the carton, it goes 
down. When we take milk out, it goes up,” Bay-Williams & Fletcher, 2017 p. e3; see also Cobb, 
1995). On the one hand, the upward movement in a bottom-up hundreds chart corresponds to 
increases in quantity, which can be mapped onto observations in the real world (e.g., water 
filling a glass) through the “up is more” relation. On the other hand, the fact that most young 
children are learning to read text in a top-to-bottom direction also provides a rationale to expect 
that a top-down hundreds chart may best support children’s number knowledge. 
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Present Study  
The objective of the present study was to study the effects of different spatial configurations 

on children’s place-value knowledge and problem-solving strategies. Children were randomly 
assigned to one of three instructional conditions that differed by the spatial configuration of the 
hundreds chart used to solve arithmetic word problems. After the intervention, children 
completed a learning and transfer task to document their strategies for solving problems using 
the chart. A test of place-value knowledge was administered before and after the intervention. 

We asked two research questions: (1) Does the spatial structure of the hundreds chart have an 
effect on children’s place-value knowledge and the strategies they use when using the chart to 
solve arithmetic word problems? (2) Does an explicit visual analogy of the “up is more” relation 
provide additional benefits to their place-value knowledge and problem-solving strategies?  

Method 
Participants 

Data were collected through online interviews with kindergarten and first-grade students in 
Canada and the US (N = 47; 23 boys; age: M = 81.6 months, SD = 5.9). Conditions did not differ 
by age, F(2, 44) = .68, p = .51; grade, 2(2) = 0.68, p = .71; or gender, 2(2) = 1.08, p = .58. 
Instructional Intervention 

In individual online sessions, a researcher showed the children how to use the Virtual 
Hundreds Chart (VHC; Osana et al., 2021) to solve Join Result Unknown word problems 
(Carpenter et al., 2014; sample problem in Figure 1). Children in the top-down condition (n = 15) 
worked with a hundreds chart in which the smallest numbers were in the top row and increased 
in value with downward movement in the chart. Children in the bottom-up (n = 16) and explicit 
analogy (n = 16) conditions worked with a bottom-up hundreds chart, in which the numbers 
increased with upward movement in the chart. The strategy demonstrated in all three conditions 
consisted of moving up (or down, depending on condition) the number of rows that matched the 
tens in the second addend and then right within the rows for the ones in the second addend.  

In the explicit analogy condition, the instructional intervention included an additional visual 
cue to highlight the structure of number in the bottom-up hundreds chart. The visual cue was a 
cylinder that filled with water as the first addend in the problem increased by the second.  
Measures 

Place-value knowledge. Place-value knowledge was assessed at pre- and posttest using the 
Picture Place Value Task (PicPVT; Osana & Lafay, 2019), a judgment task designed to assess 
whether children understand that a digit in a numeral represents a quantity that is determined by 
its position. A double-digit numeral with one of the digits underlined was presented on a screen. 
Groups of dots were presented below the numeral and children judged whether the representation 
correctly matched the underlined digit. Scores were the mean number of correct responses. 

Strategy use. The children’s movements in the chart were videorecorded to document their 
problem-solving strategies using the VHC. They solved six Join Result Unknown problems (as 
in Figure 1) on a learning task and four Separate Result Unknown problems on a transfer task 
(e.g., There were 48 cars in a parking lot. 30 cars drove away. How many cars were left?), which 
required moving by tens in the chart in the opposite direction as was shown in the instruction. 
Mental computation strategies (i.e., no use of the chart) were not coded.  

All strategies that were coded as mathematically appropriate involved moving vertically or 
horizontally in the chart in directions that were consistent with its structure. Movements were 
further coded as either (a) moving by tens: vertically for tens and horizontally for ones, or (b) 
moving by ones: horizontally by ones only. The moving by tens strategy demonstrated greater 
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knowledge of place value and numeration concepts than the moving by ones strategy (Carpenter 
et al., 2014; Fuson, 1990). Errors such as starting on the wrong value in the chart or providing 
solutions that were off by one (either by one ten when moving by tens, or by one unit when 
moving by ones) were forgiven. Mathematically inappropriate strategies involved errors such as 
moving in the wrong direction (i.e., inconsistent with the structure of the chart); moving 
horizontally for the tens digit; and adding only the value of one digit. Provided no mathematical 
errors occurred, students were not penalized for strategies that started with the second number in 
the problem on either the learning or transfer task (e.g., for the problem in Figure 1, starting on 
38 and moving 51 spaces to land on 89).  

 

  

 
Figure 1: VHC Used in Top Down (A), Bottom Up (B), and Explicit Analogy (C) 

Conditions 

Results 
A one-way analysis of covariance (ANCOVA) was performed using PicPVT scores at 

posttest as the dependent measure, condition as the between groups factor, and PicPVT pretest 
scores as the covariate. A main effect of condition was found, F(2, 41) = 3.68, p = .03. Least 
Significant Difference post hoc comparisons indicated that the top-down condition (Madj = .83; 
SE = .03) outperformed both the bottom-up (Madj = .74; SE = .03) and explicit analogy (Madj = 
.73; SE = .03) conditions (ps < .05), with no difference between the latter two groups.  

Table 1 presents the frequency that each strategy was used as a function of condition. Using 
item as the unit of analysis, a significant association was found between strategy type and 
condition on the learning, 2(4) = 21.1, p < .001, and transfer tasks, 2(4) = 18.5, p < .001. A 
larger proportion of the strategies in the top-down condition involved moving by tens (85.6% on 

A: Top-down B: Bottom-up 

C: Explicit 
Analogy 
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the learning and 82.0% on the transfer task) than in the bottom-up (55.8% and 42.0% on each 
task, respectively) and explicit-analogy (68.8% on each task) conditions. 

 
Table 1: Frequency of Strategy Types on Learning and Transfer within Condition 

Note. Data were missing on 20 items on the learning task and 12 items on the transfer task. 

Discussion 
As expected, the children’s knowledge of place-value was dependent on the spatial structure 

of the chart they used to solve arithmetic word problems, as was the extent to which their 
strategies appropriately applied number concepts. Despite its misalignment with the “up is more” 
relation, the top-down configuration produced the largest benefits in performance. The 
instruction in the top-down condition involved movements that matched the direction in which 
words are read in text (i.e., left to right and down). Such movements may have freed cognitive 
resources to attend to the instruction, thereby facilitating the application of number concepts on 
the learning and transfer tasks. Alternatively, the benefits of the top-down chart may have been 
due to classroom exposure, a potential confound to be addressed in future research. 

The effectiveness of the top-down chart may in part explain why the visual cue of a cylinder 
filling with water did not have the anticipated instructional effects: It explicitly highlighted the 
bottom-up structure, which by itself was relatively less effective. All the same, the cue may have 
had some instructional effect, as the children exposed to it made use of the “moving by tens” 
strategy more often than the children in the bottom-up condition. Although our conclusions are 
preliminary, the results nevertheless imply that teachers should attend to the ways students 
interact with the spatial configurations of mathematical representations. 
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Strategy Condition 
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Engaging students in ways that promote their agency in mathematics classrooms is seen by many 
scholars as pertinent in nurturing meaningful, enjoyable, and equitable learning opportunities 
for the students. Yet, whether teachers value and support students’ mathematical agency is as 
important as how they do so. This study uses teacher questionnaire to investigate how secondary 
mathematics teachers think about students’ agency and the forms of agency their students 
exercise in class. Results indicate that students exercise different types of agency depending on 
how the classroom authority is distributed.  

Keywords: Classroom Discourse; Teacher Beliefs; High School Education; Equity, Inclusion, 
and Diversity. 
 

Within mathematics education, there has long been a focus on the need for teachers to engage 
students in ways that promote the students’ agency and position them in authority during 
mathematics classroom learning. Professional organizations (e.g., National Council of Teachers 
of Mathematics, 2000), policymakers (e.g., National Governors Association & Council of Chief 
State School Officers, 2010), as well as scholars (e.g., Bieda & Staples, 2020; Wilson & Lloyd, 
2000) have underscored the need to build and sustain students’ mathematical agency. 
Mathematical agency refers to one’s belief that they can generate valid mathematical ideas and 
engage in a meaningful practice of doing mathematics (Bieda & Staples, 2020; Ruef, 2021). 
Bieda and Staples add that for students to exercise their mathematical agency, their teachers 
should provide them with the opportunities to do so. Mathematics teachers can promote students’ 
agency within their classrooms through practices like having them share ideas and methods that 
steer class discussions, engaging them in constructing arguments, justifying their thinking, and 
critiquing/assessing their peers’ work (Amit & Fried, 2015; Bishop et.al., 2021). Scholars see 
these practices as pertinent in nurturing meaningful and enjoyable student learning, encouraging 
more equitable learning opportunities for students, and building students’ curiosity and 
willingness to take up more learning opportunities.  

The goal of this study was to investigate where secondary mathematics stand on this issue of 
promoting students’ mathematical agency. Specifically, the study attended to how teachers think 
about students’ mathematical agency, and how they support students’ agency in their self-
reported classroom practices. Understanding teachers’ thinking and practices related to student 
agency is an important step toward supporting them in improving their practice.   

Theoretical Framing  
As mathematics teachers and students engage with each other during classroom learning, 

they participate in social practices wherein norms and obligations for what counts as 
mathematical competence are developed and negotiated (Cobb et. al., 2009; Langer-Osuna, 
2016). Inherent in these norms and obligations are negotiations around the kinds of agency that 
students can bring to bear. Cobb and colleagues have delineated between two forms of agency 
(i.e., disciplinary and conceptual) that students can legitimately exercise in their classrooms. 
Disciplinary agency involves student performing mathematical practices that have already been 
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established by the teacher, while conceptual agency involves students having the freedom to 
choose among mathematical practices and to make connections among mathematical concepts 
and principles beyond those taught directly by the teacher.  

Students’ mathematical agency is closely linked with the distribution of classroom authority 
(Cobb et. al., 2009). Classroom authority refers to the shifting dynamics around who has the 
legitimacy to lead classroom interactions (Amit & Fried, 2015; Pace & Hemmings, 2007) and 
determine the validity of mathematics concepts (Cobb et. al., 2009; Langer-Osuna, 2016). In 
Mathematics classroom, authority may be distributed solely to the teacher, with the teacher being 
the only one responsible for determining the correctness of mathematics concepts and deciding 
which ideas the class will engage with. Alternatively, authority may be distributed to the whole 
classroom community, with the teacher and students jointly determining the concepts to focus on 
and the validity of those math concepts. The types of agency that students exercise in math 
classrooms often depends on how authority is distributed in the classroom. That is, whether the 
teacher is the sole authority and students are obligated to just follow the teacher’s lead, or there is 
shared authority between the teacher and students and hence students are invited to take lead in 
classroom learning (e.g., by devising solution strategies). This study draws on Cobb and 
colleagues’ characterizations of student agency and classroom distribution of authority, and is 
guided by the question: According to secondary mathematics teachers, what kinds of agency do 
students exercise in their mathematics classroom?  

Method  
Study Context and Participants  

This study is situated within an ongoing, exploratory study aimed at understanding and 
documenting how teachers view and support students’ mathematical agency and authority. The 
participants are practicing secondary mathematics teachers working at various schools 
throughout the United States and who are all enrolled in a Mathematics Education master’s 
program at a university in the midwestern United States. Practicing teachers were chosen as the 
target group because the goal is to investigate both the teachers’ thinking and classroom actions 
related to students’ mathematical agency and authority. Moreover, these teachers have taken at 
least two mathematics education courses within their program that urge them to reflect on 
various ways of meaningfully engaging their students mathematically, and hence this study 
would act as one avenue for this kind of reflection. 
Data Sources and Analysis  

For this study, the researcher focused on data from a teacher questionnaire. The questionnaire 
had a mixture of open-ended and closed-format questions related to students’ mathematical 
agency. The analysis reported here is from 15 teacher responses. These teachers vary in their 
professional experience (i.e., from 1 year to 10 years of teaching), but are primarily white 
females (n=13) who are currently teaching Algebra and/or geometry to 9 - 12th grade students.  

Data analysis was done in two phases. Phase one involved reading the teachers’ responses 
and applying broad codes to any segments and response choices related to students’ 
mathematical agency and classroom authority, alongside noting who the teachers highlighted as 
the authority in those instances. Phase two involved qualitative coding based on Cobb and 
colleagues’ (2009) interpretive framework for student agency and classroom distribution of 
authority. These codes are described briefly below: 
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Table 1: Coding Categories  
Category Description  
Authority figure  Identifies who takes the lead in classroom activities and determines the 

validity of math ideas. This could either be the teacher, students, or both. 
 
Student agency  

Conceptual agency – relates to if and how students choose solution 
methods, justify their work, assess their peers’ work, and make 
mathematical connections.  

 Disciplinary agency – relates to if and how students use established solution 
methods and follow teacher-led activities.  

Findings  
Most of the teachers expressed that they are the main authority in their math classrooms, with 

a few of them illustrating that they give their students minimal opportunities to share in the 
classroom authority. As a result of the teachers being the primary authority, students mostly 
exercise disciplinary agency, although there were some instances where teachers depicted that 
their students get opportunities to exercise some forms of conceptual agency.  
Students’ Agency when Teachers are the Main Classroom Authority   

More than half of the teachers reported that the authority of leading the class in engaging 
with both new and known math concepts was distributed mainly to them. The teachers were 
responsible for delivering all lesson concepts and determining the methods for solving tasks. For 
example, one teacher said the following about her roles in a typical class:  

I review the assignment from the previous lesson then do notes over our new topic in a 
discussion style where I demonstrate to the students [how to solve] various examples. 

This teacher, as well as several others saw themselves as the sole authority in reminding students 
how solve tasks from previous topics as well as “demonstrating” the solution methods for tasks 
from new topics. The teachers also took the lead in determining which tasks the classroom 
community would solve and in conveying the concepts required to solve new tasks. They 
reported that they usually “select tasks from the textbook, online materials or [personally] create 
them” without involving their students in task selection.  

Teachers who saw themselves as the main classroom authority cited that their students 
exercise disciplinary agency. According to the teachers, students are obligated to “take notes” 
and “ask questions” during class to make sure they understand the concepts and can “apply [the 
concepts] correctly.” Additionally, students are obligated to solve tasks using clearly established 
strategies. One teacher specified that she is currently teaching systems of equations and her 
students are expected to “solve these equations using the substitution, elimination, graphical and 
matrix methods.” These student roles reveal a disciplinary agency of keenly following teacher-
led activities and reproducing solution strategies as dictated by the teacher.   
Students’ Agency in Classrooms with Shared Authority   

Although most of the teachers reported that they were the main classroom authority, a few of 
them highlighted that they provide opportunities for shared authority. For example, some 
teachers said that they engage students in critiquing and verbally assessing the validity of their 
peers’ math solutions whenever the students share their work publicly during whole class 
discussions. One teacher added that when students publicly share their solutions, she invites all 
students to “recognize the different strategies … and make connections” between the strategies.  

Other teachers expressed that even though their students treat them as the primary 
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source/author of knowledge, they would like the students to view themselves and their peers as 
legitimate resources for learning mathematics. Although all the teachers reported that whenever 
their students encounter challenges while solving problems they always ask the teacher for help, 
a few teachers said that they wish that wasn’t the norm. These teachers added that they preferred 
that students look at their notes and/or consult their peers. These teacher preferences show that 
they believe in their students’ ability and authority to navigate math challenges without always 
relying on the teacher. 

Teachers who stated that they share classroom authority with students expressed that their 
students exercise different types of mathematical agency. Some of the teachers highlighted that 
their students have the freedom to choose which strategy to use when solving math tasks. One 
teacher added that she encourages her students to “choose from multiple solution paths instead of 
having them pigeonholed into a specific strategy.” These student choices relate to conceptual 
agency in the interpretive framework. Other teachers mentioned that their students exercise 
conceptual agency by performing classroom roles like explaining their thinking, “making 
connections between concepts” and assessing their peers’ work (see above).  

However, some of the teachers who expressed that they share classroom authority with 
students cited ideals related to disciplinary agency when describing what it means for a student 
to be good at math. For example, one of them said that a mathematically competent student 
should “be able to use the rules, procedures and proofs that I taught them efficiently in order to 
get the right answer.” In this case, the teacher alluded that their standard for a mathematically 
competent student comprises a student who gets valid answers by recalling and reproducing the 
“rules” and “procedures” that the teacher taught.  

Discussion and Conclusion  
The goal for this study was to elicit how secondary mathematics teachers think about 

students’ mathematical agency and the forms of agency their students exercise during classroom 
practices. Knowing the reality of what is happening in classes is helpful for scholars who want to 
work with teachers to improve their practice and student learning. Even though the teachers 
participating in this study were actively being taught (in their masters’ program) the need to 
meaningfully engage their students by sharing classroom authority with them and positioning 
them as competent math learners, the teachers primarily employed teacher-centered practices in 
their classrooms. Consequently, their students exercise disciplinary agency, mostly appealing to 
teacher-led practices and reproducing teacher-taught solution strategies. There were however a 
few teachers who made attempts at sharing classroom authority and allowing their students to 
exercise the conceptual agency of selecting appropriate solution strategies, validating 
mathematical solutions, and making connections between multiple concepts. Interestingly, even 
these few teachers demonstrated a tendency to still expect their students to perform roles relating 
to disciplinary agency. These findings imply that teachers need more support beyond advanced 
university teaching for them productively engage their students in meaningful ways.   
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Unpacking middle school students’ mathematical relationships is important as a step towards 
improving mathematical relationships. In this study, 500 middle school students drew 
personifications of mathematics. We examined these personifications of mathematics for insight 
into their relationships with mathematics. Using constant comparative methods, we present 
various ways the middle school students personified mathematics. Negative relationships were 
personified with terrible beasts, abusers, authoritarians, and pests/nuisances. Positive 
relationships were personified with best friends and nature. Some personifications supported 
both positive and negative relationships or were neutral relationships. Reflecting on these 
personifications point to components of positive relationships with mathematics that we should 
support and confronts ways we may be perpetuating negative relationships with mathematics.  

Keywords: Affect, Emotion, Beliefs, and Attitudes; Middle School Education 

All mathematical learners deserve the opportunity to see themselves as “good at math” (Ruef 
et al., 2020; Wickstrom & Gregson, 2017). Having a positive relationship with mathematics is a 
component of developing a positive mathematical identity. Students have both relationships with 
and in mathematics (Hunter & Anthony, 2011); these relationships influence identities (Black et 
al., 2009). Relationships with mathematics impact equity, access, and empowerment (Smith et 
al., 2017) in thinking and learning. Students enjoy mathematics more (Parks, 2020) and engage 
in the deep work of mathematics (Smith et al., 2017) if they have positive relationships with 
mathematics. Exploring what the elements of positive relationships with mathematics entail will 
provide insight into how to support students in healthy mathematical relationships.  

Students enter middle schools where math is “tracked,” which can have negative impacts on 
their identities (National Council of Teachers of Mathematics, 2018). Mathematics has the 
potential to be a challenging adventure that opens doors to their future (Stinson, 2004). But, 
students may not see themselves as mathematicians (Wickstrom & Gregson, 2017) and that 
impacts their mathematical relationships and identities. Although we suspect that some middle 
school students have negative relationships with mathematics, we need to understand the 
challenges in students’ mathematical relationships in order to meet students where they are at. 
Insight into the challenges of mathematical relationships, can provide perspective into how we 
may transform negative mathematical relationships.  

Purpose 
  Although teachers and researchers might inherently understand that middle schoolers have 

negative relationships with math, we do not fully understand the complexities that are included 
within those mathematical relationships with middle school students. We sought to understand 
middle school students’ relationships with mathematics. The research question that guided our 
work is:  

What types of mathematical personifications did our middle schoolers create?   
Describing the nuances of the different types of personifications will provide insight into the 
mathematical relationships and experiences we need to change, enhance, or continue supporting.  
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Theoretical Perspective: Narrative Theory   
Relationships, in general, are complex, and even positive relationships have a slew of 

emotions that come with that relationship. Having a positive relationship with mathematics does 
not mean that there will not be elements of frustration or struggle. In fact, we know that 
productive struggle is a critical attribute of doing mathematics deeply (Baker et al., 2020; 
National Council of Teachers of Mathematics, 2014).  But, the relationship we hope students 
have with mathematics is not toxic or abusive. Yet, prior studies that have used personification 
tasks have revealed that university students describe their relationships with mathematics as toxic 
or abusive (Ruef, 2020; Zazkis 2015). Prior studies have also shown that personification tasks 
are better than “draw a mathematician” tasks alone (Picker & Berry, 2000; Zazkis, 2015).  We 
extend this prior research further by examining the ways that middle school students personify 
mathematics. Through personifications, we have some insight into the narrative of their 
experiences (Langer-Osuna & Esmonde, 2017).  Indeed, it is human nature to personify things. 
Three personifications present in the literature, created by preservice teachers, are: terrible beast, 
(former) best friend, and lover (Zazkis, 2015; Zazkis & Mamolo, 2016). The terrible beast 
relationship is equated to fear and repulsion. While the best friend, or even former friendship, or 
lover are relationships that can be translated to a level of comfortability and enjoyment, even if 
former, of mathematics. These types of personifications can provide insight into mathematical 
relationships and we entered our study expecting to see these personifications from middle 
schoolers as well.  

Qualitative Methods  
Participants and Data Collection  

During Spring 2019, 505 middle schoolers (grades 6–8) volunteered to participate in the 
study and completed a personification of math task. At the time of data collection, the 
participants attended a middle school with students that scored in the 37th percentile in the state 
for mathematics.  

The personification task included three different parts modified from (Ruef, 2020; Zazkis, 
2015; Zazkis & Mamolo, 2016): (1) a picture of how they personify math and describe it; (2) a 
paragraph about who math is to them; and (3) a conversation with math. Of the 505 middle 
school participants, some of the responses were blank or illegible, leaving exactly 500 of the 
responses for analysis.   
Data Analysis 

The unit of analysis included the collective responses to the personification task—the 
drawing, description of drawing, and a written conversation with math. Sometimes students only 
had a drawing or a drawing and description, but no conversation with math. We used whatever 
they provided as the unit of analysis to help understand the personification.  

The first pass of the data analysis entailed: (a) taking notes about each drawing and (b) 
coding the relationship with the Zazkis and Mamolo framework (2016): terrible beast, lover, 
(former) best friend. Using constant comparative methods (Merrriam, 1998), we went through 
each piece of data and negotiated what relationship was personified. We did about two passes of 
the data. First, we began with examining between 20-50 pieces of data at a time, iteratively 
meeting and comparing, and discussing if these themes aligned with our data. Second, we 
adjusted the themes—modififying the descriptions from Zazkis and Mamolo (2016) and adding 
categogies as needed. Third, we went through our data again with our new framework. This was 
a lengthy iterative process with the 500 pieces of data, but it spurred conversations about the 
themes and development of descriptions of our drawings.  
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In this research report, we present our modifications the Zazkis and Mamolo framework that 
fit the data for middle schoolers. For example, none of our participants personified their 
mathematical relationship with lovers as Zazkis and Mamolo described. Perhaps this is due to the 
age of our participants or their mathematical experiences. On the other hand, our participants 
emphasized authoritarians (e.g., drawings of mean teachers), pests, and nature which are were 
not highlighted in prior work. Therefore, for the results section of this research report, we 
describe the different personifications and how they relate to students’ mathematical 
relationships.   

Different Types of Mathematical Relationships 
Negative Relationships  

The middle schoolers personified negative relationships in mathematics with terrible beasts, 
authoritarians, abusers, and pest/nuisances. 

The terrible beast. The terrible beast personifications included monsters, devils, or other 
terrifying animals (see Figure 1). Consistent with the Zazkis and Mamolo (2016) framework, the 
beast relationship showed fear or repulsion. When including beasts, students shared two 
dichotomous perspectives. One perspective with the beast included elements of consistent failure 
and defeat. The other perspective included elements of conquering math or beating “the beast.” 
Figure 1 on the left shows a monster leaning over a student calling her stupid, dumb, and wrong. 
There is a sense of defeat in the student’s face. However, in the second example in the middle of 
Figure 1, the student is trying to have some power and ability to fight back. The figure on the 
right, is a fetus that has a snake-like tongue, red eyes, and two sets of sharp teeth.  

 

    
 

 
Figure 1: Terrible Beast Personifications 

The authoritarian. The authoritarian personifications showed someone or something 
exerting power and control. This authority figure seems related to a beast relationship; but the 
authoritarian relationship differed from the terrible beast because the focus is on power and 
control and may not be a beast. Some drawings, for example, included stern or angry teachers. 
This is a theme that we added to the Zazkis and Mamolo (2016) framework. In Figure 2 math is 
illustrated as authoritarian that has all the control by putting the student in prison (math class). 
Freedom is outside of math class. In this example, the student wrote about how they desire to 
have more freedom within math class. In Figure 2 there is a student slumped and labeled with a 
depression; another student seems to be looking out of math class to freedom. The middle 
schooler wrote, “It’s like a slap in the face every day. Math puts me in prison only [letting] me 
look at freedom.” 
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Figure 2: Authoritarian Personification 

The abuser. With the abuser personification, the personifications included evidence of 
emotional or physical trauma. This is similar to the authoritarian relationship in that there is no 
power and control; however, the abuser relationship is an extreme version of an authoritarian 
with extreme emotions and/or trauma involved in this relationship. Although trauma and abuse in 
math is evidenced in the literature (e.g., Ruef et al., 2020), we made it a distinct category based 
on the amount of clear abuse that differed from a fantastical beast drawing (e.g., drawings of 
torture chambers). Within the abuser personifications, there are themes of hopelessness and 
cycles of abuse. Most of the abuser personifications in our study were incredibly graphic in ways 
that made us uncomfortable and reluctant to place in a proceeding. We selected Figure as a 
personification of abuser that “hit(s) kids with a ruler” as our example. Most of the 
personifications were more intense than this.   

 

 
Figure 3: Abuser Personification 

The pest/nuisance. Students that drew math as a pest often describe math as something that 
is intentionally annoying highlighted a pest/nuisance personification of mathematics. A pest is 
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typically irritating or an inconvenience. These inconveniences can look like losing your keys or a 
skunk making you smell. It can also look like either doing math or smelling something gross. 
Figure 4 highlights a pesky macaw stealing keys form a student.   

 

  
 

Figure 4: Pest/Nuisance Personification 

This is a category that we added to the Zazkis and Mamolo (2016) framework of 
personifications.  
 
Positive Relationships  

The middle schoolers personified positive relationships in mathematics with best friends and 
nature. 

The best friend. Students personified mathematics as a best friend. Zazkis and Mamolo 
(2016) described how math was personified as both a lover and also a (former) best friend. We 
did not see lovers as a theme; instead, there was an abundance of math personified as a best 
friend. The best friend personifications showed themes of comfortability and enjoyment of 
mathematics. The students described their friend as someone that you can do many things with, 
including but not limited to: playing games, going to the store with, and even being a helpful 
resource. This did not mean that the students did not think that mathematics had flaws. In Figure 
5, the student described math as someone that is shy but kind. The student described her best 
friend as “She might be challenging to understand at first, you might have to tell her to slow 
down, and take a step back, but she will be with you through thick and thin.” The student wants 
to be friends with math for as long as they can—It will be a useful asset all through life.”  This 
student highlighted that they are not a stranger to the challenges of mathematics, but it is worth 
the struggle.  
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Figure 5: The Best Friend Personification 

Nature. The students also personified mathematics with nature. These personifications 
described the push and pull of nature, how sometimes nature is beautiful and sometimes it is a 
challenge. Nature is beautiful and to be enjoyed, but also can be harmful and dangerous. We 
added this type of personification to the Zazkis and Mamolo (2016) framework. As the transcript 
below states, “math starts out looking like tangled videos with thorns like a rose bush, but after 
you get to know math and understand it, it can look like simple, harmless flowers.”  

 

 
Figure 6: Nature Personification 

Both Positive/Negative Relationship or Neutral Relationships  
The middle schoolers personified relationships in mathematics that could be considered both 

positive and negative or neutral with former friends and cartoons.  

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1727



The former friend. Consistent with Zazkis and Mamolo’s (2016), the students personified 
mathematics as a former friend. Figure 7 highlights a variety of emotions and types of 
relationships, both an abusive relationship and a former friend are illustrated. This is a reminder 
that sometimes relationships can be more than one thing. Emotions and relationships are 
complex in general and that does not exclude mathematics. This means that these classifications 
can overlap. Figure 7 shows some fingers that have various faces (e.g., smiles, frowns), 
indicating evidence of both positive and negative relationships. For example, in the transcript the 
relationship is described as “love/hate.” The student described math as “fun,” but math says 
things like “you ruin my life.”  
 

 
 

Figure 7: Former Friend Personification 

The mathematical cartoons. We also added the mathematical cartoon personification to the 
Zazkis and Mamolo (2016) framework.  Our students personified mathematics as cartoon 
mathematical symbols or objects, sometimes with no transcript or unemotional transcript. We 
struggled with determining what type of mathematical relationship was depicted. Although the 
drawing on the left in Figure 8 describes math as nice and funny, the cartoon depicted does not 
show much more emotion. The figure on the right says that “math likes to annoy kids,” which is 
slightly negative, but the drawing itself is neutral. For the mathematical cartoon personifications, 
the drawings looked neutral, but if text was included, there was more insight the relationship 
with mathematics.  
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Figure 8: Cartoon/ Personification 

Discussion 
Unpacking middle schooler’s personifications of mathematics is one aspect that makes this 

study significant. Prior studies on personifications of mathematics have been done with 
preservice teachers (Zazkis, 2015; Zazkis & Mamolo, 2016). This study extends this work to 
middle school students, which is important for understanding relationships with mathematics. 
Further, we describe additional personifications of mathematics (e.g., pests, nature).  

Positive relationships in mathematics can lead to students pursuing careers in STEM. We 
want all students to have a positive relationship with mathematics and to see themselves as 
young mathematicians, especially those that have been traditionally underrepresented in STEM 
(Wickstrom & Gregson, 2017). Understanding and describing mathematical relationships helps 
researchers and educators support more positive relationships with mathematics. In this study, 
positive relationships were illustrated in personifications of mathematics as bests friends and  in 
nature. The nature personification highlights the beauty and complexity of mathematics. The best 
friend personification illustrates someone that you spend extended, enjoyable time with. When 
we think about those personification, in what ways do we support our students in befriending 
mathematics or seeing the nature in mathematics?  

Similarly, understanding the depth of negative relationships in the person is also important 
for supporting transformation in mathematical experiences of our students. If we understand 
what is negative about the relationship, then researchers and educators can work together 
towards specific changes. Negative relationships in this study were personified as mathematics 
as terrible beasts, authoritarians, abusers, and pest/nuisances. In what ways do we perpetuate 
these personifications in school mathematics?  
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When Reese and I had our first conversation over Zoom, she was just a few days from 
finishing Kindergarten, and she knew she had a lot of learning ahead of her. I asked if she 
expected to keep learning math as she got older, and she said, “I’m still learning math. I’m only 
six.” Reese’s reminder of her age was apropos because the literature exploring mathematics 
identity has focused on older students. Though previous research has revealed mechanisms that 
lead to negative relationships with mathematics for middle and high school students, including 
narrow pedagogies (e.g. Boaler & Greeno, 2000) and cultural and gender biases (e.g. Shah, 2017; 
Langer-Osuna, 2011), there is little related research with young children.  

In this study, I looked at patterns in the literature that illustrate relationships between 
classroom features and students’ mathematics identities, and I explored the applicability of these 
patterns with children in early elementary school. Specifically, I asked, what dimensions of 
young students’ relationships with mathematics are relevant to understanding their emerging 
mathematics identities? And, what features of mathematics learning environments are supportive 
of young students forming positive relationships with the discipline of mathematics? The data for 
this study come from a larger project that took place between the spring and fall of 2020 with 30 
young students and their caregivers from the Chicagoland area. The students began the study in 
either kindergarten, first, or second grade, and I conducted three interviews over Zoom with each 
student. Our conversations focused on students’ experiences learning mathematics and their 
feelings towards mathematics within and outside of school, now and into the future. 
 Through qualitative analysis of the student interview transcripts, I compared this study’s 
data to the mathematics identity development patterns identified in the work of Boaler & Greeno 
(2000), Cobb et al. (2009), and Nasir & Hand (2008). Together, their work explored mathematics 
identity from a variety of angles and highlighted a range of important and overlapping classroom 
features that impact students’ developing mathematics identities including students’ access to 
meaningful learning, the types of agency students experience, how authority in the classroom is 
allocated, and whether students have opportunities to express themselves. I found that whether 
students felt successful and whether students saw mathematics as a part of their futures were not 
suitable metrics for understanding young students’ emerging mathematics identities. Rather, it 
was more meaningful to look closely at the combination of whether students enjoyed 
mathematics and whether they knowingly engaged in mathematics in their own time outside of 
school as a way to understand their relationships with the discipline. In addition, though 
experiencing classroom environments as collaborative and being granted access to mathematics 
as a meaningful and expansive domain have been documented to support older students’ positive 
mathematics identities, for young learners those conditions were either less common or more 
difficult to perceive or articulate. In contrast, whether students felt that they had conceptual 
agency in their mathematics learning experiences and whether they perceived opportunities for 
self-expression appeared impactful across the Kindergarten through second grade participants in 
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this study. This has implications for mathematics identity research and for classroom educators 
looking to ensure that more of their young students form positive relationships with mathematics. 
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There is no doubt that the shifts to virtual and hybrid models of instruction due to the pandemic 
have impacted learning for k-12 students. Many of the impacts of these changes are measurable 
through quantitative data such as reading levels or assessments scores (Dorn et. al, 2020). Other 
impacts are not as easily observed through traditional school measures. For example, the 
psychological impact of learning in isolation, may become evident in concerns related to mental 
and emotional health (Hertz & Barrios, 2021). Using similar periods of student separation from 
school such as summer break (Kuhfield & Tarasawa, 2020), research can begin to give some 
sense of how to best serve students post pandemic. However, there is no true comparison to draw 
from that accurately compares to what students are currently experiencing. To be best prepared 
to address student needs, we would be well served to better understand how students are 
currently reacting to their pandemic educational experience. 

In this study we explore the way in which pandemic related educational changes have impacted 
how students perceive themselves as mathematicians. The lens used to describe approach to 
doing mathematics is observable actions that indicate either a positive, neutral, or negative 
perception of themselves as doers of mathematics. We are utilizing the observations of practicing 
veteran teachers as our primary lens of observation of student behavior. We interviewed 14 
teachers, seven 3rd grade and seven 6th grades to be able to compare any similarities and 
differences observed between elementary and middle grades students. Results from the study 
will provide insight into the ways in which students perceptions may have been impacted from 
pandemic shifts in instruction, but also suggest ways in which teachers’ expectations have shifted 
as well.  
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This poster focuses on a project that sought to build on family stories to support children’s 
integrated learning of mathematics and computational thinking. The research conducted analyzed 
observational notes of the family workshop sessions, student presentations, and families’ 
dioramas in order to identify and understand opportunities to learn about mathematics and 
computational learning that were co-constructed in the informal learning space. Analyses 
indicate that the family stories provided a purpose for learning how to code and for unpacking 
the code of others. Further, the family stories integrated with coding provided a hybrid space that 
supported community and voice while learning about mathematics and computational thinking.  

Family Stories as Starting Points for Integrated Learning 
In this project, we sought to answer the question of how to make mathematics and 

computational thinking meaningful to children and their families. We worked with families as 
part of a six-session coding workshop, initially conducted in a face-to-face format and then 
transitioning to a virtual format. Sessions 1 and 2 focused on an introduction to coding through 
the use of hands-on activities and picture that helped to unpack common coding terms (e.g. 
algorithm, loop, etc.). Sessions 3 and 4 introduced Scratch to families, and sessions 5 and 6 
focused on families coding and adding robotics to their dioramas which featured a scene from 
their stories. Our approach was inspired by the Techtales curriculum. In this analysis, we draw 
on sociocultural perspectives that view learning as involving shifts in participation reflected in 
individuals’ experiences and changes in trajectory (Nasir, 2012).  

Analysis and Insights Gained 
We drew on observational notes from each workshop session, the written artifacts, pictures 

of the dioramas, and children’s presentations of their dioramas. We analyzed the notes for critical 
incidents in which both coding and families were discussed and examined common themes 
across these occurrences. Our findings indicate two themes in the critical incidents: First, when 
families discussed coding, they also included aspects of the story the majority of the time. 
Second, the families talked about the robotics features in relation to the purpose it served in 
telling the story. Third, the children were able to unpack and explain the code that was used. This 
research has implications for how we leverage family practices and identities in designing 
instruction.  
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Mathematical identity, mindset, and self-efficacy play a vital role in the success of students at 
the college level. These noncognitive components aid students in their ability to overcome 
setbacks (Center for Community College Student Engagement, CCCSE, 2019). The Center for 
Community College Student Engagement (2019) report recommends that community colleges 
should teach students the research behind growth mindset and improve student strategies on 
overcoming setbacks. Other studies have shown that students at 4-year institutions benefit from 
knowledge of productive mindsets especially minority students (Aronson et al., 2001; Hwang et 
al., 2019). Although some college students may benefit from a mindset intervention, how do we 
identify students who may benefit from this intervention? The purpose of the study was to 
determine if mathematical mindset, mathematical identity, or mathematical self-efficacy differ 
significantly among college students when looking at high school mathematics course history, 
race, gender, or 2- or 4-year institution enrollment, and which factors are helpful in identifying 
students who may benefit from a mindset intervention.  

For this quantitative research study, a mass email was sent to students, through list serves 
from professors, instructors, college administrators or institution’s marketing department. Over 
500 college students participated in an online survey. The survey was comprised of demographic 
variables: gender, race, 2- or 4-year institution, and high school mathematics course history. 
There were three groups of questions that measured students’ mathematical mindset, identity, 
and self-efficacy beliefs. Multiple independent sample t-tests were used to determine if there was 
a significant mean difference in student mathematical mindset score, mathematical identity 
score, and self-efficacy beliefs score across gender, race, and 2- or 4-year institution. A 
univariate ANOVA analysis was used to determine if mathematical mindset, identity, or self-
efficacy differed significantly among college students when looking at high school mathematics 
course history (i.e., Algebra I, Geometry, and Algebra II) and grade level in which course was 
taken (e.g., before high school, Grades 9–12, does not apply).  

The results showed: (1) significant differences in mathematical mindset, identity, and self-
efficacy when considering grade level that Algebra I was taken; (2) significant differences in 
mathematical identity and self-efficacy when considering gender; (3) significant differences in 
mathematical mindset when considering race; and (4) significant differences among students’ 
mathematical mindset when considering students who attended 2- vs. 4-year institution. Results 
confirm the CCCSE (2019) report recommendations that community colleges may need to teach 
their students the research behind growth mindset. Although the grade Algebra I was taken and 
current institution (i.e., 2 or 4-year) could be indicators, more research may be needed to 
determine additional factors important in identifying participants for a mindset intervention.  
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Mathematics self-efficacy (MSE) is defined as students’ beliefs about their ability to learn 
and be successful in mathematics (Bandura, 1986). Self-efficacy can be measured globally (e.g., 
I am good at math) or locally for a specific task (e.g., I will be successful in solving this 
problem) (Pajares & Miller, 1995). MSE is important because it can predict future academic and 
career achievement, effort, and success on difficult tasks (Betz & Hackett, 1983; Hackett & Betz, 
1989; Holenstein et al., 2021; Usher et al., 2018). However, sometimes there can be a mismatch 
between students’ self-efficacy and their performance, which we will call incongruous 
mathematics self-efficacy (IMSE) (Schraw, 1995; Sheldrake, 2016). IMSE and the effect of 
IMSE on math performance and perseverance are not well understood.  

Research Question, Design, and Analysis 
This poster presents results from a pilot study in which students’ global and task-specific 

MSE were compared to their performance on related mathematics exercises. This work adds to 
existing research about IMSE (Champion, 2010; Schraw, 1995; Sheldrake, 2016) by taking a 
qualitative look comparing students’ efficacy and performance. Students (n = 24) in an 
intermediate algebra course were invited to take a global MSE survey. To allow for comparisons, 
five participants with a range of global MSE (low, average, and high) were then selected for 
additional interviews. As part of the interviews, participants were also asked about task-specific 
MSE and were asked to solve three exercises, two purely algebraic and one word problem, 
chosen directly from course material. Analysis focused on participants’ global and task-specific 
MSE as well as comparing these to their performance on the exercises. A future full study will 
seek to build on these results by using a larger sample to examine students’ global and task-
specific self-efficacy in relation to their course performance.  

Findings and Implications 
Results show participants’ global MSE was aligned with their performance on the three 

mathematical exercises. In particular, students with higher global MSE solved more problems 
successfully than students with lower global MSE. This aligns with previous research suggesting 
MSE can predict academic success on difficult tasks (Hackett & Betz, 1989; Holenstein et al., 
2021). However, instances of incongruous task-specific MSE were identified for four of the five 
participants. For example, on the word problem, Gabrielle rated the problem as difficult and 
expressed low confidence in her work but was one of only two participants who solved the 
problem correctly. Also, interestingly, instances of task-specific under-confidence were 
identified in students with high global MSE and instances of task-specific over-confidence were 
identified in students with average or low MSE, building on the work of Champion (2010). 
Overall, these results, with richer qualitative data we will share in the poster, suggest that the 
relationship between MSE and performance is complex.  
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The National Science Foundation’s Research Experience for Undergraduates (REU) is a 
staple effort to increase the participation of underrepresented groups in advanced math, science, 
and engineering careers (Beninson, Koski, Villa, Faram, & O’Connor, 2011), expending close to 
$90 million yearly to support these efforts (Singer, 2019). However, many REU participants 
experience dissonance, as despite their high achievement and selection to competitive REUs, 
they lack an internal sense of success or belonging. This imposter phenomenon (Clance & Imes, 
1978) is notoriously detrimental among women, and underrepresented racial, ethnic, and 
religious minorities (Chrousos & Mentis, 2020). With this background in mind, I consider how 
participants in a mathematics REU describe their experiences and the aspects of these programs 
that they find to best support their success. 

The conceptual framing of this study is based on considering the value created by 
participants in the networks and communities (Wenger, Trayner, & de Laat, 2011) in which they 
experience situated learning (Lave & Wenger, 1991). In this context, a network is viewed as the 
relationships, interactions, and connections among the members of a community which is formed 
from a shared identity around a common set of challenges. As the primary recipients of value in 
this system are the participants, the emphasis of this framing is exploring the personal and shared 
narratives of this group in terms of their accounts of what has occurred and their common goals 
for the group. 

To consider these narratives, I employed an embedded single-case design (Yin, 2014) to 
follow the experiences of five mathematics-REU participants across two eight-week research 
projects at a large mid-Atlantic university. I performed a simple time series analysis (Yin, 2014) 
across these eight weeks, codifying the participants experiences and aspirations through multiple 
interviews, weekly journals, and email exchanges. 

The preliminary results of my analysis reveal a common anxiety among the participants, well 
characterized by one young woman’s initial concern that, “Honestly, I am petrified. Everyone 
seems so much more knowledgeable than me.” However, over the course of the project, she and 
other participants provide rich details of the specific activities that led them to individual and 
group success. This transition to more productive dispositions occurred through opportunities for 
sustained and substantial individual contributions to the groups’ research, personal interactions 
with the faculty and other students involved in the project, and the recognition that, “Sometimes 
you don't know what exactly you are doing, you second guess yourself and don't feel confident. 
You have to be ok with asking for help and conversing with your peers so you understand.” 
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This report is about how a group of U.S. teachers (N =98) and researchers used a boundary 
object in a collective study of grades 6-8 mathematics instruction. The focus is the teachers’ 
engagement with a framework for effective instructional practices. Using qualitative content 
analysis of teachers' responses to use of the framework, we assessed its implementability and 
usefulness while supporting shared understandings of effective mathematics instruction. We 
found the framework supported shared understanding and implementation across varied contexts 
and was viewed as useful for meeting teachers’ instructional and professional goals. Constraints 
were related to ambiguity around understanding and use of instructional practices related to 
student struggle. These findings demonstrate how a brief researcher-designed framework can 
serve as a bridge between teachers and researchers, meeting the professional goals of both. 

Keywords: Middle School Education, Professional Development, Instructional Activities and 
Practices.  

Our research is set in U.S. public middle schools, places where dissonance is a daily part of 
life (especially in band classrooms). In mathematics classrooms, students and teachers need to 
blend their often wildly different interests and goals to make the shared time together meaningful 
and mutually enriching. Nurturing harmony in these classrooms can be challenging, but it is a 
necessary condition for thriving mathematics education. Meanwhile, as researchers of effective 
mathematics instruction in the middle grades, we face an additional layer of dissonance. We 
come from a research culture and aim to build transferable knowledge of “what works”, while 
our collaborating teachers are mostly focused on tuning their individual classroom practice to 
meet the needs of their students and schools. This study is about one way we have tried to 
orchestrate harmony in that context. 

We are conducting a large-scale grant-funded study of sequences of mathematics 
instructional strategies within a teacher-researcher partnership (Kieran et al., 2012; Koichu & 
Pinto, 2018). Our project hinges on a guiding framework that effectively supports shared 
understandings, implementability, and motivation. While we aim to help teachers understand and 
use the framework, we take an explicitly asset-based approach to the work. As researchers, we 
know about effective instruction as described in the literature, and our collaborating teachers 
know about effectively working with students in their contexts. These ways of knowing about 
mathematics instruction introduce a “boundary” (Wenger, 1998), a useful analytic concept for 
studying teacher-researcher partnerships because it reflects the dissonances in our perspectives 
and goals while describing how learning may take place across the boundary (Akkerman & 
Bakker, 2011). The tool that has served as a boundary object (Star, 2010) for bridging our ways 
of knowing about mathematics instruction is a framework. 
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Theoretical Framework 
EAC/SOS framework 

We see our framework as the centerpiece of our work to learn alongside teachers about what 
works in their contexts. Based on decades of research addressing effective mathematics 
instruction, the Explicit Attention to Concepts (EAC) and Students Opportunity to Struggle 
(SOS) constructs were described by Hiebert and Grouws (2007) as primary clusters of 
instructional practices with robust evidence for supporting students’ conceptual understanding of 
mathematics. Stein et al. (2017) subsequently operationalized the constructs, finding further 
evidence of the practices for supporting high student achievement on assessments of both 
procedural and conceptual knowledge in mathematics. 

We developed a two-page practice guide for teachers to support the enactment of EAC and 
SOS in their classrooms (see Figure 1; Champion et al., 2020). The artifact presents three 
features for each construct. The features that characterize EAC instruction are (a) a focus on 
concepts, (b) making concepts explicit and public, and (c) emphasizing connections. The features 
that characterize SOS instruction are (a) a focus on sense-making, (b) application of sustained 
mental effort, and (c) engagement with important mathematics. The constructs and features are 
meant to broadly describe effective practice, but the guide also includes examples at a finer grain 
size. Each construct lists four instructional strategies with two accompanying routines, which 
more explicitly detail what enactment could look like in the classroom. Lastly, each strategy is 
annotated with potential instructional tools that teachers could use to support the enactment.  

 

 
Figure 1: EAC/SOS Guide to Instructional Practices for Improving Math Achievement 

EAC/SOS Framework as a Boundary Object 
Our project is a boundary encounter between two communities of practice, mathematics 

education researchers and teachers, who are working toward a common goal of building useful 
knowledge for both communities (Wenger, 1998). Within boundary encounters, boundary 
objects are “things” (either physical or conceptual) that act as a bridge between communities 
(Star, 2010). As a bridge, a boundary object should be accessible to multiple perspectives, 
allowing shared meanings to be negotiated (Akkerman & Bakker, 2011; Star, 2010). In an 
investigation of a boundary object in teacher professional development, Edgington et al. (2016) 
found their framework was used by teachers in both expected and unexpected ways, suggesting 
opportunities for researcher learning through investigations of teachers’ meanings around the 
boundary object. As researchers, our goal was to communicate research at a boundary while 
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valuing collaborating teachers’ expertise, so we identified teachers’ interpretations of the 
boundary object as pivotal. Our guiding research question was, “To what extent does the 
EAC/SOS framework function well as a boundary object with middle school mathematics 
teachers, supporting shared understandings of effective mathematics instruction while being 
adaptable in teachers’ diverse contexts?”  

Method 
Our study centers collaborating teachers’ perspectives of the EAC/SOS framework. We used 

qualitative content analysis, which involves interpreting meaning from text, to understand 
teachers’ feedback on their engagement with the framework across the first year of our 
partnership.  
Participants 

The participants in this study are Grades 6-8 mathematics teachers from 34 schools within 22 
school districts in the western United States (N = 98). All teachers were working in public 
schools. Nearly all worked in brick-and-mortar schools, though one teacher worked for a virtual 
public charter school. Teachers’ mathematics instruction often spanned multiple grades (49 
taught Grade 6, 44 taught Grade 7, and 44 taught Grade 8) and courses (37 taught one course, 48 
taught two courses, and 12 taught three or more courses). The teachers worked in a variety of 
school settings, both in terms of students’ socio-economic status (mean eligibility for federal free 
or reduced school lunch was 58%, SD = 21%) and locale type (31% rural, 69% suburban or 
small city). Teacher demographics indicated substantial variability in mathematics teaching 
experience (mean = 9.8 years, SD = 7.4, Range = 1 to 32), and they primarily self-identified as 
female (77%) and white (96%). Teachers’ highest academic degree was typically a bachelor’s 
degree (57%), though 40% held a master’s degree, and 2% held an Ed.S.  
EAC/SOS Guide & Professional Development Modules 

The framework was enacted by inviting teachers to engage with the two-page guide and three 
supporting professional development modules. The first two modules were in-person and 
synchronous and, due to the COVID-19 pandemic, a third module was online and asynchronous. 
The focus of Module 1 was an orientation to the research project and the EAC/SOS framework. 
Modules 2 and 3 focused more deeply on EAC and SOS strategies, respectively. The in-person 
meetings gathered all teachers together for 4 hours on Saturday mornings. The asynchronous 
modules integrated online tools in the form of virtual bulletin boards, an interactive mathematics 
activity builder, and a video-based interaction platform. 
Data Sources 

We used extant data that was collected across the first year of the project to inform decisions 
about upcoming modules or engage teachers in exploring ideas (Table 1). These data were 
collected via graphic organizers and online forms. Questions asked of teachers varied each time, 
depending upon what information was desired to inform upcoming professional development 
sessions.  
Data Analysis 

We applied a three-level analysis (Simon, 2019). At the first level, we worked with the 
teachers’ responses as raw data. We tabulated frequency counts for strategy and routine choices 
and coded textual data, guided by the research purpose and using constant comparison (Corbin & 
Strauss, 2008). To verify the trustworthiness of our coding at this level of analysis, we checked 
the comparability of coding within Data Source 3 (DS3, see Table 1). Two researchers applied 
open coding to half of the responses, and the team then discussed the codes and established a 
coding dictionary. To check for reliability of coding, two researchers used the coding dictionary 
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and coded data in DS5. We compared the frequency with which codes were applied to responses; 
average exact agreement across codes was 68% and within 2 agreement was 91%. 
Disagreements were reconciled, and definitions were refined. Using this refined coding scheme, 
a single researcher conducted the remaining analyses and summarized each data source. These 
summaries described the context of the data (what the teachers were responding to and why), 
provided tables with frequencies of applied codes, and exemplar responses for frequent codes. 

The second level of analysis identified themes across the summaries with reference to the 
original data as needed. Two researchers engaged in this process independently, and the full 
research team then compared the themes, discussing similarities and differences. A third 
researcher then compiled the results of the discussion into a final set of claims related to the 
research purpose. In the third level of analysis, we applied abductive reasoning to the second 
level claims to identify inferences which, if true, would account for the data (Simon, 2019). The 
goal is to consider the claims with the intention of contributing useful postulations that apply 
beyond the scope of this particular study. These inferences therefore inform our understanding of 
the success of the framework as a boundary object in a teacher-research partnership.  

 
Table 1: Summary of Data Sources 

Data 
Source 

ID 

Module Data Source Content # of 
Responses 

DS1 1 Comfort-Frequency 
Notes 

Compare comfort-frequency of strategy 
implementation to a peer 

85 

DS2 1 Implementation 
Cycle 1 Plans 

Choose a strategy to try out in classroom 
and explain why it was chosen 

94 

DS3 1 Implementation 
Cycle 1 

Reflection 

Indicate what strategy was tried and what 
went well and what was difficult. 

98 

DS4 2 Implementation 
Cycle 2 Plans 

Choose an EAC strategy to try out in 
classroom and explain why it was chosen 

94 

DS5 2 Implementation 
Cycle 2 

Reflection 

Indicate what EAC strategy was tried and 
reflect on how it went 

93 

DS6 3 SOS Impressions Read a description of SOS, comment on 
using SOS in classrooms 

89 

DS7 3 SOS Strategy 
Identification 

Watch a video, identify strategies and 
teacher moves to support struggle 

97 

DS8 3 Implementation 
Cycle 3 Plans 

Choose and SOS strategy to try out in 
classroom and explain why it was chosen 

83 

Findings 
This study investigated teachers’ responses to determine the extent to which the framework 

supports a shared understanding of research-supported instructional practices and the extent to 
which teachers view the framework as implementable and useful. 
Understandings about EAC and SOS 

We looked for evidence of teachers’ understandings of the framework across their reasons 
for selecting strategies. These data sources were coded for degree of alignment with our 
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understandings as researchers. Coding categories were: aligned (described key features of the 
construct), partially aligned (described strategy without language related to key features), 
unaligned (confused the constructs or added unintended ideas), or unclear (e.g., “it fits my 
curriculum”). Figure 2 shows the respective percentage of responses in each category across the 
three modules. The majority of responses, 70% and above, were aligned or partially aligned. We 
believe this degree of alignment early in our project indicates success of the framework for 
supporting shared understandings. However, we note that the degree to which shared 
understandings were established was stronger for EAC than SOS. This discrepancy is also 
evident from DS7 in which we asked teachers to watch and respond to videos of a teacher 
implementing SOS strategies, from which only 39% of responses were coded as aligned, while 
59% of responses were coded as partially aligned. 

 

 
Figure 2: Alignment of Reasons for Strategy Choice to Researchers’ Intended Meanings 

 
Teaching Context 

We wanted to determine to what extent the framework was viewed by teachers as 
implementable in their contexts. We found the framework offered options that were taken up by 
teachers across these contexts, and we found teachers preferred different strategies based on their 
experience, interests, and school or district context. Teachers’ reasons for selecting strategies 
(Figure 3) indicated contextual factors such as the needs of their students, aligning with 
curriculum or learning goals, and teachers’ experience or interests. When we asked teachers to 
rate EAC and SOS based on their comfort and frequency of use, and then comment on 
similarities and differences to the ratings of another teacher (DS1), 62% of comments related 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1747



specifically to choices based on teaching context, including curriculum, working environment, 
years of experience, and teachers’ individual personalities. 

 

 
Figure 3: Themes Identified in Reasons for Strategy Choice 

 
Despite evidence that teachers identified adaptable options in the framework, some data 

indicated a perception that SOS may not be successful with some students. After implementation 
cycle 1 (DS3), teachers reflected on the benefits and challenges of the experience. The primary 
difficulty related to SOS was “student engagement” which accounted for 61% of the SOS 
responses. A response that suggests SOS may not be successful with some students was, “It was 
very difficult to engage the students who struggle in math….A lot of scaffolding and 
accommodating was needed.” Also, DS6 asked teachers to comment on a reading about the 
meaning of productive struggle, and 22% of the comments focused on the challenge of using 
SOS with some students. A characteristic response was, “With productive struggle it never really 
feels like they are learning anything, especially without teachers teaching step by step. Students 
definitely give up when they don’t understand something, so how can they productively struggle 
if they keep giving up?” 
Opportunities for Teacher and Student Learning 

In support of implementation, we hoped teachers would interpret the framework as useful 
and motivating for innovating their professional practice. We found teachers described its 
usefulness in terms of offering opportunities for teacher and student learning. We identified the 
theme of opportunity for learning as reasons for selecting a strategy across all three cycles of 
implementation (see Figure 3). An example of a response that fell under this theme is a teacher’s 
explanation for choosing an SOS strategy, “I believe that I guide my students too much to the 
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answer, and give them too much information, which gives away the Ah Ha moments. I want to 
work on allowing the students to explore more of the problem without just giving them their 
answers” (DS2). In addition to identifying this theme in reasons for strategy choices, we 
identified this theme in 20% of teachers' reflections on implementation cycle 1 (DS3) and 17% 
during cycle 2 (DS5). 

A number of teachers interpreted the strategies as opportunities to facilitate learning by 
focusing on student thinking. As seen in Figure 3, we identified the theme of “observing or 
supporting student thinking” in 41% of reasons for selecting a strategy in the first 
implementation cycle, 11% in the second, and 25% in the third. An example of a response that 
supports this claim is related to the SOS strategy of promoting discourse among students around 
emerging ideas, “Want to see if it will help with further understanding the concepts amongst the 
kids” (DS8). We also identified this theme in teachers’ reflections. “Students learned” and 
“students were engaged” accounted for 88% of the descriptions of what went well after 
implementation cycle 1 (DS3) and 37% after implementation cycle 2 (DS5).  

Discussion 
This study aimed to understand the EAC/SOS framework as a boundary object bridging two 

communities of practice. We believe that this investigation of the boundary object can offer 
guidance to others involved in similar projects that involve communicating across such 
boundaries. We found the framework, by and large, supported shared understandings. We also 
found that teachers could identify appealing options and meaningful benefits from the 
framework, indicating they viewed it as implementable and useful. Despite the indications of 
shared understandings and positive reception of the framework, there are some challenges 
around the meaning and implementability of SOS. One potential contributing factor for this is 
the possibility that teachers who are accustomed to ‘traditional’ mathematics instruction may 
find EAC more accessible than the more student-centered ‘reform-oriented’ instruction 
associated with SOS. Researchers working with teachers to study SOS may need to provide 
additional experiences and resources for implementation. Teachers' context may be important, as 
well as teachers’ beliefs about their students’ abilities to learn through productive struggle. 
Implications 

Based on our findings, we offer some provisional recommendations for teacher-researcher 
partnerships to study mathematics instruction: 

 Expect some aspects of the research lens you are using to be easily understood and 
translated by practitioners, while it may be more difficult to form shared understanding 
around others.  

 Use cycles of data collection to monitor teachers’ perceptions and implementation results, 
and adjust the planned meetings between each cycle.  

 Give teachers an overview of the theory and research underpinning the project, and then 
ask teachers what information they need to translate this to their practice (e.g., video 
examples, curricular materials, rehearsals). 

 Be mindful of teachers’ context and beliefs. Provide multiple entry points, choices for 
teachers with different contexts, and be aware the assumptions and expectations of 
teachers may or may not align to those of the researchers. 
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Conclusion  
To achieve harmony between our goals for learning “what works” in a broad sense and teachers’ 
goals of fine-tuning their individual classroom practice, we investigated the EAC/SOS 
framework as a boundary object. We centered teachers’ voices and found evidence in their 
responses that the framework supported shared understandings, strong implementability, and the 
usefulness of the framework across varying teaching contexts. These affordances are signs that 
the framework provides entry points for engaging teachers in professional learning around these 
constructs. However, we also found constraints of the framework, particularly around SOS. The 
constraints indicate specific ways to better support teachers’ understanding and implementation 
of SOS, and the study findings indicate several ways to scaffold teacher-researcher partnerships 
in order to build meaningful knowledge of effective mathematics instruction. 
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Research processes are often messy and include tensions that are unnamed in the final products. 
In our attempt to update and generalize a framework used to examine teachers’ support for 
collective argumentation in mathematics education classrooms to examining teachers’ work in 
interdisciplinary STEM contexts, we have experienced significant linguistic tensions because of 
the context-dependent nature of language. We aim to acknowledge the difficulty of generalizing 
research beyond the mathematics education community, describe our attempts to resolve the 
problem we face, and discuss potential conclusions pertaining to the feasibility of generalizing 
frameworks beyond mathematics education. 

Keywords: Classroom Discourse; Integrated STEM/STEAM; Research Methods 

Background  
In 2019, Eric Siy asked the mathematics education community to reveal their work to 

cultivate a healthier and more rigorous culture of research. Siy argued that one way to expose the 
messiness of research was to make our processes products. In response to his call, our team has 
decided to openly share a present, messy tension in our research process. By disclosing our 
present dilemma to the community for outside opinion and critique, we aim to practice academic 
humility and make our process a product. 

The current tension emerged out of our attempt to update and extend the Teacher Support for 
Collective Argumentation (TSCA) framework (Conner et al., 2014) that was originally 
developed to understand and describe how secondary mathematics teachers support collective 
argumentation. We define collective argumentation as teachers and students working together to 
establish a claim and provide evidence to support it. The original framework described teachers’ 
support of collective argumentation as (a) directly providing a claim, data, or a warrant, (b) 
prompting a student’s contribution of argument components with a question, or (c) responding to 
a student’s contribution. These three descriptions of teacher support for collective argumentation 
simplify to three categories: direct contributions, questions, and other supportive actions. 

Given the utility of the original framework, we (a group of mathematics education, science 
education, and engineering education researchers) attempted to update and extend the framework 
to other STEM+C settings/classrooms. Our updates include specific kinds of questions within 
each broader category of question. For example, Table 1 shows a few of the kinds of questions 
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originally conceptualized. In the updated framework, we want to potentially include additional 
kinds of questions as well as examples from multiple disciplines.  

 
Table 1: Working Descriptions of Selected Types of Questions in New TSCA Framework 

Category of Question Description 
Requesting a factual answer: 
Asks students to provide a 
mathematical fact 

Identification: choose from a set of options, identify 
something 
Observation: describe what happened or is happening. 

Requesting a method: Asks 
students to demonstrate or 
describe how they did something 

Describe a method: state how they did, would, or could do 
something  

Requesting an idea: Asks 
students to compare, coordinate, 
or generate mathematical ideas 

Conjecture: put forward a prediction, suggestion, or other 
idea  

Note. This table is adapted from the original TSCA framework (Conner et al., 2014, p. 419) 
 
However, in our attempt to update and generalize the framework for use in other contexts, we 

experienced significant linguistic tensions. The complexity of meaning and the context-
dependent nature of language pose severe challenges for crafting the framework for use beyond 
mathematics education. In this brief research report, we aim to acknowledge the difficulty of 
generalizing research beyond the mathematics education community, describe our attempts to 
resolve the problem we face, and discuss potential conclusions pertaining to the feasibility of 
generalizing frameworks beyond mathematics education. 

Theoretical Framework 
Ludwig Wittgenstein, in his Philosophical Investigations (1953/1958), sought to dismantle 

theories of language that were referential, representational, and ostensive at their core. A 
referential view of language is where words directly refer to objects and, consequently, a word 
has a referential meaning. Wittgenstein wanted readers to break free from the idea that there 
could be a unitary account of language (Grayling, 1988). Rather than an all-encompassing 
theory, Wittgenstein proposed the concept of language-games. Wittgenstein’s concept of 
language-game was meant to emphasize that language is not independent from context nor is it 
referencing some outer reality. Rather, Wittgenstein (1953/1958) described language-games as 
“meant to bring into prominence the fact that the speaking of language is part of an activity, or of 
a form of life” (§23). Grayling (1988), expounding on Wittgenstein’s phrase “form of life,” 
wrote,  

Language is not something complete and autonomous which can be investigated 
independently of other considerations, for language is woven into all human activities and 
behaviour, and accordingly our many different uses of it are given content and significance 
by our practical affairs, our work, our dealings with one another and with the world we 
inhabit—a language, in short, is part of the fabric of an inclusive ‘form of life.’ (p. 67)  
Through his exploration of concepts like “language-games” and “form of life,” Wittgenstein 

sought to reinforce his main point: the meaning of language is largely found in its use in humans’ 
embodied activities and social practices (i.e., in various language-games). Hence Wittgenstein 
wrote, “the meaning of a word is its use in the language” (§43). Given Wittgenstein’s ideas about 
language and meaning, we should not be surprised that the same word is used across various 
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STEM+C disciplines with different meanings. Furthermore, a word’s meaning may not be easily 
disentangled from its disciplinary use and the associated embodied practices and contexts. 

Methods 
The data for the larger project consist of many hours of video from elementary teachers’ 

instruction in which they integrated coding with mathematics, science, literacy, and social 
studies lessons. To examine the teachers’ use of argumentation and support of students’ 
arguments across disciplines, episodes of argumentation were identified, verbatim transcripts 
were prepared, diagrams of arguments were constructed, and teachers’ actions supporting the 
argumentation were identified according to the methods described in Conner et al. (2014).  

Our research team met for multiple hours each week to analyze and discuss our coding of 
teachers’ supportive actions with respect to the original framework. In the summer of 2021, a 
member of the research team highlighted a prominent linguistic tension about the use of codes 
within two categories (requesting a method and requesting an idea) in the framework. 
Subsequently, the use of two additional words was identified as problematic. Our team regularly 
debated how to use the framework in light of these tensions for the subsequent months. Multiple 
times, we attempted to settle the debate and move forward by adopting specific meanings for the 
words. However, further analysis caused additional complications of meanings, and more 
linguistic tensions were identified. In the most recent attempt to settle various meanings, all team 
members were asked to submit their own working definition of four contentious terms and to 
describe the types of practices and activities that are associated with the words within their home 
discipline. 

Results 
Table 2 shows four debated words and their meanings (derived from combining provided 

definitions) within each field. Each of these words was used as a kind of question in the evolving 
TSCA framework.  

 
Table 2: The Meaning of Words in Different Fields 

  Science Engineering Mathematics Statistics 
Conjecture Guess, 

prediction, or 
tentative 
solution; cannot 
be positively 
justified; distinct 
from hypothesis 

Idea or 
hypothesis that 
is tested out  

Prediction, reasoned 
guess, or proposal 
of a method for a 
problem a; do not 
have a proof 

Alternative 
hypothesis or 
claim related to a 
research question 

Method Systematic 
approach to 
answering a 
question; process 
or technique used 
to find a solution 
to a problem a  

Process or 
technique to 
transform an 
idea into a 
physical reality 

Abstract sequence 
of actions or steps 
used to solve a 
problem a, prove 
something, or 
achieve something 

Technique to 
collect data; 
statistical 
investigative cycle; 
statistical approach 
to solving a 
problema 

Identification Categorizing or 
classifying an 
object into pre-

Pointing out 
attributes that 
define 

Determine/select 
what thing (object, 
drawing, etc.) has a 

Not applicable 
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established 
categories based 
on observable 
characteristics  

something such 
as a design 
problema or a 
design solution 

certain 
characteristic 

Observation Method of data 
collection 
through one’s 
senses and 
scientific tools; 
necessarily an 
interpretation in 
light of a theory 

Assembling 
facts from what 
one can see or 
notice 

Statement noting 
something’s (object, 
drawing, etc.) 
characteristics 

A single 
measurement of a 
variable; 
recognizing trends 
or patterns in data 
or a graph 

a The word “problem” provides another layer of difficulty; the types of problems imagined by 
scientists, engineers, mathematicians, and statisticians are different.  

Discussion and Continuing Dilemmas 
Given these words have loaded meanings that are discipline-dependent, our team identified 

three potential options. First, we could concede and conclude that there is no opportunity to 
generalize this framework across disciplines—even in related STEM disciplines. Second, we 
could carefully choose words that are not loaded with meaning in multiple disciplines. This 
option poses two difficulties: (a) words that do not have discipline-related meanings can often 
have colloquial meanings and (b) by attempting to avoid discipline-related meanings, we may 
choose a watered-down word that does not sufficiently communicate the type of question the 
teacher used. Finally, we could use the words that we currently have in the framework and accept 
that they will cause friction for some of the disciplines. 

As we explored these three options, our team was pushed to re-examine the original purposes 
of the project. Given our aim of helping STEM teachers support collective argumentation, we 
believe it is worth attempting to generalize the TSCA framework, and if possible, to use words 
that would be understandable across disciplines. In our attempt to pursue the second option, we 
concluded that, by replacing the word “Observation” with the word “Description,” we could 
communicate our intended meaning and avoid discipline-specific meanings. However, we have 
not come to a consensus on “Conjecture,” “Method,” and “Identification.” 

This constructive work across disciplines required researchers to adapt and adopt new 
meanings for words—meanings that can cause friction with the discipline-specific meanings. 
Addressing this dilemma has required group members to intentionally learn more about the 
meanings and uses of words across disciplines, highlighting the epistemic and linguistic 
differences between related disciplines. This calls into question the ease with which teachers can 
engage in integrative STEM instruction and suggests the need for intentionality in building 
theory across disciplines. 
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The more researchers understand the subtleties of teaching practices that productively use 
student thinking, the better we can support teachers to develop these teaching practices. In this 
paper, we report the results of an exploration into how secondary mathematics teachers’ use of 
public records appeared to support or inhibit their efforts to conduct a sense-making discussion 
around a particular student contribution. We use cognitive load theory to frame two broad ways 
teachers used public records—manipulating and referencing—to support establishing and 
maintaining students’ thinking as objects in sense-making discussions. 

Keywords: Classroom Discourse; Instructional Activities and Practices. 

Recommendations for mathematics teaching address the importance of using student thinking 
during whole class discussions as well as propose teaching practices that one may use to prepare 
for and facilitate whole class discussions (e.g., National Council of Mathematics Teachers, 
2014). In our work, we study a particular teaching practice—a practice that takes advantage of 
instances of high leverage student thinking (Leatham et al., 2015) by making those instances of 
student thinking the object of whole-class sense making discussions (Van Zoest et al., 2016). As 
we studied teachers leading class discussions surrounding high leverage instances, we noticed 
variation in their use of public records of the initial student’s thinking and subsequent discussion. 
This variation suggested that purposeful use of a public record—a physical representation that 
holds some degree of permanence and is visually accessible to all participants simultaneously— 
had the potential to play an important role in supporting the desired practice. The use of a public 
record as a support aligns with the tenets of cognitive load theory (Swellers, 1988; Swellers et 
al., 2011), which suggest that if the load for remembering other students’ contributions during 
sense making discussions is lightened, then students can focus more on the sense-making actions 
they are being asked to carry out. A written representation of students’ contributions can thus 
lighten this load. In this paper we report the results of our initial investigation into how teachers 
create and use public records of an initial student’s mathematical contribution and subsequent 
discussion. These results provide insight into the ways public records can support teachers 
leading class discussions surrounding high leverage instances of student thinking. 

Teachers’ use of publicly accessible media (e.g., blackboards, white boards, etc.) is a 
common and widely accepted practice for sharing student contributions as well as mathematical 
content (Villareal & Borba, 2010). Additionally, some research has found that teachers’ effective 
use of public records of student mathematical thinking corresponded with an increased level of
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student mathematical activity during whole class discussions (Koehne et al., 2020). However, 
few studies have explicitly addressed how teachers use public records of student thinking during 
class mathematical discussions. Knowing what from a student’s contribution gets captured and 
how it gets recorded is important since public records of student thinking provide permanence to 
student thinking, which can help maintain continuity during collaborative inquiry (Staples, 
2007). Knowing more about how teachers use verbal and physical actions to reference and add to 
a public record can help researchers learn how teachers support students to engage with each 
other’s ideas, a practice that has been linked to mathematical achievement (e.g., Webb et al., 
2014). With respect to our research, knowing more about teachers’ use of public records enables 
us to better understand how teachers effectively use student thinking during whole class sense 
making discussions. This understanding is important because there is evidence that teaching 
practices that use student thinking can be challenging to enact (e.g., Simpson & Haltiwanger, 
2017; Peterson & Leatham, 2009). The more researchers understand the subtleties of teaching 
practices that productively use student thinking, such as creating and using public records, the 
better we can support teachers to develop these teaching practices. 

Theoretical Framework 
Our work focuses on understanding how mathematics teachers take advantage of teachable 

moments. We refer to these moments as Mathematically significant pedagogical Opportunities to 
build on Student Thinking (MOSTs) (Leatham et al, 2015). Taking full advantage of MOSTs, 
what we refer to as the teaching practice of building on a MOST (or just building), is engaging 
the class in making sense of the MOST to better understand the mathematics of the MOST. As 
described elsewhere (Van Zoest et al., 2016), building consists of four elements: 

 Establish: Make the MOST a clear object. 
 Grapple Toss: Offer the MOST to the class with parameters that put them in a sense- making 

situation. 
 Conduct: Conduct a whole-class discussion in which students collaboratively make sense of 

the MOST. 
 Make Explicit: Facilitate the extraction and articulation of the mathematics of the MOST. 

As can be seen from this description of building, the original student contribution—the MOST— 
needs to become a clear object and remain the object of consideration by the class throughout a 
sense-making discussion. Thus, in our work we focus on a public record of a student’s 
mathematical contribution and the class discussion of that contribution (henceforth referred to as 
public record). Because of the central role of the student contribution to building, it seems 
reasonable to suppose that the way the public record of that contribution is created and used 
could help to facilitate (or possibly end up hindering) this discussion. One reason to suspect 
public records are an affordance when teachers are building comes from appealing to cognitive 
load theory. 

Cognitive load theory (Swellers, 1988; Swellers et al., 2011) is a learning and instructional 
theory grounded on two types of memory —long term and working. Long term memory is the 
structure that serves as a person’s permanent storage of information and is potentially unlimited 
in capacity. Working memory is the structure that processes incoming information in conjunction 
with information drawn from long-term memory. Working memory is very limited in capacity 
with regard to the amount of information processed and the duration that the information is held.
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Given these limitations, learning and instruction impose cognitive loads of varying degrees on 
working memory. Intrinsic load is the load imposed by the basic structure of the information that 
is germane to learning. The other load is an extraneous load that is imposed by the instructional 
materials and activities in which the learner engages with the information. Since the extraneous 
load is not germane to learning and is typically under the control of a teacher, a goal of 
instructional design is to reduce the extraneous cognitive load so that a greater percentage of 
working memory resources can handle the intrinsic load. Extraneous load can occur when 
students try to hold information from one source while searching for and processing information 
from a separate source (Swellers et al., 2011). Teachers can help reduce the cognitive load by 
integrating the separate sources of information when the information needs to be considered 
simultaneously (Swellers et al., 2011). Additionally, researchers (e.g., Mousavi et al., 1995) have 
found that when a visual display is paired with speech during instruction, cognitive load can be 
reduced for students by drawing their attention to relevant pieces of the display that coordinate 
with referents in speech. Teacher use of public records has the potential to reduce extraneous 
load in such ways during whole-class sense making discussions, which would allow a greater 
percentage of working memory resources to be devoted to the intrinsic load imposed by the 
sense making activity. 

In this paper, we address the following research question: How can teachers use public 
records of a MOST and of the subsequent discussion surrounding the MOST to support elements 
of the teaching practice of building on MOSTs? 

Methods 
This study is part of a larger project that included a data set of video-recordings of 

mathematics lessons from 6-12th grade teacher-researchers who endeavored to enact the 
teaching practice of building. The participants were selected because they expressed an interest 
in and a desire to know more about the productive use of student mathematical thinking. After 
receiving professional development related to building, the participants used mini-tasks designed 
to elicit anticipated MOSTs and then built on those MOSTs. For this study, we analyzed 27 
lessons where a public record was used as part of the building practice. 

We identified each time a public record was created in each lesson and then made note of 
whenever a change was made to the public record (e.g., an idea was added, circled, erased, etc). 
We refer to this creating and editing as manipulating the public record. After tracking how public 
records changed, we identified each instance of a teacher referencing the public record by 
identifying physical and verbal actions related to or directed at the public record. Physical 
actions include specific and general gestures that draw attention to parts of or the whole public 
record. Verbal actions include speech that draws attention to the public record in some way or 
implies the use or discussion of what was captured on the public record. Physical actions were 
captured using codes that determined whether gestures or looks were towards specific or general 
parts of the public record; codes for verbal actions included naming, pronoun, and repeat. Each 
enactment was coded individually by at least three researchers and then collaboratively 
reconciled. 

Finally, we examined the collections of manipulating and referencing codes across 
enactments for each building practice element (Establish, Grapple Toss, Conduct, Make 
Explicit). Specifically, our analysis aimed at describing ways the teachers’ use of public records 
appeared to support or inhibit the use of student thinking within each element of building. This 
study can thus best be characterized as theorizing grounded in data.
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Results 
These results are organized by building element and describe the primary ways that teachers’ 

manipulating or referencing of public records support the practice of building on MOSTs. 
Using a Public Record to Support the Establish Element of Building 

During the Establish element of building a teacher establishes (a) the precision of the MOST, 
ensuring that the MOST is clear enough for the class to engage with it; (b) the MOST as an 
object that can be identifiable throughout the sense making discussion; and (c) that the students 
have an intellectual need to engage with the MOST. (See Van Zoest et al., 2022 for further 
details about Establish and the other elements of building.) As described below, manipulating the 
public record has substantial potential to support establishing the precision of the MOST. 

Manipulating the public record. In order to build on a MOST, a teacher first needs to 
create a foundation for a sense making discussion; creating a public record that clearly and 
completely captures the MOST helps to create this foundation. A teacher’s honing of a student’s 
contribution is important for creating a clear and complete public record. One form of honing is 
the teacher's use of symbols to represent connections students are making among mathematical 
ideas, such as drawing arrows that indicate a relationship among two entities rather than a written 
description of the relationship. Another form of honing involves a teacher capturing the essence 
of a student contribution while not recording it word-for-word, leaving off extraneous 
information or extra verbiage. Honing may help decrease cognitive load for students, as they 
would not have to attend to a word-for-word re-presentation of the student’s contribution and try 
to carry out this honing themselves. Additionally, the public record needs to be created on the 
board space in a location that is visible for all to see, clearly separated from other information 
with room for additions, and that will not need to be removed as the discussion progresses since 
we want the MOST to be the object of the discussion. In each case, these manipulating actions 
support the work of establishing the MOST in preparation for the next element of building— 
Grapple Toss. 

Referencing the public record. While referencing was not a primary use of the public 
record during Establish, our analysis did reveal some ways referencing may support this element 
of building. Teachers verbally referencing the public record with a name or label (e.g., this claim, 
this argument) contributes to making the MOST an object, because the name or label gives the 
MOST an identity that can be referenced in the public record throughout the discussion. 
Providing the MOST such an identity during the Establish element reduces the extraneous load 
for students during later elements of building because they need only remember the name or 
label and the location of the MOST in the public record as opposed to remembering the entire 
MOST throughout the discussion. Also, teachers often pointed at specific pieces of the public 
record as they wrote in order to confirm that what they were writing aligned with a student’s 
thinking. 
Using a Public Record to Support the Grapple Toss Element of Building 

There are two critical aspects to the Grapple Toss element of building: a clearly established 
object that is offered to the class (the established MOST), and an action (on that object) that puts 
the students into a sense-making situation. As described below, referencing the public record has 
the potential to help students attend to both of these aspects. 

Manipulating the public record. A major goal of manipulating the public record during the 
Establish element is to allow teachers to avoid most manipulation during the Grapple Toss 
element. That said, a subtle way manipulating can help emphasize the MOST as an object during 
Grapple Toss is a teacher circling, drawing a box, or underlining the MOST in the public record
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The teachers emphasizing the MOST in such a way can serve as a permanent gesture, similar to 
referencing. 

Referencing the public record. A teacher’s referencing of the public record during a 
Grapple Toss orients students to the details of the established object without the teacher having 
to repeat or revoice the MOST in its entirety. For example, a teacher could ask, “I want you to 
think about what Elisa has said. What do you find mathematically compelling or conflicting 
about this claim? [pointing to a public record of the established MOST].” Because the MOST is 
captured in the public record, the object can be referred to succinctly with “this claim” thus 
allowing the emphasis to be the sense making action. Referencing the public record in this way 
coordinates a visual mode of communication with the auditory mode of communication, thus 
potentially reducing the extraneous load of attending to the details of the MOST so that working 
memory resources can be devoted to the sense making action in the Grapple Toss question. 
Using a Public Record to Support the Conduct Element of Building 

After the established MOST has been tossed to the students, a teacher conducts a discussion 
that engages students in making sense of the MOST. As students offer additional contributions 
during this discussion, a teacher puts unrelated contributions aside, establishes contributions 
related to the MOST, and invites students to use related contributions to further their sense 
making of the MOST. As described below, both manipulating and referencing the public record 
can support these aspects of the Conduct element of building. 

Manipulating the public record. As students offer their contributions during a discussion, 
the teacher may add other contributions related to the original contribution, the MOST, to the 
public record. When adding these related contributions, a teacher needs to attend to similar 
actions to those described in the Establish section above. In addition, teachers should consider 
the organization among contributions. This organization helps to support students in making 
connections between the new contribution and previous contributions. Parallelism, placement, 
and particularization are three important considerations for this public record organization. 
Parallelism (similar structuring) among the contributions may help the class make connections 
between those contributions. For example, the public record in Figure 1a has a variety of 
symbols and structure for the calculations that may lead to difficulties when comparing. By 
contrast, each student contribution in Figure 1b has been structured in the same way, potentially 
scaffolding student attention to their similarities and differences. The placement of additional 
contributions in relation to the original contribution can also support comparisons between 
contributions. For example, in Figure 1a it would likely take some effort for students to identify 
which of the contributions align with the MOST and which contributions do not. In Figure 1b, 
the contribution that agreed with the original MOST was vertically aligned below the MOST in a 
column on the left, while contradictory contributions were placed together in a column on the 
right. Teachers also may consider particularizing the contributions (e.g., drawing lines, using 
specific colors, assigning labels) to help distinguish the contributions. For example, in Figure 1a, 
it is difficult to identify when one contribution ends and another begins. However, in Figure 1b, 
each student's contribution is color coded differently, and each column of contributions is labeled 
with a “yes” or “no” so that students understand which contributions support or contradict the 
original. Also, within each contribution the initial and final prices are underlined to highlight the 
comparison each individual student's contribution is making. A well organized public record that 
addresses these considerations has the potential to reduce the extraneous cognitive load for 
students by integrating and aligning objects so that students’ working memory resources can be 
allocated to processes germane to sense-making. 
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Figure 1: Public Record of MOST and Related Contributions During Conduct 

Referencing the public record. One important part of conducting a sense-making discussion 
surrounding a MOST involves helping students to connect related student contributions (that 
have been established) to the MOST. Hence, a connecting move requires that both the MOST 
and a related student contribution be established as the object of the move. In addition, the move 
requires an action describing or requesting the nature of the connection that students are to make. 
Similar to referencing the public record during Grapple Toss, referencing to support connecting 
gives the action more prominence in the teacher’s speech. However, because a teacher needs to 
reference two contributions in the public record, specific pointing gestures or verbal cues 
corresponding with the MOST and the related contribution become important, particularly 
because the public record may contain more information than these two contributions. For 
example, a teacher who asks, “How do you reconcile these two statements?” could use pointing 
gestures to make clear the objects in the public record that the class needs to reconcile. 
Differently, a teacher who asks, “How does this claim disprove Jaden’s conjecture?” could use a 
pointing gesture to identify “this claim” in the public record, but the verbal naming “Jaden’s 
conjecture” to identify the second contribution. This type of referencing reduces the cognitive 
load for students by clarifying the ambiguity of the referent for “this claim” and allowing the 
main focus to be on the requested reconcile action. 

Another important part of using MOST related contributions is summarizing several 
established contributions so that they can be considered concurrently (i.e., synthesizing). A 
teacher’s referencing supports the synthesis of student contributions to be connected by re- 
presenting the details of the contributions and helping students track those contributions in the 
public record. The public record provides permanence for student contributions so that teachers 
can use pointing gestures to support the class with attending to the details of multiple 

(
b) 

The price of a necklace was first 
increased 50% and later decreased 
50%. Is the final price the same as 
the original price? Why or why not? 

(
a) 

The price of a necklace was first 
increased 50% and later decreased 
50%. Is the final price the same as 
the original price? Why or why not? 
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contributions. Supplementing speech with the use of the public record helps reduce the cognitive 
load of processing the sometimes lengthy details of contributions. Additionally, specific pointing 
gestures can clarify what piece of the public record corresponds with the teacher’s speech. Such 
gestures reduce the cognitive load for students as they are directed to a specific piece of the 
public record and do not have to visually search for it on their own. 

If a student shares a contribution during a discussion that is not related to the MOST, 
referencing the public record can help recenter the MOST as the focus of the discussion. In our 
research, we often found students responding to a Grapple Toss question with their own 
solutions to a task or their ways of thinking about an idea that was unrelated to or far from the 
focus of the MOST. Teachers can refocus students by gesturing at the MOST in the public record 
and telling students to focus on this idea, or referencing the MOST by its name while asking a 
student how their contribution is related to the MOST. Alternatively, teachers can use the same 
physical and verbal referencing of the MOST in the public record while reminding the class that 
the discussion is currently about making sense of the MOST. 
Using the Public Record to Support the Make Explicit Element of Building 

In the final element of building the teacher ensures that (a) the class agrees that the issue 
related to the MOST has been resolved, and (b) the mathematics of the MOST—the 
mathematical ideas that have emerged from making sense of the MOST—is explicitly 
articulated. We describe below how referencing can support resolving the MOST. 

Manipulating the public record. In our data, teachers often did not manipulate the public 
record during Make Explicit since the ideas they wanted to discuss were already established, and 
connections and resolutions were made explicit throughout the discussion. However, we did see 
some manipulating that seemed to support Make Explicit. Editing the originally established 
MOST may further support students understanding the resolution of the MOST. Also, capturing 
the mathematics of the MOST succinctly may be important if the ideas will be used beyond the 
discussion of the MOST. 

Referencing the public record. A teacher may reference the public record to emphasize the 
MOST as the object of a check-in question similar to the way referencing was used during 
Grapple Toss and Connect. For example, a teacher may ask, “Given our discussion for the past 
few minutes, how are you all thinking about our original argument? [gestures to the established 
MOST].” Another way a teacher may use referencing during Make Explicit is pointing to pieces 
of the public record that orient students to the details of ideas and connections said throughout 
the discussion that contribute to resolving the MOST. 

Discussion and Conclusion 
We reported the primary ways that a teacher’s manipulating and referencing actions have the 

potential to support a teacher’s productive use of student mathematical thinking when enacting 
the teaching practice of building on MOSTs. We begin the discussion by comparing and 
contrasting how manipulating and referencing actions play out across the four elements of 
building and conclude by reflecting on how these findings relate to the literature, particularly to 
cognitive load theory. 

Although we described ways manipulating can support all elements of building, we see 
manipulating having a primary role during Establish and Conduct to provide permanence to 
student thinking shared in discussions. Manipulating that highlights pieces of the public record 
may occur during Grapple Toss or Make Explicit, but would be minimal as compared to altering 
contributions that would leave objects in the public record less clear for students. With respect to 
referencing, the combination and specificity of referencing actions often contributed to the extent 
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to which these actions supported or hindered the building practice. Teachers clearly drew 
attention to particular contributions in the public record during Conduct with specific pointing 
gestures or using locator words (e.g., the upper right argument in blue). However, when teachers 
used vague pronouns (e.g., this calculation, that number) without pointing gestures to reference 
to a piece of a public record during conduct, the referent for the pronouns would likely be 
unknown for students. 

There are at least two ways that teacher use of public records has the potential to reduce 
extraneous cognitive load imposed by split sources of information (Sweller et al., 2011) that 
inevitably occurs as a teacher builds on a MOST. First, sense making discussions require 
students to attend to a variety of information that is shared at different points in time and by 
different members of the class. Displaying (manipulating) the information in the public record 
can reduce the extraneous load imposed by having to remember the MOST and MOST-related 
contributions for the length of the discussion. Second, the public record may serve to reduce the 
extraneous load of attending to or searching for objects in the teacher’s speech. During building, 
a teacher requests or positions students to engage in sense making actions with the MOST and 
MOST-related contributions. The teacher can reference these objects in the public record as 
opposed to revoicing or repeating them in their entirety, which has the potential to allow a 
greater percentage of working memory resources to be devoted to the load that is germane to the 
sense making of the mathematics of the MOST. 

Our findings as to how manipulating and referencing can support elements of building 
extends the work of others investigating teacher use of student thinking to lead meaningful whole 
class discussions. Placement, parallelism, and particularization provide considerations for 
teachers manipulating and structuring public records that clearly and completely display student 
thinking during a sense-making discussion. These considerations offer insight as to how public 
records can be used to establish common ground, which is important for sustaining continuity of 
discussions on student thinking (Staples, 2007). During Grapple Toss, Conduct, and Make 
Explicit, referencing the public record can help support students’ engagement with the details of 
each other’s contributions. Referencing the public record in a Grapple Toss question or a request 
to connect ideas during Conduct can orient students to the specific objects with which they are to 
engage in sense making actions. This referencing provides insight into how teachers can use the 
public record as a resource to help students engage with the details of each other’s thinking 
during whole class discussions, which can be key for students' mathematical learning (Webb et 
al., 2014). 
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College mathematics instruction that leverages evidence-based instructional practices, such as 
productive group work, can lead to many positive outcomes for students. In order to support 
instructors in adopting more evidence-based instructional practices, it is important to 
understand what barriers and drivers can impact their decision to implement such practices. In 
this study, we interviewed four introductory mathematics instructors teaching the same course in 
order to understand, in context, what aspects served as barriers and drivers. Transcripts were 
analyzed using thematic analysis. Initial results highlight how course coordination and weekly 
project meetings served as drivers, and the impact of the pandemic was seen as both a driver and 
a barrier to implementing evidence-based instructional practices.  

Keywords: Instructional Activities & Practices, Undergraduate Education, Faculty Perceptions 

Instruction that actively engages students in their learning has been shown to have many 
positive outcomes for students. Specifically, research at the college level has revealed that this 
type of instruction can increase student learning and students’ conceptual understandings, as well 
as reduce achievement gaps (e.g., Freeman et al., 2014; Kogan & Laursen, 2014; Theobald et al., 
2020). As such, there have been numerous calls to increase student engagement in college 
mathematics classrooms (CBMS, 2016; PCAST, 2012). Yet, didactic lecture still remains the 
most prominent form of instruction (Stains et al., 2018). To support college instructors in 
adopting more evidence-based instructional practices (EBIPs) that actively engage students, it is 
important to understand, both locally and globally, what barriers might be getting in the way of 
instructors’ implementation of these strategies. It is also important to understand what drivers, 
aspects that mitigate barriers, foster instructional change and the adoption of EBIPs. 

Previous research has examined various aspects that can impact an instructor’s decision to 
implement EBIPs (e.g., Apkarian et al., 2021; Henderson & Dancy, 2007; Shadle et al., 2017). 
Although this work has helped to identify barriers, drivers, and individual or situational 
characteristics that may come into play, more work needs to be done to understand how 
institutions, departments, and individual mathematics educators can encourage the adoption of 
EBIPs by college mathematics instructors. Further, in order to foster instructional change locally, 
by mitigating barriers and leveraging drivers that have the most impact, it may be important to 
examine instructors’ thinking about EBIPs at one’s local institution (Henderson et al., 2011). As 
such, our work seeks to understand how college instructors at one institution think about the 
implementation of EBIPs in their classes. Specifically, we aim to answer the research question: 
What do college mathematics instructors consider to be barriers and drivers for implementing 
practices that engage students in active learning in their teaching?  

Theoretical Framework Guiding Our Research 
We examine our research question in the context of a larger project focused on transforming 

the teaching of introductory mathematics at one institution. The theoretical underpinning of this 
project is the Ethic of Practicality proposed by Doyle and Ponder (1977). This framework 
describes instructional change as a matter of how practical instructors find the proposed changes. 
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The Ethic of Practicality consists of three components: (1) congruence (compatibility with the 
instructor’s classroom, setting, and instructional goals), (2) instrumentality (clearly articulated 
procedures for ease of implementation in the instructor’s classroom), and (3) cost (potential 
benefits outweigh the effort and other costs of implementation). Motivated by this framing, we 
structured the project to maximize congruence and instrumentality and minimize cost for 
instructors. Specifically, instructor-participants were given a course release to make time for 
participation in the project, and the facilitators guided participants in implementing the 
Continuous Improvement (CI) model for instructional improvement (Berk & Hiebert, 2009), in a 
manner reminiscent of lesson study cycles (Dick et al., 2022). In CI, participants identify two or 
three different mathematical concepts and implemented the following cycle each semester: (1) 
design a task that targets a particular mathematical concept; (2) develop hypotheses about 
anticipated student responses; (3) collect data in the form of student work and classroom 
recordings, then analyze the data for evidence of the desired student learning outcomes; and (4) 
reflect on their own and their colleagues’ instructional decisions in the implementation of the 
task, and revise the task as appropriate. In this way, instructors retain control of the congruence 
and instrumentality of the resources and materials that they themselves produce.  

Methods 
Participants were four fixed-term faculty teaching an introductory mathematics course at the 

same institution. Two participants, Shay and Nicholas (pseudonyms), were experienced 
instructors who had taught the course multiple times and served as course coordinators, and two 
participants, Alex and Ivy, were in their first semester teaching the course at this institution.  

For this proposal, we focus on data collected in a 60-minute semi-structured interview with 
each of the instructors during the first semester of this larger project on instructional 
improvement. The interview protocol included questions to elicit details about each instructor’s 
experience teaching, what a typical class period looked like, how their instruction has changed 
over time (if at all), and what factors supported or hindered them in implementing EBIPs (e.g., 
active learning activities). Interviews were transcribed verbatim. To answer our research 
question, we used thematic analysis of the transcripts to identify instructor reported barriers and 
drivers to implementing EBIPs (Braun & Clarke, 2006). We coded segments from the 
interviews, using the 18 barriers (e.g., Time Constraints) and 15 drivers (e.g., Aligns with 
existing resources) identified by Shadle et al. (2017) as a priori codes. We then created additional 
codes when instructors described barriers or drivers that were not represented in Shadle et al.’s 
(2017) findings.  

Results 
In this section, we describe two drivers, course coordination and weekly CI project meetings, 

that impacted all four participants decisions to implement EBIPs. We also discuss the impact of 
the COVID-19 pandemic, which was identified by participants as both a barrier and a driver to 
implementing EBIPs. In our talk, we will share additional barriers and drivers that arose in our 
data, including those that align with Shadle et al.’s (2017) findings. 
Drivers to Implementing EBIPs: Course Coordination & CI Project Meetings  

Course coordination played an important role in creating an environment that fostered the 
implementation of EBIPs. The course coordinators (Nicholas and Shay) created the course 
structure, outlining activities that would be done during class and building the homework sets 
and lecture videos that could be used to support students’ learning outside of class. Ivy discussed 
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how she appreciated having someone with departmental and course-specific knowledge in this 
role, especially when there was disagreement amongst the instructors. She said: 

So having somebody there that I know has the broader perspective … You've got to have 
somebody that's taking that leadership role and putting stuff into practice and saying this is 
the way it's going to be. But they have been extremely open with input.   
Ivy also emphasized, in this quote and throughout the interview, that she appreciated how the 

coordinators took instructors’ ideas as input when making decisions that impacted the entire 
instructional team. 

All four instructors also emphasized that the resources that were created and made available 
as part of the course coordination contributed to their decision to implement more EBIPs in their 
teaching, which was also identified as a driver in Shadle et al.’s (2017) work (i.e., Aligns with 
Existing Resources). Ivy emphasized how these available resources prompted her to incorporate 
activities she had never quite been comfortable with implementing before. She said, 

I've got all these resources. My experience was lecture, and now I get to try the things I've 
always wanted to try. So I'm loving it. I love the activities. And I'll be honest, at the start of 
the semester I was like, ‘Oh, we're going to do this now?’ Because I didn't know how 
powerful it was. … It's just cool to see everything that we can do with [the activities], and it 
really helps the students understand. 
These resources were initially created by the course coordinators, but as the semester 

progressed, other instructors began to add to this shared repository of course resources. 
Weekly project meetings, which focused on developing materials as part of the CI cycle, also 

served as a driver for instructor implementation of EBIPs. These meetings created time and 
space for instructors to talk about best practices and pedagogy as they developed class activities. 
Notably, these meetings were separate from course coordination meetings (where the focus was 
primarily on logistics such as upcoming assessments, content, or due dates). All instructors 
shared how these weekly meetings were important for developing and implementing activities 
that centered student thinking, with the meetings also serving as a space for collaboration and as 
a form of accountability to ensure progress on shared objectives. Nicholas said, 

I think a lot of it's the kind of dedicated collaboration time. … It's kind of nice to just sit 
around for an hour and be like, ‘What do you think about this? And how would you approach 
this? And how would you do that?’ 
Additionally, these weekly project meetings also created space for the facilitators to share 

related educational research as the instructors expressed an interest in learning more about 
EBIPs. As such, opportunities for professional development arose organically during these 
meetings.  
COVID-19: Both a Barrier and Driver to Implementing EBIPs 

Instructors discussed the impact of the COVID-19 pandemic both as a barrier and as a driver 
for implementing more EBIPs in their classes. On one hand, Shay described COVID as a driver 
because it challenged instructors to think carefully about how they were presenting material 
when the course modality shifted to online. Shay said, 

The idea that COVID kind of opened your [eyes] -  you have to look for other ways to be 
able to present material to them. And so, oh! We'll make these videos. … Why can't we just 
make the video and they can watch it on their own time, and then come in and then do this 
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[activity]? … I want them to - instead of just sitting there blankly looking at me while I'm 
talking - being able to interact. 
This quote highlights the way that the pandemic enabled her to try new things in her class 

because she realized that she could create videos covering the content she would normally 
lecture on for students to watch on their own time. This freed up time during class for students to 
engage in activities and interact with one another.  

Another instructor, Alex, pointed to how the COVID-19 pandemic was a barrier for him 
incorporating more EBIPs. He described how it was challenging to facilitate student discussions 
in breakout rooms on Zoom because he could not listen in on student discussions as easily. He 
felt as if there was not the same collaboration and excitement that happens in the classroom when 
one can hear other groups discussing and laughing together during student work time. Even 
when courses shifted back to being in-person, the pandemic continued to impact student 
interactions. Alex said: 

But on the very first day [of being back in person], some students are acting like everything's 
normal and sitting together, but others are sitting really far away, wearing their masks. And 
I'm not going to tell them [to get into a group]. … So that's brought me to where I'm a little 
bit less sure about how it can operate right now. 

Discussion 
In this study, instructors identified many of the same barriers to implementing EBIPs that 

were reported by Shadle et al. (2017). However, most of the drivers that were identified in our 
work differed from those raised in that study. This could be because Shadle et al. (2017) focused 
on faculty’s perceptions of what “will help make change occur” (p. 10), whereas our study 
sought instructors’ reflections as they were in the midst of a project designed to promote 
instructional change. Nonetheless, we do see some alignment between the drivers identified in 
both studies. Specifically, we see the drivers of course coordination and the weekly CI project 
meetings as aligning with the driver “Encourages collaboration and shared objectives” identified 
by Shadle et al. Critically, Shadle et al. describe this driver as an outcome of “increased 
emphasis on teaching and student success” (2017, p. 6), whereas in our work course coordination 
actually served to enable instructors in their adoption of EBIPs. Other recent research has also 
highlighted the important role course coordinators can play as change agents and drivers for 
instructional change (Williams et al., 2021). Two years before the start of this project, the 
mathematics department had embarked on a campaign for improved coordination and alignment 
across multi-section courses. This required instructors to meet and discuss their goals for and 
their teaching of the course, increasing collaboration. Then when course coordinators started 
experimenting with incorporating active learning in their own teaching, this led to the creation of 
a course structure that fostered the inclusion of more EBIPs.  

As shown by the preliminary results of this study, the disruptions to university teaching that 
resulted from the COVID-19 pandemic complicated instructors’ use of EBIPs in the expected 
ways (e.g. complicating the use of small-group work when social distancing was also encouraged 
during in-person classes), but they also provided instructors with opportunities to rethink their 
beliefs about their role in the classroom. As this project progresses, we anticipate that instructors 
will continue to interrogate their previous assumptions about mathematics teaching and learning.  
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This study shares two frameworks for analyzing teacher actions that support students in 
generalizing and examines how those frameworks align with teacher questioning. One classroom 
teaching episode focused on the mathematical activity of generalizing is shared to illustrate 
effective generalizing promoting practices. We found several patterns of productive and 
unproductive generalizing promoting actions and questioning. Repeating generalizing promoting 
actions in succession were needed to produce student generalizations. Priming actions that set 
up for later generalizing promoting were helpful when students struggled to identify and state 
generalizations. Connection questions promoted generalizing, but justification and concept 
questions did not. Further research will explore the additional strategies to support teachers in 
fostering student-created generalizations.  

Keywords: Instructional Activities and Practices, Classroom Discourse, Algebra and Algebraic 
Thinking 

The mathematical practice of generalizing, identifying a relationship to describe multiple 
examples or instances of a phenomenon, is fundamental to learning in mathematics (Carraher & 
Schliemann, 2002; Kaput, 1999) and engages students in algebraic thinking (Blanton et al. 2011; 
Kieran et al. 2016), which requires students identify, investigate, and represent relationships. 
Understanding how to support students in developing, articulating, and refining generalizations 
is critical to mathematics teaching and learning. Teacher questioning plays a pivotal role in 
fostering students’ generalizations, especially when students’ reasoning does not lead to formal 
general statements (Radford, 2010). However, research on teacher questioning and generalizing 
remains distinct. This study is aimed at better understanding the relationship between teacher 
questioning and students generalizing. We describe our questioning framework and its 
relationship to two frameworks for analyzing actions to promote generalizing. We address how a 
high school mathematics teacher’s questioning aligns with her actions to foster students 
generalizing and describe the patterns in student-teacher interactions that promoted student-
created generalizations. 

Literature 
Generalizing skills contribute to algebraic understanding (Carpenter & Franke, 2001) and are 

identified as a key mathematical practice across all math content domains in the Common Core 
State Standards (National Governors Association Center for Best Practices & Council of Chief 
State School Officers, 2010). Here, we adopt Kaput’s (1999) definition of generalization as 
“lifting” and communicating reasoning to a level where the focus is no longer on a particular 
instance but rather on patterns and relationships of those instances. A formal generalization is the 
product of the mental activity of generalizing (Font & Contreras, 2008). In generalizing students 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1770



must recognize quantities that vary and remain constant and represent these relationships using 
symbols or words. When students move to generalizing symbolically without having adequate 
time to understand and reason about quantities and their relationships in a variety of contexts 
beforehand, they can become dependent on procedures (Kieran, 2007). Teachers value, and thus 
place an instructional focus on, formal algebra such as symbols, notations, and procedures 
(Nathan & Koedinger, 2000). A focus on procedural approaches to algebra can obscure attention 
to engaging students in mathematical practices such as generalizing that build a conceptual 
understanding of mathematics. Given student difficulties in generalizing (e.g., Blanton & Kaput, 
2002; Lannin, 2005; Lee & Wheeler, 1987; Stacey, 1989; Stacey & MacGregor, 1997), students’ 
failure to justify generalizations (Breiteig & Grevholm 2006), and secondary math teachers’ 
challenges in responding productively to student generalizations (Demonty et al., 2018), 
determining what instructional actions promote generalizing activities is warranted.  

Ellis (2007) proposed an actor-oriented generalization taxonomy that consists of generalizing 
actions, which include students’ activities while generalizing and their statements of 
generalization. To better understand the classroom interactions and discourse that promote 
generalizing actions, we use a modified version (Strachota, 2020) of Ellis’ (2011) generalizing-
promoting actions (GPAs) and Strachota’s (2020) priming actions (PAs). Priming actions set the 
stage for more explicit attention to generalizing; they prepare students to build on an idea or refer 
to an idea later. Generalizing promoting actions, on the other hand, prompt immediate activities 
that have the potential to produce generalizations. Priming can include making the critical ideas 
of an individual public to the work of the class, making evident tools needed for generalizing, 
asking students to consider ideas or examine specific key examples, or setting up to extend an 
idea later. For example, a teacher who introduces x to represent a varying quantity in a pattern or 
who displays similar expressions for comparison is using a priming action, reviewing a critical 
tool and constructing searchable and related situations, respectively. Generalizing promoting 
requires students to identify a relationship, state a generalization, extend beyond cases available 
to them, or justify a general statement. For example, prompting students to describe a pattern 
algebraically is a generalizing promoting action that encourages reflection. Table 1 illustrate the 
codes we used for priming and generalizing promoting actions (Ellis, 2011; Strachota, 2020). 

 
Table 1: Priming Actions and Generalizing-Promoting Actions 

Priming Actions (PAs)1 
Naming a phenomenon, 
clarifying critical terms 
and tools 

“Offering a common way to reference a phenomenon or 
emphasizing the meaning of a critical term or tool.” 

Constructing or 
encouraging constructing 
searchable and relatable 
situations 

“Creating or identifying situations or objects that can be used for 
searching or relating. Situations that can be used for searching or 
relating involve particular instances or objects that students can 
identify as similar.” 

Constructing extendable 
situations 

“Identifying situations or objects that can be used for extending. 
Extending involves applying a phenomenon to a larger range of 
cases than from which it originated.” 

Generalizing-Promoting Actions (GPAs)2 
Encouraging relating and 
searching 

“Prompting the formation of an association between two or more 
entities; prompting the search for a pattern or stable 
relationship.”  
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Encouraging Extending “Prompting the expansion beyond the case at hand.” 
Encouraging Reflection “Prompting the creation of a verbal or algebraic description of a 

pattern, rule, or phenomenon.” 
Encouraging Justification “Encouraging a student to reflect more deeply on a 

generalization or an idea by requesting an explanation or a 
justification. Includes asking students to clarify a generalization, 
describe its origins, or explain why it makes sense.” 

1These categories and descriptions are from Strachota (2020, p. 7). 
2These categories and descriptions are from Ellis (2011, p. 316). We adapted encouraging relating and 
searching, following Strachota (2020), by combining these into one category. 

 
Teachers often struggle with asking ‘good’ questions that are cognitively demanding, involve 

higher-order thinking, and follow up on student input and explanations (Boaler & Brodie, 2004; 
Franke et al., 2009). In addition to asking good questions, teachers must be able to effectively 
interpret and make sense of students’ questions during class to use student thinking to move the 
mathematics of a lesson forward (Hufferd-Ackles et al., 2004). The follow-up questions teachers 
ask after hearing student thinking are of critical importance. Franke et al. (2009) found that 
students benefited most when teachers asked a probing sequence of specific questions. This 
process of probing helped teachers better understand student thinking, helped the students who 
were responding to teacher questions to solidify their ideas and thinking, and helped other 
students connect ideas to their own thinking and address misconceptions. When a teacher asked 
only one question, they were often not able to obtain enough information to understand the 
student’s thinking. Boaler and Brodie (2004) concluded that it is important for teachers to ask 
higher-order types of questions, so students have more opportunities to engage meaningfully 
with mathematics in ways that go beyond performing procedures. The finalized questioning 
framework used in this study is based on Boaler and Brodie (2004), Hallman-Thrasher & 
Spangler (2020), and Chen (2021) shown in Table 2 and described in the methods section. 

 
Table 2: Question Types to Support Generalizing 

Definition of Question Type Example 
Rhetorical 

Does not generate responses (teacher answers them 
or does not provide time for students to answer)  

  
“Everyone else get that? Yeah? 
Ok.” 

Gathering Information 
Requires only a single short answer 

 
‘ “How many flowers are in step 5?” 

Concept 
Attends students to underlying mathematical 
relationships and meanings 

 
(No example from data) 

Strategy 
Elicits descriptions of students’ strategies, solutions, 
or procedures 

 
“Do you want to come up here and 
show how you got that?” 

Clarification 
Clarifies student input that has been shared or is 
known 

 
“So, these would be the step 
numbers?” 

Connection 
Seeks a connection across ideas, representations, or 
strategies 

 
“Which part [of the picture] would 
be x?” 
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Justification 
Defends the appropriateness of a particular strategy, 
augmenting with connections that validate reasoning. 

 
“Why does this [expression] not 
work [for other cases]?” 

Extending Thinking 
Extends to examples beyond what is available or to 
examples where similar ideas could be used 

 
“What about the 10th step?” 

Adapted from Boaler and Brodie (2004) and Chen (2021). 

Methods 
The participant for this study was Ms. Patton, a teacher candidate enrolled in a one-year 

master’s program with licensure for individuals with STEM degrees. She had earned an 
undergraduate degree in mathematics the previous year. At the time of data collection, she was in 
the Fall semester of a year-long teaching placement in an Algebra II classroom and enrolled in 
her only mathematics teaching methods course. In this lesson, Ms. Patton was supported by Mr. 
Dayton, her experienced mentor teacher. For this study, Ms. Patton planned, taught, and reflected 
on her video data from two episodes of teaching a pattern task with grades 9-10 students as part 
of an assignment for her mathematics teaching methods course. By pattern task we mean, a 
visual representation of objects that grows over instances of time (Figure 1). The data analyzed 
for this paper is the video recording of Ms. Patton’s teaching where the most student-created 
generalizations were shared. In methods class, Ms. Patton first engaged in completing pattern 
tasks as a learner and analyzing videos of other teachers using pattern tasks. We carefully 
structured her planning for this task to attend to teacher questioning to elicit, understand, and 
make connections to student thinking.  

 

 
                                          1               2                 3                      4 

Figure 1. Ms. Patton’s Pattern Task (Nguyen, 2020). 
 
For our initial analysis, we coded the video data of teaching in 15-second segments using two 

established frameworks for generalizing (Table 1, Ellis, 2011; Strachota, 2020). Next, to capture 
teacher moves we modified Boaler and Brodie’s (2004) question types. The question types 
(Boaler & Brodie, 2004) did not align well with the specific nature of supporting students in 
the creation of generalizations. Not all of the question types were applicable for this study and 
some were not sufficiently specific. None of the lessons we reviewed involved linking to 
concepts outside of mathematics so “linking and applying” and “establishing context” questions 
were not used. The “orienting and focusing” questions were not adequately specific, so we 
defined other categories that helped us classify the strategies a teacher would use to orient or 
focus (e.g., clarifying or justifying questions). “Probing” questions did not describe all the 
different ways a teacher might follow up on student thinking. We drew on Hallman-Thrasher & 
Spangler’s (2020) broad categories of questions to develop a more comprehensive list which we 
compared against Chen (2021) to search for overlaps, gaps, and types needing more or less 
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specificity. For example, Chen’s (2021) “elicit thinking questions” were broken into strategy and 
concept questions in a new framework (Table 2). To establish a more descriptive framework 
specific to the evaluation of questioning that supports generalization, we also used thematic 
coding (Saldana, 2013) to identify questioning types not addressed by our existing frameworks. 
We defined a new question type “rhetorical” for questions that did not require a response or 
served as a means to garner attention to a thought, such as, “Does that make sense to 
everybody?” We also carefully considered what counted as a question: statements that 
functioned a question (e.g., “Find all the expressions you can for step 5”) counted as questions, 
as did the questions that were not answered or were not intended to be answered (e.g., “You said 
that was x, right?”). To more closely examine the nuanced turns in conversation, we re-coded the 
data line-by-line for generalizing promoting actions, priming actions, student generalizations, 
and questioning with our revised framework for questioning. Interrater reliability was established 
by having all four researchers review and code all data. When disagreements arose, we discussed 
them using the frameworks to reach consensus (Syed & Nelson, 2015).  

To better understand how the conversation developed over the course of the lesson, we 
divided the 45-minute lesson transcript into 13 blocks with each block representing a different 
instructional goal (e.g., launching the task, generating expressions for a particular step, applying 
a numeric expression for one step to a different step). We identified which blocks of 
conversation were productive for producing student generalizations. We wrote a description for 
each block and examined it in order to isolate characteristics of instruction that supported 
generalizing. We examined the coded data to identify patterns that signaled productive and 
unproductive questioning strategies and teacher moves to develop students’ generalizations.  

Results 
We focus our results on Ms. Patton’s most productive lesson; the one that included the most 

student-created generalizations. From our blocked classroom interactions, those producing at 
least one student generalization were identified as productive. Blocks that did not produce a 
student generalization were considered either missed opportunities for having had the potential to 
produce a student-created generalization or unrelated when the purpose of the interaction was not 
directly related to generalizing (e.g., clarifying directions, checking in with a small group). 
Students shared 13 generalizations spread over 7 productive blocks. Three blocks were unrelated 
to generalizing and three blocks were missed opportunities for generalizing. Table 3 shows 
which questioning types were used with priming actions (PAs) and generalizing promoting 
actions (GPAs). Ms. Patton relied primarily on connection, clarification, and extending thinking 
questions to develop generalizing actions. Two PAs did not involve questioning and eight GPAs 
did not involve questioning. Priming was associated with gathering information, clarification, 
strategy, and connection questions, whereas generalizing promoting incorporated all question 
types, relying most heavily on connection and extending thinking questions.  

Particular types of questioning were more or less helpful for engaging students in 
conversations related to generalizing. Ms. Patton’s use of connection, clarification, and rhetorical 
questions exceeded all other questioning types. She repeatedly used connection questions when 
encouraging students to relate between figural and algebraic representations of the pattern. When 
she asked, “Which part [of the picture] would be x?” her focus on a specific part of an expression 
prompted students to discover that the width of the large rectangle was the same as the step 
number. All of the connection questions she posed, were priming or generalizing promoting.   

Ms. Patton used clarifying questions to have students further explain terminology or ideas 
and in doing so students revised an idea or stated it more precisely. For example, in prompting 
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students to unpack an expression related to viewing the pattern as two equal-sized squares, Ms. 
Patton prompted, “Now what were you saying about perfect squares?” Clarifying questions often 
served to provide an opportunity for students to repeat an important point to which Ms. Patton 
wanted the class to attend. Clarifying questions, though important to understanding student 
thinking, did not consistently relate to generalizing; only 8 of her 17 clarifying questions 
functioned as priming or generalizing promoting actions. 

 
Table 3: Alignment of Question Types, Priming, and Generalizing-Promoting Actions 

Question Types Priming Actions Generalizing 
Promoting Total Questions 

Rhetorical --- 4 10 
Gathering Information 1 1 5 
Strategy 3 2 7 
Clarification 4 4 17 
Concept --- --- --- 
Justification --- 3 3 
Connection 4 13 17 
Extending Thinking  --- 5 6 

 
Ms. Patton used rhetorical questions to state generalizations; the four teacher-stated 

generalizations were shared in the form of a rhetorical question. She did not, however, provide 
an opportunity for students to respond to these rhetorical questions. For example, she revoiced a 
generalization saying, “Does everyone see how he got that? For every picture you have this two 
right here [the constant two flowers on the rightmost column in each image] and then across [the 
width of the rectangle] is just the step number plus one.” This question had the potential to 
ensure that all students attended to and understood a key generalization shared earlier. However, 
by not providing students an opportunity to agree or disagree and justify their decisions she 
limited students’ opportunities to actively engage with another’s ideas.  

Other questioning types, while not as prevalent as connection, clarification, and rhetorical, 
were more consistently associated with generalizing promoting. Extending thinking and 
justifying questions nearly always functioned as generalizing promoting actions. Extending 
thinking questions and justifying questions did not immediately lead to student generalizations. 
They always required follow-up supporting questions. Though justifying questions were not used 
often, they were effective at promoting generalizations. For example, Ms. Patton asked, “Why 
wouldn’t it work for say step number 3?” and followed with strategy, clarification, justification, 
and connection questions before a student correctly generalized that an expression for the pattern 
in step 4 would not work for any other step of the pattern. Justification questions, while present 
in this lesson, were less than we might have expected and may have established a tendency not to 
justify claims which could have limited opportunities for students to discover, refine, and state 
generalizations. We also noted that Ms. Patton did not use concept questions which may have 
contributed to the missed opportunities for students’ generalizing. By not consistently making 
underlying concepts and justifications evident, Ms. Patton may have focused more on what 
strategies were developed and less than the underlying structure that would have supported 
students in making their own generalizations.   

Ms. Patton often used clarification, justification, and connection questions to make students’ 
generalizations accessible to the whole class. In clarifying to encourage reflection, she revoiced 
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a student idea and pressed for detail that prompted a student to state a generalization more 
precisely; in connecting she encouraged relating and searching. Justifying questions such as 
“Why wouldn’t that work for step 3?’ served to encourage justification and in response a student 
produced a new general statement about how the formula could not extend to all instances of the 
pattern. To encourage extending, she repeatedly asked students to consider cases beyond those 
shared and to apply ideas developed from one step of the pattern to earlier or later steps.   

Within each productive block we looked at the sequence and density of priming and 
generalizing promoting actions to identify patterns of actions that were productive towards 
producing student-created generalizations. One productive pattern for producing student 
generalizations was using repeated instances of generalization promoting over a short duration. 
The first such productive block included three GPAs (encouraging extending, encouraging 
extending, encouraging justification) over a one-minute time span. The questioning types that 
were used to accomplish these actions varied. She first gathered information and extended 
thinking to encourage extending, and then followed with a strategy question to encourage 
justification. By encouraging extending twice with two different question types, she first elicited 
the information she needed to build on in order to extend and justify. A student was then able to 
provide a general description of the pattern’s structure. Ms. Patton also used repeated GPAs to 
shift students’ attention to articulate a complete version of their generalizations.  

A second related pattern, not consistently productive, but which Ms. Patton consistently 
employed, was to immediately follow every student generalization with another generalizing 
promoting action. For example, she followed the productive block described above with another 
GPA to build on that student’s thinking by asking the class to translate the student’s description 
into a generalized formula. These GPAs following a student generalization were productive in 
developing a new generalization when they took the form of a clarifying, connection, or 
justification question and functioned as encouraging reflection, encouraging relating and 
searching, or encouraging justifying. They were not productive when the teacher and students 
focused on different perspectives. Ms. Patton used a connection question, “How could we get it 
to be minus 6 in terms of x?” followed by a rhetorical question, “[x] Plus 2. Will that work?.. 
Distribute….Not quite, right?” as generalizing promoting actions to encourage reflection to 
generalize missing flowers in terms of step number. Yet, because students did not approach the 
problem from a ‘what’s missing’ perspective, they did not readily generalize this strategy.  

Within blocks that we labeled a missed opportunity, we identified a third pattern. This pattern 
involved a failure to use priming and generalizing promoting actions together to build towards a 
conclusion. When an initial PA or GPA failed to produce a student generalization, Ms. Patton 
abandoned the line of questioning. For example, Ms. Patton asked students to apply their 
numeric expressions created for step 4 to the first step of the pattern. Because the general 
structure is not evident in the first step of the pattern, students had trouble applying their 
formulas and because she failed to use generalizing promoting and priming together students 
could not meaningfully respond to this prompt.   

A fourth pattern resulted from a missed opportunity where repeated GPAs produced no 
student generalizations. To scaffold students’ thinking, Ms. Patton employed repeated priming 
before returning to GPAs to produce a student generalization. For example, over a two-minute 
span she used nine GPAs to try to help students develop a generalization for the number of 
missing flowers in the rightmost column. Students were able to recognize that she was looking 
for the missing flowers but were unable to make any general claims about the structure of the 
missing flowers relative to the full picture. Ms. Patton then used PAs to construct and search for 
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relatable situations. Aware of the “tricky” part of representing missing flowers algebraically, she 
primed students by asking for clarification about the missing flowers. She continued priming by 
noting that there were 6, then 4, then 2 missing flowers (working backwards through the steps), 
and primed again to prompt students about the goal “We need to have something minus 6 and we 
need to end up with 2n squared plus 2, right? Cause right now we have…” [teacher draws 
attention to current representation prompting students to complete her sentence]. With this 
groundwork laid she used GPAs of encouraging reflection and justification which prompted 
students to state incorrect generalizations of the 6 missing flowers in step 4 and then to identify 
that those generalizations did not work for other steps of the pattern. A student generalized why 
the expression did not work and then Ms. Patton again primed to build on this idea. Finally, her 
mentor, Mr. Dayton used a connection question as a GPA to help students notice the connection 
between the missing flowers and the height of the rectangle. This lengthy exchange spanned 
three blocks and demonstrates how Ms. Patton’s and Mr. Dayton’s repeated questioning led to 
student generalizations for the blank spot of missing flowers. 

Conclusion 
We set out to determine what teacher moves were most productive in promoting students’ 

generalizing through a close examination of line-by-line student-teacher interactions situated 
within blocks of classroom dialogue with common purposes. It is not surprising that extending 
thinking questions and justifying questions aligned with generalizing promoting actions of 
encouraging extending and encouraging justification, respectively. However, it is surprising that 
these actions did not consistently produce student generalizations. Other questioning types 
(connection, clarification, and strategy) aligned with generalizing promoting and priming actions 
and, when used in particular patterns of promoting and priming, did lead to student-created 
generalizations. Our results confirmed the benefits of using connection questions to relate visual, 
numerical, and algebraic representations and to help students identify and articulate 
generalizations. Clarifying questions often provided an opportunity for students to repeat an 
important point critical to precisely state a generalization. Results also point to the difficulty of 
using justification and concept questions to promote generalizing even when teachers have 
expressly prepared to use these types of questions. Though justifying was used less than we 
expected, when employed it resulted in a generalizing promoting action each time.  

There is not a one-to-one relationship between questioning and generalizing promoting or 
priming. A variety of questioning types served as priming and generalizing promoting actions. 
We expected to see a linear sequence beginning with teacher priming and generalizing 
promoting actions followed by student generalizations. But, in fact, generalizing promoting 
actions did not always lead to student generalizations; patterns leading to student generalizations 
were more complex. Repeated generalizing promoting actions and priming in conjunction with 
generalizing promoting were needed to produce a student generalization. When generalizing 
promoting actions did not produce student generalizations, priming followed by additional 
generalizing promoting was helpful. In this lesson, as with any lesson, questioning occurs in 
response to student contributions making the planning of all questioning challenging. Accepting 
this fact means that for questioning to support students in creating generalizations, teachers must 
possess the ability to respond in the moment with questioning and generalizing promoting moves 
that are likely to be productive. We suggest that this method of examining common pathways 
that lead students to generalize can be applied in other lessons to further develop suggestions for 
teachers as they work to support students as they develop their own generalizations.  
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The purpose of this study was to characterize variations in how teachers enacted an approach to 
ambitious mathematics teaching: “rough draft math.” We also examined teachers’ motivations 
for their enactments. Thirty-two teachers from five states in the U.S.A. were recruited to 
participate in interviews based on recommendations from leaders of book studies focusing on 
this teaching practice. All participants enacted “rough draft math” by intentionally building 
their classroom culture to welcome students’ draft thinking to achieve the goal of promoting 
students’ productive dispositions. However, additional variations in enactments drew attention 
to potential tensions between multiple goals of ambitious mathematics teaching (empowering 
students and learning through revising). Findings suggest insights for supporting teachers’ 
learning to teach ambitiously; findings also contribute to a knowledge base for teaching.  

Keywords: Instructional Activities and Practices; Affect, Emotion, Beliefs, and Attitudes 

Ambitious mathematics teaching, according to Anthony and colleagues (2015) “involves 
skilled ways of eliciting and responding to each and every student in the class so that they learn 
worthwhile mathematics and come to view themselves as competent mathematicians” (p. 46). 
During ambitious mathematics instruction, students engage in discourse to learn mathematics 
and develop positive identities. Additionally, “the motivation to do things differently is as 
important as knowledge and skill to creating consistently ambitious practice” (Lampert et al., 
2013, p. 227). To understand how to support mathematics teachers with learning to enact 
ambitious mathematics instruction, investigating variations in teachers’ efforts to teach 
ambitiously, and their motivations to do so, can provide insight. 

One approach to ambitious mathematics instruction involves inviting students to publicly 
share their in-progress or unfinished thinking, workshopping those ideas, and explicitly inviting 
students to revise their thinking – engaging students in rough draft math (Jansen, 2020; Jansen, 
Cooper, Vascellaro, & Wandless, 2016). Teaching mathematics through inviting drafts and 
revising is a complex activity. To do this work, teachers need facility with eliciting and 
responding to students’ thinking (e.g, Fraivillig et al., 1999). It is not easy to listen to one another 
(teacher-student, student-to-student, student-teacher) in ways that lead to learning for students 
and the teacher during a mathematics lesson (Hintz et al., 2018). Building on students’ thinking 
(Leatham et al., 2015) so that revising takes place is demanding work. It may be challenging in-
the-moment to recognize strengths (Jilk, 2016) in students’ draft thinking and manage classroom 
interactions to position students’ contributions as valuable for their peers’ learning (Wood, 
2013). 

The purpose of this study is to document variations of enactments of an ambitious teaching 
practice, “rough draft math,” to contribute to building a knowledge base for teaching (c.f., 
Hiebert et al., 2002). Researchers can contribute toward building a knowledge base for teaching 
by documenting practitioners’ work in a public, sharable manner so that more educators can 
learn from teaching practice. Given that incorporating rough drafts and revising in math class 
involves a range of practices, from creating a classroom culture where drafts are welcome to 
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explicitly structuring revision experiences that move students’ thinking forward (Jansen, 2020), 
there are many entry points into “rough draft math” that can be documented and understood.  
Variations in Enactments and Teachers’ Motivations 

Ambitious teaching practices have interdependent but different goals. Consider scientific 
inquiry: this teaching practice has multiple goals, such as making sense of phenomena 
(constructing claims or explanations), articulating understandings (presenting arguments), and 
persuading others (critiquing, evaluating, and defending arguments) (Berland & Reiser, 2011). 
Similarly, “rough draft math” has multiple goals: making sense of mathematics, articulating 
understandings (drafting ideas), improving one’s understanding (revising drafts), and promoting 
students’ agency so that they see themselves as capable of knowing and doing mathematics. 
These multiple goals illustrate complexity and provide opportunities for tensions. 

Berland and Reiser (2011) discuss that a complex and ambitious teaching practice, such as 
scientific inquiry, can vary in enactment in different ways, in part due to these multiple goals. 
Teachers could emphasize some goals more than others. Some goals might be adopted 
selectively, and other goals might be set aside. Efforts to achieve certain goals might take place 
more consistently. In scientific inquiry, this might look like one classroom of students learning to 
competitively persuade each other while another classroom of students learns to seek to 
understand one another’s thinking (Berland, 2011). What do these variations of enactment look 
like in mathematics classrooms where teachers incorporate “rough draft math” and why might 
they occur? 

Motivation can be understood through multiple perspectives, including goal-orientation 
theory and the role of interest. Goal orientation theory attempts to explain how and why people 
try to reach certain objectives (Kaplan & Maehr, 2006). Motivation can look like meaningful 
engagement with a practice, and such engagement develops, in part, through cultivating interest 
(Renninger & Hidi, 2015). Teachers with greater interest are likely to continue to enact a practice 
about which they have learned (Ginsberg & Wlodkowski, 2019), particularly if they see the 
practice as positively meeting the needs of their students (Appova & Arbaugh, 2017). However, 
their enactments could differ depending on the goals they seek to achieve. 

In this study, we seek to understand the enactments of teachers who have expressed an 
interest in enacting “rough draft math,” as well as the goals they sought to achieve when enacting 
it. This study addresses the following research questions: Among teachers with expressed 
interests in enacting “rough draft math,” how do teachers define “rough draft math”? How do 
these teachers’ self-reported enactments of “rough draft math” vary by their motivations? 

Methods 
Data Collection 

We interviewed 32 mathematics teachers from five states in the U.S.A. Teachers were 
recruited for this study among those who had participated in book study groups to discuss Rough 
Draft Math (Jansen, 2020). Participating teachers were recommended by mathematics coaches or 
professional development leaders who had facilitated a book study. Additional participants were 
recruited through Twitter and invited to participate if they had read the book on their own and 
were attempting to enact relevant instructional practices in their classrooms. Teachers in this 
sample taught in grades K-12, from first grade through AP Calculus. 

Prior to the interview, participating teachers were asked to send, via email, a digital artifact 
that provided an example of how they incorporated rough drafts and revising into their 
instruction. The artifact provided context for participants’ descriptions of their enactments. 
Examples of artifacts included the following: web links to Desmos activities, slide decks used 
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during lessons, handouts of mathematics tasks, sample student work that demonstrated students’ 
initial drafts and revisions of their thinking, videos of classroom activities, assessments with 
directions, and photographs of students collaborating. 

Interviews lasted between 35 and 60 minutes, and all interviews were conducted via video 
call, one-on-one. Interview questions included the following: If you were to tell a colleague 
about “rough draft math,” how would you explain it to them? What can you tell me about this 
artifact? Tell me the story of this artifact. Why did you decide to do this in your classroom? 
What happened in your classroom? How is this artifact an example of “rough draft math”? 
Participants chose their own pseudonyms. All interviews were audio recorded and transcribed.  
Data Analysis 

Data analysis was conducted by both authors. In our first phase of analysis, we wrote analytic 
memos for each participant (Saldaña, 2013). In each memo, we described our conjectures for that 
teachers’ thinking based on our initial listening to the interview and editing of the transcript. For 
the next phase of analysis, we used an exploratory process to inductively create descriptive codes 
(Saldaña, 2013) based on teachers’ talk. We then created descriptive codes for two categories: (a) 
motivations to enact (or functions for) “rough draft math” and (b) enactments (forms) of “rough 
draft math.” We identified the motivations that teachers described in relation to the artifact they 
shared. Although teachers described other ways of enacting “rough draft math” in their practice, 
in addition to the artifact, we assumed that the artifact represented an important part of their 
teaching practice, from their perspective. The second level of analysis involved frequency 
coding. We assessed whether, among the motivations reported for enacting instruction aligned 
with the shared artifact, any of the motivations were repeated throughout the interview and how 
often they were repeated. Repetition of an idea signals a level of importance to the speaker or an 
effort to emphasize an idea in their spoken talk (Tannen, 1989). 

Results 
Below, we illustrate three types of motivations that teachers in this sample expressed as 

functions for enacting “rough draft math,” along with the enactments they described as forms for 
achieving these motivations. However, before we describe these motivations and enactments, we 
share teachers’ definitions for “rough draft math.” These definitions illustrate that teachers could 
think about rough drafting and revising in mathematics in a variety of ways, which then implies 
that they could have different motivations to enact “rough draft math.” 
Rough Draft Math: Teachers’ Definitions 

When teachers explained “rough draft math,” they described components such as, (a) 
eliciting initial drafts of students’ thinking, (b) providing students with opportunities to revise 
their thinking, often after some form of (c) collaboration with peers, and then (d) inviting 
students to reflect on their growth in their thinking and understanding. When asked to explain 
what “rough draft math” meant to a colleague, Ms. Dougherty said,  

…it’s simply your first draft of thinking, if you’re just initially starting out your thinking. 
You haven’t really shared those thoughts with anybody. You haven’t revised any of your 
thinking yet. It’s just your first draft… then from there we build on that, and we use our 
rough draft to help build that understanding to make it stronger and understand where we 
came from along the way. 

In Ms. Dougherty’s explanation, she addressed all four components, highlighting the process of 
first drafts in students’ thinking. She alluded to revising when she spoke about needing to “build” 
on the first draft “to make it stronger.” Her explanation included an implicit reference to 
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collective, collaborative work when she shifted to using a “we” pronoun. She suggested 
incorporating reflection on growth in thinking by saying, “understand where we came from along 
the way.” 

However, not every teacher mentioned all four components in their definitions, which 
suggests that, among some teachers, a subset of components of “rough draft math” resonated 
more than others. Ms. Briggs emphasized the process of iteratively drafting and collaborating in 
her explanation when she said, “I would say that it's thinking of math of less like a finished 
product and more like something you’re continuously working on together.” 
Ms. Kakkar emphasized the process of revising in her explanation. 

For me, when I’ve heard about rough draft and when we had worked with [math coach] and 
talked about it, the first thought, to be honest, that was, yes, it should be in math. The rough 
draft particularly did not come into my mind at first, but since you know how in ELA 
teachers talk … this makes perfect sense in math, too… you do trials and errors and 
estimation and all, seeing the patterns, a couple of factors combined together to actually 
reach out to an answer… It has to be rough draft. It has to be multiple trials. It has to be 
multiple revising through your work rather than just, okay, here is my answer. 

Mr. Vandelay highlighted reflecting on growth and humanizing mathematics learning in his 
explanation. 

I’d say it’s a way of humanizing the students’ mathematical experience. It gets away from a 
traditional feeling that math is about being good, getting right answers, and having your 
value either internally or affirmed from, without coming from a place of feeling like those are 
the things that matter. Whereas the true mathematical experience is always a work in 
progress. It’s always about developing thinking and we learn so much from our mistakes. We 
learn so much from thought processes that lead the wrong direction. And so it's really a sense 
of honoring what all students should be having as an everyday experience learning 
mathematics. 

In common across these teachers’ descriptions, whether they expressed four components or not, 
was that it made sense to them to treat mathematics learning as a gradual, iterative process of 
drafting and revising ideas, and they expressed value for drafting and revising while learning and 
doing mathematics in school. These teachers’ talk illustrates what drafting and revising meant to 
them, in their mathematics classrooms, and some teachers put relatively stronger emphases on 
different components of “rough draft math.” 
Motivations for and Enactments of “Rough Draft Math” 

Teachers reported multiple motivations for enacting “rough draft math,” as represented in 
their artifacts. The first motivation below, foster productive dispositions, was reported in some 
manner by every teacher. However, the other two motivations (cultivate learning through 
revising and reflecting; empower students) were not reported by every teacher. The table below 
illustrates differences in reported enactments that appeared to be aligned with specific 
motivations for enacting “rough draft math.” 

 
Table 1: Motivations for and Enactments of “Rough Draft Math” 

Motivation Enactment 
Foster productive dispositions 

 Develop confidence in students 
Intentionally build a classroom culture 

where students’ ideas are valued at any stage  
 Labeling talk as “rough drafts” 
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 Increase students’ participation and 
effort 

 Safety for intellectual risk taking 

 Rights of Learners 
 Protocols for discussion 
 Anonymous student sharing 
 Multiple revision experiences in class 

Cultivate learning through revising and 
reflecting 

 Normalize mistakes in math 
 Develop metacognition 

Explicitly incorporate revising into 
mathematics instruction 

 Revision routines, such as test 
corrections 

 Reflection on revising 
Empower students 

 Shift authority to students 
 Disrupt school structures that control 

students 

Decenter teachers’ authority 
 Student self-assessment 
 Peer collaboration to learn 

 
Motivation: Foster Productive Dispositions. Every participant reported an overarching 

motivation to enact rough drafting in math class: to foster productive dispositions among 
students. The most frequently associated enactment with this motivation was teachers’ efforts to 
intentionally build a classroom culture where students’ ideas were welcome and valued at any 
stage of their thinking. Teachers often mentioned more than one motivation for enacting rough 
draft math, but this was the motivation and associated enactment shared by all participants. The 
function or motivation of fostering productive dispositions had a range of subdimensions: 
develop confidence in students, create safe experiences to encourage intellectual risk taking and 
collaboration, and increase students’ participation and effort in math class.  

One of the artifacts Ms. Dougherty shared was a set of pictures of her middle grades students 
collaborating – standing together at white boards on the wall working on math and sitting 
together on the floor working in a group, and when she described her motivations for 
collaborative work, Ms. Dougherty talked about building classroom culture. Ms. Dougherty 
described that she encouraged students to verbally label their thinking as being in a rough draft 
stage when they shared aloud, so that students could feel more confident to participate without 
being judged for imperfect or incorrect thinking. 

I definitely see the language that my students use. Um, they do a lot of, they’ll use the 
language of rough draft math. So, very often they’ll raise their hand or start their thinking 
saying, well, I’m not sure yet, but this is what I’m thinking right now. And they have a very 
comfortable space and, and I commend them. So, at the beginning of the year, I do a lot of 
like that [by saying], “Awesome, rough draft math talking, thank you, starting out your 
thinking that way. Now we all know that we're going to give you the space to share and 
revise if you need to.” Um, I think they look for revision possibilities rather than thinking of 
their math as a final step. Um, so they're very aware of the idea that we can look at what 
others are thinking, um, and constantly revise. So I think that that's been really beneficial… I 
think I am making moves toward getting their confidence to be stronger in mathematics. I 
don't just mean confidence in ability as much as just confidence in sharing their thinking, you 
know, just, just get something out there. Like everybody can share something, you know? 
Ms. Dougherty reported that welcoming drafts and normalizing revising in mathematics class 

supported students’ development of their confidence so that more students would participate. 
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To demonstrate efforts to build culture, Ms. Briggs’s artifact included a photograph of “rights 
of learners” (Kalinec-Craig, 2017) generated by her first-grade students, such as “I have the right 
to be cared for and care for others.” She shared that her motivation for promoting these rights 
was to support students’ safety and willingness to participate. According to Ms. Briggs, “…when 
students are talking, they have that space to work through some of their disequilibrium. … 
students feel psychologically safe to make those mistakes and to have confusion around a topic.” 
She also said that it was important to her to be “really instilling that love of math and, um, 
making kids feel like that they were experts in math is going to have a long-term impact on 
them.” She used “rights of learners” to build a classroom culture to support her students. 

Ms. Kakkar shared an artifact of a sample of students’ revised work, and she also said that 
she wanted to increase students’ risk taking and promote participation. When describing her 
artifact, she said that she encouraged revising by using a protocol – learning to listen / listen to 
learn (Wolfe, 2021) – to teach students to hear and learn from each other. She also incorporated 
anonymous sharing of students’ solutions during whole class discussion for workshopping and 
revising. Ms. Kakkar said that she enacted teaching in these ways so that students could “see 
their progression and how could they realize it, how much it is important to, to really build upon 
each other’s ideas?” She also said that she wanted “to make students comfortable.” 

Ms. Burnett provided a short video of one of her mathematics lessons, edited into segments 
to illustrate an in-class, multiple revision experience, and she expressed that she wanted to 
encourage students to take risks, to build students’ confidence, and increase their participation. 
She said that she wanted to share this video to illustrate what a “rough draft math” lesson looked 
like in her class: students worked in groups on a challenging task, she purposefully selected 
student strategies to be shared to the whole class while peers asked one another questions about 
the work, students would then revisit and revise their work in groups, and then share out again. 
Ms. Burnett said, “it takes the pressure off the kids” to welcome rough draft thinking. She said 
that, regarding a success that she has had,  

Definitely confidence building. And the students are not afraid to make mistakes… I would 
have [in the past] some kids just sit and do nothing. They would just hold their pencil. And I 
knew it was like a frozen fear of, I don’t wanna make a mistake. It’s [rough draft math] taken 
that away. Those kids are just like, let’s do this. 
These enactments were motivated by teachers’ drives to foster productive dispositions among 

students and to support students with participating to learn mathematics through discourse. 
Motivation: Cultivate Learning through Revising and Reflecting. Although every teacher 

described a motivation to promote productive dispositions, not every teacher described using 
rough drafting to explicitly cultivate learning through revising. Ms. Apple’s artifact was an 
example of a revising routine and protocol that she used for students to correct their tests in AP 
Calculus AB, and she said that she wanted to promote growth in students’ thinking and 
awareness of that growth. 

I like the metacognition that’s involved in the protocol. So really thinking about their 
thinking and thinking about where their mistake, misunderstanding or, misconception or 
misunderstanding [was]. I think of all three of those things as different, different ways to 
think about the problem and where it was wrong in their thought process. Because sometimes 
they just make a silly mistake. Sometimes they don’t understand the concept and they need to 
go back and revise the way they think about a problem like that. 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1785



Ms. Green also shared an activity for chapter test revisions and reflection activity and a 
“quicker rough draft” process for a routine for in the moment revisions. 

I do it on the test, the final draft thinking on the test revisions… the revision part is when I 
feel like a topic has been solidified… then the quicker rough draft would be for those 
moments where we’re in a new learning. … I use it [rough draft math] in different ways, 
depending on what I'm working on. So are we working [on] solidifying an idea? Are we 
working on learning a new idea for the first time? 
Both of Ms. Green’s artifacts illustrated two revision experiences, but they had different 

goals: working toward solidifying thinking (test revisions) or developing new ideas (discussing 
and revising drafts). Teachers like Ms. Apple and Ms. Green spoke about reaching a “final 
draft.” 

Motivation: Empower Students. A subset of teachers described that they wanted to enact 
rough draft math in their teaching to promote equity through empowering students. Mr. 
Vandelay shared an artifact that documenting requirements for (and purpose of) a student 
portfolio for their self-assessment, which was his primary grading practice; he said that he 
incorporated self-assessment to transfer authority to students by dismantling traditional school 
grading practices. According to Mr. Vandelay,   

I personally have felt since I read Rough Draft Math, that one of the things that really does is 
honors the fact that we need to rethink the way we’re evaluating students, so that what we 
value in terms of student thinking as a process isn’t undermined by grading practices … 
especially with students who have low status or perceived low status or low mathematical 
identities, they may have come through in the high school setting case years of feeling like 
they’re not good at math, they can’t do it. They’ve never been successful… the greater idea is 
sort of building on identity. And the social sense is like, why do we believe the things about 
ourselves as humans, as math students as all those things, and where do those beliefs come 
from, whose voices have formed those beliefs and who's been neglected? 
Mr. Vandelay’s reflection on his assessment practices illustrate the value of empowering 

students to evaluate themselves and illustrate his questioning of evaluation systems in school. 
In addition to photograph’s Ms. Dougherty shared another artifact, which was a Desmos 

activity for engaging students in self-reflection of their learning and self-assessment to transfer 
autonomy and agency to her students. 

… I’ve been working toward a gradeless classroom, and I know that that’s sort of a whole 
different topic, but, for me, the gradeless classroom is really part of rough draft math, 
because I really want the students to have that idea of judgment being removed from their 
thinking. So, each week I have the students go through a reflection... it’s this constant 
balance between letting them know like, “Hey, yeah, I am in the room, and I am the teacher, 
but you have control of your learning. Own it, make it what it is.” 
Mr. Vandelay and Ms. Dougherty’s enactments and motivations illustrate that assessments 

are a type of teaching practice that can be enacted in different ways for different reasons. If we 
contrast their assessment practice of student self-assessment with the activity of test corrections 
shared by Ms. Green and Ms. Apple, both sets of teachers enacted rough draft mathematics, but 
Ms. Green and Ms. Apple wanted students to reach perhaps an externally determined learning 
destination, while Mr. Vandelay and Ms. Dougherty wanted to empower their students. 
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Discussion 
As Berland and Reiser (2011) discussed, variations in teachers’ enactments of an ambitious 

teaching practice can be understood as variations in relative emphasis of different components of 
a practice, perhaps emphasizing different goals. One difference between enactments of “rough 
draft math” was indicated by participants’ talk about assessments. Some teachers reported that 
they engaged their students in test revisions to help their students achieve a “final draft” 
understanding through revising errors. In contrast, other teachers said that they engaged their 
students in self-assessment to promote students’ agency and autonomy. Tensions between goals 
are possible, such as a goal of empowering students and a goal of promoting learning through 
revising. Some teachers may intend for students to revise to achieve a final draft, or a pre-
determined understanding, which could reflect either the discipline of mathematics or the teacher 
as an authority. Other teachers may want students to have a voice in not only whether they learn, 
but what and how much they learn, as a part of their efforts to empower students. 

Future research could investigate how teachers can cultivate interest in and facility with 
enacting “rough draft math.” We focused this study on teachers who reported a high level of 
interest in enacting “rough draft math.” An analysis of the goals that teachers reported for 
enacting “rough draft math” can provide promise in generating greater uptake of the practices, as 
teachers could be encouraged to enact “rough draft math” if they gain awareness of the range of 
goals they can achieve. A contribution of this study is that understanding how these teachers 
enacted “rough draft math” provided insight for starting points teachers might take to learn to 
enact ambitious teaching; teachers could consider the goals they want to achieve and learn about 
possible enactments that could help them achieve these goals. 

Additionally, future research could observe enactments of “rough draft math,” in contrast to 
this study, which focused on teachers’ self-reports. Observations of enactments would allow for 
characterizing collective practices of drafting and revising, which could provide insight into 
collective understandings generated and ways that students engage and participate. However, 
studying teachers’ self-reports provides insights into teachers’ goals through their voices as well 
as which enactments they value in pursuit of these goals. 

A contribution of this study is the illustration of how ambitious mathematics teaching can 
vary in its enactments. Although all participating teachers reported a goal of promoting students’ 
dispositions and enactments by encouraging a culture of drafting, they varied in their emphasis 
of goals to (a) learn through revising and reflecting or (b) to empower students. Additionally, 
results illustrated how varying goals for enacting ambitious mathematics teaching could 
potentially be in tension. These results contribute to building a knowledge base for how 
mathematics teachers can put “rough draft math” into practice. 
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As a field, we have a limited understanding of what teachers do, what motivates them, and how 
they learn (Kennedy, 2016). Here, we develop a grounded framework of inquiry-based teaching 
in mathematics classrooms by beginning with primary evidence of teachers teaching. We seek to 
articulate an evidence-based account of teachers’ functional (rather than aspirational) concerns 
so that those who support teachers — such as curriculum writers, professional learning 
specialists, coaches, and teacher educators — can ground their support in the realities of the 
work of teaching. Our research question is: “What are the functional concerns that shape 
teachers’ decision-making in-the-moments of teaching?”. 

Keywords: Curriculum, Instructional Activities and Practices, Instructional Vision, Professional 
Development.  

Vignette:  
At the non-profit Mathematics Education Program (MEP, pseudonym), the curriculum 

writing and professional learning teams frequently debate the question, “Where does the writing 
stop and the professional learning begin?” This is a problem of practice for them. When the 
writing team designs curricular features that are meant to support equitable outcomes for 
students, but the professional-learning team sees these curricular features being subverted in 
practice such that instruction does not actually change, then who is responsible for supporting 
teachers to enact the curriculum differently? How can these curriculum writing and professional 
learning teams bridge the ideals designed into the curriculum with supporting teachers to enact 
those ideals? 

The constraints teachers face in their local and institutional contexts of school as a workplace 
make answering these questions a perpetual challenge not just for MEP but for mathematics 
teacher educators, curriculum writers, professional learning specialists, coaches, and teachers 
everywhere. This is not surprising given the well-documented literature on intended versus 
enacted curriculum (e.g., Remillard 2005, 2014; Stein et al., 2007). Teachers have a lot to 
manage at multiple scales: over the span of a course, a unit, a lesson, and even within small 
group interactions (Ball & Cohen, 1996; Cohen, 2011; Ehrenfeld & Horn, 2020). The decisions 
that teachers make at each of these scales are consequential for students’ learning. These 
decisions are big and small, conscious and unconscious. Surprisingly, these decisions often do 
not align with teachers’ espoused beliefs about what good teaching looks like (Fang, 1996). This 
presents a challenge for those designing curricula and professional learning for teachers: Even if 
teachers know what equitable and ambitious instruction looks like and describe their practice as 
aligning with their beliefs about equitable and ambitious instruction, this alignment too often is 
not evidenced in observation. The example from MEP begins to make more sense. The problem 
of supporting teachers to shift their practices is not only a perpetual problem faced by MEP but is 
endemic to educational change.  

To support teachers in making different decisions, researchers have developed reflection 
tools for use in professional learning and teacher education. For example, the Teaching for 
Robust Understanding (TRU) framework helps teachers think about dimensions of classroom 
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activities that might serve as levers for change, helping them to be more reflective about their 
practice, thus more intentional, and, hopefully, more equitable in their decision-making 
(Schoenfeld, 2019). Other resources for teachers’ decision-making are action-based, such as 
Smith and Stein’s (2008) description of 5 Practices for orchestrating whole class mathematical 
discussions. Such tools are most helpful for instructional decisions made in the planning stages 
of instruction. In-the-moment decisions are much more difficult to influence because of the 
complexity and dynamism of classroom ecologies (Pfister et al., 2015). Likely because 
frameworks like TRU and the 5 Practices provide aspirational visions of mathematics instruction 
that focus on ideal models, their descriptions do not quite capture the complexity of decision-
making in teaching mathematics. The simplicity of aspirational frameworks is useful for 
supporting teachers to try new things; yet, teachers still struggle with student-centered teaching.  

Currently, our theories of and designs for teacher learning are based more on aspirational, 
ideal types than on nuanced, evidence-based understandings of what teachers do, what motivates 
them, and how they learn (Kennedy, 2016). Here, we develop a grounded framework of inquiry-
based teaching in mathematics classrooms by beginning with primary evidence of teachers 
teaching. We seek to articulate an evidence-based account of teachers’ functional—rather than 
aspirational—concerns so that those who support teachers, such as curriculum writers, 
professional learning specialists, coaches, and teacher educators can ground their support for 
teachers in the realities of the work of teaching. Our research question is, What are the functional 
concerns that shape teachers’ decision-making in-the-moments of teaching?.  

Conceptual Framework: Functional Concerns as Lived Pedagogical Responsibility 
Recently, teachers’ decision-making has been described through a tripartite model of 

pedagogical judgment (Horn, 2020), including dimensions of pedagogical action, pedagogical 
reasoning, and pedagogical responsibility. Pedagogical action describes the choices teachers 
make, whether intentional or not. Pedagogical reasoning is the logic behind these actions—the 
same action may be done for many different reasons. Pedagogical responsibility involves 
teachers’ sense of obligations to ethical principles or to situational constraints such as mandates 
from administration. Together, these constitute the pedagogical judgment that informs teachers’ 
decision-making.  

Teachers’ functional concerns involve a practical sense of pedagogical responsibility. 
Functional concerns are pragmatic in that they focus on elements of instruction that are within 
teachers’ control. For example, teachers might feel an obligation to support learners’ retention 
and transfer of content, but they focus their attention—their concern—in-the-moments of 
teaching on creating coherent and relevant mathematics experiences. In this way, learners’ 
retention and transfer may be goals that emerge from teachers’ sense of pedagogical 
responsibility, as distinguished from the phenomenon of interest here: teachers’ concerns.  

Teachers’ functional concerns are pragmatic and grounded in teachers’ lived experience of 
their work. There is no widely accepted theory or characterization of what teaching is or should 
be — teachers can view themselves as managers, mediators, actors, salespeople, role models, 
empowerers, and more (Kennedy, 2016). This is likely shaped by teachers’ identity and 
experiences outside of teaching but is also likely shaped by local school and department cultures, 
as well as by the curriculum used.  

As noted in the opening vignette and evidenced through mathematics education research 
(Remillard 2005, 2014), curriculum shapes but does not determine teacher’s pedagogical 
activities. Depending on teachers’ conceptual understanding of their work, it is quite possible to 
use a curriculum intended for inquiry in ways that reduce cognitive demand and short circuit 
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opportunities for productive struggle. At the same time, curriculum likely does influence 
teachers’ conceptual understanding of their work, as curriculum is one of the factors that shape 
school as a workplace (Kennedy, 2010; Jackson, 1968; Moore Johnson et al., 2012). For 
example, if the local curriculum is designed to get students to produce quick and correct answers 
on multiple-choice items, teachers’ conceptual understanding of their work is likely shaped in 
ways that are unproductive for student learning. 

Theoretical Framework: Conceptual Practices constitute Functional Concerns 
Teachers’ work is composed not just of a series of pedagogical actions but of conceptual 

practices — pedagogical actions and the meaning behind them. Examples of conceptual practices 
include building on student thinking, seeking correct answers, and offering mathematical choice.  

From a situative perspective of learning, concepts are not ideas in a person’s head, they are 
conceptual practices — “recurring patterns of purposeful activity that are distributed over people 
and technologies” (Hall & Horn, 2012, p. 241) in particular practices. Practices, simplistically 
explained, are activities and routines carried out for a particular taken-as-shared purpose with 
taken-as-shared meanings in a particular community (Lave & Wenger, 1991) and learning is “an 
active process of distributing cognition over people and things” (Hall & Horn, 2012, p. 214). 
Thus, conceptual practices are inextricably connected to the environments in which they take 
place. In teaching, conceptual practices are tied to curricula, local and national educational 
policies, departmental cultures, communities served, and more. Still, as mid-level concepts in 
teaching, teachers’ conceptual practices are “more general than a particular set of actions taken 
in the specific context” with implications for learning that are “better instantiated (and thus more 
testable) than those of the more familiar Theories of education and psychology” (Lehrer & 
Schauble, 2004, p. 637-638).   

Figure 1 offers a visualization of our conceptualization of conceptual practices as mid-level 
concepts in teaching. Pedagogical responsibility (part of Horn’s tripartite of pedagogical 
judgment) is depicted as being composed of both functional and aspirational concerns, though 
the boundary between them is perhaps fuzzy and overlapping. Functional concerns — the topic 
of this manuscript — are composed of related, distinct, yet minimally overlapping conceptual 
practices. Each conceptual practice is composed of multiple teacher actions, represented by star 
shapes. The same teacher action may appear in multiple conceptual practices. Teacher actions 
contribute to particular conceptual practices based on the context in which the action occurs: It 
depends on the meaning behind the action.  

 

 
Figure 1. Illustration of the relationship between pedagogical responsibility, functional 
concerns, conceptual practices, and teaching actions, with stars representing teacher 

actions.  
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Research Design 
The mathematics curriculum used by teachers in this study was an inquiry-based support 

course from MEP that foregrounded student exploration, sensemaking, and relationship building. 
The course was ungraded and emphasized big ideas in algebra, leveraging technology to support 
student collaboration on complex mathematical ideas. Because inquiry-based support courses are 
the exception rather than the norm, the findings of this analysis should contribute to a better 
understanding of what it means to teach in such courses, and thus also support more nuanced 
understandings of how to support teacher learning.  

Studying teachers’ functional concerns in an inquiry-based support course is timely. In a 
2019 ProQuest Social Sciences Premium Collection database search for “math*” AND 
“intervention” or “double dose” AND “inquiry” or “reform”, only 177 peer reviewed articles in 
scholarly mathematics education journals were found. Of those, only 20 focused on middle and 
high school; and of those, only two contained research relevant to the current study on teachers’ 
in-the-moment work of teaching (Johnson, 2001; Marshall et al., 2011).1 In addition, because this 
is an inquiry course, the findings should also be relevant to teachers not in support courses but 
teaching heterogeneous (i.e., mixed-ability) classrooms.  
Curriculum 

The curriculum context for the teachers in this study was the Big Ideas (pseudonym) 
curriculum from MEP. It was designed based on a developing theory of action grounded in the 
assumptions of equitable, ambitious mathematics instruction: that all students can engage 
meaningfully in mathematics in ways that are personally and socially empowering, and that such 
meaningful engagement begins with enjoyable mathematical experiences in which students can 
exercise high levels of personal agency. Given this, the features of Big Ideas target four 
anticipated student outcomes: (1) increased engagement in and communication about 
mathematical sensemaking, (2) positive dispositions towards mathematics, (3) learning grade-
level mathematics, and (4) stronger teacher-student relationships. Two lessons were observed in 
this study. Lesson 3.2 — WHEN WILL IT STOP? Representing Data with a Graph — required 
students to physically experiment with dropping a ball and recording their observations in 
Desmos. Lesson 4.11 — CAN YOU STAY ON THE PATH? Lines of Best Fit — required 
students to explore by plotting lines to stay in certain uncolored regions of a graph in Desmos. 
Participants 

We collected data from six teachers: Ms. Brewers, Ms. Ennings, Ms. Holder, Ms. Padshaw, 
Ms. Shea, and Ms. Walker (pseudonyms). These teachers taught in different regions across the 
United States in schools with different departmental cultures and serving different kinds of 
communities. The teachers’ years of experience spanned from three years to twenty years. All 
teachers taught grade-level mathematics courses in addition to teaching Big Ideas. 
Data Collection 

Data collection aimed to capture teachers’ talk, gestures, and movement through the 
classroom. Data include Swivl video-records of observations of six teachers from different 
locations across the United States teaching the same two lessons described above. Each lesson 

                                                 
1 The other 18 articles returned in the search fell into categories of identifying the effectiveness of intervention (10) 
and the impact of policy (1), descriptions of interventions (2), the development of student thinking (1) and 
mathematical interest (1), historical overviews (1), the impact of course trajectories on career paths (1), and a 
discussion of methods of randomized trials (1).  
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was followed by a video-recorded debrief with a curriculum coach. These debriefs focused on 
teachers reflecting on how the lesson went, with coaches acting as thought partners rather than 
advisors. In addition, teacher interviews were conducted at the beginning and end of the year, but 
these data are not included in this analysis as interview data tended to illuminate teachers’ 
aspirational concerns.   
Data Analysis 

To understand the work of teaching from teachers’ perspectives, we used grounded theory’s 
constant-comparative methods (Strauss & Corbin, 1990) and made close-to-data inferences about 
teachers’ functional concerns in inquiry-based mathematics classrooms by looking at what was 
stable and variant across six teachers’ enactments of and reflections on two of the same lessons.  

Phase 1: Parsing the data. In the first round of analysis, we created time-indexed content 
logs (Derry et al., 2010) for classroom videos and teacher debriefs with their coaches. Then, we 
looked for recurring teacher actions — for example, circulating with and looking at the teacher’s 
computer while talking to student groups, walking away from student groups when they have 
stated a correct answer (sometimes without saying anything), referencing a lesson plan, or 
reminding students of particular participation norms. We also attended to outcomes of these 
actions that seemed to satisfy teachers, allowing us to infer meaning behind the actions. We 
noted, for example, the ways in which teachers organized and set norms for participation 
structures, cared for relationships between themselves and students and between students, and 
held themselves and students accountable for pacing.  

Phase 2: Narrating emergent themes. From the content logs of both debriefs and classroom 
videos, we generated descriptive, narrative memos (e.g., Cobb & Whitenack,1996; Powell et al., 
2003) organized by themes for each lesson for each teacher. These themes (such as emphasis on 
individual students’ math history and modeling curiosity) were not determined a priori, but rather 
were emergent from and closely tied to what became salient as we parsed each teacher’s lessons 
and debriefs. Sometimes this process required going back to the video record to clarify or gain 
more nuance on a teacher’s instruction.  

Phase 3: Identifying conceptual practices. After identifying themes in each lesson for each 
teacher, the themes were compared and collapsed into broad descriptive categories (Strauss & 
Corbin, 1990). Collapsing qualitatively different kinds of pedagogical activities happening across 
the teachers allows their common conceptual practices of teaching that can be leveraged for more 
ecologically valid forms of professional development. We then looked through the content coded 
under each emergent conceptual practice and engaged in a process of defining each conceptual 
practice, selecting a spectrum of examples for each. This process allowed us to see how 
conceptual practices were both unique and related. 

Collapsing conceptual practices into functional concerns. The Phase 3 examination of the 
distinctness of each conceptual practice resulted in four clusters of conceptual practices, with 
each cluster constituting a functional concern in teaching inquiry-based mathematics. 

In our constant comparative analysis of six teachers teaching the same two lessons at 
different points in the year, we identified 15 conceptual practices. These 15 conceptual practices 
(codes) represent the daily work of teaching; they are inferred meanings of what teachers do and 
say (activities, not actions). While distinct, these conceptual practices are also related to each 
other, clustering together to support four overarching concepts/concerns in teaching inquiry-
based mathematics.  
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Findings 
The six teachers in this study came from different contexts but shared the same curriculum. 

We found that four functional concerns adequately described many of the different decisions 
teachers made across their classrooms. The overarching functional concerns are all mathematics 
teaching specific, but also differently emphasize concerns about mathematics or students. The 
four functional concerns were identified by examining clusters of codes that represented 15 
emergently identified conceptual practices (Table 1). Most of these conceptual practices play 
into multiple functional concerns, including across more strongly mathematics- and student-
centered concerns. The conceptual practices are located under the functional concern they most 
heavily constituted in the data, not the only functional concern they constituted.  

 
Table 1. Teachers’ functional concerns in the moments of teaching and the conceptual 

practices that most heavily constitute them 
Functional Concerns Key Conceptual Practices 

Mathematical Correctness and 
Completeness 
How can I make sure that student work 
is accurate, thorough, and finished?  

● Seeking final answers on a task or sub-task 
● Navigating student uncertainty 
● Assessing student progress 
● Redirecting students' mathematical thinking 
● Building on students' mathematical thinking 

Mathematical Relevance and Coherence 
How can I make sure that mathematics 
is meaningfully connected to students’ 
prior knowledge and lives?  

● Generalizing mathematical strategies 
● Connecting mathematics 
● Connecting mathematics to everyday life 
● Offering mathematical choices 

Student Motivation 
How can I make sure that students are 
interested enough to get started and to 
persevere through uncertainty and 
confusion? 

● Offering non-mathematical choices 
● Attending to student confidence (high inference) 
● Caring for relationships (high inference) 

Student Access 
How can I make sure that students can 
get started on the task and that struggle 
stays productive? 

● Unpacking the task 
● Setting participation norms 
● Organizing materials and student bodies 

 
An abbreviated illustration of the functional concerns 

Importantly, these functional concerns are neither positive nor negative. They look very 
different in their manifestations across the six teachers in our study. Table 2 provides example 
teaching profiles to illustrate how each functional concern looked different across the six 
teachers of this study. The table presents one conceptual practice for each teacher under each 
functional concern. Looking down each column provides a glimpse into the teachers’ practice 
and looking across the rows provides a glimpse into the diversity with how conceptual practices 
manifest as teachers navigate their functional concerns.  
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Table 2. Teacher Profiles along the four functional concerns.  
Brewer Ennings* Holder* Padshaw Shea Walker* 

Mathematical Correctness and Completeness  

Presses Ss** 
to build on 
their thinking 
by asking 
questions  

Asks Ss 
questions but 
does not press 
for 
explanation 

“Plays” a hot-
and -cold 
game to get 
Ss to the 
correct 
answer 

Prioritizes 
sensemaking 
over getting 
through the 
lesson and so 
rarely gets to 
closure  

Accepts 
incorrect 
answers as 
correct and 
supplements 
with extra 
practice  

Asks Ss to 
share 
strategies in a 
whole class 
but does not 
ask for 
connections 

Mathematical Relevance and Coherence  

Asks Ss what 
they already 
know about 
the lesson’s 
topic to 
connect to 
their prior 
learning 

No evidence 
of 
connections 
across 
mathematics 
or daily life 

References 
prior lessons 
to elicit 
transfer on 
discrete 
problem steps 

Asks Ss what 
they already 
know about 
the lesson’s 
topic to open 
up a pre-
lesson 

Creates 
spontaneous 
mini lessons 
to 
mathematize 
students’ 
lives  

Tells Ss about 
connections 
to prior 
lessons by 
mentioning 
the lessons 

Student Motivation  

Expresses 
interest in Ss’ 
mathematical 
intuitions 

Expresses 
care for Ss 
through kind 
voice and 
personal 
greetings to 
students 

Creates sense 
of urgency by 
using Desmos 
teacher 
dashboard 
during 
circulation  

Highlights 
Ss’ 
mathematical 
ideas and 
mistakes as 
interesting 
and valuable 

Offers non-
mathematical 
choices such 
as whether 
the lights 
should be on 
or off 

Slows pacing 
to account for 
a perceived 
mismatch 
between 
ability and 
rigor 

Student Access 

Explicitly 
reminds small 
groups of 
how to 
collaborate 
during every 
interaction  

Gives 
students 
participation 
directions at 
the beginning 
of the task 

Tells students 
to collaborate 
and addresses 
individual 
students 

Pre-teaches 
mathematical 
ideas and 
explicitly 
reminds Ss of 
participation 
norms  

Gives 
extensive 
directions for 
sometimes up 
to five 
minutes  

Gives explicit 
participation 
directions but 
is unprepared 
with 
resources 

*one observation only,  **Ss = students 
 
As is evidenced in the table, these functional concerns are not ideals but instead can look 

quite different in practice. Contrasting Ms. Brewer’s and Ms. Shea’s columns particularly 
highlights how differently teachers can enact these functional concerns. Being aware of the 
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multiplicity of ways that teachers work to address these four functional concerns is critical for 
anyone striving to support mathematics teachers.  

At the same time as the individual functional concerns are not ideals, these functional 
concerns as a set are not an ideal model. There is no particular emphasis or balance that everyone 
needs to follow; however, a simple thought experiment reveals that missing any one of these 
functional concerns may lead to inequitable teaching practice. For example, an overemphasis on 
student access and motivation and a lack of attention to mathematical correctness and 
completeness is often described as a characteristic of classrooms where teachers have low 
expectations of students’ abilities. An overemphasis the other way around, for example, can 
describe classrooms with a “no excuses, zero tolerance” classroom culture. In such classrooms, 
little effort is made to meet students where they are. Productive teaching profiles can be 
described with all four functional concerns, although the distribution of the conceptual practices 
that teachers spend their time on can look very different. 

Conclusion and Implications 
The four functional concerns identified are not what we as educational researchers consider 

to be ideal. To harken back to the opening vignette, the writing team at MEP would not write 
curriculum to support teachers to focus on student correctness and completeness. While 
correctness and completeness are valued by MEP, MEP also understands that they are often 
overvalued in the classroom. Thus, the curriculum writers prioritize supporting teachers to focus 
on students’ processes of collaborative problem-solving. Still, ignoring teachers’ institutionally 
shaped functional concern for correctness and completeness presents a problem for teachers and 
the professional learning specialists who support them in the classroom. But, if teachers already 
focus on correctness and completeness, why do materials need to account for it rather than work 
around it? The evidence from this study suggests that even teachers using an ungraded inquiry-
based curriculum and who have had a plethora of support from professional learning specialists 
still focus on these four functional concerns.  

Because of this we argue that teachers’ practical sense of pedagogical responsibility needs to 
be attended to in designs for learning. By attended to, we do not mean designed-out (e.g., 
preventing teachers from focusing on correctness), but instead, designed-in such that teachers 
can clearly see how these four functional concerns will be met. Since teachers will meet these 
functional concerns in many different ways when left to their own devices (often determined by 
apprenticeship of observation, Lortie, 1975), it is critical that our aspirational, idealized forms of 
instructional practice are designed-in through a lens of functional concerns. We wonder: Could 
designing curriculum, professional learning opportunities, and teacher education with these 
functional concerns and their conceptual practices in mind — in addition to aspirational concerns 
such as those articulated in the TRU framework and the 5 practices — help bridge the gulf 
between the ideals designed into curricula and the realities of teachers’ ability to enact those 
ideals in the constrained contexts of school-as-a-workplace?  
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This mixed methods study explored the relationship between two types of small-group 
mathematics discourse (Reflective and Exploratory) and the quantity and type of strategies 
discussed. The study focused on 97 fifth-grade students, organized into 34 small groups (17 
Reflective, 17 Exploratory) and the strategies they used to solve two problems (4 ½ - 3 ¾; 4-3 
¾). Results indicated that both discourse types can encourage student evaluation of multiple 
computational strategies. However, several factors seemed to increase or decrease the strategies 
discussed. In exploratory discourse, the student in the group writing the answer may limit 
discussion by solving the problem themself. In reflective discourse, when students all agreed on 
the same answer they were less likely to discuss any strategies.  For both discourse types, 
dissonance in answers or strategies often prompted the discussion of multiple strategies to 
determine accuracy. 

Keywords: classroom discourse; number concepts and operations; elementary school education   

Factions are one of the most difficult areas for elementary students, as well in-service 
elementary teachers, and prospective teachers, possibly due to limited abilities to mentally 
represent fractions and how these mental representations relate to computational procedures 
(Gabriel et al., 2013; Litster, MacDonald, & Shumway, 2020). Mathematics teacher educators 
(MTEs) can support a deep conceptual understanding of fractions through emphasizing multiple 
ways of solving fractional computations (AMTE, 2017; NCTM, 2014). Learning multiple 
computation strategies in isolation can increase student confusion, however comparing and 
contrasting fraction algorithms side-by-side for the same problems or problems that differ in 
small but import ways may help reduce misconceptions and deepen student understanding 
(Newton, Willar, & Teufel, 2014).  Mathematics discourse is one strategy that MTEs can use to 
encourage their students to evaluate a variety of computational procedures for the same or 
similar problems (Wachira et al., 2013).  

Theoretical Perspective 
Discourse can impact student retention of learning and transfer of learning to novel situations 

in three ways (see Fig. 1). First, it has the potential to increase opportunities to learn by 
promoting higher levels of cognitive demand through reasoning and justification of solution 
strategies (Litster, 2019). Second, it has the potential to help build the automaticity of subskills 
by chunking fragmented schema in long term memory for easier retrieval (Sweller & Mayer, 
2015). Third, it can help refocus the sophistication of student strategies from surface to structural 
similarities (Georgius, 2014; Schoenfeld, 2018). 
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Figure 1: Influence of Discourse on Retention and Transfer of Learning 

This study focuses on this third side of the triangle, sophistication of student strategies.  
When students develop a deeper conceptual understanding of fractional operation strategies, their 
retention is improved and they are more likely to transfer and apply this understanding in novel 
situations (Sidney & Alibali, 2015; Uttal et al., 2013). Siegler and Svetina (2006) explain that 
students are more likely to change their strategy only if the new strategy increases accuracy or 
efficiency. Novices may work backwards from a solution to identify their strategy whereas 
experts often work forward and tend to leave out important steps (Feldon, 2007). Discourse 
provides opportunities for students to see the value of new strategies as students share logical 
arguments around their strategy choices, which can not only focus students towards relational 
strategies, but also provide opportunities for chunked schemas. These discussions can also 
promote students to look at the structural similarities and differences between strategies. 

MTEs can organize student-directed mathematics discourse in one of two ways. First, MTEs 
can group students into cooperative learning groups where students engage in exploratory 
discourse to collaboratively solve a mathematics task (Rojas-Drummond & Mercer, 2003). As 
students work together, they may share and evaluate a variety of strategies they may not have 
considered on their own to solve the problem or check their answer in order to quickly dismiss 
inaccurate or inefficient strategies. This co-construction of learning through explanations, 
redefinitions and interactions may promote a deeper understanding for multiple strategies 
(Wachira et al., 2013). However other researchers contest that an imbalance of power dynamics 
within a group engaging in exploratory discourse may limit student involvement which would 
decrease the strategies evaluated by the group (Walter, 2018). 

Second, MTEs can provide time for students to engage with the task individually and then 
engage in reflective discourse using strategies such as the “Think-Pair-Show-Share” model to 
compare answers and strategies (Hunt et al., 2018; Walter, 2018). Time to think individually 
provides opportunities to evaluate potential strategies to solve the problem and write down ideas 
to bring to the group discussion, which can create more equitable opportunities to clearly explain 
their thinking for a variety of strategies (Kalamar, 2018). However other researchers contest that 
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waiting until after the task is complete results in cumulative talk, meaning students agree with 
one idea and do not discuss other strategies (Rojas-Drummond & Mercer, 2003).  

The purpose of this study was to evaluate the quantity and types of strategies discussed when 
fifth-grade students engaged in exploratory discourse (solving and discussion problems together) 
and reflective discourse (solving problems individually and then discussing solutions) for two 
related subtraction fractions problems with mixed numbers. 

Methods 
This mixed-methods study is part of a larger study where 97 fifth-grade students, organized 

into 34 small groups engaged with two real-world task-sets involving operations with fractions 
and decimals, for a total of 26 tasks (Litster, 2019). This study takes a closer look at student 
discourse relating to one of the tasks in the Harry Potter Task-Set (Task H5) to help answer the 
research question: What is the relationship between each discourse type (exploratory and 
reflection) and the quantity and types of subtraction fractional computation strategies discussed 
by fifth-grade students? 
Participants and Procedures 

Four fifth-grade classes participated in this study. The researcher organized discourse for the 
Harry Potter Task-Set so that half of the students (2 classes, 17 groups) engaged in exploratory 
discourse while the other half (2 classes, 17 groups) engaged in reflective discourse.  Groups 
engaged in exploratory discourse were given all 13 problems in the Harry Potter task set which 
compares different aspects of success for the book and movie (e.g., ticket/book sales and ratings) 
and asked to work together to solve the problems.  Groups engaged in reflective discourse were 
given the same problems in three separate chunks of blocked time, allowing students to work on 
one set of problems independently (e.g., H1-H4 on ticket/book sales) and then discussing that set 
of problems before working independently on the next set (e.g., H5-H9 on book/movie ratings). 
Data Source and Analysis 

The two main data sources in this study were students’ written work and verbal discourse 
relating to problems 5b and 5c from the H5 task. In problems 5b and 5c (Fig. 1), students were 
asked to compare the difference between the average reviewer ratings for the Harry Potter and 
the Half-Blood Prince movie across multiple websites (i.e., Barnes & Nobles, IMDb, Amazon, 
iTunes, Rotten Tomatoes). 

 

 

5b. Compare the difference between 
the average Barnes & Nobles rating and 
the average IMDb rating. 

5c.   Compare the difference between 
the average Amazon rating and the 
average iTunes rating. 

 
Figure 1: Task H5, Sub-questions 5b and 5c. 

The researchers analyzed the data in three phases. First, they qualitatively coded video data 
to identify the types of strategies discussed by each of the 34 groups of students (Saldaña, 2015).  
One student in each group wore a Go-Pro camera on their chest which captured the audio and 
visuals for their group discussions. Students’ written work (task sheets and scratch paper) was 
also used in this phase to verify the notations used in the discussed computational strategies.  
Second, the number of unique strategies were quantitatively counted to identify the number of 
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strategies discussed by each group. Third, students’ written work and verbal discussions were 
coded to identify any patterns that may contextualize the quantitative results. 

Results 
Qualitative results relating to the types of strategies identified six unique strategies discussed 

by students to solve Task H5.  Figure 2 illustrates and explains five strategies students discussed 
relating to Sub-task 5b while Figure 3 illustrates and explains these same five strategies as well 
as a sixth unique strategy groups discussed relating to Sub-task 5c. 

 

 
Figure 2: 5 Strategies Discussed Relating to Sub-task 5b. 

As seen in Figure 2, Strategies A and B focus on procedures using equivalent fractions and 
the conversion of mixed numbers into improper fractions to subtract and solve the problem. 
Strategy C uses negative number and the relationship between addition and subtraction to solve 
the problem.  Strategy D uses the subtraction procedure to “borrow” from whole number in order 
to subtract and solve the problem. Strategy E uses a number line or a mental model to count up to 
the answer. 
 

 
Figure 3: 6 Strategies Discussed Relating to Sub-task 5c. 

As seen in Figure 2, the same five strategies discussed for sub-task 5b were also discussed 
for sub-task 5c.  Additionally, some groups used a new strategy (F) to solve this sub-task, which 
involved using relational differences between the quantities in Problem 5b and 5c to mentally 
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calculate the results. 
Quantitative results identified several patterns between frequency and type of strategies 

discussed for each discourse type.  Table 1 shows the frequency count of unique strategies 
discussed per group. A “0” for reflective indicates groups confirmed an answer only and did not 
discuss a specific strategy. “0” for exploratory indicates one student completed the task for the 
group independently, without discussing their strategy. 

 
Table 1: Frequency Count of Unique Strategies Discussed per Group 

 Reflective (N=17)  Exploratory (N=17) 
Strategy Count 5b 5c  5b 5c 
0 4 7  1 2 
1 5 2  10 8 
2 5 6  3 5 
3 3 1  1 2 
4 0 1  2 0 

 
As seen in Table 1, groups engaged in exploratory discourse were more likely to discuss at least 
one strategy; however reflective groups that did discuss strategies were more likely to discuss 
more than one strategy. 

Table 2 shows the frequency count for the number of groups that discussed each strategy. In 
this table, columns do not equal the number of groups as the number of strategies discussed 
varied from group to group. N=Max possible number for each cell. 

 
Table 1: Frequency Count of Unique Strategies Discussed per Group 

 Reflective (N=17)  Exploratory (N=17)  Total (N=34) 
Strategy 5b 5c  5b 5c  5b 5c 
A 6 6  10 11  16 17 
B 3 3  7 9  10 12 
C 1 1  2 1  3 2 
D 1 1  3 0  4 1 
E 3 5  3 5  6 10 
F 0 2  0 1  0 3 

 
As seen in Table 2, the three most common strategies across both groups were the two more 
traditional strategies, A (N=16/17) and B (N=10/12), as well as the visual strategy E (N=6/10). 
Additionally, similar strategies seemed to be discussed from one sub-question to the next.  

The qualitative examination of student work showed that every strategy on the individual 
scratch paper for students in exploratory groups was discussed. However, only one reflective 
discourse group had every student in the group use the same strategy to solve problem 5b or 5c. 
This means that most reflective discourse groups had the potential to discuss 2-3 different 
fraction subtraction strategies. Unfortunately, an examination of verbal discourse showed that 
students were less likely to discuss the strategies used by students in the group when everyone 
agreed on the answer (e.g., “So I got 3/4.” “Yep, me too and the next one is 1/4.”) (see Table 1, 
strategy count 0). Only three reflective discourse groups where everyone agreed on the answer 
discussed all the different strategies they used to solve problems 5b and 5c. Instead, differences 
in answers for 5b and 5c prompted a discussion about the mathematics and student strategies. For 
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example, when a reflective discourse group had different answers to a problem, their first action 
was usually a comparison of strategies to identify any errors within the procedures. Excerpt 1 
below shows one example of students comparing strategies after having a difference in answers. 

Matt: On this one [Q5b] I got 1 1/4 
James: I got 3/4.   
Matt: It’s bigger cause 4 minus 3 is 1 and 3/4 minus 1/2 is 1/4. [inaccurate Strategy B] 
James: You change that [pointing to 4 ½] to 4 2/4, which is 3 6/4 minus 3 ¾ [Strategy D] 
Matt: Oh yea [changes answer to 3/4]  
[Video 150H3, Time Stamp 5:21-5:37]  

In Excerpt 2 below, a student in a reflective discourse group fixed their own mistake while 
sharing their strategy for the same problem. 

Troy: I did 3/5  
Laney: The ratings are a ¾ difference. 
Adam: Yep. Did you change the denominators so [point 18/4 – 15/4 = ¾ on paper] [Strategy 

A] 
Troy: [pointing to his paper, where he has 5 circles cut in fourths, with 4 1/2 shaded in  
and 3 ¾ crossed out, Strategy E] They are all cut up into different pieces and . . . but yea, it 

would be ¾ 
[Video 120H3, Time Stamp 7:46-9:23]  

In a few cases, when students could not agree on an answer after sharing their own strategies, 
they turned to a new strategy to check their answer. Excerpt 3 is from an exploratory group that 
agreed on a general strategy (i.e., subtraction), worked on the problem individual, and then 
engaged in self-directed reflective discourse to discuss their answers to the same problem. 

Anna: Well, look.  Difference means subtract, right? 
Tonya: Okay 
Stacey: And the Barnes and Nobel were 4 ½ and IMBD were 3 ¾ 
[All 3 students calculating on their own paper] 
Tonya: I got 1 3/4   
Anna: I am thinking 1 ¼ cause 4 minus 3 is one. . . [Inaccurate Strategy B] 
Stacey: [Points to 3 ¾ on her paper] I am usually wrong so . . . 
Anna: But 3 ¾ you can’t really do that. 
Stacey: Yeah, but 3 ¾ we change this into a fraction and change this into 4 and times by  
4 and make an 8 so . . . [Inaccurate Strategy A] 
Tonya: But 4x4 is 16. 
Anna: Oh yea, so even I got it wrong. 
[All thinking] 
Tonya: Look guys, 1, 2, 3 [pointing to number line] [Strategy E] 
Stacey: Okay, so ¾ then. 
Anna: So it would be ¾. 
[Video 320H2, Time Stamp 3:22-12:22]  
Five of the 17 Exploratory Discourse groups used this method to solve tasks H5b and H5c. 

The remaining exploratory discourse groups (n=12) worked through the problem together, 
sharing a single pen. The student holding the pen usually initiated which strategy their group 
used to solve the problem. Exploratory discourse groups were more likely to discuss multiple 
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strategies when there was a disagreement on the validity or ease of use for a particular strategy. 
For example, in Excerpt 4 below, students are solving from H5c.  Leah is holding the pen, but 
Karen has a disagreement on the validity of Leah’s mental strategy. 

Leah: [thinking, then writes ¼ on the paper] 
Karen: But how did you get that, cause you couldn’t get it that fast. 
Leah: Um I . . [thinking] did it in my head? 
Karen : You can’t minus it in your head. That would equal [grabs scratch paper and writes 

18/4 – 9/4 = 9/4, then converts to 2 ¼] 2 1/4 so how did you do that in your head. 
Because you have to change it into an improper fraction.  This is the Barnes and Nobel 
one [18/4] and change it to same denominator and then improper. [Inaccurate Strategy 
A] 

Bill: But this is the answer [points to 1/4. 
Leah: If you take 1 off of it and spread it into 4/4 and then minus 3/4 is 1/4.  
Bill: It’s basically 4 0/4 – 3 ¾.  Subtract wholes then the fractions. 
Karen: You can’t do 0 minus 3! 
Bill: Yea, negative ¾ plus 1. [Strategy C] 
Karen: But did you minus these? you have got to subtract these [points to    
18/4 – 9/4] 
Bill: Changing to same denominator would be 16/4 not 18. [Correcting Error in Strategy 

A, on Karen’s paper to read “16/4-15/4=1/4”] 
Karen: But I did the math. 
Leah: So 4 minus 3 is 1 and then 4/4 minus 3/4 is 1/4. [Strategy B] 
Bill: It’s the same thing [pointing to the ¼ on scratch paper]. 
Karen: Yea, okay. 
[Video 360H2, Time Stamp 3:27-13:20]  

In Excerpt 5 below, Carla, Joy, and Tina used strategy A to complete problem 5b (Joy held pen), 
but struggled to use the same strategy to complete 5c (Tina held pen).   

Joy : So first, find a common denominator [Attempting Strategy A] 
Tina: Wait, then how do you turn 4 into a fraction? 
Joy : So to keep it a whole number, you draw a line and put a 1 under it. 
Carla: What if we subtract the wholes first, like 4 minus 3 is 1. [Strategy B] 
Tina: So we would have 1 minus ¾? 
Carla: And then times 4 
Tina: So 4/4 and then take away ¾ . . . okay, ¼ [writes answer] 
[Video 450H3-4, Time Stamp 1:00-3:49, 0:00-0:30]  

In Excerpt 6 below, Amy (holding pen) is unsure about how to solve the problem and asks for 
help, which initiates a discussion on fraction strategies. 

Amy: [Reads prompt for H5b out loud] I’m a little bit confuzzled [SIC].  
Brit: Ok, so compare the difference, we are subtracting. 
Chris: So, so, 4 1/2 minus 3 3/4 is you take the 3 away from the 4 and then you have one left 

over so 3/4 minus 4 1/2 is three left over [Strategy B] 
Amy: Wait how is 3/4 minus 4 1/2, 3? 
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Brit: So, 4 minus 3 is 1 and 1 is 4/4 [draw circle and divides in 4 sections] and half [draws 
half circle and divided in 2 sections] then you take away 3/4 [shades in 3] and you are left 
with 3/4. [Strategy E to Explain Strategy B] 

Amy: I'm a little bit confuzzled but not as much. 
Chris: You try the next one [Indicating H5c] 
Amy: Okay, one . . .[writes 4-3=1], two . . .[draws circle and cuts in fourths], three . . . 

[shades in three, writes 1/4 as answer], [Strategy E] I did it! Confuzzle over.  
[Video 370H2, Time Stamp 5:13-9:58]  

As we can see in each of these examples, dissonance created by differences in products (Excerpts 
1-3) or processes (Excerpts 4-6) prompted students to move beyond simply confirming or 
computing answers to discussing the accuracy, reliability, or ease of use for different strategies.  

Conclusions 
The results in this study confirmed research that both types of discourse (reflective and 

exploratory) have the potential to encourage students to discuss multiple strategies (Kalamar, 
2018; Wachira et al., 2013).  They also confirmed fears that one student initiating the discourse 
in exploratory discourse may limit discussion to a single strategy (Walter, 2018) and fears that 
students engaging in reflective discourse may engage in cumulative talk (Rojas-Drummond & 
Mercer, 2003) 

The results in this study also add to current research by highlighting factors that may increase 
or decrease the discussion of multiple strategies.  For example, when students all agreed on an 
answer during reflective discourse, they were more likely to engage in cumulative talk; however, 
when there was dissonance, or differences in answers, they were more likely to discuss multiple 
strategies to determine accuracy. Dissonance also prompted the discussion of multiple strategies 
in exploratory discourse to determine accuracy. 

In summary, teachers can use either discourse type to encourage students to discuss multiple 
ways of solving problems. Teachers may want to require exploratory discourse groups to identify 
two or more methods to verify their answers in order to encourage students to discuss multiple 
strategies to solve problems (Kazemi & Stipek, 2017). Teacher may also want to set up discourse 
procedures to encourage students engaging in reflective discourse to identify similarities and 
differences in strategies to promote discussions relating to how students solved the problems, 
beyond confirmation of the answer. 
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The rapid move to online teaching brought about by the global pandemic highlighted the need 
for the educational research community to develop new conceptual tools for characterizing these 
environments. In this paper, we propose a conceptual framework Instructional Technology 
Triangle (ITT) which extends the instructional triangle of teachers, students, and content to 
include technology as a mediating mechanism. We use the ITT framework to analyze noticing 
patterns in the written reflection of a prospective secondary teacher, Nancy, who, over the 
course of one semester taught online four lessons integrating reasoning and proof . The 
fluctuations in Nancy’s noticing patterns, in particular, with respect to technology, shed light on 
her trajectory of learning to teach online and the role of reflective noticing in this process. We 
discuss implications for teacher preparation and professional development.      

Keywords: Teacher Noticing, Preservice Teacher Education, Online and Distance Education. 

Objectives 
The pivotal role of technology in teaching mathematics has been widely recognized and 

thoroughly researched over the last decades (Ball et al., 2018; Bray & Tangney, 2017; Clark-
Wilson et al., 2020; Hillmayr et al., 2020). These studies concerned teachers’ classroom practice 
with technology, teachers’ professional development (PD) for teaching mathematics with 
technology and impacts of technology on mathematics teaching and learning (see Clark-Wilson 
et al., 2020 for an extensive review). Most of these studies were conducted in a traditional face-
to-face setting. Some teaching online has been addressed, but mainly in teacher PD and Massive 
Open Online Courses (MOOC) (e.g., Taranto et al., 2020). However, the complete and 
widespread shift to online teaching brought about by the global pandemic caught teachers, 
students and educational communities off guard (Seaton et al., 2022). In particular, the move to 
online teaching revealed its the uniqueness in the technology landscape. It also highlighted the 
need for the educational research community to develop new conceptual and analytical tools for 
characterizing teaching and learning that occurs in online environments.  

In this paper, we propose a conceptual framework Instructional Technology Triangle (ITT) 
which extends the seminal notion of the instructional triangle, which conceptualizes instruction 
as interactions between teacher and students around particular content, situated in certain 
environments and time (Cohen et al., 2003; Lampert, 2001). In the context of online teaching and 
learning, technology becomes both the environment enabling the educational process to occur 
and the necessary mediator between teachers, students, and content. The ITT framework captures 
these relationships by placing technology within the instructional triangle.  

We developed the ITT framework to capture and characterize noticing patterns of 
prospective secondary teachers (PSTs) as they reflected on video recordings of their own online 
teaching. The PSTs participated in the capstone course Mathematical Reasoning and Proving for 
Secondary Teachers where they designed and taught lessons that integrated reasoning and 
proving within the regular mathematics curriculum (Buchbinder & McCrone, 2020). Due to the 
pandemic, in Fall 2020, the school teaching component moved online. The PSTs taught via 
Zoom, uploaded the recording to Canvas Learning Management System, where they watched and 
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reflected on their teaching. The analysis focused on PSTs’ noticing, which is an essential 
professional skill (Buchbinder et al., 2021; Mason, 2002; Kosko et al., 2021; Sherin et al., 2011). 
As we analyzed our PSTs’ noticing, we were struck by the prevalence of technology-related 
aspects, their variety, and their change over time. To capture the richness of these data, we 
developed the ITT framework.  

In this paper, we introduce the ITT framework and illustrate its use by analyzing one PSTs’ 
(Nancy, a pseudonym) noticing patterns in four online lessons. We aim to describe and 
characterize Nancy’s noticing patterns as a way to understand how her learning to teach online 
evolved over time. In addition, we triangulate data from multiple sources, such as Nancy’s lesson 
plans, written essays and course materials, to understand possible reasons behind fluctuations in 
her noticing patterns, in particular with respect to the role of technology.    

Conceptual Framework 
Reflective Noticing  

The concepts of noticing and reflection have been closely intertwined in educational 
literature dealing with teacher learning and professional growth (Seidel et al., 2011; Moore-
Russo & Wilsey, 2014). Amongst many definitions of teacher noticing (Dindyal et al., 2021), in 
this study, we adopt Stockero’s (2021) definition of noticing as comprised of attending to aspects 
of the classroom situation and interpreting them. In this study, we consider PSTs’ noticing of 
their own teaching, as they reflect on their own classroom teaching, and use the term reflective 
noticing to describe a process that combines the tacit nature of attending and the goal-oriented 
nature of reflection (Buchbinder et al., 2021; Liu & Buchbinder, in press).   

Teachers’ reflective noticing happens with a specific context and is affected by many factors, 
such as individuals’ knowledge, belief, experience (Schoenfeld, 2011), identity (Oyserman, 
2009), and instructional practices (Liu et al., 2021; Sherin et al., 2009). Cross Francis et al. 
(2021) found that teachers’ mathematical knowledge for teaching, efficacy, belief, emotions, and 
identity influenced teachers’ noticing of and reflection on students’ mathematics thinking.   

Reflective noticing supports teachers’ professional development because it engages teachers 
in regulating their attention resources to the teaching aspects that they perceive as important and 
allowing them to prioritize these aspects. Learning from reflection requires careful and critical 
deliberation on practice, connecting to theoretical ideas and contemplating takeaways for the 
future (Anderson, 2019; Wilson, 2008). Thus, it is not surprising that PSTs’ reflection on the 
video-recordings of their own teaching was found to be beneficial to PSTs’ professional learning 
(Buchbinder et al., 2021; Liu & Buchbinder, in press; Walshe & Driver, 2019).  
The Instructional Technology Triangle Framework  

The instructional triangle is a heuristic structure for describing and characterizing teacher-
student-content relationships (Friesen & Osguthorpe, 2018). It highlights the nature of teaching 
as mutual interactions among teachers, students, and content in environments (Cohen et al., 
2003; Herbst & Chazan, 2012; Lampert, 2001; Yeo & Webel, 2017). In a face-to-face setting 
where teachers or students interact with technology, technology can be understood as a tool or a 
part of the environment. In an online environment, it is impossible to avoid treating technology 
as a key factor in learning and instruction. Content is represented through technology, and 
teachers and students interact with technology and interact with each other through technology 
(Seaton et al., 2022). Technology is what mediates between teachers-students-content, making 
the educational process possible. We extend the instructional triangle framework by adding 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1808



 

technology as an explicit component of instruction (Figure 1) to foreground the critical role of 
technology in an online teaching environment.  

 
Figure 1: Instructional Technology Triangle Framework 

The Instructional Technology Triangle (ITT) framework (Figure 1) considers four nodes:  
teacher, student, technology, and content and six sets of pair-wise relationships: student-content, 
student-technology, teacher-technology, teacher-student, teacher-content, content-technology. In 
the context of reflective noticing, we define the following ten categories. Teacher - considers 
teacher’s reflection on their personality, behavioral characteristics like a voice pitch, thoughts, 
and self-impressions. Students - refers to noticing students' behavior and personalities, 
classroom participation and interactions with peers. Content refers to teacher reflection on the 
mathematics of the lesson and/or a rationale for including a certain content in the lesson. 
Technology involves reflecting on technology as a tool, without relating it to teaching moves or 
students' mathematical thinking. Noticing of Teacher-Content refers to teacher reflection on 
how they taught a content or made an instructional decision related to content. Teachers-
Students noticing indicates attending to interactions between the teacher and the students. 
Student-Content describes reflecting on students’ mathematical thinking while interacting with 
or responding to a mathematical question or task. Content-Technology refers to teacher’s 
reflection on how technology is useful or not in representing a particular mathematical content; 
while Teacher-Technology describes teacher noticing of manage technology for effective 
teaching. Student-Technology captures the teacher’s noticing of students’ interaction with 
technology. We illustrate these categories in depth in the results section.  

Methods 
The Setting 

This study is a part of the larger project that designed a capstone course Mathematical 
Reasoning and Proving for Secondary Teachers and studied how PSTs’ mathematical and 
pedagogical knowledge develops during the course (Buchbinder & McCrone, 2020). The four 
course modules focused on the following proof themes: (1) direct proof and argument 
evaluation; (2) conditional statements, (3) quantification and the role of examples in proving, and 
(4) indirect reasoning. In each module, the PSTs strengthened their subject matter knowledge 
of the proof themes, learned about students’ proof-related (mis)conceptions and then designed 
and taught to small groups of students from local schools a 50-minute lesson that integrates a 
particular proof theme with an ongoing topic from the school curriculum. Then, the PSTs viewed 
the 360-video recording of their lesson and reflected on it (Buchbinder et al., 2021). In Fall 2020, 
due to the pandemic, the PSTs taught their four lessons online, via Zoom.    

Nancy was a senior mathematics education major in a high school certification track. She had 
robust mathematical knowledge and educational orientation, as evidenced in her high GPA, and 

Students

Teacher Content

Technology
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strong performance on pre-and post-course assessment on Mathematical Knowledge for 
Teaching Proof and Dispositions toward Proof survey (Buchbinder & McCrone, 2021). We 
chose to analyze Nancy’s reflective noticing since it was elaborated and rich in detail.  
Data Sources and Analytic Techniques  

The main data source for this paper is Nancy’s reflection reports she completed on Canvas 
Learning Management System 2-3 days after teaching the lesson. For this report, Nancy watched 
the video of her lesson, and used the commenting feature to write a reflective comment about 
every five minutes, about 8-9 comments per lesson. These comments provide information about 
Nancy’s noticing in the moment of watching the video. We analyzed Nancy’s reflective 
comments using the Instructional Technology Triangle coding scheme. Each comment was 
examined for the presence of a particular code; if needed, long comments were divided into 
shorter thematic units and assigned separate codes. The first two authors coded the data, 
discussed and resolved any discrepancies. Next, we examined the distribution of codes across the 
coding categories and four lessons (Table 1) in conjunction with data from supplemental sources: 
Nany’s lesson plans, reflective essays submitted along with the Canvas comments, and a 
summative essay about the course. We also relied on the course syllabus and instructional 
materials (the second author was the course instructor) to construct narratives explaining 
Nancy’s noticing patterns as she participated in the sociocultural contexts of the capstone course 
and of the online student-teaching embedded in it.       

Results  
Table 1 summarizes the distribution of codes of the ITT framework identified in Nancy’s 

reflective comments across the four lessons. The total number of codes per lesson is specified in 
the heading; the modal response in each column is highlighted. We briefly describe each lesson 
and identify the key patterns in Nancy’s noticing, followed by an interpretive analysis of these 
patterns.  

 
Table 1: The Distribution of Nancy’s Noticing Across ITT Coding Categories and Lessons  

  
Lesson 1 
(N =14) 

Lesson 2 
(N =13) 

Lesson 3 
(N=12) 

Lesson 4 
(N =16) 

Total 
(N) 

Teacher-content  36% 15% 8% 31% 13 
Teacher-Student  7% 23% 17% 25% 10 
Teacher-Technology  14% 8% 17% 13% 7 
Student-content  14% 0% 25% 0% 5 
Technology  0% 15% 8% 6% 4 
Teacher  21% 0% 0% 6% 4 
Student-Technology  0% 8% 0% 13% 3 
Content-Technology  0% 8% 0% 6% 2 
Student  0% 8% 0% 0% 1 
Content  0% 0% 8% 0% 1 

 
Lesson 1. Direct Proof and Argument Evaluation: Supplementary and Vertical Angles. 

Nancy started by engaging students in a discussion of “what makes a good two-column 
proof?” Next, she facilitated an exploration of the Vertical Angles Theorem (VAT) where she 
used GeoGebra to manipulate intersecting lines and had students observe the changing measures 
of vertical angles. Nancy guided students to notice that the vertical angles remained congruent. 
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In this lesson, Nancy was the only one engaging with GeoGebra while students observed and 
made conjectures verbally. Then, Nancy guided students through writing two-column proof of 
the VAT first with specific numeric values of the angles and then using variables.  

Table 1 shows that Nancy mostly noticed the teacher-content relation (36%), and her own 
actions (teacher, 21%). This pattern is not surprising considering that this is the first time Nancy 
taught a lesson online and her first time watching her own teaching and reflecting on it. For 
example, Nancy noticed her speaking habits, e.g., “I am saying ‘um’ a lot,” and her fast speaking 
pace and reflected on the need to be aware of and improve her speech: “I need to slow down and 
not rush through explanations. I'm naturally a fast talker and when I get nervous, I tend to talk 
even faster … I need to work on slowing it down in the future.” Nancy seldom returned to these 
points in the following lessons, suggesting that the heightened focus on herself was due to the 
novelty of video reflecting experience.  

Based on the prevalence of teacher-content codes (36%), Nancy’s main concern in this lesson 
was making sure the lesson ran smoothly and achieved the teaching goals. These included 
engaging students in mathematical discourse to collectively construct a two-column proof of the 
VAT, develop criteria for a “good” two-column proof, and have students recognize there are 
multiple ways to prove a theorem. Nancy constantly monitored her progress towards these goals 
and justified her instructional decisions. For example, Nancy noticed her effective teaching 
practice of developing a list of ideas for proof before writing the two-column proof as a way to 
address a common student challenge of completing a proof.  She wrote:  

As we worked through the proof, I asked the students questions and tried to guide their 
thinking. I brought their attention to our ideas that we developed earlier on, and they were 
able to see that we could use two of those expressions to help us with our proof. I think this is 
important because oftentimes when faced with a proof, it can be challenging to come up with 
the next step, but if you have already come up with ideas before writing the proof, it can 
make writing the proof a little easier. 
Nancy also criticized some of her teaching choices like having a pre-labeled diagram which, 

in her words, “defeated the purpose” of having “the students realize that we needed to generalize 
the angles to prove all cases”. Nancy also identified areas of improvement, like managing 
discussions in ways that increase student mathematical engagement. 

One thing that I noticed during this period was that I didn't really ask the students for their 
input about generalizing the proof. I just told them that we need to generalize the proof to 
make sure that we show all cases of vertical angles. After doing this lesson one of my 
revisions is to do less telling and have the students try coming to the conclusion on their own. 
Fourteen percent of Nancy’s comments concerned teacher-technology, which is not 

surprising given this was her first time teaching ever, and online. Nancy was familiar with 
GeoGebra software but struggled to show multiple screens on Zoom: “One teaching move that I 
found challenging occurred when I wanted to keep the problem up, but also wanted to show the 
list of ideas that the students were coming up with”.  Student interactions with technology did 
not show up in Nancy’s noticing possibly because she was the only one manipulating GeoGebra 
in this lesson.     
Lesson 2: Conditional Statements: Isosceles and Equilateral Triangles  

Nancy used Prezi with multiple examples to introduce the concepts of conditional statement 
and its converse. Then, students used GeoGebra to explore three conditional statements about 
triangles. For each statement, students were to determine if it is true or false (if false, construct a 
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counterexample), then write the converse and determine whether the converse is true or false.  
After the first lesson Nancy seemed to gain comfort with teaching online and shifted the 

mode of student engagement by having them interact with GeoGebra. This is reflected in the 
shifts in Nancy’s noticing patterns toward increased focus on interaction with students (23%). 
She wrote:  

While going over the conditional statement "if a number is divisible by 10, then it is divisible 
by 5" I asked the students if they thought the statement was true or false. One student 
responded that he thought it was false. Instead of saying that his answer was incorrect, I 
asked him why he thought that and as he started to explain, I realized he was talking about a 
different conditional statement. I'm glad that I asked him to clarify because otherwise I 
wouldn't have known that he was talking about a different statement.  
By following up on students’ answer, rather than discarding it as incorrect, Nancy inferred 

from the student explanation that he offered a correct response to a different question. Nancy 
then was able to steer this interaction towards the lesson goals.  

An important trend of Nancy’s noticing in lesson 2 is the presence of all technology-related 
codes. Nancy reflected how she transitioned from one technology to another, e.g., “I think the 
transition from the Prezi presentation to GeoGebra was pretty smooth and I think I did a nice job 
at explaining the key aspects of GeoGebra” (technology code, 15%); how the use of technology 
benefited her teaching, e.g., “I really like having exit tickets because it gives me really good 
feedback about what the students learned and how they felt with different parts of the lesson” 
(teacher- technology 8%). Nancy also noticed students’ difficulty interacting with each other on 
Zoom (student-technology, 8%): 

When I told the students that they could work together, no one did. I think zoom makes this 
hard because it's not like you can turn to your neighbor and discuss. Instead, if you want to 
talk, you end up talking in front of everyone which can make people nervous. Also, as a 
student it can seem daunting to start up a discussion with your peers. This is something I 
need to keep in mind for the future.  
The patterns of Nancy’s noticing are consistent with her use of diverse technological tools 

(Prezi, GeoGebra, Google forms) and with having students interact with GeoGebra directly.  
Lesson 3: Quantification and the Role of Examples: Triangle Similarity Theorems  

Nancy first used Google Slides to introduce the concepts of universal and existential 
statements and the role of examples in proving/disproving them. She had students find 
counterexamples to three universal statements (e.g., All isosceles triangles are similar) and find 
examples proving two existential statements (e.g., There exist two right triangles that are 
similar). After briefly reviewing three similarity theorems as a group, the students spent most of 
the class time working on Side-Side-Side (SSS) similarity proof, each typing their work on a 
designated slide in a shared Google Slides document.  

One unique feature of Nancy’s noticing in lesson 3 is the focus on students’ learning of 
content (25%). For example, she noted that “the students recognized that they needed to use SSS 
but were unable to connect/use proportions to relate the corresponding sides”; that “a lot of them 
[students] didn't understand how to include proportions into the proof,” and that “the students 
were able to come up with some counterexamples.” Nancy monitored students’ progress when 
they typed their answers into Google Slides, but she did not have access to their GeoGebra 
screens. Nancy’s reflective comments concerned her interactions with students (17%) and with 
technology (17%). For example, she reflected on the affordances of Google Slides: “I, again, 
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liked the use of the google slides here, because I was able to see the students’ progress through 
the similarity proof and get an understanding of what parts they found confusing.”    
Lesson 4: Indirect Reasoning: Coordinate Proofs  

For this lesson, Nancy adapted her cooperating teacher’s lesson plan about analytic geometry 
proofs by integrating indirect reasoning in it. The main activity was the game “The Quadrilateral 
Detective,” where students determined the type of quadrilateral given the coordinates of its 
vertices. The students also created statements involving indirect reasoning, such as “The 
quadrilateral cannot be a kite because otherwise it would not have parallel sides”. Nancy solved 
one task together with the students as an illustration. To avoid the complexity of students typing 
algebraic symbols, Nancy suggested students write their proofs on paper and post a picture of 
their work into the shared Google Slides document.  

Despite Nancy’s best intentions, not all parts of the lesson proceeded as planned. She seemed 
to manage better during the teacher-led parts of the lesson and reflected abundantly on her 
instructional decisions (teacher-content, 31%). For example, “One teaching move that I liked 
during this lesson was creating a theme for the lesson…” ; “One teaching move that I think was 
good for this portion was that I had already graphed and typed out the solution to case 1 in the 
presentation/desmos…”; “I think it was a successful teaching move to include some exposition 
about indirect reasoning at the end of the lesson instead of the beginning…”   

Table 1 shows that from Lesson 1 to Lesson 3 Nancy’s noticing shifted from more teacher-
centered to more student-centered. But in lesson 4 Nancy mostly noticed her teaching of content 
(teacher-content, 31%), while also reflecting on her interactions with students (teacher-student, 
25% – the largest percentage of this category across the four lessons). Specifically, Nancy 
reflected on her attempts to press students for explanations, e.g., “why he put his x in a certain 
spot”; on her calling on students to “get them to participate;” on how “open ended discussion 
allowed the students to express their answers and explain their reasonings” and on how 
“providing students enough time to work on their ideas leads to richer discussions.”   

Nancy also reflected on how she and her students used technology (teacher-technology, 13%; 
student-technology, 13%). One of the aspects she noticed was the difference between her 
expectations about students’ use of technology and the reality. Nancy expected students to write 
their solutions to the Quadrilateral Detective Task on paper, scan, and post to the shared Google 
Slides document. Instead, the students created new slides within that document and started typing 
in their solutions. While Nancy sought to optimize student use of technology by providing space 
to post their work, the students chose an inefficient and time-consuming approach. Nancy 
noticed this and reflected on ways for making improvements for future practice.    

Discussion and Conclusions 
In this paper, we presented the Instructional-Technology Triangle (ITT) framework, which 

foregrounds technology as an essential element of online learning environments, and a primary 
mediator between teachers, students, and content. The ITT framework contributes to the 
literature advocating the need for extending the basic instructional triangle (Cohen et al., 2003) 
to represent additional elements of instruction in general (Herbst & Chazan, 2012) and with 
respect to technology (e.g., Yeo & Webel, 2017). The ITT framework was developed when 
teaching via online videoconferencing (e.g., Zoom, Google Meet, Microsoft Teams, VooV 
Meeting, etc.) became a norm during the pandemic in response to the seeming lack of theoretical 
and analytical tools for conceptualizing teaching and teacher noticing in the online context. In 
this context, teaching technology is not just another element of instruction, but a necessary 
medium that makes this instruction possible. The content is represented through technology, and 
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both teachers and students interact with technology and through technology. This may include 
navigating multiple types of technology (e.g., video conferencing platform, digital interactive 
whiteboards, virtual manipulatives) simultaneously by teachers as well as students. Thus, 
technology started playing an essential role in determining the quality of instruction and the 
quality of student learning experience. The ITT framework represents our attempt to capture this 
unique role of technology in the online setting.  

Our study also contributes to the body of knowledge on noticing and reflection by 
demonstrating the utility of the ITT framework in analyzing Nancy’s reflective noticing and its 
development over time. Nancy’s first teaching experience happened to be online, and she had to 
adjust to it quickly. Due to her strong mathematical content knowledge, Nancy invested most 
energy in designing interactive activities, choosing appropriate technological tools, and 
interacting with students. The novelty of the experience contributed to the heightened focus on 
herself and on her teaching in the first lesson (Table 1). As the semester progressed, Nancy 
seemed to become more comfortable and confident, as evidenced in her delegating responsibility 
to students by having them interact with technological tools like GeoGebra, Desmos and Google 
Slides. Accordingly, Nancy’s noticing patterns shifted in lessons 2 and 3 toward increased focus 
on interactions between students, content, and technology (Table 1). These patterns shifted again 
in lesson 4 when Nancy enacted the cooperating teacher’s modified lesson plan and encountered 
a mismatch between her expectations of student engagement and how the lesson unfolded.  The 
ITT allowed us to create a nuanced representation of Nancy’s reflective noticing and the changes 
in it. The observed patterns are consistent with the noticing literature (e.g., Buchbinder et al., 
2021, Sherin & van Es, 2005; Stockero, 2021) on teachers’ initial inclination to focus on their 
actions, followed by increased noticing on student mathematical thinking. Many researchers 
highlight the importance of noticing students’ mathematical thinking by teachers (e.g., Barnhart 
& van Es, 2015; Cross Francis et al., 2021; Sherin & van Es, 2009). Despite its importance, it 
may be unwise to use it exclusively as an indicator of quality of teacher noticing and run the risk 
of overlooking other aspects. As Spangler (2019) advocates, “We as teacher educators need to 
demonstrate the curiosity and intellectual humility that allows us to understand how and why 
something a teacher did or said came from a place that made sense to them” (p. 2). In this paper, 
we attempted to interpret Nancy’s noticing from a place that made sense to her, and to 
foreground her rationality in the context of her teaching practice (Herbst & Chazan, 2003).   

Stepping back from our study, we believe that even as the schools begin to reopen, online 
education will retain a substantial presence in a variety of forms, such as teacher preparation, 
professional development, and situations where remote learning is a necessity for some reason. 
The ITT framework can be broadly applied for conceptualizing and analyzing teacher-student-
content interactions in an online setting, responding to the need to attend to contexts in which the 
teaching and learning takes place, the experiences of the participants and to their individual 
voices (Liu et al., 2020; PME-NA 44 Conference Theme, 2022). 
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Number Talks are widely used across the U.S., as they uniquely place student reasoning at the 
center of mathematics instruction while allowing for few resources and time throughout 
enactment. The purpose of this brief paper is to describe how relations between teachers’ use of 
questions and students’ engagement in a Number Talk associate with students’ number sense. 
Findings suggest students’ “student-to-student dialogue” was significantly associated with 
teachers’ “generating discussion” questions and students’ number sense development. 

Keywords: Number Concepts and Operations, Classroom Discourse, Instructional Activities and 
Practices  

Number sense fundamentally predicts mathematics outcomes in future schooling experiences 
(e.g., Jordan et al., 2009). One set of resources designed to support students’ number sense 
development are Number Talks (Humphreys & Parker, 2015). Number Talks are widely used 
across the U.S., as they uniquely place student reasoning at the center of mathematics instruction, 
while allowing for few resources and time throughout enactment. Parrish and Dominick (2016) 
describe Number Talks as a “five- to fifteen-minute classroom conversation around purposefully 
crafted problems that are solved mentally” (p. 13). As Matney et al. (2020) explicate, few blind 
reviewed papers exist examining Number Talks. The purpose of this brief paper is to describe 
how relations between teachers’ use of questions and students’ engagement in a Number Talk 
associate with students’ number sense.  

Theoretical Framework 
Our framing draws from Cultural Historical Activity Theory (CHAT – Engeström, 1999). 

CHAT frames activity systems, which can be used to make visible development within a system 
of activity. When examining Number Talks, we recognize teachers may have activity related to 
their individual goals. Classrooms of students may have collective goals associated with their 
collective activity. Engeström explains CHAT draws from the interaction between an object and 
subject, which are mediated by community, rules, division of labor, and instruments. In Figure 1, 
the subject (teachers’ use of questions) interacts with the object (students’ number sense) and is 
mediated by students’ agentic behaviors (Cobb et al., 2009). There are three less visible 
mediators, described here as socio-mathematical norms, Number Talk parameters, and discourse 
patterns (see Figure 1). Existing tension within the students’ development and reorganization of 
their number sense, leverages change in the system (evidenced through teachers’ use of 
questioning and mediated by students’ agentic behaviors). The following sections better explain 
(1) teachers’ use of questions, (2) students’ agency, and (3) students’ number sense development.  
Teachers’ Use of Questions 

When teachers engage in Number Talks, Humphreys (2016) found teachers used eight 
question types: funneling, evaluating, probing, restating, revoicing, generating discussion, 
gathering information, and double-checking. These are similar to other Number Talk questioning 
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frameworks (e.g., Conner et al., 2022, Joswick et al., 2020).  
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1: Cultural Historical Activity Theory (CHAT) theoretical framework 

We used Humphrey’s (2016) questioning framework due to the direct relationships these 
were found to have with students’ agency during Number Talks.  For instance, when teachers 
assessed students’ reasoning by asking probing and clarifying types of questions. When one 
teacher asked restating questions or revoicing questions, Humphreys (2016) found students 
evidenced more agentic behaviors. By asking these questions, a teacher would ask a student to 
further explain other students’ thinking. When teachers used generating discussion questions, 
they often asked students to contribute by adding on to other students’ reasoning. Conner et al. 
(2022) described gathering information as questions that press students to “connect” their 
mathematical ideas and “engage with others’ ideas.” For example, when asking gathering 
information questions, teachers often asked students “Okay, where did you go from there?”. 
When describing double-checking types of questions, teachers were simply confirming students’ 
reasoning by restating their strategy in their own words. These five categories framed our 
structural coding and through open coding we established the additional three categories. 
Students’ Agency 

We framed student engagement with agency and measured it with agentic behaviors. Agency 
is described as an individual’s choice of how to engage in a classroom community (Cobb et al., 
2009). Cobb and colleagues describe agency in relation to authority, thus, to measure students’ 
agency, we attempted to capture students’ goals, as navigated by authority in the classroom.  

During Number Talks, Humpreys (2016) found students evidenced six types of agentic 
behaviors: appropriates authority for sensemaking, injects an unsolicited comment, asks an 
unsolicited question, student-to-student dialogue, public risk taking, and shares “in process” 
thinking. This study utilized these agentic for analysis.  

When students engaged with the mathematics in an unprompted manner, students 
appropriated authority for sensemaking, injecting unsolicited comments, and/or asking 
unsolicited questions. When students engaged with each others’ mathematical ideas directly, we 
categorized this as student-to-student dialogue. By evidencing vulnerability in their sense-
making students were described as taking risks. Students were noted as evidencing “in-process” 
thinking when stating how their methods developed. Students’ agency is considered as 
embedded in socio-mathematical norms, discourse patterns, and Number Talk parameters.  
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Students’ Number Sense Development 
To examine productive activity wherein students’ construction of number was at the center, 

we collected data evidencing students’ number sense development. To examine students’ number 
sense development, we worked closely with David Woodward, CEO of a non-profit 
organization, Forefront Education, which develops number sense screeners from the research 
literature (e.g., Wright & Ellemor-Collins, 2018). Each tool was given to teachers to assess their 
students’ number sense development three times throughout the academic year (fall, mid-year, 
spring). Scores were structured with a 3-point rubric (1, 2, or 3) for each item. The authors 
aggregated these scores along a 5-point scale to both capture overall number sense performance 
per student and variance in their number sense.  

Methods 
This brief paper explains baseline data from a larger Convergent Mixed Methods study 

(Creswell & Plano-Clark, 2011), focusing on explaining students’ number sense development 
over time, while in Number Talk lessons. For this brief paper, we explain the results after one 
semester of enactment of Number Talks. Moreover, we draw from three of the five main 
constructs of these data to explain how teachers’ use of questions related to students’ number 
sense development.  
Participants and Setting 

This study initially included 20 practicing teacher participants assigned to teach grades 4-6 in 
a school district located in the mountain west region of the United States. Of these 20 
participants, we collected complete data from 14 participants. Of these 14 participants, we 
purposefully chose 11 participants from a cross-reference analysis of an efficacy survey (Enochs 
et al., 2000) with a two-by-two factor analysis with two levels of two types of efficacy and 
beliefs. Participants’ classroom teaching experience ranged from X to X and from X to X with 
the particular grade they were assigned to teach. To gather data, researchers scheduled Zoom 
observations and emailed number sense assessment materials.  
Procedures 

After analyzing survey data, we scheduled the observations. Throughout the observations, we 
used the following protocol: (1) open Zoom and ensure video and audio operate successfully, (2) 
reposition the camera and/or device to be sure students and teacher can be heard, (3) remind 
teacher to set up a device to audio-record the observation, (4) once a Number Talk began, both 
authors noted students’ agentic behaviors (more in analysis section), (5) once the Number Talk 
finished, the authors reminded the teacher to upload the audio file in a secure box folder, and (6) 
closed Zoom. Audio files were transcribed and organized by teacher. The participants completed 
the number sense screener and uploaded the de-identified results in a secure box folder.  
Analysis 

Data were first qualitatively analyzed with open and structural coding schemes. These 
schemes were framed by the aforementioned theoretical and conceptual frameworks. Once 
descriptive codes were gathered from open coding, the data were revisited for structural coding 
and then tallied with a frequency count. Quantitative data of these frequency counts and number 
sense scores were analyzed with a Pearson’s Correlation test. Mixed analysis took the form of 
convergent analysis of the frequency of questions and agency and significant correlations.  

Results 
Qualitative results suggest that on average teachers asked the most types of questions with 

the goal to “gather information” (m = 29.9, SD = 15.4). Here, teachers asked about students’ 
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solutions, such as, “And then what was the next step after that?”. On average, teachers asked 
“funneling” types of questions the least number times (m = 2.9, SD = 2.5). Examples of these 
were when teachers asked students to focus on procedural and/or solution accuracy, such as, 
“Were you subtracting too much or too little right here?” (see Table 1).  
 

Table 1: Descriptive Statistics of Teachers’ Questions 
Frequency of Teachers’ Questions M(SD) 

Funnel Evaluate Probe Gen. 
Dis. 

Repeats Revoices Gather 
Info. 

Double 
Check 

2.9(2.5) 3.4(3.2) 6.6(5.0) 4.7(5.3) 14.1(11.9) 6.1(2.8) 29.9(15.4) 9.3(7.6) 

Qualitative results also suggest that students on average shared most often their “in-process 
thinking” (m = 8.0, SD = 3.1). This was often observed when students explained the processes 
they used to solve a computational problem. Moreover, students, on average, asked “unsolicited 
questions” the least number of times (m = 0.5, SD = 0.8). When students asked questions in this 
way, students often asked classmates to explain their solutions (see Table 2).  
 

Table 2: Descriptive Statistics of Students’ Agency 
Frequency of Students’ Agency M(SD) 

Authority Unsolicited 
Comments 

Unsolicited 
Questions 

Student-to-
Student 

In-Process Risk Taking 

1.9(1.7) 2.4(1.8) 0.5(0.8) 2.9(3.8) 8.0(3.1) 0.9(1.3) 
 

Quantitative results revealed significant positive correlations between “student-to-student 
dialogue” and students’ number sense scores (0.235, p = 0.011), and teachers “generating 
discussion” questions and “student-to-student dialogue” (0.832, p < 0.001). Teachers’ use of 
questions were not significantly correlated with students’ number sense, suggesting student-to-
student dialogue acted as a mediator between number sense and teachers generating discussions.  

Divergent themes suggest that when teachers asked gathering information types of questions, 
they did so on average about 30 times per Number Talk. Given this, it is striking that did not 
have any significant associations with students’ agency and students’ number sense 
development. However, convergent themes found that students’ “student-to-student dialogue” 
was significantly associated with teachers’ “generating discussion” questions. The qualitative 
data found teachers only asked generating discussion types of questions on average 4 to 5 times 
during a Number Talk, the sixth most asked question. Students engaged with student-to-student 
dialogue on average about 3 times throughout a Number Talk, the second most agentic behavior. 
Finally, it seems students’ agency acted as a mediator between teachers’ use of questions and 
students’ number sense development during a Number Talk.  

Conclusion 
Number Talks are rarely examined in a rigorous manner and with comprehensive foci 

(Matney et al., 2020). Findings suggest teachers can increase their generating discussion 
questions to leverage opportunities for student-to-student dialogue. Future work should consider 
how teachers’ questions, students’ agency, and number sense develops over time.  
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This paper describes how fifth-grade English Learner students (ELs) in an urban school district 
develop the mathematics register during a problem-solving lesson. It provides examples of 
students' work to illustrate how they use the mathematics register to communicate their 
mathematical ideas orally and in writing. The teacher implemented teaching practices such as 
mathematics discourse to facilitate their students' development of the mathematics register 
during the problem-solving lesson. Students were engaged in a problem-solving task that 
involved fractions. Findings provide insights into EL students' challenges when learning the 
mathematics register and inform instruction about the importance of incorporating teaching 
practices such as paraphrasing and assessing others' reasoning to support students in learning 
the mathematics register through problem-solving. 

Keywords: Classroom discourse, Mathematics register, Problem Solving  

English Learners (ELs) population is significantly growing in U.S. schools (Abedi & 
Gándara, 2006; Campbell et al., 2007; de Araujo et al., 2018). Almost 10% of students enrolled 
in public schools in the United States are classified as ELs (NCES, 2020). As the population of 
ELs increase, meeting their academic needs deserve an urgent national response. ELs often have 
limited access to a challenging education in mathematics, adequate resources, and qualified 
teachers (Borjian, 2008; Dong, 2016). Research highlights several issues that influence the 
performance gap between ELs and monolingual speakers (see, e.g., Campbell et al., 2007; Chval 
& Chávez, 2012; de Araujo et al., 2018). Among these issues, language is viewed as a source of 
difficulty in learning mathematics, particularly for ELs required to learn the content of 
mathematics and English language skills simultaneously (de Araujo et al., 2018; Martiniello, 
2008; Moschkovich, 2007). This paper describes how two fifth-grade mathematics classes with a 
high percentage of ELs (30% or more) developed the mathematics register during a problem-
solving lesson. It also shows how ELs use the mathematics register when engaging in a problem-
solving task.  

In spring 2021, the first author worked with "Ms. Ware," a 5th-grade teacher, and her students 
in an urban school district to conduct a case study as part of her dissertation project. One of the 
research goals was to examine how Ms. Ware supported her ELs in developing the mathematics 
register during problem-solving lessons. The research questions that we explore here are: How 
do ELs develop the mathematics register while engaging in a problem-solving lesson? How does 
Ms. Ware support ELs developing the mathematics register during a problem-solving lesson? 

The Mathematics Register 
The mathematics register was initially introduced into mathematics education by Halliday in 

1978. He defined the mathematics register as a set of "meanings that belong to the language of 
mathematics (the mathematical use of natural language, that is: not mathematics itself), and that 
a language must express if it is being used for mathematical purposes" (Halliday,1978, p.195). 
The literature also refers to the mathematics register as language variations constructed by 
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individual interactions (Schleppegrell, 2004). These variations are characterized in terms of field 
(area or subject), tenor (relationship between the individuals), and mode (organization of text or 
conversation) (Halliday, 1978).  

The mathematics register includes semiotic resources, such as symbols, visual displays, 
graphs, diagrams, and language (O’Halloran, 2015). Similar to other disciplines, mathematics 
has its own language, and learning this discipline implies learning its language. Researchers 
focused on academic languages have highlighted several issues that emerge when ELs are 
required to use the mathematics language in informal and formal contexts (see, e.g., Barwell, 
2005; Ernst-Slavit & Mason, 2011; Lucero, 2012). For example, Barwell (2005) points out that 
ELs often face challenges when communicating their mathematical ideas in English. He 
highlights that solving and writing word problems can support students in integrating 
mathematics content and language. Ernst-Slavit & Mason (2011) argues that ELs have limited 
access to mathematics classrooms in which they can consistently hear the mathematics register. 
Also, teachers constantly use slang, homophones, colloquialism, and idiomatic expressions that 
can hinder ELs' understanding (Ernst-Slavit & Mason, 2011). Lucero (2012) argues that ELs 
need repeated opportunities to engage in problem-solving tasks to communicate their ideas to 
others, define mathematics terms, and compare strategies. 

Communicating mathematical ideas in oral and writing forms require students to know the 
knowledge of mathematics and the knowledge of the language (Wilkinson, 2018). Students need 
to combine everyday language, symbols, visual displays, and non-linguistic representations to 
communicate effectively in mathematics. Teachers should incorporate instructional strategies to 
help their students combine these linguistics features when communicating their mathematics 
ideas, and consequently, they learn the mathematics register (Moschkovich, 2014) 

The mathematics register also involves linguistics features that define the communication 
styles (Schleppegrell, 2004; Wilkinson, 2018). For example, in an academic context, the 
mathematics register used can vary when the communication is oral or written (Wilkinson, 2018) 
Mathematics includes words borrowed from everyday English (e.g., degree, factor, relation, 
power, radical, product, mean, real, imaginary, rational, and natural) that can have a different 
meaning in other contexts than mathematics. It also involves some grammatical constructions 
that differ in their qualitative and quantitative meaning (e.g., four fours, the first four is an 
adjective while the second one illustrates a nominal status) (Pimm, 1987). 

The mathematics register has two features: multiple semiotic systems and grammatical 
patterns (Schleppegrell, 2007). The multiple semiotic systems refer to symbol notation, oral and 
writing language, and visual displays to construct mathematical meaning. The grammatical 
patterns refer to technical vocabulary, dense noun phrases, nominalization, verbs, conjunction, 
and logical connectors to communicate mathematics ideas. These features work together to 
develop the mathematics register, and they are often used to provide mathematical arguments, 
justify mathematical reasoning, and build mathematical ideas and meanings (Schleppegrell, 
2007).  

Research Methodology 
During the 2021 spring semester, I collaborated with Ms. Ware, a fifth-grade teacher, and her 

two 5th fifth-grade mathematics classes on three occasions. The study's goal was to examine how 
Ms. Ware implemented an instructional protocol called the "Discursive Mathematics Protocol" to 
help her ELs develop the mathematics register and how her students used the mathematics 
register during problem-solving lessons (see Kitchen et al., 2020, for additional information on 
the DMP). The DMP was built based on Polya's (1945/1986) problem-solving framework and 
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incorporated research-based strategies and essential teaching practices. These research-based 
strategies are based on theories of academic language development (Barwell, 2005; Ernst-Slavit 
& Mason, 2011; Moschkovich, 2015) and the essential teaching practices proposed in Principles 
to Actions (NCTM, 2014) that guide teachers in facilitating their students' development of the 
mathematics register ad mathematical reasoning, respectively. For the three problem-solving 
lessons, Ms. Ware and I worked together to plan the lesson, then Ms. Ware delivered the lesson 
as planned, and finally, we had a debriefing session. For the planning session, we met on Zoom 
to discuss how we hoped to develop the problem-solving lesson, identified questions, discussed 
strategies and challenges students could face, discussed the mathematics register involved in the 
task, and how she would support her ELs to develop it. Ms. Ware and her students met in Google 
Meet for 90 minutes each group during class. I observed the lessons and, on a few occasions, 
interacted with Ms. Ware and her students, particularly in group discussions. In the debriefing 
session, Ms. Ware and I met in Zoom for 30-minutes after the problem-solving lesson to discuss 
what went well in the lesson, what needed improvements for the next lesson, and what 
adjustments were necessary to incorporate to help ELs to develop their mathematics register.  

For this study, 27 students provided consent across the two classes (15 ELs and 12 non-ELs). 
These classrooms had a high percentage of ELs (30% or more). Most of them speak Spanish as 
their first language. Ms. Ware taught one group in person and another group entirely online. 
Each group attended mathematics classes for 90 minutes in two blocks of 45 minutes each. Ms. 
Ware had Due to the COVID-19, Ms. Ware and her students used a technology tool called Pear 
Deck and Google Meet to participate in the class. Pear Deck is an application to make interactive 
presentations in virtual meetings, and Google Meet is a virtual tool that allowed Ms. Ware to 
teach mathematics remotely. The in-person and online groups were connected through Google 
Meet in mathematics classes. 

This paper describes how students used the mathematics register while engaging in a 
problem-solving task. We also highlight the strategies Ms. Ware's used during the lesson to help 
her ELs develop the mathematics register. Data collection for this study included sources such as 
video recording of the planning session, problem-solving lessons in Google Meet, the debriefing 
session, ELs’ work samples, and class observations. The videotapes and students' work samples 
were analyzed inductively using interpretive methods (Creswell & Poth, 2018). Each videotape 
was transcribed, and they were viewed as a whole, followed by open coding to reflect on and 
clarify teaching strategies to deliver the problem-solving lessons and procedures to address the 
mathematics register inherent in the task. The analysis process went through multiple iterations 
to check the consistency of the findings and look at commonalities and differences across the 
solutions that students provided. 
Problem-Solving Task implemented 

In the problem-solving lesson, we used a task called 'connecting area model to context," 
referred to as the multiplication story task. The multiplication story task is a performed task that 
is publicly accessible through the Illustrative Mathematics (IM) project. This task is considered a 
cognitively and linguistically demanding task. Students were required to write a multiplication 
story problem and give a diagram with two types of shading. They needed to establish 
connections among a procedure (multiplication), a diagram, and a context. Also, they needed to 
recognize the concept of fractions as operators (Charalambous & Pitta-Pantazi, 2007) inherent in 
the double shading shown in the diagram. The complexity of the language of this problem 
appeared when students were required to create a story with a context that related to the notion of 
fractions as operators represented in the diagram and translate symbols into words (3/4 of 1/5).  
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The diagram below represents one whole.  
 
 

 
 

 

1. Write down an equation that represents 
the doubled shaded area on the diagram. 

2. Write a multiplication story that could be 
solved using the diagram with its two 
types of shading. Explain how your story 
context relates to the diagram provided.   

Figure 2: Task implemented with the DMP 

Findings  
We now present an example of a problem-solving lesson to illustrate how students in Ms. 

Ware's classroom used the mathematics register when they solved the multiplication story task. 
Ms. Ware followed three primary teaching practices to help her students develop the mathematic 
register inherent in the task. These practices included: (1) implementing socio-mathematical 
norms and activating previous knowledge, (2) introducing the task and reviewing vocabulary, 
and (3) facilitating meaningful mathematical discourse as a medium to support students in 
developing the mathematics register.  

Ms. Ware started the problem-solving lesson by establishing some mathematical norms and 
directions students needed to follow during the virtual meeting. She also invited her students to 
participate and communicate their ideas in oral and writing form through Pear Deck during the 
lesson. Students were expected to collaborate with each other, share their reasoning, engage in 
mathematical discussion, negotiate the meaning of mathematical terms, and reach agreements 
about their mathematical ideas. Prior to the problem-solving task, Ms. Ware activated her 
students’ prior knowledge about fractions. She had students work with model diagrams and 
identify unit fractions (e.g., 1/3,1/5) in both columns and rows of a rectangular diagram. Students 
were also asked to identify expressions represented in the area model diagram that could be 
derived by multiplying fractions (1/4 of 1/3). The goal of the review was to emphasize the notion 
of fractions as operators, which would help students work on the multiplication story task. 

Following the first stage, Pólya’s heuristic Understanding the Problem (stage1 of the DMP), 
Ms. ware introduced the multiplication story task. She began asking questions such as: What is 
the task asking for? What do you think it means to write a multiplication story? What do you 
guys think we’re doing? Students discussed in small groups what the problem asked them to do. 
Ms. Ware allowed students to use their vocabulary and familiar language to explain what they 
understood about the problem. She also helped her students to understand the vocabulary used in 
the task, such as "story," "multiplication story," and "two types of shading." Some students 
provided their reasoning about the meaning of these terms. For example, Marcia, an EL, 
explained that: a multiplication story is "like a story that has a multiplication in it," Max, a non-
EL student, said, "it is like using a story, but like using math." Similarly, students defined "two 
types of shading" as "overlapping" of "two types of colors."  Moreover, Once Ms. Ware was 
satisfied that most of her students understood the task and vocabulary found in the task, she 
continued with the activities planned and moved to stage two of Polya’s heuristic, Create a Plan 
(stage 2 of the DMP)  

As Ms. Ware progressed through the lesson, she engaged her students in mathematics 
discourse on several occasions by allowing them to share their ideas, paraphrasing others' 
reasoning, providing justifications, and comparing their strategies while solving the task. 
Throughout the second stage of the DMP, Ms. Ware asked her students to create a plan to solve 
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the task. She asked questions such How could we solve this problem? What is our plan to solve 
it? What do we need to solve this problem? What two things are we looking for? In stage 3 of 
Polya's heuristic, Carry out the plan (stage 3 of the DMP), students were required to work 
individually on Pear Deck to write an equation and a multiplication story. Then, students shared 
their solutions with their partners in small group discussions and justified whether the equation 
was related to the diagram. 

During this stage, Ms. Ware engaged her students with others' reasoning. For example, Ana, 
an EL, wrote the numerical expression 3/4 x 1/5 to represent the area double shaded in the 
diagram, and she wrote the following multiplication story: "Mis. Ware ate 1/5 of a cookie; later 
the day, she ate ¾ of the cookie; how much did Ms. Ware eat?" Ana was able to translate "two 
types of shading" in the diagram into an expression (3/4 x 1/5), in which they demonstrated the 
ability to interpret the diagram by identifying the whole and the two factors of the multiplication. 
These elements are features of the mathematics register because Ana could identify the 
multiplication of fractions (1/5 x 3/4) shown in the diagram and use two different representations 
(e.g., the diagram and an equation). However, Ana’s story problem demonstrated a 
misconception of finding fractional pieces of the original whole rather than finding a fraction of 
a fraction. Ana did not find a part of a part; instead, she found a part of a whole twice. Her stories 
did not indicate the multiplication of the two fractions represented in the diagram. Ms. Ware 
used Ana’s story to generate a discussion and help her students reflect on their solutions. She 
asked her students to think and explain how the story could be fixed to match the diagram and 
the equation. She encouraged her students to use the mathematics register by assessing another 
student's strategy. Andrew, a non-EL student, gave his reasoning about Ana’s story: 

I think this multiplication problem isn't correct because this was like an adding problem…if 
you like to write in a better way to do so, it would be like: Miss Ware split and took away 1/5 
of a cookie, and later in the day, she took ¾ of the piece or something like that to represent 
the diagram. Also, it has a lot more sense because it shows the 1/5 that she took away and 
then the ¾ that you ate from the 1/5. 

Ms. Ware asked another student to paraphrase what Andrew said to ensure that her students 
understood the issue in Ana’s story. Through paraphrasing, students had the opportunity to show 
their understanding and use the mathematics register involved in the task. Antonio, an EL, said: 

What Aiden explained is that it [referring to Ana's problem] was an addition. So, I agree with 
Andrew because whenever it is multiplication, you basically have to multiply that, no matter 
what the denominators are, but when adding, you need to find a common denominator.   

Ms. Ware revoiced Andrew’s reasoning to emphasize that the notion of a part of a part did not 
appear in the story. She said:  

I want to point out how she [referring to Ana’s story] has 1/5 of a cookie and then ¾ of a 
cookie. Right? And so, the ¾ is not referring to the 1/5. It is referring to a whole cookie. 
Whereas, as Andrew said, she [Ana] took 1/5 of something, and she ate ¾ of the 1/5 later. Do 
you guys hear the difference? Is it just a multiplication problem, or is this an addition 
problem? 
Ms. Ware was aware that her students needed support in the mathematics register required to 

write their stories. Specifically, she helped them learn grammatical patterns (the second feature 
of the mathematics register) needed to write their stories. She took advantage of Ana's story and 
Andrews' ideas to highlight why their stories were not related to the multiplication expression ¾ 
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x 1/5 and why the language used implied part of a whole twice in the story. Ms. Ware explained 
that because the unit is the same cookie used in the problem (1/5 of a cookie and then 3/4 of the 
cookie), the problem referred to the same "whole." Ana used the notion "part of a whole" when 
she wrote the phrase "1/5 of a cookie" and "¾ of the cookie," but the idea "part of a part" was not 
used in her story. Moreover, Ana's question, "how much did Miss Ware eat?" led students to 
think about adding the fractions to find the solution. Ms. Ware provided feedback on Ana's story. 
She suggested a sentence structure that she could use to enhance her problem "1/5 of something 
and then she ate ¾ of the 1/5 later." In this sentence, Ms. Ware provided her students a template 
they could use to write their story problem.". This sentence could help other students to use the 
notion of "part of a part" in their story problem. After engaging her students in the previous 
discussion, Ms. Ware asked them to return to Pear Deck to revise and re-write their story 
problems when needed. 

As another example, Ms. Ware intentionally chose another student's solution while 
monitoring their work on Pear Deck. In her multiplication story, Alejandra, an EL, 

demonstrated a strong understanding of fractions as operators and used the mathematics 
register in her answer. Ms. Ware engaged her students to assess Alejandra’s problem, and 
Ms. Ware and I asked Alejandra to clarify the language she used in her story.  
Alejandra: My problem was Ms. Ware’s daughter had a birthday party. She invited six of  
her friends. Ms. Ware had to get cupcakes for the party. One packet had 1/5 vanilla cupcakes, 

and 3/4 of those cupcakes had strawberry sprinkles on them. How many cupcakes in total 
had sprinkles?     

Ms. Ware: ok, what makes this work? 
Andrew: So, Alejandra’s problem she explained that 1/5 of all of the cupcakes are vanilla  
and ¾ of the 1/5 has sprinkles on them, which is what the diagram shows because it shows 

1/5 of the vanilla cupcakes, and then ¾ of the 1/5 is shaded, which shows that ¾ of the 
1/5 have sprinkles on them.  

Researcher: When you said "three-fourths of those cupcakes," what do you mean? Can you  
say more? 
Alejandra: What I mean is that the 1/5 is the total cupcakes in the package and ¾ of those  
cupcakes had sprinkles on them. 
Andrew: I think Alejandra…you mean by of those cupcakes is the vanilla  
cupcakes, because I feel like that could be a little bit confusing to some people because 

like… if you are trying to be very specific in making it very clear, I'd add that ¾ of the 
vanilla cupcakes had sprinkles on them because somebody could ask anything that when 
you say of those cupcakes…they might think ¾ of the chocolate cupcakes.  

The excerpt above illustrates an example of how a student combined familiar language, symbols, 
and diagrams to write her multiplication story. In her written solution, Alejandra also used 
features of the mathematics register (e.g.,1/5 of all of the cupcakes are vanilla, and ¾ of those 
cupcakes had sprinkles on them). For Alejandra, the phrase “of those” means 3/4 of the 1/5 of 
vanilla cupcakes. She used undefined references (of those cupcakes) to indicate a specific 
antecedent in the sentence (the vanilla cupcakes). Using this word in a sentence to translate a 
mathematics expression into words can lead students, especially ELs, to miss data in the problem 
and get misconceptions about the whole used. In this sense, I asked Alejandra to clarify what she 
meant when she said “of those cupcakes” to help other students understand her story. During this 
discussion, Andrew helped to explain Alejandra's story. He highlighted the meaning of the 
phrase “3/4 of those cupcakes.” Both Alejandra and Andrew demonstrated a high level of 
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English language proficiency and understanding of the mathematics register used in the story. 
However, it was essential to clarify the language used in the story to help other students identify 
the notion of “part of a part.” 

During the lesson, Ms. Ware devoted significant time engaging her students in meaningful 
mathematical discourse to help them understand the problem, engage with their peers in 
mathematical reasoning, revoice and paraphrase others' ideas, and communicate their 
mathematical ideas. She also had her students work individually on their stories and 
communicate their reasoning in writing. During the last stage of Polya’s heuristic, Looking Back 
(Stage 4 of the DMP), Ms. Ware asked her students to return to Pear Deck and revise their 
stories. She encouraged her students to explain how their stories related to the diagram and the 
equation ¾ x 1/5 = 3/20 using the mathematics vocabulary learned in the class. Some students 
could refine their solutions and re-write their stories in this stage.  

Discussion 
This paper described how fifth-grade ELs in Ms. Ware's mathematics classes used and 

developed the mathematics register while engaging in a problem-solving lesson. Regarding the 
first research question, students had consistent opportunities to develop the mathematics register 
during the problem-solving lesson. Ms. Ware engaged her students in meaningful mathematics 
discourse. Multiple linguistic recourses such as everyday language, mathematics vocabulary, and 
visual displays were integrated to help students learn the mathematics register. Students had 
multiple opportunities to communicate their ideas, assess their peers' reasoning, negotiate 
meanings of mathematical terms, and paraphrase others' reasoning. These strategies helped 
students enhance and advance their mathematics register (Moschkovich, 2015; Schleppegrell, 
2007). For example, students had opportunities to learn the mathematics register inherent in the 
task by negotiating the mathematical meaning of terms used in the problem (e.g., multiplication 
story, equation), using their everyday language to explain their problems (e.g., Alejandra's story). 
Furthermore, students assessed Ana’s problem and reflected on the language used in her story 
and how the phrases used (e.g., “1/5 of a cookie and ¾ of the cookie”) indicated part of a whole 
twice instead of part of a part. Moreover, ELs had the opportunity to revise their stories and 
incorporate the language learned to write a multiplication story that reflected the notion of the 
fraction of a fraction. Alejandra's problem illustrated how students used the mathematics register 
to write their stories and justify the language employed in their stories (e.g., ¾ of those 
cupcakes”). 

Regarding the second research question, the multiplication story task requires students to 
have English language skills and abilities to translate mathematics expressions into words. Ana’s 
story illustrates that learning the mathematics register can pose challenges for ELs, specifically 
when students need to use the English language to translate a mathematics expression into text 
(O'Halloran, 2015). In this sense, Ms. Ware implemented instructional strategies to help her 
students develop the mathematics register. These strategies included facilitating meaningful 
mathematics discourse in which students had multiple opportunities to paraphrase others' ideas, 
assess others’ strategies, and engage with their peer’s reasoning (Herbel-Eisenmann et al., 2013; 
Moschkovich, 2015). Ms. Ware intentionally selected specific students’ stories (e.g., Ana and 
Alejandra’s stories) to help them reflects on how they could use the mathematics register to fix 
their stories and represent the notion of "part of a part."   

The findings in this paper provide insights into the importance of supporting ELs to develop 
the mathematics register through problem-solving. In Ms. Ware’s mathematics classes, ELs had 
the opportunity to apply their knowledge about fractions and their knowledge of language to 
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write multiplication stories. Ms. Ware asked purposeful questions to help her students understand 
specific phrases that they could use to address the language complexity found in rich tasks such 
as the multiplication story task. 
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Describing and measuring instructional quality of mathematics lessons is a common goal 
amongst mathematics education researchers. Such work takes several forms such as classifying 
and coding instructional moves and student activity or providing high-level rubric-based scores 
in relation to categories. In this work, we share an innovative mixed methods approach to 
analyzing lesson data that includes both a time-based classification of instruction and an overall 
scoring component. Using the Math Habits framework, our project team analyzed a set of 97 
fourth-eighth grade mathematics lessons including overall scores. From this qualitative analysis, 
we developed quantitative models to predict overall scores and better understand the ways that 
individual codes do or do not contribute to overall lesson score characterizations. 

Keywords: Research Methods, Instructional Activities and Practices 

In this report, we share recent work aiming to further both our approach to classroom 
observation tool measures and our understanding of which elements of a classroom are salient in 
a coding process. This work is situated in a larger validation study focused on the Math Habits 
Tool (Melhuish, et al., 2020). The Math Habits Tool decomposes a mathematics classroom into 
four types of codeable activities:  teaching routines, catalytic teaching habits, student habits of 
mind, and student habits of interaction (each of which will be expanded in the next section.) The 
categories capture teacher and student activity that characterize student-centered, conceptually-
oriented classrooms. As in many instruments (e.g., Mathematical Quality of Instruction, Hill, 
2014), qualitative coders analyze the lesson at two levels: during the lesson and holistically at the 
end of the lesson. While coding during the lesson involves identifying time-stamped, individual 
occurrences, the holistic codes use a rubric-based approached to make a subjective judgement 
call as to the quality of the teacher and student activity.  

We frame our contribution as two-fold. First, we make a methodological contribution -- the 
development of a quantitative models to estimate overall lesson scores after a qualitative coding 
process. Notably, we go beyond just using occurrence counts for codes to characterize a class, 
but also introduce a measure of spread (the degree these occurrences are found at different times 
in the lesson). We conjectured that although spread was not an explicit portion of the coder’s 
rubrics, it was likely to inform the qualitative evaluations at the lesson level. For example, 
consider this extreme version. Suppose a classroom has ten rich student contributions, but all 
occurred within the first five-minute interval. Then the remainder of the class was a lecture. 
Contrast this situation with a class where student and teachers are interacting, and ten rich 
student contributions occur throughout the lesson. A frequency-based approach would 
characterize these two classrooms in the same manner; however, it is unlikely that we would 
want such classes to be equivalent.  
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Second, in order to estimate overall lesson scores, we confronted issues of which codes 
“mattered” and in what ways. Specifically, whether a code occurred spread throughout a lesson 
sometimes mattered more than how often (and vice versa, along with other combinations). These 
findings have implications for researchers interested in teaching practices and students’ 
classroom activity.  

Background and Framing 
Broadly, we take a social cultural approach to the mathematics classroom focusing on social 

interactions between people in the classroom. Knowledge is co-constructed in these interactions 
between students and between teacher and students. While we largely assume that individual 
cognition and social interactions are interrelated (as in Cobb & Yackel, 1996) where individual 
understanding is developed via social interactions, we focus on the observable social side. 
Further, we specifically attend to components of classroom interactions that may promote sense-
making and mathematical argumentation inclusive of justifying and generalizing. Justifying and 
generalizing can support the co-construction of mathematical meaning (Brown & 
Renshaw, 2000; Simon & Blume, 1996) and students’ development of conceptual understanding 
(Staples et al., 2012). Instruction aligned with such goals reflects a standards-based instructional 
approach (defined in Rubel, 2017 and reflected in standards documents such as the Common 
Core, National Governors Association, 2010) 

We use the instructional triangle (Hawkins, 2002) to situate our analytic framing focusing on 
relationships between teachers, students, and content. We incorporate both Lampert (2001) and 
Cohen et al.’s (2003) expansion to capture the mediating role a teacher plays in the student-
content relationship and the relationships between the students themselves. Figure 1 reflects the 
components of the BI Framework overlayed on the instructional triangle. 

 

 
Figure 1: Instructional Triangle and the BI Framework  

 
The blinded framework was developed to operationalize specific instructional routines, 

moves, and student activity that can be observed within the classroom setting. The coding 
categories include: Student Habits of Mind which reflect productive ways students engage in 
mathematics, Habits of Interactions which reflect ways students engage with each other around 
the mathematics, Catalytic Teaching Habits which capture specific teaching moves that may 
engender students in engaging with mathematics and each other’s mathematical ideas, and 
Mathematical Productive Teaching Routines. The teaching routines are “recurring, patterned 
sequences of interaction teachers and students jointly enact to organize opportunities for student 
learning in classrooms” (DeBarger et al., 2011, p. 244). Unlike the other categories, teaching 
routines are not identified as instances, but rather over time intervals when they occur. Table 1 
includes the categories and subcodes. Each of these categories and subcategories are rooted in 
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the literature on promoting student-centered instruction and mathematical argumentation (e.g., 
Kazemi, 1998; Staples, 2007; Stein, et al., 2008; Thanheiser & Melhuish, 2022).  

 
Table 1: BI Framework with Variable Names in Parentheticals 

Student Habits of Mind 
Mathematical (MathHoM)  Representations; Connections; Mathematical structure 

Reflection (ReflectHoM) Metacognition; Reasoning with mistakes; Making 
meaning  

Capstone (JGHoM) Justifying; Generalizing 
Student Habits of Interaction 

Private Reasoning Time (PRHoI) Private Reasoning Time 
Explaining (ExplainHoI) Explaining my reasoning; Exploring multiple pathways 

Engage with Peer (PeerHoI) Revoicing; Comparing logic and ideas; Critiquing and 
Debating 

Question (QuestionHoI) Asking genuine questions 
Catalytic Teaching Habits 

Private Reasoning Prompt (ThinkCTH) Private Reasoning Time Prompt 
Sharing Thinking Prompts (ShareCTH) Prompt to share meaning; Prompt to share thinking; 

Prompt to share why; Prompt to share representation 
Peer Prompts (PeerCTH) Prompt to analyze strategy; Prompt to analyze mistake; 

Prompt to compare or connect across strategies; Prompt 
to revoice or make sense of strategy 

Capstone Habit Prompts (JGCTH) Prompt to justify; Prompt to notice, wonder, or 
conjecture 

Teaching Routines 
Access (AccessTR) Making meaning of tasks, contexts, and/or language 

Public Records (RecordsTR) Working with selected & sequenced student math ideas 
Teacher; Working with public records of students' 
mathematical thinking 

Discussion (DiscussionTR) Orchestrating productive whole class discussions 
Groupwork (GroupworkTR)  Structuring mathematically worthwhile student talk; 

Conferring to understand students' mathematical thinking 
& reasoning 

Methods 
Data 

This study draws on 96 video-recorded lessons (taken near the end of the school year) from 3 
school districts stemming from diverse projects. The samples include 33 lessons from District 1 
(Melhuish, et al., 2022), 31 lessons from District 2 (Sorto, et al., 2018), and 33 lessons from 
District 3 (Kane, et al., 2016).  Data on each district can be found in Table 2. 

 
Table 2: Demographic Information on Data Set Districts 

District Race/Ethnicity Socio-Economic Status Language 
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District 1 
(grades  
4 and 5) 

56% White 
19% Black/African 
American, 11% 
Latino/Hispanic 
9% Asian 

55% eligible for free and 
reduced lunch 

6% Transitional 
Bilingual 

District 2 
(grades  
6-8) 

99% Latino/Hispanic 95% “economically 
disadvantaged” 

33% Limited 
English Proficiency 

District 3 
(grades  
4 and 5) 

51% Black/African 
American, 30% White,  
13% Latino/Hispanic,  
4% Asian 

73% eligible for free and 
reduced lunch 

23% Limited 
English Proficiency 

All of these lessons had previously been analyzed with the Mathematical Quality of 
Instruction (MQI; Hill, 2014) instrument. For the larger databases, we selected a random subset 
within MQI strata. For District 2, we included all middle school teachers who had opted into 
recording. We sampled in this manner to assure a range of instructional contexts and practices. 
Qualitative Analysis  

Each lesson was then coded independently by two researchers according to the BI 
framework. Any discrepancies were resolved via discussion. After an initial round of coding, the 
coded lessons were then reviewed by a third member of the research team to identify any coding 
drift or inconsistences across the coded lessons. Additionally, discrepancies were identified and 
resolved via discussion. Besides coding using the framework, each coder also assigned an overall 
rubric-based score for student and teacher activity. Krippendorff’s α=0.79 and α=0.57 for overall 
student and teacher, respectively. The levels for overall teaching score are as follows: (1) No 
evidence of use of Teaching Routines or an attempted teaching routine (but without Catalytic 
Teaching Habits embedded.) (2) Use of more than one Teaching Routines; some evidence of 
Catalytic Habits; OR Use of only one Teaching Routine; but many (variety) of Catalytic Habits. 
(3) Multiple Teaching Routines; Catalytic Habits embedded; (4) Multiple Teaching Routines; 
Catalytic Habits embedded with pushes towards justifying and/or generalizing. The levels for 
overall student codes are as follows: (1) Students engaged in at most a Habit of Interaction or 
two and maybe a Habit of Mind; (2) Students engaged in some Habits of Mind and/or Habits of 
Interactions (3) Students engaged in multiple Habits of Mind and Habits of Interaction; (4) 
Students engaged in multiple Habit of Interaction or two and maybe a Habit of Mind with 
justifying and/or generalizing. As in many rubrics, the overall levels provide some guidance, but 
also rely on subjective judgements made by the coders. For this reason, consensus was reached 
through discussion. 
Quantitative Analysis 

In order to examine how individual codes are associated with the overall Teacher and Student 
codes, two summary statistics were computed for each lesson and code type: the count and the 
spread. The count is simply the total number of occurrences of the code during a lesson. To 
compute the spread, the lessons were partitioned into 10 equal intervals. The spread is the 
number of intervals in which a code occurred at least once. The two statistics capture the 
difference between number of times the behavior is observed and the consistency with which it is 
observed throughout the lesson.  

Least Absolute Shrinkage and Solution Operator (lasso) models were used to investigate the 
relationship between the individual and overall codes. Lasso (James, et al., 2013, pp. 219 - 227) 
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models use l1 regularization to prevent overfitting, reduce the variance of the coefficient 
estimates of a linear model, and perform variable selection. Unlike stepwise techniques used 
with standard least squares regression, variable selection in Lasso models does not rely on 
normality assumptions. The lasso coefficients minimize the quantity  

 
where the yi is the overall code for the ith lesson, and the xij are the corresponding scaled 
versions of the count and spread summaries for individual codes. The regularization constant, λ 
is determined separately for the Teacher and Student models via cross-validation.  

Results 
In this results section, we share estimates from our models and interpretation; however, the 

majority of the theorizing and contextualizing of these results can be found in the Discussion 
section. Recall, our goal is to create a model that can take the human coders’ individual 
timestamped BI codes to predict the human coders’ overall student and teacher codes. That is, 
can we use the detailed BI coding with a model to generate the overall codes? To this end, we 
needed to examine which (if any) of the individual BI codes were having more or less impact on 
overall codes. In this section we present what we learned about the role of BI codes in relation to 
overall codes. We begin with Overall Student codes. 

 
Table 3:  Coefficients from the LASSO model for Student Codes  

 Model Coefficients  
Code  Count  Spread  
MathHoM  -0.208  0.443  
ReflectHoM  0.143  0  
JGHoM  0  0.273  
PRHoI  0  0.045  
ExplainHoI  0.089  0.249  
PeerHoI  0  0.060  
QuestionHoI  0.120  0  

 
The coefficients for the lasso model for Overall Student code are shown in Table 3. Recall 

that these habits reflect observable ways that students engaged with the mathematics and with 
each other mathematically. The zero coefficients for the count variables for JGHoM (capstone 
habits of justifying and generalizing) and PRHoI (private reasoning time), and the spread 
variable for QuestionHoI (asking genuine questions) indicate that lasso dropped those respective 
count or spread variables from the model. We use z-scores to interpret the coefficients of the 
remaining predictors. For example, for a lesson with one standard deviation more ReflectHoM 
(reflection habits of mind) than the average lesson, the predicted overall code increases by 0.143. 
We can unpack the slightly more complex case of the mathematical habits of mind (MathHoM) 
coefficients where we see a negative relationship. Consider two lessons where the count for 
MathHoM differs by one. If the additional code occurs in an “empty” interval, the count and the 
spread both increase and the predicted overall code increases. On the other hand, if the additional 
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code occurs in an interval where MathHoM has already been observed, the predicted overall 
code decreases. That is, observing the code throughout the lesson is more beneficial than simply 
counting a total. On the other hand, some codes only mattered in terms of count. For example, 
students asking a genuine question (QuestionHoI) is associated with an increase in the overall 
code, no matter where it occurs. That is all to say, that some codes matter where they occur in a 
lesson (indicated by spread) and some only matter how often they occur (indicated by count). 

 
Table 4: Coefficients from the LASSO model for Teacher Codes  

 Model Coefficients 
Code  Count  Spread  
GroupworkTR  0.280  0.096  
RecordsTR  0  0.241  
DiscussionTR  0  0  
AccessTR  0.253  0  
ThinkCTH  0  0.058  
ShareCTH  0  0.104  
JGCTH  0.144  0  
ReflectCTH  0.139  0  
PeerCTH  0  0  

RevoiceCTH  0.056  0.097  
 
Table 4 provides the coefficients for the lasso model for the Overall Teacher codes. Again, 

we can notice that different types of activities are differently related to the overall codes. The 
teaching routines related to groupwork (GroupworkTR) matter both in terms of how frequently 
they occur (counts) and how they spread throughout the lesson (spread). In contrast, the teaching 
routines related to public records (RecordsTR) were only significant in terms of how spread they 
were throughout the lesson and the meaning making teaching routine (AccessTR) was significant 
only in terms of frequency, not spread. If we turn to individual teaching moves (the catalytic 
teaching habits), we can see spread is significant for prompts related to private think time and to 
share thinking (ThinkCTH; ShareCTH), but overall frequency, but not spread, is significant for 
reflection prompts (ReflectCTH). For teacher revoicing (RevoiceCTH), both frequency and 
spread were small, but positive predictors of overall score. Finally, we note that the orchestrating 
discussion routine (DiscussionTR) and the prompts to engage with peers’ reasoning (PeerCTH) 
did not contribute to predicting overall teacher scores. 

We also briefly share results about how closely these models fit our overall scores. Table 4 
and Table 5 present a crosstabulation comparing the true and predicted codes. In grey, we have 
emphasized the lessons where the coder overall code matched the predicted code. For the 
students, the model correctly predicts 71.1% of our lessons. For the overall teacher score, the 
model correctly predicts 76.77% of our lessons. Further, only one lesson in each case is predicted 
more than one level off. We can calculate Krippendorf’s α, as we would when comparing coders. 
For the overall teacher scores, α=0.879 and for the overall student scores α = 0.813. Both 
numbers are over 0.80 indicating substantial agreement. That is, our models are doing a 
relatively good job predicting the overall scores arrived at by coders. 
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Table 5: Crosstabulation of Overall Student Codes: True vs. Predicted 

                                        Predicted Overall Code 
    1 2 3 4 total 
Coder Overall Code 1 16 10 0 0 26 

 2 2 24 6 0 32 
 3 0 6 13 0 19 
 4 0 1 4 15 20 

Total   18 41 23 15 97 
 

Table 6: Crosstabulation of Overall Teacher Codes: True vs. Predicted 
                                        Predicted Overall Code 
    1 2 3 4 total 
Coder Overall Code 1 24 7 0 0 31 

 2 1 26 3 0 30 
 3 0 4 12 1 17 
 4 0 1 6 12 19 

Total   25 38 21 13 97 

Discussion 
 When we code data, we often make (explicit or implicit) inferences based on quantitative 

characteristics such as frequency of a code. However, when we consider a complex setting like a 
mathematics classroom, we often rely on subjective judgement calls about other features such as 
the degree it feels like a particular activity characterizes a lesson. In fact, this sort of expert 
judgement is why qualitative coding can be powerful. Yet, we have found that it can be quite 
challenging to come to agreement on lesson level scores because, by nature, coders are not 
noticing or perhaps not weighting elements of instruction in the same way. Our goal with this 
study was to develop quantitative means to estimate overall scores. We focused on the measure 
of spread in addition to count to avoid collapsing some of the dimensionality in a classroom.  

 If we consider our results, we can see that in some cases spread was more important, 
some cases count, and in yet others, they played out in more complex ways. We return to a 
couple of examples to conjecture what might account for these differences. If we turn to the 
overall teacher scores, we can see that both orchestrating discussion and prompts to engage with 
peers’ ideas did not contribute to predicting overall scores. First, these are types of codes that are 
theoretically related. In order to orchestrate discussion, we required that multiple students are 
engaged with each other’s ideas in some way. This typically occurs when teachers make related 
prompts for engagement. From a simplistic view, the rubric would reward both types of activities 
with higher overall scores. However, if we examine the data, we can note two features that may 
account for this result. First, the DiscussionTR and the PeerCTHs were only meaningfully 
different for teachers with an overall high score. For example, the mean spread for the 
DiscussionTR for overall high teachers was 3.1 (meaning, on average, discussion happened in 3 
of 10 intervals) and mean count was 6.9 (meaning on average discussion happened 7 times per 
lesson). In contrast, spread was less than one for all other levels of overall score and less than 
two for mean count. Rather than gradual increases, this routine served to discriminate between 
high level lessons from other levels. This leads to the second point, the high-level lessons all had 
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higher spreads and counts in other categories. Theoretically this makes sense. It is likely that in a 
class where a teacher orchestrates discussion, there is overlap with other teaching routines like 
using public records of students thinking – in many cases the discussion is about such a record. 
Thus, these codes are not contributing new information about the overall teaching in the lesson. 

Now let’s contrast two teaching routines that both were significant but in different ways. 
Working with public records of student thinking and selecting and sequencing (RecordTR) 
mattered in terms of spread whereas Making meaning of task and terms (AccessTR) mattered in 
terms of counts. In this case, we conjecture the way these routines operate in the classroom may 
account for the difference. Engaging students in making meaning around tasks and terms is a 
routine that comes up when students encounter an idea, task, or piece of language in which they 
may be unfamiliar. This is likely to occur at specific points in the lesson such as when a task is 
launched. In contrast, working with records of students’ ideas may be threaded throughout. Thus, 
the number of occurrences of meaning making may be more salient than the spread of meaning 
making; while the spread of record use is likely a more salient feature of overall teaching. 

If we turn to the student codes, we see the relationship between observed math habits of mind 
(including capstone habits) and overall scores are more linked to spread. These habits include 
things like reasoning with representations, structure, connections, and justifying and 
generalizing. Frequencies alone may paint a misleading picture because a single student 
contribution may embed many of these habits (e.g., justifying a result by use of a pattern within a 
table). A short span of time with high counts is not as meaningful as occurrences spaced 
throughout a lesson (reflected in spread), thus theoretically spread is likely to be more salient. A 
second explanation may be that at a certain threshold, frequency might not contribute new 
information. That is, a class with 20 instances and a class with 30 instances of habits of mind are 
both likely at a high level and the difference of 10 instances does not contribute something new. 
In contrast, the spread is capped at the interval number and any difference has the potential to 
provide meaningful information that characterizes a lesson across time.  

For space limitations, we will not unpack all of the differences in how the codes are 
operating but will spend a brief amount of time comparing the difference in the ExplainHoI 
(students explaining their thinking) and the MathHoMs.  Explaining mattered in terms of both 
count and spread, although with a relatively small coefficient for count. The threshold to explain 
one’s thinking is much lower than the threshold for that thinking to include math habits of mind 
(which reflect higher level reasoning). Explaining was by far the most frequently observed 
student activity at all levels of overall student code. The mean number of occurrences of explain 
was 6.4 for the Overall Student =1 classes and 39.8 for the Overall Student=4 classes. However, 
for lessons that received the lowest overall score, the mean spread was less than 3 intervals 
whereas in highest lessons, it was nearly 9 intervals. Both frequency and spread appear to 
provide important information to characterize a lesson. 

 This leaves several questions open for future research. First, are these relationships a 
consequence of the coders and rubrics or a consequence of how these activities unfold in the 
classroom? This is work that could be further addressed with additional qualitative analysis of 
the classrooms as well as attention to classrooms where overall codes as assigned by the model 
diverged from overall code as determined by the qualitative coders. Second, how might we 
develop more accurate models and measures when considering coding at this grainsize? Spread 
and count provided a start, but other measures such as interrelated (different types of codes 
within a timespan), existence (binary), or alternative models (such as non-linear models) could 
lead to additional insights. 
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The number line is a model that is used to measure, count, order and even operate, which 
requires a symbolic interpretation. Then, we investigate the conceptions of 72 in service 
secondary teachers, when they manage the model of the number line associated with order, 
spatial location and the relative position between numbers and marks. In a workshop 
carried out through Internet, we found that the participants consider that the usefulness of 
the model is in the manipulation, and they do not see the need to modify it, despite the 
requirements of the problem, taking for granted its usefulness and the control that 
resources could give them, such as the change of the numerical scale. They don’t even 
realize the symbolic properties to interpret the numerability. 

Keywords: Number line, Teacher conceptions, Artifact management 

The number line can be a model for teaching, it serves for measuring, counting, 
ordering, or operating. Its several presentations even allow it to be used as a kind of note 
(Heirdsfield, 2011), where at least there is no need for homogeneous units between 
consecutive numbers or the properties of a homogeneous representation (Nemirovsky, 
2003). 

We consider that the model of the number line is more than a metaphor (Doritou & 
Gray, 2007) because it allows us to approach the numerical properties through a symbolic 
representation, and its use must consider properties such as the homogeneous representation 
that gives spatial meaning to the numbers according to their position. As well as to the 
marks and the intervals between them, these symbolic activities are the basis for 
numerability. 

Therefore, it is desirable that the teacher takes into account that signs are regulated in a 
way that gives it mathematical meaning, so we investigate the conceptions of Honduran in 
service secondary  school  teachers, about their willingness to make changes to the 
representation according to the needs, as well as to the symbolic treatment considering the 
order, the spatial location and the relative position of numbers and marks on the number 
line to development a symbolic treatment in class. 

Background 
At this time, it has been established the importance of teachers acquiring three types of 

knowledge to develop their teaching effectively, which requires: 1) Common knowledge of 
the content; 2) Specialized knowledge of the content; and 3) Knowledge of content and 
students, as stated by Hill, et al. (2008).  

In this research, we will refer to the specialized knowledge of the content, associated 
with the symbolic interpretation, use and management of the number line in numerability 
sense where the properties of homogeneity and order are highlighted, that is, the use of a 
model where the position of the signs are relevant both for their value, as for their relative 
positions associated with order and inequality to perform model functions for numerability. 
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The so-called number line is capable for giving body to different arithmetic operations 
at the basic level we can find it in the work that refers to the relations of numerical 
inequalities and linear inequalities (Membreño and Acuña, 2021), which requires 
interpreting the order, relative position and spatial location of numbers and marks since an 
index to symbols in an intentional way.  

In general, teachers use the number line as a pedagogical tool that it is useful to the 
student, since it gives body with certain relationships, however, they do not always realize 
that it is also an abstract structure, which is a symbolic model with some restrictions 
(Doritou & Gray, 2010), that accepts a treatment as a representation of the numbering 
system and also gives body to the metaphor of numbering (Doritou & Gray,  2007). 

From our point of view, although it is true that the number line gives body to the 
metaphor of numerability, it itself is formed by a series of signs with mathematical 
properties that are of two types: explicit and implicit, which must be considered for their 
teaching.  

In the case of explicit signs, we have those that will clearly be detected and used for 
interpretation as in the case of numbers and the marks associated with them, the numbers 
have numerical value, so they acquire an ordinal position, but they are also the numerical 
labels for the associated marks, which allows the order of the objects represented. However, 
there are other implicit signs such as segments that, although relevant to interpretation, 
often go unnoticed, for example, when they represent the norm of the homogeneous unit of 
numbering or in the case of representing the solution sets of numerical inequalities and 
linear inequalities, (Membreño and Acuña, 2021). 

Objective 
We investigate the conceptions and justifications of the secondary school in service 

teachers when they are in a position to manage the type of representation of the model of 
the number line that would be used under changing conditions, which implies accepting a 
management on the representation, as well as the use of the signs involved in the model 
either marks or numbers based on the order,  the spatial location and relative position of 
this representation when it is homogeneous. 

Theoretical framework 
Using models as symbolic tools 

The number line is a symbolic representation, made up of signs that must be interpreted 
mathematically to use it as a model for teaching, which includes detecting the role of 
implicit and explicit signs as symbolic mediators.  

The Theory of Objectification suggests that learning is linked to the use of instruments, 
signs or artifacts that are not aids to learning, but they are a semiotic media whose presence 
and use print a distinctive stamp on the constructed, becomes part of it through a semiotic 
mediation that allows to develop a reflective praxis,  which is understood as: “what we 
know and how we come to know it is circumscribed by ontological positions and processes 
of meaning production that shape a certain kind of rationality that allows us to pose certain 
problems” (Radford, 2004, p. 13) 

If mathematics is essentially symbolic, it is important to observe the role of the signs 
that allow individual to mediate knowledge and it is through them that the actions and 
reflections of this are oriented, so it is suitable to know the conceptions of the teachers who 
would be guiding their use on the signs about the representation of the number line. 
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Radford states that " The sign has meaning when it is related to other signs" (Radford 
2006b, p. 8), so meaning would be given to the representation when the explicit signs are 
being related to those implicit on the number line model. 

Regarding the treatment of signs, we are interested to know the use made of them either 
as index or symbols, Pierce (2005) which will be relevant for an adequate symbolic 
treatment, throughout his teaching activity by the treatment of the number line and in the 
use of the properties of order and homogeneity. 

For the purposes of this research, on the use of signs we have incorporated the 
restriction of homogeneity, Nemirovsky (2003) in the number line in which the only 
property of the objects represented is their position in order to investigate the inclination of 
teachers to modify or not, the spatial conditions of it under changing conditions,  as well as 
its interpretation of the order and spatial location of the numbers and their marks on the 
signs present in the use of the model. 

In the present research, the symbolic management of the line is present when teachers 
adjust the representation of it, depending on the needs of the problems posed and the 
semiotic treatment is characterized by recognizing the mathematical norms of order, spatial 
location and relative position of the numbers and marks represented. 

Methodology 
About the sample 

The present research explored the conceptions of 72 secondary school teachers in 
service from Honduras, who teach students between 12 and 15 years old, research that was 
developed through an online workshop as part of the Congress of Educational Mathematics 
(COME) in Honduras in 2021, aimed at teachers from all over of the country, the open call 
was freely attended by those interested in the improvement of mathematics teaching in that 
country. 
Method 

The workshop was carried out through Zoom supported using the GeoGebra classroom 
platform, through a questionnaire where teachers could manipulate graphic representations 
and interact with the researcher either in front of all participants, in a particular and 
instantaneous way or even leave written comments to have subsequent communication. 
This was useful to analyze more broadly their opinions and conceptions to management on 
the model of the number line. 

The questionnaire was split into eight tasks associated with the management of the 
number line to know the conceptions of the teachers in front of tasks that require managing 
the number line, specifically about order and homogeneity.  

In general, graphs of number lines were presented in which the position of relevant 
marks such as zero was asked, as well as the choice of lines where zero is not in the center 
and maybe they have chosen a more appropriate numerical representation. We also ask for 
their opinion about the treatment in class of the relevance of a representation of extreme 
numbers by its position. In addition, we proposed representations that require considering 
the relative position of given numbers, according to the available information, both in 
correct and incorrect cases. The reason for this being that these tasks would show us the 
conceptions of the teachers and the recurring schemes that their students learn in math 
classes. 

 For the analysis of the data, we have considered the choice of certain graphs as a 
disposition towards management. At the same time, we observe verbal indicators in the use 
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of the terms: scale, direction and measure that are adequate to manage the representation 
institutionally leaving aside the symbolic interpretation. 

Results and Discussion 
In the first task, teachers were presented with a number line and asked to place zero on 

it, 62.5% placed it in the center, also 11% chose on the left most mark because they were 
considering only positive numbers, which could reflect their usual practice. 

In the second task we asked: "Of the number lines shown below, which one would you 
choose to propose to your students if you want to place the numbers 120 and – 3 on it? 
Explain" 

 
Figure 1: Task 2. Choosing the right line. 

In the first part of the question, most of the teachers (59.7%) chose a.  In the second 
part, the justifications were: 1) Because there is more space (40%); 2) Scales can be made 
to locate the points (2%); 3) A larger amount is required for positive numbers than for 
negative ones (6%) and they did not answer (32%). 

Of the 59.7% who chose option a., 58.1%. that is, 34.7% of the total, justified that there 
was more "space" or "distance" between the numbers, which makes us see the use and type 
of favorite number line that is intended to be taught in the class, as well as the type of 
examples that will be worked mostly are positive. 

The third task asked: "How would you explain to your students that the following 
number line can be used to place the numbers -200 and 5 on it?" 

 

 
Figure 2: Task 3. Explanation of the type of line used. 

Teachers who included the terms: scale, space and direction are 45.9%, who, 
apparently, considered change in representation, showing a form of management over 
representation that consists of using segments of 20 in 20 units, for example. 

With the purpose to deepening the conceptions and justifications of teachers when faced 
with this type of task, below, we show one of their answers to this case. 

P2: I would explain to they that -200 is farther from zero, therefore a larger scale is 
needed to represent it, on the contrary, 5 is closer to zero, so you don't need much 
space. 

This justification shows us that he was thinking of possibly using a scale on one side of 
the number line and having less space on the other side. 

Other justifications for the choice of this type of line and that are associated with the 
scale, are the following: 
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P7: We can make divisions of 5 cm that represent 40 units with which to the left of the 
zero we would have 5 divisions and to the right side that we should divide it into 8 
equal parts, where in the first division we would represent the 5.  

P60: This line can be used to locate -200 because it has enough space from the zero 
point and can be located from 5 to 5, 10 to 10, or 20 to 20 for the negative side, and 
for the positive side it takes up less space because there are only 5 positives (sic).  

Understanding both cases, the scale as a form to adopt the numerability in which it is 
intended to avoid placing many marks and their respective labels. 

 On the other hand, 45.8% did not answer, which possibly means that they had not had 
contact with this situation.  

Regarding the order, spatial location, and relative position of numbers on the line, we 
request in the fourth task: to place the missing numbers in the marks that appear on the next 
number line. 

 

 
Figure 3: Task 4. Location of missing numbers. 

Most teachers properly used the unit segments and correctly located the missing 
numbers, which would be showing that they went through the process of identifying the 
magnitude of the unit, only the answers of four teachers showed that they have not 
considered it, taking the distance from zero to 2 like the unit, hence the error. We also 
observed that in the treatment of the magnitude in these last answers the Gestalt 
relationship between background and form was present in the representation and it was not 
well resolved. 

Insisting on the order and interpretation of the space between the numbers, we proposed 
the next line warning that it is wrong, then we asked to reorder it, as well as the drawing of 
a suitable number line. 

 

 
Figure 4: Task 5. Interpretation of the space between numbers. 

The results tell us that 40.7% consider the unit segments, 51.4% did not answer the 
question, while we have 7% of teachers who either do not take distances between numbers 
or consider that the representation is not incorrect to no consider the relative position of the 
numbers.  

Regarding the use of signs to place numerical values on the number line we asked to 
place the numbers -5, -3, -1, 4 on the next number line 
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Figure 5: Task 6. Location of numbers. 

In this task, the teachers (33%) used small vertical marks or points to place the 
requested numbers, as well as extra marks that served as a guide for the position taking care 
that the distance between it was relatively the same, although they were not accompanied 
by the respective numbers having an approximation that we can call local position. 

There are also a few (26%) who only place the marks on the requested numbers, 
visually estimating their position, which suggests that they use a global position in this 
task. 

In task 7, that requested to reorder an incorrect representation, from all the teachers who 
answered, 50% ordered the numbers properly, which shows that the order between them 
was not a conflict. However, in task 8 the zero was also missing, so the number line had to 
be rebuilt assigning the necessary space, 37.5% of the teachers resolved correctly, however, 
8.3% simply added the mark and number in the middle of 1 and -1 without considering the 
location and the unit space. 

Conclusions  
In the development of the tasks, it is important to note that only half of the teachers 

answered consistently the tasks of the questionnaire shown in GeoGebra, possibly for two 
reasons: the first may be the need of the management of virtual tools, and the second 
because they had never faced similar situations in which they had to manage their own 
representation by their own. 

We detected in the results a certain tendency to use some favorite representations such 
as placing the 0 in the center or the inclination to structures linking to the positives numbers 
that suggest a dominant presence of their needs to teach in the classroom. These 
conceptions show us a strong and utilitarian use of the model. In addition to that, when 
teachers agree to modify the representation, their suggestions are linked to the idea and 
control by mean of scale that they can rule, that apparently solves the problems of 
representation and interpretation in their teaching work.  

The order is not a problem for them or even adding the missing numbers and the spatial 
location is respected in cases of need, however, it is not identified as an obligatory 
condition or as a symbolic need of the number line, but as a convention that must be 
respected, in certain cases. 

The teachers' conceptions of the requirements of symbolic representation are that it is 
ordered and that the position has a homogeneous basis, but that it can be modified 
according to the scale used. This suggests that there are modifications to the representation 
for utilitarian purposes, but the symbolic properties that make it function as a mathematical 
model are not detected. 
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La recta numérica es un modelo que en la enseñanza es usada para medir, contar, ordenar 
e incluso operar, lo que requiere de una interpretación simbólica, luego indagamos las 
concepciones de 72 profesores cuando gestionan el modelo de la recta numérica asociada 
al orden, la ubicación espacial y la posición relativa entre números y marcas. En un taller 
por internet, encontramos que, los participantes consideran que la utilidad del modelo está 
en la manipulación y no ven la necesidad de modificarlo, pese a los requisitos del 
problema, dando por sentado su utilidad y el control que les puede dar recursos como el 
cambio de la escala numérica. Tampoco se percatan de las propiedades simbólicas para la 
interpretación de la numerabilidad y la operatividad. 

Palabras clave: recta numérica, concepciones de profesores, gestión de artefactos 

La recta numérica funciona como un modelo para la enseñanza, ya que sirve para 
medir, contar, ordenar u operar. Sus diversas presentaciones permiten incluso usarla como 
una especie de apunte (Heirdsfield, 2011), donde, en este último caso no hay necesidad de 
unidades homogéneas entre números consecutivos ni de las propiedades de una 
representación homogénea (Nemirovsky, 2003). 

Consideramos que el modelo de la recta numérica es más que una metáfora (Doritou & 
Gray, 2007) porque nos permite abordar las propiedades numéricas mediante una 
representación simbólica y su uso debe considerar propiedades como la de la representación 
homogénea que da sentido espacial a los números de acuerdo con su posición, así como a 
las marcas y a los intervalos entre ellos, estas actividades simbólicas que son la base para la 
numerabilidad.  

Por ello, es deseable que el profesor tenga en cuenta que estos signos están regulados de 
manera que le dan sentido matemático, por lo que indagamos las concepciones de 
profesores hondureños de secundaria en activo, sobre su disposición para hacer cambios a 
la representación según las necesidades, así como al tratamiento simbólico considerando el 
orden, la ubicación espacial y la posición relativa de números y marcas sobre la recta 
numérica para desarrollar un tratamiento simbólico en la clase.  

Antecedentes 
Actualmente, se ha establecido la importancia de que los profesores adquieran tres tipos 

de conocimientos para desarrollar su docencia con efectividad, lo que requiere de: 1) 
Conocimiento común del contenido; 2) Conocimiento especializado del contenido; y 3) 
Conocimiento del contenido y de los estudiantes, tal como lo afirma Hill, Ball, et al. 
(2008).  

En esta investigación nos referiremos al conocimiento especializado del contenido, 
asociado a la interpretación simbólica, al uso y la gestión de la recta numérica en tareas de 
numerabilidad donde se destacan las propiedades de la homogeneidad y el orden, esto es, el 
uso de un modelo donde la posición de los signos es relevante tanto por su valor, como por 
sus posiciones relativas asociadas al orden y a la desigualdad para desempeñar funciones de 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1848



modelo para la numerabilidad. 
La llamada recta numérica es susceptible de dar cuerpo a distintas operaciones 

aritméticas en los niveles básicos, en particular, la podemos encontrar en el trabajo que se 
refiere a las relaciones de desigualdades numéricas y de las inecuaciones lineales 
(Membreño y Acuña, 2021), lo cual requiere de interpretar el orden, la posición relativa y la 
ubicación espacial de números y marcas desde índices a símbolos de una manera 
intencional.  

En general, los profesores usan la recta numérica como una herramienta pedagógica que 
sirve como ayuda para el estudiante, ya que da cuerpo a ciertas relaciones, sin embargo, no 
siempre se percatan de que también es una estructura abstracta, que es un modelo simbólico 
con algunas restricciones (Doritou & Gray, 2010), que acepta un tratamiento como 
representación del sistema numérico y que además da cuerpo a la metáfora de la 
numeración (Doritou & Gray, 2007).  

Desde nuestro punto de vista, si bien es cierto que la recta numérica da cuerpo a la 
metáfora de la numerabilidad, ella misma está formada por una serie de signos con 
propiedades matemáticas que son de dos tipos: explícitas e implícitas, las que deben ser 
consideradas para su enseñanza.  

En el caso los signos explícitos tenemos aquellos que claramente serán detectados y 
utilizados para la interpretación como en el caso de los números y las marcas asociadas a 
ellos, los números tienen valor numérico por lo que adquieren una posición ordinal, pero 
también son las etiquetas numéricas para las marcas asociadas, lo que permite el orden de 
los objetos representados. Sin embargo, hay otros signos implícitos como los segmentos 
que, aun siendo relevantes para la interpretación, pasan frecuentemente desapercibidos, por 
ejemplo, cuando representan la norma de la unidad homogénea de la numeración o en el 
caso de representar los conjuntos solución de desigualdades numéricas e inecuaciones 
lineales, (Membreño y Acuña, 2021). 

Objetivo 
Pretendemos investigar las concepciones y las justificaciones del profesor de secundaria 

cuando está en condiciones de gestionar el tipo de representación del modelo de la recta 
numérica que se usaría bajo condiciones cambiantes, lo que implica aceptar una gestión 
sobre la representación, así como el uso de los signos involucrados en el modelo ya sean 
marcas o números con base en el orden, la ubicación espacial y la posición relativa de esta 
representación cuando es homogénea. 

Marco teórico 
Uso de modelos como herramientas simbólicas 

La recta numérica es una representación simbólica, formada por signos que deben ser 
interpretados matemáticamente para usarlo como un modelo para la enseñanza, lo que 
incluye detectar el papel de los signos implícitos y explícitos como mediadores simbólicos.  

La Teoría de la Objetivación sugiere que, el aprendizaje está ligado al uso de 
instrumentos, signos o artefactos que no son ayudas para el aprendizaje, sino medios 
semióticos cuya presencia y uso imprimen un sello distintivo sobre lo construido, llega a 
ser parte de éste a través de una mediación semiótica que permite desarrollar una praxis 
reflexiva, la cual se entiende como: “(lo) que conocemos y la manera en que llegamos a 
conocerlo esta circunscrito por posiciones ontológicas y procesos de producción de 
significados que dan forma a cierta clase de racionalidad que permite plantear ciertos 
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problemas” (Radford, 2004, p. 13) 
Si la matemática es esencialmente simbólica, es importante observar el papel de los 

signos que permiten al individuo mediar el conocimiento y es a través de ellos que se 
orientan las acciones y reflexiones de este, por ello es conveniente conocer las 
concepciones de los profesores que estarían orientando su uso sobre los signos presentes en 
la representación de la recta numérica.  

En particular, Radford afirma que “El signo tiene significado cuando está relacionado 
con otros signos” (Radford 2006b, p. 8), por lo que se le daría significado a la 
representación cuando se están relacionando los signos explícitos con los implícitos sobre 
el modelo de la recta numérica. 

Respecto al tratamiento de los signos, nos interesa detectar el uso que se hace de ellos 
ya sea como índices o símbolos, Pierce (2005) lo que será relevante para un adecuado 
tratamiento simbólico, a lo largo de su actividad docente, en el tratamiento de la recta 
numérica y en el uso de las propiedades de orden y homogeneidad. 

Para los fines de esta investigación sobre el uso de los signos hemos incorporado la 
restricción de la homogeneidad, Nemirovsky (2003) de la recta numérica en la que la única 
propiedad de los objetos representados es su posición con el fin de para indagar la 
inclinación de los profesores para modificar o no, las condiciones espaciales de la recta 
numérica bajo condiciones cambiantes, así como de su interpretación del orden y la 
ubicación espacial de los números y de sus marcas sobre los signos presentes en el uso del 
modelo. 

En la presente investigación, la gestión simbólica de la recta está presente cuando los 
profesores ajustan la representación de la recta numérica, dependiendo de las necesidades 
de los problemas planteados y el tratamiento semiótico se caracteriza por reconocer las 
normas matemáticas de orden, ubicación espacial y posición relativa de los números y 
marcas representadas. 

Metodología 
Sobre la muestra 

La presente investigación exploró las concepciones de 72 profesores de secundaria de 
Honduras, que atienden estudiantes de entre 12 y 15 años, investigación que se desarrolló 
mediante un taller en línea como parte del Congreso de Matemática Educativa (COME) en 
Honduras en el año 2021, dirigido a profesores de todo el país, la convocatoria abierta fue 
atendida libremente por los interesados para la mejora de la enseñanza de las matemáticas 
en dicho país. 
Método 

El taller se desarrolló vía Zoom apoyado en el uso de la plataforma GeoGebra 
classroom, a través de un cuestionario donde los profesores podían manipular 
representaciones gráficas e interactuar con la investigadora ya sea frente a todos los 
participantes, de manera particular e instantánea o incluso dejar comentarios por escrito 
para tener comunicación posterior, esto fue útil para analizar más ampliamente sus 
opiniones y concepciones de su gestión sobre el modelo de la recta numérica. 

El cuestionario estaba dividido en ocho tareas asociadas a la gestión de la recta 
numérica con el fin de conocer las concepciones de los profesores frente a tareas que 
requieran de gestionar la recta numérica, específicamente sobre el orden y a la 
homogeneidad.  
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De manera general, se presentaron gráficas de rectas numéricas en las que se 
preguntaba por la posición de marcas relevantes como el cero, así como la elección de 
rectas en donde el cero no está en el centro y puede ser una más adecuada representación 
numérica. Solicitamos también su opinión sobre el tratamiento en clase de la pertinencia de 
una representación de números extremos por su posición. Además, les propusimos 
representaciones que requieren considerar la posición relativa de números dados, según la 
información disponible, tanto en casos correctos como incorrectos. Debido a que estas 
tareas nos mostrarían las concepciones de los profesores y los esquemas que aprenden sus 
estudiantes en las clases de matemáticas. 

 Para el análisis de los datos, hemos considerado la elección de ciertas gráficas como 
una disposición hacia la gestión, al mismo tiempo observamos indicadores verbales en el 
uso de los términos: escala, dirección y medida que son adecuados para gestionar la 
representación institucionalizada, dejando de lado la interpretación simbólica.  

Resultados y Discusión 
En la primera tarea, se les presentó a los profesores una recta numérica y se les pidió 

ubicar al cero en ella, 62.5% lo colocan en el centro, también el 11% eligió en el extremo 
izquierdo posiblemente porque estaban considerando los números positivos, lo que podría 
ser reflejo de su práctica usual. 

En la segunda tarea pedimos: “De las rectas numéricas que se muestran abajo ¿Cuál 
elegiría para proponérsela a sus estudiantes si desea colocar sobre ella los números 120 y 
– 3? Explique” 

 

 
Figura 1: Tarea 2. Elección de la recta adecuada. 

En la primera parte de la pregunta la mayoría de los profesores (59.7%) elije a. En la 
segunda, algunas de las justificaciones son: 1) Porque hay mayor espacio (40%); 2) Se 
puede hacer escalas para ubicar los puntos (2%); 3) Se requiere una cantidad mayor para 
los números positivos que para los negativos (6) y no contestaron (32%). 

Del 59.7% que eligieron la opción a., el 58.1%. es decir, el 34.7% del total justificaban 
que había más “espacio” o “distancia” entre los números, lo que nos hace ver que el uso y 
el tipo de recta favorito están pensadas para impartir la clase, así como el tipo de ejemplos 
que serán mayormente positivos. 

En la tercera tarea se solicita: “¿Cómo les explicaría a sus alumnos que se puede 
utilizar la siguiente recta numérica para colocar sobre ella los números -200 y 5?” 

 

 
Figura 2: Tarea 3. Explicación del tipo de recta usada. 
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Los profesores que incluyen los términos: escala, espacio y dirección son el 45.9%, 
quienes, al parecer, consideran algún tipo de cambió en la representación, mostrando una 
forma de gestión sobre la representación que consiste en usar segmentos de 20 en 20 
unidades, por ejemplo. 

Con el fin de profundizar en las concepciones y justificaciones de los profesores cuando 
se enfrentan a este tipo de tareas, a continuación, mostramos una de sus respuestas para el 
caso. 

P2: Les explicaría que el -200 está más alejado del cero, por lo tanto, se necesita una 
escala más grande para representarlo, por el contrario, el 5 está más cerca del cero, 
así que no es necesario mucho espacio. 

Justificación que nos muestra que posiblemente está pensando en utilizar una escala en 
un lado de la recta numérica y en el hecho de contar con menos espacio al otro lado. 

Otras justificaciones para la elección de este tipo de recta y que están asociadas con la 
escala, son las siguientes: 

P7: Podemos hacer divisiones de 5 cm que representen 40 unidades con lo cual a la 
izquierda del cero tendríamos 5 divisiones y a la derecha una sola que deberíamos 
dividirla en 8 partes iguales donde en la primera división representaríamos el 5. 

P60: Esta recta se puede utilizar para ubicar -200 porque tiene el espacio suficiente 
desde el punto cero y se puede ir ubicando de 5 en 5, de 10 en 10, o de 20 en 20 
para los lados negativos, y para los lados positivos ocupa menos espacio porque 
solo son 5 positivos. 

Entendiendo en ambos casos, la escala como una forma de numerabilidad en la que se 
pretende evitar colocar muchas marcas y su respectiva etiqueta. 

 Por otro lado, el 45.8% no contestó, lo que posiblemente significa que no habían tenido 
contacto con esta situación.  

Respecto al orden, ubicación espacial y la posición relativa de números sobre la recta, 
solicitamos en la cuarta tarea: colocar los números faltantes en las marcas que aparecen en 
la siguiente recta numérica. 

 

 
Figura 3: Tarea 4. Ubicación de números faltantes. 

La mayoría de los profesores utilizan adecuadamente los segmentos unitarios y ubican 
correctamente los números faltantes, lo que estaría mostrando que pasan por el proceso de 
identificación de la magnitud de la unidad, sólo las respuestas de cuatro profesores 
muestran no haberla considerado, tomando la distancia del cero al 2 la unidad de ahí el 
error. Observamos también que en el tratamiento de la magnitud en estas últimas respuestas 
no se resuelve bien la relación Gestalt entre fondo y forma presentes en la representación. 

Insistiendo sobre el orden y la interpretación del espacio entre los números, propusimos 
la siguiente recta advirtiendo que está incorrecta, pedimos reordenarla, así como el dibujo 
de una recta adecuada. 
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Figura 4: Tarea 5. Interpretación del espacio entre los números. 

Los resultados nos dicen que el 40.7% respeta los segmentos unitarios, que el 51,4% no 
contestan la pregunta, mientras que tenemos 7% de profesores que o bien no respetan 
distancias entre números o consideran que no la representación no es incorrecta dejando de 
considerar la posición relativa de los números.  

En lo relativo al uso de signos para colocar valores numéricos sobre la recta numérica 
pedimos colocar los números -5, -3, -1, 4 en la siguiente recta numérica  

 

  
Figura 5: Tarea 6. Ubicación de números. 

En esta tarea, los profesores (33%) usaron pequeñas marcas verticales o puntos para 
colocar los números solicitados, así como marcas extras que le sirven de guía para la 
posición cuidando que las distancia entre ella sea relativamente la misma, aunque no estén 
posición local. 

También hay unos pocos (26%) que sólo colocan las marcas sobre los números 
solicitados, estimando la visualmente su posición, lo que nos sugiere que usan una 
estimación global en esta tarea. 

En la tarea 7 que solicitaba reordenar una representación incorrecta todos los profesores 
que contestaron (50%) ordenaron adecuadamente lo que muestra que el orden entre ellos no 
es un conflicto, sin embargo, en la tarea 8 faltaba además el cero, por ello se debía rehacer 
la recta asignando el espacio necesario, el 37.5% de los profesores resolvió correctamente, 
sin embargo, el 8.3% simplemente agregó la marca y el número en medio del 1 y el -1 sin 
considerar la ubicación y el espacio unitario. 

Conclusiones  
En el desarrollo de las tareas es importante notar que solamente la mitad de la cantidad 

total de profesores respondió consistentemente las tareas del cuestionario mostrado en 
GeoGebra, posiblemente por dos razones:  la primera se puede deber al manejo de las 
herramientas virtuales y la segunda, porque nunca se habían enfrentado a situaciones 
similares en las que tenían que gestionar la propia representación por su cuenta.  

Detectamos en los resultados cierta tendencia del uso de algunas representaciones 
favoritas como la de colocar el 0 en el centro o la inclinación por estructuras ligadas a los 
positivos que sugieren una presencia dominante de sus necesidades en el salón de clase, 
estas concepciones muestran un uso fuerte y utilitario del modelo. Además, cuando los 
profesores aceptan modificar la representación ésta está ligada a la idea y al control que les 
da la escala que pueden dominar, lo que al parecer resuelve los problemas de 
representación e interpretación en su labor docente.  

El orden no es un problema para ellos o incluso agregar los números faltantes y la 
ubicación espacial es respetada en los casos de necesidad, sin embargo, no se identifica 
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como una condición obligada ni como una necesidad simbólica de la recta numérica, sino 
como una convención que debe ser respetada, en ciertos casos. 

Las concepciones de los profesores respecto a los requisitos de la representación 
simbólica son que esta es ordenada y que la posición tiene una base homogénea, pero que 
puede ser modificada según la escala que se use. Lo anterior sugiere que hay 
modificaciones a la representación con fines utilitarios, pero no se detectan las propiedades 
simbólicas que lo hacen funcionar como un modelo matemático. 
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This study explores what affects teachers’ decision-making when they intervene in small groups. 
I draw specifically on professional noticing to examine teachers’ decision-making. Working with 
two novice teachers, I observed their mathematics lessons in which both teachers used small 
groups as an instructional structure to teach mathematical concepts and conducted follow-up 
interviews to have them elaborate on their intervention. The analysis of both teachers’ 
elaboration on their specific intervention indicates that two teachers decided to intervene in 
small groups based on interpretations of certain actions as patterns, meaning what teachers 
have constructed working with students over weeks or months, not only what happened at the 
moment. This finding suggests that conceptualization of profession noticing needs to be 
expanded. Implications for research and teacher educators are offered. 

Keywords:  Elementary School Education; Teacher Education; Teacher Noticing; Group Work 

Leslie, a fourth-grade teacher, has students work together with each other in small groups to 
solve a mathematical task. The teacher notices one student with head down and two students 
talking quietly to each other in a group of three students. The teacher approaches the group and 
decides to intervene in the small group by encouraging the student who has his head down to 
participate actively in the group work and the two students to include the other student in their 
group work. A question arises in terms of the teacher’s decision-making: What affects the 
teacher’s decision-making of how to intervene? This teacher’s decision might be based on what 
she noticed in the immediate moment and on the understanding the teacher has constructed while 
working with students over weeks or months. In this paper, I try to answer this question by 
examining how two beginning teachers explained their decision-making related to how to 
intervene in small groups in mathematics instruction. I draw particularly on the framework of 
professional noticing (Jacobs, Lamb, & Philips, 2010) to investigate the two beginning teachers’ 
decision-making. 

Perspectives 
There are different ways for researchers to conceptualize teacher noticing (See Jacobs and 

Spangler (2018) and Sherin, Russ, and Colestock (2011) for details). I draw specifically on 
professional noticing (Jacobs et al., 2010) in this paper because it helps us understand what 
informs teachers’ decision-making. In general, professional noticing consists of three interrelated 
cognitive components- attention (what teachers attend to in classroom activity), interpretation 
(how they make sense of what they attend to) and decisions of how to respond (how they plan to 
respond). Even though these three components “are tied together conceptually and temporally” 
(Sherin et al., 2011, p. 81), I view interpretation as an important component that can inform what 
affects teachers’ decision-making during teachers’ intervention in small groups. 

The current dominant assumption of professional noticing as a practice is that it can inform 
“teachers’ in-the-moment decision-making” (Jacobs & Spangler, 2018, p. 772). Viewing 
professional noticing as part of in-the-moment decision-making indicates that teachers make 
decisions about how to respond to what happens because they interpret what happens as 
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something to respond to immediately and urgently. For example, Leslie in the scenario might 
have attended to the head-down student, interpreted his action as being off-task, and decided to 
encourage them to work together because she felt an immediacy of correcting his off-task action. 
Alternatively, she could attend to the head-down student, interpreted his action as a sign of 
boredom, and decided to have the two students include the head-down student. 

There has been an argument in which the notion of professional noticing should be expanded. 
Louie (2018) pointed to “the limitations of conceptualizing teacher noticing in terms of 
individual teachers’ skill at internal mental processes” (p. 68). She argued that the current 
conceptualization does not explain that noticing is socially and culturally constructed. It needs to 
be expanded to recognize impacts of socially and culturally constructed ideas, such as deficit 
views, related to students and their behavior on what teachers notice, which affects teacher’s 
decision-making. Her argument suggests that teachers’ decision-making might be not simply 
based on what they interpret as immediate and urgent but also certain ideas constructed in the 
long term. Building on this idea, I argue for considering patterns, meaning what teachers have 
constructed working with students over weeks or months, to be a part of what affects their 
decision-making. 

Teachers might make decisions of how to respond based on patterns they have observed of 
students in terms of actions and what happened as a result of the actions, not simply their in-the-
moment noticings. Patterns teachers have observed over weeks or months shape teachers’ 
perceptions. When teachers attend to certain actions, they may see them as patterns and interpret 
such actions based on patterns. As such, interpreting certain behaviors as patterns is not likely to 
be the same as noticing something immediate and urgent in that it is shaped by teachers’ 
perceptions of students built up over weeks or months.  

In terms of intervention in small groups, noticing certain patterns might affect teachers’ 
decisions of how to intervene in small groups. Leslie in the scenario earlier might interpret the 
student’s action (of his head down) as typical behavior based on what she had observed 
repeatedly over months and decide to respond to such action. Literature on intervention in small 
groups knows little of what affects teachers’ decision-making drawing on teacher noticing and 
professional noticing. 

In this paper, I argue that teachers might make decisions of how to respond to students and 
their behaviors in the context of small groups not only based on the current dominant 
conceptualization of noticing (what happens at the moment) but also on the expanded 
conceptualization (patterns). As such, the purpose of this paper is to understand what affects 
teachers’ decision-making when they intervene in small groups in mathematics instruction 
drawing on both the current and expanded conceptualizations of teacher noticing. 

Methods 
To collect data, I worked with two beginning teachers, Leslie and Marva (pseudonyms). 

They were novice teachers in the sense that they were in their second or third year in teaching 
careers in 2018-2019. Leslie taught fourth grade students in a city area. Marva taught first grade 
students in an urban area. I recruited them because they reported they implemented small groups 
regularly as an instructional structure to teach mathematical concepts and decided to participate 
in the study. To collect the data, I conducted three stimulated recall interviews per teacher. 
Before each stimulated recall interview, I first video-recorded the entire length of a mathematics 
lesson. As a result, I obtained video recordings of six different mathematics lessons, three of 
which came from each teacher. Watching each video recording on my own, I identified four or 
five short moments of intervention in each video where I could see teachers intervene in and 
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interact with students in a productive way (e.g., encouraging students to participate actively in 
group work or asking students to explain their strategies). During each stimulated recall 
interview, I had the teacher watch each intervention I had identified prior to the interview. After 
watching each intervention, I asked the teachers questions building on three components of 
professional noticing to elaborate on what they noticed, what they thought was happening in the 
small group, and why they intervened in the small group the way they did. The interview data 
were audio-recorded and fully transcribed for analysis. The data sources were 24 intervention 
excerpts, four of which were obtained from each of the six interview transcripts. Each 
intervention excerpt consisted of two parts- 1) a transcript of intervention and 2) teachers’ 
elaboration on their intervention. There were three steps I took to analyze the data. First, I read 
through an intervention transcript and the teacher’s elaboration to make sense of attention, 
interpretation, and decisions of how to intervene in small groups. Second, I examined how the 
teachers explained their intervention in each intervention excerpt in terms of interpretation of 
what happened in small groups, whether it was based on immediacy or patterns over time. Third, 
by comparing each interpretation, I identified certain regularities related to interpretation across 
intervention excerpts. 

Finding(s) 
As a result of the data analysis, I found that two teachers decided to intervene in small groups 

based on interpretations of certain actions as patterns, not only what happened at the moment. To 
illustrate this finding, I present a part of an excerpt of interaction between Leslie and a group of 
students. This excerpt comes from Leslie’s first lesson. In this lesson, the students were asked to 
work together on choosing ingredients to make the meal from the list on the worksheet. They had 
to figure out the cost of dinner by adding the cost of ingredients that they chose to make the 
meal. This intervention happened when, as she was monitoring the classroom, Leslie looked at 
the numbers on the worksheet that a group of four students (Alice, Jacob, Fred and Bob) had 
worked on. The teacher began to initiate conversation with the small group by asking questions. 

1. Leslie: (Points to some numbers on the worksheet expecting to hear from anyone in the 
small group) So what's going on over here? What's this? 

2. Fred: This is the number of- (interrupted by Leslie who asked another student questions). 
3. Leslie: Alice, what's this? What are all the numbers over here? 
4. Alice: This is, uh, addition problem ... for this. 
5. Leslie: What's two plus six? What’s that? 
6. Alice: Eight (answers quietly.) 
7. Leslie: But where did you get those numbers from? I don't see two and six. 
8. Alice: (Points numbers the group chose on the worksheet) From the dollars... [inaudible] 

… two numbers. 
9. Leslie: Okay. So you're taking just the dollars and adding them up? 
10. Alice: Yeah. 
11. Leslie: Okay. Jacob, do you think that's the best way of doing this? 

This excerpt showed Leslie’s decision-making based on what she thought happened at the 
moment. According to the teacher’s elaboration in relation to this intervention, when she looked 
at the numbers on the group’s worksheet, she was wondering “if they were estimating” or “if 
they were just taking the number, the dollar values, or what they were going on.” Leslie attended 
to what she saw on the worksheet and interpreted what the students did as something she needed 
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to respond immediately. Based on her sense of its immediacy, she decided to ask the small group 
questions to make sure they were doing right.  

Leslie’s elaboration on her intervention in relation to her intervention in this excerpt also 
showed how the teacher’s decision-making was based on patterns, not only on what happened at 
the moment. In Line 2, Fred tried to answer Leslie’s question in Line 1. She interrupted his 
initiation to talk. She chose to call on Alice first to ask questions. The teacher was asking Alice 
to explain the group’s strategy to solve an addition problem they created. From Line 3 to Line 
10, she intervened in the small group by asking students to explain their mathematical thinking. 
After listening to Alice’s explanation, she shifted her attention from Alice to Jacob to ask him to 
evaluate Alice’s explanation (Line 11). Leslie’s elaboration on this specific intervention shows 
that she interpreted Fred’s initial response (Line 2) as patterns she has known of what might 
happen when she allows Fred to talk. She interpreted their actions as patterns she has constructed 
of how Fred, Alice, and Jacob might do in group work without her intervention. Fred “could 
have just taken over and been writing the answers” and Alice and Jacob “could have been sitting 
there the whole time.” Otherwise, it would have been possible for her to not interrupt Fred so 
that he could continue to provide his explanation. Instead, however, she decided to call on Alice 
first to ask questions. Like shown in the example above, both teachers’ decision-making during 
intervention was affected by patterns, not only what they interpreted as something immediate 
and urgent. 

Discussions and Implications 
I demonstrated how patterns (what teachers have constructed working with students over 

weeks or months) could affect teachers’ intervention in small groups. There are two points to 
discuss. First, this paper contributes to expanding the current dominant conceptualization of 
professional noticing based in-the-moment noticings. Like shown in Louie’s (2018) argument, 
the notion of professional noticing should be expanded, in this paper, to include patterns as part 
of what affects teachers’ decision-making during intervention. The expanded conceptualization 
of professional noticing could be applied to teachers’ decision-making in other teaching contexts, 
such as whole class or independent work. Second, this paper provides a more detailed 
understanding of what affects teachers’ decision-making during intervention in small groups. 
Literature on intervention in small groups has not attended to teachers’ decision-making using 
teacher noticing and professional noticing. Based on this study, researchers with an interest in 
intervention in small groups may examine how patterns affect teachers’ intervention in small 
groups in a productive way. A few questions to explore include: what types of patterns do 
teachers notice? How would patterns be related to socially and culturally constructed ideas (e.g., 
deficit views towards minority students)? In terms of teacher education, teacher educators may 
need to support novice teachers to be aware of what affects their decision-making during 
intervention in small groups in mathematics instruction. Teacher educators may design an 
instructional activity in which novice teachers analyze their elaboration on their interaction with 
students in small groups to examine how patterns affect their decision-making. 
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Productive use of student mathematical thinking is a critical aspect of effective teaching that is 
not yet fully understood. We have previously conceptualized the teaching practice of building on 
student mathematical thinking and the four elements that comprise it. In this paper we begin to 
unpack this complex practice by looking closely at its third element, Conduct. Based on an 
analysis of secondary mathematics teachers’ enactments of building, we describe the critical 
aspects of conducting a whole-class discussion that is focused on making sense of a high-
leverage student contribution. 

Keywords: Classroom Discourse, Communication, Instructional Activities and Practices.  

The mathematics education community has advocated using students’ mathematical thinking 
as a critical component of whole-class instruction (e.g., Association of Mathematics Teacher 
Educators, 2017; National Council of Teachers of Mathematics, 2014). Elsewhere, we have 
argued that some instances of in-the-moment student thinking are particularly high-leverage and, 
if taken advantage of productively, can be used to engage students in a whole-class discussion 
focused on making sense of the important mathematical ideas that underlie the student thinking 
(Leatham et al., 2015). Taking advantage of such instances, however, requires that a teacher 
coordinate a collection of teaching actions into a coherent practice. Furthermore, certain aspects 
of this practice do not occur naturally in whole-class instruction (Stockero et al., 2020). Thus, 
taking advantage of such instances is a complex practice.  

Grossman and colleagues (2009) have described the decomposition of teaching practices into 
their “constituent parts” (p. 2069) for the purpose of better understanding and improving 
teachers’ ability to engage in complex practices. We have previously conceptualized the teaching 
practice of building on student mathematical thinking and decomposed it into four elements that 
comprise the practice: “(1) Establish the student mathematics of the MOST so that the object to 
be discussed is clear; (2) Grapple Toss that object in a way that positions the class to make sense 
of it; (3) Conduct a whole-class discussion that supports the students in making sense of the 
student mathematics of the MOST; and (4) Make Explicit the important mathematical idea from 
the discussion” (Leatham et al., 2021, p. 1393). In this paper we further decompose the practice 
of building on student thinking by looking closely at its third element, Conduct. Specifically, we 
examine this research question: What are critical aspects of the Conduct element of building as 
revealed through teachers’ attempts to enact the practice? 

Literature Review 
Conducting a whole-class discussion that engages students in making sense of an instance of 

student mathematical thinking is a complex teaching practice that requires deliberate actions by 
the teacher. Research on teacher moves during whole-class discussion sheds some light on a 
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range of teacher actions that can support student sense making. Some actions prompt students to 
make sense of an individual student contribution by, for example, pressing for justification (e.g. 
Drageset, 2014; Ellis et al., 2019), asking probing questions that encourage other students to 
engage with specific details of the contribution (e.g., Webb et al., 2019), requesting that students 
evaluate the correctness of an idea (e.g., Drageset, 2014; Bishop et al., 2016), or asking students 
to reflect on an idea to advance their mathematical understanding (e.g., Ellis et al., 2019). Other 
teacher actions support students in making sense of how ideas are related, such as positioning 
one student contribution relative to another (Webb et al., 2019) and requesting that students 
make connections among two or more contributions (Lineback, 2015; Bishop et al., 2016). Still 
other actions keep students focused on the contribution that they are making sense of, such as 
putting aside contributions that are unrelated to the idea at hand (Dragset, 2014), and redirecting 
students’ attention (Lineback, 2015) to the idea that is the focus of the sense-making discussion. 

Although all of these individual moves have potential, in general, to support student sense 
making, we have come to understand that conducting a whole-class discussion focused on 
making sense of a particular student contribution requires a coordinated collection of teacher 
moves. Smith and Stein (2018) articulated one such coordinated collection of moves for 
orchestrating a whole-class discussion around a high-cognitive demand task. Their 5 Practices 
have been widely used to support teachers in facilitating mathematical discussions when the 
teacher has an opportunity to monitor students’ work, and then intentionally select and sequence 
the solutions they wish to incorporate in the follow-up discussion. When a high-leverage instance 
of student thinking emerges in the moment during a whole-class discussion, however, a different 
collection of actions is needed to conduct a whole-class discussion around that student 
contribution. We define this collection of actions as the teaching practice of building on student 
mathematical thinking (Leatham et al., 2021; Van Zoest et al., 2016). 

Theoretical Framework 
When we discuss the teaching practice of building, we are focused on building on a high-

leverage instance of student mathematical thinking that emerges during whole-class instruction. 
More specifically, we focus on building on MOSTs (Mathematically Opportunities in Student 
Thinking), which are described in Leatham et al. (2015). MOSTs are instances of student 
mathematical thinking that are related to significant mathematics and that create an opportunity 
in that moment they are shared to engage the class in joint sense making of the mathematics 
embedded in the instance. 

When we say building on a MOST we mean the teaching practice that takes advantage of the 
opportunity that a MOST provides (Van Zoest et al., 2016). We define building on a MOST 
(hereafter referred to as building) as making a MOST “the object of consideration by the class in 
order to engage the class in making sense of that thinking to better understand an important 
mathematical idea” (Van Zoest et al., 2017, p. 36). As mentioned earlier,  building is comprised 
of four elements: (1) Establish; (2) Grapple Toss; (3) Conduct; and (4) Make Explicit (Leatham 
et al., 2021). This paper focuses on the third element, Conduct, but we frame our discussion of 
this element by first sharing some detail about the first two elements. Two important aspects of 
Establish are establishing precision by taking steps to assure that the MOST is “clear, complete, 
and concise” enough for the students to engage in making sense of it (Leatham et al., 2021, p. 
1395) and then establishing the precise MOST as an object to be discussed. Once the MOST is 
established, it is then grapple tossed—offered to the class in a way that positions them to make 
sense of it. The key aspects of a Grapple Toss are an explicitly established object and an action 
that students are to apply to that object—actions such as justify or make sense of. 
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Methods 
Twelve practicing secondary school mathematics teachers worked with us to study the 

theorized practice of building. These teacher researchers used four mini tasks (see Figure 1) in 
their classrooms that were designed to elicit particular MOSTs; this allowed them to enact the 
practice of building in a context where there would be a predictable MOST. We compared the 27 
resulting videotaped enactments to our theorized conceptualization of building by coding the 
enactments for teacher actions that seemed to either facilitate or hinder the overall practice of 
building. Our analysis included identifying critical aspects of each element, as well as subtleties 
of each. In this paper we report what we learned about the Conduct element of building, 
specifically the aspects of this element and actions teachers might take to increase the likelihood 
that students will productively engage in a collaborative discussion focused on making sense of a 
peer’s contribution. 

 
(a) Percent Discount 
The price of a necklace was first increased 
50% and later decreased 50%. Is the final price 
the same as the original price? Why or why 
not? 

(c) Points on a Line 
Is it possible to select a point B on the 
y-axis so that the line x + y = 6 goes 
through both points A and B? Explain 
why or why not. 

 

(b) Variables 
Which is larger, 𝑥 or 𝑥 + 𝑥? Explain your 
reasoning. 

(d) Bike Ride 
On Blake’s morning bike ride, he averaged 3 miles per hour 
(mph) riding a trail up a hill and 15 mph returning back down 
that same trail. What was his average speed for his whole ride? 

Figure 1: The Four Mini Tasks Used to Create Instantiations of Building 

Context of the Conduct Element 
Once a MOST has emerged during a class discussion, been established as a precise object, 

and grapple tossed to the class, the teacher enacts the Conduct element— perhaps the most 
complex element of building. The overarching goal of Conduct is to keep the whole-class 
discussion focused on the MOST as the teacher facilitates the class’s movement toward making 
sense of the mathematics of the MOST. In essence, making sense of the MOST and the 
mathematics associated with it becomes a new mini-discussion that the class becomes 
temporarily engaged with before returning to the larger discussion. Thus, conducting a 
discussion about a MOST requires a different collection of coordinated actions than those that a 
teacher might engage in other circumstances (such as after they have students work on a task and 
then collect ideas about that task). Once a teacher decides to build on a MOST, we have found 
that it is unproductive to continue to collect ideas about a broader task or anything other than 
ideas related to the MOST. In fact, our data suggest that doing so is detrimental to taking 
advantage of the opportunity the MOST provided to make sense of important mathematics.  

Before discussing the specifics of the Conduct element, we begin by providing a “big 
picture” overview of the teacher actions that take place while effectively carrying out this 
element of the building practice. Note that this overview is not meant to oversimplify the 
complex activity of conducting a discussion about a MOST, but to help the reader think about 
how specific teacher actions might coordinate to carry out the nuances of the work. When a 
student contributes an idea during Conduct, the teacher first determines whether the mathematics 
underlying that contribution will help students make sense of the MOST–whether it is a MOST-

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1862



 4 

related contribution (MRC). The subsequent sequence of teacher actions depends on that 
determination. If a teacher determines that the contribution is not MOST-related (a non-MRC), 
we have found that a productive teacher action is to gracefully put aside the idea (Drageset, 
2014) and recenter the MOST as the focus of the discussion. If the teacher determines that the 
idea is an MRC, we have found a productive sequence of actions is to first establish the MRC 
and then make a move that invites students to connect the MRC to the MOST itself—to make 
sense of how the new idea helps to make sense of the MOST. In essence, the flow of the Conduct 
element is a repetition of this pattern, since in doing the work of responding to either a MRC or 
non-MRC, the teacher sets students up to continue to contribute their ideas to make sense of the 
MOST. We elaborate on the details of these teacher actions in the following sections. 

Is the Student Contribution MOST-related? 
When conducting a discussion around a MOST, it would be ideal if all of the contributions 

that students add to the discussion helped to make sense of the MOST. Students do not always do 
or say what a teacher might want or expect, however. In order to keep the discussion focused on 
making sense of the MOST, each time a new contribution is shared during the Conduct element, 
the teacher needs to begin their work by determining whether the contribution is actually a 
MOST-related contribution (MRC). This determination informs the teacher’s subsequent actions.  

Determining whether a contribution is an MRC may require the teacher to clarify what the 
student has said or expand the contribution to get a sense of the student’s reasoning. After the 
teacher has sufficient information to infer the mathematics of the contribution, they then must 
ask themself, “Is the mathematics of this contribution directly related to the MOST?” (rather 
than, for example, a contribution that shares another idea about a broader task that students have 
worked on) and “Will it help students make sense of the MOST?” If both answers are yes, the 
contribution is an MRC. Otherwise, it is not. In general, for a contribution to be MOST-related, it 
needs to have the same underlying mathematics as the MOST. 

In the following sections, we elaborate on the work that our data suggest a teacher needs to 
engage in after they determine whether a student contribution is an MRC. We first discuss 
actions around contributions that are not MRCs, and then actions that support the class’s sense-
making around an MRC. As we discuss these actions, we will share examples from our data 
based on whole- class discussions of the tasks designed to elicit MOSTs in Figure 1. 
The Student Contribution is Not an MRC 

If the teacher determines that a student contribution is not an MRC, our data suggests that it 
is best to redirect the conversation back to the MOST by putting aside the unrelated contribution 
and recentering the MOST as the focus of the conversation. The action of putting aside is 
adapted from the work of Drageset (2014) who stated that “redirecting actions might be used to 
put aside suggestions without too much discussion to keep the class concentrated and in order 
not to lose the line of thought” (p. 300). Recentering the MOST draws on the work of Lineback 
(2015) who talks about a type of “focus redirection” in which the teacher “refocus[es] the 
students on an earlier discussion topic” (p. 432). In the case of building, the MOST that is under 
consideration would be the earlier discussion topic. In this section we elaborate on the ways that 
the putting aside and recentering might occur.  

One way we saw teachers put aside a non-MRC and recenter the MOST was by simply 
reminding students that they are to be making sense of the MOST. For example, in the Points on 
a Line task, a common shared solution was “Yes. Point B is (0,3) because you get 3 + 3 = 6,” 
including the explanation that they took the x-value for the equation x + y = 6 from point A and 
the y-value from point B. Despite being asked to make sense of this particular student 
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contribution, in the ensuing discussion students often offered other approaches to solve the task 
itself, such as “If you write the equation in slope-intercept form, the y-intercept is (0, 6).” This 
contribution is a non-MRC because the underlying mathematics related to slope-intercept form is 
different from the mathematics of the MOST (related to what it means for a point to be a solution 
to an equation). In this situation, the teachers said things like, “That’s another interesting 
approach, but right now we want to be making sense of the claim that Point B is (0,3) because 
3 + 3 = 6.” This statement validates the contribution but immediately puts it aside and recenters 
the MOST as the focus of the discussion. In our data, we have found that it is essential to not 
only put aside a non-MRC, but to also redirect the conversation by recentering the MOST; this 
recentering provides guidance to focus students’ subsequent contributions. Other teacher actions 
that supported recentering included gesturing to the public record of the MOST while reminding 
the class that the MOST is what they are currently discussing, and re-grapple tossing the MOST 
to re-engage students in sense-making around that contribution. These actions for handling a 
non-MRC are seen on the left side of Figure 2.  

 
Figure 2: The Conduct Element of Building 

The Student Contribution is an MRC 
If it is determined that a student contribution is an MRC, the teacher’s focus should be on 

weaving this MRC into the conversation about the MOST. Prior to doing this weaving, we have 
found that the teacher needs to ensure that everyone in the class understands the essence of the 
MRC they will consider. Our data indicate that this involves two essential actions—establishing 
the MRC, and positioning students to connect the MRC to the MOST in a way that allows them 
to use the MRC to help make sense of the MOST. We first talk about these two essential actions 
when working with an MRC (the tan boxes on the right side of Figure 2) and then discuss other 
considerations when working with an MRC (the white boxes on the right side of Figure 2). 

Establishing the MRC. Our data suggests that prior to weaving an MRC into the discussion, 
similar to establishing the MOST, the teacher should first establish the MRC as clear, complete, 
and concise (Leatham et al., 2021). For example, recall that in the Points on a Line task, the 
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MOST that emerged was that the point B (0, 3) was the point that satisfied the conditions of the 
problem because 3 + 3 = 6. In the discussion of the MOST, Joelle (all names are pseudonyms) 
said, “Well, I mean, it doesn’t ever, I don’t know, I just feel like there’s no, it doesn’t say that the 
x and y are coming from different points, I just don’t know how that would work.” With so much 
hedging, it was necessary for the teacher to hone in on the key aspect of what Joelle said to make 
her statement concise, and clarify her statement in the process. He did so by saying “Okay so 
you’re describing this [the teacher points at the MOST written on the board, 'Yes, use (0,3) 
because 3+3=6'] as taking x and y from different points.” The teacher made this statement with a 
tone indicating that he was seeking confirmation from Joelle that he had interpreted her 
statement correctly. His gesture to the board also clarified that Joelle’s contribution was 
describing the approach used in the MOST. Teacher moves to establish the MRC have the 
impact of making the MRC clear, complete and concise for the rest of the students in the class. 

Grapple Toss Connection. Asking students to consider how an MRC helps them make 
sense of the MOST is an important aspect of the Conduct element. When there is an MRC on the 
table, the teacher needs to make a move to position not only the MOST, but also the MRC, as the 
object of the discussion. The grapple toss connection tells students the action they are to take on 
the MRC and the MOST—to connect the MRC to the MOST in a way that positions the students 
to use the MRC to help make sense of the MOST. Because a connection necessarily implies 
tying two things together, we have found that an important aspect of the grapple toss connection 
is clearly identifying the two ends of the connection, the established MRC and the MOST. 
Without clearly defining both ends of the connection, some students may not know what object 
they are to consider. In addition, we have found that the teacher needs to clearly define the action 
that students are to take on that object. Failing to do so often leaves students wondering what 
they are to think about, rather than putting them in a sense-making situation. The reason this is 
called a grapple toss connection is because the action-defining move resembles the Grapple Toss 
of the MOST, but the object that is tossed is the connection between the MRC and the MOST. 

We have seen some variations in how a teacher connects an MRC to the MOST. One of the 
most productive connecting actions we have seen in terms of helping students use the MRC to 
make sense of the MOST—the purpose of the Conduct element—is explicitly asking students to 
relate the new information (the MRC) to the MOST. For example, in the Percent Discount Task, 
the common MOST is the response that the original and final price are the same because you are 
adding and subtracting 50%. In the discussion of the MOST, Kaleb contributed the following 
MRC using a sample necklace price of $32, “If you add the half of 32, which is 16, it would 
equal 48. [teacher writes “If you add ½ of the 32, 32+16 = 48” on the whiteboard.] But, if you 
subtract the half of 48, it would give you 24 which is not the original price.” The teacher 
responded to this MRC by saying, “Okay, so, if you add half of the original, 16, that would give 
you 48 and then if you subtract half of the 48, it would be 24? So what does that have to do with 
the original claim here? How does that prove or disprove it?” Here we see the teacher identify 
both ends of the connection by restating Kaleb’s contribution and asking how it relates to “the 
original claim”— the MOST. The fact that the original claim is recorded on the whiteboard 
strengthens the connection because students can refer to the public record to recall exactly what 
the original claim was. Not only does the teacher clearly identify both ends of the connection but 
they also identify an action, “prove or disprove”, that the students are expected to take as they 
consider the connection between the MRC and the MOST. This grapple toss connection clearly 
positions students to make sense of the connection between the MRC and the MOST. 
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Another way we have seen teachers connect the MRC and the MOST is to ask students to 
consider conflicting information. In this case, the teacher typically highlights that there is in fact 
a conflict, and then asks students to make sense of that conflict. For example, after an MRC 
surfaced in the discussion of the Percent Discount task, the teacher said, “So in Bruce’s 
argument, [the initial and final price are] not the same but Jaden was saying it would be the same 
cause you would just add 5 and minus 5. So how do we know which one we’re supposed to do?” 
In this response, we see the teacher connecting the MRC (Bruce’s argument) to Jaden’s claim 
(the MOST) by highlighting the contradiction that is now on the table and asking students the 
action-defining question, figuring out “which one we’re supposed to do.” Pointing to Jaden’s 
claim on the board, restating a portion of the claim, and explicitly referencing Bruce’s argument 
when contrasting it with Jaden’s all support having a clear object of consideration.  

In summary, when integrating MRCs into the discussion of a MOST, we have found that 
explicitly defining both ends of the connection puts students in a position where they are able to 
use the new information provided in the MRC to make sense of the MOST. A second important 
aspect of the grapple toss connection is to define some type of mental action the students are to 
carry out when considering how the MRC helps them make sense of the MOST. 

Other Considerations. After an MRC is established, but prior to the grapple toss 
connection, we have found that additional teacher actions are sometimes needed. These moves–
grapple tossing the MRC itself and synthesizing the ideas that are on the table–only seem 
necessary when it is clear that they will better position students for the grapple toss connection. 

Grapple Tossing the MRC. Before they are asked to make sense of the connection between 
the established MRC and the MOST, we have found that sometimes students need to spend some 
time making sense of the MRC itself. This is important when the students do not yet appear to 
understand the MRC. If the teacher determines that this is the case, our data suggest that the best 
move is to Grapple Toss the MRC itself to the class by asking a question that positions students 
to make sense of that contribution (seen on the right side of the flowchart in Figure 2).  

In the discussion of why the simple average of 9 mph (the MOST) is not correct in the Bike 
Ride task, Corbin contributed the MRC, “You’re going 3 miles per hour for the same length of 
time as you’re going 15 miles.” Recognizing the potential value of Corbin’s thinking to make 
sense of the MOST, the teacher responded, “Do you guys believe that Blake rode the bike for the 
same amount of time going 3 miles per hour and the same amount of time at 15 miles an hour?” 
In this case, Corbin’s thinking was a productive contribution to the discussion because knowing 
the lengths of time at each speed would help students make sense of the MOST, but it wouldn’t 
be productive to connect it to the MOST until students have had a chance to make sense of the 
validity of this claim. In this instance, grapple tossing just the MRC was a productive move prior 
to asking students to connect the MRC to the MOST because it put students in a better position 
to think about how the MRC might help them make sense of the MOST. 

Synthesizing. After an MRC has been established but before the grapple toss connection, a 
teacher needs to ask themselves whether there are prior MRCs on the table that, if considered in 
conjunction with the new MRC, would better position students to make sense of the MOST. If 
so, then some synthesis needs to take place that highlights the salient aspects of the MRCs that 
students will be asked to collectively consider. In this case, the grapple toss connection might 
position the class to consider the relationship among multiple MRCs and the MOST. 

For the Variables task, the common MOST is for students to say that x + x is greater than x 
because x + x is 2x and that is twice as big as x. After several MRCs had emerged, the teacher 
synthesized with the following response: “So here we have Andre’s thinking that x + x is gonna 
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be larger than x because x + x is double so it makes everything larger, right? Somebody else said 
5 plus 5, would be greater than just 5, right? And Briana, now you’re saying that if x were -9, 
then -9 is greater than -9 plus -9." In this synthesis, the teacher has tied the concrete example of  
x = 5 to the statement of “x+x is larger than x” which is written on the board and then highlights 
the MRC where x = -9 by writing “-9  >  -9 + -9”. Note, however, that they stop short of writing 
or saying x > x + x so the students are left to make that connection and see the contradiction. In 
this example, the teacher highlights the salient aspects of two MRCs and also ties one MRC to 
the MOST. With the appropriate grapple toss connection, the students are in a position to make 
sense of the MOST with a new perspective provided by the MRCs. 

Discussion and Conclusion 
Engaging students in whole-class discussion focused on making sense of the mathematics in 

an instance of student thinking is a complex teaching practice. Although past research has 
identified individual teacher actions that support student sense making, our work suggests that 
conducting such a discussion requires a coordinated collection of teacher decisions and actions. 
Each time a new student contribution emerges, the teacher needs to assess whether the 
contribution will support the joint sense making, or take students in an unproductive direction. 
This critical initial decision determines the teachers’ subsequent decision points and actions.  

There are two additional insights about the Conduct element of building that we wish to 
share. First is the importance of keeping the discussion focused on making sense of the object of 
discussion, the MOST. In our work, we have seen teachers pursue every student idea that 
surfaces, resulting in a discussion that meanders among ideas. Although it seems that teachers do 
this with good intent as a means of honoring students and their ideas, we argue that putting some 
ideas aside better honors the student who contributed the MOST by maintaining a focus on the 
important mathematics that they initially brought to the discussion.  

Second, we have come to realize the importance of ensuring that students have a clear 
understanding of the object they are to focus on and how they are to engage with that object at 
any point in a discussion. During the practice of building, the discussion begins by positioning 
the MOST as the object that students are to make sense of. In the Conduct element, for each 
MRC that is contributed, students first need to understand the MRC itself, and then need to shift 
their attention to considering a connected object—the MRC and the MOST—and how the MRC 
helps to make sense of the MOST. Without a clear sense of these shifts in focus, students are 
unlikely to engage in a focused sense-making discussion. Thus, an important part of the teacher’s 
work during Conduct is explicitly helping students productively focus their attention.  

Decomposing complex teaching practices is an important first step in supporting teacher 
learning of such practices (Grossman et al., 2009). Unpacking the Conduct element of building 
has allowed us to better understand the complexity of the practice of building on MOSTs and 
positions us to move to the next stage of our work in supporting teachers to develop their 
abilities to productively use student mathematical thinking. 
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There is a popular myth that mathematical creativity is a trait possessed by a small group of 
people. This is perpetuated by the lack of understanding of what influences mathematical 
creativity, especially in the classroom. In particular, professional mathematicians often name 
aesthetic experiences as a critical aspect of their mathematical creativity. Therefore, this study 
examines aesthetic dimensions of episodes of student creativity from the high school classroom. 
Several types of aesthetic experiences arose across the episodes. Students were motivated to take 
creative action by experiences of mystery or discomfort. Furthermore, in some instances, taking 
a creative action was accompanied and propelled by a sense of craziness or satisfaction. 

Keywords: Affect, Emotion, Beliefs, and Attitudes; High School Education 

Students must have the opportunity to be creative during mathematics class. Otherwise, they 
may learn that creating mathematics is for others to do; their only role is to reproduce. This is 
problematic because creating mathematical ideas is often necessary for practical purposes in life 
(e.g., crafting a personal finance plan) and can be a source of pleasure and meaning (e.g., making 
music or noticing patterns) (Su & Jackson, 2020). If students learn that their role with respect to 
mathematics is to use mathematical ideas or tools made by others, they may not be empowered 
to take ownership of aspects of their life with prominent mathematical components. This can be 
dehumanizing and could have devastating impacts (Gutiérrez, 2018).   

And yet, it often seems that many students are not capable of being creative during math 
instruction. Some previous studies of student mathematical creativity have even been unable to 
detect any student creativity within the context of classroom learning (Clack, 2017; Mhlolo, 
2016). I argue, though, that being mathematically creative is not an inborn trait possessed by a 
limited group of people, but instead a type of action that is influenced by personal, social, and 
cultural factors. Factors such as these have been explored in creativity in other fields 
(Csikszentmihalyi, 2014; Hanson, 2015), but are understudied in the case of mathematical 
creativity. This perpetuates the harmful myth that there are some people who can create new 
mathematical ideas, and others who cannot. 

In mathematics, one factor that has been named by some professionals in the field as 
impactful in their creative process has been aesthetic experiences (Burton, 1998; Sriraman, 
2004). What about students? In this paper, I examine aesthetic experiences and their role in 
student mathematical creativity by analyzing enacted lessons in high school mathematics 
classrooms. What roles can aesthetic experiences play in student mathematical creativity? 

Conceptual Frameworks 
In this study, I assert that mathematics is human-made and fallible (Ernest, 1998; Lakatos, 

1976). Thus, human action can create new ways of doing mathematics. Creativity is the act of 
creating ways of doing or thinking about mathematics that were not previously possible (Riling, 
2020). An action with creative mathematical potential is one that an individual takes of their own 
volition, rather than because of following an instruction or norm (Pickering, 1995; Sinclair, 
2005). The action realizes its creative potential if it goes on to enable members of the 
mathematical community in which it occurs to think about or do mathematics in new ways. 
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Whether or not an action fulfills its creative potential is not solely based on the merits of the 
action, but various personal, social, and cultural forces that govern the community of 
mathematicians. 

Because mathematics is a human endeavor, the relationship between a person and 
mathematics is a crucial aspect governing how mathematics develops, which I conceptualize 
here through aesthetics. Aesthetic experiences can function in multiple ways in the doing of 
mathematics. They may motivate a person to take some action, or they may occur as a result of a 
person taking an action (Brinkmann & Sriraman, 2009; Sinclair, 2004). Here I describe three 
forms of aesthetic experience that may play a role in student mathematical creativity.  

First, aesthetic experiences can motivate the exploration of mathematics. Sinclair (2004) 
explains that as there are few practical reasons to pursue a great deal of the field of advanced 
mathematics, much of the motivation for doing so is derived from aesthetic aspects of the field. 
Mathematicians may become “hooked on” (p. 275) the order that can arise from completing a 
mathematical investigation or proof, or become intrigued by a paradox or moment of surprise. As 
these types of experiences have been shown to motivate mathematical activity in general, they 
may specially motivate mathematical action with creative potential. Thus, for the purposes of 
this study, a motivating aesthetic experience is one that prompts students to try to create new 
mathematical possibilities. 

Sinclair (2004) also describes how an aesthetic experience can play a generative role in 
mathematics, in that people may be struck by a sense that mathematical objects or events that 
arise in the process of doing mathematics that they sense will be valuable or provide insight, 
compelling them to investigate further. It is possible that while taking an action that has the 
potential to create mathematics, a student might experience pleasure or excitement that generates 
further curiosity. 

Finally, Sinclair (2004) describes the role of an aesthetic experience in considering a 
mathematical object that has been produced already; an evaluative aesthetic experience. Beauty 
is a particularly important form of evaluative aesthetic for many professional mathematicians 
(Brinkmann & Sriraman, 2009; Sinclair, 2004). This type of aesthetic experience may happen as 
a student regards their own work, or the work of another, and may play a part in what happens 
after a student has taken an action with creative potential.  

Methods 
To learn about the role of aesthetic experiences in student mathematical creativity, I 

examined enactments of secondary mathematics lessons. The lessons were designed to be 
aesthetically captivating for students. The lessons were analyzed by identifying instances of 
student action with creative potential and student aesthetic experiences, and by crafting narrative 
episodes of these actions and experiences, which were then examined for common themes. 
Participants and Lesson Selection 

The lessons in this study were enacted in high school classrooms in the northeastern region 
of the US, taught by teachers with 4-6 years of experience in the classroom. The teachers taught 
at three schools that varied in size, school type, and racial demographics (see Table 1). Each 
teacher taught three specially-designed lessons. These lessons were designed by small groups, 
including the classroom teacher, another colleague participating in the study, and university-
based researchers. The topics of these lessons fell within the curricula of each course. These 
lessons were unique in that they were designed by teachers and researchers to provide the 
opportunity for aesthetic experiences. This was done by way of conceptualizing lessons as 
mathematical stories (Dietiker, 2015), meaning that the teachers thought of the mathematical 
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context as a setting for the development or action of mathematical characters (e.g., numbers or 
geometric objects). Some teachers aimed to design stories with compelling narrative devices, 
such as a surprising plot twist or an air of suspense. This data set was useful for studying 
aesthetic dimensions of student creativity because a set of lessons designed without attention to 
students’ aesthetic experience could fail to provide any detectable displays of student aesthetic 
experiences, or any variety in student aesthetic experiences.  

 
Table 1: Participating High Schools and Students 

High School 
Cooperating 

teachers 

Number of 
participating 

students 

Students’ racial 
identification 

(categories >15%) 

Mean 
disposition to 

math (1-4) 
Forte Charter 

Secondary (Forte) 
Mr. Davis and Ms. 

Bacheldor 85 79% - Latinx** 2.54 

Gladbury High 
School (GHS) 

Mr. Anderson and 
Ms. Evans  56 58% - White** 2.73 

Motion High School 
(MHS) 

Ms. Curran and Ms. 
Fontaine 70 50% - Asian** 

16% - Latinx** 2.81 

*Based on student responses to survey items. 
**Based on demographic data reported by the state; demographics below 15% not represented in this table. 

 
Each specially-designed lesson was observed and audio- and video-recorded from multiple 

perspectives in the classroom. Some were enacted and observed for multiple classes of students, 
if a teacher taught multiple sections of the same course. After the lessons, all participating 
students completed a Lesson Experience Survey (LES). This survey included a prompt to select 
three descriptors to describe their experience of the lesson, out of a bank of sixteen terms. Some 
terms were positive (e.g., “intriguing”), some were neutral (e.g., “fine”), and others were 
negative (e.g., “boring”). In addition, two or three students were selected to be interviewed after 
each lesson. Students were typically approached about being interviewed because of some strong 
affective display during the lesson. For every specially-designed lesson that was filmed, the 
research team also observed and recorded a typical lesson in the same class of students within 
approximately one week, following the same observation protocols. 

In order to select a group of lessons that were more likely to contain student actions with 
creative potential, I identified the lessons that were more frequently described on the LES with a 
group of target descriptors that I theorized could be selected by students to describe experiences 
that involved creativity (i.e., thought-provoking, amazing, fascinating, fun, surprising, intriguing, 
and enjoyable). I identified each teacher’s lessons for which the highest percentage of students 
selected the target descriptors. Upon beginning to analyze the lessons, I began with one lesson 
per teacher. I iteratively added additional lessons, aiming to maintain variety in teachers and 
courses, until I had identified a robust set of student actions with creative potential. All lessons 
that were included were ones that the teachers had designed to be aesthetically engaging (see 
Table 2). Each lesson was transcribed, including full-group discussions and the discussions that 
occurred in a small group that had been filmed from an additional, close-up camera. 
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Table 2: Lessons Analyzed 

School Teacher Course Lesson High frequency 
descriptors 

Forte Ms. Bacheldor Honors Algebra 2 Extraneous 
solutions Thought-provoking 

Forte Mr. Davis AP Calculus 
Derivatives of 

exponential 
functions 

Intriguing, Enjoyable 

Forte Mr. Davis AP Calculus Solids of revolution  Fun, Enjoyable 

GHS Mr. Anderson Algebra 2 Imaginary numbers Thought-provoking, 
Surprising 

GHS Ms. Evans Algebra 2 Introduction to 
inverses Amazing, Fascinating 

GHS Ms. Evans Algebra 2 Introduction to 
inverses 

Thought-provoking, 
Enjoyable 

MHS Ms. Curran Integrated Math 1 Geometric 
transformations Amazing, Enjoyable 

MHS Ms. Curran Integrated Math 1 Linear functions Surprising, Fun, 
Enjoyable 

MHS Ms. Fontaine Honors Integrated 
Math 3 

Rational root 
theorem Fascinating 

 
Identifying and Categorizing Creative Actions 

I next scanned the selected lessons for actions with creative potential. By creative potential, I 
mean actions that could lead to the creation of new mathematics. These are those actions that 
students have taken using their own agency, rather than following disciplinary or classroom 
norms (Pickering, 1995). In order to broaden my perspective, and thereby increase my ability to 
detect student creative potential, I consulted first-hand accounts of professional creators. To 
avoid reinforcing the narrative of mathematics’ white, male history, I curated a set of 
professional creators who varied in medium, gender, country of origin, race and ethnicity, and 
age. The set of creators included individuals such as Chinese architect and conceptual artist Ai 
Weiwei, Black American film-maker Ava DuVernay, French-Cuban musicians Lisa-Kaindé 
Diaz and Naomi Diaz, of Ibeyi, and white French mathematician Sophie Germain. After learning 
about their creative work, I revisited the classroom data and indeed was able to identify 
additional student actions with creative potential. 

I categorized each action with creative potential based on how the actions opened new 
possibility for students in the lessons (Riling, 2022). For example, setting out refers to instances 
in which students decide to embark on some kind of creative work. Imagining refers to the act of 
mentally projecting a new version of the mathematical reality. Recognizing involves 
reinterpreting some existing mathematical object in a new way. Manifesting is the act of taking a 
action that immediately changes the current mathematical context. 
Identifying and Explaining Aesthetic Experiences 

In order to identify any aesthetic experiences that could have had a role in students’ actions 
with creative potential and how they developed in the classroom, I asked the following questions 
of the lesson data: (1) What emotions do individuals display in reference to their mathematical 
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context? (2) Do the individuals explicitly relate their response to mathematical ideas, or do 
emotional displays coincide with changes in their understanding of the mathematical context? (3) 
What kind of aesthetic experience do the individuals appear to be having? I marked displays of 

emotion such as changes in vocal pitch or tone (e.g., singing or shouting), use of exclamatory 

language (e.g., “oh my god” or “boom”), use of explicitly aesthetic or emotional language (e.g., 

“mystery” or “hate”), and changes in physical behavior (e.g., smiling or dancing). I recorded my 

initial understanding of the type of aesthetic experience that students appeared to be having (e.g., 

surprise or satisfaction). 
Next, I worked to establish the roles of the aesthetic factors (i.e., motivating, generative, or 

evaluative). I did this in part by considering when the individuals displayed evidence of having 
an aesthetic experience, in comparison to when the action with creative potential was taken. That 
is, a motivating aesthetic experience would happen before the action, a generative one would be 
concurrent, and an evaluative one after. In addition, in order for an aesthetic experience to be 
considered to have motivated an action with creative potential, there would have to be evidence 
that the action taken was related to the context that provoked the aesthetic response. For 
generative aesthetic experiences, students either would explicitly connect their affect to a 
mathematical object or event, or express emotion at the same time as taking an action, in the 
absence of any other change that could explain their expression. To be considered to be 
evaluative, an aesthetic expression would have to occur as the expressing student attended to a 
mathematical object related to the action with creative potential under consideration. 

In addition to the audio and video recordings, in order to ascertain the type and role of 
students’ aesthetic experiences, I consulted post-lesson interviews. For eight of the fourteen 
episodes, the student who took the action with creative potential was interviewed after the lesson. 
In some cases, they spoke explicitly about the action and the feelings they had related to it. For 
example, one student shared during their interview, “when I saw like the coefficients, with the 
pattern of the roots, I thought that maybe like, it’s kinda crazy but maybe the coefficients are 
related to the polynomial.” Here, the student explains how his feeling of something being 
“crazy” related to his actions. 

I identified the episodes that seemed to contain similar dimensions within students’ aesthetic 
experiences (e.g., all episodes that contained mysterious elements) and used memo-ing to 
explore the similarities in how those experiences functioned in different episodes. For example, I 
asked myself, “What is the role of satisfaction across these examples?” and “When does 
satisfaction happen in relation to creative actions?” After answering these questions for 
individual episodes, I constructed a model of how that type of aesthetic experience functioned 
with respect to actions with creative potential and to other types of aesthetic experiences. This 
enabled me to identify and define common dimensions in students’ aesthetic experiences. 

In the process of analyzing student language in relation to aesthetic experiences, I noticed 
that students used terms that evoked the existence of some alternative to their current accepted 
reality (e.g., conspiracy theories, drug use). Therefore, I examined the ways in which students 
described aesthetic experiences with mathematics related to the existence of a new mathematical 
world of some kind. This interpretation was overwhelmingly consistent with students’ 
descriptions. Therefore, I defined the common dimensions of aesthetic experiences that I found 
in the episodes in terms of how they related to students’ perception of the existing and/or a new 
mathematical world. 
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Findings 
Within the data, when students took actions with creative potential, they sometimes seemed 

to be motivated by two different types of aesthetic experiences: some kind of mysterious 
uncertainty, or discomfort. Additionally, some actions with creative potential were accompanied 
by a break in mathematical reality that students referred to as “crazy,” or a sense of satisfaction, 
which played a generative role as it spurred continued investigation, or an evaluative role as 
students concluded their work exploring an action with creative potential. In this section, I define 
mystery, craziness, discomfort, and satisfaction in terms of students’ aesthetic experience with 
mathematics and describe how students’ actions with creative potential were influenced or 
marked by aesthetic experiences. 
Mystery 

One dimension of an aesthetic experience remarked upon by students in the data was 
mystery. Mystery appeared in some instances of imagining, one type of action with creative 
potential. In several cases, students indicated feeling that their previous assumptions about the 
mathematical context were incorrect or incomplete in some way. This happened when students 
encountered something that did not make sense, such as finding that they need to take the square 
root of negative numbers in order to solve a problem, when they had previously been told they 
could not do so. After encountering such a clue, students began to doubt the general premises of 
the mathematical realm in which they were operating. A sense of uncertainty is inherent in 
mystery. For example, in the case of a group of students in a scenario that suggested that they 
should take the square root of negative numbers, when their teacher asked if they believed that 
was feasible, several students responded “I don’t know.” In other instances in which students 
sensed a mystery, they used phrases like “maybe” and “I think,” conveying this lack of certainty. 

Another common feature of students’ references to mystery is that they referred to it broadly. 
For example, in one lesson, a student said “we have a situation,” indicating that, in general, 
something about the mathematical context was amiss. She did not, however, specify exactly what 
the potential problem was. Another student was even less detailed, intoning “dun dun dun.” This 
suggests that a sense of mystery might be something that students do not affix to a specific object 
in their mathematical context, but to the mathematical context more broadly. 
Discomfort 

In the lessons, students experienced various forms of discomfort as a result of the current 
mathematical task. This discomfort often seemed to motivate students to take actions with 
creative potential. Although students also can have negative emotions about other things during 
mathematics class, such as peer relationships or grades, I am not referring to those experiences 
here. One form of discomfort in the data was frustration. Frustration often occurred when 
students were unhappy that their attempts to solve a problem were unsuccessful. It should be 
noted that other students could be excited to have a problem that they could not solve quickly. To 
qualify as discomfort, students would have to not enjoy these experiences. Students typically 
demonstrated discomfort by using qualitatively negative language about mathematics. For 
example, “I hate e,” or “Forty-six? Yikes.” At other times, they might not verbally refer to a 
mathematical concept, but instead have a negative outburst (e.g., “Jesus Christ!” or “This shit’s 
confusing”) while working on a mathematical task. Another form of discomfort in the data was 
tedium, in which students were bored by work that they perceived as too repetitive. 

In several cases, students seemed to engage in manifesting (a type of action with creative 
potential) in an attempt to remove discomfort. This bears something in common to students 
attempting to imagine their way out of a mystery. However, by manifesting, students did not 
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return to the status quo, as the students attempted to do through imagining, but instead took an 
action that created a new mathematical reality. Consider that in several of these instances, the 
students verbally wrestled with whether or not to manifest when experiencing a state of 
discomfort. For example, one student who was struggling to solve an equation expressed that he 
was uncertain about whether he could square the equation. He asked, “Why can’t we?” and then 
finally rejecting this felt external pressure to not square, stating, “I don’t care” as he squared the 
equation. The evidence that students often manifested in spite of not being sure that it was 
allowed suggests that these students were aware that they were changing something about the 
mathematical context. In this way, they acted more like the students who moved toward a new 
mathematical reality when they experienced something crazy that they chose to explore further. 
Craziness 

Craziness is related to mystery in that it also indicates that students have come to doubt their 
current realm of known mathematics. However, it differs in that rather than only sensing that an 
alternate mathematical reality might exist, students are in the act of crossing over into the new 
realm. They are compelled to continue doing so, meaning that this aesthetic experience is 
generative. For example, consider a student in a lesson in which a teacher asked students to 
group cards that contained representations of linear functions. This student and his groupmates 
had begun to form pairs of cards that they believed contained representations of the same 
functions. When the student found out that he could make groups of more than two linear 
functions, he exclaimed, “more! That’s crazy! There’s more!” Since students who sense that 
something is crazy are crossing into the new reality, they can typically point to a specific 
mathematical object or event that provoked the feeling. 

When students described a crazy aesthetic experience, they often spoke loudly in excited 
tones. They sometimes used language related to conspiracy theories (“it’s Illuminati confirmed, 
bro”) or drug use (“that’s trippy”). These are both experiences in which an alternate version of 
reality is suddenly revealed, by way of learning secret information or by consuming drugs. 
However, the most common vocabulary that students used when expressing that they are 
experiencing this aesthetic is the word “crazy.” It is because of the extreme frequency of this 
word choice that I use “crazy” to label this type of aesthetic experiences, even though it is a word 
I typically avoid due to its ableist connotations. To date, I have not encountered an appropriate 
synonym that expresses both the perceived disruption in students’ understanding of the 
mathematical context, and the sudden onset of feelings that accompanies this shift. 

Several students who took the action with creative potential of setting out seemed to be 
motivated by a sense that something crazy had occurred. For example, the student who found out 
that he could make groups of more than two linear functions then set out to learn more about 
individual functions in order to be able to form groups. Additionally, the student in the 
quadrilateral midpoint lesson set out to learn about parallelograms only after finding a 
parallelogram in a place that they did not expect it to appear. The feeling of craziness prompted 
these students to want to learn more about the possible new mathematical context. This is 
different from the way in which mystery functioned in the cases of imagining. In those cases, 
students responded to a prevailing sense of mystery by attempting to avoid the mystery. That is, 
they did not want to ‘uncover the truth’ and potentially create a new reality; they wanted to 
maintain the status quo. 
Satisfaction 

Evidence of the sensation of satisfaction also appeared in the data, accompanying several 
instances of recognizing. When students recognized something, be it a pattern or a familiar 
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mathematical structure, they sometimes gasped or exclaimed a phrase such as “oh my god,” 
seemingly involuntarily. In some instances, the students also loudly called out to their 
classmates. Gaining a new perspective through which to understand the current mathematical 
context seemed to cause pleasure for these students. These experiences seemed to be generative, 
in that they compelled students to continue to investigate the implications of the action. 

In some ways, satisfaction bears resemblance to the craziness that some students expressed. 
Both types of aesthetic experiences involved students suddenly recognizing shifts in what they 
knew to be the current mathematical reality. Students even used some similar language, such as 
“oh my god.” The difference is that, whereas the students who experienced things as being crazy 
were suddenly aware that a different mathematical world existed, and that the one they knew 
previously might even cease to exist, students who experienced satisfaction instead found 
evidence of being in a familiar context. For example, consider a student who recognized that an 
equation was in a form could be factored. Upon sensing a familiar structure, the student 
expressed happiness through gasps and singing. A further difference is that, whereas satisfaction 
is virtually always a positive feeling, the sensation of being jolted into a new reality by 
something that seems crazy might be enjoyable for some students, but not all, in the same way 
that some people enjoy the thrill of roller coasters and others do not.  

Discussion 
Aesthetic experiences played prominent roles in students’ creative episodes in these lesson 

enactments, suggesting a need for lessons to be designed with dynamic aesthetic experiences. In 
many cases, students seemed to be deeply impacted by their aesthetic experiences, as indicated 
by behaviors ranging from gasping to singing. Maybe this is why it often seems that many 
individuals are not capable of being creative; they have not been able to experience mathematics 
in a way that is conducive to mathematical creativity. I suspect that many mathematics lessons 
differ drastically from the dynamic enactments analyzed here, considering that mathematics is so 
often described as dull or boring by those who do not become professional academic 
mathematicians. How many more students could be moved to take action with creative potential 
if they were to experience suspense or mystery during their mathematics lessons? 

Of course, lessons with more varied aesthetic experiences and opportunities for student 
creativity may make new demands of teachers, in terms of managing both behavior and 
mathematical ideas. The student behavior described in this study does not match the image of 
quiet students working diligently at their desks. It involved sudden outbursts, minor references to 
drugs, even the use of curse words. What new skills would teachers need to facilitate lessons in 
which these behaviors were not only allowed, but maybe even encouraged? This adds difficulty 
to the increased demands of teaching for student creativity, in which students have more control 
over the mathematical content of class. 

Finally, these aesthetic experiences were studied within a fairly unique set of lessons, in that 
they were designed to be aesthetically captivating, but the lessons still aligned with standard 
secondary mathematics curriculum in the US. This raises the question: What other kinds of 
creativity might students engage in if they were to have even more diverse aesthetic experiences, 
such as those that integrate expressive arts or social justice topics into mathematics instruction? 
Future research is needed to learn what other mathematical creativity students may be capable of.  
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Teachers’ beliefs, knowledge, and decisions can affect the way teachers teach, and, 
consequently, what students learn. Self-efficacy beliefs may also interact with beliefs about the 
most appropriate and effective teaching and the selection of instructional practices to implement. 
We examined the relationships among teachers’ mathematics self-efficacy, mathematics teaching 
self-efficacy, instructional beliefs, and use of the Standards for Mathematical Practices (SMP; 
NGACBP & CCSSO, 2010) for teachers who had been identified as effective teachers. We found 
that although the teachers scored similarly on beliefs surveys, there were some differences in 
their use of the SMP (NGACBP & CCSSO, 2010). 

Keywords: Standards, Teacher Beliefs, Instructional Activities and Practices 

Affective factors such as self-efficacy, motivation, anxiety, and confidence can be related to 
learning and teaching processes. Self-efficacy beliefs—beliefs about one’s capacity to be 
successful in various situations—are situation-specific. Teachers have self-efficacy beliefs about 
mathematics, teaching, and mathematics teaching. These beliefs are important because they may 
interact with beliefs about the effective teaching practices (McLeod, 1987; Opera & Stonewater, 
1987; Raymond, 1997) and the implementation of instructional practices (Peterson et al., 1989).  

Mathematics teaching practices are often categorized as either student-centered (e.g., reform 
oriented, learner-centered) or teacher-centered (e.g., traditional). The use of student-centered 
teaching practices has been shown to relate positively to student learning in mathematics, as 
measured by increased post-test scores on a curriculum-based, researcher-constructed classroom 
test (Jong et al., 2010). Student-centered practices may also decrease negative affective factors, 
such as mathematics anxiety, in students (Alsup, 2004). There is evidence that teachers’ beliefs 
concerning the use of student-centered practices and teacher self-efficacies influence teachers’ 
decisions about what teaching practices to enact when teaching mathematics (Hadley & 
Dorward, 2011; Peterson et al., 1989). However, this evidence is largely based on self-reported 
teaching practices. Thus, it is not clear how self-efficacies may relate to the enacted teaching 
practices of teachers, as verified by an outside observer. Merriam and Tisdell (2016) noted that 
observation in the form of “firsthand encounters with the phenomenon” is more reliable than “a 
secondhand account” by teachers, who are sharing an interpretation of their own teaching 
practices (p. 137).  

Further, the role that teachers’ instructional beliefs play in mediating self-efficacies as part of 
teachers’ decision-making processes about which instructional strategies to implement is not 
clearly understood (Allinder, 1994; Bandura & Wood, 1989; Klassen & Tze, 2014). And, there 
has been no exploration of the extent to which teachers who have been identified as effective 
may vary with respect to their beliefs and practices. Teachers, even effective teachers, are not 
monolithic. Knowing more about the breadth of ways to be effective would add nuance to our 
understanding of what it means to be effective. For these reasons, we explored this research 
question: How do effective teachers vary with respect to their instructional beliefs, mathematics 
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self-efficacy, mathematics teaching self-efficacy, and classroom-observed uses of the Standards 
for Mathematical Practice (SMP; National Governors Association Center for Best Practices & 
Council of Chief State School Officers [NGACBP & CCSSO], 2010)? 

Theoretical Perspectives 
Ernest (1994) posited that an individual’s learning cannot be separated from their social 

environment. In conversation with others and themselves (Ernest, 1994), students negotiate ideas 
in a way that expands their prior knowledge. Marchitello & Wilhelm (2014) reported that the 
mathematics component of the Common Core was based on cognitive principles and, in 
particular, the authors assumed that students learn by building on prior knowledge and working 
collaboratively with peers. In this way, the SMP are aligned with social constructivist 
perspectives on learning. Within a constructivist learning environment, teachers and students 
share knowledge, responsibility, and authority (Chung, 1991). A teacher’s role is as a facilitator, 
rather than an expert, who creates and sustains a collaborative learning environment (Tam, 
2000). Thus, social constructivism undergirds the student-centered teaching practices that we 
examined. 

The theory of self-efficacy (Bandura, 1977), also aligned with social constructivism 
(Bandura, 2001), is a lens through which we interpreted how teachers’ self-efficacies mediated 
their instructional practices and beliefs. A firm understanding of self-efficacy, not only as an 
affective factor of teachers, but also as a theory, aided in the interpretation of teachers’ 
instructional beliefs and practices. According to Bandura (1997), an individual has the capacity 
to control their actions based on how confidently they exercise that control. Bandura (1997) 
described a phenomenon in which individuals make choices based on how successfully they 
believe they can perform a particular task. Thus, mathematics self-efficacy may influence the 
decision to use challenging tasks and mathematics teaching self-efficacy may influence a 
teacher’s decision to engage in student-centered teaching practices that require coping with 
uncertainty about how students will respond when given the freedom to explore. 

Literature Review 
Those who have examined how the interplay between beliefs and practices can affect student 

learning (e.g., Allinder, 1994; Polly et al., 2013) have found that teachers’ beliefs about teaching 
practices may be tied to other affective factors, including self-efficacy beliefs.  
Self-Efficacy Beliefs of Teachers 

Self-efficacy beliefs have the potential to influence teachers’ choices about which 
instructional practices to use (Bates et al., 2013; Perera & John, 2020; Swars, 2005). In addition, 
self-efficacy beliefs potentially mediate teachers’ instructional beliefs as they choose whether to 
use student- or teacher-centered practices (Wilkins, 2008). Such self-efficacy beliefs are based 
on a person’s interpretation of past experiences (e.g., Bandura, 1986, 1997; Tschannen-Moran et 
al., 1998; Wilkins, 2008), are constructed from four sources (i.e., verbal persuasion, vicarious 
experiences, physiological arousal, and mastery experiences; see Bandura, 1986), and are 
situation specific (Pajares & Miller, 1994). People with high self-efficacy beliefs are more likely 
to: (a) attempt tasks they might find challenging; (b) expend more initial effort on successful 
completion of the task; and (c) persist when a task becomes difficult (Bandura, 1986).  

Mathematics self-efficacy. Kahle (2008) defined mathematics self-efficacy—a situation-
specific self-efficacy—as one’s beliefs in their capability to successfully carry out a 
mathematical task. Using the Mathematics Confidence Scale (Dowling, 1978), Pajares and 
Miller (1984) found significant and positive correlations among gender, high school mathematics 
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experience, college mathematics experience, and mathematics self-efficacy. Thus, they 
concluded, mathematics self-efficacy affects mathematics performance directly rather than 
through mediated variables (e.g., gender, prior experiences).  

Mathematics teaching self-efficacy. Another type of self-efficacy, mathematics teaching 
self-efficacy, has been defined as the belief in one’s capability to teach others mathematics 
(Enochs et al., 2000; Kahle, 2008; Swars, 2005). Teaching self-efficacy influences choices 
teachers make in teaching practices, curriculum delivery, and task choice (e.g., Gulistan et al., 
2017). More specifically, high teaching self-efficacy has been linked to teachers’ (a) openness to 
student responses and inquiry, including student engagement (e.g., Toropova et al., 2019); 
(b) positive responses to academic coaching (Ross, 1992); (c) high-quality instruction (Perera & 
John, 2020; Wilkins, 2008); and (d) positive effects on student attitudes toward mathematics 
(Nurlu, 2015). 
Teaching Practices in Mathematics 

Skemp (1978) distinguished between two types of student learning goals for teachers. 
Relational understanding is “knowing both what to do and why” (p. 9) whereas instrumental 
understanding refers to using “rules without reason” (p. 9). Student-centered practices align with 
relational thinking because student-centered practices are specifically designed to help students 
construct knowledge by having them grapple with both what procedures to use and why they 
work. Students who have experienced mathematics through student-centered practices viewed 
mathematics as creative and flexible, leading them to see a future in which they would use 
mathematics in their everyday lives (Boaler, 1997)  

Teacher-centered practices align with instrumental understanding because the teacher is 
viewed as one who possesses knowledge and who should impart that knowledge to passive 
learners. These learners, in turn, are responsible for emulating the procedures that the teacher has 
demonstrated without necessarily reflecting on the reasons undergirding those procedures. For 
this study, because effectively implemented student-centered practices are aligned with social 
constructivist assumptions about learning and regarded as appropriate for the teaching and 
learning of mathematics (National Council of Teachers of Mathematics [NCTM], 2000, 2014; 
NGACBP & CCSSO, 2010; NRC, 2001; Smith & Stein, 2018), we equated effective student-
centered practices with effective mathematical teaching practices. 
Teachers’ Mathematics Instructional Beliefs 

Wilkins (2008) posited that instructional beliefs are mediated by teachers’ attitudes about 
mathematics and mathematics teaching, and those instructional beliefs, in turn, influence 
instructional practices. O’Hanlon et al. (2015) described teachers’ instructional beliefs—views 
teachers hold about the best teaching practices—as a complex system that integrates teachers’ 
beliefs concerning the nature of mathematics with their beliefs about the relationship between the 
teaching and learning of mathematics. Woolley et al. (2004) classified teachers’ instructional 
beliefs as aligned with either constructivist or traditionalist (i.e., behaviorist) approaches to 
learning. Yet researchers have found that such instructional beliefs sometimes conflict with 
enacted teaching practices (Peterson et al., 1989; Raymond, 1997; Yurekli et al., 2020).  

We examined the interplay of these factors: teachers’ self-efficacy beliefs, teachers’ 
mathematics instructional beliefs, and teachers’ implementations of the SMP. 

Methods 
Participants 

For this study, we focused on two mathematics teachers who were identified as effective by 
both mathematics teacher educators and their school principals. Kathy and Frances 
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(pseudonyms) both taught at the same suburban school in the midwestern United States. Kathy 
taught kindergarten and Frances taught Grade 5/6 mathematics.  
Data Collection 

To determine levels of self-efficacies, instructional beliefs, and use of effective teaching 
practices, we used the instruments and procedures described in this section. 

Self-efficacy beliefs. To measure both mathematics and mathematics teaching self-efficacy, 
we used Kahle’s (2008) Mathematics Teaching and Mathematics Self-Efficacy (MTMSE) 
survey. The MTMSE has a measured reliability of 𝛼 = .942 and produced positive results for 
both face and content validity. The MTMSE originally was intended for teachers who taught 
grade 3–6, but Kahle (personal communication, June 8, 2020) verified that the survey is suitable 
for elementary and middle school teachers. 

We assessed mathematics teaching self-efficacy beliefs with Part 2 and Part 4 of the MTMSE 
survey. In Part 2 of the MTMSE teachers rated, using a Likert scale of 1 (strongly disagree) to 6 
(strongly agree), their agreement with statements such as “I will generally teach mathematics 
ineffectively” or “I will typically be able to answer students’ questions.” In Part 4 of the survey, 
teachers rated (on a scale of 1–6, from low to high) how confident they felt about teaching 
specific content (e.g., fractions, decimals, shapes). 

We measured mathematics self-efficacy using Part 1 and Part 3 of the MTMSE survey. 
These components focus on teachers’ beliefs about their capabilities regarding a variety of 
mathematical tasks. In the survey, teachers are asked to rate their level of confidence, on a scale 
from 1–6, in their own ability to complete certain tasks, though they are not required to complete 
the tasks. One of the tasks was: “On a map, 7/8 inch represents 200 miles. How far apart are two 
towns whose distance apart on the map is 3 1/2 inches?” 

During pre-lesson interviews, the first author asked teachers to rate their confidence about the 
content and the teaching of the content. 

Instructional beliefs. We used an instructional beliefs survey that incorporated items from 
O’Hanlon et al.’s (2015) Teaching and Learning Mathematics Beliefs survey to determine 
whether teachers’ instructional beliefs were primarily aligned with student-centered or teacher-
centered instructional practices. The beliefs survey is applicable to all the teachers of Grades K–
12 as the items were designed to elicit teachers’ instructional beliefs about the content they teach 
at their own grade level. In developing the survey, O’Hanlon et al. designed items to reflect 
NCTM’s (2000) process standards recommendations, which are aligned with the values 
described in the CCSS-M standards (NGA & CCSSO, 2010). O’Hanlon et al.’s items represented 
three perspectives: personal learning, student learning, and teaching. For this study, we used 
items that focused on teachers’ perspectives about student learning and teaching.  

Use of practice standards. To assess teachers’ use of practice standards, the first author 
observed 5 or 6 lessons for each teacher and collected all lesson plans and materials used in those 
lessons. The first author also conducted short pre- and post-observation interviews to discuss the 
lesson plan.  

To obtain a detailed description of each teacher, the first author conducted five in-person 
observations with the kindergarten teacher and six with the 5th and 6th grade mathematics teacher 
during the spring of 2021. The teacher selected the lessons for each observation. We video and 
audio recorded each observation. To assess the frequency with which teachers engaged students 
in the Standards of Mathematical Practice (SMP; NGACBP & CCSSO, 2010), we used the 
Mathematics Classroom Observation Protocol for Practices (MCOP2; Gleason et al., 2015) 
during the observation and subsequent viewing of video data. The MCOP2 was developed to 
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examine aspects of teaching facilitation (TF) and student engagement (SE) for the purpose of 
teaching mathematics for conceptual understanding and was grounded in the Instruction as 
Interaction framework (Cohen et al., 2003). Gleason et al. (2017) found the MCOP2 to have an 
interrater reliability for both TF (𝐼𝑅𝑅 = 0.616) and SE (𝐼𝑅𝑅 = 0.669) subscales. Teacher 
facilitation refers to the role of the teacher to provide lesson structure and guidance through 
problem solving and mathematical discourse. Student engagement refers to students fulfilling 
their roles as active learners within the classroom environment (Gleason et al., 2015). The 
MCOP2 includes both TF and SE because an observer cannot assess whether teacher actions are 
effective without observing whether those teacher actions produce meaningful engagement from 
students. The MCOP2 observation guide aligns with teacher implementation of the SMP. In 
Table 1, from Gleason et al.’s (2017) publication, we note the alignment between the MCOP2 
and the SMP. Gleason et al. (2015) recommended that multiple observations occur over a period 
of time so that a comprehensive view of teachers’ practices can be established. 

 

Table 1. Relationship between the MCOP2 and the SMP (NGACBP & CCSSO, 2010) 

Data Analysis 
We did not perform statistical tests on survey data because of the small sample size. We used 

the quantitative tools only to estimate levels for each teacher’s self-efficacies as part of a 
description of that teacher’s beliefs and practices. 

Self-efficacy beliefs. We used analysis results from the MTMSE survey for the purpose of 
establishing whether teachers’ mathematics and mathematics teaching self-efficacy beliefs were 
high or low. Survey questions were worded both positively and negatively. We reordered ratings 
so that all statements were on a consistent scale with high scores representing more self-
efficacious views. Unlike Kahle (2008), who based analysis on the sums of survey ratings, we 
tallied the responses for each question so that we could consider each type of self-efficacy 
separately. For mathematics self-efficacy, we classified teachers as having a high mathematics 
self-efficacy if they provided at least 17 responses (out of 31 questions) that were fours, fives, or 
sixes on a Likert scale. For mathematics teaching self-efficacy, we classified teachers as having a 
high mathematics teaching self-efficacy if they recorded at least 15 responses (out of 26 
questions) that were fours, fives, or sixes.  

Instructional beliefs. The survey questions were constructed both as positively and 
negatively worded statements. For the analysis, we again reordered ratings so that all statements 
were on a consistent scale with high scores representing more student-centered views. Rather 
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than looking at the mean rating of survey items, we examined the frequencies of each level, 
which was more appropriate for our purpose. Following O’Hanlon et al. (2015), we classified 
teachers whose responses were primarily in the top half of the Likert scale (scores of 4, 5, or 6) 
as having instructional beliefs that aligned with more student-centered practices. In contrast, 
teachers for whom a majority of their responses were in the bottom half of the Likert scale were 
classified as having primarily teacher-centered instructional beliefs (O’Hanlon et al., 2015).  

Use of practice standards. We classified teachers’ use of the SMP by their scores in the 
relevant section of the MCOP2. The MCOP2 rates teachers’ performance on a scale of 0–3 for 
each of the 16 items, with a 0 indicating the non-use or incorrect use of the item description and 
a 3 indicating the use of the item description. For each teacher, we reported the median scores 
across all observations for individual component of the scale (see Table 1). We used a median 
because the data were ordinal. We focused our analysis on the frequency of attaining medians at 
the top two rating levels (i.e., 2 and 3) within each of the SMP because those levels indicate at 
least an intentional effort to used student-centered practice. 

Results 
The purpose of this research was to determine the relationships among effective teachers’ 

instructional beliefs, mathematics and mathematics teaching self-efficacies, and their use of the 
SMP. Using the collapsed rating method described above, both teachers scored similarly with 
respect to their instructional and self-efficacy beliefs. However, there were differences in their 
MCOP2 results. In the following sections we discuss the specific results to each of the surveys 
and the MCOP2 observations.  
Self-Efficacy and Instructional Beliefs 

We found that both teachers scored identically on the sections measuring mathematics 
teaching self-efficacy, meaning that both teachers felt as though they were capable of teaching 
mathematics in a student-centered approach. The teachers’ mathematics self-efficacy survey 
results showed a slight difference between the two participants, Kathy scored higher than 
Frances (see Figure 1). However, both teachers achieved scores that we interpret as indicating a 
high mathematics self-efficacy, because both scores were above the cutoff score of 17. 

 

 

Figure 1. Beliefs Survey Results 

Both teachers seemed to score similarly on instructional beliefs indicating that they both 
believed in a student-centered approach to teaching. Of the 26 items, each teacher selected a 
single 3-level rating, and their remaining 25 ratings were within the 4–6 range. However, when 
we examined the distribution of ratings, Frances’ rated all 25 statements with a 4, whereas 
Kathy’s ratings were all 5s and 6s (see Figure 2). Although both teachers had student-centered 
instructional beliefs, Kathy’s beliefs may be more robustly student-centered than Frances’ 

28 31

26 26

26 26

F R A N C E S  ( G R A D E  5 / 6 ) K A T H Y  ( G R A D E  K )

Mathematics Self-Efficacy (31) Mathematics Teaching Self-Efficacy (26) Instructional Beliefs (27)
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beliefs. We found further evidence of a possible disparity during the pre- and post-observation 
interviews, as Kathy spoke more frequently—without prompting—about her student-centered 
instructional beliefs. Frances often required prompting to discuss her instructional beliefs.  
 

 

Figure 2. Specific Score Categories for Instructional Beliefs 

Use of Standards of Mathematical Practice 
Using the MCOP2 observation tool, Frances received more medians of 3 than Kathy, and 

Frances’ medians were always equal to or greater than Kathy’s (see Table 2). For teacher 
facilitation items across all observations, Frances’ median score was 3 and Kathy’s was 2. For 
student facilitation items, Frances’ median score was 2.5, whereas Kathy’s median score was 2.  
 

Table 2. Medians of Scores on the MCOP2 Across All Items and Observations 

 

Each teacher consistently facilitated the SMP in their classroom. Although Kathy received a 
median of 2 more often than a 3 on the MCOP2, she regularly provided her students with 
opportunities to look for and make use of structure and look for and express regularity in 
repeated reasoning. Frances—having a median of 3 more often—provided opportunities for her 
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students to make sense of problems and persevere in solving them, attend to precision, look for 
and make sense of structure, and look for and express regularity in repeated reasoning. 

 
Relationships Among Beliefs and Practices 

Although teachers had only minor variation in the robustness of their beliefs, based on their 
survey responses, their MCOP2 showed somewhat greater variation in their use of the SMP in 
their lessons. For example, Kathy had more robust student-centered beliefs, as measured by the 
beliefs survey (see Figure 2); but then Kathy employed the SMP less consistently throughout the 
observations. Figure 3, showing the medians of level 2 and level 3 implementations of the SMP, 
shows that Kathy had a greater median of level 2 implementations, although her beliefs were 
more robustly student centered. In contrast, although Frances’ student-centered beliefs were less 
robust, she scored a 3 across more categories. 

 

 

Figure 3. Median SMP Scores Across All Observations  

Discussion 
Echoing prior research, we noted a connection between the teachers’ beliefs and their use of 

instructional practices (Hadley & Dorward, 2011; Peterson et al., 1989). However, there may be 
some differences with respect to which practices teachers use and how often they use those 
practices. We conjecture that our observed differences between the teachers were not simply due 
to grade-level differences but instead were due to the complexity of teaching and teacher beliefs. 
Building on prior work (e.g., Yurekli et al., 2020) by using classroom observations, we conclude 
that teachers with more-robust student-centered beliefs may not enact those beliefs in practice. 
 This study was limited by the number of participants and the pandemic context in which we 
observed them1. More research, using in-depth interviews, is needed to explore the extent to 
which beliefs, experiences, and other factors influence teachers’ use of the SMP. Even so, this 
study adds to the growing body of research on the beliefs of teachers. 

                                                           
1 Because of the pandemic, we had limited access teachers who were teaching in person and there were many 
constraints to the classroom environment. Thus, the practices we observed may not have reflected teachers’ typical 
or desired approaches.  
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Mathematical modeling can be a lever for equity in the elementary math classroom, as it 
empowers teachers to build on the knowledge and cultural resources that children bring to the 
classroom and empowers students to draw on their experiences and identities to inform their 
mathematical work. To better support this transformative synergy between mathematical 
modeling and equity-oriented practices, we need a tool to deepen our understanding of 
variations and potential trajectories of teacher practice. In this report, we briefly describe our 
process for developing an equity-oriented mathematical modeling classroom observation 
protocol. We then discuss two sample dimensions from our tool to illustrate our integrated 
attention to equity-focused and mathematical modeling-specific teaching practices. 

Keywords: Modeling; Elementary School Education; Instructional Activities and Practices; 
Equity, Inclusion and Diversity  

In elementary mathematics education, classroom observation tools can support teacher 
learning by making visible key features of instructional practice and outlining potential 
trajectories for developing new practices (Bostic et al., 2021; Boston et al., 2015). Observation 
tools also serve research by generating evidence of teachers’ enactment of specific practices 
which can inform the design of professional learning experiences, or evaluate the effectiveness 
of interventions. While there are numerous observation tools focused on high-quality math 
teaching (e.g., MQI; Learning Mathematics for Teaching Project, 2011; M-SCAN, Walkowiak et 
al., 2014), tools focused specifically on teaching mathematical modeling are limited.  

Mathematical modeling is an iterative process involving problem posing, and testing, 
validation, and revision of mathematical models to inform decision-making (Lesh & 
Zawojewski, 2007; Pollak, 2012). Observation tools that attend to modeling often include 
modeling as a single dimension (e.g., Bostic, et al., 2019; Gleason et al., 2017). Although 
researchers have begun to conceptualize modeling-specific protocols (e.g., Hwang, 2020), 
validating tools for use in elementary grades is still needed. Additionally, while there is growing 
recognition that mathematical modeling can be a lever for equity (Aguirre et al., 2019; Anhalt et 
al., 2018; Carlson et al., 2016; Cirillo et al., 2016; Suh et al., 2018; Turner et al., 2022), tools that 
integrate an explicit focus on modeling and equity-oriented practices are lacking. Equity-oriented 
tools often lack a content focus (e.g., CLASS, Pianta & Hamre, 2009; Salazar, 2018), or focus 
generally on standards-based mathematics instruction, but not modeling (e.g. Nava, et al., 2019). 

The lack of a validated classroom observation protocol that attends, in substantive ways, to 
both mathematical modeling and equity-oriented, culturally responsive instruction is problematic 
because of the synergy between mathematical modeling and advancing equity. To address this 
need, our project is building on prior exploratory work that involved adapting dimensions of an 
existing classroom observation protocol for elementary mathematics (the M-Scan, Walkowiak et 
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al., 2014) to focus on culturally responsive mathematical modeling in grades 3-5. In this report, 
we describe our development process and discuss tool dimensions that illustrate our integrated 
attention to equity-focused and modeling-specific teaching practices. We end with a discussion 
of potential uses of the classroom observation tool, and next steps in our validation process.  

Equity-Focused Teaching Practices for Mathematical Modeling 
Teaching mathematical modeling is challenging because modeling includes processes like 

posing problems, making assumptions, and testing and revising models, that are not typical in 
mathematics classrooms (Niss, Blum, & Galbraith, 2007). Modeling tasks are more open and 
less predictable than those in most lessons (Cai et al., 2018) and require teachers to know about 
the real-world contexts that motivate modeling problems, potential mathematical solutions, and 
ways to maintain rigor and support for students as they develop, refine, and communicate their 
models (Suh et al., 2021; Turner et al., 2021). However, there is synergy between equity-focused 
mathematics teaching and mathematical modeling. Modeling empowers teachers to elicit and 
build on the knowledge and cultural resources that students bring to the classroom and empowers 
students to draw on their identities and experiences to inform mathematical work and take action 
(Aguirre et al., 2019; Turner & Bustillos, 2017). Classroom modeling also encourages diverse 
student contributions and gives teachers opportunities to “recognize and reward a broader range 
of mathematical abilities than those traditionally emphasized” (Lesh & Doerr, 2003, p. 23). To 
better support teachers’ learning and practices related to the transformative integration of equity-
focused teaching and mathematical modeling, we need a tool to sharpen our vision and deepen 
our understanding of variations and potential trajectories of teacher practice. 

Overview of Classroom Observation Tool Development 
To develop our classroom observation tool, we followed a multi-stage process for protocol 

validation outlined by Bostic and colleagues (2019). Stage 1 involved a review of observation 
protocols for mathematical modeling and equitable teaching practices, and research on effective 
teaching practices for mathematical modeling, especially in grades K-2. Stage 2 focused on 
synthesizing key outcomes from the literature, and using these ideas to draft an initial version of 
the tool. This version included 6 dimensions, each of which focused on equity-oriented teaching 
practices for a specific phase of the modeling process (e.g., making sense of the context and 
posing problems; identifying important quantities and making assumptions). Several of the 
dimensions were adapted from similar dimensions in existing, exploratory tools (Foote, Aguirre, 
Turner & Roth McDuffie, 2020. In Stage 3, we assembled an expert review panel consisting of 
15 scholars with expertise in mathematical modeling, equitable teaching practices, and classroom 
observation tools. Scholars reviewed the draft protocol and provided feedback on its alignment 
with the construct (i.e., to what extent do the dimensions capture key features of mathematical 
modeling across the elementary grades?); the range of practice captured (i.e., do the indicators 
capture teacher moves and supports that are appropriate for K-5 students from diverse cultural, 
racial, linguistic, and geographic backgrounds?); and the clarity and usability of each dimension 
to describe and inform practice. In Stage 4, we revised the tool based on our review of the 
literature and feedback from our expert panel. Stage 5, our current stage, is focused on testing the 
revised observation tool with video of modeling lessons from different grade levels, and from 
teachers with various levels of experience teaching modeling.  
Dimension 1: Connections to Students’ Experiences and Cultural/Community Contexts 

Dimension 1 (Table 1) captures teaching practices to support connections between students’ 
experiences and the modeling process. Unlike some of the tool’s dimensions, which focus on a 
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particular modeling phase, (see Table 2), Dimension 1 should be present throughout the cycle. Its 
descriptors address the degree to which the teacher sustains connections to students’ experiences 
and cultural and community contexts. Key Terms and Ideas, listed below the descriptors, clarify 
the nature of the connections to be made and teacher moves that could support students’ work.  

 
Table 1: Connections to Students’ Experiences and Cultural/Community Contexts 

Not Present (0) Emerging (1) Proficient (2) Advanced (3) 
The teacher does not 
engage the class in 
making connections 
between the modeling 
context and their 
lives. 

In one phase of the 
modeling process, 
teachers support 
multiple students to 
make connections to 
their experiences 
(lives, communities, 
cultures) to inform 
their work. 

In two or more phases 
of the modeling 
process, teachers 
support multiple 
students to make 
connections to their 
experiences to inform 
their work. 

In two or more phases 
of the modeling 
process, teachers 
support multiple 
students to make 
connections to their 
experiences to inform 
their work. 

Key Terms and Ideas 
Connections include references to experiences related to the context or scenario, or references 
to understandings about a specific context, setting, scenario or activity. Connections can include 
connections to students’ or teachers’ experiences outside of school, and students’/teachers’ 
shared experiences as members of the school community.  
Teacher Support includes teacher moves such as asking students to recall experiences related 
to the context to help them identify key quantities; reminding students to use what they know 
about a situation to help them evaluate their solution; asking students to draw on their 
experiences with the situation to propose revisions to their models; reminding students of a 
shared experience that might inform their work. Teacher support must involve prompting, 
probes and/or follow up and go beyond a single question, hook or statement, and beyond a 
teacher-provided connection that does not invite student input or response. 

  
Dimension 1 makes practices that advance equity while teaching mathematical modeling 

explicit and offers a trajectory for supporting students to connect to their experiences and cultural 
and community contexts. At the emerging level, teachers support connections in one phase of the 
modeling cycle, likely through a single prompt or statement. As teachers grow in their ability to 
support classroom modeling, they sustain connections to students’ experiences throughout the 
cycle - perhaps by prompting students to draw on their experiences to identify important 
quantities, propose revisions to their model, or interpret their solution. The tool also makes clear 
that teachers support multiple students to connect to their backgrounds and experiences, 
increasing the likelihood that contributions of students from diverse backgrounds are honored.  
Dimension 2: Posing Mathematical Problems 

Dimension 2 (Table 2) captures practices that support students learning to pose mathematical 
problems. Its descriptors focus on the degree to which the teacher involves students in posing the 
question that drives the modeling task. Unlike typical mathematics lessons, where students must 
understand the problems posed by the teacher or the textbook, when students model they learn to 
focus on specific features of real-world problems and then translate those features into 
mathematical questions. Thus, supporting students in learning to pose mathematical problems 
requires teaching practices that are unique to mathematical modeling.  
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Table 2: Posing Mathematical Problems 
Not Present (0) Emerging (1) Proficient (2) Advanced (3) 
The teacher poses the 
modeling problem. 
The problem is pre-
determined by the 
teacher.  
 
There is no evidence 
of actions by the 
teacher to connect 
students' questions or 
wonders about the 
context to the 
problem posed.   

The teacher poses the 
modeling problem, 
but the teacher makes 
connections between 
the problem posed 
and the questions/ 
wonders/ 
observations/ 
experiences that 
students posed about 
the context. 
 

The teacher invites 
students to shape 
some components of 
the problem posed.  
 
Includes: supporting 
students to recognize 
math questions, 
inviting students to 
connect the problem 
with their wonders or 
to share insights about 
the problem posed. 

The teacher 
consistently 
invites and builds on 
student ideas to pose 
and refine the 
modeling problem.   
 
The teacher may 
facilitate the 
discussion, but 
student ideas drive 
problem-posing. 
 

Key Terms and Ideas 
Posing problems refers to formulating a mathematical question that can be invested through the 
modeling process. Problems may be descriptive, predictive, or evaluative in nature.  
Teacher Connects student ideas or wonders to the problem posed (by the teacher). The teacher 
might say, “You all asked about ……., that is very similar to the problem we are going to work 
on today. Here is our problem…”  Or, the teacher may invite students to share an observation or 
experience related to the problem posed (by the teacher). 

 
Dimension 2 captures equity-oriented instruction by focusing on teaching practices that 

empower students to shape the mathematical questions that are asked. Teacher development in 
this trajectory moves from emergent practices that are limited to teachers making connections 
between students’ ideas a pre-determined problem to advanced practices that consistently invite 
student contributions and allow student ideas to drive problem posing. When teachers support 
students in this way, they extend authority for what is legitimized as important and worthwhile 
mathematical work to students. Not only does this disrupt power structures present in most 
classrooms, it supports students in developing a critical mathematical modeling competency.  

Discussion and Implications 
Observation tools that combine equity-oriented teaching and a content focus advance the 

field by offering specific descriptions of practice and trajectories for developing effective, 
equity-focused mathematics teachers. Our next step is to test our tool on a larger set of modeling 
lessons from diverse grade levels and classroom contexts, and to conduct psychometric analysis 
of data generated from use of the tool (i.e., reliability analyses). We anticipate that mathematics 
teacher educators can use our tool to design mathematical modeling professional development 
experiences that center equity, and that researchers can use the tool to study potential shifts or 
growth in teacher practice of mathematical modeling over time. Teachers can use selected 
dimensions of our tool to reflect on their practice and to consider strengths and areas for growth.  
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This study examines the utilization of cognitive interviews longitudinally over a one-year period 
to collectively trace raters’ response processes as they interpreted and scored with observational 
rubrics designed to measure teaching practices that promote equity and access in elementary 
and middle school mathematics classrooms. We draw on four rounds of cognitive interviews 
(totaling 14 interviews) that involved four raters at purposeful time points spread over the year. 
Findings reported in this study focus on raters’ responses about one rubric, positioning students 
as competent. The findings point to the complexities of utilizing observational rubrics and the 
need to track response processes longitudinally at multiple time points during data collection in 
order to attend to rater calibration and the reliability and validity of resulting rubric scores.      

Keywords: instructional activities and practices; research methods; measurement  

 In the field of education, researchers and evaluators regularly develop rubrics to assess or 
measure a particular construct with the intent for trained raters to apply the rubrics and assign 
reliable scores so that valid inferences can be drawn from the resulting data. One such example is 
classroom observational rubrics designed to measure mathematics teaching practices (e.g., 
Boston, 2012; Walkowiak et al., 2014). However, we know that using classroom observational 
rubrics is a complex and intense endeavor, due to the many nuances that exist in classroom 
interactions and instruction. Therefore, attending to how raters interpret the rubrics and apply 
their interpretations to assign scores is a critical type of validity evidence. That is, the response 
processes of raters can be utilized to evaluate if raters interpret the rubrics and apply scores as 
intended. In this study, we attend to raters’ response processes over time using rubrics designed 
to measure teaching practices that promote equity and access in mathematics classrooms. The 
significance of this study is twofold: (1) it illustrates the complexity of one component of an 
interpretation/use argument (IUA) (Kane, 2016), but with longitudinal data; and (2) it draws the 
field’s attention to the importance of iteratively examining raters’ interpretations of rubric 
language and levels. It is critical that classroom observational rubrics generate reliable scores 
from which we can make valid inferences.       

Background 
The EAR-MI (Equity and Access Rubrics for Mathematics Instruction) is a set of classroom 

observation rubrics designed to focus on specific practices that support more equitable 
participation and access in mathematics classrooms. The EAR-MI began as a theoretically-
derived and empirically validated set of instructional practices (Wilson et al., 2019). For this 
study, we focus on raters’ interpretation of one of the instructional practices and its 
accompanying rubric, positioning students as competent.    
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When teachers position students as competent, they explicitly and publicly value, identify, 
and acknowledge the brilliance of their students, framing their actions and statements as 
intellectually valuable (Bartell, 2011). The positioning rubric emphasizes the extent to which 
teachers specify what students do that is productive and the extent to which they provide 
rationales as to why what was done was considered productive. Figure 1 illustrates how 
positioning may be elevated in a classroom, corresponding to the levels on the rubric.   

Figure 1: Positioning students as competent, increasingly elevated. 

Our overarching goal in further developing the EAR-MI is to utilize Kane’s (2016) 
“argument-based approach to validity” to systematically build an argument for validity. Kane 
describes the process of developing an interpretation/use argument (IUA) with claims to be 
evaluated with evidence. One such source of evidence is cognitive interviews to evaluate if the 
scoring is being applied accurately and consistently (Groves et al., 2009; Willis, 2005) and more 
specifically, to illuminate factors that could be impacting the scoring process. Cognitive 
interviews provide insights into four components of the raters’ response processes: 
comprehension, retrieval, estimation, and scoring (Tourangeau, Rips, & Rasinski, 2000). 
Comprehension is the rater’s process of understanding terms within a rubric and their combined 
meaning to interpret the rubric as intended. Retrieval refers to the rater recalling the necessary 
information or evidence in the video-recorded lesson. Estimation is the process of the rater 
judging the quality of the retrieved information for completeness and integrating information 
from their notes and memories to estimate a score. Scoring is the process of mapping the 
estimated response to the rubric’s scale.  We utilized these four components in the context of the 
current study to longitudinally examine raters’ interpretations of the positioning rubric.  

Methods 
Data Collection 

Participants in this study were four raters on the scoring team for the EAR-MI. Each rater 
completed three or four cognitive interviews, conducted one-on-one with an interviewer. Before 
each cognitive interview, each rater watched a video-recorded mathematics lesson (the same 
lesson for all participants at the given time point). During the cognitive interview, the rater talked 
aloud about each rubric in light of the mathematics lesson, providing justifications and evidence 
for the scores they assigned.   

Cognitive interviews occurred at four purposeful time points (TPs) across the course of one 
year. Four raters participated in the first interview, which took place in January 2021 (TP1), after 
a live, four-day rubric training, before raters entered a phase called training reliability. During 
the training reliability phase, raters scored lessons and subsequently met with an expert rater to 
discuss their scores. Two raters participated in the second interview, which occurred in April 
2021 (TP2), mid-way through the training reliability phase. At this point, raters had scored 11 
lessons and participated in an additional live training, what we refer to as “construct jams”. 
During the construct jams, raters refined and adjusted their understanding of the rubric 
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constructs. Four raters participated in the third interview, which occurred in June 2021 (TP3), 
after the training reliability phase and before raters scored lessons for a generalizability study. 
Following the training reliability phase, raters’ scores indicated acceptable agreement with expert 
scores; 83% of raters’ scores matched with expert scores exactly on the last five videos scored. 
At this point, raters had scored 10 additional lessons post- construct jams. Four raters 
participated in the fourth interview, which occurred in November 2021 (TP4), after the 
generalizability study and before raters started scoring lessons as a part of the larger sample of 
lessons to be included in continued examination of the validity of rubric scores. All interviews 
were transcribed. Having cognitive interview data at four time points allows for the tracing of 
interpretations of the rubric over time. It is important to note that in this study, we center raters’ 
thoughts and perspectives in an effort to understand what is working and what needs 
improvement in scoring procedures as we aim to produce reliable rubric scores.  
Data Analysis 

We focused on raters’ collective interpretation of the focal rubric over the course of the four 
TPs. We chose the positioning rubric for two reasons. First, we are able to look across time at 
raters’ interpretations of the rubric without changes in rubric language. This is possible because 
the generalizability study did not indicate that rubric changes were necessary. Second, the 
positioning rubric was functioning fairly well. For example, exact-match agreement rates 
between rater and expert scores exceeded 80%. We wanted to dive deeper with this rubric to 
understand the nuances that supported or hindered use from a rater perspective, particularly when 
everything looks like it is going well based on agreement statistics.    

We reduced the 14 interview transcripts to only include when raters talked about scores for 
the positioning rubric.  We conducted a line-by-line qualitative analysis of the raters’ responses. 
After an initial read, we read through their responses using an open coding approach, tagging 
codes to the four components of the response process framework (Tourangeau et al., 2000). 
Codes were collapsed or fine-tuned based on a third reading of the data. We then identified 
themes for each component of the response process framework, focusing on the group of raters 
collectively, not an individual rater’s development over time.   

Findings 
Comprehension refers to raters’ interpretations of the rubric’s terms and their combined 

meaning. Across the first three time points, raters consistently grappled with the definition of a 
“rationale” and identifying when a rationale was present. As displayed in Figure 1, positioning is 
elevated when a teacher includes a rationale for why the student’s action or idea is considered 
productive. In some instances, raters were “on the fence of whether or not [a teacher’s comment] 
was a rationale” (TP3). Sometimes, the raters pondered the level of clarity and/or explicitness of 
the rationale (e.g., “I think it could be debatable because it’s not 100% explicit, but this [teacher 
action] demonstrates the ability to provide rationales, but they are not necessarily clear” [TP3]). 
At TP4, the raters were much more decisive and did not grapple with the term as evidenced by 
“I’m going to stick with [my score] because I don’t see a rationale.”  

Retrieval is the process of recalling the necessary information in relation to the rubric. Raters 
scored the lesson immediately after watching the lesson. They also utilized structured notetaking 
and applied “soft scoring” approximately every 20 minutes. “Soft scoring” means pausing and 
recording a score that represents what has happened so far in the lesson. The processes of 
structured notetaking and soft scoring were implemented between TP2 and TP3.  Raters 
described how soft scoring “helps me calibrate and make sure that I know what I have strong 
evidence for” (TP3). Between TP1 and TP2, the positioning rubric changed from a rubric based 
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on preponderance of evidence to highest evidence because the intent is to acknowledge a 
teacher’s potential for implementing the equitable teaching practice of positioning students as 
competent. A direct implication of this change was evident in raters’ ability to retrieve 
information for scoring efficiently, with less emphasis on finding every instance of positioning 
within a lesson: “I don’t really have to search too far [in my notes] because I felt the earlier 
instance was stronger” (TP3).  

Estimation occurs when the rater estimates a score based on notes and recollection of the 
video. With the exception of TP4, raters tended to ponder the distinctions between the levels on 
the rubrics. One rater described “the distinction between a two and a three is still kind of 
blurry….it would be hard for me to teach someone else what counts as a three. I’m not sure if I 
could articulate it clearly” (TP3).  Here, the rater grappled with the levels on the rubric; this 
grappling corresponds to the uncertainty described earlier about the term, “rationale”.     

Scoring is the actual application of a score on the rubric. Across the four TPs, the raters 
became increasingly more confident, particularly at TP4 (“I’m always confident now”), when 
they spent less time grappling with the rubric and its terms, did not verbalize or demonstrate 
indecisiveness, and moved more quickly to assigning the score.     

Discussion 
While our work is situated within the context of the EAR-MI, we present our discussion as 

three broader recommendations for researchers, both for those who are designing rubrics to 
measure a target construct and for those who utilize rubrics. Both groups should critically and 
carefully consider raters’ interpretations and scoring applications. First, the cognitive interviews 
shed light on reasons for our raters’ misinterpretations. If we did not have the cognitive interview 
data, our awareness of issues with the term, “rationale”, would be less robust. Implementing 
cognitive interviews, whether in the context of the development of new rubrics or in the 
application of existing rubrics, is critical for understanding the nuances of raters’ interpretations. 
Cognitive interviews also center the voices of raters and their perspectives about the important 
work they are doing. Second, we implemented procedures that resulted in better and more 
efficient retrieval of relevant information for scoring. The structured notetaking and soft scoring 
turned out to be fruitful as raters became more proficient with the rubric. When utilizing rubrics 
to score data, we recommend researchers attend to the process, not just the resulting scores. The 
systematic examination of these processes and their influence on raters seems to be an important 
component of collecting and evaluating evidence of validity. Finally, based on our read of the 
literature in mathematics education and beyond, cognitive interviews are typically implemented 
at one (or maybe two) TPs, and often only in the context of the initial development of a rubric. 
Our data suggests that iterative, longitudinal implementation of cognitive interviews is 
significant in improving raters’ scoring procedures and thought processes. We were able to 
iteratively provide training to raters (as in the example of the “construct jams”) throughout the 
year of these four rounds of cognitive interviews. In summary, the use of classroom 
observational rubrics to document and measure teaching practices is messy, but exciting work. 
Cognitive interviews at multiple time points serve as a mechanism for attending to the 
production of reliable scores such that valid inferences can be made when utilizing rubric data.     
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This descriptive study attended to the extent to which we see evidence of the presence of four 
practices that promote equity and access in 141 grades 3-8 mathematics lessons in the United 
States. We found that lessons generally showed evidence of some incorporation of the practices 
but often not at the highest level. Teachers in this sample engaged in social coaching at a 
relatively high level, across elementary and middle school classrooms. Teachers tended to do 
less with respect to supporting connection and engagement between student context and the math 
learning environment. We also found statistically significant differences between elementary and 
middle school lessons in positioning students as competent and supporting a nurturing 
environment by proactively building relationships and productive classroom culture. We offer 
possible interpretations and a few brief implications of these findings.  

Keywords: Equity, Inclusion, and Diversity; Elementary School Education; Middle School 
Education; Instructional Activities and Practices  

 Instruction that meets national standards for student learning (National Council of Teachers 
of Mathematics, 2000; National Governors Association Center for Best Practices & Council of 
Chief State School Officers, 2010) is considered “ambitious” because it is more demanding and 
requires more of teachers than the prior focus on procedural competence (Lampert et al., 2010; 
Lampert & Graziani, 2009). However, ambitious mathematics instruction remains uncommon 
and opportunities for students to develop the understandings outlined in the Standards are not 
distributed equally (Banilower et al., 2018; Boston & Wilhelm, 2017). This is particularly true 
for students of color and students for whom English is not their first language (e.g., Nasir & 
Cobb, 2002; Gutstein & Peterson, 2005). Recently, there has been progress towards identifying 
specific instructional practices that support historically marginalized groups of students, 
particularly as they participate in more rigorous mathematics. In order for teachers to develop 
and implement the identified practices, they need support in understanding distinctions between 
strong and weak examples of the practices (Goodwin, 1994; Grossman et al., 2013; Little 2003). 

The Equity and Access Rubrics for Mathematics Instruction 
 Gutiérrez (2012) specified four dimensions to attend to the extent to which learning 
environments support historically marginalized groups of students and might be characterized as 
aiming for equity: access, achievement, identity, and power. Access and achievement comprise 
the “dominant axis” of equity, while identity and power make up what Gutiérrez called the 
“critical axis” of equity. The EAR-MI (Equity and Access Rubrics for Mathematics Instruction) 
is a set of classroom observation rubrics developed to capture seven practices that support 
marginalized students particularly along the dominant axis in gaining access to and more 
equitably participating in rigorous mathematics activity (Wilson et al., 2019). The EAR-MI was 
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designed by carefully observing the practices of middle school teachers in classrooms 
characterized by “Standards-based” instruction where historically marginalized students have 
been successful (Wilson, accepted). In this paper, we examine the classroom instruction of 
elementary and middle grades teachers to investigate the extent to which we see evidence of the 
presence of practices from four of the rubrics that produced reliable results and remained 
unchanged across two generalizability studies of the EAR-MI. Specifically, we ask the following 
question:  To what extent are grades 3-8 teachers using some of the practices that support equity 
and access outlined in the EAR-MI? 
Building an Argument for Validity 

One intended use of the EAR-MI is to support researchers to assess teachers’ progress in 
enacting mathematics teaching practices that support equity and access. Since the initial 
empirical study that described the identified classroom practices (Wilson et al., 2019), a set of 
rubrics were developed and have undergone numerous revisions. The rubrics were revised based 
on feedback from experts in ambitious and equitable mathematics teaching as well as experts in 
rubric development. Additional revisions were made based on multiple rounds of pilot coding 
and feedback from raters who were trained to use the rubrics. We then engaged in a 
generalizability study to understand how the rubrics were functioning. Based on the results of the 
initial generalizability study, we removed several rubrics due to a lack of variation in score 
distribution and we made revisions to several other rubrics to reduce rater variance or to improve 
the score distribution. We then engaged in a second generalizability study with the revised set of 
rubrics. The following four practices have rubrics that remained the same through both 
generalizability studies, and, hence, are the focus of this analysis: positioning students as 
competent; social coaching; supporting connection and engagement between student context and 
the math learning environment; and supporting a nurturing environment by proactively building 
relationships and productive classroom culture. 
Four Focal Practices 

Based on initial evidence of validity from the first generalizability study, the rubrics that 
correspond with the four focal practices had scores that demonstrated variability across lessons, 
and variability was mostly attributed to the lesson and not to differences across raters. 

Positioning students as competent. Positioning students as competent is about teachers 
explicitly and publicly valuing, identifying, and acknowledging the brilliance of their students 
and framing their actions and statements as intellectually valuable (Bartell, 2011). Note, this is 
not “appointing” or “giving” students competence. Whether or not a teacher recognizes it, all 
students already have the capability and know-how to do important and brilliant things. The 
rubric that attends to this practice emphasizes the extent to which teachers specify what students 
do that is “productive” as well as the extent to which they provide rationales that support 
listening students as well as those being positioned in understanding why what was done was 
considered productive.  

Social coaching. Coaching is one way teachers can support students in negotiating 
productive ways of participating and meeting expectations without decreasing the rigor of the 
task at-hand. Specifically, social coaching is about teachers deliberately intervening, scaffolding, 
or providing additional supports to help as students engage with one another (e.g., as they work 
in cooperative groups or present their thinking to one another). The rubric that attends to this 
practice focuses on the extent to which the teacher provides concrete suggestions in support of 
social participation. In addition, this rubric attends to how often the teacher provides rationales 
for their suggestions.  
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Supporting connection and engagement between student context and the mathematics 
learning environment. This practice is about connecting students’ lives to discussions and 
interactions that take place in mathematics classrooms by making the most of connections 
between the mathematics discussed in class and the everyday lives of students. In particular, 
teachers may attend to aspects of students’ lives and incorporate them into the curriculum 
(Ladson-Billings, 1995; Banks & McGee, 2001; Gay, 2002), or they may provide learning 
opportunities that make the mathematics problems discussed in class feel experientially real for 
students (Jackson, Garrison, Wilson, Gibbons, & Shahan, 2013).The rubric that attends to this 
practice focuses on the extent to which there are connections between mathematics and students’ 
contexts, and whether the connections involve students through dialogue. 

Supporting a nurturing environment by proactively building relationships and 
productive classroom culture. This practice is about establishing personal relationships and 
developing a sense of community in the classroom (Timmons-Brown & Warner, 2016). This 
practice often involves the teacher building rapport with students and reinforcing “classroom 
values.” The rubric that attends to this practice emphasizes the extent to which the teacher 
connects with students in ways that are substantial or that are reciprocated. It also attends to the 
extent to which the teacher highlights or reiterates classroom values. 

Method 
Sample 

This research project draws on extant classroom video data from two prior research projects, 
the Responsive Classroom Efficacy Study (RCES) study (Rimm-Kaufman et al., 2014) and the 
Middle-School Mathematics and the Institutional Setting of Teaching (MIST) study (Cobb et al., 
2018). The RCES lessons included in this study were collected in upper elementary classrooms 
(grades 3-5) during the 2008–09, 2009-10, and 2010-11 school years, and the MIST lessons were 
collected in middle school classrooms (grades 6-8) during the 2009-10 and 2010-11 school 
years.  The districts and schools within each district varied in their student demographics (see 
Table 1). 

 
Table 1: District Student Demographics (Rounded) 

District Number of 
Students 

% White % Black % Hispanic % ELL % Free/ reduced 
price lunch 

RCES 175,000 45 10 20 15 20 
MIST-A 35,000 30 40 15 10 65 
MIST-B 80,000 15 25 60 30 70 
MIST-C 160,000 15 30 65 35 85 
MIST-D 95,000 55 35 5 5 55 

 
We hired and extensively trained 5 raters to use the EAR-MI rubrics. At the conclusion of 

several months of training, rater reliability was assessed with multiple measures including 
percent exact agreement with an expert score across the last five lessons rated, as well as across 
21 lessons scored as a part of training. We consider the five most recently scored lessons because 
we expected agreement between the raters and expert to improve over time due to ongoing 
learning. Table 2 shows that exact agreement based on the last five relative to overall was higher 
for Positioning and Proactive, was similar for Social Coaching, and was slightly lower for 
Context.  
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Examining raters’ scores relative to the expert scores and relative to each other across the 21 
lessons included in training, we calculated Cohen’s kappa, Fleiss’s kappa, and Krippendorff’s 
alpha (Table 2). Rater consistency with the expert tended to be higher than relative to one 
another. Generally speaking, kappa and alpha statistics above .20 indicate fair agreement and 
above .40 indicate moderate agreement (Klein, 2018). Agreement rates with the expert were 
generally fair or moderate. The Intraclass Correlation Coefficients (ICC) allow us to measure 
consistency in raters’ scores relative to each other. Higher ICCs indicate that scores are trending 
in similar directions. The ICCs observed in our training data were all above .50, except social 
coaching which was .40.  

For this analysis, we drew on data coded as part of two consecutive generalizability studies, 
and selected the four focal practices because the related rubrics remained the same and produced 
reliable results across the two generalizability studies. We analyzed a sample of 141 lessons, 
representing 65 teachers. This resulted in 83 upper elementary lessons, and 58 middle school 
lessons.  For the purpose of this analysis, a set of scores was generated for each of these lessons 
through one of two different methods: 1) Expert scores, or 2) Averaging scores across raters. The 
expert scores resulted from lessons used for bi-weekly drift checks, and the other lessons were 
scored by three or more raters, and those scores were averaged to create a unique score for each 
rubric for each lesson. Rubrics include 5 discrete score points. By taking the average across 
raters, resulting scores could take on any value between 0 and 4. 

 
Table 2: Measures of Rater Agreement 

 Positioning Social 
Coaching 

Context Proactive 

Training     
% Exact Agreement (Last 5 Videos) 83.3% 53.3% 63.3% 73.3% 
% Exact Agreement (Overall) 71.4% 53.2% 66.7% 55.6% 
Relative to the Expert     
Cohen’s Kappa .53 .29 .53 .37 
Fleiss’s Kappa .53 .29 .52 .35 
Krippendorff’s Alpha .53 .29 .52 .35 
Relative to Other Raters     
Cohen’s Kappa .39 .20 .41 .28 
Fleiss’s Kappa .39 .19 .41 .28 
Krippendorff’s Alpha .39 .19 .41 .28 
Intraclass Correlation .54 .40 .71 .51 

 
Analysis 

This study reports on a descriptive analysis of scores assigned by raters, based on four rubrics 
designed to assess the four focal practices: positioning students as competent (POSITIONING), 
social coaching (SOCIAL COACHING), supporting connection and engagement between 
student context and the mathematics learning environment (CONTEXT), and supporting a 
nurturing environment by proactively building relationships and productive classroom culture 
(PROACTIVE). With the unique set of scores for each lesson, we examined the score 
distributions for the four practices as well as compared score distributions for the middle and 
elementary school sub-samples. We utilized two-sample t-tests to determine whether perceived 
differences between the elementary and middle school sample means were statistically 
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significant. A limitation of this analysis is that it does not take into account the nested nature of 
the lessons within teachers or the order of the lessons for teachers. Future analyses will 
investigate the influence of these factors on the results included in this report. 

 

 
Figure 1: Box Plots Demonstrating Score Distributions for Four Focal Practices 

 
Table 3: Descriptive Statistics for Scores Related to Four Focal Practices 

 
Overall  
(n=141) 
Mean (SD) 

Middle 
(n=58) 
Mean (SD) 

Elementary 
(n=83) 
Mean (SD) 

Grade band 
T-test P-value 

Positioning 2.20 (0.71) 2.05 (0.61) 2.31 (0.75) p=.033* 

Social Coaching 3.01 (0.75) 3.02 (0.80) 3.00 (0.72) p>.05 

Context 1.30 (0.87) 1.38 (0.92) 1.24 (0.84) p>.05 

Proactive 2.46 (0.67) 2.60 (0.43) 2.36 (0.79) p=.035* 
Note: * denotes statistically significant at the p<.05 level. 

Results 
Overall, the practices vary significantly in their score distributions (see Figure 1).  Of the 

four focal practices, social coaching had the highest mean (m=3.01, see Table 3), and the score 
distribution is shifted considerably higher than for the other practices (see Figure 1). A mean of 
about 3 for social coaching can be interpreted as lessons in which the teacher provided concrete 
suggestions for social participation with occasional rationales for following those 
suggestions. The practice with the second-highest mean (m=2.46) was proactive (i.e., supporting 
a nurturing environment by proactively building relationships and productive classroom culture), 
which is between levels 2 and 3. For a level 2, the teacher made just one substantial attempt to 
connect with students (e.g., the teacher sharing personal information about their life). For a level 
3, the teacher made more than one substantial attempt to connect with students. The practice with 
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the next highest mean was positioning students as competent (m=2.20), which corresponds 
between levels 2 and 3. At a level 2, we see lessons where the teacher positions at least one 
student as competent by specifying what the student did that was productive, but does not 
provide a rationale for why it was productive (e.g., “Great strategy”). At a level 3, the teacher 
provides rationales that may not be clear or that may not be focused on disciplinary practices of 
mathematics like generalizing, justifying, and making connections among multiple 
representations (e.g., “Using the lines on your paper is a great strategy because your work will be 
neat and structured and it will be easier to find your answer”). The focal practice with the 
smallest mean (m=1.30), but also the largest standard deviation (SD=0.87) was context (i.e., 
supporting connection and engagement between student context and the mathematics learning 
environment). At a level 1, either the connections to students’ contexts are superficially related to 
the math task or the students do not participate meaningfully in the discussion of the context 
(e.g., with a math problem about the perimeter of a lake, the teacher might say, “Raise your hand 
if you have seen a lake before”). At levels 2 and above, the connections to students’ contexts are 
substantially related to the math task, with different levels of student participation for levels 2-4.  
At a level 2, students participate using brief or one-word responses, and at a level 4, multiple 
students participate in developing a shared understanding of the connections to the context.   

Dividing the sample into middle school and elementary school lessons revealed additional 
nuance with respect to some of the practices (see Table 3). First, there were no statistically 
significant differences between the elementary and middle school lesson sample means for 
context and social coaching. There were statistically significant differences for positioning and 
proactive, and they were in opposite directions. In particular, middle school lessons received 
significantly lower scores with respect to positioning students as competent (p<.05). A middle 
school mean at a level 2 indicates that, on average, middle school teachers did not provide 
rationales for their statements that positioned students as competent, whereas a mean of 2.31 for 
elementary lessons suggests that more elementary teachers provided some sort of rationale in 
their lessons. The significant difference between means was in the opposite direction for 
proactive. In other words, middle school lessons received higher scores with respect to 
supporting a nurturing environment by proactively building relationships and productive 
classroom culture. This means that there were more teachers in middle school lessons (when 
compared with elementary school lessons) who made more than one substantial attempt to 
connect with students. These grade band differences are interesting and warrant further 
investigation. In the discussion we offer several possible interpretations as well as implications 
for researchers and teacher educators. 

Discussion 
Our analysis of four practices that support equity and access in mathematics lessons 

highlighted interesting differences between the average middle school lesson and the average 
elementary school lesson with respect to positioning students as competent and proactively 
building relationships. On average, in elementary lessons compared with middle school lessons, 
more teachers tended to provide rationales when specifying what the students did that was 
productive while positioning them as competent. The rubric attends specifically to the explicit 
ways that teachers position students. With this in mind, it could be that middle school teachers 
position students as competent in ways that are mostly implicit and thus would not be 
documented as outlined in the rubric (e.g., some teachers position students by calling them up to 
the board and asking them to demonstrate their mathematical strategies in the front of the class). 
It is important to note, that we are not saying that implicit positioning cannot be useful. 
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However, one theme that we have found across the practices (and especially with the practice of 
positioning) is that the most supportive implementations of the practices usually reveal the often 
invisible “rules of the game” being played in mathematics classrooms that may not be apparent 
to students, particularly students who historically have been minoritized and marginalized in 
these contexts. In other words, what we have found is that the more transparent and explicit 
teachers can be in supporting their students the better. These transparent and explicit moves 
could support students in more directly accessing what is going on and what they are being asked 
to do, which may empower them in finding their own individual ways of “doing math”.     

On the other hand, in our sample, the average middle school lesson was rated significantly 
higher than the average elementary school lesson with respect to proactively building 
relationships. It could be that teachers in elementary classrooms connect with students in more 
superficial ways. Alternatively, we note that the distinctions within this rubric attend to the 
extent to which there are reciprocal personal connections and bonds being built between teachers 
and students while working on mathematics problems. Knowing that teachers of elementary-
aged students tend to teach all subject areas and are usually the instructor for their students 
throughout the whole school day, it is possible that elementary teachers compartmentalize and 
make these types of substantial connections at other times during the school day (e.g., some 
teachers facilitate discussions about their own lives and inquire about their students’ lives during 
“Calendar Time” or “Circle Time on the Carpet”). However, we are finding that these rich 
interpersonal connections are particularly important when teachers and students are working on 
mathematics as it is one way to support students in "showing up" completely and as their whole 
selves. These interactions also support students in viewing their teachers as approachable, which 
we have seen improve student participation both in terms of who participates and how they 
participate. In general, we find that these reciprocal interpersonal connections support the 
development of a space in which students, particularly those whose voices and natural ways of 
being are typically pushed to the margins, are likely to feel seen and to be comfortable being 
their authentic selves. These interactions also support relationships that help students feel safe 
and secure to take the necessary risks involved in “doing math” (e.g., knowing that disagreeing 
with shared ideas is common and can be non-threatening or knowing that they are free to make 
rough draft or not fully formed conjectures while discussing mathematics in class). 

As we work to support mathematics teachers to go beyond high-quality mathematics 
instruction and specifically attend to equity and access in mathematics classrooms, we need more 
guidance about concrete practices that teachers can engage in (Grossman et al., 2013). This 
analysis is part of a larger effort to both specify those practices and develop research tools that 
can be used to assess teachers’ progress as they work to provide instruction that aims towards 
equity in their mathematics classrooms. At this stage of the validation process, the attention in 
the EAR-MI rubrics is on whether the teacher engages in particular practices and not with which 
of the students the practices are enacted. Once we have established meaningful differences 
between scores on the rubrics, a possible extension would be to combine the EAR-MI rubrics 
with a participation-focused approach like the EQUIP (Reinholz & Shah, 2018) to attend to 
whether there are patterns in with whom the teacher enacts particular practices. By attending to 
individual students in the classroom, we could more intentionally address aspects of the critical 
axis, specifically highlighting how individual students experience specific aspects of instruction 
in a mathematics classroom.  

The field of mathematics education needs additional research specifically focused on tools 
for researchers and practitioners that attend to the extent to which mathematics learning 
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environments support historically marginalized groups of students. With the evidence that 
teachers are not consistently enacting practices that support historically marginalized students, it 
is clear that teachers would benefit from learning more about these practices and how to enact 
them in mathematics classrooms. Teacher educators and professional development providers can 
use these practices and related rubrics to help teachers understand the practices and important 
distinctions in how they get enacted. By discussing important principles that guide work with 
students (e.g., the importance of building relationships with students), and pairing those with 
specific practices described by the rubrics, teachers can begin to envision how to enact those 
principles with students (e.g., see Pruitt-Britton et al., 2022).    
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In this study, we explore the synergies between students’ mathematical and computational 
thinking as they engage in an open-ended computing “Quilts” project. The activity aims to 
create a culturally relevant learning environment in which students have opportunities to code 
personalized quilts that demonstrate their culture and values. An open-coding process was used 
to analyze team projects. The results of the study suggested that the computational medium gave 
students flexibility to devise multiple design plans using the power of mathematics and 
opportunities to test their chosen approaches. Some of the plans included defining functions, 
using geometric transformations and estimating coordinates.  The code provided insights into 
the students’ familiarity with mathematical concepts, level of abstraction and precision in their 
calculations. Each team created unique quilts that demonstrate multiple values such as freedom, 
equity and personal life experiences such as music, family, and homeland. 

Keywords: Computational Thinking, Mathematical Thinking, Culturally Relevant Pedagogy  

Culturally relevant pedagogy (CRP) (Ladson-Billings, 1995) has been used to create 
engaging and personally relevant learning opportunities, in particular for traditionally 
underserved and marginalized students (Enyedy & Mukhopadhyay, 2007). CRP not only focuses 
on students’ achievement in a learning environment. It also supports students’ development of 
critical consciousness about inequities while acknowledging and accepting their cultural identity 
(Ladson-Billings, 1995). In this study, we explore the synergies between students’ mathematical 
and computational thinking as they engage in an open-ended computing “Quilts” project. In the 
project, students express their values and thoughts by designing their own quilts as a team, using 
the flexibility of a computing medium and the power of mathematical thinking. 

A growing number of studies is exploring the connection between computational thinking 
and mathematics learning (Barcelos et al., 2018). The majority of these studies mainly focused 
on teaching programming skills with a limited or no explicit connection to key mathematical 
ideas and concepts (Hickmott et al. 2018). A limited number of recent studies (e.g. Alegre et al., 
2020; Schanzer et al. 2015) explore the connection between mathematical and computing 
concepts. However, few studies use culturally relevant computing tasks. Aligned with Li et al. 
(2020)’s perspective, we believe that computational thinking is more about thinking than 
computing. This study will present examples of how students used various mathematical 
strategies as they code personalized quilts that reflect their own values, lives and cultures. 

Method  
We analyzed the data gathered from the end of year Cultural Quilts project of the year-long 
Introduction to Computational Thinking (ICT) course that is designed to foster 9th graders’ 
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understanding of mathematics and teach programming. The quilts activity aims to create a 
culturally relevant learning environment in which students have opportunities to code 
personalized quilts.  This activity also enables them to demonstrate their programming skills and 
use mathematical knowledge such as geometric transformations, and functions. 

The activity has 3 phases. In the first phase, students research about the history of quilts and 
reflect on the relevance of quilts in American history (e.g. quilts have been used to carry over 
traditions across generations ). In the second phase, students work in teams to design a quilt that 
has a common theme but is made by patching several patterns together. The theme represents 
values that are important for the team. In the third phase, each student needs to create a 
geometric pattern and decorate it with symbols related to the values chosen by the team. Finally, 
all the decorated patterns made by each team member are put together in a single quilt design, 
and the students write a reflection on how the final quilt is related to the chosen values. 

To design quilts, students used CodeWorld, which is an integrated coding platform designed 
for young students, where the code is based on constructing basic shapes (polygons, circles) and 
performing geometric transformations (translations, rotations, scalings) on them. These simple 
instructions can be combined to create very elaborate designs.  
Data Sources and Analysis 
We collected the data from 352 projects from students in 14 different schools. The data set 
included code of 1) selected symbols and geometric shapes 2) each team members’ pattern (a 
patch of the whole quilt formed of geometric shapes and symbols) and 3) team’s final quilt. It 
also included the theme of the final quilt and a written description of the values, culture and life 
demonstrated in the quilt. Two researchers engaged in an open-coding process (randomly 
selected half of the projects) to identify the mathematical strategies being used in the code and 
the major themes in students’ descriptions.  
Findings  

In the initial phase of dynamic quilts design, the majority of the students used mathematical 
estimation to decide how to partition the output window, where to place their geometric shapes 
and symbols to create their individual patterned patch. A few students used precise mathematical 
calculations in this process. Figure 1 shows an example for both approaches. 
 

 
Figure 1: Mathematical estimation (on the left) and precise calculation (on the right) 

As they created their quilts, students used various mathematical strategies such as 1) define 
function(s) to construct repetitive patterns (24%), 2) use geometric transformations to set 
positions relative to other object(s) (37%) 3) create each object systematically (e.g. by defining 
its coordinates considering their size, output size etc.) (22%) 4) create objects unsystematically 
(e.g. by defining its coordinates without considering the locations of the other objects) (17%).  In 
some codes, they used multiple strategies. The elegance of their code varied depending on the 
mathematical approach students used to create objects and patterns. Figure 2 shows an example 
of how one team (3 students) used the first strategy while creating an object (a pattern formed by 
geometric shapes) for their quilt.  
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Figure 2: Creating an object by defining functions 

To create the object in figure 2, students defined a function, s, that takes a rotation index (r) and a 
color (c). In the definition of s, the construction starts with an 8x8 square, which is rotated 45 
degrees, then translated, then rotated again by a multiple of 90 degrees given by the argument r, 
and finally painted in the given color c. The squares are created in the order given in the first line 
of the code (red, green, yellow, blue) and then combined to make a single object out of them. 
Note that the order in the list also determines which squares partially cover other squares, as the 
first one is on top, the second one is right below it, and so on. As seen in figure 3, to complete 
the pattern, the students created a small 4x4 blue square and placed it on top of the red one. 
Alternatively, to avoid the problem with the overlap, they could have constructed an L-shaped 
object and rotated it 4 times. 
 

 
Figure 3: Pattern completion 

Each team member created different objects and combined all objects to create the team’s final 
quilt (See Figure 4). The final code is composed of 258 lines. 
 

 
Figure 4: Unified Quilt 

The students explained how their quilt represents their values, as follows: 
The values of generosity, respect, etc. contribute to the sense of unity which is what this quilt 
is all about. Every quilt comes together to make one single quilt that is better than any of 
them alone. This represents humans in a lot of ways. 

Other students also represented various themes in their projects. For instance, 47.5% of the quilts 
represented the importance of family and friends in their lives, 21% represented life needs such 
as shelter, food and safety, 17% of the quilts represented the importance of freedom and peace, 
12.5% represented southern culture, 8.75% represented students’ homelands. Some quilts 
represented more than one aspect. 59% of the quilts are combined in harmony, each patch 
represents an aspect of the overall theme (See figure 5) and 41% are not combined in harmony 
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(See figure 4), each patch may not represent an aspect of an overall theme or the quilt lacks an 
overall theme. 
 
In another quilt named “Black teens” students described their final quilt (See Figure 5) as: 

Morals, hobbies, and heritage are important because it makes up a person's beliefs and can 
decide the actions that they choose to take. K. made symbols about Kongo, S. made symbols 
about cotton, and I made symbols with music notes and paints. 

 

 
Figure 5: Black Teens Quilt 

In the top-left patch in figure 5, a student built a note at the center and then made four copies at 
different corners. The code not highlighted shows how the student built a single note by 
combining circles and a segment [thickPolyline]. The highlighted code shows how the student 
translated the initial note to the two upper corners (n2 and n3), and then they used a reflection in 
each coordinate direction [scaled(...,-1,-1)] to get to the lower two notes (n4 and n5).  

Results and Discussion  
The results of this study suggest that students’ codes gave insights about how they used 
mathematics to design their quilt. The code gave detailed information about students’ 
mathematical strategies, which mathematical concepts they used correctly and the level of 
abstraction in their mathematical thinking. In addition, the computational medium gave students 
flexibility to devise multiple design plans using the power of mathematics (Barcelos et al., 2018) 
and opportunities to test their chosen approaches. The open-ended nature of the quilt task 
enabled students to engage in higher order thinking. To design their unique quilts, students had 
to figure out what procedures to use and why. This dynamic formative feedback had a potential 
to foster an understanding of the conceptual underpinnings of mathematical procedures (Guzdial 
& Shreiner 2021).  In addition to synergies between mathematics and computation, this activity 
created a learning environment that was personally relevant to the students. As diSessa (2018) 
suggested “the freedom to take … ideas and put them to personal use [in this case expressing 
their values and beliefs tied to their cultural heritage]” (p. 14) makes the tasks personally relevant 
to the students and creates personal variations in the designed quilts.   
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Gathering evidence of teachers’ classroom instruction has been a hallmark of data collection 
in mathematics education research. In-person data collection, though often preferable, has 
become increasingly challenging in recent years, partly due to COVID-19, but also because of 
logistical challenges (e.g., cost, travel, time) associated with collecting classroom observation 
data (Namey et al., 2020). Given that research typically occurs near higher education institutions, 
voices outside these areas are often underrepresented. These challenges have implications around 
geographic equity, researchers’ resources, and time. We explore the possibilities of remote data 
collection as a means of capturing key aspects of teachers’ mathematics instruction. 

Previous research on observation protocols that used video versus live coding primarily 
utilized quantitative methodologies (e.g., Casabianca et al., 2013; Curby et al., 2016) where 
researchers looked for significant differences using statistical tests. Gridley and colleagues 
(2018) found no significant differences between live and video coding for their observation 
protocol, but suggested there might be qualitative differences that were not captured. For 
example, the informal conversations between the teacher and researcher, the richness of data 
from being immersed in a bustling classroom, the ability to pause and rewind video, or having an 
entire research team together to watch video. Understanding aspects of protocols best suited for 
video or live observations is needed to develop and refine instruments for remote data collection, 
in order to ensure coding video captures key aspects of instruction, as if the researchers were in 
the classroom. 

Through mixed methods (Creswell & Plano Clark, 2018) we will identify differences in live 
and video recorded classroom observations with our goal to revise an existing observation 
protocol to use with video-recorded lessons so we can diversify participants and decrease 
logistical challenges. Data collection includes live observations of classroom instruction using 
the Flipped Mathematics Instruction Observation Protocol (Otten et al., 2018; Otten et al., 2021) 
while simultaneously using a 360° video camera. Two researchers will complete the protocol 
during a live observation and two different researchers will complete it using the video 
recording. Then the researchers will come together and identify possible differences in coding 
between the live and video recordings in order to refine the protocol for video recorded 
observations.  Our ultimate goal is to mitigate the dissonance of in-person versus live recordings 
and work towards a more harmonious approach for collecting observation data that attends to 
geographic equity, resources, and time.  

Acknowledgments  
This work was supported by the National Science Foundation (award #2206774) though any 
opinions, findings, and conclusions expressed here are those of the authors and do not 
necessarily reflect the views of the NSF.  

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1914



References  
Casabianca, J. M., McCaffrey, D. F., Gitomer, D. H., Bell, C. A., Hamre, B. K., & Pianta, R. C. (2013). Effect of 

observation mode on measures of secondary mathematics teaching. Educational and Psychological 
Measurement, 73(5), 757-783. 

Creswell, J. W., & Plano Clark, V. L. (2018). Designing and conducting mixed methods research (3rd ed.). 
Thousand Oaks, CA: Sage. 

Curby, T. W., Johnson, P., Mashburn, A. J., & Carlis, L. (2016). Live versus video observations: Comparing the 
reliability and validity of two methods of assessing classroom quality. Journal of Psychoeducational 
Assessment, 34(8), 765-781. 

Gridley, N., Bywater, T. J., & Hutchings, J. M. (2018). Comparing live and video observation to assess early parent-
child interactions in the home. Journal of Child and Family Studies, 27(6), 1818-1829. 

Namey, E., Guest, G., O’Regan, A., Godwin, C. L., Taylor, J., & Martinez, A. (2020). How does mode of qualitative 
data collection affect data and cost? Findings from a quasi-experimental study. Field Methods, 32(1), 58-74. 

Otten, S., de Araujo, Z., Sherman, M., & Birişçi, S. (2021). A framework for capturing structural variation in flipped 
mathematics instruction. International Journal of Mathematical Education in Science and Technology, 1-32. 

Otten, S., de Araujo, Z., & Sherman, M. (2018). Capturing variability in flipped mathematics instruction. In 
Proceedings of the 40th Annual Meeting of the North American Chapter of the International Group for the 
Psychology of Mathematics Education. 

. 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1915



DEVELOPING EXPERTISE IN TEACHING THAT IS RESPONSIVE TO CHILDREN’S 
MATHEMATICAL THINKING: A CASE STUDY 

Amy Dunning  
University of Illinois Springfield 

ahewi2@uis.edu 

Victoria R. Jacobs 
University of North Carolina at Greensboro 

vrjacobs@uncg.edu 

This poster presents the 3-year story of Ms. Brown, showcasing her development of expertise 
in teaching that is responsive to children’s mathematical thinking. In the first two years, Ms. 
Brown was a fifth-grade teacher, and in the final year, she served as a mathematics coach. 
Throughout the study, she was engaged in a 3-year professional development (PD) that was part 
of a larger project, Responsive Teaching in Elementary Mathematics (Empson & Jacobs, 2021). 
The PD was designed to help teachers develop expertise in teaching that is responsive to 
children’s thinking, with an emphasis on teaching fractions. Research-based frameworks of both 
children’s thinking and instructional practices were central to this work (Jacobs et al., 2019). 

We identified growth storylines for Ms. Brown in relation to three instructional practices 
linked to teaching that is responsive to children’s mathematical thinking: (a) anticipating 
children’s mathematical thinking (Stein et al., 2008); (b) noticing children’s mathematical 
thinking (Jacobs et al., 2010); and (c) questioning children’s mathematical thinking (Jacobs & 
Empson, 2016). Data for this case study included 7 classroom observations (2–3 per year), 19 
individual interviews (6–7 per year), 4 focus group conversations (1–2 per year), and two written 
assessments, one each for anticipating and noticing children’s mathematical thinking.  

Using constant comparative analysis, we identified growth storylines for Ms. Brown’s 
anticipating, noticing, and questioning of children’s mathematical thinking. Overall, children’s 
thinking became increasingly centered and addressed in more depth with each instructional 
practice. Further, Ms. Brown became increasingly confident in her use of children’s thinking in 
these practices. For example, Ms. Brown began by struggling with noticing children’s thinking in 
written work. In an interview early in the first year, she shared: “I’ve really been trying to take 
[written work] home and look through the work, and I don’t know fully what I’m looking at yet.” 
During the second year, her confidence and ability to notice children’s thinking increased, and 
she highlighted this growth in an interview: “That’s been the biggest growing for me over the 
past 2 years, how to look at your students’ work.” During the third year, Ms. Brown 
demonstrated further growth not only in her own confidence but also in her ability and desire to 
help others notice children’s thinking in written work. In an interview about her mathematics 
coaching, Ms. Brown stated how she encouraged her mentee to work on noticing: “For the first 2 
weeks, I just want you to notice. I want you to be able to come to me and say here are some 
things I notice about my kids’ work.” These examples provide a brief glimpse of Ms. Brown’s 
growth storyline for the instructional practice of noticing children’s mathematical thinking.  

This case study contributes to the literature on teaching that is responsive to children’s 
mathematical thinking (see, e.g., Robertson et al., 2016). We provide rich examples of the three 
instructional practices and their development over time. Implications for ways to foster that 
development are also presented. 
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Proof and creativity are foundational to the work of mathematicians (Karakok et al., 2015; 
Sriraman, 2004). For this reason, it is essential that creativity be encouraged in proof-based 
university mathematics courses (Mann, 2006; Schumacher & Seigel, 2015) and that students 
have opportunities to explicitly reflect upon their creativity when proving (Savic et al., 2017). 
Given the current emphasis on collaborative learning in such courses, we explore one possible 
way to promote explicit reflection on creativity among undergraduate students as they work 
together to co-construct proofs (i.e., the implementation of a modified version of the Creativity-
in-Progress Reflection on Proving (CPR; Savic et al., 2017). We adopt a theoretical framing of 
intersubjectivity (Matusov, 1996; Sawyer, 2019) and social metacognition (Chiu & Kuo, 2009) 
to answer the research question, how do undergraduate students in an Introduction-to-Proof 
(ITP) course use the CPR to reflect upon their experiences in collaborative proving? Providing a 
picture of how students use a tool such as the CPR will provide a foundation for future research 
aimed at understanding the effectiveness of the CPR in promoting explicit reflection upon 
creativity in collaborative proving and supporting students’ development as creative provers. 

Context and Methods 
This study was conducted in an undergraduate ITP course at a large public university in the 

United States. This course facilitated an inquiry-based learning environment centered around 
small-group work. We implemented the CPR group reflection activity (Heath et al., in press) 
following collaborative group proving activities that occurred during different course modules 
(a) Logic and Grammar of Mathematics (early in semester), (b) Direct and Indirect Proof 
Methods (mid semester), and (c) Set Theory (late semester).  For each implementation, we 
analyzed video data of student groups engaging in group reflection using the CPR.  

Results 
Each implementation followed a similar trajectory where students (a) worked in small-groups 

to collaboratively prove a given conjecture, (b) used the CPR to reflect on their proving process 
as a group, and (c) used the CPR to reflect on their individual contributions to the group’s proof, 
and (d) reconvened as a small-group to debrief and discuss their overall observations on 
creativity in proving. As an example, during the Logic module, small groups were tasked with, 
“Let A, B, and C be logical statements and prove the following: (A∧B)∨C is logically equivalent 
to (A∨C)∧(B∨C).” Analysis of video data of group reflection following this task revealed two 
central themes. First, there was a general difference in approach between groups with respect to 
how they reached a consensus during their discussion of the CPR. Second, the CPR helped 
facilitate the recollection of group members’ contributions to their group proving that were 
previously undervalued or unnoticed.  This poster will, for each implementation, describe the 
process of implementing the CPR and report the themes observed in the groups’ reflections. 
These processes and themes will inform the continued refinement of the CPR and provide future 
directions for our research regarding how to implement of the CPR in a collaborative setting. 
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More than 50 years ago, Kieren (1971) asked: “For whom, for which topics, and with what 
materials are manipulative and play-like activities valuable?” (p. 232). Since then, most curricula 
around the world have been promoting or even prescribing the use of manipulatives to teach 
mathematics at the elementary level. However, the questions asked by Kieren are still relevant as 
recent research continues to show mixed results when it comes to the efficiency of manipulatives 
(Carbonneau, Marley & Selig, 2013). The ways in which manipulatives are used by teachers 
should be considered to better understand how this use can contribute to mathematical learning. 
In addition, Puchner, Taylor, O’Donnell, & Fick (2008) underlined that “[...] teachers need 
support making decisions regarding manipulative use, including when and how to use 
manipulatives to help them and their students think about mathematical ideas more closely” (p. 
323). According to Hatfield (1994), Swan & Marshall (2008), and Johnson, O’Meara & Leavy 
(2020), the use of manipulatives decreases across grades as some teachers tend to believe that 
manipulatives can be childish or that their use could be a hindrance to the development of 
abstraction. Those studies also report some factors identified by teachers as discouraging the use 
of manipulatives (e.g., availability of material, cost, time, distraction) or encouraging it (e.g., 
visual aid, hands-on learning, building a better understanding). However, we know little about 
how teachers choose a specific manipulative to use, when and why they use them. 

In this project, we aim to better understand teachers’ practices around manipulatives and to 
help them develop meaningful ways of using them. Our first step was to develop a survey around 
the use of manipulative that will be distributed during spring 2022 to a random sample of 
elementary teachers from Québec, Canada. Building from previous surveys found in math 
education literature, we modified and enriched the different questions based on our collaboration 
with teachers (Jeannotte & Corriveau, 2020; Corriveau & Jeannotte, 2015). The first version was 
administered to 5 teachers who provide feedback to clarify questions through interviews. The last 
version is composed of 3 sections. The first section is about demographic information. The 
second section deals specifically with teachers’ use of manipulatives. The third is specific to the 
pandemic situation. In this poster presentation, we will present the rationale behind some 
questions from section 2 and some preliminary results. 
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Many higher education institutions in the United States provide mathematics tutoring 
services for undergraduate students. These informal learning experiences generally result in 
increased final course grades (Byerly & Rickard, 2018; Rickard & Mills, 2018; Xu et al., 2014) 
and improved student attitudes toward mathematics (Bressoud et al., 2015). In recent years, 
research has explored the beliefs and practices of undergraduate and, sometimes graduate, peer 
tutors, both prior to (Bjorkman, 2018; Johns, 2019; Pilgrim et al., 2020) and during the COVID-
19 pandemic (Gyampoh et al., 2020; Mullen et al., 2021; Van Maaren et al., 2021). Additionally, 
Burks and James (2019) proposed a framework for Mathematical Knowledge for Tutoring 
Undergraduate Mathematics adapted from Ball et al. (2008) Mathematical Knowledge for 
Teaching, highlighting the distinction between tutor and teacher. The current study builds on this 
body of work on tutors’ beliefs by focusing on mathematical sciences graduate teaching 
assistants (GTAs) who tutored in an online setting during the 2020-2021 academic year due to 
the COVID-19 pandemic. Specifically, this study addresses the following research question: 
What were the mathematical teaching beliefs and practices of graduate student tutors 
participating in online tutoring sessions through the mathematics learning center (MLC) during 
the COVID-19 pandemic? 

The graduate students in this study were part of a multi-institution implementation of a 
multiple component graduate teaching training program, Promoting Success in Undergraduate 
Mathematics through Graduate Teaching Assistant Training (PSUM-GTT; Harrell-Williams et 
al., 2020), which was developed with the intent to strengthen the teaching skills of mathematical 
sciences GTAs to help the undergraduate students they currently serve as GTAs and to position 
them to become more effective instructors if they become faculty. GTAs at three institutions 
participated in a teaching seminar offered by their department and a Critical Issues in 
Undergraduate STEM Education seminar and received peer mentoring from more advanced 
graduate students and support from a peer TA Coach. 

During the Spring 2021 semester, ten GTAs who had tutoring assignments instead of 
teaching assignments participated in structured interviews about their beliefs and practices. 
These GTAs had completed the teaching seminar and MLC-specific training. The interview 
protocol used modified items from the Pilgrim et al. (2020) tutor-focused survey based on The 
Teacher Beliefs Interview (TBI; Luft & Roehrig, 2007). The interview data are being coded 
using the modified coding scheme from Pilgrim et al. (2020), which involves using categories 
describing the responses on a continuum from more tutor-focused to more student-focused 
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experiences. Results regarding graduate student tutors’ beliefs will be summarized and presented 
in this poster.          
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“Humans – feeling, living, breathing, thinking humans – do research. When we try to cut 
ourselves off at the neck and pretend an objectivity that does not exist in the human world, we 
become dangerous, to ourselves first, and then to the people around us (Hampton, 1995, p. 52). 

This poster summarizes the developing praxis of two mathematics education researchers who 
consider themselves community-engaged scholars, design researchers, and community partners 
with public school educators in our city. Recently we have both reflected on our tendency to 
quietly append mentions of human connection to our research manuscripts in humble but brief 
“closing thoughts” or acknowledgements. We reduce to a sentence or two the months or years 
we’ve spent building relationships with students, teachers, and communities, and the patience 
and kindness they have shown us by inviting us into their spaces. Here we assert that relegating 
‘connectedness’ to the hidden corners of manuscripts is a symptom of personal or academic fear: 
fear of looking too emotional, too feminine, or too soft in the bid for legitimacy among the bench 
scientists. Or perhaps we are afraid that making and talking about connections with practitioners 
or research subjects makes us accountable to them, and vulnerable (Howard & Hammond, 2019; 
McDevitt, 2021). What if I care too much about this research? We join with other critical 
scholars who challenge the notion of rational objectivity as a fiction of the colonial worldview 
(Wilson, 2003; Hampton, 1995). By allying ourselves through genuine connections with the 
students, teachers, school leaders, parents, and other community members in our research, we 
trade the illusion of objectivity for the vulnerability of feeling (Hampton, 1995; Halle-Erby, 
2020).  Examining our own research using Indigenous theories and methodologies of 
relationality, we argue in this poster that human connections are not a fringe benefit, a lubricant, 
or even a foundation of “real research.” Instead, we contend that human connection and 
relationship but should be a goal of mathematics educational research. 

This poster represents our first steps adopting the Indigenous theoretical and methodological 
framework of relationality (Hampton, 1995; Wilson, 2003; Steinhauer, 2002) for use in writing 
and research in mathematics education. To demonstrate the utility of this framework for the 
PME-NA community, we present a relationality analysis of our own past and current writing 
projects, discussing the affordances and vulnerabilities in privileging human connections as a 
research pursuit. For example, in examining a manuscript for which she has recently received a 
“revise and resubmit,” Author 1 identifies a problematic absence of discussion of the way 
friendship, trust, fear, excitement, and disappointment emerged in a sequence of mediated field 
experiences for pre-service teachers in an elementary classroom. Using the relationality 
framework, the authors will use this text, as well as Author 2’s developing book proposal, as 
concrete examples of how we might rehumanize mathematics education scholarship and research 
design by centering connections and relationality. We include implications for how we might 
incorporate relationality in studies of children’s mathematical thinking as well, giving examples 
from recent PME-NA plenaries that honor relationality in timely and critical ways (Frank, 2021; 
Marchant & Jones, 2021; Kalinec-Craig, 2021). 
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Using mathematics to understand and address social issues can empower students to act as 
agents of change in their communities (Gewertz, 2020). Despite calls from education researchers 
to integrate social justice issues into K-12 mathematics (NCSM & TODOS, 2016), teachers 
rarely engage in this type of instruction (Bartell, 2013). In our task, students decide where to 
place a grocery store in a local neighborhood that has been classified as a healthy food priority 
area (HFPA or food desert) and write a program in Scratch that models different ways of 
traveling to the grocery store. By using Scratch in this task, students are exposed to coding which 
can increase their fluency in mathematics and digital literacy as well as promote future careers in 
STEM (Amador & Soule, 2015). Integrating coding into the mathematics classroom can also 
support students’ ability to visualize abstract concepts, develop authentic problem-solving skills, 
and explore real-world applications of mathematics (Germia & Panorkou, 2020). 

We implemented the Food from Scratch task with two groups of students. The first group 
consisted of 16 university students enrolled in a required course for secondary math and science 
education majors. This implementation consisted of one 75-minute session that took place in 
November 2021. The second group consisted of 18 elementary and middle school aged students 
who participated in math enrichment tasks offered through a university-community partnership 
program. This implementation consisted of two 60-minute sessions that took place on 
consecutive Saturdays in December 2021. The activity sequence for the Food from Scratch task 
consisted of five parts: (1) analyzing a neighborhood map to record what students notice and 
wonder, (2) determining the unit rate for different methods of travel (i.e., walking, driving), (3) 
selecting a grocery store location, (4) modeling travel from different locations to their grocery 
store using Scratch, and (5) engaging in a mathematical analysis of their grocery store placement 
(e.g., distance to their grocery store, average travel times for walkers versus drivers, accessibility 
of their grocery store based on data collected from Scratch). 

Analysis of students’ written work and Scratch programs revealed key themes across both 
implementations: accessibility, prior knowledge of the coordinate plane, and understanding of 
unit rates. Students were constantly aware of how their decision making affected the people in 
the community and wanted to ensure an equitable grocery store location for residents. In doing 
so, students used their knowledge of a coordinate plane to construct various routes of travel and 
utilized rich mathematical reasoning to justify their grocery store placements. For example, 
students from the first implementation calculated the distance between different points while 
students from the second implementation considered the difference in unit rates between walkers 
and drivers when reflecting on their grocery store placement. Students were able to apply their 
knowledge of the coordinate plane and unit rates to justify their ideal location of a grocery store 
in a HFPA in their community. By addressing a social justice issue that is facially neutral (all 
people should have access to healthy food options) and utilizing students’ prior mathematical 
knowledge, our findings from Food from Scratch task could prove helpful for educators wanting 
to utilize similar tasks that integrate social justice issues and modeling with technology. 
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It is important that mathematics teachers cultivate the positive identities of their students, as 
identity is an essential dimension for equity in mathematics education (AMTE, 2017; Gutiérrez, 
2012). Consequently, an important role of the mathematics teacher is to foster students’ positive 
mathematics identities to create an equitable mathematics learning environment. Identities can be 
developed through positioning, meaning recognizing discursive actions as social acts within 
storylines familiar to participants in discourse (Harré & van Langenhove, 1991). The way 
students are positioned has been shown to positively and negatively affect their learning as they 
develop mathematics identities (Bishop, 2012; Tait-McCutcheon & Loveridge, 2016; Wood, 
2013), suggesting it is a crucial component of identity development. From a perspective of 
storylines, mathematics identity can be thought of as “the repetition of ‘performances’ in 
mathematics learning contexts that generates our recognition of ourselves in certain ways as 
learners of mathematics” (Darragh, 2015, p. 85). As a student performs their mathematics 
identity, those they are interacting with are audience members that recognize and interpret the 
performance in different ways. In the context of a technology-enhanced mathematics task, 
students participate in the mathematics actively through their actions with the technology, so 
technology use can be thought of as part of their performance. The purpose of this study was to 
investigate how two students’ mathematics identities were cultivated through being positioned as 
the mathematical expert – by themselves, each other, and the teacher – when engaging in a 
technology-enhanced mathematics task. We address the research question: How are mathematics 
identities performed and leveraged by students during a technology-enhanced mathematics task?  

In this pilot case study, two ninth-grade students (age 14) attended an in-person after school 
session to engage with a task designed to leverage the power of sliders in Desmos to enhance and 
empower their learning around key characteristics of the sine function (i.e., amplitude, midline, 
and period). As they engaged in the activity, we collected screen capture recordings of their work 
with Desmos. We drew from Darragh (2015) to develop an analytical framework for examining 
their mathematical discourse, which, over time, constitutes their mathematical identities. Each 
instance of a student being the performer (which then made the teachers and the other student the 
audience) served as our unit of analysis, which Darragh referred to as “the stage.” New stages 
presented themselves when the performer of mathematical expertise shifted as a result of social 
acts during the discourse. As a research team, we coded the performer/mathematical expert and 
the action which caused the shift in each stage. Preliminary findings indicate the teachers 
positioned the students as the performer/mathematical expert through questioning, and one 
student de-positioned herself as the performer/mathematical expert when struggling with the 
mathematical concepts. Additionally, both students were simultaneously positioned as the 
performer/mathematical expert when they grappled with or agreed on mathematical ideas. 
Although performer/mathematical expert was not always the person driving the technology, the 
actions with the technology were leveraged in their discourse. Implications for fostering positive 
identity development with technology-enhanced tasks will be shared.  
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Flipped instruction is an instructional model in which content is delivered via video lessons 
students typically watch as homework. The increase in teachers’ implementation of flipped 
instruction in conjunction with the rise of virtual schooling due to the COVID-19 pandemic has 
heightened attention and interest in the videos used to deliver content in mathematics classrooms. 
Despite the proliferation of such videos, little attention has been given to aspects of lecture 
videos in mathematics, such as what constitutes flipped lecture videos or how each lecture video 
is structured. To this end, the purpose of this study was to answer the question, What is the 
content and structure of lecture videos used in flipped Algebra I classrooms?  

As part of a larger research project studying flipped Algebra I instruction, we analyzed the 
video structure (i.e., how each video introduced, explored, and summarized the mathematics 
content) of 59 lecture videos from 13 Algebra I teachers employing flipped instruction came 
from school districts of varying sizes throughout the state. Based on the shift of the images on 
the screen, the team identified the types, lengths, and sequences of video segments and 
summarized the purpose of each segment in addition to the basic instructional features and 
quality (e.g., focus, rationale, unmitigated errors) and video production (e.g., creator, interactive 
features) adapted from Authors (Han et al., 2019; Otten et al., 2021).    

The teachers typically assigned just one video per lesson and each video ranged from 41 
seconds to 23 minutes and 18 seconds with an average of 8 minutes and 8 seconds. All videos 
functioned to deliver content, so-called lecture videos. The videos were primarily composed of 
definitions, worked examples, and problem solutions. The most common sequence of video 
segments aligned with the typical model of direct instruction, rule-example-practice (Okeeffe, 
2013). Given the videos’ alignment with direct instruction, it is not surprising the segments 
comprising the teachers’ videos largely centered on procedures and the enactment of those 
procedures. Interestingly, Introduction, Worked Example, and Definition were present in nearly 
every video (72.88%, 93.22%, and 62.71%, respectively) and constituted the majority of video 
duration (3.12%, 68.59%, and 17%, respectively). Other segment types (e.g., Try Example, 
Solution, Homework, Conclusion) only took up less than 6% of video duration in total. 

Across the videos, there were no differences in terms of the content and structure of the 
videos and they were largely modeled after the textbook. Thus, as we have argued elsewhere (de 
Araujo et al., 2017), the videos are a form of digital textbook delivered by the teacher. Our 
findings shed light on the content and structure of the videos used in flipped classrooms. In 
addition, it provides a better understanding of current implementation of flipped instruction in 
Algebra 1 and a snapshot of how teachers aim to help students learn outside of the classroom 
environment, which potentially inform us of supports that we may offer teachers to improve the 
segments that they are using or promote alternative purposes and structures for the videos. 
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Teacher noticing involves attending to pedagogically significant events amongst an array of 
occurrences in the classroom, and using one’s professional resources to reason about those 
events (Jacobs et al., 2010; van Es et al., 2017). Initially, more novice teachers may focus on the 
teacher or generic classroom behaviors, while more knowledgeable teachers focus on students 
and those students’ mathematical reasoning (Huang & Li, 2012; Teuscher et al., 2017). Scholars 
studying teachers’ eye-tracking data with standard videos have found preservice teachers (PSTs) 
attempt to focus on more students, with less time per student, and usually those proximally closer 
to the camera, whereas inservice teachers (ISTs) are more focused (Huang et al., 2021). In a 
similar manner, analysis of PSTs viewing of 360 video has found that those attending to 
students’ mathematics with more specificity tend to focus on fewer students for longer durations 
(Kosko et al., 2021) and position students more in the center of their field of view (FOV) (Kosko 
et al., 2022). This scholarship provides evidence that where teachers gaze with their eyes (Huang 
et al., 2021) and turn their body/head (Kosko et al., 2022) are related to what and how they 
attend to in the classroom. The present study represents an effort to combine both technological 
approaches by examining ISTs (n=4) and PSTs’ (n=10) professional noticing in relation to their 
eye-tracking data within a 360 video on the Commutative Property of Multiplication. Analysis of 
written noticing suggest that ISTs attended to students’ reasoning about the property while PSTs 
focused on students’ procedural knowledge. Results from eye-tracking data suggest ISTs 
(42.46%) and PSTs (47.23%) gazed at children for similar proportions of time. However, ISTs 
showed evidence of looking at different students and their work, as conveyed with larger average 
gaze distances from students (U=34.00, p=.048).  
 

 
Figure 1: Cumulative Raw Gaze Data for Experts (left) and Novice (right) Teachers. 
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The objective of this study is to examine how elementary preservice teachers (PSTs) design 
and reflect on culturally sustaining mathematics lesson plans by utilizing instructional 
technology. Culturally sustaining pedagogy (CSP) values the development of student cultural 
competency, emphasizing the ever-changing states of student cultures and sociopolitical contexts 
surrounding students’ lives (Paris, 2012). Technology is a tool that can support CSP and 
accessible STEM education, due to adaptability, engagement, and opportunities for student 
representation (Galbraith et al., 2001). The Association of Mathematics Teacher Educators 
[AMTE] (2017) emphasized the importance of preparing future teachers to deeply understand 
ways to increase equity and access for every student’s mathematical success and the roles of 
technology in enhancing access to mathematics learning (AMTE, 2017). As teacher educators of 
elementary PSTs, we aimed to support their capacity to develop culturally sustaining 
mathematics lessons that incorporate instructional technology.  

 
The participants of this study were PSTs enrolled in two sections of a mathematics education 

course for an inclusive elementary education program at a public Southeastern university in the 
U.S. PSTs interacted with weekly lessons on math-based technology, featuring instructional 
design and collaborative media, and learned about ways to teach mathematics to culturally and 
linguistically diverse students. All technology components were selected for potential integration 
into culturally sustaining mathematics teaching. Examples were game-based applications, 
augmented or virtual reality, real-time collaborative software, and digital note taking tools. Data 
include PSTs pre/post-surveys, weekly written reflections on the use of technology in 
mathematics classrooms and CSP, culturally sustaining mathematics lesson plans with 
technology integration, and microteaching of the lessons. Our preliminary data analysis on PSTs’ 
work indicates that they gained an understanding of diverse technological tools, integration into 
mathematics teaching, and systemic barriers they were facing. For example, PSTs reflected upon 
ways to utilize students’ funds of knowledge and instructional technology, to design and 
implement mathematics lesson plans that cultivate equitable learning experiences for all students. 
They discussed ways to honor students’ cultures and identity by using technology in 
mathematics curricula while acknowledging the systemic barriers to implementing ideal lessons 
in an educational setting. In our poster session, we will showcase the utilization of technology to 
promote culturally sustaining mathematics teaching to address equity and universally accessible 
curriculum design. The specific ways PSTs created technology-based, culturally sustaining 
lesson plans to promote students’ understanding of mathematics will provide insights into 
curricular designs for a similar course and PSTs’ perspectives on these learning opportunities. 
We will create a space for discussion in which teacher educators share their experiences of 
incorporating technology and/or culturally sustaining pedagogy into programs. We hope to build 
future collaborations to support the learning of PSTs in multiple teacher education programs. 
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The practice of teacher noticing (TN, i.e., attending, interpreting, and deciding how to 
respond; Jacobs et al., 2010) when focused on students’ mathematical thinking in a technology-
mediated learning environment is a core component of technological pedagogical content 
knowledge (TPACK; Niess, 2005) and is essential for mathematics instruction (Jacobs & 
Spangler, 2017). Some researchers conceptualize content knowledge as the foundation of 
TPACK (Lee & Hollebrands, 2011). This conceptualization, coupled with research that has 
found that content knowledge influences teachers’ interpretations of students’ understanding on 
paper and pencil tasks (e.g., Dick, 2017), suggests that it is important to study this relationship in 
the context of technology-mediated learning environments. Thus, we investigated the 
relationship between preservice secondary mathematics teachers’ (PSMTs’) content knowledge 
and their practice of TN of students’ mathematical thinking in a technology-mediated learning 
environment. The content focused on the key characteristics of rational functions—specifically 
the existence and location of vertical asymptotes. 

This study was situated in a course focused on teaching secondary mathematics with 
technology in Spring 2021. The course had an emphasis on supporting PSMTs in developing 
TPACK in general and TN very explicitly. All PSMTs were math majors and had successfully 
completed at least through Calculus 2. PSMTs completed two assessments, one focused on 
content and one on the practice of TN. The content assessment asked PSMTs how they would 
explain to a student why the vertical asymptote of a rational function is at a given value(s). The 
TN assessment presented PSMTs with a video clip of a pair of secondary students working on a 
technology-mediated task in which they used sliders to explore the parameters of rational 
functions to reason about the existence and locations of vertical asymptotes. The content 
assessment was scored based on PSMTs’ reasoning (e.g., correct and complete, correct but 
incomplete, incorrect). The TN assessment was analyzed using a coding rubric which focused on 
PSMTs’ skills of attention to and interpretation of students’ spoken and written mathematical 
thinking and technology engagement. To develop the TN assessment coding rubric, we identified 
the mathematically significant details of the students’ exploration in the video clip and included 
three levels (i.e., lacking, limited, and robust) on each of the four components similar to the 
coding scheme used by Jacobs et al. (2010). We then compared the TN evidence with the PSMTs 
reasoning about the existence and location of vertical asymptotes to assess any trends. Findings 
include that PSMTs who provided correct and complete responses to the content assessment 
provided either limited or robust evidence for their interpretations on the TN assessment. In 
comparison, PSMTs who responded with incorrect components on the content assessment 
provided lacking interpretation evidence on the TN assessment. Thus, preliminary findings 
suggest that although there may be a connection between PSMTs’ knowledge of vertical 
asymptotes and the TN skill of attending, there is likely a stronger connection between PSMTs’ 
knowledge of vertical asymptotes and the skill of interpreting in a technology-mediated learning 
environment. A full analysis will be presented along with implications for supporting PSMTs as 
they develop both content knowledge and TN. 
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This research synthesizes studies that used a Digitalized Interactive Component (DIC) to assess 
K-12 student mathematics performance during Computer-based-Assessments (CBAs) in 
mathematics. A systematic search identified ten studies that categorized existing DICs according 
to the tools that provided language assistance to students and tools that supported students 
problem solving. We report on the one study that involved students with learning disabilities and 
three studies involved English Language Learners. One study focused on assessing geometry 
content and four studies targeted on number and operations understanding. For other studies 
included a mixture of mathematics domains. Mixed results were reported as to the effectiveness 
of the availability of DICs. The research suggests that older children were more likely to benefit 
from availability of the DIC than younger children, and that DICs have greater impact on 
students with special needs. 

Keywords: Computerized mathematics tests, mathematics assessment, Interactive digitalized 
components 

While there are multiple literature reviews evaluating the effectiveness of Computer-based-
Assessment (CBA), no systematic review was found in evaluating the effects of Digitalized 
Interactive Components (DICs) that are used in CBAs. Computer- based-assessments (CBA) 
have been widely used in national and international large-scale tests as part of recent reform 
efforts stressing teaching, learning and testing in digital contexts. Important CBAs include high-
stake state standard assessments (e.g., the Partnership for Assessment of Readiness for College 
and Careers, PARCC, the Smarter Balanced Assessment), the national report card (National 
Assessment of Educational Progress, NAEP), and the international comparison assessments (e.g., 
Program for International Student Assessment, PISA). The shift towards implementing CBAs for 
assessment can be an important improvement during testing, potentially impacting students’ 
engagement, interpretations, and responses to test items (Jerrim, 2016). 

CBAs are created to optimize learning goals and assessment techniques through high-quality 
tests (Smoline, 2008), and to improve the participation and performance of students with 
disabilities (Flowers et al., 2011). Computers provide the opportunity to offer tasks that display 
animated or dynamic changes in different aspects over time: Interactive games, simulations, and 
microworlds, that can be made by computers, enable exploring problems, discovering rules, 
forming relationships, and developing successful strategies. Computers also can help students 
deal with complicated data sets (Ridgway & McCusker, 2003). In a study to compare CBAs with 
pen-and-paper assessments (PPAs) for students with a read-aloud accommodation, Flowers et al. 
(2011) found that students prefer CBAs and report that they perform better when CBAs are 
available. According to Hoogland and Tout (2018), CBAs have advantages over traditional paper 
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and pencil assessments (PPAs) in: Supporting the assessment of high-level mathematical 
thinking process, illustrating authentic problems from our real-life settings to implement 
mathematical concepts, and building tests and analyzing results through complicated 
psychometric processes with new techniques in scoring and reporting. 
Digital-Interactive-Components 

As a key element of CBA, DICs are part of the item stem with which students can interact 
and employ to answer the question. For example, an interactive ruler is an on-screen ruler that 
students can use to measure the length of objects in the screen. DICs commonly used in the 
current CBAs include, but are not limited to, drag-and-drop, annotations, changing the color of a 
shape upon clicking, etc. The NAEP items that have access to the touch-screen tablets mode 
include DICs such as using a read-aloud tool, making digital notes, adjusting screen themes, 
highlighting texts, dynamic texts, interactive maps, embedded digital calculators, interactive 
graphs, and virtual simulations (National Center for Educational Statistics, NCES, n.d.).  

DICs enable practitioners to measure students’ knowledge and skills in ways more authentic 
to a CBA environment (Bergner & von Davie, 2019; Lissitz & Jiao, 2012; Masters & Gushta, 
2018), and to improve the measurement of student learning by targeting constructs that are 
otherwise difficult to capture with the PPA mode (Bennett et al., 2008; Chen & Perie, 2018; 
Jerrim, 2016). DICs are expected to offer benefits to make CBAs over traditional PPAs by 
engaging students in simulated real-world tasks and measuring aspects of a construct that cannot 
be measured with PPA items (Huff & Sireci, 2001). Some interactive tools require students to 
work with them in the process of producing products/responses, a more authentic form of 
measurement (Archbald & Newmann, 1988; Bennett, 1999; Harlen & Crick, 2003; Huff & 
Sireci, 2001; Masters & Gushta, 2018; McFarlane, et al., 2000). Interactive features of DICs 
have the potential to improve assessment accessibility for some disadvantaged groups, such as 
students with disabilities and English Learners (ELs). Further, technologies involving the use of  
DIC tools can enable the collection of real-time process data that could offer diagnostic 
assessment information for educators to support improved teaching and student learning (Jiang et 
al., 2021). Despite the potential benefits of DIC inclusion in CBAs and the emerging trend of 
their inclusion in testing, implementations of DICs in testing have been challenging.  

A first challenge in current assessment practices is the lower percent of DICs in all CBA 
items. Despite the fast-growing research on educational technology (Lindner, 2020), many of the 
studies in the literature focus on technology as a tool for instruction, whereas sparse research has 
been conducted on technology as a tool for assessment (Cheng & Basu, 2009). Moreover, even 
with knowledge from the current CBA literature, computerized test items often apply traditional 
formatting similar to PPAs, such as multiple choice, true-and-false, and fill-in-the-blanks (Cheng 
& Basu, 2009), whereas the use of interactive features in rarely reported (Dindar et al., 2015). 

A second challenge in the current assessment implementation of DICs lies in the poor design 
of existing DICs. Invalidated DICs might introduce construct-irrelevant variance even if students 
have mastered the content domain, thus diminishing validity and utility of scores for students of 
certain subgroups. Russel and Moncaleano (2019) examined the use and construct fidelity of 
technology-enhanced items employed in international K12 large-scale assessment programs, and 
reported that only 40% of the technology-enhanced items has good fidelity in measuring the 
aimed construct. In particular, a sizable percentage of drag-and-drop items has a low level of 
fidelity. Likewise, student cognitive interviews in NAEP 2016 indicated that students 
experienced tremendous confusions when interacting with DICs. More than half of the students 
encountered various difficulties using DICs, even though more than half of the students had 
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experiences with similar tools. Their confusion centered around figuring out how to use the tools 
to respond to the assessment items rather than applying the tools in their problem solving.  

Even more alarmingly, poorly designed DIC tools can become a source of bias towards 
students from under-represented groups. Studies show that students need to be trained to use 
computerized items that involve DICs since the absence of learning to use the tools properly can 
negatively impact potential benefits of DICs (Olson, 2005). Students with less access to learn 
digital skills are more vulnerable to benefit with potentially negative impacts on their 
performance using poorly designed DIC features (Jerrim, 2016; Schatz, et al., 2010; Stickney et 
al., 2012). The extent to which a disparity might be present for some students is still largely 
unexplored (Wang et al., 2021). According to Buzick, (2021), with the exception of embedded 
calculators, students with disabilities showed an even lower frequency of using any DICs than 
their peers without disabilities, even though all embedded DICs were rarely used in all students. 
It still remains unclear what roles specific types and features of DICs play in measuring students’ 
knowledge and skills, and how these features might impact the performance of student 
subgroups. For example, research to date has yet to examine the degree to which items with DIC 
yield construct irrelevant variance for different subgroups of students with different 
socioeconomic status (SES) and gender. 

Although there have been systematical reviews pertinent to comparing the different effects of 
PPA and CBA for K12 students on mathematics related measures, there is an absence of research 
reviews specifically on the availability and effects of existing DICs. To this end, we offer a 
research synthesis with the goal of exploring the use of interactive tools from research studies 
investigating students’ mathematics performance. Questions that guide our review are:  

1. What existing DICs are available for use in assessing student learning mathematics in 
the literature of CBA in mathematics? Specifically, what are the main features and 
purpose of the tools? How effective are they in capturing student performance? What 
student characteristics, such as age, gender, ability level, influence the effectiveness 
of these interactive tools? 

2. What mathematics domains are involved in the reviewed DIC studies? Are the DICs 
more effective within certain mathematical content domains? Are certain item 
features more or less relevant? 

Method 
Search Procedures  

For this literature review, we followed guidelines from the Preferred Reporting Items for 
Systematic reviews and Meta-Analyses (PRISMA; Moher et al. 2009) and three approaches were 
completed to accurately search for peer-reviewed journal articles. We conducted (a) an electronic 
search of databases with key words related to computer-based assessment, (b) another round of 
electronic search of databases with key words of specific DIC types, and (c) an ancestral search 
to identify any additional relevant articles.   

First, we searched five databases: Academic Search Premier, ERIC, ProQuest Education 
Database, Teacher Reference Center, and APA PsycInfo (including PsycArticles). Within the 
abstracts of English studies, we searched using a combination of the following terms: “Computer 
based, assessment, mathematic*” and “Computer based, Test*, mathematic*” The total of the 
resulted studies was 1589, which were screened to 39 potentially viable studies for inclusion, 
based on titles and abstracts. Full-text review of each study led to an inclusion of eight articles 
for this synthesis.  
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 Secondly,  we also searched additional key words emphasizing interactive features with the 
above databases, with combined terms of  “interactive technology”, “computer* feature”,  
“digit* feature”, “interact* computer*”,  as well  as specific DICs  from the studies identified 
from the first round of search, including “calculator” “glossary” “drag drop” “animat*” and 
“digit* ruler.” Every single phrase was attached using AND condition with the two terms 
“assessment” and “mathematic*.” The total of the resulted studies was 444 and 2 additional 
studies were identified.  

Thirdly, we examined the included studies reviewed by related meta-analysis or review 
synthesis. Specifically, we reviewed mathematics studies included in the three prior meta-
analyses that was conducted by Kingston (2009), Wang et al. (2007), and by Kingston (2009) 
that reviewed research comparing PPA vs. CBA effects. No additional studies were identified 
beside these three meta-analysis studies.  
Inclusion and Exclusion Criteria  

In the research synthesis we only included quantitative studies that investigated the 
effectiveness of using DICs in assessing mathematics performance for K-12 students. Studies 
included in the review were required to meet all the three criteria: (a) inclusion of quantitative 
data of students’ mathematics assessment results in CBA with specific DICs; (b) all participants 
were K-12 students; and (c) studies were published in peer-reviewed journals in English. Ten 
studies were identified, including six studies comparing a DIC condition with a non-DIC 
condition, and four studies exploring specific features of DIC conditions.  

The following types of studies were excluded: (a) those that provided feedback or corrections  
in an assessment (e.g., Hippisley et al., 2005); (b) those based on computer-based programs with 
DICs as interventions rather than assessments (e.g., Crawford et al., 2016; Gambari et al., 2014; 
Ninness et al., 1998); (c) unpublished dissertations, conference presentations, technical reports 
(e.g., Bridgeman & Potenza, 1998; Christensen et al., 2014; Price et al., 2014); (d) qualitative 
studies (Pantzare, 2012); (e) focusing on non-mathematics subjects (e.g., Koong & Wu, 2010 on 
social studies; Cheng & Basu, 2009 on science); (f) those with participants not in K-12  (e.g., 
Arslan et al., 2020; Gallagher et al., 2002; Gulley et al., 2017; Mavridis & Tsiatsos, 2017), or (g) 
no specific DICs described (e.g., Logan, 2015).  
Coding Procedure 

 The first and second author developed a coding scheme that included the following 
variables: (a) author(s) and the year of publication, (b) number of participants, (c) \DIC 
description, (d) participants’ age or school grade level, (d) participants’ other characteristics such 
as ability level, SES, El, etc., (e) mathematics content involved, (f) research design, (g) 
independent and dependent variable(s) and their means (M) and standard deviations (SD),  (h) 
effect size (ES), and (i) narrative research findings. Coding reliability was found by calculating 
the percentage of agreement between two independent raters on 30% of the studies found in the 
first stage of searching and screening. The inter-rater reliability was 90.91%. 

Results 
Types of Existing DICs 

To address our first research question regarding the availability of existing interactive tools 
and their effectiveness that were reported in the review literature of (K-12) mathematics CBAs, 
based on the functions of the DICs reviewed in this study, we categorized the existing DICs into 
two major types: (a) DICs that provided language or vocabulary assistance, and (b) DICs that 
enabled students to construct solutions. Four studies were conducted to investigate the impact of 
implementing interactive tools that provided language or vocabulary glossaries (Calhoon et al., 
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2000; Cohen, et al., 2017; Cohen et al., 2020; Roohr & Sireci, 2017). Six studies were found 
under the second category of effectiveness (Adesina et al., 2014; Applegate, 1993; Kong et al., 
2018; Jiang et al., 2021; Ninaus et al., 2017; Threlfall et al., 2007). 

Language tools. For the effectiveness category, four studies addressed the use of pop-
glossary in mathematics assessment for students who have language or reading problems. Roohr 
and Sireci (2017) compared the effects of two DICs: A pop-up glossary tools and sticker 
paraphrasing tool for English language learners (EL s). Findings reported that the pop-up 
glossary did not provide definitions for all the words or phrases in the test, but only for those that 
were underlined. For example, when a student clicks on the underlined words or phrases, a 
window appears with a clarification using definitions, pictures, synonyms, or animations. The 
sticker paraphrasing tool is intended to provide less difficult paraphrasing after clicking on an 
icon. More than 2000 students participated in the study. The results show that students used the 
sticker paraphrasing tool more frequently than the pop-up glossary tool (d = -0.34). Regarding 
the item-level response time in seconds, results showed that all students took longer on the items 
that provided either of the two DICs compared with the items that did not provide DICs (d = 
0.17). Unfortunately, this study did not report student scores, so we do not know if students 
scored higher or lower on items with DICs than items without DICs, or if students scored higher 
on items with one DIC than items with the other DIC.  

Two other studies specifically examined the effects of the glossary pop-up tool. Cohen et al. 
(2017) investigated the impact of using pop-up English glossaries with audio through 
randomized controlled trials. More than 32,000 third- and-seventh-grade students participated in 
the study. The items were selected based on experts' judgements of the likelihood that EL s may 
encounter language difficulties when solving the problems. Math items from a field test were 
randomly selected to be provided with a pop-up English glossary, whereas the other items were 
not provided with the pop-up glossary. The results showed that the pop-up glossary slightly 
inhibited students' performance on mathematics assessments. In the subsequent study about the 
pop-glossaries, Cohen et al. (2020) scaled up the previous study and over 60000 students from 
3rd-grade to 11th-grade participated. Results show that the pop-up glossary accommodation 
overall was effective for mathematics assessment and did not degrade the measured construct. 
However, ES could not be obtained for these two studies.  

The reading-aloud tool is another DIC that falls into the first category of language assistance 
tools. Calhoon, et al. (2000) investigated the differences between using a teacher-read and a 
computer-read tool with and without video. They found that teacher-read tools, computer-read, 
and computer-read tools with video increased students’ scores on mathematics performance 
assessment in comparison to the traditional PPA without any reading accommodations. No 
significant difference was found among these three conditions.  

Tools for constructing problem solutions. The second category of DICs identified from the 
reviewed papers deals with enabling or assisting test takers to construct responses or solutions by 
interacting with prompts from the computer screen. Adesina et al. (2014) investigated a 
computerized tool that enabled students to construct responses with an interactive digital device. 
Two panes were provided to students: the problem pane and the answer pane. The problem pane 
showed the worded problem and the answer pane showed students’ responses. The problem pane 
allows the exam taker to drag numeric values using one or both hands. The user could touch and 
hold two numeric values simultaneously. The touch-and-drag feature activated a menu that 
contained the main four symbols of the arithmetic operations (i.e., +, -, O, ÷). After selecting one 
of these symbols a numeric keypad and a text box were displayed. The study investigated the 
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usability and applicability of the tool and compared study students' performance using PPAs, 
with 39 fifth grade participants. Results reported no significant difference between mathematics 
scores using the DIC and their corresponding scores in the traditional PPA condition, suggesting 
access to the DIC did not influence students’ scores.  

Applegate (1993) investigated the impact of a response-construction tool to test children’s 
analogical reasoning. He compared student performance with a DIC condition and a PPA 
condition on geometry items and involved 24 kindergarteners. In the DIC condition, a joystick 
was used to enter data in the response portion. The examinee needed to put the cursor anywhere 
on the top graphic shapes and press the fire button. The examinee could choose a shape or color. 
If the correct object was chosen, then it was displayed in an empty box. If the incorrect color was 
chosen, then all objects were shaded with that color. The study revealed that the DIC condition is 
significantly more difficult than the PPA condition. 

Threlfall et al. (2007), Kong et al., (2008) and Jiang (2021) examined the effects of a pull-
and-drag tool. The tool in Threlfall et al., (2007) allowed students to select number cards and put 
them in boxes to perform an arithmetic operation). This study found that changing from PPA to 
CBA made little difference in testing validity and legitimacy, and also indicated that some PPA 
items showed poorer validity than the corresponding equivalent CBA items with DICs, possibly 
because an equivalent CBA version was less cognitive-demanding and made the problem solving 
process easier, for example, the pull-and-drag DIC might decrease the likelihood of making 
mistakes such as using numbers that are not mentioned in the question. Kong et al. (2018) 
compared the response time differences between computers and tablets on items either with a 
DIC (e.g., drag-and-drop) or without a DIC (e.g., filling- in-the blank, multiple choice). 
However, this study did not compare either students’ accuracy or response time between items 
with the “drag-and-drop" DIC and items without a DIC. Jiang et al. (2021) studied students’ 
performance on drag‑and‑drop items in a large‑scale assessment (i.e., National Assessment of 
Educational Progress, NAEP) in the fourth and eighth graders. The results also revealed that 
students who answered the item correctly spent shorter time to respond compared to their peers 
who responded incorrectly. 

Effects of tools. Mixed results of the DIC effectiveness were reported in two DIC categories. 
In all studies that compared differences in students’ scores between a DIC condition and a non-
DIC condition, only one study (Applegate, 1993) used a between-subject design and provided 
needed data to calculate an ES, whereas all other studies with a within-subject design did not 
provide needed data to calculate an ES. Consequently, we were unable to conduct a meta-
analysis to estimate an overall effect size for each DIC category. Instead, we summarized the 
mixed findings, which seem to favor a positive effect of language tools -- two studies (Calhoon 
et al., 1997; Cohen et al., 2020) reported positive effects, one (Cohen et al., 2017) reported 
negative effects, and one did not report student accuracy scores. There also seemed to be a 
negative effect of the response construction category DIC, with two non-significant effects 
(Adesina et al., 2014; Threlfall et al., 2007), and one negative effects (Applegate, 1993).  
Roles of Student Characteristics  

To explain the varying effectiveness reported in research studies on the same type of DIC, we 
further examined whether and how student characteristics (e.g., age, grade level, ability level, EL 
status) and item features (e.g., mathematics subjects) were related to the effectiveness of DICs.  
Although we could not calculate weighted effect sizes or perform a meta-regression to detect any 
significant moderating effects, we identified some patterns, including the following: (a) DICs 
may inhibit young’ children’ performance whereas support older children’s performance, and the 
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positive effects of DICs increase with age or grade level, and (b) DICs seemed to have different 
effects in different subgroups, and generally speaking, it appeared to produce greater influences, 
either positive or negative, on students who were in greater need of help. For example, the 
language DICs had greater influence on ELs than non-EL students (Cohen et al., 2017; Cohen et 
al., 2020) and EL students also tended to use the language DICs more frequently (Roohr & 
Sireci, 2017); and across all 6 studies comparing non-DICs with DICs, students with disabilities 
benefited from the DIC (Calhoon et al. 2000) and general-education students did not show any 
changes (Adesina et al., 2014; Threlfall et al., 2007).  However, the sample with gifted students 
was inhibited in a DIC condition (Applegate, 1993). Due to the limited number of studies 
available, we interpreted these patterns as a hypothesis for future research to verify, rather than 
as validated conclusions from this synthesis. Well-designed DICs could provide 
accommodations to address the special needs of students with disabilities and Els, and hence 
offer promise to make the assessments more assessable and equitable for these special student 
populations. With poorly-designed DICs, disadvantages can be exacerbated with special student 
populations by creating extra barriers and demanding greater cognitive load. 
Effects of Mathematics Domains  

Regarding the influence of mathematics domains and item features, the current findings 
reported mixed effects in both geometry items and numerical items. It is reasonable to expect 
that students might obtain greater benefits on geometry items than numerical items because 
geometry assessment items rely heavily on visual presentations for which DIC features may play 
a more effective role by enabling students’ interactions with diagrams. However, three studies 
(Applegate, 1993; Cohen et al., 2020; Trelfall et al., 2017) that involved a form of geometry 
assessment suggested mixed findings. This may be partially attributed to the nature of the items 
intended to be measured, confounded by other variables such as text or perhaps the less-than-
satisfactory geometry DIC effects to the very few available DICs. In the reviewed studies no 
DICs that might be particularly useful for geometry problem solving, such as drawing 
supplemental lines, rotations etc., were included, suggesting the need for further research in 
order to gain richer understanding of the potential benefits of well-designed geometry DICs. 

Discussion 
This study synthesized prior studies that examined the effects of specific Digitalized-

Interactive-components (DICs) in computer-based assessment (CBA). Research questions 
included: What DICs were available in the literature of CBA in mathematics; what were the 
main features of these DICs, and how effective were they? How did students’ age, gender, and 
ability level influence performance with the interactive tools? And what mathematical content 
domains were involved, and whether the DIC effectiveness was influenced by mathematics 
domains or item features? We systematically searched the literature and reviewed 10 studies that 
met our inclusionary criteria. The small number of studies identified suggested a need for more 
research in this important field. While CBA has already been widely implemented in high-stakes, 
large-scale assessments and DIC is an essential component to ensure the effectiveness of CBA, 
very little empirical data is available as to the effectiveness of DICs. Although in educational 
practice, there have been greater use of a variety of DICs that have been developed and used in 
school practice, results of our systematic search revealed that these DICs that are widely used in 
school-assessment practice were never validated, suggesting that the research base is lagging 
behind educational practice. We also discovered that 7 out of the 10 studies were published after 
2014, including six studies published in 2017 –2021, suggesting that this is a topic gaining 
increased attention by the research community. 
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 We categorized DICs that were used as a language tool, and DICs that were used to enable 
students to construct solutions. Both categories of DICs do not reflect the numerous DIC types in 
actual practice. For example, NAEP assessments, with the touch-screen tablets mode, have made 
available DICs such as the read-aloud tool, making digital notes, adjusting screen themes, 
highlighting texts, dynamic texts, interactive maps, embedded digital calculators, interactive 
mathematical graphs, and virtual simulations (NCES, n.d). However, most of these DICs are not 
included in any of the reviewed articles. Also, lacking were some sophisticated DICs that can be 
found in some commercial online assessment programs such as rotating/flipping/transforming 
images, digital rulers, annotations. Such a mismatch between the limited types of DICs in 
research papers and the rich resources of DIC options in practice certainly reflects the gap 
between the research and the rapid development of technology in the assessment industry. 
Ideally, educational practice should be guided by education theories and validated by evidence 
from rigorous educational research; however, in actual school practice it seems that the 
assessment industry has moved much faster than the tools included by researchers in the studies.  
Earlier literature (Kim, 1998; Logan, 2015; Smolinsky et al, 2020; Wang et al., 2007) shows that 
some DICs in practice inhibited, rather than supported students' mathematical problem solving 
during a CBA. Also, there remains a concern that a CBA with poorly designed DICs could create 
greater assessment biases against disadvantaged students (Pan, 2016). More research is 
warranted to ensure the development and validation of science-based assessment tools based on 
educational theories and cognitive principles.  

A limitation of this synthesis is the sparsity of research available - only 10 studies found in 
peer-reviewed journals. Because access to technical reports produced by some testing companies 
or organizations (e.g., Educational Testing Service, or American Institute of Research) was not 
available, a decision was not to include these non-peer-reviewed reports. Moreover, insufficient 
information was available in the research publications, making us unable to calculate an ES for 
within-subject design studies. Therefore, the DIC effects and possible influences of participant 
characteristics and item features were presented as an overall summary of the findings of the 
related reviewed studies, rather than as a result from a rigorous meta-regression. Therefore, 
cautions need to be applied to the findings, such as DICs may inhibit young’ children’ 
performance whereas support older children’s performance, and the positive effects of DICs 
increase with age or grade level, and DICs seemed to have different effects in different 
subgroups, and generally speaking, it appeared to produce greater influences, either positive or 
negative, on students who were in greater need of help.  

Conclusions 
In the field of mathematics assessment, numerous studies were conducted to investigate the 

impact of implementing computerized tools, but few studies have examined the effectiveness of 
implementing DICs. We identified 10 studies that implemented a DIC in a mathematics 
assessment. The DICs were categorized into two groups: Interactive tools that provided language 
or vocabulary assistance, and interactive tools that enabled students to construct solutions and 
ideas. DICs may have differential effects on children of varying ages, and appeared to produce 
greater influences, either positive or negative, on students who were in greater need of help. 
Further research studies should be conducted to investigate the effectiveness of implementing 
DICs in assessing mathematics performance of K-12 students of different ages and with varying 
special needs. The need for continued research that has the potential to gain greater insight into 
what knowledge can be gained when struggling students have access to appropriate tools is clear.  

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1946



 

References 
*Adesina, A., Stone, R., Batmaz, F., & Jones, I. (2014). Touch arithmetic: A process-based computer-aided 

assessment approach for capture of problem-solving steps in the context of elementary mathematics. Computers 
& Education, 78, 333–343. https://doi.org/10.1016/j.compedu.2014.06.015   

* Applegate, B. (1993). Construction of geometric analogy problems by young children in a computer-based 
test. Journal of Educational Computing Research, 9, 61-77. https://doi.org/10.2190/F77B-PPYA-V1EX-
LWDY  

Aspiranti, K. B., Henze, E. E. C., & Reynolds, J. L. (2020). Comparing paper and tablet modalities of math 
assessment for multiplication and addition. School Psychology Review, 49(4), 453–465. 
https://doi.org/10.1080/2372966X.2020.1844548 

Archbald, & Newmann, F. A. (1988). Beyond standardized testing : assessing authentic academic achievement in 
the secondary school. National Association of Secondary School Principals. 

Arslan, B., Jiang, Y., Keehner, M., Gong, T., Katz, I. R., & Yan, F. (2020). The effect of drag‐and‐drop item 
features on test‐taker performance and response strategies. Educational Measurement: Issues & Practice, 39(2), 
96–106. https://doi.org/10.1111/emip.12326 

Ashton, H. S., Beevers, C. E., Korabinski, A. A., & Youngson, M. A. (2006). Incorporating partial credit in 
computer-aided assessment of mathematics in secondary education. British Journal of Educational Technology, 
37(1), 93–119. https://doi.org/10.1111/j.1467-8535.2005.00512.x  

Bennett, R. E. (1999). Computer-based testing for examinees with disabilities: On the road to generalized 
accommodation. Assessment in higher education: Issues of access, quality, student development, and public 
policy, 181-191. 

Bennett, S., Maton, K., & Kervin, L. (2008). The digital natives debate: A critical review of the evidence. British 
Journal of Educational Technology, 39(5), 775–786. https://doi.org/10.1111/j.1467-8535.2007.00793.x 

Bridgeman, B., Lennon, M. L., & Jackenthal, A. (2003). Effects of screen size, screen resolution, and display rate on 
computer-based test performance. Applied Measurement in Education, 16(3), 191–205. 
https://doi.org/10.1207/S15324818AME1603_2 

Bergner, Y., & von Davier, A. A. (2019). Process Data in NAEP: Past, Present, and Future. Journal of Educational 
and Behavioral Statistics, 44(6), 706–732. https://doi.org/10.3102/1076998618784700 

Bergstrom, B. A. (1992). Ability Measure Equivalence of Computer Adaptive and Pencil and Paper Tests: A 
Research Synthesis. Paper presented at the Annual Meeting of the American Educational Research Association 
(Sa Francisco, CA, April 20-24, 1992). 

Bridgeman, B., & Potenza, M. (1998, April 12-16). Effects on performance on the computerized SAT I: Reasoning 
test in mathematics. The annual meeting of the national council on measurement in education, San Diego. 

Buzick (2021, June). Exploring item level use of accessibility supports [Paper Presentation]. Virtual Conference of 
Educational Accommodations: Future directions. 

* Calhoon, M., Fuchs, L. & Hamlett, C. (2000). Effects of computer-based test accommodations on mathematics 
performance assessments for secondary students with learning disabilities. Learning Disability Quarterly, 23, 
271-282. https://doi.org/10.2307/1511349  

Cheng, I., & Basu, A. (2009). Interactive graphics for computer adaptive testing. Computer Graphics Forum, 28(8), 
2033–2045. https://doi.org/10.1111/j.1467-8659.2009.01427.x 

Chen, J., & Perie, M. (2018). Comparability within Computer-Based Assessment: Does Screen Size Matter? 
Computers in the Schools, 35(4), 268–283. https://doi.org/10.1080/07380569.2018.1531599 

Christensen, L. L., Shyyan, V., Rogers, C., & Kincaid, A. (2014). Audio support guidelines for accessible 
assessments: Insights from cognitive labs. Minneapolis, MN: University of Minnesota, Enhanced Assessment 
Grant (#S368A120006), U.S. Department of Education.  

* Cohen, D. J., Ballman, A., Rijmen, F., & Cohen, J. (2020). On the reliable identification and effectiveness of 
computer-based, pop-up glossaries in large-scale assessments. Applied Measurement in Education, 33(4), 378–
389. https://doi.org/10.1080/08957347.2020.1789137 

* Cohen, D., Tracy, R., & Cohen, J. (2017). On the effectiveness of pop-up English language glossary 
accommodations for EL students in large-scale assessments. Applied Measurement in Education, 30(4), 259–
272. https://doi.org/10.1080/08957347.2017.1353986 

Crawford, L., Higgins, K. N., Huscroft-d'angelo, J.,N., & Hall, L. (2016). Students' use of electronic support tools in 
mathematics. Educational Technology, Research and Development, 64(6), 1163-1182. 
https://doi.org/10.1007/s11423-016-9452-7 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1947

https://doi.org/10.2190/F77B-PPYA-V1EX-LWDY
https://doi.org/10.2190/F77B-PPYA-V1EX-LWDY
https://doi.org/10.2307/1511349


 

Dindar, M., Kabakçı Yurdakul, I., & Dönmez, F. (2015). Measuring cognitive load in test items: static graphics 
versus animated graphics. Journal of Computer Assisted Learning, 31(2), 148–161. 
https://doi.org/10.1111/jcal.12086 

Flowers, C., Kim, D., Lewis, P., & Davis, V. C. (2011). A comparison of computer-based testing and pencil-and-
paper testing for students with a read-aloud accommodation. Journal of Special Education Technology, 26(1), 
1-12. https://doi.org/10.1177%2F016264341102600102 

Gallagher, A., Bennett, R., Cahalan, C., & Rock, D. (2002). Validity and fairness in technology- based assessment: 
Detecting construct- irrelevant variance in an open-ended, computerized mathematics task. Educational 
Assessment, 8(1), 27–41. https://doi.org/10.1207/S15326977EA0801_02  

Gambari, I. A., Ezenwa, V. I., & Anyanwu, R. C. (2014). Comparative effects of two modes of computer-assisted 
instructional package on solid geometry achievement. Contemporary Educational Technology, 5(2), 110–120. 
https://doi.org/10.30935/cedtech/6119 

Gulley, Ann P, Smith, Luke A, Price, Jordan A, Prickett, Logan C & Ragland, Matthew F. (2017). Process-driven 
math: An auditory method of mathematics instruction and assessment for students who are blind or have low 
vision. Journal of Visual Impairment & Blindness, 111, 465-
471. https://doi.org/10.1177/0145482X1711100507  

Harlen, W., & Deakin Crick, R. (2003). Testing and Motivation for Learning. Assessment in Education : Principles, 
Policy & Practice, 10(2), 169–207. https://doi.org/10.1080/0969594032000121270 

Hassler Hallstedt, & Ghaderi, A. (2018). Tablets instead of paper-based tests for young children? Comparability 
between paper and tablet versions of the mathematical Heidelberger Rechen Test 1-4. Educational Assessment, 
23(3), 195–210. https://doi.org/10.1080/10627197.2018.1488587 

Hensley, K. K. (2015). Examining the effects of paper-based and computer-based modes of assessment on 
mathematics curriculum-based measurement. ProQuest Dissertations Publishing 

Hippisley, J., Douglas, G. & Houghton, S. (2005). A cross-cultural comparison of numeracy skills using a written 
and an interactive arithmetic test. Educational Research, 47, 205-215. 
https://doi.org/10.1080/00131880500104325 

Hoogland, K., Tout, D. (2018). Computer-based assessment of mathematics into the twenty-first century: pressures 
and tensions. ZDM : The International Journal on Mathematics Education, 50(4), 675–
686. https://doi.org/10.1007/s11858-018-0944-2  

Huff, K. L., & Sireci, S. G. (2001). Validity Issues in Computer-Based Testing. Educational Measurement, Issues 
and Practice, 20(3), 16–25. https://doi.org/10.1111/j.1745-3992.2001.tb00066.x 

Jerrim, J. (2016). PISA 2012: how do results for the paper and computer tests compare? Assessment in Education: 
Principles, Policy & Practice, 23(4), 495-518. http://dx.doi.org/10.1080/0969594X.2016.1147420 

* Jiang, Y., Gong, T., Saldivia, L., Cayton-Hodges, G., & Agard, C. (2021). Using process data to understand 
problem-solving strategies and processes for drag-and-drop items in a large-scale mathematics 
assessment. Large-Scale Assessments in Education, 9(1), 1–31. https://doi.org/10.1186/s40536-021-00095-4 

Kim, J.-P. (1999, October 13-16). Meta-analysis of equivalence of computerized and P&P tests on ability measures 
[Conference Session]. The annual meeting of the Mid-Western Educational Research Association, Chicago, IL. 

Kingston, N. M. (2009). Comparability of computer- and paper-administered multiple-choice tests for K-12 
populations: A synthesis. Applied Measurement in Education, 22(1), 22–37. 
https://doi.org/10.1080/08957340802558326 

Koong, C., & Wu, C. (2010). An interactive item sharing website for creating and conducting on-line 
testing. Computers and Education, 55(1), 131–144. https://doi.org/10.1016/j.compedu.2009.12.010  

* Kong, X., Davis, L., McBride, Y., & Morrison, K. (2018). Response time differences between computers and 
tablets. Applied Measurement in Education, 31(1), 17–29. https://doi.org/10.1080/08957347.2017.1391261  

Lee, G., & Weerakoon, P. (2001). The role of computer-aided assessment in health professional education: a 
comparison of student performance in computer-based and paper-and-pen multiple-choice tests. Medical 
Teacher, 23(2), 152–157. https://doi.org/10.1080/01421590020031066 

Lissitz, R. W., & Jiao, H. (Eds.). (2012). Computers and their impact on state assessments: Recent history and 
predictions for the future. IAP 

Logan, T. (2015). The influence of test mode and visuospatial ability on mathematics assessment 
performance. Mathematics Education Research Journal, 27(4), 423-441. https://doi.org/10.1007/s13394-015-
0143-1 

Masters, J., & Gushta, M. (2018). Using Technology-Enhanced Items to Measure Fourth Grade Geometry 
Knowledge. 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1948

https://doi.org/10.1207/S15326977EA0801_02
https://doi.org/10.1177/0145482X1711100507
https://doi.org/10.1007/s11858-018-0944-2
http://dx.doi.org/10.1080/0969594X.2016.1147420
https://doi.org/10.1186/s40536-021-00095-4
https://doi.org/10.1016/j.compedu.2009.12.010
https://doi.org/10.1080/08957347.2017.1391261


 

McFarlane, A., Williams, J., & Bonnett, M. (2000). Assessment and multimedia authoring - a tool for externalising 
understanding: Assessment and multimedia authoring. Journal of Computer Assisted Learning, 16(3), 201–212. 
https://doi.org/10.1046/j.1365-2729.2000.00133.x 

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and 
meta-analyses: the PRISMA statement. BMJ, 339(7716), e78–336. https://doi.org/10.1136/bmj.b2535 

Mavridis, A., & Tsiatsos, T. (2017). Game-based assessment: investigating the impact on test anxiety and exam 
performance. Journal of Computer Assisted Learning, 33(2), 137-150. https://doi.org/10.1111/jcal.12170 

National Center for Educational Statistics (NCES). (n.d.). Digitally based assessment – 
NAEP. https://nces.ed.gov/nationsreportcard/dba/  

* Ninaus, M., Kiili, K., McMullen, J., & Moeller, K. (2017). Assessing fraction knowledge by a digital 
game. Computers in Human Behavior, 70, 197–206. https://psycnet.apa.org/doi/10.1016/j.chb.2017.01.004 

Ninness, H. A. Chris, Ninness, Sharon K, Sherman, Sandra & Schotta, Chuck. (1998). Augmenting computer-
interactive self-assessment with and without feedback. The Psychological Record, 48(4), 601-616.  

Olson, L. (2005). Impact of paper-and-pencil, online testing is compared. Education Week, 25(1), 14.  
Pantzare. (2012). Students’ use of CAS calculators--effects on the trustworthiness and fairness of mathematics 

assessments. International Journal of Mathematical Education in Science and Technology, 43(7), 843–861.   
Price, B., Steinle, V., Stacey, K., Gvozdenko, E. (2014). Using Percentages to Describe and Calculate Change 

[Conference Session]. The Annual Meeting of the Mathematics Education Research Group of Australasia 
(MERGA), Sydney, New South Wales, Australia. 

Ridgway, J., & McCusker, S. (2003). Using computers to assess new educational goals. Assessment in Education: 
Principles, Policy & Practice, 10(3), 309–328. https://psycnet.apa.org/doi/10.1080/0969594032000148163 

* Roohr, K. C., & Sireci, S. G. (2017). Evaluating computer-based test accommodations for English 
learners. Educational Assessment, 22(1), 35–53.  

Russell, M., & Moncaleano, S. (2019). Examining the use and construct fidelity of technology-enhanced items 
employed by K-12 testing programs. Educational Assessment, 24(4), 286–
304. https://doi.org/10.1080/10627197.2019.1670055  

Schatz, P., Neidzwski, K., Moser, R. S., & Karpf, R. (2010). Relationship Between Subjective Test Feedback 
Provided by High-School Athletes During Computer-Based Assessment of Baseline Cognitive Functioning and 
Self-Reported Symptoms. Archives of Clinical Neuropsychology, 25(4), 285–292. 
https://doi.org/10.1093/arclin/acq022 

Smoline, D. V. (2008). Some problems of computer-aided testing and “interview-like tests”. Computers & 
Education, 51(2), 743–756. https://doi.org/10.1016/j.compedu.2007.07.008  

Smolinsky, L., Marx, B. D., Olafsson, G., & Ma, Y. A. (2020). Computer-based and paper-and-pencil tests: A study 
in calculus for STEM majors. Journal of Educational Computing Research, 58(7), 1256–
1278. https://doi.org/10.1177%2F0735633120930235 

Steedle, J., Pashley, P., Cho, Y., & ACT, I. (2020). Three studies of comparability between paper-based and 
computer-based testing for the ACT. ACT Research & Policy. 
https://www.act.org/content/dam/act/unsecured/documents/R1847-three-comparability-studies-2020-12.pdf 

Stickney, E. M., Sharp, L. B., & Kenyon, A. S. (2012). Technology-Enhanced Assessment of Math Fact 
Automaticity: Patterns of Performance for Low- and Typically Achieving Students. Assessment for Effective 
Intervention, 37(2), 84–94. https://doi.org/10.1177/1534508411430321 

* Threlfall, J., Pool, P., Homer, M., & Swinnerton, B. (2007). Implicit aspects of paper and pencil mathematics 
assessment that come to light through the use of the computer. Educational Studies in Mathematics, 66(3), 335–
348. https://doi.org/10.1007/s10649-006-9078-5  

Wang, S., Jiao, H., Young, M. J., Brooks, T., & Olson, J. (2007). A meta-analysis of testing mode effects in grade 
K-12 mathematics tests. Educational and Psychological Measurement, 67(2), 219–
238. https://doi.org/10.1177/0013164406288166  

Wang, T.-H, Kao, C.-H., & Chen, H.-C. (2021). Factors Associated with the Equivalence of the Scores of 
Computer-Based Test and Paper-and-Pencil Test: Presentation Type, Item Difficulty and Administration Order. 
Sustainability, 13(17), 9548–. https://doi.org/10.3390/su13179548 

Yao, D. (2020). A comparative study of test takers’ performance on computer-based test and paper-based test across 
different CEFR levels. English Language Teaching, 13(1), 124–133. http://dx.doi.org/10.5539/elt.v13n1p124 

 
 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1949

https://nces.ed.gov/nationsreportcard/dba/
https://doi.org/10.1080/10627197.2019.1670055
https://doi.org/10.1007/s10649-006-9078-5
https://doi.org/10.1177/0013164406288166
https://doi.org/10.3390/su13179548


INTERACCIÓN CON REPRESENTACIONES DINÁMICAS PARA ARGUMENTAR 
SOBRE LA VALIDEZ DE UNA CONSTRUCCIÓN GEOMÉTRICA 

INTERACTION WITH DYNAMIC REPRESENTATIONS TO ARGUE ABOUT THE VALIDITY OF A 
GEOMETRY CONSTRUCTION 

María Alejandra Calderón González   
CINVESTAV 

alejandra.calderon@cinvestav.mx 

Luis Enrique Moreno Armella 
CINVESTAV 

lmorenoa@cinvestav.mx 

Desde la matemática educativa, gran variedad de estudios se ha enfocado en analizar la 
presencia de la tecnología digital desde diferentes puntos de vista. Quienes abordan la prueba y 
la argumentación se han resistido a que se presenten resultados con un componente tecnológico, 
debido a la idea de formalidad asociada estos términos, lo que ha aumentado la tensión 
existente entre la naturaleza teórica y empírica de la matemática. Teniendo en cuenta que con la 
presencia de entornos como DGS el estudiante puede acceder a representaciones dinámicas, 
nosotros buscando entender el impacto de la interacción con estas representaciones en los 
argumentos que proponen los estudiantes. Para esto realizamos un estudio de tipo exploratorio y 
descriptivo cuyos resultados muestran que la interacción con representaciones dinámicas brinda 
a los estudiantes herramientas de validación diferentes a las del papel.  

Palabras clave: Razonamiento y prueba. 

Introducción y antecedentes  
Argumentar y validar proposiciones son habilidades que el ser humano necesita para 

desenvolverse en sociedad. Desde muy temprano, uno de los objetivos educativos consiste en 
promover la participación de los estudiantes para la comprensión y desarrollo de argumentos. Por 
ejemplo, la NCTM (2000) propone que “Al final de la escuela secundaria, los alumnos deberían 
estar capacitados para comprender y elaborar demostraciones matemáticas, es decir, argumentos 
que consisten en deducciones o conclusiones lógicamente rigurosas a partir de hipótesis” (p. 59). 
Todo esto es analizado desde la perspectiva del profesor (Bleiler et al, 2014; Lesseig et al, 2019; 
Dickerson y Doerr, 2014), desde las producciones del estudiante (Buchbinder y Zaslavsky, 
2011), y desde la incorporación de la tecnología digital (Leung y Or, 2007; Olivero y Robutti, 
2001; Sinclair y Robutti, 2012). 

En el salón de clases el profesor es quien usualmente promueve el desarrollo de argumentos 
y pruebas, por lo que se han desarrollado investigaciones en las que se exploran las ideas que 
tienen los profesores sobre este tema (Bleiler et al, 2014; Lesseig et al, 2019). Un hallazgo en 
este sentido es que los profesores consideran la formalidad y la lógica como factores relevantes 
para determinar la validez de un argumento y más aún cuando son profesores con pocos años de 
experiencia (Dickerson y Doerr, 2014). Sin embargo, para algunos autores (Wittmann, 2021; de 
Villiers, 2004) este énfasis formalista sobre la prueba inhibe la importancia de la comprensión, 
por lo que se propone que para la educación matemática el objetivo sea que los estudiantes 
desarrollen distintos tipos de razonamientos que les permitan comprender y argumentar por qué 
una proposición es válida (Hanna, 2014). 

La geometría es una de las áreas de las matemáticas en la que el desarrollo de argumentos y 
pruebas se puede dar de manera natural, ya que “los métodos geométricos son, hasta cierto 
punto, una combinación de ver y razonar, ya que, allí, la razón comprueba los desarrollos 
lógicos, y los guía sobre lo que los ojos ven en la figura” (Northrop, 1968, p.131). En particular, 
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el razonamiento se desarrolla sobre una figura, de modo que la figura es parte constitutiva del 
proceso argumentativo. Esta misma idea es compartida por Netz (1988) quien afirma que, en el 
caso de la geometría griega clásica, el diagrama es la esencia de la prueba. 

En clase de geometría se busca que los estudiantes expresen sus razonamientos para ilustrar 
la generalidad de un hecho a partir del diagrama, sin embargo, esto no siempre es posible debido 
a que generalizan a partir de un solo caso (Stylianides y Stylianides, 2017). Por ejemplo, piensan 
que la mediana y la mediatriz de un triángulo son el mismo objeto porque al trazarlas con regla y 
compás estás coinciden para el triángulo construido (isósceles). Este tipo de situaciones han 
hecho que la incertidumbre sobre la generalidad de un hecho sea una pieza clave para incentivar 
en los estudiantes la necesidad de producir pruebas deductivas (Buchbinder y Zaslavsky, 2011). 
Sin embargo, cuando las representaciones son dinámicas (e.g., presentadas en GeoGebra) se 
puede generar un alto nivel de certeza mediante el arrastre de puntos de una construcción y la 
observación de que las propiedades se mantienen a través de las distintas figuras resultantes. Esta 
percepción de la permanencia de una propiedad (que ya no sería accidental), es lo que lleva a 
proponer otras estrategias y funciones de la prueba diferentes a la tradicional (de Villiers, 2004). 
Además, el acceso a una pantalla digital ha promovido el estudio del impacto de las tecnologías 
digitales en el cambio sufrido en los razonamientos y las pruebas que proponen los estudiantes.  

Existe un gran número de investigaciones en las que se analiza desde diferentes perspectivas 
el uso de geometría dinámica en procesos de argumentación y prueba. Algunas se han enfocado 
en tipificar los argumentos que proponen los estudiantes, concluyendo que la mayoría son de tipo 
empírico (Morales et al.,2021); otros estudios han buscado analizar cómo la interacción con los 
objetos de la geometría dinámica puede servir como trabajo previo para proponer y construir 
pruebas deductivas/teóricas (Leung y Or, 2007; Olivero y Robutti, 2001; Dello-Iacono, 2021). 
Sin embargo, también se ha reconocido que la interacción con representaciones dinámicas puede 
llevar a nuevas formas de razonamiento genuinas (Moreno-Armella y Brady, 2018) y por lo tanto 
a establecer nuevas ideas sobre lo que significa una prueba cuando se trabaja con 
representaciones digitales. El estudio que aquí se reporta, investigó ¿cómo es la interacción entre 
el estudiante y las representaciones dinámicas al momento de realizar construcciones y 
argumentar sobre su validez? 

Teniendo en cuenta la importancia de la interacción entre el estudiante y las representaciones 
dinámicas, a continuación, presentamos el constructo teórico de la co-acción, el cual extiende 
algunas ideas de génesis instrumental. Además, presentaremos una visión general de la 
argumentación que no expresa la necesidad de un nivel de formalidad. 
Perspectiva Teórica  

Cada vez más las estructuras curriculares están siendo habitadas por la tecnología digital 
mediante los sistemas de representación que reaccionan de inmediato a las acciones del 
estudiante, permitiendo, por una parte, que algunas actividades que se pueden adelantar con lápiz 
y papel se desarrollen de una forma más eficiente y se eviten errores de cálculo —la herramienta 
como amplificadora—. Sin embargo, la ejecutabilidad de estas representaciones hacen posible 
que el estudiante pueda transformar sus conocimientos y acceder a ideas nuevas —la herramienta 
como reorganizadora conceptual—. Esto es particularmente tangible en los entornos de 
geometría dinámica (Moreno-Armella y Sriraman, 2005). 

La acción de arrastrar un vértice de un triángulo, por ejemplo, genera una respuesta del 
medio digital que gradualmente va develando la naturaleza estructural de la construcción que se 
haya realizado. Hay allí un espacio de exploración nuevo para el estudiante, pues la pantalla 
digital es un espacio que dialoga con el estudiante a través de las representaciones digitales. La 
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ejecutabilidad de las representaciones se traduce en la capacidad de respuesta del medio durante 
una exploración y contribuye al desarrollo de nuevas maneras de pensar. Termina generándose 
una dialéctica que ha sido estudiada como la génesis instrumental (Rabardel y Beguin, 2005), 
pero en un salón de clases se aprende de, con y a través de los otros. Hay formas de articular el 
pensamiento propio con el pensamiento de los demás incluidas sus experiencias con el medio 
digital presente. Esta co-acción cognitiva (Hegedus y Moreno-Armella, 2010) es un rasgo central 
de la mediación instrumental. 

Si bien las posibilidades abiertas por los medios digitales de cómputo numérico y 
visualización han cuestionado la demostración tradicional sobre papel y lápiz como único criterio 
de validación matemático, ubicados en el terreno de la educación matemática y viendo la 
construcción del sentido como un objetivo central del aprendizaje, consideramos que hay, aparte 
del tradicional, otros caminos para construir la justificación de una proposición (digamos 
geométrica) en el salón de clases. La exploración de una situación geométrica (nuestro interés 
aquí) encuentra una respuesta teóricamente controlada del lado del mediador digital––por 
ejemplo, Geogebra. Al adelantar una exploración, el estudiante encuentra en la pantalla una 
respuesta a sus acciones a través de la plasticidad de las representaciones. De esa manera su 
entendimiento matemático va encontrando y desechando rutas de aproximación a una respuesta 
plausible a un problema o a una demanda de justificación. Por lo tanto, los argumentos 
matemáticos pueden ser abordados desde una perspectiva general como una línea de 
razonamiento que pretende mostrar y/o convencer de que un resultado (una declaración general 
sobre un objeto, una solución a un problema, un cálculo) es correcto (Sriraman y Umland, 2020; 
Hanna, 2020). Nuestro trabajo responde a las líneas aquí trazadas. 

Metodología 
Situamos nuestra investigación dentro de un enfoque cualitativo centrado en comprender, 

profundizar y describir fenómenos a través de la perspectiva de los participantes (Hernández et 
al., 2010). En este caso buscamos comprender la interacción con las representaciones dinámicas 
al momento de argumentar. Seguimos la línea de las investigaciones exploratorias y descriptivas 
(Steffe y Thompson, 2000) ya que buscamos familiarizarnos con los modos y formas de operar 
de los participantes. 

Los participantes fueron 6 profesores de matemáticas que estaban llevando un curso de 
geometría como parte de un programa de maestría. Para este reporte, describimos el caso de Ana 
quien manifestó no estar familiarizada con los contenidos de geometría (ya que nunca ha 
enseñado esta materia y solo llevó un curso sobre este tema durante su licenciatura) y quién 
demostró gran destreza con el manejo de GeoGebra. 

El cuestionario propuesto a los participantes consistía en seis construcciones que debían 
realizar y argumentar por qué su solución era válida. Posteriormente se realizó una entrevista 
semi estructurada a cada participante con el fin de profundizar en sus argumentos/ razonamientos 
y en la interacción con el medio digital. 

Para el análisis de los datos se extrajeron los fragmentos de la entrevista en los que se 
evidenciaba un proceso donde: los estudiantes realizaban acciones sobre el medio digital, 
interpretaban la respuesta del medio (la información de la pantalla) y esta información los 
llevaba a realizar nuevas acciones. En general, nosotros analizamos cómo este proceso 
contribuyó a que los estudiantes pudieran argumentar sobre la validez de su construcción. 
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Resultados 
En esta sección analizamos las interacciones de los estudiantes con el entorno digital, en 

particular, la naturaleza de los argumentos que se producen gracias a dicha interacción. 
Encontramos tres usos que describimos a continuación. 
GeoGebra como amplificador 

El entorno es, en un momento inicial, un amplificador que le permite a los estudiantes hacer 
explícitas sus ideas sobre las circunferencias, elipses, mediatrices y demás objetos geométricos. 
En ese momento sus ideas aún no han sido afectadas por el nuevo sistema de representación. Lo 
ilustramos primero con el trabajo de Ana, quien aborda el problema: dado un ángulo y una recta 
transversal a los lados del ángulo hallar un punto sobre la transversal equidistante de los lados 
del ángulo. En su respuesta Ana afirma que el punto buscado está en la intersección de la 
bisectriz y la transversal, por lo que durante la entrevista se le solicita que realice la construcción, 
dando paso al siguiente dialogo.  

[1]E: ¿Qué trazaste ahí? 
[2]A: Una bisectriz. 
[3]E:  ¿Por qué la bisectriz? 
[4]A: Porque la bisectriz me va a dar todos los puntos que equidistan de (…) de ambos 

lados. 
La construcción de Ana está guiada por su conocimiento teórico, por lo que el medio digital 

(GeoGebra) se usa como una herramienta que le permite construir la bisectriz del ángulo dado de 
manera casi idéntica a cómo lo haría con lápiz y papel.  

En cuanto al argumento, Ana concluye que el punto de intersección entre la bisectriz y la 
transversal equidista de los lados del ángulo porque existe una regla general vinculada a la 
bisectriz que le permite afirmar dicha equidistancia (línea 4, diálogo anterior).  
GeoGebra como reorganizador conceptual 

El medio se ha convertido en un reorganizador conceptual cuando el razonamiento del 
estudiante trae indeleble la presencia del mediador digital, de modo que el estudiante reconfigura 
sus argumentos incluyendo la respuesta del mediador. Esto se ilustra cuando Ana debe probar 
que los puntos de la bisectriz equidistan de los lados de un ángulo, hecho que usualmente se 
prueba determinando dos triángulos congruentes, sin embargo, Ana usa otra estrategia (ver 
Figura 1) y dice:  

[5]A: ¿Por qué equidista? Porque, pues (…) puedo dibujar esta circunferencia con 
centro aquí (señala H) que es tangente a este lado y a este (señala los dos lados del 
ángulo). 

[6]E:  Ok. Y, ¿el poder dibujar esa circunferencia me permite verificar la equidistancia? 
[7]A: Aja (mueve constantemente el punto B por la pantalla). 
[8]E: ¿Por qué? ¿qué característica da (…)? ¿por qué no una elipse, o un cuadrado? 
[9]A: Ah, pues porque la distancia del centro a cualquier punto, pues es la misma, desde 

aquí que desde aquí (señala dos puntos de la circunferencia). 
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Figura 1: Construcción de Ana para probar una propiedad de la bisectriz 
 

Para probar que los puntos de la bisectriz equidistan de los lados del ángulo, Ana guiada por 
sus conocimientos sobre las propiedades de las circunferencias (línea 9) construye una 
circunferencia con centro en H que es tangente a uno de los lados del ángulo (BC), anticipando 
que la circunferencia resultará tangente al otro lado. La respuesta dada por el medio gracias a la 
exactitud de los trazos y la geometría incrustada en ese medio permite que Ana configure su 
argumento basado en lo que ve en la pantalla. En este mismo sentido, Ana usa la función de 
arrastre para ilustrar la generalidad del hecho cuando arrastra uno de los puntos de la 
construcción y la respuesta que le da el medio es que la circunferencia permanece tangente a 
ambos lados del ángulo. 

Sobre el argumento de Ana, ella concluye que los puntos de la bisectriz equidistan de los 
lados del ángulo porque puede dibujar una circunferencia que es tangente a los dos lados del 
ángulo (línea 5). En este caso, la garantía del argumento es una regla que establece como general 
gracias a sus conocimientos sobre las propiedades de la circunferencia y la co-acción con la 
representación dinámica. La presencia del medio dinámico en el argumento de Ana se presenta 
en dos momentos: primero con la exactitud de los trazos, ya que si estuviera trabajando en el 
papel podría no darse la tangencia o sería su voluntad la que haría que la circunferencia resultara 
tangente. El segundo momento se presenta cuando ella mueve un punto de la construcción, en 
este caso el vértice del ángulo, característica que diferencia el trabajo en el medio digital y el 
papel y lápiz. 
GeoGebra como guía 

El medio digital es “experto en geometría” de modo que puede impactar el razonamiento del 
estudiante a través de un proceso en donde se plantean hipótesis o conjeturas. Esto puede darse 
con la observación persistente de un hecho que modifique las ideas geométricas del estudiante, lo 
que ocurriría al evaluar la respuesta del medio digital. Este proceso dialéctico lo observamos 
cuando se le propone a Ana construir la bisectriz de un ángulo sin utilizar la herramienta que 
viene preconstruida en el medio digital ––GeoGebra en este caso— y después que pruebe que 
efectivamente es la bisectriz. 

[10]A: Déjame lo pruebo. 
[11]E:  ¿Qué cosa vas a probar? 
[12]A: Si (…) si trazando alguna de estas rec(…) sí, alguna de éstas (señala a HJ y HG 

en la figura 1) me da este punto de aquí (señala a H), y ese punto, pues va a ser parte de la 
bisectriz. 

Ana construye un ángulo NML y un punto O sobre MN, después construye una recta 
perpendicular a MN por O e intenta construir una recta perpendicular a ML, pero solo mueve el 
apuntador sobre el segmento ML (ver Figura 2) y se da cuenta que el punto no puede ser ubicado 
arbitrariamente cuando dice:  
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[13]A: “No puede ser cualquiera”. 
 

 

Figura 2: Arrastre de Ana para construir la perpendicular deseada 
 

En este caso, la construcción de Ana está guiada por su intuición y la respuesta del medio 
digital se puede interpretar como la posible ubicación de la recta perpendicular a ML y el punto 
de intersección de las dos rectas perpendiculares. La respuesta del medio es interpretada por las 
ideas previas que tiene Ana gracias a la interacción con su representación anterior (línea 12), las 
cuales le permiten afirmar que el punto sobre ML debe tener alguna característica particular que 
desconoce (línea 13). 

Continuando con su exploración, Ana empieza a usar GeoGebra como un medio que guía su 
razonamiento, ya que construye un punto P en el segmento LM y la recta perpendicular a dicho 
segmento por P, después determina el punto Q como la intersección de las dos rectas 
perpendiculares y construye la circunferencia con centro en Q y radio QO, por último, mueve P 
hasta que parece que la circunferencia con centro en Q es tangente a ML por P. 

La construcción de la circunferencia por parte de Ana muestra la presencia de un hecho 
geométrico que ha sido adquirido gracias a la interacción con el medio digital, en el que una 
recta es bisectriz si y solo sí al construir una circunferencia con centro en la bisectriz y tangente a 
un lado del ángulo resulta tangente al otro lado (línea 5). Esta idea se ha incorporado a la 
construcción del objeto bisectriz que tiene Ana, y ahora hace parte de sus herramientas 
conceptuales que le permiten probar si un punto es un punto de la bisectriz o no. 

Continuando con la interacción con el medio digital, Ana conjetura sobre la ubicación de P 
(por ejemplo, que es punto medio de ML) y realiza las construcciones respectivas, pero gracias 
las respuestas del medio digital a través del arrastre, ella comprende que sus hipótesis no son 
correctas. Mueve el punto P sobre el segmento ML y observa que el punto de intersección entre 
la circunferencia y la recta perpendicular a ML se mueve cuando P se mueve, por lo tanto, 
determina dicho punto de intersección como R y decide usar la herramienta “Rastro”. Esta última 
le muestra el lugar geométrico de R cuando P se mueve (ver Figura 3), pero al ver el resultado 
Ana afirma que necesitaría conocer P y decide cambiar su estrategia. 

 

Figura 3: Uso de la herramienta “Rastro” 
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Aquí subrayamos dos tipos de interacción con el medio digital, en la primera, Ana busca 
dentro de sus conocimientos geométricos ideas que le permitan plantear hipótesis sobre la 
ubicación de P y en este caso la respuesta del medio digital es la ubicación del punto solicitado 
por Ana, como el punto medio de ML y esta respuesta es contrastada con las ideas previas de 
Ana. En la segunda interacción, ella no parte de ideas geométricas, sino del comportamiento de 
la representación digital de los objetos, de modo que la respuesta del medio muestra el 
comportamiento del punto R.  Entonces, Ana busca asociar esta respuesta con su conocimiento 
previo y al no poder hacerlo, decide usar otra estrategia. 

Ana decide volver a explorar la configuración inicial (la que se presenta en la Figura 1) y 
después de mover los punto A, B y C decide construir una circunferencia con centro en M y 
radio MO. 

[14]: Y, ¿esa circunferencia por qué se te ocurrió? 
[15]: (mueve el punto P hasta que la circunferencia con centro en Q resulta tangente a 

los dos lados del ángulo) ¡Ah, sí es! 
Al ver que su nueva hipótesis resulta ser correcta Ana decide eliminar el punto P que había 

construido y ahora lo construye como punto de intersección de la circunferencia con centro en M 
con el segmento ML. Pero, esta vez no construye Q como punto de intersección de las dos 
perpendiculares, sino que lo determina con punto medio de OP y construye la recta MQ como 
bisectriz. Para probar que la recta es la bisectriz ella construye la circunferencia con centro en Q 
y radio QO, pero como Q no es el punto de intersección de las dos rectas perpendiculares, 
entonces la circunferencia no resulta ser tangente a los lados del ángulo (ver Figura 4). Ana 
mueve los puntos de su construcción y duda que la recta construida sea la bisectriz, entonces 
decide usar la herramienta “bisectriz” que la construye a partir de tres puntos y nota que la recta 
bisectriz coincide con MQ, por lo que reevalúa la construcción de la circunferencia con centro en 
Q. Por último, Ana construye la circunferencia con centro en la intersección de las dos 
perpendiculares y así comprueba que la recta construida es la bisectriz del ángulo LMN. 

 

 

Figura 4: Construcción de circunferencia que no es tangente a ambos lados del ángulo 
 

En general, la construcción de Ana está guiada por las observaciones sobre la representación 
ejecutable y el constante diálogo con el medio digital. Este medio se usa como un recurso que le 
permite explorar partiendo de hipótesis (como la idea que se ilustra en la Figura 2) o buscando 
hipótesis gracias a la interacción con la representación dinámica––estrategia presentada en 
Figura 3 y cuando explora nuevamente la Figura 1.  

Sobre el argumento de Ana, ella concluye que la recta construida es la bisectriz del ángulo 
porque puede construir una circunferencia que es tangente a los dos lados del ángulo y 
permanece tangente ante el arrastre. En este caso, la garantía del argumento es una regla de 
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validación digital que ha mostrado tener incorporada a sus conocimientos (línea 5). Afirmamos 
que esta es una regla de validación digital ya que cuando el medio responde con una 
circunferencia que no es tangente (Figura 4), ella piensa que la recta construida no es bisectriz, 
porque una idea sobre este objeto que forma parte de sus conocimientos previos es que: una recta 
es bisectriz si y sólo si se puede trazar la circunferencia tangente. 

Un hecho que resulta interesante del proceso de Ana es que cuando traza la recta bisectriz y 
el medio responde haciendo coincidir dicha recta con la recta ya construida a saber, MQ (Figura 
4), ella no usa dicha coincidencia para argumentar que la recta construida sea la bisectriz del 
ángulo. Solo cuando construye la circunferencia tangente considera que ha probado que su 
construcción es correcta. Las reglas de validación están vinculadas al proceso continuo de 
formación y adquisición de conceptos.   

Palabras finales 
Este trabajo ha permitido observar diferentes interacciones cuando se recurre a la mediación 

de las representaciones dinámicas durante las tareas de construcciones geométricas y cómo dicha 
mediación afecta los procesos de validación.  Reportamos tres usos del medio digital: i) como un 
socio constructivo en donde la respuesta del medio no hace parte del argumento, ii) como un 
medio de prueba en donde la interacción con el medio desempeña un rol importante en el 
argumento, y iii) El medio digital como un guía que corrige y da indicios del camino a seguir, al 
igual que en el caso anterior la interacción con el medio es crucial en el argumento. 

Las diferentes interacciones que analizamos permitieron observar formas híbridas de 
interacción, es decir, presencia de ideas geométricas previamente desarrolladas en un medio de 
lápiz y papel que se manifiestan en medio de un razonamiento adelantado en el contexto de la 
geometría dinámica. Los razonamientos de Ana se auxilian de los recursos que ofrece el medio 
digital para establecer que la circunferencia siempre será tangente al otro lado del ángulo. En 
efecto, Ana razona sobre una representación que le brinda información diferente a la que tenía en 
un medio estático. Pero ¿se podría afirmar que la prueba de Ana es deductiva? Este 
cuestionamiento nos lleva a plantearnos una pregunta que es todavía más amplia: ¿qué 
caracteriza una prueba deductiva en el medio digital?  

Ofrecemos aquí un punto de partida hacia la caracterización de una prueba digital. 
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From mathematics education, a great variety of studies have focused on analyzing the presence 
of digital technology from different points of view. Those who work with proof and 
argumentation have resisted presenting results with a technological component, due to the idea 
of formality associated with those terms, which has increased the existing tension between the 
theoretical and empirical nature of mathematics. Taking into consideration that with the 
presence of environments such as dynamic geometry software (DGS) the student can access to 
dynamic representations, we seek to understand the impact of the interaction with these 
representations on the arguments proposed by the students. For this, we carried out an 
exploratory and descriptive study whose results show that the interaction with dynamic 
representations provides students with validation tools different from those on paper. 

Keywords: Reasoning and Proof.  

Introduction and background 
To argue and to validate propositions are skills that human beings need to function in society. 

From very early on, one of the educational objectives is to promote the participation of students 
for the understanding and development of arguments. For example, the NCTM (2000) proposes 
that “By the end of secondary school, students should be able to understand and produce 
mathematical proofs —arguments consisting of logically rigorous deductions of conclusions 
from hypotheses—and should appreciate the value of such arguments” (p. 56). All this has been 
analyzed from the perspective of the teacher (Bleiler et al, 2014; Lesseig et al, 2019; Dickerson 
and Doerr, 2014), from the student's productions (Buchbinder and Zaslavsky, 2011), and from 
the incorporation of digital technology. (Leung and Or, 2007; Olivero and Robutti, 2001; Sinclair 
and Robutti, 2012).  

In the classroom, the teacher is the one who promotes the development of arguments and 
proofs, consequently, research has been developed to explore the teachers’ ideas on this subject. 
(Bleiler et al, 2014; Lesseig et al, 2019). A finding is that teachers with few years of experience 
consider formality and logic to be relevant factors that determine the validity of an argument 
(Dickerson & Doerr, 2014). However, some authors (Wittmann, 2021; de Villiers, 2004) 
consider that this formalist emphasis on proof inhibits the importance of the comprehension 
process. Under this last perspective, it is concluded that the objective, in mathematics education, 
should be for students to develop different types of reasoning that allow them to understand and 
argue about the validity of a proposition (Hanna, 2014). 

Geometry is one of the areas of mathematics in which the development of arguments and 
proofs can occur, because geometric methods are, to a certain extent, a combination of seeing 
and reasoning, since reason verifies logical developments and guides them about what the eyes 
see in the figure (Northrop, 1968). The reasoning, in geometry, is developed on a figure, so that 
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the figure is a constituent part of the argumentative process. This same idea is shared by Netz 
(1988) who states that, in the case of classical Greek geometry, the diagram is the essence of the 
proof. 

In geometry class, students are expected to express their reasoning to illustrate the generality 
of a fact from the diagram, however, this is not always possible because they usually generalize 
from a single case (Stylianides and Stylianides, 2017). For example, they think that the median 
and perpendicular bisector of a triangle are the same object because when they are drawn with a 
ruler and compass, they coincide for the constructed triangle (isosceles). These types of 
situations have made uncertainty about the generality of an important fact in promoting the need 
to produce deductive proofs in students (Buchbinder & Zaslavsky, 2011). However, when the 
representations are dynamic (e.g., presented in GeoGebra) a high level of certainty can be 
generated by dragging points of a construction and observing that the properties are maintained 
across the different resulting figures. This perception of the permanence of a property (which 
would no longer be accidental), is what leads to proposing strategies and functions of the proof 
that are different from the traditional one (de Villiers, 2004). In addition, access to a digital 
screen has promoted the study of the impact of digital technologies on the change suffered in the 
reasoning and proofs proposed by students. 

There are many investigations in which the use of dynamic geometry in argumentation and 
proof processes is analyzed from different perspectives. Some have focused on typifying the 
arguments proposed by students, concluding that most of them are empirical (Morales et al., 
2021); Other studies have analyzed how interaction with dynamic geometry objects can serve as 
preliminary work to propose and build deductive/theoretical proof (Leung and Or, 2007; Olivero 
and Robutti, 2001; Dello-Iacono, 2021). However, it has also been recognized that the 
interaction with dynamic representations can produce new forms of genuine reasoning (Moreno-
Armella and Brady, 2018) and therefore establish new ideas about what a proof means when 
working with digital representations. The study reported here investigated how is the interaction 
between the student and the dynamic representations when making constructions and arguing 
about their validity? 

Considering the importance of the interaction between the student and the dynamic 
representations, we present the theoretical construct of co-action, extending some ideas of 
instrumental genesis. We will present an overview of the argumentation that does not express the 
need for a level of formality. 
Theoretical perspective 

More and more curricular structures are being inhabited by digital technology through 
representation systems that react immediately to student actions, allowing, on the one hand, that 
some activities that can be developed with pencil and paper, are carried out in a more efficient 
way, and avoid calculation errors —the tool as an amplifier—. However, the executable nature 
of these representations makes it possible for the student to transform their knowledge and access 
new ideas —the tool as a conceptual reorganizer—. This is particularly tangible in dynamic 
geometry environments (Moreno-Armella and Sriraman, 2005). 

The action of dragging a vertex of a triangle, for example, generates a response from the 
digital environment that gradually reveals the structural nature of the construction that has been 
made. There is a new exploration space for the student since the digital screen is a space that 
dialogues with the student through digital representations. The performance of the 
representations translates into the responsiveness of the medium during an exploration and 
contributes to the development of new ways of thinking. It ends up generating a dialectic that has 
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been studied as instrumental genesis (Rabardel and Beguin, 2005), but in a classroom you learn 
from, with and through others. There are ways to articulate one's own thinking with the thinking 
of others, including their experiences with the present digital medium. This cognitive co-action 
(Hegedus and Moreno-Armella, 2010) is a central feature of instrumental mediation. 

Although the possibilities opened by the digital means of numerical computation and 
visualization have questioned the traditional proof on paper and pencil as the only mathematical 
validation criterion, located in the field of mathematics education and seeing the construction of 
meaning as a central objective of learning, we consider that there are, apart from the traditional 
one, other ways to build the justification of a proposition (let's say geometric), in the classroom. 
The exploration of a geometric situation (our interest here) finds a theoretically controlled 
response from the side of the digital mediator––for example, GeoGebra. By advancing an 
exploration, the student finds on the screen a response to her actions through the plasticity of the 
representations. In this way, the mathematical understanding of it finds and discards routes of 
approximation to a plausible answer to a problem or to a demand for justification. Therefore, 
mathematical arguments can be approached from a general perspective as a line of reasoning that 
aims to show and/or convince that a result (a general statement about an object, a solution to a 
problem, a calculation) is correct (Sriraman and Umland, 2020; Hanna, 2020). Our work 
responds to the lines described before. 

Methodology  
We place our research within a qualitative approach, which is focused on understanding, 

deepening, and describing phenomena through the perspective of the participants (Hernández et 
al., 2010). In this case we seek to understand the interaction with the dynamic representations 
when the student proposes arguments. We follow the line of exploratory and descriptive research 
(Steffe and Thompson, 2000) as we seek to familiarize ourselves with the ways and means of 
operating of the participants. 

The participants were 6 mathematics teachers who were taking a geometry course as part of a 
master's program. For this report, we describe the case of Ana who said she wasn’t familiar with 
the contents of geometry (because she has never taught it and only took one course during her 
undergraduate degree) and who showed great skills in using GeoGebra. 

The questionnaire proposed to the participants consisted of six constructions that they had to 
make and argue why their solution was valid. Subsequently, a semi-structured interview was 
conducted with each participant to deepen their arguments/reasoning and their interaction with 
the digital medium. 

For the analysis of the data, the fragments of the interview were extracted in which a process 
was evidenced where the students carried out actions on the digital medium, they interpreted the 
response of the medium (the information on the screen) and this information led them to carry 
out new actions. In general, we analyze how this process contributed to the students being able to 
argue about the validity of the construction. 

Results 
In this section we analyze the interactions of students with the digital environment, particularly 
the nature of the arguments that are produced thanks to said interaction. 
GeoGebra as an amplifier 

The environment is, initially, an amplifier that allows students to make explicit their ideas 
about circles, ellipses, perpendicular bisectors, and other geometric objects. At that time her 
ideas have not yet been affected by the new system of representation. We illustrate this idea with 
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the work of Ana, who solves the following problem: given an angle and a line transversal to the 
sides of the angle, find a point on the transversal equidistant from the sides of the angle. In her 
written solution proposal, Ana states that the point sought is at the intersection of the bisector 
and the transversal, so during the interview she performs the construction, which leads to the 
following dialogue: 

[1]E: What did you draw there? 
[2]A: A bisector. 
[3]E:  Why the bisector? 
[4]A: Because the bisector will give me all the points that are equidistant from (...) both 

sides. 
Ana's construction is guided by her theoretical knowledge, so the digital medium (GeoGebra) 

is used as a tool that allows her to construct the bisector of the given angle almost identically to 
how she would do it with pencil and paper. 

Regarding the argument, Ana concludes that the point of intersection between the bisector 
and the transversal is equidistant from the sides of the angle because there is a general rule linked 
to the bisector that allows her to affirm said equidistance (line 4, previous dialogue). 
GeoGebra as a conceptual reorganizer 

The digital environment has become a conceptual reorganizer when the student's reasoning is 
transformed by the presence of the digital mediator, so that the student reconfigures her 
arguments including the mediator's response. This is illustrated when Ana must prove that the 
points of the bisector are equidistant from the sides of an angle, a fact that is usually proved by 
determining two congruent triangles, however, Ana uses another strategy (see Figure 1) and 
says: 

[5]A: Why equidistant? Because, well (...) I can draw this circumference with center 
here (points to H) that is tangent to this side and to this (points to the two sides of the 
angle). 

[6]E:  Ok. And does being able to draw a circle allow me to check the equidistance? 
[7]A: Ujum (constantly drag point B around the screen). 
[8]E: Why? what characteristic does it give? why not an ellipse, or a square? 
[9]A: Ah. Well, because the distance from the center to any point is the same, from here 

as from here (indicates two points on the circumference). 

 

Figure 1: Construction of Ana to prove a bisector property 
 

To prove that the points of the bisector are equidistant from the sides of the angle, Ana, 
guided by her knowledge of the properties of circles (line 9), constructs a circle with center at H 
that is tangent to one of the sides of the angle (BC), anticipating that the circumference will be 
tangent to the other side. The response given by the representation, thanks to the accuracy of the 
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lines and the geometry embedded in that environment, allows Ana to configure her argument 
based on what she sees on the screen. In this same sense, Ana uses the drag function to illustrate 
the generality of the fact when she drags one of the points of the construction and the response 
given by the environment is that the circumference remains tangent to both sides of the angle. 

Regarding Ana's argument, she concludes that the points of the angle bisector are equidistant 
from the sides of the angle because she can draw a circle that is tangent to both sides of the angle 
(line 5). In this case, the guarantee of the argument is a rule that she establishes as general thanks 
to her knowledge of the properties of the circle and the co-action with the dynamic 
representation. The presence of the dynamic environment in Ana's argument is evidenced in two 
moments: first with the accuracy of the lines, since if she were working on paper the tangency 
might not occur or it would be her will that would make the circumference tangent. The second 
moment occurs when she drags a point of the construction (in this case the vertex of the angle), 
since it is an action that is allowed by the digital environment and differentiates it from working 
with paper and pencil. 
GeoGebra as a guide 

The digital environment is "expert in geometry" so that it can impact the student's reasoning 
through a process where hypotheses or conjectures are raised. This can occur from the persistent 
observation of a fact that modifies the geometric ideas of the student. This would occur when 
evaluating the response of the digital medium. We observe this dialectical process when Ana is 
proposed to construct the bisector of an angle without using the tool that is pre-built in the digital 
environment – GeoGebra in this case – and then she proves that it is indeed the bisector. 

[10]A: Let me try it. 
[11]E:  What are you going to try? 
[12]A: If (...) if tracing any of these (...) if any of these (points to HJ and HG in Figure 1) 

it gives me this point here (points to H), and that point, well, it will be part of the 
bisector. 

Ana constructs an angle NML and a point O on MN, then constructs a line perpendicular to 
MN through O and tries to construct a line perpendicular to ML, but just moves the pointer over 
segment ML (see Figure 2) and realizes that the point cannot be arbitrarily located when it says: 

[13]A: Can't be anyone. 

 

Figure 2: Ana dragging to build the desired perpendicular line 
 

In this case, Ana's construction is guided by her intuition and the response from the digital 
environment can be interpreted as the possible locations of the perpendicular line to ML and the 
possible points of intersection of the two perpendicular lines. The response of the environment is 
interpreted by the previous ideas that Ana had thanks to her interaction with her previous 
representation (line 12), which allow her to affirm that the point on ML must have some 
characteristic that she does not know (line 13). 
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Continuing her exploration, Ana begins to use GeoGebra as an environment to guide her 
reasoning, as she constructs a point P on segment LM and the line perpendicular to that segment 
through P, then determines point Q as the intersection of the two lines perpendiculars and 
constructs the circle with center at Q and radius QO. She finally moves P until it seems that the 
circle with center at Q is tangent to ML through P. 

The construction of the circumference by Ana shows the presence of a geometric fact that 
has been acquired thanks to the interaction with the digital environment, in which a line bisects 
an angle if and only if when a circle is constructed with center on the bisector and tangent to one 
side of the angle becomes tangent to the other side (line 5). This idea has been incorporated into 
Ana's construction of the bisector object, and now it is part of her conceptual tools that allow her 
to state whether a point is a bisector point or not. 

Continuing with the interaction with the digital environment, Ana conjectures about the 
location of P (for example, that it is the midpoint of ML) and performs the respective 
constructions, but thanks to the responses of the digital environment through the drag, she 
understands that her hypotheses are not correct. She moves the point P on the segment ML and 
observes that the point of intersection between the circumference and the perpendicular line to 
ML moves when P moves, therefore, she names R as point of intersection and decides to use the 
“Trace" tool. The latter shows her the locus of R when P moves (see Figure 3). Seeing the result, 
Ana affirms that she would need to determine P and decides to change her strategy. 

 

Figure 3: Using the “Trace” tool 
 

Here we underline two types of interaction with the digital environment. In the first, Ana 
searches within her geometric knowledge for ideas that allow her to hypothesize about the 
location of P. In this case, the response of the digital environment is the location of the point 
requested by Ana, as the midpoint of ML, and this is contrasted with Ana's previous ideas. In the 
second interaction, she does not start from geometric ideas, but from the behavior of the digital 
representation of objects, so that the answer that is observed on the screen is the behavior of 
point R. So, Ana tries to associate this response with her prior knowledge and, unable to do so, 
decides to use another strategy. 

Ana decides to re-explore the initial configuration (the one shown in Figure 1) and after 
moving points A, B and C, she decides to build a circle with center M and radius MO. 

[14]: And why did you come up with that circumference? 
[15]: (drag point P until the circle centered at Q is tangent to both sides of the angle) 

Ah, yes, it is! 
Seeing that her new hypothesis turns out to be correct, Ana decides to eliminate the point P 

that she had constructed and now constructs it as the point of intersection of the circle with 
center in M with the segment ML. But this time she does not construct Q as the point of 
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intersection of the two perpendiculars, but rather she determines it with the midpoint of OP and 
constructs the line MQ as a bisector. To prove that the line is the bisector, she constructs the 
circle with center at Q and radius QO, but since Q is not the point of intersection of the two 
perpendicular lines, then the circle does not turn out to be tangent to the sides of the angle (see 
Figure 4). Ana moves the points of her construction and doubts that the constructed line is the 
bisector, so she decides to use the "bisector" tool that constructs it from three points and notices 
that the bisector line coincides with MQ, so she reevaluates the construction of the circle with 
center at Q. Finally, Ana constructs the circle with center at the intersection of the two 
perpendiculars and thus checks that the constructed line is the bisector of the angle LMN. 

 

Figure 4: Construction of a circle that is not tangent to both sides of the angle 
 

In general, the construction of Ana is guided by the observations about the executable 
representation and the constant dialogue with the digital environment. This environment is used 
as a resource that allows you to explore starting from hypotheses (such as the idea illustrated in 
Figure 2) or searching for hypotheses thanks to the interaction with the dynamic representation––
strategy presented in Figure 3 and when exploring Figure 1 again one—. 

On Ana's argument, she concludes that the constructed line is the bisector of the angle 
because she can construct a circumference that is tangent to the two sides of the angle and 
remains tangent during the drag. In this case, the argument guarantee is a digital validation rule 
that she has built into her knowledge (line 5). We affirm that this is a digital validation rule 
because when the environment responds with a circumference that is not tangent (Figure 4), she 
thinks that the constructed line is not a bisector, because an idea about this object that is part of 
her previous knowledge is that a line is a bisector if and only if the tangent circle can be drawn. 

An interesting fact about Ana's process is that when she draws the bisecting line and the 
environment responds by matching said line with the already constructed line, namely MQ 
(Figure 4), she does not use said coincidence to argue that the constructed line is the bisector of 
the angle. Only when she constructs the tangent circle does she consider that she has proven that 
her construction is correct. Validation rules are linked to the continuous process of concept 
formation and acquisition. 

Final words 
This work has allowed us to observe different interactions when the mediation of dynamic 

representations is used during geometric construction tasks and how this mediation affects the 
validation processes. We report three uses of the digital environment: i) as a constructive partner 
where the response of the environment is not part of the plot, ii) as a test environment where the 
interaction with the environment plays an important role in the plot, and iii) The digital 
environment as a guide that allows contrasting and finding solution strategies. As in the previous 
case, interaction with the environment is crucial in the argument. 
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The different interactions that we analyzed allowed us to observe hybrid forms of interaction, 
that is, the presence of geometric ideas previously developed in pencil and paper that manifest 
themselves during advanced reasoning in the context of dynamic geometry. Ana's reasoning is 
aided by the resources offered by the digital medium to establish that the circumference will 
always be tangent to the other side of the angle. Indeed, Ana reasons about a representation that 
gives her different information from what she had in a static medium. But could it be said that 
Ana's proof is deductive? This questioning leads us to ask ourselves a question that is even 
broader: what characterizes a deductive proof in the digital medium? 

We offer here a starting point towards the characterization of a digital evidence. 
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Research has identified specific frameworks that focus on the design and evaluation of 
mathematics technology tools and tasks (McCulloch et al., 2021a). One of those identified, the 
IGS Framework (Sherman & Cayton, 2015), has proven to be a useful tool to assist teachers in 
designing technology tasks that use the affordances of a specific math tool as a reorganizer (Pea, 
1985) to support students’ high-level thinking (Sherman et al., 2017; Cayton & Chandler, Under 
Review). This study adapted the IGS Framework to examine in-service teachers’ design of 
Desmos tasks in an asynchronous, paid professional development. Findings indicate when 
teachers designed a task that used Desmos as a reorganizer along an explicitly stated goal for 
student thinking, the result was a task of high potential cognitive demand.  

Keywords: Technology, Professional Development, Instructional Activities and Practices 

Setting mathematical goals and selecting tasks that promote reasoning and sense making 
serve a central role in guiding instruction (National Council of Teachers of Mathematics, 2014). 
When adding the use of technology to the scenario, a teacher must consider the mathematical 
goals and how to leverage the affordances of the technology tool to support student thinking 
(Association of Mathematics Teacher Educators, 2017; Conference Board of the Mathematical 
Sciences, 2012).  

When considering tasks that use technology, research is limited regarding the cognitive 
demand of tasks teachers use or to what features of a tool a teacher attends when considering a 
task (Sherman et al., 2017; Bray & Tangney, 2017; Sherman, 2014). Rather, most studies about 
technology use in mathematics classrooms focus on the type of technology used (e.g., Goos & 
Bennison, 2006; Pierce & Ball, 2010), barriers to incorporating technology (e.g., Ertmer et al., 
1999; Washira & Kenngwe, 2011), positioning of the technology (e.g., Goos et al., 2003) and the 
reasons teachers decided whether or not to use technology (e.g., Goos, 2005; Zbiek & 
Hollebrands, 2008). Additionally, in a nationwide survey regarding the frameworks mathematics 
teacher educators use in their work of preparing secondary mathematics teachers to teach with 
technology, only five of 17 identified frameworks address the design and evaluation of 
technology tools and tasks (McCulloch et al., 2021a). Altogether, these findings indicate there 
are few tools available to teachers to support them in evaluating, revising, and designing 
cognitively demanding tasks that use technology to support students’ mathematical learning. 

Framework 
The IGS Framework (Sherman & Cayton, 2015) identifies goals for students’ mathematical 

thinking based on Sinclair’s (2003) design principles along each row (i.e., dimension) and each 
column contains descriptions to help the teacher distinguish whether technology is used as an 
amplifier or as a reorganizer (Pea, 1985) with respect to a particular goal. While these goals are 
described separately within the IGS Framework, it is important to note that they are not mutually 
exclusive. It is also important to note that, while potentially related, these are different from a 
teacher’s mathematical goals for a task. Research based on the IGS Framework found it to be a 
productive tool for both pre-service (Sherman et al., 2017) and in-service teachers (Cayton & 
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Chandler, under review) in creating technology tasks that are of high cognitive demand, as well 
as a reorganizer in relation to student thinking. 

The Adapted IGS Framework (Figure 1) was created by adapting the IGS Framework to 
move away from language specific to dynamic geometry software (e.g., sketch) to be more 
inclusive of math action technologies more broadly (e.g., task). Additionally, emphasis was 
added to words like static and dynamic to further draw attention to how the technology is being 
used. The purpose of this qualitative study was to consider the ways in which in-service 
mathematics teachers utilized the Adapted IGS Framework to design tasks that use Desmos. 

 

 
Figure 1: The Adapted X Framework 

Methods 
This study included 13 in-service teachers in an online, paid professional development (PD), 

representing a range of teaching experience, from one to over 30 years. Most teachers had 
between 11-20 years of experience, with a group average of 15.6 years. Self-reported 
comfortability with Desmos included three teachers with minimal experience, eight that used 
Desmos once or twice a week, and two reported using Desmos almost daily. The four-week, 
asynchronous PD focused on utilizing Desmos for teaching and learning mathematics and 
consisted of seven self-paced modules. The first four modules provided an overview of tools 
within Desmos, while the remaining three modules focused on pedagogical considerations when 
using Desmos. During the last two modules, participants were 1) introduced to the Adapted IGS 
Framework, 2) analyzed Desmos tasks using the Adapted IGS Framework, and 3) revised a task 
so that technology would be used as a reorganizer for one of the goals for students’ thinking. In 
the culminating activity participants selected one goal for students’ thinking (i.e., target 
dimension) to design a task that used Desmos as a reorganizer with respect to that goal. Written 
rationales articulating design choices related to their target dimension were also required. 
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Data Sources and Analysis 
The data sources for this study consisted of the teachers’ designed tasks and their written 

rationales. The unit of analysis was the identified goal for student thinking. Data was collected, 
blinded, and analyzed following the completion of the PD. Tasks were independently coded as 
using technology as an amplifier or a reorganizer along all three dimensions of the Adapted IGS 
Framework. Interrater reliability for coding tasks along each goal for student thinking was 87%. 
Discrepancies were resolved through synchronous re-analysis and discussion. This analysis was 
done without knowledge of the participants’ identified goal for their task design. 

Analysis of cognitive demand was also independently coded using the Potential of the Task 
Rubric within the Instructional Quality Assessment Toolkit for Mathematics (Matsumura et al., 
2008; Boston, 2012). Interrater reliability for level of cognitive demand was 100%. For the third 
level of coding, written rationales were examined to discern the identified goal for student 
thinking and to determine if participants successfully attained their target goal.  

Findings 
As noted above, each of the 13 tasks were coded as amplifier or reorganizer along each 

dimension of the Adapted IGS Framework prior to considering participants’ identified goal for 
student thinking (e.g., row/dimension of the framework). Recall, these identified goals were for 
students’ thinking, not the mathematical goals. However, interpreting this analysis proved to be 
more difficult than previous iterations due to variation in how well participants clearly identified 
their goal for student thinking. Of the 13 participants, only six clearly identified a single goal for 
student thinking, as directed in the assignment. Five did not explicitly identify their goal for 
student thinking, and two participants stated they were trying to design a task to be a reorganizer 
along all three dimensions of the Adapted IGS Framework. Since five participants did not 
identify their goal for student thinking, we could not ascertain if they met their design intentions.  

Thus, we decided the unit of analysis should be each goal that was explicitly identified by a 
teacher. Table 1 shows a summary of these results with respect to each chosen target dimension. 
There were seven instances where participants successfully designed a task that was a 
reorganizer for their specified goal (58%, met). Results for the potential level of cognitive 
demand analysis revealed that for every task that used technology as a reorganizer, the result was 
a task of high potential cognitive demand.   
 

Table 1: Summary of Results 
Target Dimension Teacher Identifier Met Goal Cognitive Demand 

Row 1 T5, T9, T12 
T3 

Yes 
No 

High 
Low 

Row 2 
T12 Yes High 
T9 

T4, T10 
No 
No 

High 
Low 

Row 3 T6, T9, T12 Yes High 
T1 No High 

Did not explicitly identify T8, T13 - High 
T2, T7, T11 - Low 
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Discussion 
We echo the sentiments many have expressed lately with challenges related to conducting 

research during Covid (e.g., Kalinec-Craig, 2021). This study was not without its challenges. 
Interpretation of the results proved more difficult than anticipated because teachers did not 
complete the task design assignment as instructed. The assignment asked teachers to identify one 
goal for students’ thinking from the Adapted IGS Framework; however, some teachers identified 
more than one goal for students’ thinking from the framework and others neglected to explicitly 
state any goal for students’ thinking. Due to the asynchronous nature of the PD, we were unable 
to ascertain why this was the case. 

Despite the challenges presented in this asynchronous PD, one promising result was if a 
teacher designed a task that was a reorganizer along the identified goal for student thinking, then 
the task was also of high cognitive demand. This is a result that has been consistent across three 
iterations of this work, including a variety of contexts (e.g., in-service/pre-service teachers, face-
to-face courses/hybrid courses, undergraduate/graduate) and two different technologies (e.g., 
dynamic geometry software and Desmos) (Cayton & Chandler, under review (n=14); Sherman et 
al., 2017 (n = 15); as well as this study (n = 7)). In other words, when teachers use the IGS 
Framework or the Adapted IGS Framework to design a task that leverages the affordances of the 
math action tool as a reorganizer, the consistent result has been a high cognitive demand task.  

When teachers implement high cognitive demand tasks, learners are provided more equitable 
learning opportunities to engage in high level thinking (Aguirre et al., 2013). Thus, we propose 
that the Adapted IGS Framework offers the potential to support teachers in creating tasks that 
improve learning conditions for all learners. Yet, there is still more work needed. As noted in 
McCulloch et al. (2021a), the frameworks we are using in our preparation of teachers do not 
address the issue of equity. As such, we are considering how we might incorporate the 
recommendations from McCulloch et al. (2021b) to position all learners as explorers of 
mathematics when using technology into revisions of the Adapted IGS Framework. Our hope is 
that by updating the framework, we can help support teachers in understanding practical ways 
they can make use of math action technologies to engage students in deeper mathematical 
learning.  
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Worked examples are an effective form of instructional support. As online tools are increasingly 
used for instruction, designers should optimize how worked examples are presented to support 
students. We present a small exploratory study on 92 algebra students who rated and evaluated 
formats of worked examples on equation-solving as part of a larger experiment. We found that 
students’ ratings of the worked examples aligned with their posttest scores. Further, across 
conditions, explanations of students’ ratings revealed themes of worked example speed, 
equation-solving process, and content review. These findings provide considerations for 
researchers and teachers creating worked examples for online algebra learning environments. 

Keywords: Algebra and Algebraic Thinking, Online and Distance Education, Metacognition, 
Technology.  

Worked examples effectively help students learn math procedures by displaying the step-by-
step problem-solving process (e.g., Booth et al., 2015; Carroll, 1994; Foster et al., 2018). 
However, worked examples are typically presented as static images with limited research on the 
impacts of alternative formats of worked examples. As online tools become more prevalent in 
classrooms, worked examples should be intentionally designed to optimize learning in online 
environments. Further, since prior work has shown a positive association between students’ 
actual and perceived learning gains from online instructional materials (Whitehill et al., 2019), 
students’ perceptions of worked examples should inform their design. Here, we explore students’ 
perceptions of worked examples presented in static, sequential, or dynamic formats. 

We consider two competing theoretical perspectives. First, perceptual scaffolding (e.g., 
visual cues that direct students’ attention to important information in instructional materials) can 
support students’ cognitive processes and increase learning (Harrison et al., 2020; Gibson, 1969; 
Kirshner, 1989). Online tools present opportunities to design worked examples which use 
dynamic transformations and display the connections between steps. These worked examples 
may help guide students’ attention to make connections about the problem-solving process. 
Second, worked examples that minimize extraneous complexity can decrease students’ cognitive 
load and improve learning (Schwartz et al., 2016; Sweller et al., 2019). By this logic, students 
may find that worked examples with dynamic transformations take more effort to study: these 
examples might increase students’ cognitive load rather than decrease it. 

We have found comparable learning gains among students who viewed different worked 
example formats (Smith et al., 2022). Here, we report an exploratory analysis of how those 
students perceived the worked examples and why they found them to be helpful or unhelpful. We 
explore: 1) Are students’ posttest scores correlated with their rating of the worked examples? 2) 
Which themes emerge in students’ explanations for their ratings? 3) How do the themes vary 
across students who viewed worked examples with different degrees of dynamic presentation? 

Methods 
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A total of 230 grade-school algebra students from North and Central America completed a 
larger online experiment investigating how the format of worked examples impacted learning 
gains in an online tutoring system (Smith et al., 2022). Of those students, 92 rated the helpfulness 
of the worked examples and provided a rationale, thus were included in the analyses. 

We recruited teachers who already used the tutoring system with their classes. At their 
discretion, teachers assigned this one-hour study to students as an online problem set during class 
or as homework. Students worked at their own pace to complete the assignment. First, they 
completed an eight-item pretest on algebraic equation solving (e.g., solve for x in 8(2𝑥 + 9) = 56; 
reliability: KR-20 = 0.86). Next, they were randomly assigned to one of six experimental 
conditions varying in the worked example presentation. Within each condition, students 
completed six problem pairs consisting of one worked example and one practice problem. Next, 
students completed the posttest (reliability: KR-20 = .89) matching the structure of the pretest. 
Half of the pretest and posttest problems directly mirrored the equation structure in the worked 
examples whereas the other half used similar but different equation structures. Last, students 
were asked how much they agree with the statement: “The worked examples were helpful for 
learning how to solve equations”. Students rated the statement (1 = Strongly Disagree; 6 = 
Strongly Agree) and were prompted to explain their rating. 
 

 
Figure 1: A Static Worked Example 

The six worked example conditions of the larger study varied in their extensiveness (i.e., 
displaying major problem steps or every transformation) and degree of dynamic presentation 
(i.e., static, sequential, or dynamic). Here, we focus on how students perceive worked examples 
displayed with different degrees of dynamic presentation as supported by online tools so we do 
not further describe or discuss the variations in the extensiveness of worked examples. First, 
students in the static conditions viewed images of worked examples as they might be displayed 
in a textbook (Figure 1). Second, students in the sequential conditions viewed worked examples 
as looping GIF videos that presented the worked examples line-by-line in approximately 3-
second intervals, creating a history of the derivation over time. Third, students in the dynamic 
conditions viewed looping videos that demonstrated the transformation process through a screen 
recording. For example, to simplify 2(x − 3) = 8, students would watch as the 2 is dragged over 
the parentheses to create the transformed expression, 2x − 6 = 8 (Figure 2).  
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Figure 2: Dynamic Presentation of Worked Examples with Fluid Transformations 

Results 
We first conducted a partial correlation between students’ perceived helpfulness and their 

posttest performance while controlling for pretest performance (M = .38, SD = .37). Students 
who scored higher on the posttest also rated the worked examples as more helpful, r(90) =.24, p 
= .02. A scatter plot also illustrated a positive, albeit weak, association between students’ posttest 
performance and perceived helpfulness of the worked examples (Figure 3). 

 

 
Figure 3: Scatter Plot of Students’ Perceived Helpfulness Rating and Posttest Performance 

Next, we identified themes in students’ explanations indicating why they found the worked 
examples to be helpful or not. Three themes emerged: the speed of the worked examples, the 
process within the worked examples, and the worked examples as review material. After 
identifying and defining these themes, two researchers individually coded responses that 
included one of these themes and compared how these themes emerged across students who 
viewed static (n=29), sequential (n=38), or dynamic (n=25) worked examples.  

First, four students (three in dynamic conditions; one in sequential) commented on the speed 
of the worked examples, expressing that the worked examples were displayed too quickly. One 
student in a dynamic condition noted that the worked examples “were helpful but they went too 
fast” and another student expressed that having a pause button (rather than the looping video) 
might change the way they study the example. 

Second, nine students noted that the worked examples demonstrated the process for equation 
solving. For example, one student in a dynamic condition wrote, “The examples were helpful 
because it showed the full procedures on how they got the answer”. Of the nine students, five 
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were in dynamic, two in sequential, and two in static conditions. A Chi-square test comparing the 
number of students noting vs. not noting that the process revealed no significant difference 
across the three types of conditions, 𝜒2(2, 92)=4.11, p=0.13. 

Third, ten students noted that the worked examples or the assignment as a whole served as a 
review. For example, one student in the dynamic condition expressed, “Doing all these refreshed 
my mind on how to do equations with variables. It was very helpful and I believe it helped 
improve my skill”. Three of those students were in dynamic, four in sequential, and three in static 
conditions. A Chi-square test comparing the number of students noting vs. not noting about 
review revealed no significant difference across the condition types, 𝜒2(2, 92)=0.05, p=0.98.  

Discussion 
The results align with existing research and provide considerations for designing online 

algebra worked examples. First, these results support prior work on students’ ability to gauge 
their learning (Whitehill et al., 2019) by showing that their perceived helpfulness of worked 
examples was positively associated with their posttest scores. Second, these results reveal 
features that students notice when studying worked examples: the speed of the worked example, 
the equation-solving process, and connecting examples with course content. Third, these themes 
did not emerge more often in one condition than another, potentially suggesting that students 
may attend to these elements when evaluating any worked examples. 

Multiple students in the sequential and dynamic conditions commented that the speed of the 
worked example videos was too fast, indicating that the worked examples in the GIF video 
format may have increased the cognitive demand on students rather than serving as a helpful 
tool. Next, students across conditions noted that the worked examples demonstrated the problem-
solving process, suggesting that all three formats may have provided visual cues that help with 
connection-making as a form of perceptual scaffolding. Finally, multiple students commented on 
the content as a review; studying the worked examples in a brief experimental context may have 
cued their prior knowledge to improve equation solving (Sidney, 2020). 

Importantly, our sample size limited the analyses conducted and conclusions we were able to 
draw. Further, not every response included one of the themes identified; many students simply 
wrote, “I don’t know” or “it was good”. This narrowed our sample for comparisons across 
conditions. For example, since only four students across two of the conditions noted the speed of 
the worked examples, we did not conduct a Chi-square test for statistical comparisons. However, 
the students’ comments provide suggestions for future iterations of sequential and dynamic 
worked examples. When designing these worked examples, it would be worthwhile to consider a 
slower video speed. Alternatively, since research has shown that undergraduate students can 
effectively self-regulate their use of worked examples for learning (Foster & Dunlosky, 2018), it 
may be worthwhile to explore how algebra students learn from worked examples with features 
that provide more autonomy (e.g., speed setting or pause).  

Looking ahead, it would be worthwhile to conduct a larger study using refined iterations of 
these worked example formats and more targeted questions for students. For instance, asking, 
“What would you change about this worked example and why?” and “Which worked example 
format do you prefer and why?” may provide further insights about which features of worked 
examples students notice. Future studies should also consider long-term impacts from worked 
example practice with alternative presentations. Ultimately, we aim to offer suggestions that 
guide algebra teachers in designing online worked examples to support student learning. 
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THE TEACHER’S ROLE IN SUSTAINING COGNITIVE DEMAND WITH DESMOS 
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Teachers play a crucial role in influencing students’ cognitive demand during mathematics 
tasks. This study investigates the interaction between teachers and cognitive demand when 
digital technologies are integrated during students’ enactment of such tasks. The research 
includes a video analysis of two eighth grade teachers’ task launches and enactments of six 
student small groups using Desmos to solve a high-demand task. The findings indicate that the 
teachers’ launches had less overall impact on students’ cognitive demand and Desmos use than 
their ensuing small-group interactions, including how they related Desmos to the task’s goals.  

Keywords: Curriculum, Middle School Education, Technology, Teacher Knowledge 

As digital technologies become more commonplace in classrooms, there is increasing 
demand for teachers to instruct students with such technologies to better prepare for career and 
college readiness (National Governors Association, 2010). Yet despite general agreement toward 
incorporating these tools, there are few standardized practices that instruct teachers on how and 
when to use digital technologies for learning (Greenhow, Robelli, & Hughes, 2009). As a result, 
the ways in which teachers frame the role of such technologies to students in a math task’s 
launch and following enactment of the task may differ, impacting how students view digital 
technologies in relation to solving rigorous problems. Taking two middle school math teachers’ 
classrooms as contrasting case studies, I ask: how do teachers’ framing of digital technology 
during a high-demand mathematics task impact the cognitive demand of the task (a) during the 
task launch and (b) during students’ enactment of the task? 

Theoretical Framework 
This study examines the changes in cognitive demand throughout a rigorous mathematics 

task and the interactions between teachers, students, and digital technology during its enactment. 
To situate this work, I use Stein and colleagues’ definition of a mathematical task as the 
arrangement of mathematics within the task, combined with the resources provided to solve it. 
Cognitive demand, the primary variable of interest, refers to the cognitive processes required of 
students to navigate a task, identify key information, and activate prior knowledge that is useful 
for constructing solutions (Doyle, 1983). The current study focuses on a high cognitive demand 
task (Stein & Smith 1998), which requires students to make conceptual connections, use multiple 
representations and consider multiple solution strategies. Because cognitive demand is adapted 
and negotiated by teachers and students throughout enactment (Remillard, 2005), a key goal of 
this research is to examine its changes when digital technologies are present and when teachers 
play a central role in encouraging students’ uses of such technologies.  

This study takes an in-depth examination of students’ uses of Desmos, a dynamic 
representational technology (Vahey et al., 2020), which can automate graphing, give 
instantaneous feedback, and display multiple modes of representation. Such technologies may 
potentially alter the cognitive demand of the task and influence how students learn mathematics 
(Sherman, 2014). However, technology’s potential to mediate task outcomes may be contingent 
on how teachers frame them to students and how students take up such tools. Because teachers’ 
framing of digital technologies in relation to the task’s outcomes varies, there is currently mixed 
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evidence of digital technology’s efficacy in relation to students’ learning. Some studies point 
toward positive learning outcomes when students express aptitude for using technology to solve 
problems (e.g., Hollebrands, 2003; Gökçe, & Güner, 2022) although there is not yet clear 
consensus on how the role of the teacher impacts student outcomes. 

Methods 
Broader Context 

This study is one component of a larger research-practice partnership conducted between a 
West Coast research university and Urban Unified School District (UUSD), where many 
students are from non-dominant cultural and linguistic communities (UUSD, 2020). UUSD 
strives to provide a high-quality mathematics education for its students, and as such, developed a 
task-based curriculum that aligns with the Common Core State Standards (Borko et al., 2017). 
As part of its long-term vision for implementing the curriculum, UUSD identified and recruited 
Teacher Leaders (TLs) in 6th-8th grades to participate in professional development workshops 
six times per year. The goal of each workshop was for TLs to deeply understand the curriculum 
and facilitate professional development around it to their own mathematics departments.  
Task Selection 

The Washing Machine Problem is a high demand, Doing Mathematics (Boston & Wolf, 
2006) task taken from UUSD’s 8th grade curriculum (see Figure 1). It requires students to 
analyze various costs mathematically in order to give advice to “Elena” toward purchasing a 
washer and dryer or continuing to visit her local laundromat. The task’s design purposefully 
omits critical information, such as how often Elena does laundry, so that students can grapple 
with the task’s inherent ambiguity and practice voicing their assumptions explicitly. As such, the 
task does not have a single “correct” solution. Rather, the challenge of solving the task comes 
from how students draw upon multiple representations and solution strategies when solving it.  
 

Figure 1: The Washing Machine Task, as Written in the District Curriculum 
“Elena doesn’t have a washing machine or dryer. She is considering buying one so that she doesn’t have 
to go to the Laundromat. She wants to know if it makes sense financially to buy a washer and dryer. Each 
load of laundry at the Laundromat costs $1.25 for the washing machine and $1.50 for the dryer. A top-
loading washer costs $250, and each load costs $0.26 for water and energy. A front-loading washer costs 
$400, and each load costs $0.09 for water and energy. A dryer costs $300, and each load costs $0.35 for 
energy. What should Elena do? Give her some advice.” 

 
Teacher Participants 

Two teachers from UUSD were selected based on their integration of Desmos during 
instruction of The Washing Machine Problem in Spring 2017. Annie, the first teacher, was 
involved in the research-practice partnership as a TL during the time of the study. Tia, the second 
teacher, was involved in a different professional learning program supported by UUSD. 
Although the district maintained an initiative to support technology use in the classroom, the 
extent to which Tia and Annie used Desmos with students prior to the task is unknown. 
Data Sources and Analysis 

Data for this project were obtained from video recordings from both teachers’ classrooms 
while instructing The Washing Machine Problem. Recordings contained both the launch of the 
task and the enactment by students in small groups. Three recordings were taken from each 
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classroom and were subjected to additional screening for visual and audio quality. Each teacher’s 
launch was additionally captured in a separate recording from start to finish.  

The research team rated and coded units of mathematical conversation (“conversation units” 
e.g., sequences of talk where students discussed mathematical ideas) according to the 
Instructional Quality of Assessment (IQA) Rubric (Boston & Wolf, 2006). We identified (1) 
changes in students’ cognitive demand throughout the task and (2) instances where Desmos was 
used and the teacher participated in student interactions. Both researchers rated and coded 
independently, reaching 87.4% agreement, then met to resolve remaining disagreements. 

Findings 
Teachers’ Launches 

Annie announced that students would solve a system of equations and give advice. She 
presented the task as a series of steps: first, students would create three equations to model the 
two different washing machines and laundromat options. Then, students would graph their 
equations in Desmos, where Desmos was mandated as part of the second step of solving. Finally, 
students would give advice for the best washer-dryer combination. We rated the cognitive 
demand of Annie’s launch as a 2: Procedures without Connections.  This launch focused on a 
sequence of procedures for students to follow, which removed ambiguity and reduced 
opportunities for multiple solution strategies. Although Annie informed students to produce 
multiple representations, there was little question on how to do so. The focus of the launch 
seemed more suited toward completion of a sequence of steps than on non-algorithmic thinking. 

Tia opened the task by situating it in the experiences of her students: “Who here has ever 
been to a laundromat?” She gave an overview of the three models, including how to build them. 
Then, she encouraged multiple solutions and representations of the three models, and presented 
Desmos as a strategic, optional tool. Tia ended the launch by directing students to construct a 
poster of their results. We rated the cognitive demand of Tia’s launch as a 3: Procedures with 
Connections. Tia’s explanation of how to build the linear models slightly lowered the cognitive 
demand from the task as written. However, unlike Annie, Tia left open and encouraged multiple 
solutions and representations, which preserved the most challenging aspects of the task. 
Student Enactments 

Although Annie’s launch initially lowered cognitive demand, her three student groups spent 
substantially more time in high demand activity (see Table 1). Compared to Tia’s students, 
Annie’s used Desmos earlier in the task, which allowed them to analyze their models’ 
mathematical features and compare multiple representations for a longer duration. Because they 
spent more time critically comparing their models, two of Annie’s three groups realized that the 
task did not contain a single correct answer; rather, their perception of the “best” model 
depended on their interpretations of unknown variables, such as how often Elena did laundry.  

Annie’s small-group interactions were imperative to students’ successes. When she 
approached each group, Annie routinely asked students to revoice their ideas aloud, then asked 
probing questions (e.g., “What assumptions are you making?” to focus students’ thinking on 
mathematically relevant information provided by Desmos. By directing students to Desmos, she 
helped students connect affordances of the technology with the goal of the task. Her interactions 
routinely raised cognitive demand or maintained it at a level 3 or 4 (see Table 2).  
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Table 1: Student groups’ cognitive demand during enactment, by teacher 
 Annie’s Students Tia’s Students 
IQA Level Minutes Conversation Units Minutes Conversation Units 

Level 1 
Level 2 
Level 3 
Level 4 

0.3 
17.2 
19.7 
22.4 

1 
34 
27 
17 

5.0 
37.8 
13.5 
6.9 

7 
86 
24 
10 

 
Table 2: Student groups’ shifts in cognitive demand during small-group interactions 
 

Increase No change Decrease 
 

Increase No change Decrease 

Annie 6 10 0 Tia 2 12 5 
 

Tia’s students spent a majority of the task in level 2 (see Table 1) despite her initial 
preservation of the task’s rigorous aspects. Compared to Annie’s students, Tia’s small groups 
took longer to reach the analytic portion of the task, expressing more confusion on how to create 
their models. Two of the three groups did not know how to use Desmos, requiring an additional 
tutorial from Tia before they could use it for graphing. These groups did not finish the task or 
engage in any interpretive comparisons of the models before enactment ended. The sole group 
that was familiar with Desmos used it immediately and was responsible for all of the level 4 
activity in Table 1, successfully solving the task and recognizing the ambiguity inherent in it.      
    Tia’s interactions with students often maintained low demand or lowered demand, although 
there were a few instances where she assisted students in becoming unstuck and entering high-
demand activity. When she visited small groups, Tia encouraged students to build off of one 
another’s ideas. However, students’ ideas were not always high-demand or mathematically 
correct. Furthermore, Tia desired that all students work together and at the same pace, which 
encouraged frequent low-demand tutoring conversations where the tutor tended to focus on the 
reproduction of their own work. Finally, when the focus was not on equitable groupwork, Tia 
aided students by directly telling them what to do (e.g., “You need to add the costs together to 
find the slope.”) Demand was kept low because Tia often prioritized correctness without 
connecting it back to the goals of the task or highlighting the affordances of Desmos. 

Discussion and Conclusion 
The degree of divergence between Tia and Annie’s approaches to launching and facilitating 

The Washing Machine Problem had varying impact on their students. Tia’s focus on equitable 
groupwork and procedural precision, as well as her choice to frame Desmos as an optional tool, 
kept cognitive demand low and discouraged students from using Desmos until it was absolutely 
necessary. In contrast, Annie foregrounded demanding analytic components of the task, 
anticipated the necessity of Desmos in allowing students to access those components, and 
bridged students’ Desmos use to the task’s goals during small group interactions. This work 
suggests that, although digital technologies are becoming more commonplace in the classroom, 
teachers must first establish congruence between the learning goals, the features of the task and 
technology that are highlighted in the launch, and their interactions with students. Furthermore, 
they must understand their role in maintaining cognitive demand throughout the launch (Jackson 
et al., 2013) and task enactment (Stein, Engle, Smith, & Hughes, 2008). 
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Developing competency with writing numeric expressions that include grouping symbols is an 
important goal of early algebra (Stephens et al., 2017). In this study, we draw on numeric 
expressions written by 473 fourth and fifth grade students from 10 schools and 29 teachers as 
they played a digital learning game in order to examine their use of grouping symbols. We 
describe use of parentheses as being of three types: Type 1 are trivial, Type 2 indicate the order 
things should be done in, but are unnecessary, and Type 3 are necessary. Preliminary results 
show that regardless of whether a student played the game for much longer, the use of Type 2 
and Type 3 parentheses increased as students became more experienced players. The sand box 
style of the game design appears to have played a role in students feeling free to experiment with 
different types of parentheses. Future research is needed on the sophistication development. 

Keywords: Algebra and Algebraic Thinking, Technology, Number Concepts and Operations 

The field of early algebra (Stephens et al., 2017) has established itself as a promising 
developmental pathway to support students’ later learning of formal algebra (Blanton et al., 
2015; Venenciano et al., 2020), which has a long-standing role as a gatekeeper to higher level 
mathematics and college entrance (Slaught, 1908; Moses & Cobb, 2001; Knuth et al., 2006; 
Martin et al., 2010). One of the foundational big ideas of early algebra involves learning about 
expressions (Blanton et al., 2015). Expressions have not only had a longstanding place in the 
elementary school curriculum (NCTM, 2000; CCSSM, 2010), but also in the MET II and the 
latest AMTE (2017) standards for preservice teachers.  

Despite the fact that the topic of order of operations has been, and continues to be, a point of 
hot debate amongst the general population—resulting even in popular press articles discussing it, 
such as the New York Times article about mathematicians’ sentiments on the social media 
firestorm (Chang, 2019)—few studies have documented students’ struggles and successes with 
using grouping symbols (e.g., Papadopoulos & Gunnarsson, 2018). Moreover, most studies have 
largely focused on how students perform when they are presented with different types of 
structures of expressions (Gunnarsson et al., 2016). Perhaps this combination of lack of research 
and widespread misunderstanding is why there have been recent suggestions for using a different 
model for order of operations (Taff, 2017). In this study, we present preliminary results 
documenting how 4th and 5th grade students used grouping symbols while beginning to learn how 
to write numeric expressions in the context of a digital mathematics learning game. 

Background and Framing 
Blanton et al. (2015) described the following five big ideas of early algebra: a) Equivalence, 

Expressions, Equations, and Inequalities, b) Generalized Arithmetic, c) Functional Thinking, d) 
Variable, and e) Proportional Reasoning. In this study, the project key idea we are focusing on is 
Write and Interpret Numeric Expressions, which overlaps with Blanton et al.’s first big idea of 
early algebra. In the current study, students wrote dozens to hundreds of numeric expressions 
while playing a digital learning game. When writing the expressions, based on the need, 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1983



sometimes it was not necessary to write them with any specific reason in mind. However, the 
longer students played the game, and in order to be more intentional about what they were 
creating in the game, students had to write expressions with intent. For instance, writing an 
expression that would evaluate to the value of 4 and also include two different operations and 
one set of parentheses. Such thinking is in line with the expectations that Blanton et al. had for 
the third graders in their study, such as having students be able to “identify different ways to 
write an expression” (p. 48). 

Earlier research has distinguished necessary from unnecessary parentheses, sometimes 
referred to as superfluous (Gunnarsson et al., 2016). We have found it helpful in this study to 
refine this distinction into three types. Type 1 parentheses are trivial in the sense that they give 
no instructions about the order of operations. Examples of expressions with Type 1 parentheses 
are (2) + 3, (2 + 3), and the extra set of parentheses in ((2 + 1)) × 3. Note that Type 1 parentheses 
are not mathematically incorrect, in that they are not ambiguous and are evaluated correctly 
under standard procedures and by machine calculators. Moreover, Type 1 parentheses may 
naturally occur as intermediate steps in simplifying an expression, or in substituting one 
expression for an equivalent one. Type 2 parentheses are those which do give instructions as to 
the order that operations should be evaluated in, but the instructions are superfluous, either 
because of the standard order of operations, or because of the mathematical properties of 
operations. Examples of expressions with Type 2 parentheses are 4 + (3 × 1) and 2 + (3 + 1). 
Type 3 parentheses are those which are necessary, in that the expression would evaluate to a 
different outcome without them. An example with Type 3 parentheses is 2 × (3 +1). 

Method 
Participants and Setting 

This study stems from a larger project involving an early algebra intervention incorporating 
two games and an interactive tool, as well as associated lesson plans. Some of the information 
shared in this method section has been similarly described elsewhere (Engledowl, 2020; 
Engledowl et al., 2021). This study focuses on the expressions that 473 students, from 10 schools 
and 29 teachers’ classrooms, wrote while playing a digital mathematics learning game called 
Agrinautica (available at mathsnacks.org). 
Digital Learning Game 

The digital mathematics learning game, Agrinautica, is a sandbox-style game that was 
designed to align with the larger project’s key idea of Writing and Interpreting Numeric 
Expressions. This key idea also aligns with Blanton et al.’s (2015) big idea of Equivalence, 
Expressions, Equations, and Inequalities. In this game, players first select a world and then set 
out to populate it with plants, animals, and artifacts. To create them, players write numeric 
expressions. Depending on the number of operations, the number of sets of parentheses, and the 
value the expression evaluates to (an integer from 1–9), different species of plants, animals, and 
artifacts are created and players can place them in their world. For instance, to create a plant 
called Vinus duoclus (see Figure 1), a player must write an expression that evaluates to the value 
2, includes two types of operations, and has no parentheses. 
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Figure 1: Screenshots from Agrinautica of field guide (left) and how plants are created 

Data Sources and Analysis 
From February through May of 2019, game telemetry data was collected from all 

participants—whether they played at school or at home. This data included every expression they 
wrote and subsequent plant that was made, every button they clicked on—such as if they viewed 
the field guide that shows every possible item with a description of what is necessary to include 
in the expression to create each item—as well as associated date and time stamps. Both the time 
spent and the number of total actions taken varied widely across the study group, and we are 
using here the number of total actions taken as a measure of the amount of game play for a given 
student. We divided the students into two equal-sized groups, according to the number of total 
actions they took. For each student, we recorded all unique expressions, in the order that they 
were first created. Some students entered many repeated, identical expressions, but these were 
not counted for the purpose of this analysis. Expressions such as 1+1 and (1+1) were counted as 
different, even though the game would consider them the same expression for the purpose of 
creating a plant. Then, all the expressions within the group were combined, maintaining the order 
in which they were created, and now with many duplicates possible since different students often 
made the same expression. This list was divided into quarters in order to create the tables below. 
This division into quarters keeps all students’ first expressions together, and their second, and so 
on, and since the number of unique expressions created varied widely from one student to 
another, students who made more unique expressions are represented more heavily in the later 
quarters than students who made fewer. This is one reason we analyzed the two groups 
separately, to be sure we were capturing a pattern of increasing sophistication as game play 
progressed, and not just an overall difference between students. After students were grouped, we 
totaled the number of expressions that were categorized as Type 1, Type 2, or Type 3. 

Findings 
Preliminary results can be seen in Tables 1 and 2. Table 1 shows the number of times each 

type of use of parentheses was used for students who took between 20–399 total game actions. 
Table 2 shows this same information for students who took between 400 and 3,844 actions. From 
these two tables, there is evidence that student use of Level 1 parentheses remained relatively 
constant over time—that is, the total number being used didn’t change as students gained 
experience writing more expressions. Agrinautica does not reward students for using these kinds 
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of parentheses, but it also does not penalize their use—they are simply ignored. Thus, it is 
unclear why they continued to be used. Student use of Level 2 parentheses was found to increase 
as students wrote more expressions. Similarly, student use of Level 3 parentheses also increased 
as students wrote more expressions. Both of these are expected results because Agrinautica 
allows their use in creating plants, animals, and artifacts. However, Agrinautica does not specify 
that parentheses must be used in one of these two ways to create any particular plant, and does 
not prioritize Level 3 over Level 2. And yet, we observed student use of both types of 
parentheses increasing over time. 

 
Table 1: Number of expressions created with certain types of parentheses for students who 

completed 20–399 total actions 
Time Created Type 1 Type 2 Type 3 

1st Quarter 134 147 68 
2nd Quarter 117 163 75 
3rd Quarter 114 329 108 
4th Quarter 104 519 192 

Total 469 1158 443 
 
Table 2: Number of expressions created with certain types of parentheses for students who 

completed 400–3844 total actions 
Time Created Type 1 Type 2 Type 3 

1st Quarter 394 887 395 
2nd Quarter 439 2217 1047 
3rd Quarter 372 2598 1326 
4th Quarter 363 3204 1511 

Total 1568 8906 4279 

Discussion and Implications 
Preliminary results indicate that as students played longer, they tended to engage more in in 

using Type 2 and Type 3 parentheses—that is, they began to increase their use of parentheses in 
meaningful ways. For instance, when attempting to create items in the field guide listed under 
Artifacts, the item called “Unknown alien device 9” requires three types of operations and two 
sets of parentheses. To create this item, it is perhaps the most likely situation in which a student 
would be faced with creating an expression in which the parentheses would fall into Type 3—the 
use of parentheses changes the value the expression evaluates to. This is because it is more likely 
that student would use a subtraction symbol or multiplication symbol between two sets of 
parentheses, thus requiring use of the distributive property with the second set of parentheses. 
However, it is still possible that a student could have written such an expression without Type 3 
parentheses. Thus, it is interesting to see an increase in their use for both groups of students as 
they became more experienced with playing the game. In contrast to prior studies (e.g., 
Gunnarsson et al., 2016), by providing an environment in which students’ expression writing 
could occur in a risk free environment, there appears to be evidence of broad success in 
encouraging the increase of sophistication in expression writing over time. Further research is 
needed to understand the nuances of the patterns in their development. 
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Inquiry into the role of dialogic instructional videos is still in its infancy. There is a need to 
better understand if dialogic instructional videos are viable and how to best understand the 
impact they have on students. To date, the limited findings paint the use of dialogic videos in a 
positive light, but the results are at times inconsistent. Within this project I attempt to leverage 
the theoretical writings of Mikhail Bakhtin to explain these inconsistencies and to shed a new 
explanatory light on why dialogic instructional videos can be effective. 

Keywords: Technology, Online and Distance Education, Learning Theory 

Introduction 
Instructional videos have continued to grow in popularity, and for good reason. Videos allow 

students to engage with content at their own pace and repeatedly (Lin & Michko, 2010; Vidergor 
& Ben-Amram, 2020), they broaden who has access to information (Parslow, 2012), and videos 
present an alternative to traditional instruction (e.g., flipped classrooms, Fyfield et al., 2019). The 
more options the better, but some forms of instructional videos are better than others – 
particularly for conceptually deep subject material like mathematics. 

The most common and widely used form of instructional videos within mathematics 
education are those that follow the model set forth by Khan Academy (Bowers, Passentino, & 
Conners, 2012). This form of instructional video contains a “talking hand”, or a voice dictating 
with a virtual pen, describing a procedure that is presented on a virtual whiteboard. Under the 
goal of providing open access to content, the “talking hand” model of instructional videos has 
been extremely successful with millions of worldwide users (Kelly & Rutherford, 2017; Noer, 
2012).  

The main issue with this form of video – particularly for mathematical content – is its 
emphasis on procedures (Bowers, Passentino, & Connors, 2012). With videos typically lasting 
less than 10 minutes, it is difficult for deep conceptual meaning to emerge for the presented 
mathematical content (Danielson & Goldenberg, 2012). Within that time viewers can be 
reminded of, or learn new, procedures (e.g., how to find a derivative), but establishing 
conceptual understanding takes time (e.g., that a derivative is a function for instantaneous rate of 
change). Instead of challenging the status quo through a new medium of technology, the “talking 
hand” style of instructional videos serves as reinforcement for the conception of mathematics as 
a set of facts to be memorized and enacted given the proper context (Bowers, Passentino, & 
Connors, 2012). 

Another issue for “talking hand” videos, and other forms of online instructional videos (e.g., 
asynchronous lectures), is the lack of student voices (Lobato, Walker, & Walters, 2017). These 
models of video emphasize the exposition of content by a knowledgeable teacher, as opposed to 
the inclusion of inexperienced student voices. Student voices are important because they can 
serve as voices that resonate with the thoughts and difficulties of the viewer – voices of fellow 
learners (Chi, Kang, & Yaghmourian, 2017). As online instructional videos and distance 
learning, more generally, grows in popularity there are less opportunities for students to engage 
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with and experience fellow students’ voices (McKendree et al., 1998). Instructional videos could 
fill that void, but exposition focused videos do not. 

An alternative to the dominant approaches to instructional videos gaining traction in math 
education are dialogic videos (e.g., https://calcvids.org/, Kolikant & Broza, 2011, Lobato, 
Walker, & Walters, 2017). Foremost, dialogic videos contain people engaged in a dialogue. This 
means that the videos contain conversations and attempts at creating new meaning or new ways 
of experiencing (Alrø & Skovsmose, 2004). Fundamentally, this form of instructional videos can 
emphasize students’ voices. There are typically two people within these videos – one student and 
a teacher (e.g., Muldner, Lam, & Chi, 2014), or two students (e.g., Lobato, Walker, & Walters, 
2017). Importantly, the voices of the students within these videos are engaged in a process of 
meaning making, and the meaning making process may produce deeper conceptual 
understanding for the viewer than simply viewing a set of procedures. 

To date, there is a limited body of empirical research into the experiences of the viewers of 
dialogic videos. The central focus within this literature is on the learning outcomes of dialogic 
videos in comparison to those of monologic videos (e.g., Chi, Roy, & Hausmann, 2008; Craig, 
Driscoll, & Gholson, 2004; Muldner, Lam, & Chi, 2014; Muller, Sharma, & Reimann, 2008). 
Taking a quantitative approach, these studies have reported mixed findings (Gholson). The trend 
in the research suggests that dialogic videos lead to significant differences in learning outcomes, 
but the differences in findings across studies is not easily explained. 

Within this theoretical paper I forward a lens into these contradictory findings based on the 
writings of Bakhtin that I believe can begin to explain the supposed contradictions and can be 
applied to future inquiry into students’ experiences with dialogic instruction videos. This project 
is guided by the following research question: Does a Bakhtinian framework illuminate reasons 
for the inconsistency in learning outcomes of dialogic versus monologic quantitative studies and 
can Bakhtinian framework be applied to a wider range of literature on dialogic instruction 
videos. 

Theoretical Framework 
The following section presents a brief introduction to the philosophical writings of Bakhtin. 

This will include a definition of dialogue that will frame the Bakhtinian concept of voice and the 
subsequent introduction to the constructs of internally persuasive and authoritative voices. 
Bakhtinian Dialogue 

For Bakhtin, dialogue is an omnipresent interaction between an individual and the other 
(Morson, 2004; Mustova, 2007). Bakhtin (1981) defines the other as everyone external to an 
individual. While interacting with the other, words enter the individual’s mind and begin to 
interact with the web of meaning emanating from that individual’s experience with the word. As 
Bakhtin (1981) famously wrote: 

…language, for individual consciousness, lies on the border between oneself and the other. 
The word in language is half someone else’s. It becomes ‘one’s own’ only when the speaker 
populates it with his own intentions, his own accent, when he appropriates the word, adapting 
it into his own semantic and expressive intention. Prior to this moment of appropriation, the 
word does not exist in a neutral and impersonal language (it is not, after all, out of a 
dictionary that the speaker gets his words!), but rather it exists in other people's mouths, in 
other people's concrete contexts, serving other people's intentions: it is from there that one 
must take the word, and make it one's own. (p. 293) 

As an individual engages with the use of a word they are simultaneously engaging with the 
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history of that word and the intended meaning behind the other’s use of the word. Through 
dialogue, an individual can begin to appropriate the word through a personal interpretation and 
negotiation of historical and local meanings. In the colloquial sense, a conversation with another 
person can be seen as a dialogue, but a Bakhtinian dialogue is a subjective internal process that 
does not need another person’s physical presence. Dialogue only requires words and meanings.  

Bakhtin, working in the early 20th century, was a literary scholar (Bakhtin, 1981). Critiquing 
genres that are unchanging and containing fixed features (e.g., every epic contains a hero), 
Bakhtin appreciated themes and characters that grew and changed as the story, and the genre as a 
whole, progressed. For Bakhtin (1981), the epitome of literature was the genre of the novel 
because the novel contained evolving dialogue between characters, between author and 
character, and between author and reader. Clearly, in the case of a novel, author and reader are 
not directly interacting, but meaning is still being negotiated. Even though there is only one 
voice, that of the author, in a novel there can still be a dialogue. Bakhtin’s primary example of 
this comes from the writings of Dostoevsky. Dostoevsky is famous for his use of polyphony (i.e., 
multiple voices) within his writings. Through this style of writing, Bakhtin suggests, multiple 
perspectives can emerge, and dialogue can take place between and within characters. This 
dialogic experience can then be experienced by the reader.  

One affordance of a Bakhtinian definition of dialogue, is an expansion of what can be 
considered a dialogue. A dialogue can occur between two people, between a book and a reader, 
or between an individual and their thoughts. Importantly, Bakhtin’s dialogue emphasizes the 
subjective nature of constructing meaning from previous experiences, and what matters most is 
how the voices are experienced. 
Voices 

A voice is an utterance or an action and the associated meaning (Kolikant & Pollack, 
2015; Silserth, 2012). For Bakhtin, voices are either experienced as internally persuasive svoice 
(IPV) or as authoritative voices (AV). An internally persuasive voice is voice that is experienced 
as open for, and enters into a process of, negotiation (Bakhtin, 1981). Authoritative voices, on 
the other hand, are the voices that are not negotiated. This can happen because the voice is 
experienced as not open for negotiation or because an attempted negotiation fails. 

For Bakhtin (1986), the process of negotiation with a voice is where deep knowledge and 
understanding is constructed. Therefore, fostering IPV should be a goal of educators (Morson, 
2004; Mustova, 2007), but IPV are subjective experiences (Bakhtin, 1981). One individual 
listening to the same voice as another will experience what is being said or done differently. 
Included in this difference in experience is a difference in negotiability of what is being said. For 
example, an experienced rock climber may hear the beta (jargon for suggested method of 
climbing a route) for a difficult climb and understand that this advice is a suggestion that is not 
one size fits all. Climbers of different sizes have different strengths; thus, this beta may not be 
suitable for a taller climber and the beta needs to be adjusted accordingly – the beta needs to be 
negotiated with. On the opposite side, a newer climber may hear the beta and fixate on trying to 
reproduce the moves exactly as it appears in the beta. The experienced climber is experiencing 
the voice of the beta as an IPV because they are open to and able to negotiate with it. The newer 
climber, on the other hand, is then experiencing the beta as an AV. 

AV are antithetical to dialogue because meaning is not being negotiated. If an individual is 
experiencing the other’s voice as authoritative, then they are not actively engaged in the 
dialogue. Instead, the individual takes on a more passive role in the dialogue as an information 
receptacle. Internally persuasive voices, on the other hand, trigger the process of appropriating 
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the other’s words and negotiating its meaning to fit one’s own purposes. Bakhtin (1986) states 
that “Active agreement/disagreement (if not dogmatically predetermined) stimulates and deepens 
understanding (p. 142)”. Agreement/disagreement that is predetermined are not open for 
negotiation and fall into the category of AV. When an active process is involved, on the other 
hand, the agreement/disagreement is produced by a negotiation process and would, thus, fall into 
the category of IPV. Together, this means that learning is best fostered by voices that are IPV. 
AV can produce learning, but when learning is “dogmatic” it is not as deep as the learning 
produced by an active negotiation process.  

Considering this definition of dialogue, and the two kinds of voices, I forward a lens into the 
literature on student’s use of dialogic videos that focuses on experiences of IPV. When greater 
learning is fostered, I will argue that more voices are being experienced as internally persuasive. 

Methods 
To find the papers reviewed within this theoretical paper a systemic review of the field was 

conducted. This included the use of the database ERIC-EBSCO. Allowable dates included in this 
search accounted for anything up to the date of the search (October 2020). Additionally, this 
search was limited to those with electronic access in the above database. Finally, the search 
terms were limited to “vicarious learning”, “video”, and “education” contained anywhere in the 
title or body of the text. This search resulted in 12 articles. Further limiting the scope of this 
search, the article abstracts were read and articles not focused on student learning were omitted. 
This process of omission was used to weed out articles focused on nursing education. Given the 
infancy of the field’s inquiry into vicarious learning, the remaining 5 articles were read and an 
iterative bibliographic exploration was used to find an addition 9 articles. These 14 articles form 
the basis of this theoretical analysis.  

Results 
In the following section the limited literature on dialogic instructional videos is reviewed and 

then reinterpreted from a Bakhtinian perspective. This literature can be broken into two sets of 
findings: learning outcomes and learning practices. 
Learning Outcomes 

A number of research projects have sought to establish the effectiveness of learning from 
dialogic videos via quantitative comparative studies. Within these empirical studies, a 
commonality was the comparison of a treatment that used recordings (e.g., videos, audio tapes, 
etc.) that contains a single speaker (i.e., monologic) to resources that contained multiple speakers 
(i.e., dialogic). The trend within these findings suggests that dialogic videos are more favorable 
for learning outcomes than monologic, but there are several conflicting results. 

Findings. The majority of studies found supporting evidence for the claim that dialogic 
videos are better than monologic (e.g., Chi, Kang, and Yaghmourian, 2017; Chi, Roy, & 
Hausmann, 2008; Cox, et al., 1999; Craig, Chi, & Vanlehn, 2009; Driscoll et al., 2003; Gholson 
& Craig, 2006; Muldner, Lam, & Chi, 2014; Muller et al., 2007; Muller, Sharma, & Reimann, 
2008). For example, in one set of studies Chi and colleagues position their dialogic videos as 
tutoring sessions with one speaker being the tutor and all other speakers being tutees. They then 
compared the learning gains from viewers of the dialogic videos to viewers of a single tutor 
presenting the same set of information (Chi, Kang, & Yaghmourian, 2017; Chi, Roy, & 
Hausmann, 2008; Craig, Chi, & Vanlehn, 2009; Muldner, Lam, & Chi, 2014). These studies 
have found statistically significant differences in favor of the pre/post-test learning gains of the 
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treatments who engaged with resources that contained multiple speakers, suggesting that two 
speakers are better than one 

Some projects have found conflicting results, with either no statistical difference between 
viewers of monologic and dialogic videos or a difference in favor of the learning gains of 
viewers who engaged with monologic videos (e.g., Cooper et al., 2018; Monaghan & Stenning, 
1998; Muller, Bewes, et al., 2008). For example, Cooper et al., (2018) found a statistically 
significant difference favoring the students who viewed monologic videos of their professor. The 
literature, thus, suggests that two speakers are better than one, but two speakers are not a 
sufficient condition for improving learning outcomes of the viewers.  

Bakhtinian Lens. For Bakhtin, more learning is indicative of the presence of more IPV. The 
findings that support the use of dialogic videos thus suggest that dialogues foster the experiences 
of IPV. Multiple speakers (e.g., dialogic videos) may foster IPV if the multiple speakers are 
engaged in a negotiation process, and if the indirect participation with voices that are already 
being negotiated makes it easier for IPV to develop. The presence of negotiation within dialogic 
videos can establish as a norm that the voices present within the videos are open for negotiation. 
This could be particularly important for students who are from traditional lecture classrooms that 
typically contain voices that are not open for negotiation (Morson, 2004).  

At times, when multiple speakers were not a sufficient condition for fostering IPV, it is 
possible that other features were. For example, Cooper et al (2018) found learning outcomes 
were improved for viewers of monologic videos, but the students viewed monologic videos that 
contained their professor. Compared to Chi and colleagues, whose monologue videos contain an 
unfamiliar tutor and learning outcomes favored dialogue viewers, it’s possible that the familiarity 
with the voice of the professor in Cooper and colleague’s study influenced the learning outcomes 
of their quantitative findings. In other words, because the students were familiar with their 
professor, and perhaps because of norms established in their class, the voice of the teacher was 
positioned as open for negotiation. 

In another study, Muller, Bewes, et al. (2008) found that the presence of alternative 
conceptions and resolutions was more important for learning outcomes than whether the viewers 
engaged with monologic or dialogic videos. This suggests that the number of voices was less 
important than the content of the voices. Particularly, the presence of alternative conceptions 
appears to foster IPV. If multiple conceptions and productive struggles are presented, then the 
viewers would disadvantage themselves if they simply accepted information without negotiation. 
In the case of multiple conceptions, accepting without negotiation would lead the viewer to take 
on conceptions that are not accurate. When that information is eventually corrected, within the 
video, the viewer may be left more confused. This confusion is not evidenced by the learning 
gains of students who watch and are exposed to alternative conceptions (e.g., Chi, Kang, and 
Yaghmourian, 2017; Chi, Roy, & Hausmann, 2008; Cox, et al., 1999; Craig, Chi, & Vanlehn, 
2009; Driscoll et al., 2003; Gholson & Craig, 2006; Muldner, Lam, & Chi, 2014; Muller et al., 
2007; Muller, Sharma, & Reimann, 2008). Further, I believe that the presence of multiple 
conceptions and struggle can again produce a norm of negotiating with what is being presented. 
With conceptions present that are understood by the viewer to be merely possibilities, then that 
conception is ripe for negotiation. The viewer can determine for themselves whether or not they 
hold that same conception through negotiation. Additionally, when a final conception is realized 
within the video, and other conceptions are dispelled, the reasoning that led to the concluding 
conception can serve as a model for viewer’s future negotiation processes. 
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Practices 
A small body of work has applied an analytical lens to the actions of observers by probing 

the effect that dialogic videos have on the behaviors of the viewers. The findings from this 
literature suggests that the individuals contained within the videos serve as a model for the 
viewers. The findings are limited, but the behavior modeled ranges from content specific 
practices like the construction grammar trees to broader practices like posing deep questions 
(Bandura, 1965; Braaksma, Rijlaarsdam, Van den Bergh, & van Hout-Wolters, 2004; Craig, 
Gholson, Ventura, & Graesser, 2000; Chi, Kang, & Yaghmouian, 2017; Kuhn & Modrek, 2021; 
Rummel & Spada 2005; Schunk Hanson & Cox, 1989). This suggests that viewers not only learn 
the content of dialogic videos, but that they can also learn behaviors that can benefit them as 
learners (e.g., productive problem-solving techniques).  

From a Bakhtinian lens, these findings support the claim that dialogic videos can foster IPV. 
With voices defined as utterances or actions and their associated meaning, the reported modeled 
behaviors demonstrate the role that actions have on the viewers. Specifically, if the dialogue of 
the dialogic videos contains a negotiation process, then any modeled negotiation would be 
evidence that the viewer is experience the videos as containing IPVs. 

Discussion 
From a Bakhtinian perspective, dialogue is a subject experience. Whether a video contains a 

single expert explaining the process of Riemann approximation, or two students describing the 
difference between right-hand and left-hand approximations, both may be a dialogue, but one 
may be internally persuasive while the other is authoritative. What matters is the content of the 
voices and the subjective experience of those voices. What will foster more learning is when 
voices within the video are experienced as IPVs. The empirical literature comparing different 
feature of instructional videos, namely the comparison between treatments using monologic or 
dialogic instructional videos, are then useful in determining what can foster negotiation of 
voices.  

While the analysis presented here is preliminary, the theoretical framework forwarded offers 
a starting point for future inquiry into student’s use of dialogic videos. With a lack of empirical 
work assessing the mechanisms by which viewers of instructional videos learn, future work can 
extend the use of Bakhtin’s voices to analyze and assess possible negotiations occurring between 
the viewer and the viewed.  
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In this report I investigate how elementary teachers in an online graduate-level computational 
thinking course make sense of mathematical relationships using block-based programming. 
Teachers were provided with a Scratch program that structures the dynamic relationship 
between changing height and changing volume in the context of rich mathematics task. Analysis 
of teachers’ mathematical representations of this task revealed how teachers can construct 
conceptual understandings by modifying parameters within a block-based program. Implications 
for preparing teachers to leverage the computational thinking concepts of abstraction, dynamic 
modeling, and automation in teaching mathematics are discussed.  

Keywords: Computational Thinking, Technology, Computing and Coding, Professional 
Development 

With the increasing emphasis on computational thinking as a critical skill in K-12 teaching 
and learning (Committee on STEM Education, 2018), the mathematics education community has 
an exciting opportunity to broaden its conceptualization of mathematics as a school subject. 
Computer science, particularly at the elementary level, is often framed as a discipline that is 
distinct from other subjects. However, there is growing research attention on the natural overlap 
between computational thinking and mathematics in K-12 education with respect to structure, 
abstraction, and modeling in problem solving (Israel & Lash, 2019; Silva et al., 2020; Strickland 
et al., 2021; Weintrop et al., 2016).  

Mathematics continues to be taught in many K-12 schools through a siloed approach instead 
of as an authentic integration of reasoning and sense-making (Li et al., 2019). Yet computational 
thinking, particularly in relation to programming, has the unique potential to change the way that 
students think about the rigor and relevance of mathematics. Li and colleagues (2020) recently 
described computational thinking as “searching for ways of processing information that are 
always incrementally improvable in their efficiency, correctness, and elegance” (p. 4). 
Computational thinking and mathematics are naturally and historically connected (Gadanidis et 
al., 2017) because of their shared emphasis on modeling and exploring quantitative relationships.  

The power of computer programming as a sense-making tool in the context of K-12 
mathematics activities is only beginning to be explored in elementary teacher preparation and 
professional development programs (e.g., Gadanidis et al., 2017; Gleasman & Kim, 2020). 
Preparing teachers to leverage computational thinking opportunities through mathematical 
representations can enrich students’ exploration of patterns, structure, and sequence. When 
teachers provide opportunities for students to explore mathematical relationships by changing 
parameters within code, they can foster conceptual understandings of mathematics. There is a 
need to understand how teachers reason with code to design professional development 
experiences that build teachers’ abilities to make this overlap explicit (Kotsopoulos et al., 2019). 

This study focuses on how elementary teachers made sense of one rich mathematics task 
using a computational thinking perspective. The following research question guided this 
investigation of teachers’ reasoning about varying measurement quantities: How do elementary 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

1995



teachers enrolled in a graduate STEM education course use and describe computational thinking 
in their mathematical exploration of the volume of an open box? 

Theoretical Background 
Seymour Papert (1980) first introduced computational thinking as a constructionist approach 

to learning mathematics with tangible making experiences using the LOGO programming 
language. However, it was Wing’s (2006) essay on computational thinking as a fundamental skill 
along with reading, writing, and arithmetic that inspired the growing call to bring more 
computational thinking opportunities to all children. While there is no scholarly consensus on the 
definition of computational thinking (Cansu & Cansu, 2019), the International Society for 
Technology in Education (ISTE) in conjunction with the Computer Science Teachers 
Association (CSTA) offer a robust definition of computational thinking in relation to 
mathematics. It is a problem-solving process with specific characteristics related to problem 
formulation; organization and analysis of data; use of abstractions such as models and 
simulations; efficiency of algorithmic solutions; and generalizability of solutions (ISTE & 
CSTA, 2011). Within the field of mathematics teacher education, we need research on 
developing this implicit synergy between computational thinking and mathematics, especially 
within professional development experiences that elementary teachers need to realize its 
advantages (Bull et al., 2020; English, 2018).  

It is important to emphasize that programming is both a process and product of 
computational thinking. As such, programming within a mathematical learning context can help 
students solve problems and use data effectively (Weintrop et al., 2016; Wolfram, 2020). 
Gadanidis and colleagues (2017) explained the possibilities of “what might be” with 
computational thinking as they used the Scratch programming language to integrate advanced 
grade level geometry and probability content in a Grade 1 mathematics classroom (p. 78). They 
proposed seven pedagogical affordances associated with integrating computational thinking and 
mathematics teaching and learning. These affordances are as follows: 1) low floor, high ceiling; 
2) abstraction and automation; 3) dynamic modeling; 4) tangible feel; 5) conceptual surprise; 6) 
wide walls; and 7) agency. These affordances also constitute an analytic framework that I used 
examine the potential of computational thinking to position teachers as both producers and 
consumers of mathematical knowledge (Gadanidis et al., 2017, p. 93). 

Methods 
As the instructor in a synchronous online computational thinking course for elementary 

teachers who were enrolled in a STEM+C graduate certificate program, I encouraged teachers to  
explore the natural relationship between computational thinking and mathematics learning in a 
series of mathematical tasks. Before they engaged in problem solving, the teachers analyzed 
computational thinking concepts and practices (Grover & Pea, 2018) and the Standards for 
Mathematical Practice (NGA & CCSSO, 2010) for conceptual overlap. Second, the teachers 
experienced three collaborative problem-solving opportunities with high cognitive demand 
mathematical tasks. As they built their solutions, they were encouraged but not required to 
explore dynamic modeling opportunities using starter code in the Scratch programming 
language. These open exploration tasks were centered on number sense and geometry. 

Their mathematical goal in the “Thinking Outside the Box” task was to construct a box with 
the largest possible volume (Dodge & Viktora, 2002) by cutting congruent squares from each 
corner of an 8.5 x 11-inch rectangular paper. The task was aligned with Grade 5 geometric 
measurement standards and prompted the use of patterns to develop a solution. Teachers were 
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provided with hyperlinks to a Google spreadsheet for recording box dimensions and volume 
calculations and Scratch starter code to automate the calculations of a user-specified sequence of 
heights (see Figure 1). The Scratch starter code created a list of 6 boxes with evenly spaced 
integer heights ranging from 0 to 5 and associated volumes. Teachers were able to modify the 
range of heights and the differences between the heights by adjusting the parameters in the code. 
Teachers could choose to represent their mathematical thinking as outputs of the Scratch starter 
code. They also reflected how they experiences the computational thinking concepts of pattern 
seeking, abstraction, and automation from their perspectives as learners in this task.  

The unit of analysis for this study was teacher collaborative sense-making as evidenced in 
Google Slides artifacts (for five groups of 3-4 teachers) and instructor notes from breakout room 
conversations. I used the Gadanidis et al. (2017) pedagogical affordances as apriori codes to 
analyze how teachers interacted with the Scratch to think deeply about mathematics. 

 

 
Figure 1: Task Directions – Finding the Maximum Volume of an Open-Top Box 

Findings 
Three of the five groups chose to use of the Scratch program to examine structure and to 

generalize with differing outcomes. In breakout room conversations, two groups expressed 
conceptual surprise as they noticed the negative value for volume with a height of 5 inches in the 
Scratch program output. I encouraged these groups to think about the length and width 
dimensions that they were not seeing on the list of values and to tinker with the program further 
to explain their noticings. They further expressed conceptual surprise as they discovered they 
might not have been able to find one correct answer based on the limited precision of the code. 

As Group 5 observed the dynamic modeling within Scratch, they generalized that as the 
height of the box increased, the volume decreased. However, they did not comment on the 
increasing and decreasing patterns with the initial height values. They “noticed that all of the 
heights were whole numbers and decided to experiment with decimals”. The affordance of 
abstraction/automation enabled them to adjust the height parameters to increase by 0.25 inch 
with each iteration. They concluded that a 1.5-inch height would yield the greatest volume.  

Group 1 (see Figure 2, left) used the Scratch program to extend the sense making that they 
had recorded in Google Sheets using box measurements and formula calculations. Because they 
did not order their spreadsheet rows, they did not offer evidence that they were examining 
patterns to see how volume was changing. Instead, they seemed to be looking for the largest 
volume by trial and error. Their comment that using the Scratch improved the accuracy of their 
calculations suggests that they needed additional support to see how the dynamic modeling of the 
program could deepen opportunities for mathematical reasoning automating the formula. 

Group 3 (see Figure 2, right) used the Scratch-generated list structure to look for patterns in 
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changing heights and generalized that volume was increasing and then decreasing between 
heights of 1 and 3 inches. They also leveraged abstraction/automation to change the parameters 
with increasingly narrow intervals of 0.5 and 0.1 inches as they concluded that the largest 
volume would be 1.6 inches. Their mathematical explanation offered contextual evidence of 
tinkering with code as a pedagogical experience in programming (Kotsopoulos, 2017). 

Teachers’ use of Scratch varied from a low floor of automating the calculation of a variety of 
individual volumes (Group 1) to a high ceiling of modifying code parameters and examining the 
resulting patterns (Group 3). These artifacts of teacher sense-making show how teachers can use 
starter code can build the reciprocal relationship between computational thinking and 
mathematical exploration (Weintrop et al., 2016). The Scratch program was used as a dynamic 
model of the covarying relationship between height and volume. The list structure was used as an 
automated abstraction of the volume function increased the opportunities for rich mathematical 
conversations about covariation, pattern seeking, and reasonable mathematical answers. 

 

 
Figure 2: Excerpts from Teacher Work -  Using Scratch for Mathematical Sense-Making 

Discussion and Implications 
Analysis of the mathematical representations in this “Thinking Outside the Box” task reveal 

the potential for mathematics teacher educators to facilitate a productive interplay between 
computational thinking and mathematical sensemaking. Only two of five groups in this study 
modified parameters for the purpose of pattern seeking and generalization. This finding raises 
important questions about how professional development facilitators can scaffold deep 
mathematical reasoning through code. Facilitating this sense making is crucial in building 
elementary teacher confidence that mathematical learning can happen through computational 
exploration. This study shows that teachers may need further support to see code as a tool for 
reasoning about mathematical relationships beyond efficient calculation of answers. 

There is a need for more research to conceptualize how programming “about and for the sake 
of” mathematics can support learning (Goldenberg et al., 2021, p. 49). Opportunities to program 
in Scratch in elementary schools are often framed as expressive activities outside of curriculum. 
Yet this study shows that carefully designed starter code can empower teachers to leverage 
abstraction, automation, and dynamic modeling as students investigate mathematical 
relationships. This knowledge can position teachers to provide all students with tools enjoy the 
computational nature of mathematics as a discipline. 
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Many studies use instructional designs that include two or more artifacts (digital manipulatives, 
tables, graphs) to support students’ development of reasoning about covarying quantities. While 
students’ forms of covariational reasoning and the designs are often the focus of these studies, 
the way students’ interactions and transitions between artifacts shape their actions and thinking 
is often neglected. By examining the transitions that students make between artifacts as they 
construct and reorganize their reasoning, our study aimed to justify claims made by various 
studies about the nature of the synergy of artifacts. In this paper, we present data from a design 
experiment with a pair of sixth-grade students to discuss how their transitions between artifacts 
provided a constructive space for them to reason about covarying quantities in graphs.  

Keywords: Instructional Activities and Practices; Mathematical Representations; Design 
Experiments. 

Over the past three decades, mathematics educators have characterized students’ reasoning 
about the simultaneous change of two quantities in various ways (e.g., Confrey & Smith, 1994; 
1995; Saldanha & Thompson, 1998). Some proposed frameworks to describe students’ 
progression of covariational reasoning over time (Carlson et al., 2002; Thompson & Carlson, 
2017) and a handful of studies used these to examine students’ reasoning of various 
mathematical ideas, such as the rate of change (e.g., Johnson, 2012), and scientific phenomena, 
such as gravity (e.g., Panorkou & Germia, 2021). To examine what forms of covariational 
reasoning students exhibit, these studies often engage students with various artifacts such as 
dynamic manipulatives, tables, or graphs (e.g., Castillo-Garsow, 2012; Ellis, 2011).  

Multiple studies point to the role of particular artifacts or combinations of artifacts used 
during the learning process to explain why this development of students’ reasoning happens or 
does not happen (e.g., Ellis et al., 2018). The role of technology has been to advance students’ 
reasoning because it can be utilized to illustrate change in progress (Castillo-Garsow, 2012) as 
well as the ability to reverse change. For example, Johnson et al. (2016) used a Ferris wheel 
animation on Geometer’s Sketchpad (GSP) and asked the students to click and drag the car to 
control the motion and graph the relationship between the car’s height from the ground and its 
distance traveled within one revolution. Examining relationships between quantities using 
dynamic manipulatives before graphing has shown to advance students’ conceptions of graphs of 
functions as a representation of coordinated change (e.g., Ellis et al., 2018). While some asked 
students to transition straight from the digital tool to the graph (e.g., Ellis et al., 2018; Stevens & 
Moore, 2016), others asked students to create a table as an intermediate artifact before 
transitioning to the graph (e.g., Ellis et al., 2015). 

Although each study uses different technologies (GSP, GeoGebra, Desmos), often their goal 
is for students to connect these dynamic representations of relationships with the graphing of 
those relationships. One of the prevailing difficulties that students have with graphing is that they 
focus on the shape of the graph and ignore the relationship between the two covarying quantities 
that it illustrates. To explain this, Moore and Thompson (2015) distinguished between static or 
emergent shape thinking. Students who think statically operate on a graph as an object, such as a 
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piece of wire. In contrast, students with emergent shape thinking illustrate an understanding of a 
graph as a trace (or a snapshot of a trace) in progress that depicts the relationship between two 
covarying quantities. To examine students’ reasoning across multiple representations, we 
expanded the ideas of static and emergent thinking in this study to also include applying them to 
reasoning with simulations and tables as well as graphs. To reason emergently in this way, a 
student must construct a more abstracted structure of covarying quantities that is operative in 
each of the representational contexts, rather than being inherently tied to any one of them.  

While research studying what forms of reasoning students develop during the transition 
between artifacts and why this might happen prevails, an examination of how this process 
happens is rarely the focus of the investigation. In this paper we argue that the how lens can 
show us specific methods and conditions in which students’ actions and reasoning are influenced 
during the interactions with the artifacts. This can make a contribution for informing both the 
design of artifacts, tasks, and questioning around these ideas and also the analysis of students’ 
reasoning during those transitions. Considering the above, this study aims to examine how 
students make connections between different representations of the same covarying quantities as 
they transition between artifacts, and to explore the conditions that made those transitions 
productive for their learning. Specifically, we aim to examine the following research question: 
How may students’ transitions between artifacts provide a constructive space for them to reason 
emergently with a graph? 

Theoretical Framework: Examining the Transitions Between Artifacts 
In this paper we use the term artifact to refer to a tool made by humans that is used for 

performing a specific task (Verillon & Rabardel, 1995; Trouche, 2004). As the student interacts 
with an artifact, the artifact imposes on the user some affordances and constraints, which shape 
both the actions and the ideas emerging from the activity (Artigue, 2002; Noss & Hoyles 1996). 
Through their interaction with an artifact, students build an instrument (Verillon & Rabardel, 
1995; Lagrange et al., 2001) which is a mental construction that consists in part of the artifact 
and in part of cognitive schemes. Instrumental genesis, or the process by which an artifact 
becomes an instrument, is therefore influenced by both the artifact’s characteristics and the 
user’s prior knowledge and experience (Rabardel, 2000).  

The new instruments formed from the instrumental genesis do not develop in isolation but 
instead become part of a system that consists of instruments that students developed earlier 
(Rabardel & Bourmaud, 2003). Mariotti and Montone (2020) discussed the nature of a synergy 
between two artifacts as “an implicit or explicit reference to both artifacts [that] creates a 
relationship between meanings emerging from their use” (p. 113). To support students in relating 
these different meanings emerging from the different uses of artifacts, Soury-Lavergne (2021) 
proposed three characteristics of design that the group of artifacts needs to have. Specifically, she 
talked about making the use of each artifact necessary, what she refers to as complementarity 
between the two artifacts. To make their relation visible, she argued that there must be some 
form of redundancy of some characteristics of one artifact in the other. To her “redundancy in 
the system of instruments produces robustness and adaptability of the system” (p. 6). Finally, she 
stated that each artifact should have different constraints that would lead to students to adapt, by 
challenging and reorganizing their initial system of instruments. She referred to this 
characteristic as an antagonism between artifacts. 

We may view each artifact as becoming a transitional instrument for the continuous 
(re)organization of a system of instruments. We refer to reorganizations (Piaget, 2001) of 
reasoning as the inferences we make about students’ projections and reflections of particular 
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forms of reasoning and their connections as these are (re)structured into a more coherent whole. 
While designs may imply a sequential instructional process from one artifact to the next, our 
experience shows that students’ transitions do not follow a linear process but rather shift back 
and forth in unrestrained ways between different artifacts. Consequently, in this paper we use the 
term transitions to refer to the dynamic, continuous, and “messy” shifts (physical and cognitive) 
that the individual makes between artifacts as they (re)structure their system of instruments. 

Methods 
The findings we report here are part of a design experiment (Cobb et al., 2003) in which we 

iteratively developed and tested theories about both the process of learning and the nature of the 
synergy of artifacts that supported that learning. In this section we discuss the design and initial 
conjectures explored in this study as well as our methods of data collection and analysis. 
Design and Initial Conjectures 

Since our previous work (e.g., Panorkou & Germia, 2021) showed that students as young as 
sixth grade can engage in sophisticated reasoning about covarying quantities when these are 
presented in meaningful contexts such as scientific phenomena, we focused on the scientific 
phenomenon of climate in this study. We thus designed a set of artifacts based on this 
phenomenon, specifically involving the exploration of the covarying quantities of temperature 
and latitude in the earth’s climate. 

The first of these artifacts is the Climatic Zones simulation (Figure 1), with which students 
can explore how temperature and latitude covary in the earth’s polar, temperate, and tropical 
zones. The temperature in these zones is largely determined by the distance away from the 
earth’s equator, or latitude. To explore the simulation, students control the location of the arrow 
on the right side of the screen by moving their mouse into the different zones. The readouts 
above and to the left allow the student to observe resulting changes in the quantities. Similar to 
other studies (e.g., Ellis et al., 2018), our conjecture was that students’ interactions with this 
simulation would support them in constructing their understanding of graphs as records of 
covariation, thereby engaging in emergent shape thinking (Moore & Thompson, 2015). 

 

 
Figure 1: The Climatic Zones Simulation 

We also chose to include both a table and a graph in order to explore both students’ 
transitions between these different representations as well as how they would reorganize their 
systems of instruments to include each new artifact. Therefore, the next artifact we designed is a 
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table which students were asked to use the simulation to complete a list of temperatures for given 
latitudes. We conjectured that this could support their emergent shape thinking since the table 
represents different values of the two quantities as ordered pairs. Students were then asked to 
complete the corresponding graph. This third artifact was designed without any scales, requiring 
students to create their own intervals on each axis before they could plot the values. We 
conjectured that this would allow us to examine how students would transition between the three 
artifacts to organize the data in the table as well as how they might reorganize their systems of 
instruments as they did so. 

Finally, although this design may seem to be a strictly sequential learning activity, we set no 
restrictions on when or how often students could move back and forth between the artifacts as 
they worked. We thus expected that the students’ actions and reasoning would illustrate the 
“messiness” of their transitions back and forth between the artifacts. 
Data Collection and Analysis 

The data presented in this paper was collected during a whole-class design experiment (Cobb 
et al., 2003) that took place in a sixth-grade classroom in the Northeast of the U.S. We conducted 
two 25-minute virtual sessions via Google Classroom due to COVID-19 restrictions. The 
students were paired off into breakout rooms where they engaged in the tasks and were 
interviewed by the researchers. The students’ video and shared screens were recorded during the 
sessions. These recordings were then transcribed for the analysis. 

This paper focuses on the retrospective analysis of the activity of one pair, Jami and Gaelyn. 
We analyzed the data in three stages. In the first stage, we identified episodes of the students’ 
covariational reasoning and static or emergent shape thinking (Moore & Thompson, 2015). In 
the second stage, we reviewed each students’ data chronologically in order to observe the 
progressions and reorganizations of their reasoning as they transitioned between the artifacts. In 
the third stage, we analyzed the features of the artifacts that seemed to support those progressions 
and reorganizations. We used the Soury-Lavergne (2021) framework of complementarities, 
redundancies, and antagonisms to characterize how this group of artifacts served as instruments 
in a system that provided a productive space for the students to reorganize their reasoning. 

Findings 
In this section we present examples of complementarity, redundancy, and antagonism in the 

order they emerged from the data. 
Complementarity - Callback 

We asked the students to explore the simulation and identify the quantities that change. Jami 
reasoned about the latitude, saying that “as you go up [using the cursor] the latitude is positive 
and then as you go down, the latitude is negative.” She also reasoned about how the temperature 
changed in each climatic zone, explaining,  

Jami: The polar zone is actually very cold because it is up north [latitude], and the temperate 
zone since it is right between the equator where it is most hottest and the polar zone, it is 
pretty warm, like the average temperature, and the tropical zones are very hot because they 
are more close to the equator.  

Her reasoning illustrated emergent shape thinking about how the closer from the equator a zone 
is, the hotter the temperature. 

Next, we asked Jami and Gaelyn to use the simulation to complete the table (Figure 2, left). 
Jami shared her screen showing the simulation on the left side of the monitor and the table on the 
right side. The students took turns identifying the temperature using the simulation. For example, 
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Jami stated “[negative] sixty-seven is in the latitude, the air temperature is negative 19.” Then, 
Gaelyn added “negative 23 is 23 degrees.” Both students transitioned between the table and 
simulation as they looked for the values of temperature that correspond to the given latitude. This 
reasoning exhibited the complementarity between these two artifacts as they referenced back to 
the information from the simulation to complete the table. 

 

    
Figure 2: Gaelyn’s Completed Table and Graph 

Then we asked the students to use the values in the table to create a graph showing the 
relationship between latitude and temperature (Figure 2, right). Gaelyn transitioned back and 
forth between the table and the graph as she plotted the values, reasoning, 

Gaelyn: The first thing was negative 67 to negative 19 [toggling back and forth between the 
table and graph]. … So that would be about here to [plotting in the first quadrant]. No wait, 
this is negative, so that would be about here [plotting in the third quadrant] to 19 right above 
the 20. 

Gaelyn’s reorganization of plotting (-67, -19) from the first quadrant to the third quadrant also 
showed her understanding of graphing negative values. Next, Jami helped Gaelyn by guiding her 
with the succeeding values from the table as Gaelyn continued plotting them on the graph. Their 
actions of toggling between the two artifacts showed the complementarity of the table and the 
graph, as the former provided the information needed to create the latter. 

Students’ calling back to the previous artifacts was a necessary action to collect relevant 
information and create the subsequent artifacts. The students needed to look for the data from the 
simulation to complete the table and then use the values from table to create the graph. 
Antagonism 

The students’ reasoning about the simulation, table, and graph also showed an antagonism in 
how the information in the three artifacts was encoded differently by each. Their reading of data 
points from the simulation and the table illustrated a straightforward encoding of information 
about the corresponding values of latitude and temperature. However, the graph required them to 
coordinate the two quantities and locate them along the x- and y-axes in order to represent the 
same information. As the students were plotting the points on the graph, Gaelyn moved her 
cursor along the y-axis and stated, “this is zero [latitude]” (Figure 3, middle). Jami also reasoned 
about the y-axis by stating that the “equator is right in the middle. It is the origin on the graph” 
(Figure 3, right). 
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Figure 3: Relation of the Latitude of the Equator in the Simulation (left) to the Y-Axis 

(Gaelyn, middle) and the Origin (Jami, right) in the Graph 

The students’ reasoning about the location of the equator being at 0 degrees latitude and in 
the middle of the graph illustrated their understanding of the y-axis and origin of the graph. This 
also shows how the students needed to make meaning of the values on the graph, whereas they 
only needed to read the values from the simulation and the table. 
Complementarity - Revision 

Next, we asked the students to use the graph to describe the relationship between the latitude 
and temperature in the northern hemisphere. Gaelyn stated, “the higher the latitude, the lower the 
temperature,” describing the relationship between the two quantities from the equator to the right 
side of the graph. This statement showed that she was able to identify how the latitude and the 
temperature in the northern hemisphere covaried in the graph. However, when we asked the 
students to use the graph to explain the same relationship in the southern hemisphere, Gaelyn 
wondered, “Would it be the opposite? So, like the lower the latitude, wait, no, never mind.” 
Since Gaelyn was not sure about her response, Jami used the simulation to reason about the 
values of latitude. She stated that “if you go to the southern, the lower the latitude, because it’s a 
negative, so when you go more negative numbers, on the number line, it gets more like lower, 
the numbers [moving the arrow downwards]” as shown in Figure 4. Jami probably imagined a 
“number line” across the different climatic regions in the simulation similar to what can be found 
on the graph to describe the changes in the values of the latitude. She referred to the values of the 
latitude as “negative numbers” to reason about “the lower the latitude” as she moved the arrow 
down in the simulation from temperate to polar climatic zones. In that way, she connected the 
change in the latitude in the simulation with the x-axis in the graph. 

 

   
Figure 4: Jami Using the Simulation to Explain Latitude in the Graph 
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Associating the change in values with the direction on a number line did not seem to make 
sense for the students because the latitude was decreasing as Jami moved the arrow downwards 
in the simulation. Instead of reasoning about the negative values of latitude in the south, Gaelyn 
revised their discussion of latitude in terms of the distance from the equator: 

Gaelyn: … it says the same from the equator, as the distance from the equator increases, the 
air temperature decreases. Because we can’t really say, because they’re both going down 
[referring to the values of the latitude and temperature at the southern hemisphere], so we just 
have to do the distance. 

Jami agreed and restated the relationship between the quantities in the southern hemisphere: “as 
the distance from the equator increases, the air temperature decreases.” 

The students’ use of the two artifacts to discuss the relationship between latitude and 
temperature in the two hemispheres led them to revise their understanding of the latitude quantity 
from a positive or negative number into a measure of the distance from the equator. Since the 
latitudes on the right side of the graph were positive, it may have been easier for the students to 
express that covariational relationship than when working with the negative latitudes on the left 
side of the graph. The simulation allowed them to dynamically explore both regions of this 
relationship and became a necessary support for their reasoning about the relationship in the 
graph. Additionally, the students’ reasoning exhibited a form of emergent shape thinking in both 
the graph and simulation. This shows a complementarity between the simulation and the graph as 
the students moved back and forth between these artifacts in order to revise their reasoning. 
Redundancy 

The students’ activity with the artifacts also showed evidence of the redundancy of the 
information represented by each. For example, when we asked students to use their graph to 
describe the location of the highest temperature, Gaelyn reasoned that “the highest temperature, 
it would be right here [putting the cursor on the y-intercept of the graph] at the equator” (Figure 
5). Gaelyn located the highest temperature at the y-intercept on the graph and then related the 
same point with the equator in the simulation where the highest temperature was also found. 
Jami added, “because the line is labeled temperature [making a vertical motion with her index 
finger].” This kind of reasoning showed the redundancy of information offered by the graph and 
simulation by connecting the information about the y-axis on the graph with both the location of 
the equator (Gaelyn) and the temperature data (Jami) from the simulation. 

 

      
Figure 5: Gaelyn’s Relation of the Highest Temperature in the Graph and the Simulation 
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The students’ transitioning between the graph and simulation offered them opportunities to 
explore the similarities in the features of the two artifacts. Finding such information gave them 
opportunities to reason about how the quantities and their relationship are represented in both the 
simulation and the graph. 

Conclusions 
By examining how students transition between artifacts, our work informs the design of 

artifacts, tasks, and questioning that support them in making connections between different 
representations as they (re)organize their systems of instruments (Rabardel & Bourmaud, 2003). 
Jami and Gaelyn’s transitions between the three related artifacts we designed influenced how 
they reasoned about the quantities and covariational relationships represented by those artifacts. 
Specifically, their transitions between the artifacts offered a constructive space for them to 
reason emergently with the graph instead of thinking about its static shape as described in the 
literature. Furthermore, they reasoned emergently across all of the artifacts, showing that they 
constructed a structure of covarying quantities not inherently tied to a particular representation. 

Our findings highlight the specific forms of complementarities, antagonisms, and 
redundancies (Soury-Lavergne, 2021) that supported the synergy (Mariotti & Montone, 2020) 
between these related artifacts. The need for the students to use each artifact to create the next 
prompted them to reference back to previous artifacts as they continued to work. These callbacks 
show one kind of complementarity between the artifacts that supported the students’ reasoning. 
The students’ use of one artifact to revise their reasoning about another shows another kind of 
complementarity. Both of these complementarities worked hand-in-hand with the redundancy of 
information found between the artifacts, as the students explored and reasoned about the same 
features, quantities, and relationships across the different artifacts. At the same time, the 
antagonism between the different ways each artifact encoded this information offered a 
constructive space for the students to reason emergently (Moore & Thompson, 2015) across 
these different contexts and especially to make covariational meaning of their graphs. 

Our analysis contributes to an expansion of Soury-Lavergne’s (2021) work to include two 
possible subcategories of complementarity: callbacks to previous artifacts to support the creation 
of subsequent artifacts and revisions of reasoning based on the exploration of other related 
artifacts. More studies are needed to further investigate these identified subcategories and to look 
for other possible forms of complementarities, redundancies, and antagonisms in different sets of 
data. There is also a need to examine the similarities and differences in the progressions of 
reasoning among other students. For instance, it would be interesting to examine the 
progressions of other pairs who did not immediately reason emergently as they transitioned to 
the table and graph, and how the synergy between the artifacts may have influenced such 
progress. 
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This report focuses on problems of practices identified by 209 respondents to an electronic 
survey in spring 2020 and the ways MTEs called upon their TPACK to address these problems. 
From the data, eight problems of practice emerged: changing pedagogy to account for online 
contexts, rehearsals of teaching, monitoring in class student learning, student engagement, 
assessment, sense of community, mathematical manipulatives, and communication of 
mathematical concepts. Results indicate that MTEs addressed these problems, altering their 
teaching by adopting many new technologies and functions. These included: video conferencing 
applications, Desmos, virtual manipulatives, GeoGebra, Google Slides, Google Docs, Flipgrid, 
videos/webinars, and discussion boards. Implications for MTEs who teach or are interested in 
teaching online are discussed. 

Keywords: Technology, Online and Distance Education, Teacher Educators 

In March 2020, mathematics teacher educators (MTEs) were tasked with a rapid transition to 
emergency remote teaching (ERT) in response to the worldwide COVID-19 pandemic. Drawing 
from previous experience and accessible online resources, MTEs quickly redesigned courses to 
be delivered in remote synchronous and asynchronous formats. Using a survey research 
approach, this study examined MTEs’ perceptions of transitioning their teaching to ERT, and 
how it impacted the quality of instruction they delivered. In the analysis of the data, we asked, 
what problems of practice emerged from this experience and what types of technologies were 
used to address them? Our work aims to describe the ways MTEs transitioned to ERT and to 
identify technologies that can be carried forward into future instruction of all course delivery 
formats (in-person, remote synchronous, remote asynchronous, hybrid).  

Literature Review 
Technological Pedagogical Content Knowledge (TPACK) is constructed from the interaction 

of individual contributing knowledge domains: Pedagogy, Content, and Technology (Angeli & 
Valanides, 2009). This interaction is often modeled by a Venn diagram of overlapping circles 
(see Figure 1) associated with each domain (Mishra & Koehler, 2006; Niess, 2005).  
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Figure 1. Mishra’s (2019) updated TPACK framework. 

 
While there are sub-sections of TPACK represented by the different shaded regions (PCK, 

TPK, etc.), TPACK should be thought of as a total package, more than the sum of its parts 
(Niess, 2005). Furthermore, Koehler and Mishra (2008) discussed how classroom contexts vary 
greatly, and thus there is a wide variation in the ways teachers implement their TPACK. Mishra 
(2019) later changed the Context in the TPACK framework to ConteXtual Knowledge (XK) to 
highlight that all of the knowledge domains exist in a space enclosed by the Contexts of the 
learning. 

 Porras-Hernandez and Salinas-Amescua (2013) focused on how Context influences the 
TPACK and represented context as concentric circles surrounding the whole, with micro (in-
class learning conditions), mezzo (building or district conditions), and macro (societal 
conditions) factors. Much has been written about TPACK and its impact on instruction. 
Rosenberg and Koehler (2015) noted that only 36% of the literature on TPACK mentions 
Contexts, and less (14%) discusses macro-level factors. However, in Spring 2020, MTEs 
experienced an almost universal impact on the macro-level ConteXtual factors and this directly 
influenced the mezzo and micro factors. Our work leveraged this opportunity to study the ways 
their TPACK brought MTEs through this change. 

Methods 
Using the most updated understanding of TPACK (Mishra, 2019), we developed survey 

questions aimed at understanding how the TPACK ConteXtual change of ERT was experienced 
by MTEs. The Mathematics Teacher Educators’ Migration to Online Teaching in Response to 
COVID-19 survey was for MTEs’ classes that support a mathematics teacher education program 
for undergraduate and/or graduate students. Seven expert MTEs, an instructional technology 
expert, and a survey construction expert all worked to establish content validity of the survey. 
Two pilot surveys were given to MTEs to validate the questions. The revised survey was sent to 
members of the Association of Mathematics Teacher Educators in May 2020. The survey 
included nine demographic questions, 14 Likert scale questions, and three open-response 
questions. 
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The results of the Likert responses were compiled and all mentions of technologies were 
tallied and classified by type. The short answer responses were analyzed consistent with a 
modified version of the Qualitative Hypothesis-Generating approach (Auerbach and Silverstein, 
2003). In each open response, all Relevant Text to the research question was identified. The list 
of Relevant Text was sorted into Repeating Ideas. From the Repeating Ideas, Themes emerged. 
When placed alongside the MTEs’ Likert responses, the Themes told the story of MTEs 
instructional experiences during Spring 2020. 

Results 
Mentioned technologies were classified as either conveyance technologies or mathematical 

action technologies (Dick & Hollenbrands, 2011). Conveyance technologies are those used to 
present, communicate, share, and assess information. In contrast, mathematical action 
technologies are those like computer algebra systems and dynamic geometry software. Table 1 
details the most commonly mentioned technologies in the survey results. 

 
Table 1: Frequency and Types of Technology Used 

Technology Unique Mentions Technology Type 
Video Conferencing App 46 Conveyance 

Virtual Manipulatives 
Desmos 

GeoGebra 
Google Slides 

Flipgrid 
Google Docs 

Discussion Boards 
Webinars/Videos 

14 
11 
9 
7 
5 
5 
5 
4 

Mathematical Action 
Mathematical Action 
Mathematical Action 

Conveyance 
Conveyance 
Conveyance 
Conveyance 
Conveyance 

 
While conveyance technologies were most mentioned overall, there was a strong presence of 

mathematical action technologies (n = 34) among the most commonly mentioned technologies. 
The results indicate that both types were critical to supporting MTEs as they transitioned to ERT.   

In the open-ended responses, participants shared Repeating Ideas that we classified into eight 
problems of practice. These problems were: Changing pedagogy to account for online context, 
Rehearsals of teaching, Monitoring in-class student learning, Student engagement, Assessment, 
Sense of community, Mathematical manipulatives, and Communication of mathematical 
concepts. For example, one participant shared challenges related to Monitoring in-class student 
learning:  

My classes are designed around small group activities. We were able to continue these 
activities with Zoom breakout rooms, but my ability to monitor and interact deeply with each 
group was really slowed by Zoom. Unlike a physical classroom, it's impossible to catch 
elements of every group's conversation at once, and there is a bit of time needed to switch 
from breakout room to breakout room (and joining a new room can be quite disruptive to the 
students). (Participant #57) 

To further illustrate, another participant identified challenges related to Rehearsals of teaching: 
The changes for my elementary methods course were significant and mostly negative. We no 
longer were able to complete 3 visits to work with an elementary school student and students 
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weren't able to practice teaching in front of their peers. Also, I had to replace classroom 
discussions with short written reflection papers due to my class being asynchronous, which 
meant that students no longer had the benefit of hearing their peers' perspectives. (Participant 
#104) 
Through our analysis, we began to connect the problems of practice with technologies 

implemented to address those challenges. In these connections, we were able to see how MTEs 
used their TPACK to carry them through the ConteXtual changes in Spring 2020. Table 2 details 
these connections and can act as a resource for MTEs facing similar challenges. 

 
Table 2: Problems of Practice Correlated with Technology Used  

Problems of Practice Mentioned Technologies 
Changing pedagogy to account for online 

context 
Rehearsals of teaching 

Monitoring in-class student learning 
 

Student engagement 
Assessment 

Sense of community 
Mathematical manipulatives 

 
Communication of mathematical concepts 

Flipgrid, Screencastify, Zoom videos 
 

Discussion rooms, Flipgrid 
Google Docs, Jamboard, Desmos, Google 

Slides, Padlet, Breakout rooms 
Breakout rooms, chat, Google Docs 

Flipgrid, Canvas, Blackboard 
Chat, Breakout rooms 

Virtual manipulatives, Desmos, Zoom polls, 
Google Slides, Google Docs, GoodNotes 

Virtual manipulatives, Desmos, Zoom polls, 
Google Slides, Google Docs, GoodNotes 

Discussion 
The rapid transition to ERT had a universal impact on the TPACK Context of MTEs. While 

some of this transition was negative, there is much to be learned from our collective experience. 
Using their TPACK, MTEs implemented technologies to solve problems in new and innovative 
ways. Problems of practice will persist in different forms as we move forward, and this work 
helps us identify the technologies that can mediate these problems. We can use these identified 
technologies as a resource for solutions, as inspiration for professional development, and as ways 
to address new problems that we are yet to encounter. The pandemic pushed us into isolation, but 
this work brings to light new innovations as we have gathered together again. 
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Asynchronous, online mathematics teacher professional development (PD) was designed to align 
with research on teacher professional learning as well as to support Communities of Inquiry 
(e.g., Garrison et al., 2000). The intervention included two actively facilitated formats and a 
structured independent condition, where facilitation was integrated into the design of the 
intervention. Participants’ responses to intervention activities were analyzed using indicators of 
Garrison et al.’s Community of Inquiry framework, seeking to understand the ways in which the 
intervention enabled participant learning across facilitation formats. Analysis has implications 
for building the CoI framework into subsequent online asynchronous mathematics teacher PD as 
a way to increase teacher learning, build community, and effectively scale interventions. 

Keywords: Professional Development, Teacher Knowledge, Online and Distance Education, 
Technology 

Significance and Purpose  
High-quality professional learning is widely accepted as a core component of effective 

teaching and learning and meaningful school reform (Borko et al., 2014; DeMonte 2013; Heller 
et al. 2012; Polly et al. 2015; Yoon et al. 2007). Online teacher professional development (PD) 
opportunities are poised to play a key role in bringing meaningful, effective professional learning 
to teachers on a broad scale (Killion, 2013), with experts in the field as well as policy makers 
advocating for more teacher PD to be delivered online (Dede et al., 2009, 2016; US Department 
of Education, 2010). While the range of potential designs for online PD is vast, offerings can 
generally be categorized as synchronous (all participants interacting in real time) asynchronous 
(participants work with materials at their own pace for submission and later feedback), or hybrid 
(involving both synchronous and asynchronous components) (Fishman, 2016).  

A general consensus has emerged within the field regarding the design features of PD most 
likely to impact teacher and student outcomes, both in general and in mathematics specifically, 
such as sustained duration, content area-specificity, coherence, active/practice-based learning, 
collaboration, access to models of effective practice, and expert facilitation/coaching (Elmore, 
2002; Garet et al., 2001; Loucks-Horsley et al., 2010; Darling-Hammond et al., 2017); how to 
integrate these elements in an online setting is less clear. Teachers report that the ability to access 
online PD anytime is very or extremely important (Parsons et al., 2019), and asynchronous forms 
of online PD have resulted in positive findings related to teachers’ attitude and self-efficacy (An, 
2018) as well as high satisfaction and relatively high levels of information sharing (Yoon et al., 
2020).  

This paper focuses on the ways that careful design choices support the development of a 
community of inquiry in an online, asynchronous video-based PD—Video in the Middle: 
Flexible Digital Experiences for Mathematics Teacher Education (VIM). A major goal of the 
VIM project was to demonstrate that online, asynchronous video-based teacher PD can be 
designed and implemented that both embodies the features recognized by the field as 
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characterizing effective, high-quality professional learning and also democratizes such PD by 
increasing teacher access to engaging, meaningful practice-based professional learning.  

Theoretical Framework 
To integrate attention to key learnings about mathematics teacher PD with research on 

asynchronous online learning, the VIM project design and development is theoretically grounded 
in key literature on Communities of Inquiry (CoI; Garrison et al., 2001). The CoI framework 
emphasizes three crucial elements of a successful educational experience: cognitive presence, 
social presence, and teaching presence. According to the CoI framework, worthwhile learning 
occurs through the interaction of these three core elements.  

Cognitive presence is “the extent to which the participants in a community of inquiry are able 
to construct meaning through sustained communication” (Garrison et al., 2001, p. 89; Anderson 
et al., 2001; Garrison & Archer, 2000). Garrison has argued extensively that “asynchronous 
online learning can create a rich cognitive presence capable of supporting effective, higher-order 
learning” (2003, p. 47). He suggests that this is best accomplished through a cycle of practical 
inquiry where participants move through four phases: (1) a triggering event where a problem is 
identified for further inquiry; (2) exploration, where an individual explores the issue; (3) 
integration, where learners make meaning from ideas generated during the exploration phase; 
and (4) resolution, where participants apply new skills and knowledge. 

Social presence is defined as the ability of participants to project their personal 
characteristics into the community, thereby presenting themselves to the other participants as 
‘real people,’ facilitating both enjoyment of the experience as well as the process of critical 
thinking they undertake (Rourke et al., 1999; Anderson et al., 1999; Garrison et al., 2001). It 
supports cognitive presence (and therefore cognitive objectives) through its ability to instigate, 
sustain, and support critical thinking among a community, and also plays a role in participant 
retention by ensuring that participants find interactions enjoyable and fulfilling. Richardson and 
Swan (2003) found that social presence positively affects both student and instructor course 
satisfaction, and participants who perceived high social presence learned more than those who 
perceived low social presence (Richardson & Swan, 2003).  

Teaching presence—the intentional design, facilitation, and direction of cognitive and social 
processes—has three components: (1) instructional design and organization; (2) facilitating 
discourse; and (3) direct instruction (Garrison et al., 2000; Anderson et al., 2001; Garrison & 
Arbaugh, 2007). It is theorized to support and enhance social and cognitive presence.  

Video in the Middle (VIM) Project Design 
Drawing on the existing face-to-face PD Learning and Teaching Linear Functions: 

Videocases for Mathematics Professional Development (Seago et al., 2004), the VIM project 
created 40 asynchronous online mathematics PD modules and researched their effectiveness. 
Each two-hour module is centered around a purposefully selected video clip from a real 
mathematics classroom and designed to facilitate teachers’ noticing skills (van Es & Sherin, 
2002) and mathematical knowledge for teaching linear functions (Ball & Bass, 2002). VIM 
modules are designed to be rich, research-based, open education resources that can be used in a 
wide variety of settings with less up-front time and resource investment than many other high-
quality offerings. The modular nature of the design means that school/district PD providers can 
select particular modules or series of modules they feel meet the needs of their teachers, or they 
can choose pre-selected “pathways” of modules sequenced by the VIM research and design 
teams to address specific learning goals. Modules can be implemented in either a facilitated 
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format where a PD leader responds to participants’ contributions asynchronously, or in a 
structured independent format where participants engage in activities and respond to fellow 
participants’ contributions without monitoring or active facilitation from a PD leader. 
VIM Module Design 

Each module includes the same series of common activities across three phases. In the pre-
video phase, participants are introduced to the learning goals related to mathematical content 
knowledge and pedagogy (Seago et al., 2018). They then solve and reflect on a math task, post 
their work on a Community Wall, and comment on others’ work. In facilitated formats, 
facilitators also respond to posts. Participants also consider a variety of solution strategies for the 
task and review a brief “Mathematician’s Commentary” on the task. In the video phase, 
participants review the context of a video clip where students explore the task, watch the video, 
and analyze it through the lens of a set of framing questions. They also re-examine the solution 
methods in connection to the video clip and annotate an excerpt from the video transcript. They 
then re-watch the video with a different framing question, annotate moments in the video, and 
respond to annotations from fellow participants, expert math educators, and, in facilitated 
formats, facilitators. In the post-video phase, participants complete a reflection in response to a 
prompt related to the module learning goals, post their reflection on a Community Wall, and 
respond to others’ posts. The module concludes with teachers engaging in a “Bridge to Practice” 
activity that asks them either to consider how they might incorporate new strategies and ideas 
into their own classroom practice or respond to an artifact of practice through the lens of what 
they have learned. 

 

 
Figure 1: Overview of VIM module common learning activities 

Cognitive Prescence, Social Prescence, and Teaching Presence in VIM Module Design  
VIM modules were designed to embody the three core elements of a community of inquiry as 

described by Garrison et al. (2000, 2001). Cognitive presence was built into each VIM module in 
the form of multiple practical inquiry cycles—for example, around the math task activity and the 
central video phase (table 1). Each module comprises a larger-scale practical inquiry cycle as 
well.  

 
Table 1: Alignment of elements and categories of Community of Inquiry framework 

(Garrison et al., 2001) with VIM module activities  
Categories Opportunities in VIM Modules 
Triggering Event Introduction to math task Introduction to video (context and frame) 

Exploration Solving & reflecting on math task; 
sharing & comparing solution 
strategies 

Exploring other ideas about video (math 
educator, facilitator, other participants) 
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Integration Responding to/discussing solution 
strategies 

Responding to/discussing video 
commentary 

Resolution Reconciling alternative solution 
methods & mathematician 
commentary with own ideas & 
method 

Bridge to Practice activity 

 
VIM modules promote social presence through Community Walls where participants post 

and respond to others’ math task solutions and reflections as well as activities where they 
analyze, comment on, and respond to others’ comments about the video and transcript. Prompts 
included: 

 “After you have posted your work, take some time to look at the solutions of others. What do 
you notice? What do you wonder? Add comments to the posts of your peers and/or create a 
new post to add a general comment on the wall. Please check back later if you are the first to 
post.” 

 “As you watch, post comments at the points during the video that highlight how Debra 
probes Siri to explain further and how Debra’s moves support Tiffany to make her 
explanation clearer for the class. Feel free to pause the video when reading comments and 
respond to them if you'd like.”  

In facilitated formats, facilitators also respond to posts. 
The video task was also designed to foster social presence; Sherin (2004) points out that 

video is similar to authentic experience in that it positively affects motivation and interest. 
Multiple studies have found that there exists a higher level of satisfaction when teacher education 
courses use video rather than narrations of experience (Choi & Johnson, 2007; Moreno & 
Valdez, 2007).  

 
Table 2: Alignment of social presence categories of Community of Inquiry framework 

(Garrison et al., 2001) with VIM module activities  
Categories Opportunities in VIM Modules 
Affective, Interactive, 
and Cohesive Responses Math task Community Wall interactions Video commentary interactions 

 
Teaching presence was built into each VIM module with a team of veteran math educators, 

researchers, and educational technology designers who worked on the design and organization, 
without the assumption that a member of the design team would facilitate the module. Available 
pre-sequenced “pathways” of VIMs are another example of instructional design and 
organization. While in online, asynchronous settings, facilitation of discourse is often carried out 
by an instructor or facilitator commenting on responses, raising questions to move discussions in 
a particular direction, keep discourse moving efficiently, and balance participation, Garrison et 
al. (2000) note that facilitation is a responsibility that may be shared among some or all 
participants in the learning experience, particularly with adult populations. To facilitate 
discourse, the VIM modules, and particularly the framing and reflection questions that wrap 
around learning activities, guide and focus participants’ interaction around the module artifacts 
and materials. Facilitator training materials further support PD leaders in responding to posts and 
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guiding discussion to achieve the module learning goals. In VIM modules, subject matter 
knowledge is injected strategically as direct instruction through pre-selected and sequenced 
artifacts such as the Solution Methods document, the Mathematician’s Commentary on the task, 
pre-embedded expert commentary on the video and transcript, and professional readings used to 
frame Bridge to Practice activities. To increase interaction and help participants to recognize the 
developmental progression of the inquiry process (Garrison & Arbaugh, 2007), VIM modules 
include metacognitive journal and Community Wall activities that prompt participants to 
consider how the module activities influenced their understand and beliefs about mathematics 
teaching and learning (for example, “I used to think… Now I think…”). 

 
Table 3: Alignment of teaching presence categories of Community of Inquiry framework 

(Garrison et al., 2001) with VIM module activities  
Categories Opportunities in VIM Modules 
Instructional Design 
and Organization  

Selection of module goals, task, & 
prompts; sequencing of task-related 
activities 

Selection of module goals, video, & 
prompts; sequencing of video-related 
activities 

Facilitating Discourse Community Wall prompts and 
interactions 

Video analysis prompts and interactions 

Direct Instruction Solution Methods pdf; 
Mathematician’s Commentary slides 

Math educator pre-entered prompts 

Research Design 
California middle and high school teachers were recruited to participate in a Spring 2020 

pilot study to address the following research question: Which elements of the CoI framework 
were evident in teacher and facilitator responses? All teachers experienced the same sequence of 
four, two-hour modules for a total of eight hours of professional development over the course of 
twelve weeks (February through April 2020). Modules were offered in three formats: (1) project 
staff-facilitated (n = 17), (2) district leader-facilitated (n = 18), and (3) structured independent (n 
= 26). Teachers in each of the two district leader-facilitated cohorts were all from the same 
district, while the other two groups included teachers from various districts. 

All three formats included a content focus, the same asynchronous opportunities for sharing 
solution methods and written reflections with colleagues, and attention to bringing what they 
learned into practice. Facilitated formats differed from the structured independent format in two 
ways: 1) pace (project-staff and district-facilitated formats asked teachers to complete one 
module every two weeks, while teachers in the independent format worked at their own pace, 
and 2) the role of the facilitator. As a clear and well-defined structure to each VIM module was 
established during the design phase reflecting research on teacher PD, attention to student 
thinking, and the importance of teacher reflection, the role of the facilitator in both the project 
staff- and district-facilitated formats focused on commenting on teachers’ posts, encouraging 
teachers to complete modules, and responding to journal reflections. Project and district 
facilitators participated in a 90-minute video-conference orientation with project staff, including 
an overview of the study and timeline, VIM module structure, and online tools. Facilitators also 
had access to a web-based facilitator guide and video tutorial demonstrating how to use the 
online tools to respond to participants. 
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Participants 
Participating teachers taught middle school math, Algebra 1, or a first-year high school math 

course such as Math 1 or Integrated 1.  
Teachers in the district leader-facilitated condition were recruited by mathematics leaders 

from each of two school districts; each of the two leaders then served as the facilitator for their 
district group. Additional teachers were recruited from across California and randomized into 
either the structured independent condition or the project staff-facilitated condition. Where 
multiple teachers were recruited from the same district, teachers were randomly split between the 
two conditions. Where single teachers were recruited from a site, singleton teachers were 
matched by similar site location or demographics; matched pairs were then randomized into the 
two conditions. Of the 68 teachers who began the study, 82% completed all or nearly all study 
activities across the four modules. 
Data Collection 

In both facilitated and independent VIM cohorts, participants had eight opportunities (two 
opportunities per module) to engage with others’ posts via Community Walls. Rourke et al. 
(2001) identify three categories of social presence indicators: affective responses (expressions of 
emotion, feelings, and mood), interactive responses (threaded interchanges of socially 
appreciative messages), and cohesive responses (serving to build and sustain a sense of group 
commitment). Posts and replies from all Community Walls in all cohorts were analyzed for 
evidence of social presence. Each post and reply showing evidence of social presence was 
categorized as an affective response, an interactive response, or a cohesive response. Posts and 
replies were categorized as affective responses if they included emoticons, exclamation points, or 
other text intended primarily to communicate mood or emotion (Kuehn, 1993; Gunawardena & 
Zittle, 1997). Replies were categorized as interactive responses if they expressed social 
appreciation for the original post or a previous reply. Posts and replies were categorized as 
cohesive responses if they included phatics (communication which serves to establish or 
maintain social relationships rather than to impart information), salutations, vocatives 
(addressing participants by name), or addressing the group as “we,” “our,” or “us.” Percentages 
of posts showing evidence of each category of social presence were calculated for each of the 
three facilitation formats. 

All participants also had four opportunities to engage with others’ posts as well as pre-
entered “Mathematics Educator” posts in the video analysis activity, an example of teaching 
presence through direct instruction. Responses to these posts were reviewed for evidence that 
they had impacted participants’ thinking about the video clip or prompted them to engage in 
deeper reflection around moments or interactions referenced by the Mathematics Educator posts. 

Findings and Discussion 
Evidence of Social Presence in VIM Modules 

Analysis of participants’ Community Wall responses across both facilitated and independent 
cohorts revealed examples of affective, interactive, and cohesive responses. Analysis of 
Community Wall posts found that numerous posts in all three participation formats either 
contained or inspired replies/rejoinders that contained evidence of affect (14.8% locally 
facilitated, 37% project-facilitated, 10.5% structured independent): 
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Figure 2: Affective responses in facilitated (left) and independent (right) VIM cohorts 

Interactive responses were the most common type of response across all three cohorts (43.7% 
locally facilitated, 65.2% project-facilitated, 33.7% structured independent), with participants 
routinely commenting in socially appreciative ways on others’ math work or reflections in 
response to what they found interesting or raised questions for them.  

 

          
Figure 3: Interactive responses in facilitated (left) and independent (right) VIM cohorts 

Cohesive responses were the least common type of response across all cohorts, with only a 
few examples in each (5.2% locally facilitated, 3.7% project-facilitated, 4.4% structured 
independent). We hypothesize that this was due in part to technological limitations that defaulted 
to anonymous posts and replies. 

      
 

Figure 4: Phatics and vocatives as indicators of cohesive responses in facilitated (left) and 
independent (right) cohorts 

Evidence of Teaching Presence in VIM Modules 
Of the three core elements, it is perhaps teaching presence which is the least obvious in terms 

of how effectively it is accomplished in VIM modules given that they are designed to be used 
with or without active facilitation; even when used with a facilitator, interaction is significantly 
lighter touch as compared to the role a facilitator might play in other PD experiences. We have 
already seen the manner in which the intentional design and organization of VIM modules 
contributes to both cognitive and social presence through the selection of tasks and video, 
module goals, framing and reflection questions, and Community Wall prompts. 
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We can see evidence of the impact of direct instruction when participants are asked to 
comment on moments in the video and respond to other comments, including comments pre-
inserted by the design team to draw teachers’ attention to key moments in the video and 
encourage discussion around them (figure 5). 

 

   
Figure 5: Positive participant responses to pre-inserted video comments from facilitated 

(left) and independent (right) cohorts 

In facilitated cohorts, facilitation of discourse was moderately provided by human facilitators 
monitoring and responding to posts in order to guide discussion and probe participants’ thinking. 
In both facilitated and structured independent cohorts, a level of in-the-moment facilitation was 
also provided by participants interacting with module elements/resources such as the 
mathematical task work, others’ perspectives on the mathematics, and most critically, the central 
video clip. We hypothesize that the unique nature of authentic classroom video described by 
Sherin (2004) and the intrinsic motivation and interest it inspires for teachers in combination 
with the prompts, framing questions, and reflection questions fosters a level of discourse that 
may not otherwise be achieved in an asynchronous, online PD experience. 

Conclusion 
If schools and districts are to scale quality PD in a cost-effective and widely accessible 

manner, innovative tools and strategies that do not rely on individual providers spending 
extensive face-to-face time with small groups of teachers are needed (Cai et al., 2017). Highly 
structured online asynchronous PD opportunities—with or without active facilitation—may have 
a role to play in bringing effective, flexible professional learning to a significantly wider 
audience if they are designed in a way that reflects features of effective PD recognized by the 
field and supports the development of communities of inquiry. The VIM module design and pilot 
study provide promising evidence that this can be accomplished, while also pointing us to 
possible new directions for future development and research. 

In particular, greater social presence may be accomplished through technology that avoids 
anonymous posts and allows for participant profile information and photos. Specific prompts 
could also be added to encourage participants to revisit previous Community Walls to review and 
engage with new posts. Additional opportunities for interaction with fellow participants could 
also be created, for example in relation to the “Bridge to Practice” activities. 
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There is a prevailing notion that online course modalities present challenges to teaching in 
ambitious ways, and thus to modeling ambitious teaching for pre-service and in-service teachers. 
In this paper, we report on the results of an exploratory analysis of one mathematics teacher 
educator’s efforts to model ambitious teaching in a synchronous, online mathematics education 
course. We report on both the online tools central to this effort and the teaching moves for using 
those tools effectively. In so doing, we highlight how the teacher educator’s decision to be 
transparent about the challenges involved in adapting instruction to an online environment 
presented further opportunities to model the kind of instructional experimentation central to 
ambitious teaching. 

Keywords: Online and Distance Education, Technology, Pre-service Teacher Education  

A primary goal of many mathematics education courses is to support participating teachers in 
learning to teach in ambitious and equitable ways, such that they can support students’ 
attainment of rigorous mathematical learning goals (Kazemi et al., 2009). Ambitious and 
equitable teaching empowers students to engage in complex problem-solving and to reason 
mathematically.  As teachers elicit and respond to students’ contributions, they position students 
as being mathematically competent (Lampert et al., 2009) and broaden opportunities for 
discourse (Ghousseini et al., 2017). Ambitious and equitable teaching is, however, challenging 
and complex work. Mathematics teacher educators (MTEs) can support teachers in learning to 
enact ambitious and equitable teaching by modeling this type of teaching in education courses 
(Lampert et al., 2010), thereby providing teachers with opportunities to see what it looks like to 
enact this type of teaching effectively. Developing such a vision is an essential step in teaching 
in ambitious ways with students (Munter & Correnti, 2017). 

 Several issues, including the ongoing COVID-19 pandemic and declining enrollments in 
teacher education programs, have prompted many colleges and universities to shift their 
programs online. Many teacher educators have claimed that this shift in course delivery method 
presents challenges for teaching in ambitious ways (Thompson et al., 2021), and thus for 
modeling ambitious teaching for pre-service and in-service teachers. In many cases, these 
presumptions have been based on the very real challenges teacher educators faced when they 
rapidly transitioned courses previously designed for face-to-face instruction to emergency remote 
teaching (Hodges et al., 2020). Yet, it is entirely possible that carefully planned online learning 
experiences in mathematics teacher education can provide opportunities for teachers to see 
ambitious teaching in action. For example, Jung and Brady (2020) highlight the value of 
breakout rooms and shared Google Docs in building social norms and dialogic interactions that 
support reasoning and problem solving within a community of learners. Unfortunately, very few 
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studies have closely examined the ways in which MTEs can use online teaching tools to model 
specific forms of ambitious teaching for teachers. 

In this paper, we report on the results of an exploratory analysis of one MTE’s (hereafter 
referred to as Professor K) efforts to model ambitious teaching in a synchronous, online 
mathematics education course. We focused our analysis on Professor K’s efforts because the 
participating pre-service and in-service teachers indicated on course exit tickets and end-of-
course evaluations that they had ongoing opportunities to experience ambitious teaching, despite 
the online modality of the course. We therefore determined that it would be illuminating to 
examine how Professor K provided those opportunities for the teachers in the synchronous 
online course. We investigated the following research questions: How did Professor K model 
ambitious teaching in an online, synchronous mathematics education class? What technologies 
did he use to model ambitious teaching in a synchronous, online mathematics education course? 
What instructional moves were associated with his use of the technologies? 

The Synchronous Online Mathematics Education Course  
The mathematics education course that is the focus of this analysis took place in a school of 

education at a large, public university in the Mid-Atlantic of the United States. Four pre-service 
teachers and four in-service teachers were enrolled in the 14-week course. Each of the weekly 
sessions was conducted online and synchronously over the Zoom video conferencing platform. 
Almost all students kept their cameras on for each class period, even though it was not required. 
Notably, our analysis of Professor K’s teaching was retrospective, meaning Professor K was 
unaware of the focus of our research at the time of his teaching. 

The course was designed to support teachers in deepening their mathematical knowledge for 
teaching in the middle grades. To accomplish this, Professor K broke the course into two-week 
units, each of which focused on the processes of students’ learning, as well as the means of 
supporting that learning, for different mathematical domains relevant to teaching middle grades 
mathematics (e.g., ratios and proportions or expressions and equations). In other words, instead 
of focusing each lesson solely on mathematics, Professor K designed the lessons such that the 
class engaged with mathematics as teachers. While the focus of the lessons changed over the 
course of the semester, the general structure of each lesson stayed relatively consistent. Professor 
K organized each lesson around a set of editable Google slides. The slides included links to 
Jamboards, so that students could represent their mathematical thinking; links to Google 
documents that included pictures or representations of students’ work; and designated writing 
spaces through which teachers could record their thinking and share it publicly over Zoom. 

Because all eight of the participants were also in their student teaching internships, Professor 
K designed the course such that the activities in which teachers engaged mirrored the kinds of 
activities they might implement with their students. This meant he designed each lesson to 
provide the participating teachers with opportunities to see ambitious teaching. For example, in 
almost all lessons, Professor K engaged the teachers in several problem-solving tasks, each of 
which followed a general structure. First, he would introduce the class to a task, and thus model 
how teachers can support broad and active engagement. Professor K would then instruct the class 
to work on the task in small groups using breakout rooms. During these small groups, he would 
ask assessing and advancing questions and thus model listening to and responding to students’ 
intellectual contributions. Finally, he would bring the class together to discuss their work in the 
primary Zoom room. In these discussions, Professor K routinely asked teachers to restate or 
build on previously shared ideas, in the process positioning them as being mathematically and 
pedagogically competent. 
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Conceptualizing Ambitious Teaching 
In this paper, we define ambitious teaching as teaching that supports all students in not only 

acquiring knowledge, but also understanding, using, and generating new knowledge to solve 
authentic problems (Lampert & Graziani, 2009). This kind of teaching is extremely complex. It 
requires adaptations to practice as teachers elicit, make use of, and respond to students’ thinking. 
Because of this complexity, it is important for MTEs to represent ambitious teaching for 
teachers, as doing so can clarify what ambitious teaching looks like in practice (Lampert et al., 
2013). Teacher educators can then decompose the work of ambitious teaching into learnable 
units, often called teaching practices (e.g., launching instructional tasks), and support teachers in 
learning to enact those practices effectively. Thus, we see it as essential for MTEs to model 
ambitious teaching as part of their work with pre- and in-service teachers in both face-to-face 
and online settings.  

Methods 
Data Collection  

We collected the following data from the online, synchronous mathematics education course 
described above: (1) participants’ responses to weekly class exit tickets, (2) participants’ 
responses to mid-semester and end-of-course evaluations, (3) video recordings of Professor K’s 
weekly lessons, and (4) artifacts from the weekly lessons, including the participating teachers’ 
written work as they responded to questions on Google slides, their bi-weekly homework 
assignments, and teachers’ work as they solved mathematics tasks using Google’s Jamboard 
application. We also interviewed Professor K to clarify his decision-making. 
Data Analysis 

We conducted two phases of analysis to understand how Professor K used online tools to 
model ambitious teaching. In the first phase of analysis, we identified a representative episode of 
a lesson that (a) included the use of the online tools most typical of Professor K’s instruction and 
in which he attempted to model ambitious teaching. This involved first reviewing the weekly 
Google Slide sets for the course to document the types of activities in which Professor K 
typically engaged the teachers. We then met as a research team to discuss the nature of the 
activities and to look for any commonalities among them. After this meeting, we wrote a brief 
memo in which we outlined a general structure for the types of activities that were most typical 
of Professor K’s teaching. Almost all the course activities followed the general structure outlined 
above. We then looked across the video recordings for an activity in which Professor K used this 
typical structure and in which he clearly intended to model aspects of ambitious teaching. This 
activity became the focal episode for the second phase of the analysis. 

In the second phase of analysis, we watched the representative episode and coded for the 
forms of ambitious teaching modeled and the online tools and technologies Professor K used 
when modeling those forms of teaching. We then conducted a second round of coding to 
understand how Professor K made use of the online tools and technologies. To conduct this 
finer-grained coding, we drew on the idea of teaching moves. Following Jacobs and Empson 
(2016), we define teaching moves as directly observable units of teaching activity that share a 
common purpose. One type of teaching move, for example, might involve a teacher (or, in this 
case, teacher educator) asking a question to elicit a mathematical strategy. In this example, the 
move features an observable form of teaching activity (asking a question) and a specific purpose 
for that activity (eliciting a mathematical strategy). Focusing on teacher moves enabled us to 
foreground the observable forms of teaching activity that appeared central to Professor K’s use 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

2026



 

of the online tools to model ambitious teaching. We engaged in consensus coding for both 
rounds of coding. To conclude our work, we recorded the results of our coding in a table. 

Findings 
Over the course of the selected episode, the participating teachers had several opportunities 

to experience ambitious teaching in an online, synchronous classroom environment. For 
example, Professor K modeled how teachers can encourage broad and active engagement in 
conceptually rich problem-solving tasks by introducing (i.e., launching) the instructional task in 
such a way as to ensure everyone could get started but without telling them exactly how to 
engage in the task. As the teachers explored the instructional task during small-group work time, 
Professor K also asked questions and listened closely to their explanations, thereby modeling 
how teachers can elicit and respond to students’ intellectual contributions. Additionally, 
Professor K modeled how to broaden opportunities for discourse and position students as 
mathematically competent, both by asking assessing and advancing questions in small-group 
work time to encourage previously quiet teachers to participate and by calling on specific 
teachers to share their thinking during the whole-group discussions. 

These opportunities to experience ambitious teaching appeared to rely, in part, on Professor 
K’s implementation of several online teaching tools. Further, we found that Professor K made 
several teaching moves that were central to his use of these online teaching tools to model 
ambitious teaching for the participating teachers. Table 1 shows the online teaching tools and 
associated moves as organized by the phases of the instructional episode in which they occurred 
(i.e., the task introduction, independent and small-group work time, and concluding whole-class 
discussion). 

In what follows, we describe the online teaching tools and many of the associated moves for 
each of the three phases of instruction, in the process outlining how they enabled Professor K to 
model ambitious teaching.  
Task Launch Phase 

In this phase of the episode, Professor K introduced the focal instructional task and told the 
teachers that they would work on the task in small groups. Professor K leveraged three online 
teaching tools to launch the task: (1) screen sharing Google Slides with participants in Zoom, (2) 
editable Google Slides that included hyperlinks to Google Docs, and (3) editable Google Slides 
that included templates for recording thinking during the instructional task. He used these tools 
to clarify expectations for what the teachers were expected to do on the instructional task and 
how they should participate in their small groups. 

Clarifying Features of Instructional Task. Professor K shared his screen and showed the 
teachers the task prompt, which was written into an editable Google Slide. As shown in Figure 1, 
the instructional task asked the teachers to analyze students’ work for a mathematics problem 
involving ratios and proportions. Professor K made both verbal and visual teaching moves to 
guide teachers through the task prompt. First, he employed in-the-moment text highlighting to 
emphasize his verbal instructions as he read aloud the task. Because the teachers had both shared 
access to the Google slides and Professor K was sharing his screen, the teachers were able to 
follow along visually with his verbal instructions. 

Professor K then demonstrated how the teachers were expected to click a link in the editable 
Google Slides to access the students’ work (see Figure 1). This ensured that the teachers were 
aware of how they could access the student work, and were thus able to begin working on the 
instructional activity. Finally, in showing the teachers the student work, Professor K noted that 
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the student work might look different from how the teachers would typically solve such a 
mathematics problem.  

 
Table 1: Teaching Moves Associated with Modeling Ambitious Teaching in Online 

Education Course 
Phase of 
Episode 

Online Teaching Tools MTE Teaching Moves 

Launch 
Introducing 

task to teachers 

● Expectation Google Slides 
to establish activity goals 
and norms for group 
participation 

● Hyperlinks to Google 
Docs for viewing student 
work 

● Task Templates in Google 
Slides assigned to each 
small group to prompt 
conversation 

● Share screen with task 
information, highlighting text on 
slides for emphasis  

● Set expectations for interacting in 
the online environment 

● Acknowledge difficulty of task  
● Give instructions both verbally 

and on Google Slides 
● Assign random groups 
● Set up the Explore phase by 

suggesting group roles (Notetaker, 
Spokesperson, Timekeeper) 

● Set an 8-minute timer 
  

Explore 
Facilitating 
small group 
analysis of 

student work  
 

● Zoom Breakout Rooms 
for small group 
conversations 

● Task Templates in Google 
Slides for monitoring 
student progress in real-
time and recording 
student thinking 

 

● Give teachers 3 minutes of think 
time as a group 

● Listen without guiding the 
direction of teacher conversations 

● Ask purposeful content questions 
about proportional reasoning  

● Set up Summarize phase by 
validating, suggesting, and 
encouraging participation 

 
Summarize 

Synthesizing 
emergent 

themes in a 
whole group 
discussion 

● Task Templates in Google 
Slides for instructors and 
teachers to compare and 
contrast noticings, 
wonderings, and 
connections 

● Screen sharing to focus 
teachers’ attention on 
individual group 
contributions 

● Chat for participating 
non-verbally 

● Chat for monitoring and 
acknowledging teacher 
questions and comments 

● Frame whole-group discussion by 
referring to task templates 

● Remind teachers about the goal of 
synthesizing themes 

● Expect each group to share their 
thinking 

● Encourage groups to question 
each other 

● Validate class-related 
conversations in the chat 

● Summarize big/ideas without 
over-contributing 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

2028



 

He then explained that the differences between the teachers’ own strategies and the students’ 
strategies were intended to provide them with an opportunity to make sense of students’ thinking 
on their own, thereby highlighting that the teachers were engaging in a challenging task that 
involved instructional problem solving. By spending time showing the teachers how they could 
access the instructional task, Professor K ensured that they felt prepared to engage in a complex 
task in an online learning environment. 
 

 
Figure 1: Walking Speeds Task 

 
Clarifying Group Work Expectations. In addition to explaining the features of the 

instructional task, Professor K briefly outlined expectations for how the teachers should engage 
with one another as they worked in small groups. Prior to opening up the breakout groups, he 
encouraged the groups to assign their own roles (notetaker, spokesperson, and timekeeper to 
move conversation forward). This allowed the teachers to define their own participation and 
suggested ways in which the teachers could participate productively. He also assigned each 
group an editable Google Slide with a template for how the small groups could record the ideas 
they discussed. He then instructed the teachers to record their observations about the student 
work on their assigned slide. This move enabled Professor K to model a process for eliciting and 
making visible the teachers’ thinking, and thus was an opportunity to model ambitious teaching. 
Further, by providing opportunities for both verbal and written communication, Professor K 
leveraged technology to broaden the teachers’ access to the intellectual activity. As an aside, 
Professor K also paused to openly reflect on his efforts at continued growth in his own teaching, 
saying, “[I’m] trying to work on those directions - I have been trying to push myself on this.” 
This also modeled how an improvement mindset is central to ambitious teaching. 
Task Exploration Phase 

In the exploration phase, Professor K supported broad and active participation in the small- 
group work time. He also modeled how teachers can elicit and respond to thinking. Professor K 
leveraged two online teaching tools to do so: (1) the editable Google Slides, which included 
templates for the teachers to record the results of their small-group work time and (2) the Zoom 
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breakout rooms. He used the Google Slides to monitor all of the groups’ thinking 
simultaneously, and visited the breakout rooms to elicit, listen to, and respond to that thinking. 

Monitoring Progress in Google Slides. After releasing students to their breakout rooms, 
Professor K waited in the main Zoom room for approximately three minutes before checking in 
with the groups. This teaching move appeared to implicitly position the teachers as 
mathematically and pedagogically capable. It also appeared to encourage their engagement in 
small group discussions. As he waited, Professor K monitored the teachers’ thinking by watching 
as they recorded their ideas on the editable Google Slides. When Professor K joined the breakout 
rooms, he was prepared to engage in the conversation, meaning he could more effectively model 
how teachers elicit and respond to thinking. Thus, within the exploration phase, the teachers had 
opportunities to both make meaning and simultaneously build virtual artifacts of their thinking, 
both of which are tenets central to ambitious teaching (Ghousseini et al., 2017). 

Moving Between Breakout Rooms to Elicit, Listen to, and Respond to Thinking. After 
monitoring the teachers’ written thinking on the Google Slides for three minutes, Professor K 
then entered each breakout room in turn. He spent approximately one minute in each room 
actively engaged in discussing the teachers’ interpretations of the student work samples. The 
short duration of these breakout room visits communicated Professor K’s confidence in the 
ability of each small group to make sense of the mathematics and the students’ thinking. 

In each visit, Professor K asked questions to elicit the teachers’ thinking, listened actively as 
the teachers explained their thinking or discussed ideas with one another, and then asked 
additional assessing and advancing questions when appropriate. At times Professor K affirmed 
the productivity of the teachers’ discourse with phrases like, “Yeah, kids think like that. Be sure 
to add it to your wonderings” and “You should feel like you can add that to your spokesperson’s 
thoughts.” At times he also challenged them to be ready to justify their mathematical thinking 
when sharing with the whole class, asking questions such as, “What do you mean by grouping?” 
He also prompted specific teachers to share ideas with the whole group. For example, when one 
of the small groups brought up a point of contention in their small-group discussions, he noted, 
“You should ask [the whole group] about that.” Once he had checked in with each group, 
Professor K then moved back to the main room and continued to monitor the teachers’ thinking 
by watching their written work on the editable Google Slides. This again positioned the teachers 
as both mathematically and pedagogically capable.  
Summarizing the Task 

In the summarizing phase, Professor K brought the teachers together to discuss their ideas as 
a whole group. Professor K made use of several online teaching tools during this phase of the 
episode, including: (1) the editable Google Slides, (2) screen sharing, and (3) the chat feature in 
Zoom. Throughout the summarizing discussion, Professor K reminded students of the 
expectations for discussing ideas in an online classroom. Specifically, he encouraged students to 
listen to the other groups by considering what was similar to or different from what they 
discussed in their own small groups. As he facilitated the summarizing discussion, Professor K 
attempted to both synthesize big ideas without over-contributing and also validate conversations 
between teachers that were occurring in the Zoom chat. 

Synthesizing Big Ideas without Over-Contributing. To facilitate the discussion, Professor 
K shared his screen to display each group’s slide in turn. This teaching move oriented the 
teachers to focus on one group’s ideas at a time. By making this move, Professor K modeled how 
a teacher can facilitate discussion towards a learning goal while also avoiding the pitfall of over-
contributing or over-facilitating. In other words, he chose which group would share and in what 
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order, but he then left the subsequent discussion up to the teachers. Additionally, by sharing his 
screen, Professor K ensured the sharing groups did not have to worry about managing the online 
tools themselves, meaning they could focus on the ideas they wished to communicate. 

Professor K also encouraged the teachers to question one another after the groups shared. 
Further, when this happened, Professor K pointed out that this was occurring in an online, 
synchronous class. For example, Professor K said, “We are starting to hear pushing on each 
other’s thinking - back and forth - which is exceptionally important for our class to be successful 
moving forward.” By making this comment, Professor K modeled how teachers can negotiate 
productive social norms, which are central to the success of ambitious teaching.  

Validating Chat Conversations. Professor K also took advantage of the Zoom chat feature 
in the online learning environment to support broader student participation. For example, during 
the whole group discussion, Professor K paused, checked the chat, and noted that the teachers 
were “having a great conversation in the chat” without him. He highlighted this as a positive, 
saying, “It’s good to see people using that feature to their advantage.” This teaching move also 
modeled the importance of attending to varied means of participation in a lesson. 

Discussion and Implications  
This exploratory analysis of an online, synchronous teaching episode underscores that it is 

possible to model ambitious teaching in an online learning environment. We clarify how MTEs 
can model ambitious teaching in online mathematics education courses by highlighting several 
online teaching tools and instructional moves involved in the effective use of those tools. Our 
findings serve as a starting point for describing the work of ambitious online teaching and also 
point to strategies that other teacher educators might use in their own practice. 

Further, the results of this analysis contribute to research aimed at characterizing effective 
online teaching approaches more generally (e.g., Carillo et al., 2020). Researchers often define 
effective online instruction as teaching that supports and facilitates a community of inquiry in 
which learners construct new forms of knowledge (Garrison et al., 2000). However, MTEs are 
obligated to not only support learners in constructing knowledge but also support them in 
developing as teaching professionals. In looking closely at Professor K’s instructional episode, 
we were struck by the very real affordances of an online learning environment for modeling the 
kind of adaptation and experimentation that is central to ambitious teaching. During instruction, 
Professor K was open about the intellectual challenge involved in teaching ambitiously in the 
online environment. He leveraged the complexities of modeling ambitious teaching in a 
synchronous online environment as an opportunity to lay bare his own developing practice in 
order for teachers to learn from his efforts to improve his teaching. In doing so, he normalized 
the importance of experimenting to improve, all in service of growing as a teaching professional. 

Finally, while it is important for teachers to experience ambitious teaching as learners, it is 
also beneficial for teachers to see and consider the very real challenges involved in learning to 
teach ambitiously in a new context (Kazemi et al., 2018). Prior research indicates that supporting 
teachers to learn from models of teaching involves an explicit effort to press and support teachers 
to notice the instructional decisions and teaching moves represented in those models (van Es & 
Sherin, 2008). Though Professor K made occasional reference to his instructional decisions, 
these references were often spontaneous or general in nature. Future research might investigate 
strategies that MTEs can use to purposefully draw teachers’ attention to specific instructional 
decisions or moves when modeling in an online learning environment. 
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Engagement in the mathematics classroom through interactions with the instructor, peers, and 
content are necessary for an effective learning experience. As such, it is important to understand 
the types of interactions that teachers utilize to engage students, especially as they have had to 
shift from a complete face-to-face setting to various remote modalities. Utilizing four interaction 
types (learner-content, learner-instructor, learner-learner, and learner-interface) this paper 
analyzes 35 videos of classroom instruction with the purpose of describing the interactions that 
take place throughout the course of the mathematics lesson. While there was not a significant 
difference in the type of interaction and the modality of instruction, there was a significant 
difference in the type of interaction enacted and the modality of instruction. 

Keywords: High School Education, Instructional Activities and Practices, Technology, Online 
and Distance Education 

Introduction  
While historically providing education through distance and remote learning at the K-12 

level was reserved for gifted older students (Campbell & Storo, 1996), the technological 
advances have allowed for platforms and delivery systems that have made it a feasible means of 
stretching the walls of the classroom to reach all students (Offir et al., 2003). Teachers have had 
to contend with the preeminent mindset that distance education works best for independent, self-
motivated learners (Chou et al., 2010; Corso et al., 2021) as they try to create learning 
opportunities that engage all learners with varying ability levels and technological skills. 

Teachers tend to try to duplicate their face-to-face instruction when teaching online, which 
includes trying to replicate different types of classroom interactions (Battalio, 2007; Garrison & 
Cleveland-Innes, 2005). Interaction is seen as essential to the online educational experience and 
as such is a primary focus for online learning (Garrison & Cleveland-Innes, 2005). To explore 
the interactions secondary mathematics teachers have utilized in their online and hybrid teaching, 
we investigate the research question: What types of interactions are teachers facilitating in high 
school mathematics classes across different modalities of online teaching? 

Theoretical Framework 
Learner-content interaction is “intellectually interacting with content to bring about changes 

in the learner’s understanding, perspective, or cognitive structures” (Hillman et al., 1994, p. 30). 
Moore characterized this form of interaction as a one-way flow of information from the subject 
matter to the student (Lin et al., 2017) and stated that “without it there cannot be education” 
(Moore, 1989, p. 2). This interaction includes: conjecturing mathematics, solving problems, 
confirming one's work, interpreting mathematics, and making predictions. 

Moore (1989) claims that learner-instructor interaction is regarded as “highly desirable by 
many learners-is interaction between the learner and the expert who prepared the subject 
material, or some other expert acting as instructor” (pp. 1–2). Offir et al. (2003) study refined the 
five categories of this interaction. These categories are: social, which pertains to classroom 
climate; procedural, which is dissemination of administrative instructions about the course; 
expository, which is presenting information by the teacher; explanatory, which is the teacher’s 
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use of student input to explain content; and cognitive task engagement, which is the teacher 
presenting a question/task for the learners to engage in processing information. 

Learner-learner interaction is the interaction between learners. Moore (1989) characterized 
this as the least focused by many within education but essential for younger learners where peer 
group interactions often aid motivation. We categorized this interaction as the presentation of a 
solution, responding to another learner, collaborative problem-solving, and small group 
discussion. 

Hillman et al. (1994) recognized that another interaction dimension should be considered in 
technology-mediated learning environments. This type of interaction is necessary because the 
students must navigate technology to complete the educational task. While this could be thought 
of as manipulation of a mathematical object and thus learner-content, the difference lies in that 
content knowledge is a non-factor during the interface interaction. “Regardless of the proficiency 
of the learner, inability to interact successfully with the technology will inhibit his or her active 

involvement in the educational transaction” (Hillman et al., 1994). We operationalized this as 
responding to a poll or providing an answer via features of a technology medium.  

Participants, Data, and Methods 
Nineteen experienced high school mathematics teachers from seven districts participated in 

this study. Teachers had between six and 34 years of experience, with eight being the median 
years of experience. They had completed a 30-credit hour Master’s degree or a 12-hour graduate 
certificate in mathematics education in Summer 2020. There were 35 videos analyzed for this 
study. Teachers submitted a video recording of one of their classes from the fall of 2020 (n=19) 
and an additional video from the spring of 2021 (n=16). Teachers either submitted videos of pre-
recorded (Fall-13, Spring-4), synchronous online (Fall-13, Spring-4, hybrid (Fall-13, Spring-4), 
or face-to-face (Fall-13, Spring-4) instruction. These videos captured the entire class period, 
including breakout rooms, and were not edited before submission. COVID restrictions in each 
district dictated the mode of instruction. In the fall of 2020, most teachers recorded a video in 
advance of their class to post on their learning management system for students to view 
asynchronously. The videos ranged in length from five to 54 minutes in the fall of 2020 and 15 
to 71 minutes in the spring of 2021.  

Three levels of coding were applied to the analysis of each video. First, the type of 
interaction was identified (learner-content, learner-instructor, learner-learner, learner-interface) 
and coded. Then the second level of interaction was identified and coded. Finally, it was noted if 
technology was used during the activity.   

The researchers, the authors of this paper, met to view a video together, clarify the unit of 
analysis, and define each of the codes. The unit of analysis was considered a level 2 interaction 
type. When there was a change in the activity type, that was treated as a new unit to code. For 
example, a teacher interacting with students to solve a problem would be coded (learner-
instructor, solve a problem). If the teacher then provided students with directions about 
submitting their solution, that would be considered a new unit and coded learner-instructor, 
procedural (administrative). There were 1,962 total turns for this data, 366 for fall 2020 and 
1,596 for spring 2021.  

One video was coded together, and then six videos were assigned to pairs of researchers to 
determine inter-rater reliability. Agreement on units of analysis was determined (87.1%) and 
agreement on codes on the units that were in common was calculated (86.7%). Once inter-rater 
reliability was established, one researcher coded the remainder of the videos. 
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Data were analyzed using frequencies and Chi-square Test of Independence to determine if 
there were any significant associations between two categorical variables. Chi-square tests were 
run to determine if there were significant differences in the type of instruction and level 1 
interaction types, semester of video and interaction types, and level 1 interaction and the specific 
level 2 interaction.  

Results 
First, an analysis of the number of unique interactions by the type of instruction shows that 

there were many more interactions in face-to-face instruction (n=928) over the two semesters 
than in the other types hybrid (n=525), synchronous (n=426), and pre-recorded (83). 

During the 2020-2021 school year, mathematics teachers overwhelmingly utilized learner-
instructor interactions (74.31%), predominately cognitive task engagement or expository. Of the 
learner-instructor interactions, 36.87% were cognitive task engagement, 26.32% were 
expository, and 13.64% were explanatory. Overall, 25.28% of the interactions were learners 
engaging with mathematics content. Most learner-content interactions involved students solving 
a problem (52.02% of learner-content interactions) or making a conjecture (44.15%). In addition, 

there is evidence that teachers provided a few opportunities for their students to confirm their 
answers (n=18), predict (n=1), and interpret their solutions (n=0). There were very few learner-
learner (n=6) and learner-interface (n=1) interactions of any type across the two videos from the 
participants. Of the six learner-learner interactions, all were collaborative problem solving and 
came from three teachers’ classes. Of these six learner-learner interactions, five were in face-to-
face instruction, and one was from hybrid instruction. 

Due to the low numbers of learner-learner and learner-interface, only learner-content and 
learner-instructor were included in the next analyses. There was a significant association 
between the type of instruction and semester (𝛘2(3)=246.57, p<0.001). This suggests teachers 
provided more interactions in the spring of 2021 than in the fall of 2020. Interestingly, though 
there were more interactions in the spring of 2021, there was no significant association between 
the semester and interaction type (𝛘2(1)=0.057, p=0.811). Therefore, teachers provided the same 
types of interactions during the entire year, so there were no differences in instances of learner-
content and learner-instructor interactions. There was also no significant association between the 
type of instruction and interaction type (𝛘2(3)=2.873, p=0.412). This means that teachers 
provided the same types of level 1 interactions regardless of the mode of delivery. 

Looking at the learner-instructor interactions (n=1459), there was a significant association 
between the type of instruction and level 2 interaction types (𝛘2(24)=121.638, p<0.001). This 
suggests differences in the type of specific interactions based on the mode of instructional 
delivery. First, students had minimal opportunity to engage in inquiry, justification, or social 
interactions across all modalities, as evidenced by having percentages less than five. The percent 
of interactions of cognitive task engagement was similar for face-to-face (38.9%), hybrid 
(36.7%), and synchronous online (35.3%), but lower for pre-recorded videos (22.2%). Teachers 
engaged in explanations more frequently in face-to-face instruction (10.0%) than in the other 
modalities. Further, the percentage of expository interactions was the highest for pre-recorded 
videos (55.6%) and similar for face-to-face (21.4%), hybrid (28.8%), and synchronous online 
(28.0%). Finally, pre-recorded videos had the most procedural interactions (14.3%), followed by 
synchronous online (8.2%). 

Similarly, of the learner-content interactions (n=496), there was a significant interaction 
between the type of instruction and Level 2 interaction types (𝛘2(9)=99.842, p<0.001). 
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Confirmation, or checking work, was most prevalent in pre-recorded videos. In fact, 25% of the 
learner-content interactions for pre-recorded videos were teachers having students confirm 
correct answers. No pre-recorded video had students conjecture. However, conjecturing was 
present in hybrid (28.2%), face-to-face (47.0%), and synchronous online (67.0%). Teachers very 
rarely had students make predictions, there was only one such learner-content interaction, and 
that was on a pre-recorded video. Finally, students solved a problem most often in hybrid or pre-
recorded instruction (70% for each) but also had opportunities to solve problems in face-to-face 
(50.2%) and synchronous online (29.9%) instructional settings. 

Conclusion 
In this study, teachers tend to prefer to engage students in their classrooms via learner-

instructor interactions. This is shown through this interaction mode utilized in 74.31% of the 
interactions. However, teachers also tended to rely heavily on asking questions about the 
material, lecturing, and answering student questions. This implies that teachers utilize whole 
class interaction patterns such as the I-R-E (initiation-response-evaluation) (Vogler et al., 2018), 
where they provide information to solicit a response, receive a response from the student, and 
then react to those responses to either offer more content or ask a follow-up clarification 
question. This whole class interaction model requires real-time feedback not available during 
pre-recorded lessons. The significant association between the type of instruction and the level 2 
learner-instructor interaction types reflects that teachers utilized specific methods to cater to the 
modality of instruction. Teachers could not enact the whole class interaction patterns when using 
a pre-recorded video, so they relied heavily on exposition to convey information. Alternatively, 
once students could interact in real-time with teachers, students’ responses were evaluated 
through explanatory interactions. Not being able to interact directly with students also probably 
led to an increase in having to provide procedural interactions so that the students could navigate 
the course materials and remain aligned with the course schedule. Once teachers and students 
occupied the same space, procedural interactions were less commonplace. 

Though whole class interactions are a common practice, there were deviations in a quarter of 
the interactions to promote a more student-centered approach. Teachers allowed students to 
engage in the content to either perform mathematics (solve a problem 52.02%) or articulate an 
opinion about the nature of the content (conjecture 44.15%). While these interaction types were 
prevalent, there were still significant differences based on the type of instruction. There were 
more interactions focused on students generating correct answers in pre-recorded videos and 
fewer interactions focused on formulating opinions or conclusions.  

While differences in the interactions that took place when teachers were teaching online or in 
a hybrid format were noted, future research is needed to understand better why teachers made the 
choices they did when teaching in these different settings. Several factors may have contributed 
to these differences - local policies, familiarity with technology, professional development, 
beliefs about mathematics teaching, time to transition courses to an online environment, and 
classroom management concerns, to name a few. Answers to this question may enable 
mathematics teacher educators to better prepare prospective and practicing teachers to support 
students’ engagement through different types of interactions while learning online.  
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Ho-Chieh Lin 
The Ohio State University 

Lin.2532@osu.edu 

During the past two years, the COVID-19 pandemic has forced teachers to shift their instruction 
online, further exacerbating the challenges for teachers in orchestrating rich mathematics 
discussions. To tackle this issue, this study explored an approach that integrates online video-
sharing culture (e.g., YouTube) into mathematical practices. Specifically, I designed an 
environment to engage children in creating and sharing mathematics how-to videos online for 
subsequent peer discussions. Guided by design research principles, I recruited four upper 
elementary children in the United States. The analysis of this qualitative study showed that the 
environment created offered unique opportunities for the children to communicate their ideas in 
a multimodal way and engage in mathematical argumentation. The findings provide insights into 
how an online environment can be designed to reshape children’s argumentative discourse. 

Keywords: Design Experiment; Instructional Activities and Practices; Online and Distance 
Education; Reasoning and Proof 

Mathematical argumentation, a type of discourse that involves communication of 
mathematical ideas with reasoning, is central to the development of mathematical knowledge 
(Conner et al, 2014). This discourse fosters greater conceptual understanding (Wood et al., 2006) 
and advances academic achievement (Chapin et al., 2009; Kazemi & Stipek, 2001). Although 
benefits of mathematical argumentation are evident, enacting such practices in classrooms 
challenges many teachers (Conner et al., 2014). This problem has been exacerbated during the 
past two years. The COVID-19 pandemic forced in-person classes to be conducted remotely, 
while most teachers have little experience or support with how to engage children in 
mathematics discussions online. Indeed, the literature on mathematical argumentation in fully 
online contexts is relatively scarce as compared to that of in-person contexts. By designing a 
video-based online learning environment, this study addresses the necessity to investigate ways 
to engage learners in mathematical argumentation. 

Video technologies have been used for mathematical teaching and learning in various ways, 
such as anchored instruction (Cognition and Technology Group at Vanderbilt, 1992) and flipped 
instruction (De Araujo et al., 2017). However, little is known about how videos produced by 
learners themselves can be leveraged for promoting mathematical argumentation. Indeed, 
research that explores the use of video production as a means for mathematics learning is just 
emerging. In a recent study that investigated how middle school students collaboratively 
produced mathematics tutorial videos, Oechsler and Borba (2020) found that this activity 
changed the classroom dynamic and engaged students in communicating mathematical ideas 
with multiple modes (e.g., language, gesture, image, and music). They argued that video 
production is a new way of expressing mathematics and its multimodal affordance prompts 
students to reorganize their thinking. Their findings suggest video production has the potential to 
foster children’s mathematics discourse. It is therefore reasonable to further investigate ways to 
design an environment involving video production activities for promoting mathematical 
argumentation. 
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 This study explored an approach that integrates children’s online video-sharing culture (e.g., 
YouTube and TikTok) into a problem-based learning model. Specifically, this approach uses a 
process during which children solve math problems, create online videos to explain their 
strategies, and then discuss strategies after watching peers’ videos. I hypothesize that when 
learners use templates from online video platforms to communicate their mathematical ideas, 
they likely attend to the validity of mathematical statements and thus engage in mathematical 
argumentation. The proposed approach allows an investigation into the development of an online 
video-based learning ecology and children’s mathematics discourse. The guiding research 
questions are: (a) How can an online video-based environment be designed to promote 
mathematical argumentation? (b) In what ways do children participate in mathematical 
argumentation in the designed environment? 

Theoretical Framework 
This study is framed by the emergent perspective (Cobb & Yackel, 1996) and humans-with-

media perspective (Borba & Villarreal, 2005). The emergent perspective is a version of social 
constructivism that attempts to explore the complementary area between sociocultural and 
constructivist constructs. The premise of this perspective is that learning is a constructive process 
that emerges when learners participate in and contribute to socially organized activities (Cobb & 
Yackel, 1996). According to Cobb (2007), the emergent perspective agrees with the 
constructivist view of learning as an adaptive process; however, it is informed by a distributed 
cognition view of learning as a social activity supported by cultural tools and thus expands the 
meaning of a learning activity. Cobb et al. (2001) argued that the tools and symbols used in the 
contexts are not additions to but constituent parts of learners’ activity. Therefore, this view 
connects with the notion of semiotic mediation in the sociocultural theories, and learner’s 
engagement in mathematics activities entails reasoning with tools and symbols (Cobb, 2007).  

The idea of reasoning with tools and symbols in the emergent perspective aligns with the 
premise of humans-with-media perspective (Borba & Villarreal, 2005). That is, collective efforts 
of human (e.g., students, teachers) actors and non-human actors (e.g., computers, mobile phones) 
contribute to the reorganization and production of human knowledge. In this perspective, human 
and media technologies influence and shape each other through interaction, negotiation, and 
reflection. As claimed by Borba and Villarreal (2005), discourse supported by digital media is 
qualitatively different from oral or written language, primarily because it involves a combination 
of visual and audio information, such as images and music. It is therefore reasonable to assume 
this type of discourse can shape human thinking in a distinct way. 

In this study, participants’ discourse and learning are mediated by online videos they 
themselves created. When producing a video, a participant coordinates their verbal explanations 
and visual representations in a coherent way. This requires them to externalize and reorganize 
their mathematical ideas. When viewing a video, a participant attempts to make sense of a 
mathematical strategy through the verbal explanations and visual representations in the video. 
These online interactions are therefore multimodal through technologies, which distinguishes it 
from typical classroom interaction. I posit that, with an appropriate design of activities, video-
based discourse has the potential to drive learners to attend to the validity of mathematical 
statements, leading them to productive mathematical argumentation. 

To develop a video-based environment for promoting mathematical argumentation, it is 
important to understand how learners engage in communicating their mathematical thinking with 
technologies. Since this process involves collective efforts of the designer, participants, and 
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technologies, taking the emergent and humans-with-media perspectives together enables me to 
conceptualize discourse and learning that occur during human-media interaction. 

Methodology 
In this qualitative study, I aimed to develop an environment and learning theories for video-

based mathematical argumentation in an online environment. I adopted principles of design 
research (Cobb et al., 2003) because using video production as a means for learning mathematics 
has not been an established practice in typical classrooms (Oechsler & Borba, 2020). Therefore, 
these principles make this study interventionalist and characterized by an iterative cycle of 
design, enactment, analysis, and refinement. In addition, I drew on the conjecture mapping 
technique (Sandoval, 2014) for conceptualizing and carrying out my design. Figure 1 shows a 
conjecture map I have developed at the current stage of the research design process. My design 
conjecture is that if learners participate in the discursive practices guided by an online video-
based activity structure, then the mediating processes will emerge. My theoretical conjecture is 
that if these mediating processes take place, they will bring about the desired learning outcomes- 
that is, constructing viable arguments and reorganizing mathematical ideas. The proposed 
activity structure will be introduced in the next section. 

 

 
Figure 1. Conjecture map for conceptualizing this design study. 

VBAS Environment 
Currently, I have developed a four-phase video-based activity structure (VBAS) that aims to 

promote mathematical argumentation for small groups in an online space. This VBAS 
environment involves participants using three online technological tools: Zoom, OneDrive, and 
Flipgrid. Particularly, Flipgrid is a video platform that allows users to produce personal videos 
and disseminate them in a designated virtual community for viewing. Supported by these 
technologies, learners participate in a sequence of four activities: (a) setting up norms and 
building community, (b) independently solving a math problem and creating a strategy video, (c) 
watching strategy videos and taking notes, (d) discussing the strategies with a partner. Following 
this design, I worked with a pair of participants at a time. Since I situated my design in a 
problem-based model, each cycle of research sessions started with a problem-solving task. The 
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mathematics problems employed in this study were about fraction comparisons. An example is 
shown in Figure 2. 

 

 
Figure 2. Fraction comparison problem used during a design cycle. 

 
Rationale of the Designed Environment 

The proposed environment features video production activities. When children produce a 
mathematics video, they realize that their explanations need to make sense to themselves first so 
that the viewers can understand. Such a self-explanation process can help individuals modify 
their existing knowledge with new information and promote their problem-solving skills (Chi et 
al., 1994). This may also help the children see themselves as capable mathematical thinkers. 
Participants & Settings 

This study is part of a larger project examining children’s video-based mathematics discourse 
in an online environment. I recruited two fifth graders and two sixth graders in the United States, 
who were female Asian Americans. The participants were grouped into pairs since peer 
discourse is the focus of this study. During each research session, I met with one pair remotely 
via Zoom as they used their own computers or tablets at home. Each pair participated in a series 
of 60–90-minute sessions. In addition, I conducted semi-structured interviews with each 
participant after they completed the research sessions. 
Data Collection & Data Analysis 

Data collected for this study came from multiple sources: (a) video recordings of each Zoom 
session, (b) online math videos created by participants, (c) feedback on videos typed by 
participants, and (d) the researcher’s memo. 

To analyze the data, I adopted the constant comparison method (Corbin & Strauss, 2014), 
which enables me to identify themes of significant phenomena. My analysis involved examining 
mathematics videos created by the participants and video recordings of research sessions to 
highlight and transcribe episodes in which participants generated mathematical arguments. 

Results 
Here I present some findings from a research cycle of VBAS that employed the problem 

introduced in Figure 2 and involved a pair of sixth graders, named Alissa and Nancy. Prior to 
this cycle, the pair had participated in two cycles of research sessions. The analysis here focuses 
on how the children engaged in three VBAS activities: (a) problem solving and strategy video 
production, (b) video viewing & commenting, and (c) peer discussion. 
Problem Solving & Strategy Video Production Activity 

This activity asks participants to independently solve a math problem and create a short 
video, less than two minutes, in which they explain their strategies. The goal is to activate their 
existing math knowledge and construct viable argument. As shown in Figure 3, Nancy and 
Alissa used different strategies in solving the problem that involves comparing fraction 
magnitudes. Nancy only considered the situation in the first table of the problem. She first cut 

Imagine that you were invited to a home party. You saw the same pies being 
served at three tables of your friends: one table serves two pies with two people, 
another table serves three pies with three people, and the third table serves five pies 
with six people. Friends at each of the tables call out to you to pull up a chair and 
share the pies. You are to join one of the tables. Is there any helpful way that you can 
use math to help with your decision-making? 
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each whole into halves, creating four halves. Then she distributed each half to each person. Next, 
she cut the remaining half into three smaller parts and shared them with three people. In contrast, 
Alissa considered all the situations. On the first and second table, she divided each whole into 
equal parts based on the number of sharers, and then each person would take one part from each 
whole. However, she stopped using this strategy for the third table. She probably noticed the 
drawing would not help her compare the magnitudes, so she switched to a more formal strategy- 
that is, first finding a common denominator for the three fractions, next converting all fractions 
to share the common denominator, and finally comparing the numerators. 

 

   
(a) Nancy’s work.             (b) Alissa’s work-part 1.               (c) Alissa’s work-part 2. 

Figure 3. Screenshots of two participants’ strategy videos. 
 

In addition, Nancy and Alissa used different features afforded by Flipgrid to represent their 
video contents. Nancy’s video was stylish as she put herself in the corner with a flowery frame 
and a starry night scene as background. In contrast, Alissa’s video is more simplistic, focusing on 
the mathematical representations. Moreover, the pair used different background music. 
Video Viewing & Commenting Activity 

The third activity asks participants to individually watch each other’s video twice and jot 
down their thoughts in a table with three sentence starters on OneDrive. The goal is to prompt a 
participant to examine their partner’s strategy video carefully or even critically. Figure 4 
displayed Nancy’s contributions.  

In the “I notice…” row, Nancy expressed her observation of the difference between Alissa’s 
strategy and hers, claiming Alissa’s strategy was complicated and her speech pace was fast in the 
video. In addition to the comments on the strategy video, Nancy stated that she understood 
Alissa had limited time to explain such a complicated method.  

In the “I wonder…” row, Nancy expressed her inquiry about why Alissa kept using this 
strategy. This inquiry probably comes from the fact that Alissa had used this strategy during the 
previous two research cycles. 

In the “I would suggest…” row, Nancy suggested Alissa try a different strategy that would 
make sense to lower graders. The reason why Nancy offered this suggestion is worth further 
investigation. 

 

 
Figure 4. Screenshot of Nancy’ comments. 
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Peer Discussion Activity 
During this activity, participants’ notes are screenshared, and they are encouraged to talk 

about their comments with their partner and respond to each other. The goal is to see if the pair 
would engage in mathematical argumentation. Presented below is an episode in which Nancy 
first talked about her comments. Note that Alissa did not show her face during this interaction. 

Nancy: you always use like fractions like that, you find fractions with unequivalent 
denominators, and you find them equivalent denominators. How do you always… how 
do you always find a way to do that? 

Alissa: The reason I think is because like, it's easier to compare that way and how I like, what 
I do to find the multiples that sometimes I'll like, multiply the number by like the other 
number to get multiple. Or like, I try to find, like, more like the least common multiple 
and I... 

Nancy: How do you find a number… How do you find a number to multiply with? 
Alissa: For example, like, if I try to find the common multiple of three and seven, what I 

would do is, I like, I do three times seven. So I would find 21. 
In the above vignette, Nancy first described what she noticed about Alissa’s consistent use of 

an algorithm that converted fractions with unlike denominators into fractions with the same 
denominators. She asked Alissa how she could always identify a number (i.e., common multiple) 
that she could convert different denominators to. Alissa first responded with a general rule, but it 
seemingly did not fully convince Nancy. Therefore, Nancy rephrased her question in a more 
specific way, and then Alissa described the rule by using an example. Their conversations 
continued as follows. 

Nancy: But do you always like a certain technique or something? Like, try to find something 
they'll have in common or something? 

Alissa: Oh, yeah. So like, sometimes, like, what I'll do is that I'll also try to find if I think that 
maybe like a number is like, maybe like there's a smaller number than that. What I tried 
to do with that, uhh…I'll..umm 

This vignette demonstrated that Nancy went back to her original inquiry about Alissa’ 
consistent use of such method. Alissa probably did not think about the question before because 
her response revealed some level of hesitance. Speculating that writing down her thoughts might 
help process her thinking, I thus intervened and asked if she would like to share her screen and 
use the Zoom whiteboard. Alissa seemed to agree, so she shared her screen immediately. She 
then began writing down mathematical symbols on the whiteboard while explaining a different 
method (see Figure 6). 

 
Figure 5. Alissa’s writing on the whiteboard. 
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Alissa: [shares her screen immediately] So like, let's say I have like the numbers 10 and 
maybe 11. So what I would do is I would list maybe the multiples until, or what I would 
do is [talking while writing on the board] I would go like that and then 110, or what I 
would do is that I’ll go 100. And like I will go umm so times one it's 10, times two, times 
three, and then so on and then 100 and then 110. And then I would go to 11. And then I 
would go like times one, times two, times three and then I don't know, then like 99, and 
then I get… 

Nancy: 110. One thing that both have in common, okay.  
Alissa: Yeah, something like that. 
Nancy: So go multiply them until you find a way to find the number, okay. 
Alissa: Yeah, like, so I don't usually do that. I just usually will be…uh… I'll like multiply 

these numbers together to get this number [circling numbers on the board]. 
The above vignette showed that writing might help Alissa externalize her thinking. She 

proposed another example and explained another way to find a common multiple for two 
different numbers. This method made sense to Nancy as she replied with an answer to Alissa’s 
example and replied with her interpretations. After talking about the rule, Nancy inquired about 
Alissa’s decision of using the rule. 

Nancy: Um, okay. But why do you always use this one way? 
Alissa: Because like, let's say I want to compare like 1/10 and 1/11. So they're not equal 

[circling 10 and 11]. I wouldn't be able to properly compare them. And like just looking 
at them and then like maybe deciding, I think 1/11 is bigger, really? Or 1/10 is bigger, 
then so it's better to go like 11 over 110, and then 10 [writes 10/110]. This one is bigger 
[circling 11/110]. 

In this vignette, Nancy ‘s question had potential to shift their discussion from procedure-
focused to concept-focused. However, Alissa did not articulate the underlying concepts. As 
demonstrated in her response and Figure xx, she applied her previous example to a fraction case 
and showed how the algorithm worked. Nancy seemed to accept Alissa’s response and proposed 
her suggestions as follows. 

Nancy: Ok. So, umm…So if you had to explain this problem to maybe a fourth grader, how, 
would you use a different technique or use the same technique? with more explanation? 

Alissa: I would use the same technique with more explanation. So that they would 
understand better because …yup! 

The above episode indicates that Nancy and Alissa engaged in asking questions and 
justifying their ideas with limited intervention from the facilitator. Particularly, Nancy’s 
questioning showed that she attended to Alissa’s responses, and her questions prompted Alissa to 
develop a more comprehensive account for finding a common multiple for denominators when 
comparing fraction magnitudes. However, their discussions were focused on procedures. This 
finding is evident in a few other episodes when participants talked about their strategies toward 
other fraction comparison problems. 

Discussion 
This study investigated how an online video-based environment can be designed to support 

mathematical argumentation and the way children engage in mathematical argumentation in such 
an environment. The results indicate that the proposed environment created unique opportunities 
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for the participants to communicate their mathematical thinking in multiple modes and engage in 
mathematical argumentation. The video production activity involves a multimodal process of 
constructing viable mathematical arguments as the children individually coordinated their verbal 
explanations and relevant visual representations. Moreover, the video viewing and commenting 
activity encouraged the children to carefully examine their partner’s arguments. Since the 
children were asked to type comments based on their observation, they would re-watch the part 
they did not understand and reorganize their thinking. This process is also multimodal as the 
children attended to the mathematical ideas that were verbally and visually transmitted. 
Furthermore, the peer discussion activity allowed the children to talk about their ideas to each 
other in real time. Because the previous two activities have engaged participants in thinking 
through their arguments and their partners’ arguments, they may come to this activity with 
inquiries or revised ideas. Therefore, a productive mathematical argumentation like the one 
presented in the results section could likely happen, and in humans-with-media terms (Borba & 
Villarreal, 2005), the videos play an acting role as important as human participants during this 
discourse. 

The video production activity that involves participants designing math videos based on their 
own strategies is featured in this study. This process involves a great deal of autonomous 
problem-solving and decision making since participants need to figure out affordances of the 
video platform, activate their existing mathematics knowledge, and arrange presentation contents 
in a way that makes sense to themselves and their peers. In addition, the participants often added 
pleasant backdrops and cheerful music to their videos, which makes them appealing to the 
viewers. In this sense, the math videos are not merely pertaining to mathematics, but also 
communication and personal identity. 

Much of existing literature on mathematical argumentation focuses on teacher’s moves, such 
as questioning (e.g., Conner et al., 2014). In contrast, this study attempted to lessen the need for 
the facilitator to directly guide children’s discourse by proposing a sequence of learner-centered 
activities. The VBAS design offers scaffolds to prepare children to lead their discourse by 
themselves. This way of positioning children as capable agents is different from that of using 
adult-created videos for flipped classrooms or using ready-made dialogic videos for vicarious 
learning, which usually involve obedience-oriented ways of problem-solving strategies and 
explanations. Indeed, the proposed design encourages children to not only engage in video-based 
discourse but also come to take ownership of their mathematical learning. 

While the findings seem promising, there are limitations to this study. For instance, the 
participants of this study were upper elementary children who knew each other, had some 
experiences with video production, and felt comfortable sharing their mathematical ideas online. 
It is unknown how learners with different backgrounds engage in the proposed environment. 
Additionally, this study has not analyzed how the children’s knowledge on fraction comparison 
developed over time throughout the sessions. These are important areas that need further 
research in order to understand how to better support children’s mathematical argumentation in 
an online space. 
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El estudio realizado tiene por objetivo analizar el cambio en las acciones mentales de un 
estudiante asociadas con los esquemas de uso que moviliza al resolver una tarea de 
aproximación al área de una región con GeoGebra. Se consideraron elementos teóricos 
relacionados con el enfoque del razonamiento covariacional y con el enfoque instrumental. El 
estudiante, luego de generar, movilizar y refinar sus esquemas de uso, hizo visibles 
comportamientos que se asocian con acciones mentales, como dibujar un polígono para 
aproximar un área y reconocer que, a más puntos sobre la gráfica, la distancia entre estos es 
menor y se obtiene una mejor aproximación. Es decir, los comportamientos observables pueden 
ser asociados con niveles de razonamiento o bien con cambios en las acciones mentales 
asociadas, que indican un tránsito de un nivel de razonamiento a otro.  

Palabras clave: Resolución de Problemas; Tecnología; Razonamiento y Demostraciones 

En la literatura, el razonamiento covariacional se identifica como una habilidad esencial para 
la comprensión de conceptos de Cálculo, como es el caso de la integral definida (Carlson et al., 
2002), contar con esta habilidad significa entender las coordinaciones que se dan entre los 
valores de dos o más variables que se ponen en juego al resolver un problema (Thompson y 
Carlson, 2017). Kouropatov y Dreyfus (2014) manifiestan que el concepto de integral se puede 
desarrollar a partir de una estructura jerárquica de cuatro elementos, donde, la aproximación al 
área de una región con objetos geométricos es el primer nivel de dicha estructura.  

Tratar de que los estudiantes relacionen el concepto de integral definida con el área bajo la 
curva, promueve la construcción de conocimiento matemático y de significados de los conceptos 
involucrados en la resolución de problemas, estas construcciones se pueden apoyar en el uso de 
tecnologías digitales (Santos-Trigo y Aguilar, 2018). 

Las tecnologías digitales permiten experimentar con cantidades que cambian dinámicamente 
en tiempo real (Carlson et al., 2002). En palabras de los autores: “estas tecnologías ofrecen 
valiosas herramientas para (…) aplicar el razonamiento covariacional y analizar e interpretar 
funciones asociadas con situaciones dinámicas” (Carlson et al., 2002, p. 374). GeoGebra es un 
ejemplo de un sistema de geometría dinámica que, aparte de dar movimiento a las construcciones 
realizadas, genera un entorno de aprendizaje interactivo y visual que permite explorar cómo se 
relacionan las variables con la solución geométrica (Zengin, 2018). 

Para conocer sobre el razonamiento covariacional que ponen en juego los estudiantes cuando 
utilizan GeoGebra se realizó una investigación que tuvo como objetivo analizar el cambio en las 
acciones mentales de un estudiante asociadas con los esquemas de uso que moviliza al resolver 
una tarea de aproximación al área de una región con GeoGebra.  
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Aproximación conceptual 
Se consideraron elementos teóricos relacionados con el enfoque del razonamiento 

covariacional propuesto por Thompson y Carlson (2017) y con el enfoque instrumental 
desarrollado por Rabardel (1995).  

Las imágenes de covariación funcionan como vehículos de operaciones mentales, expresadas 
a través de representaciones e impresiones de un individuo en un contexto dado, y como estas 
evolucionan, se pueden categorizar por niveles que surgen de forma ordenada (Carlson et al., 
2002), y la evidencia de tal evolución se manifiesta en la forma en que una persona coordina los 
cambios en los valores de dos cantidades (Saldanha y Thompson, 1998). Una imagen de 
covariación está sustentada en las acciones mentales que una persona realiza, y estas pueden 
asociarse con el conjunto de comportamientos observables en un sujeto que resuelve un 
problema (Carlson et al., 2002). El constructo teórico de Thompson y Carlson (2017) consta de 
seis niveles de razonamiento covariacional, en este trabajo se consideran del segundo al cuarto 
(tabla 1) y se asocian con acciones mentales correspondientes a cada nivel en el sentido descrito 
por Carlson et al. (2002). 

 
Tabla 1: Niveles de razonamiento covariacional. Adaptado de Thompson y Carlson (2017) 

Niveles Descripción 

Coordinación de 
valores 

AM4: Coordina los valores de una variable (x) con los valores de otra 
variable (y) con la anticipación de crear una colección discreta de pares 

(x, y). 

Coordinación 
gruesa de valores 

AM3: Forma una imagen general de los valores de las cantidades que 
varían juntos, como "esta cantidad aumenta mientras que la cantidad 

disminuye". 

Precoordinación 
de valores 

AM2: Imagina que los valores de dos variables varían, pero de forma 
asincrónica: una variable cambia, luego la segunda variable cambia, luego 

la primera, y así sucesivamente. 
 
Por otro lado, Rabardel (1995) indica que los esquemas de uso se relacionan con la ejecución 

de tareas de índole funcional que pueden tener objetivos propios y que están relacionadas con el 
reconocimiento de características, propiedades y actividades específicas de GeoGebra. En este 
trabajo se realizaron tareas como dibujar un polígono para aproximar un área, determinar su área, 
hacer zoom para refinar una aproximación, entre otras. Los estudiantes tenían conocimiento de 
diversas herramientas de GeoGebra: función, polígono, área, zoom, utilizadas para otros temas y 
otros contextos, por lo que ya habían generado esquemas de uso de ellas, por lo que, en algunos 
casos los movilizan o refinan y, en otros, generan nuevos. 

Métodos y procedimientos 
En este documento se presenta el trabajo de un estudiante de los primeros ciclos 

universitarios al que llamaremos Juan, quien contaba con 17 años de edad. Las evidencias 
obtenidas fueron recolectadas mediante documentos escritos, archivos digitales y una entrevista 
semiestructurada que fue videograbada, así como reportes realizados por el investigador. Juan 
contaba con los antecedentes de haber trabajado con funciones reales de variable real, había 
estudiado el tema de límites, reconocía la continuidad de una función a partir de su gráfica, o de 
forma analítica al utilizar la definición y había realizado el cálculo del área de figuras 
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geométricas. La tarea diseñada incluyó dos ítems y está relacionada con el concepto de integral 
definida mediante el área de polígono como una aproximación al área que se forma bajo la 
gráfica de una función y el eje X en un intervalo cerrado. El estudiante trabajó esta tarea en 
GeoGebra, mediante un enlace que les fue proporcionado para ello.  

La figura 1 muestra una región R limitada por la gráfica de una función f y el eje X para 𝑥 ∈
[0; 8]. Utilice el enlace para sus exploraciones: https://www.geogebra.org/m/mmcyf6pr. 

 

 
Figura 1: Aproximación con polígonos 

Análisis y discusión 
El estudiante movilizó su esquema de uso polígono para trabajar en la tarea y lo utilizó para 

dar una primera aproximación del área de la región R. Para el inciso (a), Juan mencionó que 
dibujó un primer polígono con 5 puntos sobre la gráfica de la función y al observarlo se percató 
de que las regiones del polígono que exceden a la región R se podían reducir al colocar más 
puntos sobre la gráfica de la función, por lo que dibujó un nuevo polígono con 9 puntos. 
Determinó su área movilizando su esquema de uso área y respondió al ítem (a). Cuando Juan 
dibuja un polígono y coloca puntos sobre la curva, se hacen visibles un conjunto de variables: (i) 
número de puntos sobre la gráfica de la función (vértices del polígono), (ii) distancia entre dos 
puntos consecutivos (lados del polígono), (iii) área del polígono y (iv) áreas excedentes. 

Al visualizar los valores de las variables número de puntos y áreas excedentes muestra 
comportamientos de una AM2, coloca un número de puntos y observa las áreas excedentes, 
coloca más puntos y observa nuevamente las áreas excedentes, es decir, de acuerdo con 
Thompson y Carlson (2017), relaciona estas variables de manera asincrónica. El hecho de variar 
el número de puntos para aproximar el área solicitada es evidencia de que a Juan no le pareció 
suficiente colocar 5 puntos y decidió aumentar el número a 9, con lo que se aproxima mejor al 
área de la región R, rasgos asociados con una AM3. 

La evidencia encontrada sugiere que Juan primero movilizó el esquema de uso polígono e 
hizo visible una AM2 cuando relacionó las variables número de puntos y áreas excedentes. El 
movilizar nuevamente el esquema de uso polígono y dibujar más puntos se asocia con rasgos de 
una AM3, y también induce la movilización del esquema de uso área, con lo que enfoca su 
atención en una nueva variable que es el área del polígono (figura 2).   

 

  
Figura 2: Relación entre las acciones mentales y la movilización de esquemas de uso 
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Para el inciso (b), Juan explicó que dibujó un polígono con 12 puntos para obtener una mejor 
aproximación, con lo que generó un esquema de uso partición, ya que Juan había identificado 
que al colocar más puntos la distancia entre ellos disminuía y se lograba una mejor 
aproximación, aquí Juan había puesto en juego una nueva variable distancia entre dos puntos 
consecutivos. Juan identificó que el aumento del número de puntos corresponde a una mejor 
aproximación del área de la región R y a la disminución de la distancia entre puntos 
consecutivos, comportamientos que corresponden a una AM3. También refinó su esquema de 
uso partición al querer aumentar el número de puntos e identificar que, para hacerlo, necesitaba 
modificar la escala de la gráfica utilizando la herramienta Zoom de GeoGebra. Las conjeturas de 
Juan las realiza a partir de la modificación del número de puntos y del área del polígono que se 
forma con ellos, al parecer esto lo llevó a crear una colección discreta de pares que relacionan 
estos valores, que es un rasgo de un comportamiento asociado con una AM4. 

Conclusiones 
El aporte de este trabajo al campo de la Matemática Educativa es el uso de dos 

aproximaciones teóricas: el razonamiento covariacional de Thompson y Carlson (2017) y el 
enfoque instrumental de Rabardel (1995), para generar un modelo explicativo de la evolución del 
razonamiento covariacional de Juan y su interrelación con los esquemas de uso cuando trabaja en 
una tarea con GeoGebra. 

En este modelo los elementos teóricos de cada enfoque quedan entrelazados y en momentos 
parece que actuaran de manera simultánea. Al mismo tiempo que se pone en juego un esquema 
de uso, se cambia a otra acción mental, por lo que resulta difícil distinguir qué ocurre primero.  

Se identifican comportamientos que ya no están asociados con una acción mental específica, 
por lo que pensamos que están en un tránsito de una acción mental a otra.  
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RELATIONSHIP BETWEEN COVARIATIONAL REASONING AND USE SCHEMES 
IN AN APPROACH TASK  

The study aims to analyze the change in the mental actions of a student associated with the use 
schemes that he mobilizes when solving an approximation task to the area of a region with 
GeoGebra. Theoretical elements related to the covariational reasoning approach and the 
instrumental approach were considered. The student, after generating, mobilizing and refining 
his use schemes, made visible behaviors that are associated with mental actions, such as 
drawing a polygon to approximate an area and recognizing that, the more points on the graph, 
the distance between them is smaller and a better approximation is obtained. That is, observable 
behaviors can be associated with levels of reasoning or with changes in associated mental 
actions, which indicate a transition from one level of reasoning to another.  
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A group of 27 preservice teachers (PSMTs) from two different institutions ranked and provided a 
rationale for their rankings of three versions of a task presented on three different technology 
platforms (CODAP, Geogebra, spreadsheet). The PSMTs then worked through the tasks in 
detail, reranked the tasks and provided a rationale for why they either changed or maintained 
their ranking. More than half the PSMTs changed their ranking and almost half changed their 
first choice of task. Rationales for change showed increased attention to the mathematical 
content of the task and the possibilities for “math action technologies” (Dick and Hollebrands, 
2011) available in each platform. 

Keywords: Teacher Education - preservice, Technology, Teacher Beliefs  

Introduction 
Choosing tasks to use in lessons in order to teach mathematical concepts is a basic activity of 

mathematics teachers. Therefore, teachers’ ability to choose tasks is critical. The purpose of this 
study is to compare how pre-service teachers justify their ranking of three versions of the same 
task presented on three different technology platforms (CODAP, Geogebra, spreadsheet), first 
after reviewing the instructions for the task, and then, after working through each version of the 
task in detail using each platform. 

Literature review and relationship to research 
As Sullivan et al. (2013) and others have noted, teachers generally do not have time to 

develop significant numbers of their own tasks and generally rely on pre-existing tasks for use in 
their lesson plans. Therefore, evaluation of existing tasks is an important skill for preservice 
mathematics teachers (PSMTs) to develop. Sullivan et al. suggest three levels of decisions to be 
made in evaluating and choosing a task for use: (i) whether it matches curriculum goals, (ii) 
whether the demand of the task is appropriate for the students, and (iii) whether the task can 
accommodate a variety of learners. 

Dick and Hollebrands (2011) argue that advanced digital technologies available for use in 
mathematics education typically fall into two categories namely “conveyance technologies” and 
“mathematical action technologies” (MATs). McCulloch et al. (2018) in a study involving 21 
mathematics teachers with experience in teaching with advanced digital technologies pose the 
questions “Why do teachers choose to use technology to teach mathematics? What technology 
tools do teachers choose to use and why? and What general factors do teachers consider when 
selecting a particular technology tool to use?” They conclude that ease of use, for both the 
teachers themselves and their students is key factor in choosing particular technologies. 

At the level of task choice, advanced digital technologies add another level of complexity to 
the decision making in planning lessons. Building on a study by Laborde (2002) involving 
teachers designing activities using an advanced digital technology (in this case Cabri), Kasten & 
Sinclair (2009) posit that teachers choosing tasks might first be drawn to activities that simply 
provide “visual amplification,” (p. 134), could, after some experience with technology choose 
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tasks involving generation of data for analysis and finally reach a stage where they are choosing 
tasks that take advantage of unique affordances of the technology. 

McCulloch et al. (2018) provide many instances of their participants arguing for the value of 
MATs in particular tasks that were effective in promoting student learning. McCulloch et al. 
(2021) go further and argue that, not only can MATs be an effective driver of student exploration 
and learning, but that such use is a matter of digital equity. 

In our study with relatively inexperienced pre-service mathematics teachers we sought to 
examine the issue of evaluation of materials by studying differences between PSMTs evaluation 
of tasks based on a relatively cursory “static” review followed by an extended period of actually 
doing the task as a learner. We were particularly interested in their attention to the suitability of 
the tasks to the teaching of the content and, per Dick & Hollebrands (2021) their attention to the 
extent to which the different versions of the task exemplified MATs 

Methods and Methodologies 
Setting and Participants 
Two groups of Pre-service Mathematics Teachers (PSMTs) (n=15 & n=12) at two different 
institutions were presented with the following task (see Figure 1a): 
 

 
Figure 1. Comparing Mean and Median Tasks  

 
The three tasks posed exactly the same questions for users to answer but in the context of 

different technological platforms. The images of each platform (Figure 1b, c,and d) were 
included for PSMTs to gauge the capabilities and interactivity level that each platform might 
have to offer. They worked on the task for 10 minutes in the class. Then, as a homework exercise 
the PSMTs were asked to revisit the examples but this time work through the examples in detail 
and to reconsider their ranking of the tasks and complete a form ranking the tasks one more time. 
They were also asked to list pros and cons of each technology platform. 
Data Collection 

The data collected consisted of: (i) The PSMTs initial rankings and rationales for their 
rankings; (ii) Their work on the tasks; (iii) Their reranking of the tasks with rationale for 
changing (or not); (iv) Their thoughts on the pros and cons of each platform. 
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Data Analysis 
The participants’ original critiques were analyzed using the constant comparative method 

(Glaser & Strauss, 1967) to establish trends in the data and to develop a code book. The code 
book was then applied to the PSMTs explanation for either maintaining or changing their 
rankings and to their “pros and cons” of each technology platform. 

Results 
Initial analyses/critiques 
Change of ranking 

The first result to note is that almost two-thirds (17 of 27 (63%)) of the PSMTs changed their 
ranking of the activities after having worked through them in detail. Furthermore, of the 17 
PSMTs who changed their ranking more than 70% (12 of 17) changed their first choice. 
Therefore, after working through the activities in detail almost half the PSMTs 12 of 27 (44.4%) 
changed their first choice of activity. 

 
Table 1. PSMTs’ rankings by platform  
Initial ranking Second ranking  

1st Choice 2nd Choice 3rd Choice 1st Choice 2nd Choice 3rd Choice 
CODAP 15 8 4 18 5 4 
Geogebra 8 10 9 7 12 8 
Spreadsheet 4 9 14 2 10 15 

 
Table 1 above shows that in the final rankings there was a clear overall preference for 

CODAP with 18 of the 27 (66.7%) participants ranking it first. This represents a change in the 
direction of CODAP up from 15 out of 27 in the initial rankings. It should be noted as well that 
of the 12 participants who changed their first choice more than half (7 out of 12) made CODAP 
their first choice and in only 2 instances was CODAP moved out of first place. 

Another result of note was the “demotion” of spreadsheets. The spreadsheet activity was 
initially ranked last by 14 of 27 (51.9%) of the PSMTs of the remaining 13 PSMTs, 9 of 13 
(69.2%) gave the spreadsheet a lower ranking after working through the activities. 
Rationales for changing or not changing 

What accounts for the change by those who changed their rankings? Before considering the 
rationales for the second ranking it is instructive to consider the PSMTs’ rationales for the first 
rankings i.e. what were they telling us about what they valued before working through the task in 
detail. In analyzing those rationales a number of patterns emerged: 

A number of PSMTs expressed concern about difficulty of usability: “With Codap, you have 
to teach students how to use the applet, which takes up substantial time.” (I1P7 - Institution 1, 
PSMT 7); “I believe what will scare off the students is that the other technology platforms 
requires more clicking. So instead of actually learning about mean and median I think a good 
portion of the class will involve learning on how to use the software” (I2P10). 

Interestingly some support was expressed for spreadsheets on the grounds of its utility outside 
of the particular task or even a school setting “Spreadsheet may not be the best but it allows for 
interaction with excel, which is commonly used in professions post schooling” (I1P9), 
“Spreadsheet is the most applicable and widely used in all kinds of jobs and tasks” (I1P10). 

Usability and applicability outside the task are general issues and, in the rationales before the 
PSMTs worked through the task there was relatively little attention to the content of the task 
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itself. Many PSMTs mentioned visualisation in a general sense but one PSMT wrote “I like the 
visualizations that CODAP and Geogebra provide. This allows students to have a visual 
understanding of the values. CODAP will also allow students to highlight and isolate various 
ideas for students to look more deeply at the ideas of mean and median” (I1P1). This level of 
explicit attention to the context of the task was not common. 

Analysis of the rationales submitted by the PSMTs “answered” the three issues raised above. 
Using the software convinced some PSMTs that CODAP was “Not as hard to use as I thought” 
(I1P7), “I thought CODAP was complicated to operate, but it turned out to be unexpectedly 
convenient” (I2P3). It was also noted that “the [Geogebra] applet provided does not allow for 
much engagement with the software itself” (I1P9). 

In addition, coding of the data showed a shift in attention towards the specifics of the task at 
hand. The most significant pattern to emerge, in terms of “math action technologies” Dick and 
Hollebrands (2011) is the number of PSMTs who noted that CODAP “combines features from 
both spreadsheets and Geogebra” (I2P12) to make the mathematical content of the task more 
visible and so “makes the comparison easier to see” (I2P6). 

In the rationales for rankings after doing the tasks the PSMTs also started to pay attention to 
the suitability of each platform for the task. A number of PSMTs commented on the constraint 
placed by pre-made Geogebra applet on “math action technologies”: “[The Geogebra applet] 
does a lot of the work for you” (I1P10); “The creativity in this applet compared to the rest is 
more limited” (I1P8). Many PSMTs got specific about how the platform enabled or constrained 
understanding mean and median, for example “even though Geogebra . . . provides visual 
representation of the concept . . . the comparison is my easier to see in CODAP . . . in the case of 
. . . two data set[s], all you need to do is . . . drag each data set to the x-axis of the graph and see 
the measurement of Median and Mean in numeric and graphical representation, whereas in 
Geogebra when you drag the data (change and manipulate data) you would not be able to see the 
previous data and result, unless taking a screenshot or opening a different browser” (I2P6). 

In terms of the “demotion” of spreadsheets, the rationales noted the lack of visuals provided 
by the spreadsheet “The spreadsheet was moved to last because the only way data is displayed is 
a table” (I2P9), or noted that while visuals could be generated they would require some work “I 
find the spreadsheet rather limiting . . . If we want a visual, we have to put together a graph, 
which is something CODAP already has” (I1P7). 

Overall, a comparison of the rationales for the pre- and post-rankings shows a shift away from 
generalised statements to statements that were more engaged with the understanding of the 
mathematics in the task. 

Conclusion 
Evaluating and choosing tasks for implementation in their classrooms is a vital task for 

teachers. Pre-service teachers, moreover, need experience in a trajectory of choosing a task, 
working through a task in detail and implementing the task to see the differences in their own 
understanding of the task at each stage of that trajectory. The research presented above engaged 
pre-service teachers in the first two stages of this trajectory. The results of the study were that 
than half the participants changed their ranking of three versions of the same task after they had 
worked through the tasks in detail showing how much difference there can be in understanding 
of a task before and after working through the task in detail. Furthermore, it was encouraging to 
see how much the focus of attention shifted from general statements about tasks and technology 
to specific attention to the mathematical content of the task and the possibilities for “math action 
technologies” in various platforms. 
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In this paper, we present the development of an investigation on the promotion of covariational 
reasoning in high school students (14-15 years old) in Mexico. The study consists of designing 
and applying a sequence of didactic activities that simulate a real situation virtually. The 
activities are organized through a Hypothetical Learning Trajectory supported by digital 
technology and elements of Cuevas-Pluvinage didactics. The activities were evaluated according 
to the levels of covariation proposed by Carlson and colleagues, categorizing students' 
achievements and difficulties for each level of understanding. The results show that the activities 
favor students' progress by moving from the context situation to the different representations, 
establishing the relationship between the variables, and identifying their functional dependence. 

Keywords: Secondary Education, Technology, Algebra, and algebraic thinking. 

Introduction 
Variational thinking has been interpreted as a way of modeling the covariation between 

quantities and magnitudes, according to Vasco (2003): 
a dynamic way of thinking, which attempts to mentally produce systems that relate their 
internal variables so that they covary like the patterns of covariation of quantities of the same 
or different magnitudes in the cut-out subprocesses of reality. (p. 6) 
In various investigations (Carlson et al., 2002; García, 2016; Tompson & Carlson, 2017), it 

has been found that the concept of covariation between variables leads to the concept of function 
because the covariation relationship is often expressed as a functional relationship. Despite being 
present from elementary algebra to calculus, it is still a topic that is a source of difficulties for 
students. They fail to perceive and relate the patterns between the quantities involved in the 
different mathematical situations presented to them. There are even studies, such as that of Aldon 
and Panero (2020), that have reported cases where the interpretation of the mathematical 
situation proposed when analyzing the variables involved, students confuse a graph with the 
trajectory of a moving object, from which a lack of clarity in the meaning of the axes and the 
interpretation of the graphical representations is inferred. 

Given this problem, some studies, such as Vasco (2006), recommend that the teaching of 
variation should occur in various contexts that represent real situational problems for the student, 
that are adapted to the proposed learning objectives, and that lead to the concept of function. 
However, these contexts must have specific characteristics that make it possible to achieve these 
objectives; as mentioned by Hitt (2021), the characteristics of the environment that can 
contribute to the development of conceptual understanding include the teachers' approaches, the 
types of tasks given to students, and the use of a variety of representations. 
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For his part, Avila (2018) warns of the importance of variational thinking for the concept of a 
real function since "there is a need to establish activities in the classroom, in which school 
alternatives that promote the recognition of variation in situations in which the concept of 
function is present are raised" (p. 198). 

Our study approaches activities from a variational-covariational approach with digital 
technology support. In the NCTM standards (2000), technology enriches the range and quality of 
investigations since it allows viewing mathematical ideas from multiple perspectives. The 
feedback enhances student learning that technology provides, and it gives teachers options for 
adapting instruction to student's special needs. 

Theoretical Framework 
Variational thinking 

Since Moore and Carlson (2012) report the importance of variational and covariational 
reasoning for students' ability to model dynamic situations, the position we adopt regarding 
variational thinking corresponds to that of Maury and colleagues (2012), which is complemented 
by that of Moore and Carlson, since they conceive this thinking as the ability to identify 
phenomena of variation and change, to interpret them, describe them, quantify them, model 
them, transform them and predict their consequences. Developing variational thinking allows 
students to naturally identify phenomena of variation and change and to be able to model and 
transform them, which will contribute to the development of mathematical thinking processes 
linked to algebra, functions, and calculus. 

Considering that the study has as part of its learning trajectory to involve the analysis of the 
coordination and functional relationship between variables, we assume as one of its central axes 
the covariate reasoning, which is defined by Carlson et al. (2002) as “the cognitive activities 
involved in coordinating two varying quantities while attending to the ways in which they 
change in relation to each other” (p. 357). 

The framework on covariation proposed by Carlson and colleagues consists of mental 
actions, which provides a taxonomy to classify and analyze the behaviors that students present 
when engaging in covariation activities. According to the authors, there are five levels of 
development; however, for this research and considering the academic level, the activities were 
designed according to the first three levels: Level 1 (N1) Coordination, Level 2 (N2) Direction, 
and Level 3 (N3) Quantitative Coordination; which are presented in terms of mental actions 
supported by images. 
Cuevas and Pluvinage Didactics 

The implementation of this didactic framework is considered since it establishes didactic 
engineering for the planning of a mathematics program at a post-elementary level; proposing 
didactic principles that guide the design of tasks; for example, starting the activities with a 
conceptually rich problem of interest to the student, where the student is the one who solves it, 
and once the problem is solved, his answer must be verified—allowing the student to be an agent 
of action and leading him gradually towards the mathematical concept (Cuevas & Pluvinage, 
2003). 

Objectives 
This study's objective is to design a didactic sequence that promotes the understanding of the 

processes of variation-covariation as an antecedent for the concept of function in high school 
students (14-15 years old). Activities are proposed in digital didactic environments to achieve 
this, which address mental actions linked to recognizing variables and their relationships. These 
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activities aim to identify what level of covariation students reach when interacting with 
mathematical models that allow them to interpret, predict, describe and explain situations of 
functions, both linear and nonlinear. In this way, we will be able to inquire about the difficulties 
faced by students, categorizing them and associating them to each level of covariation. 

Research Question 
What levels of covariational reasoning do students achieve when interacting with 

scenarios designed for linear and nonlinear function covariation situations? 

Methodology 
This study is developed using Design-Based Research (DBR) proposed by (Bakker, 2018), 

consisting of the phases of preparation and design, teaching experiment, and analysis of results. 
For the design of our sequence of activities, we used a Hypothetical Learning Trajectory (HLT) 
(Simon 1995) and elements of Cuevas-Pluvinage didactics. 
Phase 1: Preparation and design 

The role of technology in this study is as a means of support for the simulation of our context 
of variation and covariation. The context used to carry out each activity consists of simulating 
the route of a cable car, where the student is asked to analyze the movement of the cabins in 
different sections of the way.  

The objective of each activity is described below: 
Activity #1. For this activity, mental action one (MA1) is taken into account, considering the 

coordination of the value of one variable with the changes in the other, i.e., in this case, it is 
considered whether the student goes through a process where they first try to identify the 
different magnitudes involved in the phenomenon: constants, parameters, and variables. Once 
they have identified which magnitudes vary and remain constant; students are expected to 
establish a functional relationship involving the magnitudes through different forms of 
representation (symbolic, tabular, and graphical) (see Figure 1a). 

Activity #2 part 1. This activity takes into account mental action two (MA2), in which the 
coordination of the direction of change of one variable with the changes in the other variable is 
considered; that is, it is observed if it can identify the direction of change if it presents a growth 
or a decrease in the output value while considering the changes in the input value (see figure 1b). 

Activity #2 part 2. In this activity, we consider the fourth principle of the Cuevas-Pluvinage 
didactics: try as much as possible every time operations that lead us to mathematical concepts are 
performed, to implement the inverse process. 

This activity is implemented to observe if the students, by providing them with a graphical 
representation, can present AM1 behaviors (coordination of the two variables) and MA2 
behaviors (identify that by changing one of the variables, the other one shows a decrease or an 
increase). 

Activity #3 and #4. These activities focus on mental action three (MA3), the quantification 
of change. The coordination of the amount of change in the independent variable with the 
amount of change in the dependent variable is carried out. In this case, the student must identify 
accelerating (increasing) or decelerating (decreasing) variational behavior (see Figures 1c and 
1d). 
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Figure 1. Scenarios used in each activity 

For the particular context of this study, we have adapted the levels of covariation proposed 
by Carlson et al. (2002); the corresponding descriptors are shown below. 

 
Table1. Descriptors of mental actions are used for the evaluation 

Level Description  Behaviors 

Level 1 
(L1) 
Coordi

nation 

At the coordination 
level, the images of 
covariation can support the 
mental action of 
coordinating the change of 
one variable with changes 
in the other variable 
(MA1) 

In this case, the student must identify the 
different magnitudes involved in the context of 
the ropeway (time-hours, time-seconds, distance, 
speed, height), typifying the magnitudes involved 
in: constant, parameter, or variable. Once 
identified which magnitudes vary or remain 
constant, the student must establish a functional 
relationship involving the magnitudes through 
different forms of representation (symbolic, 
tabular, or graphical), which model the situation 
of the travel of a cabin in a section of the 
ropeway. 

Level 2 
(L2) 
Directi
on 

At the direction level, 
the images of covariation 
can support the mental 
actions of coordinating the 
direction of change of one 
variable with changes in 
the other variable. The 
mental actions identified 
as MA1 and MA2 are both 
supported by L2 images. 

In addition to the students showing Level 1, 
they should identify the direction of change, i.e., 
whether there is an increase or decrease in the 
output value (distance) while considering 
changes in the input value (time). When 
analyzing the graphical representations, the 
student must identify the functional relationships 
between the distance and time quantities. 
Subsequently, the student must determine which 
graphical representation grows or decreases 
faster than the other and justify such behavior. 

Level 3 
(L3) 
Quantit
ative 

Coordinati
on 

At the quantitative 
coordination level, the 
images of covariation can 
support the mental actions 
of coordinating the amount 
of change in one variable 
with changes in the other 

The student identifies that the value of the 
distance decreases or increases (considering the 
difference between the distances) for each 
increment of time by intervals. Considering what 
magnitudes make them behave that way and how 
they behave (in our case, they consider what is 
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variable. The mental 
actions identified as MA1, 
MA2, and MA3 are 
supported by L3 images. 

happening with acceleration and velocity at that 
moment).   

 
Phase 2: Teaching experiment 

The research was conducted with 56 students in two groups (14-15 years old) in Mexico. Of 
which we considered 21 students since they were the ones who completed all the activities. Each 
student had a computer, Guided Learning and Exploration Sheets (GLES), and Interactive 
Virtual Didactic Scenarios (VIDS). The HLT comprises four activities, which correspond to four 
sessions of 50 minutes each; at the end of each session, the students handed in the GLES, and 
their answers were discussed as a group. 

Phase 3: Analysis and results 
In this article, we present the results of a student with the pseudonym Kenny, who was 

randomly selected from the sample. We will focus on making a detailed evaluation of his 
evolution in the levels of covariation during the activities presented. Kenny's case is an example 
of how the analysis was carried out for each student; reporting the results for all 21 students 
corresponds to later work in this report. 
Activity #1: 

In this first activity, Kenny partially achieved level 1 (MA1) because he failed to identify that 
the magnitude of the wire does not vary (see figure 2a); he also showed difficulties to identify 
what type of variation some magnitudes presented (see figure 2b). 

It does not present any difficulty regarding the behavior of establishing a functional 
relationship in symbolic, tabular, and graphical form. 

 

 
Figure 2. Kenny's response to Activity #1 

Activity #2-part 1 and 2: 
Kenny presents minor improvements in the behavior of MA1, identifying which magnitudes 

vary or which remain constant (see Figure 3a). He also shows progress in identifying magnitudes 
according to their type of variation. The behavior of establishing a functional relationship using 
different forms of representation is still present; however, we noticed that when asked to try to 
abstract the shape of the graph of the behavior of the phenomenon he was observing (the 
movement of two cabins during their ride on the cable car), Kenny opted to place points on the 
Cartesian plane (see Figure 3b), which shows that he needed values to be able to make this 
graphical representation. Therefore, Kenny has shown signs of achieving level 1. 
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Figure 3. Kenny's response to activity #2-part 1. 

Concerning MA2 behaviors, we note that Kenny manages to extrapolate and predict the 
distance that the cabin will travel at a specific time, which is not visible graphically (see figure 
4b, section b_1). In activities #2-part 1, sections T and U (see figure 4a), and in the activity #2-
part 2 (see figure 4c), Kenny manages to identify the growth pattern with the support of the 
graphs; we confirm the above even though in item C_1 (see figure 4c) he inverts the order of the 
answers. As shown in questions b_1 and b_2 (Figure 4b), it is clear that he only had confusion 
when exchanging the line between Booth #1 and Booth #2. 

 

 
Figure 4. Kenny's response to activity #2-part 1 and 2. 

Considering Kenny's confusion in the line of answer C_1 (see figure 4c), we consider as 
correct answer C_2 (see figure 4c) since it is sequential with answer C_1; therefore, we observe 
that both figure 4a and figure 4c support that Kenny identifies that one of the magnitudes causes 
another one to present changes of increase or decrease (see figure 4a-sections A and D and 4c-
section C_2). Kenny presents difficulties when trying to select the behavior of a graph since we 
found that Kenny does not recognize the terms "grows or decreases faster" (see figure 4a, section 
V). We can conclude at this stage that Kenny shows signs of being able to reach Level 2. 
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Activity #3 and #4: 
The evolution that Kenny has had concerning previous behaviors that presented difficulty in 

MA1 can be observed in activity #3 sections C, D, and E (see figure 5a), where he was able to 
correctly identify the type of variation that certain magnitudes presented at certain times of the 
cabin route, we also observe in activity #4 (see figure 5b), that Kenny shows behavior that allows 
him to identify the magnitudes and classify them into: constant, parameter or variable; and even 
manages to determine which variables are dependent on others. 

 

 
Figure 5: Kenny's response to activities #3 and #4 

Another Progress of Kenny concerning MA2 behaviors is that he shows to be more familiar 
with the expressions "grows or decreases" and what they imply (see Figure 6a). It is worth noting 
that he still maintains the other MA2 behaviors previously described in the results of Activity #2-
part 1 and 2 (see Figure 6b). 

 

 
 

Figure 6: Kenny's response to activity #4 

With all of the above, we can affirm that Kenny presents the necessary behaviors of MA1 
and MA2 to place him in Level 2 of covariation.  

During the analysis, we did not obtain evidence that Kenny managed to reach Level 3, 
despite presenting certain behaviors that allow him to identify that certain magnitudes influence 
others and that these cause them to behave in a certain way in certain intervals (see Figure 7a and 
7b); he is not able to identify that the value of the distance decreases or increases (considering 
the difference between the distances) for each increment of time, by intervals (see Figure 7c). 
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Figure 7: Kenny's response to activity #4 

Discussion and conclusions 
During the analysis, difficulties were observed in Kenny throughout the activities concerning 

some behaviors of the MAs, such as in the case of MA3, since there was no strong evidence of 
being able to coordinate the amount of change in one variable with changes in the other variable 
in certain intervals, the student could not advance to level 3 of covariation. These difficulties and 
the evolution of the behavior of each MA allowed us to determine that the student was able to 
reach level 2 of covariation. Overall, of the 21 students, only 71% managed to get N1, and of that 
group, only 24% achieved N2, thus answering our research question. 

It is worth mentioning that the activities were developed face-to-face after a long period of 
sanitary confinement, which is a variable to consider. However, the VIDS instrumentation 
process did not present difficulty for the students in discovering the actions executed by each 
button, input box, and dynamic text. 

The results of this research in progress are encouraging since the development of the 
activities allowed us to observe the evolution of Kenny's MA behaviors when interacting with 
the VIDS and making use of GLES; these MAs were designed in a graduated way, comparing 
and analyzing his improvements concerning some behaviors that, at the beginning of the first 
activity represented an obstacle for him. Our research is still in progress, and we consider these 
observations to project the redesign of activities and the learning trajectory towards a second 
research cycle. 
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En este artículo presentamos el desarrollo de una investigación sobre la promoción del 
razonamiento covariacional en estudiantes de secundaria (14-15 años) en México. El estudio 
consiste en el diseño y la aplicación de una secuencia de actividades didácticas que simulan de 
forma virtual una situación real. Las actividades se organizan mediante una trayectoria 
hipotética de aprendizaje con apoyo de la tecnología digital y elementos de la didáctica Cuevas-
Pluvinage. Las actividades se evaluaron de acuerdo con los niveles de covariación propuestos 
por Carlson y colegas, categorizando los logros y las dificultades de los estudiantes para cada 
nivel de comprensión. Los resultados muestran que las actividades favorecen el progreso de los 
estudiantes al transitar de la situación de contexto hacia las diversas representaciones logrando 
establecer la relación entre las variables e identificar su dependencia funcional.  

Palabras clave: Educación Secundaria, Tecnología, Álgebra y pensamiento algebraico. 

Introducción 
El pensamiento variacional ha sido interpretado como una forma de modelación de la 

covariación entre cantidades y magnitudes, de acuerdo con  Vasco (2003): 
una manera de pensar dinámica, que intenta producir mentalmente sistemas que relacionen 
sus variables internas de tal manera que covaríen en forma semejante a los patrones de 
covariación de cantidades de la misma o distintas magnitudes en los subprocesos recortados 
de la realidad. (p. 6) 
En diversas investigaciones (Carlson et al. 2002; García, 2016; Tompson y Carlson, 2017), se 

ha encontrado que el concepto de covariación entre variables conduce al concepto de función, 
debido a que la relación de covariación con frecuencia se expresa como una relación funcional. 
A pesar de estar presente desde el álgebra elemental hasta el cálculo, sigue siendo un tema que es 
una fuente de dificultades para los estudiantes; lo anterior debido a que no logran percibir y 
relacionar los patrones que surgen entre las cantidades involucradas en las diferentes situaciones 
matemáticas que se les presentan. Incluso hay estudios, como el de Aldon y Panero (2020), que 
han reportado casos donde la interpretación de la situación matemática propuesta al analizar las 
variables implicadas, los estudiantes confunden una gráfica con la trayectoria de un objeto en 
movimiento, de lo cual se infiere una falta de claridad en el significado de los ejes y en la 
interpretación de las representaciones gráficas. 

Dada esa problemática, algunos estudios, como el de Vasco (2006), recomiendan que la 
enseñanza de la variación debe darse en una diversidad de contextos que representen para el 
estudiante problemas situacionales reales, que se adapten a los objetivos de aprendizaje 
propuestos y conduzcan al concepto de función. Sin embargo, estos contextos deben contar con 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

2066



ciertas características que posibiliten el alcance de dichos objetivos, tal como lo menciona Hitt 
(2021), las características del entorno que pueden contribuir al desarrollo de la comprensión 
conceptual incluyen los enfoques de los profesores, los tipos de tareas que se dan a los alumnos y 
el uso de una variedad de representaciones. 

Por su parte, Ávila (2018) advierte de la importancia del pensamiento variacional para el 
concepto de función real, ya que “se observa la necesidad de establecer actividades en el aula de 
clases, en las que se planteen alternativas escolares que promuevan el reconocimiento de la 
variación en situaciones en las cuales el concepto de función está presente” (p. 198). 

En nuestro estudio abordamos actividades desde un enfoque variacional-covariacional con el 
apoyo de la tecnología digital. En los estándares del NCTM (2000) se menciona que la 
tecnología enriquece la gama y la calidad de las investigaciones, ya que permite ver las ideas 
matemáticas desde múltiples perspectivas. El aprendizaje de los alumnos se ve favorecido por la 
retroalimentación que la tecnología proporciona, además ofrece a los profesores opciones para 
adaptar la enseñanza a las necesidades especiales de los alumnos. 

Marco referencial 
Pensamiento variacional 

Dado que Moore y Carlson (2012) reportan la importancia del razonamiento variacional y 
covariacional para la capacidad de los estudiantes de modelar situaciones dinámicas, la postura 
que adoptamos con respecto al pensamiento variacional corresponde a la de Maury y colegas 
(2012), la cual se complementa con la de Moore y Carlson, ya que conciben a este pensamiento 
como la capacidad de identificar fenómenos de variación y cambio, para interpretarlos, 
describirlos, cuantificarlos, modelarlos, transformarlos y predecir sus consecuencias. Desarrollar 
el pensamiento variacional permite a los estudiantes identificar de manera natural fenómenos de 
variación y cambio; y que sean capaces de modelarlos y transformarlos, lo que contribuirá a 
desarrollar procesos de pensamiento matemático ligados al álgebra, las funciones y el cálculo. 

Considerando que el estudio tiene como parte de su trayectoria de aprendizaje involucrar el 
análisis de la coordinación y la relación funcional entre variables, Asumimos como uno de sus 
ejes centrales el razonamiento covariacional el cual es definido por Carlson et al. (2002) como 
“las actividades cognitivas implicadas en la coordinación de dos cantidades que varían mientras 
se atiende a las formas en que cada una de ellas cambia con respecto a la otra” (p.357). 

La propuesta de Carlson y colegas consiste en el marco de las acciones mentales, el cual 
proporciona una taxonomía para clasificar y analizar los comportamientos de los estudiantes al 
abordar actividades de covariación. De acuerdo con los autores, son cinco niveles de desarrollo; 
sin embargo, para los fines de esta investigación y considerando el nivel académico, las 
actividades se diseñaron de acuerdo con los tres primeros niveles: Nivel 1 (N1), Coordinación; 
Nivel 2 (N2), Dirección y Nivel 3 (N3), Coordinación Cuantitativa. Estos niveles se presentan en 
términos de las acciones mentales sustentadas en imágenes. 
Didáctica Cuevas y Pluvinage 

Se considera la implementación de este marco didáctico dado que establece una ingeniería 
didáctica  para la planeación de un programa de matemáticas en un nivel post-elemental; 
proponiendo principios didácticos que guían el diseño de tareas; por ejemplo, iniciar las 
actividades mediante un problema conceptualmente rico y de interés para el estudiante, en donde 
sea él quíen lo resuelva, y una vez resuelto el problema se debe verificar su respuesta. 
Permitiendo al estudiante ser un agente de acción y conduciéndolo de manera gradual hacia el 
concepto matemático (Cuevas y Pluvinage, 2003). 
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Objetivo 
Nuestro objetivo es el diseño de una secuencia didáctica que promueva la comprensión de los 

procesos de variación-covariación, como antecedente para el concepto de función en estudiantes 
de secundaria (14-15 años). Para lograrlo se proponen actividades en entornos didácticos 
digitales, los cuales abordan acciones mentales que estén ligados al reconocimiento de las 
variables y las relaciones entre ellas. Por medio de estas actividades se pretende identificar qué 
nivel de covariación logran alcanzar los estudiantes al interactuar con modelos matemáticos que 
le permitan interpretar, predecir, describir y explicar situaciones de funciones, tanto lineales 
como no lineales. De esta manera, podremos indagar acerca de las dificultades a las que se 
enfrentan los estudiantes, categorizándolas y asociándolas a cada nivel de covariación. 

Pregunta de investigación 
¿Qué niveles de razonamiento covariacional logran alcanzar los estudiantes al interactuar con 

los escenarios diseñados para situaciones de covariación de funciones lineales y no lineales? 

Metodología 
Este estudio se desarrolla mediante una investigación basada en diseño (IBD) propuesta por 

(Bakker, 2018), la cual consiste en las fases de preparación y diseño, experimento de enseñanza 
y análisis de resultados. Para el diseño de la secuencia de actividades, utilizamos una trayectoria 
hipotética de aprendizaje (Simon, 1995) y elementos de la didáctica Cuevas-Pluvinage.  
Fase 1: Preparación y diseño 

El papel de juega la tecnología en este estudio es como medio de apoyo para la simulación de 
nuestro contexto de variación y covariación. El contexto que se utiliza para llevar a cabo cada 
actividad consiste en simular el trayecto de un teleférico, en donde se le solicita al estudiante 
analizar el movimiento de las cabinas en distintos tramos del recorrido.  

A continuación, describimos el objetivo de cada actividad: 
Actividad #1. Para esta actividad se toma en cuenta la acción mental uno (AM1), 

considerando la coordinación del valor de una variable con los cambios en la otra, es decir, en 
este caso se atiende si el estudiante transita por un proceso en donde primero trate de identificar 
las diferentes magnitudes involucradas en el fenómeno: constantes, parámetros y variables. Una 
vez que han identificado cuáles magnitudes varian y cuales se mantienen constantes, se espera 
que los estudiantes establezcan una relación funcional que involucre a las magnitudes mediante 
diferentes formas de representación (simbólica, tabular y gráfica) (ver figura 1a). 

Actividad #2 parte 1. En esta actividad se toma en cuenta la acción mental dos (AM2), en la 
que se considera la coordinación de la dirección del cambio de una variable con los cambios en 
la otra variable; es decir, se observa si puede identificar la dirección del cambio, si este presenta 
un crecimiento o un decrecimiento en el valor de salida, mientras se consideran los cambios en el 
valor de entrada (ver figura 1b). 

Actividad #2-parte 2. En esta actividad consideramos el cuarto principio de la didáctica 
Cuevas-Pluvinage: intentar en lo posible, cada vez que se realicen operaciones que nos lleven a 
conceptos matemáticos, implementar la operación inversa. 

Se implementa está actividad con el fin de poder observar si los estudiantes, al 
proporcionarles una representación gráfica, pueden presentar comportamientos de la AM1 
(coordinación de las dos variables) y comportamientos de la AM2 (identificar que al cambiar una 
de las variables la otra presenta una disminución o un aumento)  

Actividad #3 y #4. Estas actividades se enfocan en la acción mental tres (AM3), en la 
cuantificación del cambio. Se lleva a cabo la coordinación de la cantidad de cambio en la 
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variable independiente, con la cantidad de cambio en la variable dependiente. En este caso, el 
estudiante debe identificar el comportamiento variacional acelerado (cada vez más grande) o 
desacelerado (cada vez más pequeño) (ver figura 1c y 1d). 

 
Figura 1. Escenarios empleados en cada actividad 

Para el contexto de este estudio realizamos una adaptación de los niveles de covariación de 
Carlson et al. (2002), los descriptores correspondientes se muestran a continuación. 

 
Tabla1. Descriptores de las acciones mentales utilizados para la evaluación 

Nivel Descripción  Comportamiento 

Nivel 1 
(N1) 
La 
Coordinaci
ón 

En el nivel de 
coordinación, las imágenes 
de la covariación pueden 
sustentar a la acción 
mental de coordinar el 
cambio de una variable 
con cambios en la otra 
variable (AM1) 

El estudiante identifica diferentes magnitudes 
involucradas en el contexto del teleférico 
(tiempo-horas, tiempo-segundos, distancia, 
velocidad, altura), clasificandolas en constante, 
parámetro o variable. Una vez que identifica qué 
magnitudes varian y cuáles se mantienen 
constantes, el estudiante establece una relación 
funcional que las involucra mediante distintas 
formas de representación (simbólica, tabular o 
gráfica), las cuales modelan el recorrido de una 
cabina en un tramo del teleférico. 

Nivel 2 
(N2) 
La 
Dirección 

En el nivel de 
dirección, las imágenes de 
la covariación pueden 
sustentar a las acciones 
mentales de coordinar la 
dirección del cambio de 
una de las variables con 
cambios en la otra. Las 
acciones mentales 
identificadas como AM1 y 
AM2 ambas son sustentas 
por imágenes de N2. 

Además de que el estudiante muestre el Nivel 
1, debe identificar la dirección del cambio; i.e. si 
presenta un crecimiento o decrecimiento en el 
valor de salida (distancia) mientras considera los 
cambios en el valor de entrada (tiempo). Al 
analizar las representaciones gráficas el 
estudiante debe identificar las relaciones 
funcionales entre las magnitudes de distancia y 
tiempo. Posteriormente debe identificar cuál 
representación gráfica crece o decrece más 
rápido en comparación con la otra, y justificar 
dicho comportamiento. 

Nivel 3 
(N3) 
Cuantitati
va 

En el nivel de la 
coordinación cuantitativa, 
las imágenes de la 
covariación pueden 

El estudiante identifica que el valor de la 
distancia disminuye o aumenta (considerando la 
diferencia entre las distancias) por cada 
incremento de tiempo, por intervalos. 
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sustentar a las acciones 
mentales de coordinar la 
cantidad de cambio en una 
variable con cambios en la 
otra. Las acciones 
mentales identificadas 
como AM1, AM2 y  AM3 
son sustentadas por las 
imágenes de N3. 

Considerando qué magnitudes hacen que se 
comporten de esa manera y su forma de 
comportarse (en nuestro caso que consideren que 
está pasando con la aceleración y la velocidad en 
ese momento). 

 
Fase 2: Experimento de enseñanza 

La investigación se realizó con 56 estudiantes (14-15 años) en dos grupos en México. De los 
cuales consideramos 21 estudiantes, que fueron los que completaron todas las actividades. Cada 
estudiante contaba con una computadora, hojas impresas de exploración y aprendizaje guiado 
(HEAG), y escenarios didácticos virtuales interactivos (EDVI). La THA está conformada por 
cuatro actividades, las cuales corresponden a cuatro sesiones de 50 minutos cada una, al finalizar 
cada sesión los estudiantes entregaban las HEAG y se discutían grupalmente sus respuestas. 

Resultados 
En este artículo presentamos los resultados de un estudiante con el seudónimo de Kenny, el 

cual fue seleccionado aleatoriamente de la muestra y nos enfocaremos en hacer una evaluación 
detallada de su evolución en los niveles de covariación durante las actividades presentadas. El 
caso de Kenny es un ejemplo de cómo se llevó a cabo el análisis para cada estudiante, reportar 
los resultados de los 21 estudiantes corresponde a un trabajo posterior a este informe.   
Actividad #1: 

En esta primera actividad, Kenny logró parcialmente alcanzar el nivel 1 (AM1), debido a que 
no logró identificar que la magnitud del cable no varía (ver figura 2a), también mostraba 
dificultades para identificar qué tipo de variación presentaban algunas magnitudes (ver figura 2b) 

En lo que respecta al comportamiento de establecer una relación funcional de forma 
simbólica, tabular y gráfica, no presenta dificultad. 

 

 
Figura 2. Respuesta de Kenny a la actividad #1 

Actividad #2-parte 1 y 2: 
Kenny presenta pequeñas mejorías en el comportamiento de la AM1, al identificar cuáles 

magnitudes varían o cuáles se mantienen constantes (ver figura 3a). También presenta un 
progreso en identificar magnitudes según su tipo de variación. El comportamiento de establecer 
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una relación funcional haciendo uso de diferentes formas de representación aún sigue presente, 
sin embargo, notamos que al solicitarle que tratara de abstraer la forma de la gráfica del 
comportamiento del fenómeno que estaba observando (el movimiento de dos cabinas durante su 
recorrido por el teleférico), Kenny opta por colocar puntos en el plano cartesiano (ver figura 3b), 
lo cual muestra que precisó de valores para poder realizar esa representación gráfica. Por lo 
tanto, Kenny ha mostrado indicos de lograr el nivel 1.  

 

 
Figura 3. Respuesta de Kenny a la actividad #2-parte 1 

Con respecto a los comportamientos de la AM2, notamos que Kenny logra extrapolar y 
predecir la distancia que recorrerá la cabina en un determinado momento, el cual no es visible de 
forma gráfica (ver figura 4b, apartado 𝑏1).En las actividades #2-parte 1, apartado T y U (ver 
figura 4a) y en la actividad #2-parte 2 (ver figura 4c), Kenny logra identificar el patrón de 
crecimiento con el apoyo de las gráficas, confirmamos lo anterior a pesar de que en el item 𝐶1 
(ver figura 4c) invierte el orden de las respuestas. Por lo mostrado en las preguntas 𝑏1 y 𝑏2 
(figura 4b ) es claro que solo tuvo una confusión al intercambiar la linea entre cabina #1 y cabina 
#2. 

 
Figura 4. Respuesta de Kenny a la actividad #2-parte 1 y 2 

Considerando la confusión de Kenny en la línea de la respuesta 𝐶1 (ver figura 4c), 
consideramos como correcta la respuesta 𝐶2 (ver figura 4c), puesto que es secuencial con la 
respuesta 𝐶1, por lo tanto, se observa que tanto la figura 4a como la figura 4c avalan que Kenny 
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identifica que una de las magnitudes hace que otra presente cambios de aumento o disminución 
(ver figura 4a -apartados A y D y 4c-apartado 𝐶2). 

Kenny presenta dificultades al tratar de seleccionar el comportamiento de una gráfica, ya 
que, comprobamos que Kenny no reconoce los términos“crece o decrece más rápido” (ver figura 
4a, apartado V). Podemos concluir en esta etapa que Kenny, presenta indicios de poder alcanzar 
el Nivel 2. 
Actividad #3 y #4: 

La evolución que ha tenido Kenny con respecto a los comportamientos previos que 
presentaban dificultad en la AM1, se puede observar la actividad #3 apartados C, D y E (ver 
figura 5a), donde pudo identificar correctamente el tipo de variación que presentaban ciertas 
magnitudes en determinados momentos del recorrido de la cabina, también observamos en la 
actividad #4 (ver figura 5b), que Kenny presenta un comportamiento que le permite identificar 
las magnitudes y clasificarlas en: constante, parámetro o variable; e incluso logra determinar que 
variables son dependientes de otras. 

 
 

Figura 5: Respuesta de Kenny a la actividad #3 y #4 

Otro Progreso de Kenny con respecto a los comportamientos de AM2 es que desmuestra 
estar más familiarizado con las expresiones “crece o decrece” y lo que implica cada una de ellas 
(ver figura 6a). Cabe destacar que aún sigue manteniendo los demás comportamientos de la 
AM2, anteriormente descritos en los resultados de la Actividad #2-parte 1y 2 (ver figura 6b) 

 

 
Figura 6: Respuesta de Kenny a la actividad #4 

Con todo lo expresado anteriormente podemos afirmar que Kenny presenta los 
comportamientos necesarios de AM1 y AM2 para poder ubicarlo en el Nivel 2 de covariación.  
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Durante el análisis no encontramos que Kenny alcanzara el Nivel 3, a pesar de presentar 
ciertos comportamientos que le permiten identificar que ciertas magnitudes influyen en otras, y 
que estas causan que se comporten de cierta forma en determinados intervalos (ver figura 7a y 
7b), no logró identificar que el valor de la distancia disminuye o aumenta (considerando la 
diferencia entre las distancias) por cada incremento de tiempo, por intervalos (ver figura 7c). 

 

 
Figura 7: Respuesta de Kenny a la actividad #4 

Discusión y conclusiones 
Durante el análisis se observaron dificultades que se presentaron en Kenny a lo largo de las 

actividades con respecto a algunos comportamientos de las AM, tal es el caso de la AM3, dado 
que no se encontraron indicios contudenetes de poder coordinar la cantidad de cambio en una 
variable con cambios en la otra variable en determinados intervalos, el estudiante no pudo 
avanzar hacia el nivel 3 de covariación. Estas dificultades y su evolución de comportamientos de 
cada AM, nos permitieron determinar que el estudiante logró alcanzar el nivel 2 de covariación. 
De forma general de los 21 estudiantes solo el 71% logro alcanzar el N1 y de ese grupo solo el 
24% logro el N2 con lo cual damos respuesta a nuestra pregunta de investigación. 

Cabe mencionar que las actividades se desarrollaron de forma presencial después de un largo 
periodo de confinamiento sanitario, lo cual es una variable a considerar. Sin embargo, el proceso 
de instrumentación de los EDVI no presentó dificultad en los estudiantes al descubrir las 
acciones ejecutadas por cada botón, casillas de entrada y textos dinámicos.  

Los resultados de esta investigación en proceso son alentadores, ya que el desarrollo de las 
actividades permitió observar la evolución de los comportamientos de las AM de Kenny al 
interactuar con los EDVIs, haciendo uso de HEAG, estas AM se diseñaron de forma graduada, 
comparando y analizando sus mejorías con respecto a algunos comportamientos que, al inicio de 
la primera actividad representabán un obstáculo para él. Nuestra investigación sigue en 
desarrollo y consideramos estas observaciones para proyectar el rediseño de actividades y de la  
trayectoria de aprendizaje  hacia un segundo ciclo de investigación. 
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Prompting people to estimate climate change numbers before showing them the true value can 
shift learners’ attitudes and conceptions. Yet, interventions created for such a learning 
experience are not easily accessible to the general public. The purpose of this preregistered 
study was to address this research gap by developing and testing an openly accessible online 
intervention that presents participants with novel numbers about climate change after they 
estimate those numbers. An experimental online study design was used to investigate the impact 
of the intervention on undergraduate students’ climate change understanding and plausibility 
perceptions. Findings revealed that posttest climate change knowledge was higher among those 
randomly assigned to use the app compared with those assigned to a control condition, and that 
supplementing this experience with numeracy instruction was linked with more robust gains. 

Keywords: climate change education; conceptual change; numerical estimation 
 

Misconceptions about climate change are widespread in the USA. For example, as of 
September 2020, only 55% of adults in the USA correctly believed that most climate scientists 
think that climate change is happening, suggesting that the remaining 45% hold a serious 
misconception (Marlon et al., 2020). Fortunately, many approaches exist that have the potential 
to shift these misconceptions. 

Numbers found in the news or online can be a powerful tool for science learning. For 
example, I encourage the reader to take a moment to estimate in the following quantity: What is 
the percentage change in the world’s ocean ice cover since 1960? The true value may surprise 
you (see footnote).1 Presentation of novel data after people first estimate that data can elicit more 
explicit reflection on the novel evidence and integration of supported claims (Richter & Maier, 
2017) and can subsequently shift people’s attitudes, beliefs, and misconceptions to be more 
aligned with scientists, particularly with regards to climate change (Ranney & Clark, 2016; 
Ranney et al., 2019; Rinne et al., 2006; Thacker & Sinatra, 2022). These findings suggests that 
just a handful of numbers can incite conceptual change. Findings also show conceptual change 
occurring as a result of such interventions are moderated by people’s willingness and openness to 
reason with new evidence (Thacker & Sinatra, 2022). However despite these promising findings, 
the interventions created for these studies are not easily accessible to the general public and the 
extent to which conceptual changes endure over time is not well known.  

The purpose of this preregistered conceptual replication study (Plucker & Makel, 2021) was 
to address this research gap by developing and testing a novel and openly accessible online 
intervention that presents participants with novel numbers about climate change after they 
estimate those numbers. The study uses an experimental design to investigate the impact of the 
intervention on undergraduate students’ science learning and test whether affective and 
motivational constructs that are hypothesized to moderate this change, as hypothesized in models 
of conceptual change.  

                                                 
1 The change in the world’s ocean ice cover since 1960 is a 40% decrease (Ranney & Clark, 2016). 
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Theoretical Framework 
Plausibility Judgments for Conceptual Change 

The Plausibility Judgments for Conceptual Change model (PJCC), proposes that novel 
information (such as surprising data) can be a catalyst for conceptual change because it can 
prompt learners to appraise or reappraise the plausibility of their existing beliefs (Lombardi, et 
al., 2016). When people encounter novel information such as a surprising number about climate 
change, they first process the information for validity—perhaps by considering the credibility of 
the source and estimating whether the information seems reasonable—and then make a judgment 
of the plausibility of the conception supported by the new information. The extent to which 
people explicitly evaluate the plausibility of a conception depends, in part, on their motivation, 
emotion, and views about knowledge (or epistemic dispositions). More explicit plausibility 
evaluations are thought to leads to increased potential for conceptual change. For example, when 
a person estimates a number, they may draw from their prior knowledge or apply quantitative 
reasoning skills. Such an explicitly crafted estimate may better prepare the learner to interpret 
and assess the validity of a scientifically accepted value when later presented with it (c.f., 
Lombardi et al., 2016; Richter & Maier, 2017). 
Numerical Estimation 

Numerical estimation is an educated guess for a quantity that can draw from a person’s prior 
experiences and understanding of number and operations (Dowker, 2005). Understanding and 
estimating magnitudes of quantities is considered to be central to the development of number 
concept (Siegler, 2016) and represents an important skill that is emphasized in both mathematics 
and science K–12 standards (Cheuk, 2012).  

Of the common categories of numerical estimation skills (e.g., computational estimation and 
numerosity; Reys & Reys, 2004), research on measurement estimation is the most relevant for 
this study. Measurement estimation concerns the explicit estimation of real-world measures 
(Sowder & Wheeler, 1989) and is useful for understanding factors that help people judge 
whether real-world quantities are reasonable and valid. Findings suggest that peoples’ estimation 
accuracy and judgments of reasonableness improve when they use measurement estimation 
strategies, such as a tolerance for error and impression in estimates (Shimizu & Ishida, 1994; 
Thacker et al., 2021), flexible techniques for rounding digits (Joram et al., 1998), and use of the 
benchmark strategy—the use of known and given values to estimate unknown values through 
processes of analogy, association, mental iteration, and/or proportional reasoning (Brown & 
Siegler, 2001; Joram et al., 1998, Siegler, 2016). For example, when asked to estimate a “real 
world” quantity, a skilled learner might draw from their prior experiences, recall related 
quantities, and mathematically manipulate them to more accurately arrive at an estimate. Such an 
explicitly crafted estimate might better prepare the learner to interpret and assess the validity of a 
scientifically accepted value when later presented with it (c.f., Lombardi et al., 2016; Richter & 
Maier, 2017).  
Numerical Estimation for Conceptual Change 

Experimental research has found that presenting people with novel climate change numbers 
after they estimate them can support climate change learning, and that supplementing such an 
experience with instruction on numerical estimation strategies and prompts to activate reflection 
can positively impact learning (Ranney & Clark, 2016; Thacker & Sinatra, 2022). For example, 
Thacker & Sinatra (2022) found that asking people to estimate climate change numbers before 
presenting them with the true value led to increased climate change knowledge when compared 
with a control group that read an expository text about the greenhouse effect. Further, although 
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they found no main effects of modifying the intervention with either estimation instruction or 
prompts to activate reflection, they did find learning gains when including both modifications 
among individuals who were willing and open to reason with new evidence. Yet, despite these 
promising findings, this intervention was used in a closed setting and was not openly accessible 
to the public. Further, the extent to which conceptual changes endured over time was not well 
documented. Also, no explanation or justification for the validity of the “true values” were 
provided, which may have dampened people’s perceptions that climate change is plausible.  
Preregistered Research Questions and Hypotheses 

The current study aimed to test whether the findings of Thacker & Sinatra (2022) would 
replicate when the intervention was modified to be (a) openly accessible, (b) include estimation 
accuracy feedback, (c) include justification for each number estimated, and (d) when the posttest 
assessment was completed ten days after the intervention. Namely, I sought to answer the 
following preregistered research questions (for the full anonymous preregistration, see 
https://bit.ly/3rP2m9c):  

 RQ1. To what extent would estimation of and exposure to novel climate change data using an 
online learning intervention improve learners’ climate change knowledge and plausibility 
judgments compared with reading an expository text? 

o (H1) I hypothesized that people assigned to the intervention conditions would have 
greater knowledge at posttest when compared with people assigned to read an 
expository text. I anticipated no significant differences in climate change plausibility 
perceptions between the intervention groups and the comparison group at posttest or 
delayed posttest. 

 RQ2. To what extent do warm constructs (i.e., mathematics anxiety and epistemic 
dispositions) moderate the effects of the interventions on knowledge and plausibility? 

o (H2.1) Math anxiety: I anticipated that individuals with high math anxiety would 
benefit less from the mathematics skills instruction. That is, I expected that math 
anxiety would negatively moderate the effects of the intervention modified with 
estimation instruction when the outcome is climate change knowledge or plausibility 
perceptions. 

o (H2.2) Epistemic dispositions: I anticipated that individuals with higher levels of 
active open-minded thinking would benefit more from the intervention and modified 
intervention compared with the comparison condition when the outcome was climate 
change knowledge. That is, I expected that active open-minded thinking would 
positively moderate the effects of the intervention. I also anticipated that there would 
be a significant main effect of active open-minded thinking on plausibility 
perceptions, but no significant interactions with the experimental conditions. 

 RQ3. To what extent does enhancing the intervention with instruction on estimation 
strategies change learners’ climate change knowledge and plausibility? 

o (H3) I hypothesized that supplementing the intervention with instruction on 
estimation skills would lead learners to report more scientific knowledge about 
climate change compared with those who are assigned to the intervention but without 
estimation instruction. I expected no significant differences in climate change 
plausibility between these conditions. 

One additional research question was posed in the preregistration concerning whether self-
reported estimation strategies differed across conditions. Related analyses are still underway.  
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Methods 
Participants and Procedure 

I formed a national online Qualtrics panel of N = 605 undergraduate students to participate in 
an experimental online survey. To obtain this sample, Qualtrics representatives initially used 
multiple platforms to widely share a survey link online, 2651 people initially clicked on the link 
to participate, but 2046 were dropped from the analysis because they either did not meet the 
eligibility criteria (over 18 and a full-time undergraduate student), did not pass an attention 
check, or because they were flagged as a “speeder” by the algorithm created by Qualtrics. There 
was no missing data at pretest or posttest. Of the 605 students who met this criteria, 57% agreed 
to participate in a followup study, and 88 (15% of the analytic sample) completed a short 
followup survey 10 days after completing the initial intervention.  

Participants in the main analytic sample were 20.3 years old on average, 74% Female, 15% 
Male, 3% nonbinary/other, 56% White, 19% African American, 17% Asian American, 5% Two 
or More Races, and 2% American Indian or Alaskan Native. All participants (a) completed a 
pretest to measure their misconceptions about climate change, plausibility judgments about 
climate change, mathematics anxiety, and prior epistemic dispositions, (b) were directed to a web 
app that randomly assigned them to one of three conditions (control group that read an 
expository text about the greenhouse effect, the intervention, and the intervention supplemented 
with estimation instruction), (c) were directed back to the original survey where they completed 
an identical posttest of knowledge, plausibility perceptions, and a demographics questionnaire, 
and (d) were contacted ten days later to complete the knowledge and plausibility perceptions 
measured again (but only if they had initially indicated that they agreed to be contacted in the 
demographics section of the posttest). For a summary of the procedures, see Figure 1. 

 

 
Figure 1. Visual Representation of the Survey Flow, Materials, and Procedures 

 
Materials 

All survey materials and intervention texts are available in the supplemental materials 
(https://bit.ly/3rP2m9c), also see Appendix A for select excerpts.  
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Conditions 
There were three experimental conditions: the intervention group, modified intervention 

group, and control group. Students in the baseline intervention (also referred to as the 
“Estimation Game”) estimated 12 climate change related numbers before being presented with 
the scientifically accepted answer, a short explanation to justify the scientifically accepted 
answer, and accuracy feedback. Students in the modified intervention condition completed the 
Estimation Game, but prior to the game, they engaged with instructional text that emphasized 
three numerical estimation strategies—tolerance for error, the benchmark strategy, and flexible 
rounding—with examples and two checks for understanding. These three strategies were found 
in prior research to be productive for this specific task (Thacker et al., 2021). Students in the 
control group were presented with an 812-word expository text about the greenhouse effect 
adapted from Lombardi et al., (2013). See Figure 1 for a summary of the procedures and 
Appendix A for more detailed text excerpts and screenshots). All three experimental conditions 
were presented in an openly accessible, open-source online web app [http://143.110.210.183/; 
also see Thacker et al., 2021].  
Dependent variables 

Climate change knowledge. Knowledge of climate change was measured using seven items 
adapted from the Human Induced Climate Change Knowledge measure (HICCK; Lombardi et 
al., 2013). Participants responded as to whether they believed that climate scientists would 
believe that certain statements are true (e.g., “Most of the world’s glaciers are decreasing in size. 
This is evidence of climate change”). Responses were on a seven-point agreement scale. 
Participants completed this scale pre-intervention, post-intervention, and at the 10-day followup. 
All were reliable at conventional levels (αpre = .65, αpost = .74, αfollowup = .77). 

Plausibility perceptions. Perceptions of plausibility that humans are responsible for climate 
change were measured using four items adapted from the Plausibility Perceptions Measure 
(PPM; Lombardi et al., 2013). These items were intended to capture participant’s personal 
positions on whether humans are responsible for climate change as they responded to statements 
(“Evidence from around the world shows that the climate is changing in many regions”) on a six 
point agreement scale from 1 = Highly Implausible (or even impossible) to 6 = Highly Plausible. 
This scale was also completed at pretest, posttest, and during the followup and was reliable at 
conventional levels (αpre = .81, αpost = .85, αfollowup = .83).  

Estimation strategy reports. Participants in intervention conditions also provided open-
ended descriptions of strategies that they used to estimate numbers. Coding and analysis of this 
variable is still underway. 
Covariates 

Epistemic dispositions. Baseline epistemic dispositions were measured using the Actively 
Open-Minded Thinking scale (AOT; Stanovich & West, 1997) that captures participants’ 
willingness to reason with novel evidence using seven items (e.g., “People should take into 
consideration evidence that goes against their beliefs”) using a seven point agreement scale 
ranging from 1 (completely disagree) to 7 (completely agree; α = .71).  

Math Anxiety. Participants also completed a Mathematics Anxiety Questionnaire (Ganley et 
al., 2019) consisting of nine items (e.g., “I get a sinking feeling when I think of trying to solve 
math problems”) with five response options ranging from 1 (Not true of me at all) to 5 (Very true 
of me; α = .93).  
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Analytic Strategy 
To assess the effects of the interventions on the knowledge and plausibility outcome 

variables (RQ1 & RQ3), I used ordinary least squares regression with robust standard errors 
using a separate model for knowledge and plausibility perceptions. Predictors were the treatment 
condition and pre-test scores. To assess moderating effects (RQ2), I repeated these analyses after 
adding math anxiety and actively open-minded thinking as moderators of the treatment 
condition, with separate models for each moderator. 

To test whether learning was retained ten days after the pre-test (an exploratory question), 
followup knowledge and plausibility scores were used as main outcomes in two separate 
regression models with experimental condition as a predictor and pretest scores as covariates. 

Results 
All coefficients, standard errors, and p-values from regression models are presented in Table 1. 

RQ1: Main Effects of the Intervention. With regards to knowledge as the main outcome, 
participants in both intervention conditions outperformed the control group. This difference was 
significant for the modified intervention before and after adjusting for moderating variables and 
interactions, whereas for the unmodified intervention, the effect was only significant before 
adjusting for moderators. When plausibility perceptions were the main outcome, no significant 
main effects of the intervention were found. As such, H1 was confirmed.  

I also used contrasts to test whether findings replicated those of Thacker & Sinatra (2022), 
revealing that posttest climate change knowledge was indeed higher among those in either 
intervention condition compared with those assigned to a control condition (d = 0.30, p < .001). 

 
Table 1. Effects of Experimental Conditions on Posttest Knowledge and Plausibility and 
The Moderating Effects of Math Anxiety and Actively Open-Minded Thinking (N = 605). 
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RQ2: Moderating Effects of Math Anxiety and Actively Open-Minded Thinking. 
Findings revealed significant main effects of Actively Open-Minded Thinking when knowledge 
and plausibility were the main outcome variable, and that it moderated the effect of estimation 
instruction on knowledge. Thus, I found support for H2.1 and partial support for H2.2. 

RQ3: Comparison Between Intervention and Modified Intervention. Comparing only the 
two intervention groups revealed no significant differences after controlling for pretest scores. 
This was true for both outcomes: posttest knowledge (p = .180) and plausibility (p = .623). 

Followup Analysis. As noted, I followed up with willing participants approximately ten days 
after the intervention. Because only 15% of the analytic sample (n = 88) completed the followup 
survey, pre-planned (but exploratory) multilevel analyses were underpowered. I therefore ran 
two separate regression models with followup knowledge and plausibility scores as the main 
outcomes, experimental condition as the main predictor, and pretest scores as covariates. Neither 
model revealed significant effects of either intervention or modified intervention groups when 
compared with the control (all conditional p > .248).  

Significance 
I sought to investigate whether the learning that occurs when people encounter novel 

statistics was enhanced with additional instruction on estimation strategies. Consistent with prior 
research, I found that students who learned from novel statistics performed about a third of a 
standard deviation better than a control group on a posttest of climate change knowledge (c.f., 
Ranney & Clark, 2016; Thacker & Sinatra, 2022). 

Findings also revealed that students’ willingness to reason with new evidence was a predictor 
of learning and moderated the effects of numerical estimation instruction. These effects of 
Actively Open-Minded Thinking provide support for the Plausibility Judgments for Conceptual 
Change Model (Lombardi et al., 2016); instruction that emphasizes the explicit evaluation of 
evidence appears to be most effective among those willing to consider belief-discrepant 
information (also see Richter & Maier, 2017). Educators might thus consider pairing estimation 
instruction with special emphasis on the importance of keeping an open mind when examining 
new types of numerical evidence, even if the evidence is contrary to students’ current beliefs.  

I also found no significant main effects of supplementing the Estimation Game with 
instruction that emphasized three key estimation strategies (tolerance for error, flexible rounding, 
and the benchmark strategy). This may suggest that the baseline intervention may be equally 
effective at encouraging explicit evaluation of quantities for most learners. It could also be that 
the outcome measures were not sensitive to capture the learning that occurred from this short 
micro-intervention. While I did find that the effects of the modified intervention was more robust 
to inclusion of covariates, future research should explore measuring alternate learning outcomes 
that are more sensitive to whether and which estimation skills were applied to support meaning-
making from climate change quantities.  

Another contribution of this study is that it provides mathematics instructors with a tool that 
enables applications of mathematical skills to learn about relevant science topics. The central 
intervention provides educators concerned with public understanding of science with an easily 
accessible learning application that can be shared and adapted to provide opportunities for 
students to apply numeracy skills towards making of key numbers that shape our changing 
environment.  
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Appendix A. Examples of The Experimental Conditions 
 

Intervention Group (Screenshots from the “Estimation Game”) 

   

Modified Intervention Group (Excerpts from estimation instruction that preceded 
Estimation Game) 

Sometimes people estimate everyday numbers in their head. For example, you might quickly estimate the 
cost of tax and tip in your head before ordering a meal at a restaurant. These calculations are naturally very rough 
and imprecise, and it is okay if your guess is not perfect… 

 
REFERENCE NUMBERS 
 
Numbers that you already know (reference numbers) can help you estimate numbers that you do not know. 

For example, if you know that about 300 pennies fit in a small, 8oz milk carton, you can use this information to 
estimate the number of pennies that fit in a gallon…  

 
SIMPLIFYING NUMBERS 
 
When using reference numbers, you may want to round values to make mental computation easier. For 

example, let’s estimate the population of California given that the population of Kentucky is 4.47 million. Before 
making our estimate, we first round the Kentucky population to 4 million to make the math easier, and scale this 
value according to our beliefs about the size of California compared to Kentucky. If you were to guess that 
California… 

Control Group (Excerpt of Expository Text adapted from Lombardi et al., 2013) 

THE ENHANCED GREENHOUSE EFFECT 
 
Many people have heard of the “greenhouse effect”, but not everyone knows what the “greenhouse effect” is 

exactly. The greenhouse effect refers to the way that certain gasses in earth’s atmosphere keep the planet warmer 
than it would otherwise be. The earth’s greenhouse effect is a natural occurrence… 

Note. All materials appeared within the Estimation Game environment 
(http://143.110.210.183/). For complete intervention materials, see the supplemental materials 
(https://bit.ly/3rP2m9c). 
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In this theoretical paper, it is argued that a crucial component of a critical literacy (Rubel & 
McCloskey, 2021) learning progression focused on Gerrymandering was the role of 
mathematical action technology (Dick & Hollebrands). I contend that the technology provided 
access to the relevant mathematics content, which contributed to an understanding of how the 
mathematics connects to the context. Empirical support from the implementation of the 
technology-based critical literacy lesson with prospective elementary and secondary 
mathematics teachers illustrates the emergence of a learning progression model. Implications 
regarding teacher education, curriculum development in K-12 classrooms, and integrating 
technology-based mathematics lesson set within critical literacy contexts will be discussed. 

Keywords: technology, equity, social justice 

The integration of innovative tools and curricular reform ideas is a challenge for many teachers. 
It is often easier and more efficient to rely on techniques and tools that have already been vetted 
and utilized previously. Thus, the need to better understand how technological tools such as 
Mathematical Action Technology (MAT) (Dick & Hollebrands, 2011), or digital technology, 
“…that can perform mathematical tasks and/or respond to the user’s actions in mathematically 
defined ways,” (p. xii) can be utilized effectively may be a necessary first step to encouraging 
more teachers to take up these practices. In addition to new tools, teachers also face challenges 
implementing new curricular reform efforts (Schoenfeld, 2004). In recent years, advocacy 
focused on teaching for the development of a sociopolitical disposition in students has become 
more common (NCTM, 2018; Bartell et al., 2017). Despite advocacy for integrating MAT and 
incorporating critical literacy (Rubel & McCloskey, 2021) contexts to support more equitable 
mathematics teaching practices, little to no research has been conducted on how these dual 
challenges interact with each other in practice. In this paper, I argue that we can create learning 
environments in which students are afforded opportunities to do mathematics which supports 
their ability to engage in discourse surrounding social injustices in their communities and 
society. I aim to describe how leveraging MAT to create a critical mathematical environment 
enabled prospective mathematics teachers (PMTs) enrolled in a Technology, Pedagogy and 
Content (TPC) course to engage with a mathematics lesson about Gerrymandering in new ways. 
In closing, I will describe some potential implications for pursuing the dual goals of teaching to 
develop a sociopolitical disposition and integrating MAT. 

A Technology-Based Critical Literacy Learning Progression 
In framing this discussion, I offer a learning progression which models the sequence of 

events that led to my students being able to articulate the mathematical concept of compactness 
and the role that it plays in instances of Gerrymandered legislative districts. The model below 
(see Figure 1) provides an approach to sequencing a unit or lesson to leverage the affordances of 
MAT to build mathematical knowledge which can then help students articulate connections 
between abstract mathematics and real-life applications.  
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Figure 1: Technology-based critical literacy lesson progression 

In Figure 1 above we see how this progression is dependent upon being able to make 
mathematical observations. Yet, as I will describe below, these observations may not have been 
possible without a dynamic representation of the polygons. In this sense, low-cognitive demand 
tasks (Stein, Grover, & Henningsen, 1997) such as computing area and perimeter and sketching 
each shape were offloaded onto the technology. This enabled more focus on describing important 
characteristics of the mathematical objects which guided the classroom discussion. The last two 
boxes in the figure represent hypothesized components that could serve as important extensions 
of this work. I highlight the final box in green because this aligns with a potential impact on the 
instructor whereas the gray box mostly applies to students. Though this progression above may 
bear some resemblance to other frameworks for teaching mathematical modelling set within real-
life contexts (e.g., Cirillo, Bartell, & Wager; 2016), I aim to focus on how the leveraging of 
MAT, can make these lessons more viable for engaging in mathematical practices even when set 
withing real-life contexts.   

Technology In Support of Equity 
Though the ways in which technology can support equitable mathematics classrooms have 

been discussed by a number of scholars (e.g., Clements & Sarama, 2017; Kitchen & Berk, 2016; 
Dunham & Hennssey, 2008), I focus this paper on how technology can promote access to 
important mathematical content knowledge by supporting engagement in mathematical practices 
when the impracticality or tediousness of executing numerous low-level computations is 
offloaded onto the technology. In particular, the integration of MAT can support students’ ability 
to do mathematics by allowing them to explore dynamic mathematical objects represented in 
novel ways leading them to make and test conjectures. When a large number of cases and 
multiple dynamic representations can efficiently be explored by students, this may support their 
ability to generalize their mathematical observations. In doing so, this can open up the possibility 
of student thinking being more focused on relationships between decontextualized mathematics 
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and real-life applications of the mathematics. The idea that utilizing technology as reorganizer 
(Pea, 1985) can free the user to engage in higher order thinking skills has been discussed in a 
number of frameworks for integrating technology (e.g., Sherman & Cayton, 2015), however, it’s 
connection to teaching within a critical literacy context is a novel contribution of the current 
discussion. When new mathematical understandings are developed, this can lead to a better 
understanding of real-life contexts that can be understood with respect to the mathematical 
relationships present within the context.   

Teaching Mathematics in Support of Critical Literacy 
Although the reasons that a teacher may choose to contextualize their mathematics lesson 

varies (Rubel & McCloskey, 2021), I continue this discussion by focusing on contextualization 
that may support the development of a sociopolitical disposition (Bartell et al., 2018). These 
critical literacy (Rubel & McCloskey, 2021) contexts may support what has been described as 
teaching mathematics for social justice (Gutstein, 2006) and may encourage students to see the 
power of mathematics in a new light. Critical literacy contexts include those which utilize 
mathematics to bring attention to social injustices which arise from: imbalances in power 
dynamics, a lack of or disproportionate allocation of resources, or unfair or discriminatory 
practices that target specific marginalized groups. An example of such a context might be using 
mathematics to understand the impacts of Gerrymandering in the U.S. redistricting process. (e.g., 
Berry III et al., 2020; Safi, Bush, & Desai, 2018; Rubel, Driskill, & Lesser, 2012). By engaging 
in a mathematics lesson devoted to helping students engage in discourse surrounding 
Gerrymandering, students can see how mathematics can help detect instances where a legislative 
district’s boundary lines have been manipulated to benefit a particular political power. When this 
is done, voters are less likely to be represented by a person who will advocate for their needs. 
Gerrymandering often impacts communities of color by either breaking up high concentrations 
of voters of color or by ensuring these voters only have the minimum number of representatives 
by putting a high concentration of these voters into the same district. Thus, Gerrymandering, 
though practiced by both major political parties in the U.S., can have serious impacts in society 
due to the disenfranchisement of voters that results.  

A number of challenges arise when teachers attempt to contextualize their mathematics 
lessons to promote critical literacy. One issue is that these topics are often seen as controversial 
and this may deter teachers because they fear the backlash that may occur. Another issue is that 
teachers may feel as though they must sacrifice mathematics goals to meet social justice goals or 
vice versa (Bartell, 2013). With this challenge in mind, I describe how I attempted to alleviate 
some of this perceived sacrifice by offloading low-level skills to the technology as I 
implemented an adaptation of Berry III et al.’s (2020) Gerrymandering unit. 

Background on the Intervention Unit 
In this section, I describe how prospective mathematics teachers (PMTs) enrolled in a 

technology, pedagogy, and content (TPC) course at a large midwestern university engaged in an 
intervention unit where they simultaneously developed their understanding of mathematics 
content, engaged in mathematical practices, and were able to make connections from their 
mathematical activity to a critical literacy context lesson based on the Gerrymandering section 
found in Berry III et al.’s (2020), High School Mathematics Lesson to Explore, Understand, and 
Respond to Social Injustice. In years past, the TPC course has focused on developing PMTs’ 
technological pedagogical content knowledge (TPACK) (Mishra & Koehler, 2009). This ability 
to teach with technology and design lesson materials that leverage the affordances of MAT is 
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developed through class discussions and readings, course assignments focused on finding and 
creating technology-infused resources, and a field experience where PMTs have the opportunity 
to design and teach a lesson that integrates MAT. The intervention unit took place during the 
Spring of 2021 and due to COVID-19 protocols, it was taught through a Web conferencing 
application. This intervention was developed to demonstrate how technology can be utilized to 
enhance a critical literacy context and then PMTs were asked to revise the lesson to include their 
own perspective to the lesson detailed below.  

Throughout the transition to synchronous distance education, I frequently utilized Desmos 
Activity Builder (DAB) to facilitate mathematical discussions while also allowing students to 
engage with MAT. Desmos Activity Builder allows teachers to create activities that are similar 
to a set of presentation slides with the addition that these slides can contain MAT such as 
Desmos’ Graphing Calculator application, Desmos’ Dynamic Geometry Environment, and Input 
Boxes that allow students to provide responses that teachers can see update in real time through 
their Dashboard (see Figure 2 below).  

 

  
Figure 2. Desmos Activity Builder Dashboard View 

As shown in the figure above, teachers can anonymize students’ names (they are randomly 
assigned the names of mathematicians), capture their work as a Screenshot, and then select and 
present student work to facilitate classroom discussions. This was a common practice in the 
course and in particular, this lesson.  

A Technology Based Lesson on Gerrymandering 
In this section, I provide a detailed account of the sequences of activities that the PMTs in my 

course engaged in and some results of how PMTs engaged with the technology-based 
Gerrymandering lesson. A learning goal for the implementation of this lesson was to equip my 
students with the ability to answer the question of: What connections between the mathematical 
context of exploring the effects of manipulating vertices of polygons can be made to the critical 
literacy context of Gerrymandering? 

During the implementation of the technology-based Gerrymandering lesson, PMTs accessed 
a set of Desmos Activity Builder slides (available in unblinded draft) where the first seven slides 
allow them to manipulate the vertices of various polygons while observing how a numerical “p-
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index” changes as they create different polygons. This “p-index” is commonly known as the 
Polsby-Popper Index, which assigns a value between zero and one that approaches one as the 
shape becomes closer to being a circle. This can be realized through the exploration by noting 
how the shapes that have the highest “p-index” are those that are as close to being a regular 
polygon as possible. To add a level of exploration and avoid students searching for the term 
“Polsby Popper” on the Web, I chose to rename this “p-index” for the first group of seven slides.  

A second group of slides after the set exploring the Polsby Popper Index, provided some 
context for why this metric may be of interest. The second group of slides (see Figure 3 below), 
allows students to place a set of vertices around some maps of legislative districts in the United 
States. In doing so, the PMTs were later asked to consider why some districts may have a low 
Polsby Popper Index and some a large Polsby Popper Index.  
 

 

 

 

 

 

 

 

Figure 3. Estimating Compactness of U.S. Districts 

This group of slides was then followed by a third group of slides where a hypothetical state’s 
districts can be created by manipulating points surrounding sets of X’s and O’s representing a 
concentration of voters that typically vote for political party X and O. In engaging with this 
group of slides, PMTs were able to manipulate district lines in such a way that despite a state 
being composed of a majority of X’s the districts could be drawn so that the districts elect the 
same number of representatives from the O political party (see Figure 4 below). 

 
Figure 4. Gerrymandering in a Hypothetical State 

 
Though the three groups of slides were implemented during the same class session, given the 
time constraints of K-12 classrooms, a similar lesson would be better suited as a sequence of 
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three lessons with the first group of slides devoted to one lesson focused on building some 
intuition surrounding compactness of shapes as measured by the Polsby Popper Metric.  

After the in-class activity facilitated through Desmos Activity Builder, PMTs were instructed 
to read a news article (https://truthout.org/articles/35-states-at-risk-of-rigged-districts-due-to-
gerrymandering-report-finds/) about Gerrymandering’s potential impact in the year to come and 
then reflect on why this is should be considered a social injustice. In addition to the reflection, 
they were provided with the following post-lesson prompt: 

“The Polsby-Popper Index, used to determine compactness of shapes, is found by the 
formula: 

𝑃𝑃(𝐷) =
4𝜋(𝐴𝑟𝑒𝑎 𝑜𝑓 𝑆ℎ𝑎𝑝𝑒 𝐷)

(𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑆ℎ𝑎𝑝𝑒 𝐷)2
 

 
Using this formula and what you now know about Gerrymandering, please explain why a 
Gerrymandered district might give a smaller value of PP(D)?”  

How the MAT Supported Mathematical Exploration 
In this section, I provide some description of what mathematical practices the PMTs engaged 

in, what new mathematical understanding appeared to emerge, and what connections they were 
able to make between the context of thinking about the compactness of an abstract polygon to 
thinking about the compactness of a shape that represents a legislative district.  

During the first group of slides, PMTs explored the nature of the Polsby-Popper Index by 
dragging vertices of abstract polygons. As the points were dragged, the value of a “p-index” 
changed simultaneously. On these slides, PMTs recorded observations about what characteristics 
they observed in the shapes that yield the highest and lowest “p-index.” At the close of this group 
of slides, they were asked to record observations about the shapes that occurred across all six 
polygon exploration slides in the group. This group of slides was effective in supporting PMTs to 
engage in conjecturing about the nature of the Polsby Popper Index which were then revised 
after further exploration and classroom discussion. Conjectures about the nature of the Polsby 
Popper Index were seen as a number of PMT responses were initially focused on superficial 
observations or less relevant properties such as the angle measures, but later responses indicate a 
shift in attention from angle measures to the regularity of the shape. For example, some 
responses regarding the hexagon exploration are shown in Table 1 below.  

 
Table 1: Responses to the prompt “Drag the points to create the highest and lowest P-index 

that you can and then describe some characteristics of the shape you created” 
Student 

(Pseudonym) 
Initial Observation 

Rey “making as small of angles as I could helped to make P-index smaller” 
Kris “…a normal hexagon” 

 
Later in the lesson these ideas appear to have been refined through the exploration and 

discussion so that their ideas now align more closely with what my goals for this part of the 
lesson were. In Table 2 below we see how these same students above refined their initial ideas 
above to observe something about the regularity of the shape or the ratio of the area to the 
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perimeter.  
 

Table 2: Refined understandings of the “p-index” 
Student 

(Pseudonym) 
Refined Understanding 

Rey “I think compactness measures how close or far apart the vertices of a 
shape are. Which makes the shape either close to equal in sides and angles 
(regular), or narrow in shape (irregular).” 

Kris “normal polygons had the highest p-index values, whereas the ones with 
the smallest area-to-perimeter ratio had the lowest p-index values.” 

 
Responses and ideas such as these could not have been organically developed by students in 

this lesson without the aid of technology. In the activity, students were able to simultaneously 
generate a vast number of polygons with different dimensions and have the corresponding 
Polsby Popper Index calculated for them. This allowed them to focus their attention on the 
properties of the shapes such as the regularity or the ratio of the area to the perimeter. In order 
for a paper-based lesson to bring out the similar ideas without being explicitly presented with 
these ideas, it might require students to construct a number of different polygons on either the 
same grid which would end up being very cluttered or it may require multiple sheets of paper. 
Students might then use a dissection method for calculating the area of each triangle formed 
through a dissection so that they could find the area of the polygon or they may count the number 
of grid squares within each shape. Both of these methods would be both inefficient and may be 
considered low cognitive demand. 

Connecting the Abstract Mathematics to the Critical Literacy Context 
Connecting decontextualized mathematics to contextualized problems is often challenging 

for students as the context can obscure the underlying concepts previously explored. In Table 3 
below, the responses from Rey and Kris came from their post-lesson prompt described above. 
One can see that Rey mentions the role of area and perimeter, but why this may help to detect 
Gerrymandering is less clear. Rey does appear to see some connection between “balance” and 
the “weight” of votes, which I believe to be a step towards seeing a connection between district 
lines being drawn to produce a greater efficiency gap (Stephanopoulos & McGhee, 2015) and 
how this could disenfranchise voters when their votes are seen as having less weight. On the 
other hand, we see Kris make strong connections between boundaries being “stretched” and how 
this results in a greater perimeter for the district while not necessarily changing the area or even 
making the area smaller. 

  
Table 3: Post-lesson prompt responses connecting the mathematics to Gerrymandering 

Student 
(Pseudonym) 

Response 

Rey “This formula shows that the P-index is the relationship between the area 
and perimeter of districts. A gerrymandered district might give a smaller value 
of PP(D) because they are drawn so that some districts don’t “matter” as much 
as others. To my understanding, a smaller PP(D) shows that they have less 
weight in their votes. When districts are more compact, they are more 
balanced in their voting. When the PP(D) of all districts are closer to one 
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another, this will make votes and the districts themselves more balanced. 
Lastly, it would reduce the racial gerrymandering that is happening. 

Kris “Gerrymandered districts are not very compact because they are often 
stretched far and thin and encompass regions that are far apart from each other 
despite other districts having closer proximity to themselves. As a shape is 
stretch or distorted, the relative area on the inside becomes a much smaller 
value in comparison to the perimeter that surrounds it. Much like how 
flattening a basketball maintains a constant surface area, but significantly 
reduces the internal volume. Therefore, the more gerrymandered a district is, 
the larger the denominator will be under the district’s area” 

 
The results from the previous two sections together exemplify a rather typical trajectory in the 
TPC course where initial ideas were developed through exploration with MAT, which led to a 
refinement of these initial ideas about the mathematics. This refined understanding of the 
mathematics supported a relatively accurate description of the connection between the 
mathematics discussed in the class lesson to the context of Gerrymandering.   

Discussion 
Within this Technology-Based Critical Literacy Mathematics Lesson, the role of MAT was 

critical in enabling my students to develop new understandings about the critical literacy context. 
This was done by equipping them with an ability to communicate the connections between 
compactness and Gerrymandering. The empirical support with prospective mathematics teachers 
demonstrates that with MAT, it is possible to simultaneously teach cognitively demanding 
mathematics content while also bringing about new understandings of social injustices. Much 
more work can to be done to provide support for the notion that leveraging the affordances of 
technology can generate novel approaches to exploring critical literacy contexts within a K-12 
classroom. Future research may focus on how this type of lesson may support developing K-12 
students’ mathematical and technological identities as well as a critical eye towards 
sociopolitical contexts. Future curriculum work may focus on identifying, generating, an 
implementing other Technology-Based Critical Literacy Mathematics Lessons. Finally, the effect 
on teachers’ dispositions regarding technology use and teaching mathematics through critical 
literacy contexts is also needed to understand how teachers could be better supported in 
implementing equitable teaching practices.  
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Covariational reasoning and the creation and interpretation of graphs of covariational 
situations are important skills in math and science. Unfortunately, research shows that students 
often struggle to make meaningful connections between graphs and the covariational situations 
they represent. Educational activities designed to help students overcome this struggle tend to 
use either student-generated or automatically-generated graphs, and have students either act out 
covariational situations or more passively observe them. In this paper, we present the design of a 
tool and task that enabled two students to simultaneously embody both the creation of a graph 
and the covariational actions that the graph represents. Through a process of collaborative 
instrumentation, the students made meaningful connections between their motions and the 
embodied traces they created as they reasoned about the covarying quantities of height and time. 

Keywords: Algebra and Algebraic Thinking, Middle School Education, Technology, 
Instructional Activities and Practices 

Covariational reasoning, or the ability to coordinate changes in two covarying quantities 
(Carlson et al., 2002; Thompson & Carlson, 2017), is an important part of how students 
understand and use graphs. However, research shows that students of all ages often struggle to 
make connections between graphs and the covariational situations they represent (Oehrtman et 
al., 2008). For example, students commonly view graphs more as wireframe images of a 
situation rather than records of covariation, seeing static shapes rather than emerging traces 
(Moore & Thompson, 2015). 

Many different educational activities have been designed and tested that attempt to support 
students in making these connections. One of the many decisions faced by the designers of these 
activities is a choice about whether to use student-generated or automatically-generated graphs. 
Students may create their own graphs and thus see how they are built, but many students struggle 
with this process and the underlying covariational meaning is lost (e.g., Mevarech & Kramarsky, 
1997). Conversely, graphing utilities allow students to focus on the covariation without having to 
worry about the graphing process itself, but students then tend to blindly trust these 
automatically-generated graphs without thinking more deeply about what they represent (e.g., 
Cavanagh & Mitchelmore, 2000). 

Similarly, designers must also choose whether students will act out the covariational situation 
being graphed or more passively observe it. For example, designs using motion sensors paired 
with automatically-generated graphs allow students to literally walk their covariation and see the 
resulting graph appear in real time (e.g., Duijzer et al., 2019). In contrast, designs that provide 
animations of a covariational situation allow students to observe or even control a covariational 
situation but not to physically act it out themselves (e.g., Stevens et al., 2017). 

We categorize the designs resulting from these two decisions by whether or not the 
covariational situation and the corresponding graphing are each embodied (e.g., Lakoff & 
Johnson, 2000; Núñez, et al., 1999; Wilson, 2002) by the students. Some designs have tried to 
support student embodiment of both covariation and graph creation. For example, designs aimed 
at teaching kinematics to college students have used ball-and-track activities paired with student-
generated graphs (e.g., McDermott et al., 1987). In these activities, students both generate the 
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motion of a physical ball in a track they have assembled and then also graph that motion. Along 
with instruction and practice, McDermott et al. found that this design supported improvement in 
college students’ covariational understanding of kinematics graphs. 

However, we found no design in the literature that has students simultaneously embodying 
both the act of graph creation and the covariational situation being graphed. We therefore 
conjecture that leveraging the benefits of embodying both covariation and the corresponding 
graph creation at the same time may help students to make these connections between graphs and 
the covariational situations they represent. Our research question is thus: What kinds of graph 
thinking and covariational reasoning might students engage in while working with a tool 
designed to support collaborative instrumentation and the simultaneous embodiment of both 
graphing and covariation? Accordingly, we address this question through research framed by 
the theories of covariational reasoning, embodied design, instrumented activity, and 
intersubjectivity. 

Theoretical Framework 
When students coordinate two varying quantities (Thompson, 1993, 2011) by attending to 

and making sense of the ways the quantities change in relation to each other, they engage in 
covariational reasoning (Carlson et al., 2002; Thompson & Carlson, 2017). Covariational 
reasoning is fundamental to students’ understandings and uses of graphs precisely because 
graphs in two dimensions are representations, or traces, of the relationship between two 
covarying quantities. In order to support the development of students’ covariational reasoning, 
Moore and Thompson (2015) endorse a particular way of thinking about graphs as emergent 
relationships called emergent shape thinking. Whereas static shape thinking relies on perceptual 
cues and global properties of graphs as static objects, emergent shape thinking involves 
understanding a graph simultaneously as what is made (a trace in progress) and how it is made 
(as a record of the relationship between covarying quantities). These ways of thinking about 
graphs will be useful in our analysis of students’ graphing activity as we aim to help them make 
connections between graphs and the covariational situations they represent. 

As we describe below, the first author embarked on a design experiment (Cobb et al., 2003) 
to produce a tool to mediate the formation of these connections. The tool used in this project 
emerged from a design cycle informed by the theory of embodied cognition. Rather than 
consisting solely of computational operations on symbolic propositions that occur entirely within 
a disconnected mind, embodied theories of cognition hold that cognitive processes “must be 
understood in the context of [the mind’s] relationship to a physical body that interacts with the 
world. … Hence, human cognition, rather than being centralized, abstract, and sharply distinct 
from peripheral input and output modules, may instead have deep roots in sensorimotor 
processing” (Wilson, 2002, p. 625). From this perspective, even the most complex ideas are 
grounded in and emergent from the lived reality of bodily experiences in the world.  

Empirical evidence in support of embodiment theories of cognition (e.g., Lakoff & Núñez, 
2000) has impacted mathematics education research (e.g., Abrahamson & Lindgren, 2014). In 
that context, mathematics must be reconceptualized and accounted for not as “an objective 
mathematics, independent of human understanding” but rather “in terms of the human bodily-
based and situated conceptual systems from which it arises” (Núñez et al., 1999, p. 47). 
Accordingly, such an account should be useful for devising more effective instruction through 
grounded learning situations that foster meaningful mathematical understanding. Abrahamson’s 
(2014) pedagogical framework of embodied design provided us with a template with which to do 
so as it gave language and structure to the process by which the Graph Tracer tool (presented 
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below) was designed. Through phenomenalization, we hypothesized about the embodied schema 
that underlie the coordination and graphical tracing of two covarying quantities. Through 
concretization, we digitally designed and 3D printed a physical artifact with which two learners 
could collaboratively enact their solutions to problems that would have them enact those schema. 
And through dialog, we elicited the learners’ informal enactments of covariational reasoning and 
supported their formalization by engaging them in reflective activity. 

Lastly, in order to analyze the contribution of the collaborative aspect of two students’ 
graphing activity, we drew on the theories of instrumented activity and intersubjectivity. Vérillon 
and Rabardel’s (1995) theory of instrumental genesis provides a framework for analyzing 
student learning in the process through which objective artifacts become tools to be used to 
accomplish a task. From this perspective, an artifact (e.g., a physical or digital tool) becomes an 
instrument (e.g., tool, sign) when a subject (e.g., actor, learner) has integrated it into a conceptual 
scheme for a specific implementation of the artifact in the context of their goal-directed activity. 
Thus, an instrument is a psychological construct established by the subject’s instrumental 
relation with the artifact. In practice, an instrumented activity is characterized by individual 
subject-object, subject-instrument, and object-instrument interactions. 

In our case, however, with two subjects working collaboratively, we will be interested in 
what we refer to as the subjects’ collaborative instrumented activity. These are captured in the 
range of subject1-subject2 instrumented interactions. Then, in tandem with this analysis, we 
leverage Vygotsky’s (1978) notion of intersubjectivity to examine the interpsychological process 
by which the two subjects negotiate and co-construct a shared conceptual scheme for their 
instrumented activity through the verbal and nonverbal communications in their graphing 
activity. Gillespie and Cornish’s (2010) notion of intersubjectivity adds some texture here by 
considering “the mutual awareness of agreement or disagreement” (p. 3) in addition to shared 
understandings and even misunderstandings. Thus, for the sake of our analysis, intersubjectivity 
manifests itself in participants’ actions and intentionalities towards each other and in their joint 
movement toward negotiated and developed meanings and actions. 

Methodology 
In a design experiment (Cobb et al., 2003), researchers iteratively design, test, and revise 

both an instructional design and their theories about how that design supports student learning. 
The designs of the tool, task, and questioning presented in this paper emerged from the third 
iteration of an ongoing design experiment that seeks to produce a tool that can be used to help 
students make meaningful connections between height/time graphs and the kinds of real 
covariational situations that these graphs represent. We briefly describe the second iteration 
design in order to provide context for the third iteration presented in this paper. 

In the second iteration, the design involved a video of simultaneous covariational motion and 
graph creation that students could view and explore. Specifically, a video of a vertically moving 
object (Figure 1, left) was played on a cell phone while the phone was slid horizontally from left 
to right (Figure 1, right). This action was then itself recorded to create a second video in which a 
height/time graph of the relationship between the original object’s height and the trace of its 
motion could be seen. Students could then use familiar video playback controls to drag the 
video’s progress bar back and forth and observe the graph being emergently traced by the 
object’s motion. However, even when they were provided with an animated graphical overlay 
depicting the graph in the final version of the video, students still struggled to connect the 
horizontal movement to the vertical motion in the original video. Moreover, they were unable to 
imagine similar sliding videos they could rely on to create or interpret other height/time graphs. 
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Figure 1: Vertical Video Screenshots (left) and Sliding Video Screenshots (right) 

In the current iteration of this design experiment, we sought to build on that earlier iteration 
to create a more grounded and embodied experience for the students than the sliding video 
seemed to offer. While the sliding video situated the covariational motion and the graph creation 
as simultaneous processes, it did not directly leverage students’ own simultaneous embodiment 
of both of these processes. The framework of embodied design thus informed the third iteration, 
which yielded a design that includes a tool called the Graph Tracer (Figure 2, left) along with a 
set of tasks using that tool. The Graph Tracer is a 3D-printed rectangular prism with two cutouts: 
one on the bottom so that a paper can be slid beneath it, and one down through the top so that a 
marker can be inserted upright and moved up and down to draw on the paper below. 

 

        
Figure 2: The Graph Tracer (left) and Collaborative Graph Tracer Use (right) 

 The Graph Tracer is intended to be used by a pair of students, one of whom controls the 
speed of the paper sliding beneath it while the other controls the up and down motion of the 
marker (Figure 2, right). One student thus embodies the quantity of time while the other 
embodies the quantity of height, and we hypothesize that through their collaborative 
intersubjective engagement, they both embody time and height as they work together to use the 
Graph Tracer. The result is the creation of a visual trace of the marker’s motion over time, in 
other words, a height/time graph representing that motion. 

 

 

 
Figure 3: The Ordered Set of Traceable Graphs A-L 
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The task designed for use with the Graph Tracer includes a set of papers with an ordered 
group of preprinted graphs involving a variety of different slopes (Figure 3). A pair of students 
are asked to work together to use the Graph Tracer tool to trace each graph in order, reflect on 
their experience of doing so, and compare and contrast the different graphs. Examples of specific 
questions include “What did you have to do to make this graph?” and “Compare this graph to 
your previous graph, how is it similar or different?” The provided papers also include blank 
graphs, on which students can experiment with making their own traces. 

As part of the design experiment, this design was tested in a task-based clinical interview 
(Clement, 2000; Ginsburg, 1981) with two students, “Eri” and “Robinson.” At the time of data 
collection, Eri was a twelve-year-old in the 7th grade who had some experience with graphing 
points in a coordinate plane but expressed that she was not familiar with graphing lines. 
Robinson, Eri’s younger brother, was a ten-year-old in the 4th grade who described having no 
graphing experience. The interview took place over Zoom with the designer/researcher (DR, first 
author) leading the interview and a partner researcher (PR, the students’ parent) in the room with 
the students. Collected data includes the video recording of the 45-minute interview, scanned 
copies of the students’ graphs, and the researchers’ field notes. Through a retrospective analysis 
(Cobb et al., 2003) of that data, we examined the students’ collaborative graphing activity using 
the Graph Tracer from both instrumented activity and covariational reasoning perspectives. 

Findings 
Here we present two excerpts from Eri and Robinson’s activity. The first exemplifies the 

intersubjective process through which the Graph Tracer became a collaborative instrument for 
them. The second shows how Eri leveraged her instrumented use of the Graph Tracer to revise 
her reasoning and apply it in a more sophisticated graphing scenario. 

When they were first handed the Graph Tracer, neither Eri (Figure 4, left) nor Robinson 
(right) had ever seen it before or had any idea how to use it. Although we started the interview by 
explaining the goal of making a picture that represented height changing over time, we did not 
demonstrate the use of the Graph Tracer. The students thus began their explorations by enacting 
various ways they imagined the tool might be used, first tracing the y-axis of Graph A and then 
turning the Graph Tracer diagonally to trace the graph without moving the paper. At this point in 
their collaboratively instrumented activity, the students were interacting with each other and the 
Graph Tracer to develop a shared scheme for its use (Vérillon & Rabardel, 1995) but not yet with 
the object of the Graph A and its covariational meaning. 

 

 
Figure 4: First Trace of Graph A 

Once we clarified the constraint that the Graph Tracer must remain parallel to the y-axis, the 
students then started to explore how they could trace the graph by moving the paper and the 
marker simultaneously. Robinson first demonstrated how he thought the paper could be slid 
beneath the Graph Tracer (Figure 4a). Eri then used her finger to show the marker’s possible 
motion (Figure 4b) as she wondered, “What if you do [that slide of the paper] and you start 
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moving [the marker] upward?” Figures 4c-e show how the pair attempted to implement their 
idea, first with Eri reaching over to pull the paper and then pushing from her side. They had 
reorganized themselves so that one person could hold the Graph Tracer while the other pulled the 
paper. Thus, the tool’s intended (Malafouris, 2013) utilization scheme (Verillon & Rabardel, 
1995) and the associated task prompted the pair’s coordination of initially individual (i.e., 
uncoordinated movements of the pen and paper) and eventually collaborative instrumentation.  

As they drew this first trace, the students began to interact with the graph as well as with 
each other and the Graph Tracer. In this attempt, Eri embodied the quantity of time by 
controlling the paper while Robinson simultaneously embodied height by controlling the marker. 
The pair was able to complete their trace of Graph A, but were not happy with their result (the 
orange line in Figure 4f; see also Figure 6). Eri had pulled the paper relatively quickly and 
Robinson remarked afterwards: “that was not traced.” We interpret their dissatisfaction with the 
result as though they struggled to negotiate a collaborative scheme to enact a smooth trace. 

The pair then decided to try tracing Graph A again on the same page with a different color 
marker and a different tracing technique. Eri asked to switch roles so that she could control the 
marker as Robinson controlled the paper (Figure 5a). Robinson offered a suggestion in response: 
“You move up slowly while I pull the paper this way.” With this slower attempt and some help 
from the PR in steadying the paper (Figure 5b), they were better able to coordinate their actions 
to achieve the trace they wanted. In Figure 5c, the pair successfully completed a trace of Graph 
A using this new technique. 

 

 
Figure 5: Second Trace of Graph A 

Finally, the trace that emerged from this second attempt was placed on the table in front of 
the pair (Figure 5d; see also Figure 6) as they responded to the DR’s question: “How did you 
have to move the marker to get that picture?” Robinson enacted his answer nonverbally by 
holding the Graph Tracer up in the air in front of himself and moving his finger slowly upwards 
inside the marker track. Eri motioned similarly in the air with the marker she was still holding in 
her hand as she also answered out loud, “I just went like... very slowly upwards.” 

 

 
Figure 6: Eri and Robinson’s Three Graph A Traces: 

The y-Axis (green), The First Attempt (orange), and The Second Attempt (dark blue) 
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The students’ actions and reflections as they enacted their three traces of Graph A (Figure 6) 
show their process of collaborative instrumentation. As the pair negotiated how to use the Graph 
Tracer and attended to details of paper and marker speed in their tracing actions, the graph and 
Graph Tracer became an instrument with which they intersubjectively reasoned covariationally 
about height and time. Both their successful trace and their demonstration of the marker’s motion 
as a change in height over time show how they had connected their enacted tracing of the graph 
with its covariational meaning. The completion of this trace and the students’ articulations of 
their activity are evidence of the first major step the pair took towards enacting a shared 
understanding of how marker speed affects graph shape when using the Graph Tracer. 

As the pair continued to enact traces of other graphs, they refined their collaborative scheme 
for creating smooth traces as they reflected on how their individual actions influenced their 
collaborative traces in different ways. For instance, when asked to compare and contrast Graphs 
G, I, and J by ordering them in increasing speeds of the marker motions required to trace them, 
Eri and Robinson initially disagreed. Robinson’s intuition was that faster motion of the marker 
would make steeper graphs, which we interpret as an emergent (Moore & Thompson, 2015) view 
of the graph as a trace of the marker’s motion. However, Eri based her reasoning on how long 
her subjective experience of drawing each graph had felt and the maximum height a graph 
reached, which we interpret as a static view of the graph based on its visual features. 

The disagreement was resolved as they experimented by drawing three different lines at three 
different speeds on the same blank graph and then comparing their speeds and the steepness of 
those lines (Figure 7, left). This analysis convinced Eri to change her mind as she came to 
Robinson’s way of thinking. We interpret that she did so by considering Robinson’s movement 
of the paper in addition to the time she felt as she drew the graph. Thus, the slope of the graph 
seemed to have become a multiplicative object for Eri, composed of both embodied actions. As 
the episode continued and the pair began to develop collaborative schemes for creating and 
interpreting their own height/time graphs, Eri’s initial static reasoning gave way to more 
emergent reasoning about the graph as a trace of the marker’s motion over time. 

 

           
Figure 7: Eri’s Marker Speed Experiment (left) and Eri’s Trace of Graph L (right) 

Although Robinson grew tired of the activity and eventually left the interview, Eri remained 
and took some time to consider Graph L. She used the Graph Tracer (with the PR’s help) to 
attempt to trace the curve of Graph L and produced an imperfect but structurally similar result 
(Figure 7, right). She then expressed emergent shape thinking as she explained what she had 
done: She moved the marker the fastest at the ends of the curve and slowest along the top. 
Although Robinson’s departure put an end to the pair’s collaboratively instrumented activity, 
Eri’s continued solo instrumentation via this activity seemed to support her new awareness of 
how the marker’s speed impacted the shape of the resulting trace. This completed her process of 
enacting her new understanding of that relationship and showed further evidence of her emergent 
reasoning about the graphs she had created with the Graph Tracer. 
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Concluding Discussion 
Using our analytic lens of collaborative instrumentation, the findings presented in this paper 

show how Eri and Robinson were able to move together from complete unfamiliarity with 
height/time graphs and the Graph Tracer tool towards a more fluent and collaborative stage in 
their instrumented use of the Graph Tracer and in the shared meanings they made of graphs 
given to or constructed by them. The Graph Tracer’s requirement for simultaneous embodiment 
(e.g., Lakoff & Johnson, 2000; Núñez, et al., 1999; Wilson, 2002) of both the covariational 
situation and the creation of the corresponding graph also provided the students with a rich 
opportunity to reason about how these two acts are meaningfully related. Through their joint 
activities and their discussion of the relationship between marker speed and graph shape, both 
students worked together to enact their growing transformation of those artifacts into instruments 
they could use to reason emergently (Moore & Thompson, 2015) about height/time graphs. Eri 
also displayed a more sophisticated understanding of how marker speed influenced the steepness 
of the graph, thus beginning to interact with the idea of slope, an important graphing concept. 

To continue this design experiment, we are interested in refining the design of both the Graph 
Tracer tool as well as the task, traceable graphs, and questioning used in this iteration. Eri and 
Robinson encountered physical difficulties in bracing the Graph Tracer and sliding the paper 
smoothly. A solution as simple as working on a smoother surface might mitigate the issue, but 
this solution places the burden on the user rather than the designer. Instead, the addition of a tray 
to brace the Graph Tracer and make the paper easier to slide could be considered. Alternately, it 
might be worth laminating the traceable graphs and using dry erase markers. Furthermore, 
modifications to the physical dimensions of the Graph Tracer like narrowing its width might 
improve students’ ability to see their trace as they work, but this would need to be tested to 
determine the effects on durability and stability during use. Future iterations might also refine the 
questioning in order to elicit deeper and more elaborate descriptions of students’ reasoning as 
they work. Possible directions that could benefit from deeper questioning include what students 
feel they are struggling with and why they choose certain actions as they use the Graph Tracer. 

One limitation of the study is the messiness of the interview setting. The online setting 
presented barriers to conducting an effective interview, including difficulties seeing each other 
and the students’ work as well as the challenge of two researchers conducting an interview 
together remotely. However, from our analysis, we conclude that the current design of the Graph 
Tracer has strong potential for use in the learning of covariation and graphing, thereby 
challenging the status quo of how these topics are traditionally taught. Future work might include 
refining the design of the Graph Tracer as well as gathering more data and performing further 
analysis to examine students’ collaborative use of the Graph Tracer to reason about slope. We 
would also like to develop new tasks and gather new data to explore how students might use the 
Graph Tracer to reason about other graphing and function concepts such as rate of change, 
concavity, and points of inflection. Implementation of this design in a classroom setting could 
also support an investigation into how the Graph Tracer might be used as part of the regular 
middle school curriculum. Finally, it would be interesting to explore other designs that could also 
support the simultaneous embodiment of both covariation and covariational graphs and to further 
assess the analytic value of the collaborative instrumentation concept. 
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In continuing from past working groups on statistics education, this working group met for 
PME-NA 43 to present new findings in the field and to make new connections, as well as work 
toward future directions. Each day of the working group was based on a different theme 
including measurement, issues of equity and social justice, and data science. Each day included 
short presentations of a few projects in line with the theme, followed by discussions of the theme 
in statistics education, and ended with discussions of future directions related to the theme.   

Keywords: Data Analysis and Statistics, Measurement, Equity, Inclusion, and Diversity  

The recent data science revolution in K-12 curriculum as well as the pandemic laying bare 
issues with the statistical literacy of the citizenry have made statistics education gain traction and 
attention in educational research. The pandemic has brought data and data-based arguments front 
and center in the media and people are increasingly able to openly access data for themselves 
(Ancker, 2020). Data science has also found a new hold in the K-12 mathematics curriculum. 
This can be seen in added focus on data science in the new GAISE II report (Bargagliotti et al., 
2020) and based on curriculum reforms in California that seem to be reinvigorating the old math 
wars. The goal of this working group is aimed at continuing discussions begun at previous 
meetings, and to create space for new work and collaborations. In an effort to create an open 
environment but also focus on specific elements of the field, the working group was be 
structured around three themes. The working group consisted of the leaders (authors) as well as 
approximately 6-10 participants each day of the conference. We had the largest number of 
returning participant this year of any of the three years we have done this working group, which 
was exciting. Furthermore, the group had participants from a wide range of expertise including 
university faculty, doctoral students, and researchers, which allowed for rich and diverse 
conversations during the conference. One of the greatest challenges in statistics education is 
creating community and growing the field and those are exactly what this group aims to do. Our 
primary product each year is increased connections between researchers, faculty, and doctoral 
students and creating new spaces for collaboration and discussion. In this post conference report, 
we focus on highlighting some of the major ideas and topics that came up in our discussions 
during the working group.    

Discussion in Relation to Themes 
The working group was structured around three main themes: measurement, issues of equity 

and social justice, and data science. The structure allowed people to freely flow in and out of the 
group based on interests from day to day. The themes also helped us to focus our discussions and 
create an environment for considering tangible future directions.    
Measurement 

Recently, there have been calls for increased focus on not only the need for developing 
instruments backed by strong validity arguments, but also for examination of validity evidence 
for existing instruments and closer attention to instruments being used for research purposes 
(Lavery et al., 2019). The NSF-funded Validity in Measurement in Mathematics Education 
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Statistics Education synthesis group has spent the past two years documenting instruments used 
in statistics education research, as well as the types of validity evidence that accompany them. In 
this theme, we discussed findings and implications of the ongoing project, and broadly discussed 
issues of validity in measurement. A big question that came up from people participating in the 
discussion on this day was, how do people in the field help others know what instruments are 
available and what they measure and for what populations? The VMED project is working 
towards a solution to this issue, but it will continue to be an issue of advertising beyond people in 
just statistics or mathematics education as other disciplines continue to research the teaching and 
learning of mathematics. This is particularly true in the case of the growing data science 
movement that is transdisciplinary.  

During our discussions one of the questions we centered around was, what instruments does 
statistics education need? We present here some of the main discussion points that came up in 
hopes to spark future discussion and work in these directions: 

 There seems to be a need for statistics education measurements at the K-12 grade levels 
including measures of statistical knowledge and practice as well as measures around 
identity, beliefs, affect, and dispositions.   

 As the importance of preparing teachers to teach important understandings from statistics 
and data science continues to increase it will be important for researchers and teacher 
educators to have measures of those understandings to develop and measure the 
effectiveness of teacher preparation and education programs and experiences.  

 Observation protocols are needed for researching the practice of teaching statistics. Such 
protocols could be useful for preparing teachers of statistics in teacher preparation 
programs at universities and for site supervisors there to focus on important aspects of 
teaching statistics particularly those that are potentially different than teaching 
mathematics as Cobb and Moore (1997) discuss. Furthermore, such protocols would be 
helpful in teacher education for use in lesson studies and other professional development 
experiences. They could also be useful for teachers who use research-based teaching 
practices to defend their practices that may seem out of line with administrators visions of 
teaching statistics  

 How do we work with other disciplines to develop measures that support multiple 
disciplines? In particular, disciplines like computer science, civics, and science. This 
need for interdisciplinary work is increasingly important given the current data science 
revolution.  

Another issue that came up in conversations around the use of measures was, who do we 
want using these measures? As researchers, our main focus is on measures for educational 
research. However, when a measure is made public it is open for anyone’s use. Do we want 
measurements for policy makers and administrators to use in schools? A measure created for the 
best of intentions and used in ethical ways by researchers can easily be used in ways they were 
not designed or intended for. A particular worry is policy makers attempting to use such 
measures to evaluate teachers and make personnel decisions based on their results, which we 
have seen with Value-Added Models (VAMs), to the consternation of those that created them 
(American Statistical Association, 2014). Measurement will continue to be an ongoing area of 
much needed research in statistics education particularly as what it means to do statistics and 
data science continues to evolve rapidly with developments in technology.   
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Issues of Equity and Social Justice 
The centrality of context to statistical practice makes the discipline well positioned to 

interrogate issues of equity and social justice and creates spaces in the often neutrally positioned 
mathematics curriculum for interrogating such issues. Thought there are several decades of past 
work in relation to the topic of equity and social justice in statistics education (Frankenstein, 
1994; Lesser, 2007; Rubel et al., 2016) it is an area that has not received wide attention in the 
field. This however seems to be shifting. For example, in our working group every doctoral 
student that attended showed some level of interest in this theme and most were studying issues 
relate to this theme in their dissertation work. In searching recent National Science Foundation 
funding awards, we also notice a notable presence of funded work in this theme particularly over 
the past three years. That said what was really notable was it’s presence at all. Another thing we 
noticed in our search is a significant influence of data science on these projects with several 
focusing explicitly on data science. We discussed the fruitful connections we see possible in 
interdisciplinary work leveraging affordances from mathematics education, statistics education, 
and data science education to creating meaningful opportunities for students to engage in 
investigations of issues of equity and social justice in school mathematics classrooms (see Table 
1 for details).   

 
Table 1: Affordances each field offers for engaging in investigations of issues of equity and 

social justice in statistics and data science education in school mathematics classrooms.  
Mathematics Education Statistics Education Data Science Education 
 Strong location in the 

school curriculum 
 Growing 

sociopolitical turn 
 Developed 

frameworks around 
equity 

 Decades of work on 
critical mathematics 
education (CME) and 
Teaching 
Mathematics for 
Social Justice 
(TMfSJ) 

 

 Strong basis in 
mathematics 
curriculum 

 Simulation-based 
approaches to 
inference 

 Literature base around 
teaching and learning 

 Educational models 
 Context is central 

throughout 
 Centered around 

investigations driven 
by questions 

 Inductive approach  
 Focus on variability 

(diversity) 
 Methodological 

discipline 

 Focus on cleaning, 
managing and 
structuring data 
commonly needed in 
publicly available 
datasets 

 Focus on use of open-
source technology  

 Focus on data 
visualization 

 Data stories 

 
There are also interesting shifts in the world of methodologies that relate to this theme. For 

example, in the past decade there have been discussions about critical quantitative methods 
(Stage & Wells, 2014). More recently there has been a strong push in educational research to 
look at using quantitative methodologies using critical race theory lenses under the moniker of 
QuantCrit (Garcia et al., 2018; Sablan, 2019). There are even research institutes focused on 
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rethinking quantitative methods and methodologies all together to create new quantitative ways 
of knowing the world such as the Institute for Critical Quantitative, Computation, and Mixed 
Methodologies, whose mission it is to, “to advance the presence of scholars of color among those 
using data science methodologies, and challenge researchers to use those methods in ways that 
can dismantle the structural barriers to enable human flourishing for underrepresented 
communities, professionals, and young people” (https://www.icqcm.org/). We are encouraged by 
the growing body of work in this area. However, there is still much work to be done. Addressing 
issues of equity and social justice in statistics education is still predominantly being done by a 
small subset of the field. Furthermore, such considerations have not yet made there way into the 
recommendation of major policy documents such as the Statistical Education of Teachers 
(Franklin et al., 2015 or the GAISE II report (Bargagliotti et al., 2020).   
Data Science 

Data Science is increasingly gaining traction and attention in the K-12 curriculum. California 
in particular has been making huge strides at the policy level to create spaces for data science in 
the mathematics curriculum. Yet we have little research in data science education relative to 
what are the epistemic practices are that students should learn, how students learn those 
practices, or how to prepare teachers to teach data science. Furthermore, data science itself is an 
ill-defined field that does not yet have a clear identity or community itself. Questions for us to 
consider then are how do mathematics and statistics education relate to data science education? 
Also, what could be fruitful points of collaboration? 

In some ways it seems like data science is sucking the air out of the room in new initiatives 
in the K-12 mathematics curriculum. Big name scholars like Jo Boaler are actively working to 
create significant space for data science in the high school mathematics curriculum in California 
as part of recent policy changes in the mathematics curriculum in that state that has sparked a 
reinvigoration of the old math wars. However, this work is moving very quickly and there is little 
research in data science education currently to guide curricular reforms. Data science itself is still 
rather ill-defined as a field making it difficult to then state what students should learn or 
understand from the field. In our working group, one of our main conversations in this theme 
was, what is data science? We found a wide range of models and definitions during our 
discussion and search, but little common grounding other than it involves interdisciplinary work 
drawing from computer science and statistics and that data wrangling and visualization are 
central aspects of data science work. In thinking about data science, we brainstormed from our 
collective understanding of what data science is, to reflect on the question: What types of 
problems do data scientists work on? You can see the main points of our discussion on the 
Jamboard we used to organize our thoughts shown in Figure 1.  

We ended our discussion of data science much as we started in being unsure of what it was 
and how it should unfold in the school mathematics curriculum. We have more questions than 
answers, but we hope that as interest in and demand for data science in the school curriculum 
increases more scholars will actively investigate issues in this theme to help guide the rapid 
development of curriculum.  

 
 
 
 
 
 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

2106

https://www.icqcm.org/


Figure 1: Jamboard of thoughts around the question of What types of problems do data 
scientists work on?      

 

Author 1 encourages scholars to also be cautious in reflecting on what is data science for and 
who is it serving in the curriculum when working on scholarship in this area. Data science 
education initiatives are being well funded by tech companies and the common rationale for the 
need for data science relies on the common neoliberal claims of work force needs. In reflecting 
upon Labaree’s (1997) discussion of the American struggle over educational goals we must 
consider is the goal of education to serve the workforce needs of private corporations or is it to 
nourish democratic equality and citizenship? What does data science education look like with the 
goal of nourishing democratic equality and citizenship? I think this is an important connection 
and one not being considered widely.    

Concluding Thoughts 
Each year we end the working group feeling exhausted and excited. We are exhausted from 

the rigor of planning three days of engaging 90-minute sessions that are highly flexible and from 
engaging in 90 minutes of intense and invigorating conversations. It is those very conversations 
that excite us too. It is exciting to be in community with people that are deeply interested in the 
things we are interested in. We continue to carry on this working group because of that, because 
of the community that is developed and the interactions that nourishes us from being together. 
Statistics educators that do rigorous educational work in spaces around K-12 teaching and 
learning are a very small group who are spread across many organizations, institutions, 
disciplines, and locations. In mathematics education spaces, we miss out on conversations 
around the content we love. In statistics spaces, we miss out on the conversations about how 
people learn and teach. In statistics education spaces, it is not uncommon for much of the focus 
to be on post-secondary statistics education. This working group at PME-NA is a rare 
opportunity for those of us that transverse all of those spaces, educational research, mathematics 
education, statistics education, and statistics. We hope that the highlights we present here help to 
spark more conversations around statistics education in K-12 settings and that more people come 
join in those conversations next year.    

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

2107



References 
Ancker, J. (2020). The COVID-19 pandemic and the power of numbers. Numeracy, 13(2). 

https://doi.org/10.5038/1936-4660.13.2.1358 
American Statistical Association (2014). ASA statement on using value-added models for educational assessment. 

https://www.amstat.org/policy/pdfs/ASA_VAM_Statement.pdf  
Bargagliotti, A., Franklin, C., Arnold, P., Gould, R., Johnson, S., Perez, L., & Spangler, D. (2020). Pre-K-12 

guidelines for assessment and instruction in statistics education II (GAISE II) (Second edition). American 
Statistical Association. 

Ben-Zvi, D., Makar, K., & Garfield, J. (Eds.). (2018). International handbook of research in statistics education. 
Springer. 

Frankenstein, M. (1994). Understanding the politics of mathematical knowledge as an integral part of becoming 
critically numerate. Radical Statistics, 56, 22–40. 

Franklin, C., Bargagliotti, A., Case, C., Kader, G., Scheaffer, R., & Spangler, D. (2015). Statistical Education of 
Teachers. American Statistical Association. http://www.amstat.org/education/SET/SET.pdf  

Garcia, N. M., López, N., & Vélez, V. N. (2018). QuantCrit: Rectifying quantitative methods through critical race 
theory. Race Ethnicity and Education, 21(2), 149–157. https://doi.org/10.1080/13613324.2017.1377675  

Labaree, D. F. (1997). Public goods, private goods: The American struggle over educational goals. American 
Educational Research Journal, 34(1), 39–81. 

Lavery, M. R., Jong, C., Krupa, E. E., & Bostic, J. (2019). Developing an instrument with validity in mind. In 
Assessment in Mathematics Education Contexts: Theoretical Frameworks and New Directions. Routledge. 

Lesser, L. M. (2007). Critical values and transforming data: Teaching statistics with social justice. Journal of 
Statistics Education, 15(1), 1–21. 

Rubel, L. H., Hall-Wieckert, M., & Lim, V. Y. (2016). Teaching mathematics for spatial justice: Beyond a victory 
narrative. Harvard Educational Review, 86(4), 556–579. 

Sablan, J. R. (2019). Can you really measure that? Combining critical race theory and quantitative methods. 
American Educational Research Journal, 56(1), 178–203. https://doi.org/10.3102/0002831218798325  

Stage, F. K., & Wells, R. S. (2014). Critical quantitative inquiry in context. New Directions for Institutional 
Research, 2013(158), 1–7. https://doi.org/10.1002/ir.20041  

 
 
 
 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

2108

https://doi.org/10.5038/1936-4660.13.2.1358
https://www.amstat.org/policy/pdfs/ASA_VAM_Statement.pdf
http://www.amstat.org/education/SET/SET.pdf
https://doi.org/10.1080/13613324.2017.1377675
https://doi.org/10.3102/0002831218798325
https://doi.org/10.1002/ir.20041


TEACHING AND LEARNING WITH DATA INVESTIGATION 

Sunghwan Byun 
North Carolina State University 

sbyun2@ncsu.edu 

Christopher Engledowl 
New Mexico State University 

chriseng@nmsu.edu 

Travis Weiland 
University of Houston 

tweiland@uh.edu 

Susan O. Cannon 
Mercer University 

cannon_so@mercer.edu 

With a renewed focus on data investigation and its relationship to issues of equity and justice, we 
build on past statistics education working groups to co-develop a syncretic space in which new 
knowledge can emerge while embracing the tension between critical and dominant views. To do 
so, we invite a wide range of discussions and collaborations within the domain of statistics and 
data science education. The primary goal of this working group is to initiate cross-institutional 
collaborative subgroups based on overlapping research interests. The first two sessions will 
focus on identifying mutual interests among participants, and the third session will be devoted to 
planning for collaborative activities over the coming year. 

Keywords: Data Science, Statistics, Equity, Social Justice, Measurement 

Data science has begun to appear in the K-12 mathematics curriculum in various locations 
(Bargagliotti et al., 2020). Moreover, discourse around data science has become a political hot 
potato in curriculum reform in certain regions in the world (e.g., Fortin, 2021), resembling that of 
the earlier Math Wars (Schoenfeld, 2004). Against this backdrop, this working group aims to 
spark multiple research collaborations with a focus on teaching and learning with data 
investigation. Our word choice of data investigation is intentional; we invite wider perspectives 
on teaching and learning with real-world data, such as growing literature on data science 
education, while building on the continuing development of curriculum and research in statistics 
education. Teaching with data investigation requires a drastic shift toward identifying heuristic 
solutions for real-world problems in context; this contrasts with teaching mathematics, which 
often focuses on generalization and abstraction (Lee et al., in press; Wild & Pfannkuch, 1999). 
The ongoing pandemic has also brought meaning-making with data to the fore of determining 
everyday practices like wearing a mask and getting vaccines. Developing data-enabled citizenry 
with awareness of ethical implications of data use is a key concern to promote democratic social 
processes. However, it is well-documented that teaching and learning with data investigations is 
marginalized in the mathematics curriculum (Lovett & Lee, 2017), and teachers often do not feel 
prepared to teach statistics and data science in K-12 classrooms (Banilower et al., 2018). 

PME-NA has been an international space to examine issues about statistics and data science 
education from a wide range of perspectives. For example, Morgado and Sańchez (2021) 
presented a use of Geogebra to support students’ statistical covariational reasoning, and Rubel et 
al. (2021) applied a critical lens to examine the GAISE II report (Bargagliotti et al., 2020). These 
contributions reflect that statistics and data science cross both disciplinary and theoretical 
boundaries (Ben-Zvi et al., 2018). This working group will deepen discussions begun at previous 
meetings, and also germinate seeds for new collaborations. In an effort to create a syncretic 
environment that can also focus on specific elements within the domain, the working group is 
structured to develop sub-groups based on research interests and to engage in dialogic processes 
across the sub-groups.  
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Emerging Interests from the Past Working Group 
The discussions in the past working group suggest some broad themes of interests that 

participants may bring. We briefly discuss these themes and propose this working group to 
deepen these discussions and form collaborative sub-groups. 
Issues of Equity and Social Justice 

The centrality of context to data investigation makes statistics and data science education an 
optimal space to examine social issues and participate in democratic social processes. The past 
working group has identified important affordances of mathematics, statistics, and data science 
education in terms of centering equity and social justice in students’ learning experiences. 
Discussions may include applying the current understanding of teaching mathematics for social 
justice to bring data investigation to the fore of political participation. Discussions may also 
include the role of data science education in widening students’ access to public datasets and 
communicating their findings with multiple stakeholders. 
Data Science Education in K-12 Settings 

Teaching and learning data science in a K-12 setting poses both promises and challenges. It 
is an opportunity to lower the boundaries among the subject areas that are often siloed in art, 
language, mathematics, science, and social studies. For example, students may investigate US 
census data to identify important trends in the US demographics. This kind of interdisciplinary 
study brings together domain content knowledge in social studies and data investigation practices 
and allows students to question and understand important sociopolitical issues. One of the 
associated challenges is offering resources and professional development opportunities that are 
needed to integrate data investigation across multiple disciplinary learning settings. 
Measurement 

There have been recent calls for careful examinations of kinds of validity evidence and 
arguments for the research instruments that are used to advance the field of mathematics 
education (Lavery et al., 2019). The interdisciplinary nature of teaching and learning with data 
investigation adds complexity to this foundational work. This working group will discuss these 
issues and how they present different challenges in various research contexts related to teaching 
and learning with data investigation. 

Structure of Sessions 
Through sessions, participants will gradually form sub-groups with shared research foci. We 

purposefully structured whole group discussions to facilitate inter-group dialogues. 
 

 
Figure 1: Session Plans and Goals 
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We view critical dissonance as key for equity work. As such, this working group session focuses 
on developing appropriate methodological approaches for a systematic study of phenomena 
related to the intersection of equity work and mathematics teaching and learning in university-
based teacher preparation; we call this approach equity-focused research. We will create a 
collegial, scholarly space for unpacking and addressing persistent issues that arise when 
research design in mathematics education research is driven from an equity perspective. The 
goal is to engage with fellow researchers to discuss and/or develop appropriate methods and 
designs for studying the ways that preservice teachers understand, implement, and/or resist 
culturally responsive/sustaining teaching practices after learning about them in their 
mathematics methods coursework. 

The main topic of this session is tensions that arise when designing research using an equity 
lens. It is imperative that research integrate an equity focus in all aspects of study design, but this 
can be particularly challenging when working with large sets of numerical data that can be 
available within teacher preparation programs. In keeping with the spirit of the conference call 
for proposals, this working group session will use facilitated “critical reflection and 
conversation” to engage participants across the three sessions.  

Our work is situated as critical education research. As such we draw from scholarship that 
raises critical consciousness in understanding and addressing persistent social issues such as 
racism in education (Banks, 1993; Gay, 2000; Ladson-Billings, 1995; Nieto, 2004; Villegas and 
Lucas, 2002). Building from the concept of critical pedagogy we understand dialogue as the key 
to building critical consciousness about content and systems (Darder, et al, 2003). We draw from 
Hernandez et al. (2013) model of five thematic categories that can be useful for framing research 
in mathematics teaching and learning using an equity lens. They are (1) content integration, (2) 
facilitating knowledge construction, (3) prejudice reduction, (4) social justice, and (5) academic 
development to guide curriculum development. Given time constraints for the working group 
session and the urgency for equity work, categories three and four will be highlighted as a 
framework for the session. 

Category 3, prejudice reduction, must be included in curriculum design and implementation 
for mathematics teacher preparation because mathematics, as a subject area in school, has long 
been cast in a gate-keeping role. As such, many pre-service teachers enter their programs 
believing that certain types of people are better at mathematics than others. Despite durable 
attempts to frame this idea as a byproduct of personal preference for school subjects, the reality 
is that positioning mathematics in this way is and has always been racially motivated. In the 
working group, we will explore ideas for disrupting this notion via mathematics teacher 
preparation coursework and experiences. Category 4, social justice, is an often-misused concept 
in education. Because social justice has its beginnings in the labor rights movement, we believe 
that the mathematics curriculum could be a lesser tapped space for helping students use 
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mathematics to uncover root causes for pressing social issues such as patterns of economic 
disparity, especially along racial lines.  

 
The session structure and expected outcomes are as follows:  

 Working Group Structure 
o Session One: Establish the working group environment with an emphasis on 

collaboration and building community  
o Session Two: Engaged action planning  
o Session Three: Wrapping up and planning for the next steps.  

 Time structure for 3 90-minute sessions 
o Opening work (10 minutes)  
o Planned presentation (15 to 20 minutes) 
o Work time (45 to 50 minutes) 
o Closing work (10 minutes) 

 Planned presentations  
o Day one: brief presentation to define the notion of interdisciplinary, collegial work 

and situate it as relevant for the working group (Alarcón et al, 2021). 

In this work, we share our approach to teacher educator professional development exploring 
problems of practice together, and how collaborative planning for the teacher preparation 
coursework played an integral role in helping us, as teacher educators, understand culturally 
responsive teaching as a pathway to actualizing equity and justice in education. 

o Day two: brief presentation of an exemplar study to situate our conversation about the 
tensions that can arise when using large datasets to explore equity pedagogy in teacher 
preparation (Alarcón & Chauvot, under review). 

o Day three: presentation of artifacts and other work products (all participants) 

 Collaboration activities and preliminary ideas for artifacts 

o Asset Mapping; Community Commitments; Community Check-in; Closing Circle 
activities are all structured, facilitated activities; they will result in artifacts that will serve 
as organizing documents for the group 

o The work time segment will utilize principles of cooperative learning with an emphasis 
on group sense-making and consensus-building. Artifacts produced could include a 
research statement for conducting equity-focused research; an action plan for revising an 
existing project with an equity focus; and/or an action plan for future collaboration 
among working group members.  
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Argumentation, justification, and proof are conceptualized in many ways in extant mathematics 
education literature. At times, the descriptions of these objects and processes are compatible or 
complementary; at other times, they are inconsistent and even contradictory. Regardless of the 
descriptions of these processes, however, given the importance of argumentation, justification, 
and proof to the discipline of mathematics, as well as their valued roles as learning practices, it 
is critical to query the relationship between engaging students in such processes and the 
promotion of equitable learning spaces and outcomes. The Argumentation, Justification, and 
Proof Working Group met for the sixth time at PME-NA 43 in 2021 in Philadelphia, PA. The 
goal of the 2021 sessions was to facilitate discussions and collaborations among researchers to 
advance our collective understanding of argumentation, justification and proof through an 
equity and inclusion lens. A concluding discussion that looked across the sessions occurred on 
Day 3. 

Keywords: Reasoning and Proof; Advanced Mathematical Thinking; Equity, Inclusion, and 
Diversity 

History of the Working Group 
The Conceptions and Consequences of What We Call Argumentation, Justification, and 

Proof Working Group (AJP-WG) met for the first time at PME-NA 37 in 2015 (Cirillo et al., 
2015). The group then met for three additional years in 2016, 2017, and 2018 (Staples et al., 
2016; Conner et al., 2017; Conner et al., 2018). Topics covered across the four years included: 
definitions and concept images of argumentation, justification, and proof (AJP), research 
implications of using different definitions to study the constructs, positionality of researchers 
studying AJP, how definitions and descriptions are used by researchers and practitioners within 
particular contexts and applications, and how issues of equity, social justice, and marginalized 
populations intersect with the teaching and learning of AJP. The AJP-WG sessions were well-
attended each year, and the group has been active between meetings. Following the 2018 
meeting, AJP-WG members began work on an edited book (i.e., Bieda et al., 2022). Across the 
authoring teams of the AJP-WG conference papers, the book, and the white papers (i.e., Cirillo et 
al., 2016; Staples et al., 2017), dozens of scholars have been involved in the group’s work, 
including many graduate students. A Research Colloquium, where the team shared analyses from 
the book, was facilitated at the 2020 conference (Cirillo & Bieda, 2020). In 2021, we returned to 
the Working Group format with a focus on AJP through an equity and inclusion lens.  
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Working Group 2021: Goals and Focus  
This sixth meeting of the working group focused on the degree to which AJP may or may not 

promote equity and inclusion in mathematics classrooms. To explore this idea, we engaged 
participants in explorations of classroom artifacts and data focused on the interrelationship 
between each construct of AJP and specific aspects of equity and inclusion. Day 1 began with 
introductions of the leadership team and the participants in the room and on Zoom (i.e., the 
conference was hybrid due to the COVID-19 pandemic). M. Staples and C. N. Gomez Marchant 
then introduced our theoretical framing for the session. Specifically, the team focused on the 
constructs of access and agency as we analyzed classroom artifacts to consider how justification 
can support access and agency for students, and thus potentially more equitable outcomes. We 
then explored how justification can be an equity practice in classrooms (in addition to a 
mathematical and learning practice). Day 2 began with a presentation by K. Kosko of elementary 
classroom data and an interactive discussion regarding the role of relational and cultural factors 
in promoting (or hindering) mathematical argumentation and concluded with time for 
networking among participants. On Day 3 we shifted the focus to proof. Two classroom video 
clips were shared by M. Cirillo to consider the ways in which proof may or may not promote 
equity and inclusion in mathematics classrooms. The Day 3 session concluded with interactive 
activities wherein participants reflected on the three days of WG activities and engaged in 
discussions aimed at making connections across the WG themes.   

Theoretical Background 
Given that argumentation, justification and proof (AJP) are important both to the discipline 

of mathematics and to supporting student sensemaking and understanding, it is critical to 
investigate potential relationships between engaging students in such processes and promoting 
equitable and inclusive learning spaces and outcomes. Access and agency are constructs that are 
potentially crucial for examining the role of argumentation, justification, and proof in creating 
more equitable outcomes (Gutiérrez, 2002), because these practices can provide students with 
access to powerful mathematics and opportunities to understand themselves as knowers and 
doers of mathematics, as well as having their voices matter and influence the classroom. As we 
seek to promote strong mathematics learning and rehumanize mathematics classrooms, we need 
to further examine and theorize potential relationships between equitable engagement and the 
constructs of AJP. We assert this against a backdrop where mathematics, and its ways of 
knowledge development, have a history of exclusion that not only impacts participation in 
mathematics education (Louie, 2017) but also in the discipline more broadly. For example, proof 
has been positioned as a high-status process and thus can be positioned as exclusionary (see, e.g., 
Knuth, 2002; Otten et al., 2020). 

In framing equity for the working group, we followed Unterhalter’s (2009) definition of 
equity as “equality turned into an action” (p. 416). This means we have to consider the 
consequences of our actions in the learning and teaching of mathematics as working towards the 
construction of equitable mathematics learning spaces or perpetuating current myths about who 
can and cannot do mathematics. Equity, therefore, is about who has power in the classroom, in 
the community, and in our global society (Gutiérrez, 2009). For our goals and purposes in 
guiding conversation about the role of equity within AJP research, we used Gutiérrez’s four 
dimensions of equity to encourage conversation about differing elements of an equitable 
classroom (see Figure 1). Access reflects the opportunity students have to learn. Achievement 
focuses on tangible measures like standardized test scores, enrollment in Advanced Placement 
courses, and participation in courses. These two elements, which make up the dominant axis, are 
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needed to be seen as successful in our capitalistic society. On the other axis, the identity 
dimension focuses on teachers’ concentration on capital and resources students bring into the 
mathematics classroom; while the power dimension “takes up issues of social transformation” 
(Gutiérrez, 2009, p. 6). The identity and power dimensions make up the critical axis. The critical 
elements work to change society while the dominant ones will only maintain the larger systems 
in place.  

 

 
Figure 1: Dimensions of Equity (Gutiérrez, 2009) 

Another important construct that motivated our conversations about equity in AJP was 
agency. Agency was defined as, “The ability to influence and make decisions about how and 
what is learned in order to expand capabilities” (Adair & Colegrove, 2021, p. 8). Agency is 
related to the racial and social identities of learners because agency influences how people 
position themselves in relation to micro and macro systems of power. While a broad definition of 
agency involves the notion of a willingness to act, we also drew on the work of González‐
Howard and McNeill (2020) who specify the construct of epistemic agency, which encompasses 
how students are positioned, participate, and shape the knowledge construction process in the 
classroom. 

Working Group 2021 Sessions 
In the sections that follow, we report on the activities of each of the three days of the working 

group. We conclude this section with a summary of the reflective discussion that took place on 
Day 3, where we looked across the activities of the three sessions.  
Day 1 – Introductions and Justification through an Equity and Inclusion Lens 

We began Day 1 by leveraging a google slide template to have people introduce themselves 
to the group and facilitate connections (see materials in AJP, 2022). Our goal was to help people 
get to know others “in the room,” particularly as we were spread across in-person and online 
spaces. After providing context for the group’s past work and activities, we turned to the 2021 
WG focus by sharing a quotation from our proposal: 

Given the importance of argumentation, justification and proof to the discipline of 
mathematics, as well as their valued roles in supporting student sense making and 
understanding, it is critical to query the relationship between engaging students in such 
processes and the promotion of equitable and inclusive learning spaces and outcomes. 
(Cirillo et al., 2021, p. 1922) 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

2117



This launched our work, considering the relationship between argumentation, justification, 
and/or proof and equity. Participants did a turn-and-talk to share their initial thoughts on this. In 
the share back, many issues were raised, from who determines acceptable reasons, to classroom 
interactions and how AJP might serve to either distribute authority - when used to elicit students’ 
ideas and thinking or monopolize it (power) - for example, if a teacher concentrates the authority 
to determine what counts as a proof or not.  

C. N. Gomez Marchant then described the framing of equity we wanted to begin with to 
guide our work, as described above. Our group proceeded to consider justification as an equity 
practice. We offered the following as a definition of justification: “Mathematical justification is 
the process of supporting your mathematical claims and choices when solving problems or 
explaining why your claim or answer makes sense” (Bieda & Staples, 2020, p. 103). 

Leveraging some of the constructs from the discussion of equity and an equity lens, we posed 
the following question, highlighting the constructs of access and agency: “How does justification 
create opportunities to access important mathematical ideas and highlight students’ capacities as 
thinkers and doers of mathematics (agency)?” To the degree that it promotes access and agency, 
we can consider justification as a potentially equity-promoting practice and explore how it might 
promote equity outcomes. In small groups, participants then had the opportunity to review two 
transcripts - one from a middle school and one from a high school classroom. Participants were 
asked to look for instances of justification and discussed whether justification, in those instances, 
was serving to promote equity and inclusion.  

In the follow-up discussion, it seemed clear to participants that justification was a practice 
teachers could (and should!) organize in their classrooms and that it could serve to promote 
equity goals. It was noted that widespread or regular engagement in justification by students is 
dependent on norms and a particular environment that would center students’ ways of thinking 
and position students as mathematical thinkers. Classrooms with such norms that had lots of 
student contributions but did not include justification activity would likely not be as equitable in 
terms of promoting access to mathematics and agency, particularly epistemic agency. Students’ 
contributions to knowledge development were seen as a crucial element. 

A question that was prompted, and not resolved, was: Is it the act of justification that makes 
[justification] an equity-promoting practice (the practice itself) or is it the pedagogical work that 
makes it part of the classroom that makes it an equity-promoting practice? In considering 
justification itself, we might further consider the unique nature of the practice (as compared to 
other practices like modeling, problem solving, and conjecturing) that allows for authority to be 
taken up by any individual, which may allow it to play a different role in how equitable 
outcomes are supported.  
Day 2 – Argumentation through an Equity and Inclusion Lens 

Day two of the working group focused on exploration of argumentation through an equity 
and inclusion lens. After facilitating participant sign-ins, attention was drawn to the focal 
question: “In what ways are students positioned to access important mathematical ideas and 
highlight their capacities as thinkers and doers of mathematics?” 

A. Conner, C. N. Gomez Marchant, and K. Kosko asked WG members to consider this focal 
question through the lens of mathematical argument and argumentation as they engaged with 
artifacts from an elementary classroom. After illustrating how students’ own conceptions of 
argument may vary (see Figure 2 which contains the teacher prompt: “It is rude to argue”), the 
working group was introduced to a 360-video of an informal activity focusing on the 
Commutative Property of Multiplication in a third-grade classroom (see Kosko et al., 2022). The 
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recorded students had just completed an initial task where they were asked to cover a 3cm by 
4cm array with Cuisenaire rods (length-based concrete manipulatives where each color of rod 
represents a specific length). The video (Extended Reality Initiative, 2022) began after this initial 
task, with the teacher asking students to cover a new array (7cm by 8cm) with exactly one color 
of rod (i.e., one set length of rod). After students engaged in the task, there was a class discussion 
about why commutativity works.  

 
Figure 2: Example of elementary students’ initial reaction to whether “It is rude to argue.” 

Working group participants watched the video to familiarize themselves with the situation 
and then were asked to view it again while considering two questions: How are students 
positioned to access important mathematical ideas? How are their capacities for being 
thinkers/doers of mathematics highlighted (or not)? In the subsequent discussion, a common 
theme emerged both from the online (Zoom) and face-to-face discussions among the WG 
participants. There seemed to be a tension between supporting access and agency to students as 
they were thinking through the mathematics while also attending to specific learning goals. For 
example, within the online conversation, one working group member noted that by asking 
students in the front-right side of the classroom to keep the strategies they had come up with to 
share with the whole class, the teacher effectively “shut down the conversation in the group.” 
However, another member noted that “if you have specific learning goals you want to give all 
[students] access to…” then such decisions may need to occur. As reflection and discussion of 
the 360-degree video continued, M. Staples summarized the theme of the discussion by stating 
that “as we’re trying to provide access for mathematical ideas, we have to shape the 
environment” but then left the group to ponder the question of what mathematical trade-offs 
occur in such cases.  

Following WG members’ reflections on access to mathematics in the 360 video, A. Conner 
shifted the group’s attention to data related to how preservice teachers (PSTs) engaged with the 
same video (see slides 9-10 of Day 2 in AJP, 2022). Participants noticed that a PST who 
described students’ mathematics was more focused on students than the PST who focused on the 
classroom teacher. Participants also noted that this method of examining preservice teachers’ 
point of view while watching a 360 video seems promising for accessing PSTs’ beliefs or current 
views of teaching and learning. One participant reflected that these two videos and reflections 
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demonstrated that the classroom teacher can attempt to give agency to students, or they might 
allow students to have such agency. Extending this point, an online participant commented that 
one PST may be attempting to “make [agency] happen” versus “making a moment” to allow for 
students’ agency. After this discussion, WG members were provided with opportunities to 
network during the time that remained in the session.  
Day 3 – Proof through an Equity and Inclusion Lens 

The primary activities for Day 3 were: (1) considering proof through an equity, inclusion, 
and access lens and (2) looking across the three WG sessions (described in the next section of 
this paper). M. Cirillo began Day 3 reminding participants of the access and agency aspects of 
the WG’s equity and inclusion framework (described earlier in this paper). Cirillo then 
introduced Bass’s (2015) Cycle of Inquiry and Justification by sharing a representation she 
developed to capture these ideas (see Figure 3). In this framework, the “reasoning of inquiry,” 
which could be characterized as inductive reasoning, includes Exploration, Discovery, and 
Conjecture; while the “reasoning of justification,” which could be characterized as deductive 
reasoning, includes Proof and Verification. Cirillo contrasted the Cycle of Inquiry and 
Justification with the notion of Proof as Show-and-Tell (see Cirillo et al., 2017). She then posed 
the following question: How do we create opportunities for student agency within the process of 
proving?  

 
Figure 3: Bass’s (2015) Cycle of Inquiry and Justification as represented by M. Cirillo 

To explore these ideas, Cirillo shared two videos from her Proof in Secondary Classrooms 
study (Cirillo, 2015-2020) and posed a focal question inspired by Bieda and Staples’ (2020) 
paper: In what ways are students positioned to access important mathematical ideas and highlight 
their capacities as thinkers and doers of mathematics? In Video 1, a secondary student shared a 
proof that she had written during groupwork with her class. In the video we can see the students’ 
classmates applauding her work and directing their comments about the proof directly to her. In 
Video 2, two secondary students are interviewed about their choices and rationales for choosing 
to work on proofs in different formats (e.g., two-column or flow proof). Participants and WG 
leaders reflected on when and where they noticed student access and agency in the videos. 
Herbst and Chazan’s (2012) notion of (competing) professional obligations was cited in a 
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discussion about tensions between honoring the students’ agency and honoring the obligation to 
the mathematics. C. N. Gomez Marchant offered some commentary about the videos, which 
touched on the lack of constraint in students’ communication of their mathematical ideas and 
their agency with respect to making choices about how to represent their work (e.g., in a proof 
format that aligns with their preferences rather than one dictated by the teacher). Last, Cirillo 
raised questions about who, in school mathematics, has opportunities to engage in proof?  
Day 3 - Looking Across the Three Days 

In a synthesizing activity on Day 3, we asked participants to engage with the following 
question via a Jamboard activity (see AJP, 2022): “Over the past few days, what questions have 
come up for you with respect to AJP through an equity and inclusion lens?” Themes related to 
conceptual framings, classroom practice, disciplinary conceptions of rigor and what is valued, 
and the voices present in these conversations emerged across the question posed.  

Several participants asked questions about the framework used for exploring the equity 
considerations and implications of AJP. Referencing the choice of Gutiérrez’s (2002) access and 
achievement constructs, one participant asked, “While I understand the importance of helping 
students play the game, how are we empowering them to change the game? How are we 
changing the game ourselves?” Another participant wondered about other potential framings, 
asking “What are good ways to examine equity issues in relation to AJP? We used access and 
agency. What other approaches could be helpful?” 

Many participants posed questions about teachers and students enacting AJP as an equity 
practice in K-12 mathematics classrooms, asking, for example: (a) “ How can teachers 
incorporate Equitable Mathematics Teaching Practices (proposed by NCTM) in teaching 
mathematical argumentation, justification, or proof?” (b) “Across middle and high school 
mathematics, is there a trajectory of sorts for AJP?” (c) “How do we transition from researcher-
implemented interventions to equipping class[room] teachers broadly to implement these 
practices in their own classes?” and (d) “Can we see each of A, J, and P as related to equity as 
practices or is it really more related to how the teacher engages students in the process?” 

Participants also shared their wonderings about important disciplinary tensions related to 
what counts as rigor and what is important and valued in AJP. In particular, the following 
questions were posed: (a) “I’m continuing to think more about the tension between students 
producing complete "airtight" proofs and honoring students' ideas and where they currently are 
in their proof understanding. Do all class proofs need to be airtight, especially at the beginning?” 
(b) “Does an emphasis on formal proof foreground the math discipline and therefore lead 
teachers (and students) to think that proof is only for those going into math fields?” (c) “Do we 
need to question the definitions of rigor and proof as well as attending to the things that we've 
been attending to the last few days? (d) “While I see the importance of A & J... Aside from (as 
Nico says) helping students get through the "mathematics" gateway, what other reasons do we 
have to enculturate students into rigorous proofs? Can enculturation happen without oppression 
of some sort (and hence implicit gatekeeping)?” (e) “How can students be both well prepared for 
university work related to AJP while simultaneously respecting their thinking and 
sensemaking?” 

Finally, questions were raised about the limited voices in current conversations about AJP 
research and practice. For example, one participant inquired: “In what ways are we open to and 
inviting of diverse voices to the discussion of AJP in research?” Another participant asked a 
related, but more specific question, “How can we ensure value for teacher and student voices in 
our AJP research? How can we respectfully conduct research with teachers?” 
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Conclusion 
Across the three days of the AJP-WG, we considered separately—justification, 

argumentation, and then proof —through an access, equity, and inclusion lens. During the last 
portion of Day 3, the group had the opportunity to reflect on the discussions that took place over 
the course of the three sessions. Through participants’ contributions to the Jamboard and the 
subsequent discussion, questions and comments related to conceptual framings, classroom 
practice, the role of the teacher in AJP, disciplinary conceptions of rigor, and so forth, surfaced. 
These discussions gave the AJP-WG and its leadership team much to ponder and consider for 
AJP-WG discussions at future PME-NA meetings.   

Building on our previous work, if accepted, the 2022 AJP-WG will consider questions 
surrounding how research on argumentation, justification, and proof uses differing frameworks 
and tools to investigate these constructs (see Bieda et al., 2022). We will question if the 
frameworks and methods currently in use allow us to investigate the problems of practice related 
to AJP in today’s classrooms, and, attending to questions raised at the end of the 2021 working 
group session, we will consider what is needed in frameworks and methods that will facilitate the 
investigation of AJP in meaningful and inclusive ways. 
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Argumentation, justification, and proof are essential constructs in the field of mathematics and 
teaching and learning in mathematics classrooms. Research involving these constructs draws on 
a variety of definitions and analytic frameworks that include discursive, social, and content 
factors. This year, we examine frameworks used in research involving these constructs and 
engage working group participants in critical conversations about how these have been used, 
with what impact, as well as considering future directions for addressing new questions and 
making further progress on long-standing ones.  

Keywords: Reasoning and Proof; Advanced Mathematical Thinking 

History of Working Group  
The Conceptions and Consequences of What We Call Argumentation, Justification, and 

Proof Working Group (AJP-WG) met for the first time during the 37th Annual Meeting of the 
North American Chapter of the Psychology of Mathematics Education (PME-NA) in 2015 
(Cirillo et al., 2015). The group met from 2016 to 2018 (Staples et al., 2016; Conner et al., 2017; 
Conner et al., 2018). AJP-WG sessions were well-attended each year, involving over 50 scholars, 
including many graduate students. In addition, the group has been active between meetings. 
Following the 2018 meeting, AJP-WG members began work on an edited book, published in 
2022 (Bieda et al., 2022). A Research Colloquium, where we shared analyses from the book, was 
facilitated at the 2020 conference (Cirillo & Bieda, 2020). Across authoring teams of the AJP-
WG conference papers, the book, and white papers (i.e., Cirillo et al., 2016; Staples et al., 2017), 
many scholars have contributed to the work. The working group was re-convened at the 2021 
Annual Meeting of PME-NA, with a focus on AJP through an equity and inclusion lens.  

Topic and Goal 
In the concluding chapter of Conceptions and Consequences of Mathematical 

Argumentation, Justification, and Proof, Kosko and Bieda (2022) relate the results of asking 
authors to carefully consider the consequences of definitions in their analyses of given data 
related to argumentation, justification, and proof (A, J, and P). They conclude that both 
definitions and analytic frameworks are essential components in understanding how researchers 
interpret data. Furthermore, these definitions and frameworks are essential determinants of what 
data are collected and examined within research studies and how these studies are interpreted 
into classroom practice. Kosko and Bieda highlight a question from an earlier iteration of this 
working group that continues to influence our conversations: How does analyzing an artifact 
(e.g., classroom episode, interview response) from a particular lens (e.g., A, J, or P) influence 
what we say about it?  
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In 2022, our working group builds upon this earlier question by examining the influence, 
efficacy, and usefulness of existing frameworks for research on AJP and considers needed 
improvements to frameworks that examine both the products and processes of AJP. Current and 
future questions, including those discussed during the 2021 working group (see Cirillo et al., this 
volume), suggest a need to critically examine frameworks in use and potentially revise currently 
used frameworks, adapt frameworks from other areas of mathematics education, or theorize and 
construct new frameworks for examining processes and products of AJP in classrooms. 

Theoretical Background  
Argumentation, justification, and proof are considered central to the discipline of 

mathematics and, as such, have been part of research in mathematics education for decades (see, 
e.g., Harel & Sowder, 2007; Stylianides et al, 2017; Tall, 1992). However, while proof has been 
explicitly named and examined in reviews of research, argumentation and justification have been 
slower to be acknowledged as explicit areas of research (see Stylianides et al.’s (2016) review of 
PME research on proof and argumentation). Despite their ubiquitous presence in mathematics 
classrooms, mathematics education researchers have defined these constructs in numerous ways 
(see, e.g., Cirillo et al., 2016), and have used a wide range of theoretical and analytic constructs 
to frame their work. In the book that originated in this working group, the editors asked authors 
to engage in a thought experiment by using a given definition of a construct within their analysis 
of data across grade levels. Authors were free to supplement the definition with a compatible 
analytic framework. Within the 12 chapters explicitly focused on specific constructs, authors 
used frameworks focused on discursive analysis, social factors, and content or task analysis. For 
instance, all of the argumentation and one of the justification chapters used discursive 
frameworks; at least one chapter addressing each construct brought social factors into their 
analysis, including several explicitly addressing the role of the teacher; and five chapters (at least 
one for each construct) included an analysis of the task related to AJP.    

Plan for the Working Group 
In the 2022 Working Group sessions, we provide time for presentations related to commonly-

used frameworks for research on AJP, presentations that raise questions about frameworks used 
across A, J, and P (or that could be extended to do so), group discussions that brainstorm the 
kinds of frameworks that are needed for new questions and new perspectives on AJP. Questions 
that will frame our sessions include (1) What frameworks for AJP have been used, how have 
they been used, and what have those frameworks allowed us to accomplish in past research? (2) 
How does analyzing an artifact (e.g., classroom episode or interview response) from the lens of 
argumentation, justification, or proof through a particular framework influence claims we can 
make? (3) What frameworks for analyzing AJP are still needed to help move the field forward 
with respect to teaching and learning AJP, classroom research, fostering reasoning and 
sensemaking, promoting equitable participation, classroom practice, and other aspects of 
researching AJP? Concerning session activities, Day 1 will focus on current frameworks used in 
AJP, with focused discussion surrounding discursive analysis (i.e., Toulmin’s Scheme) and 
content or task analysis. Day 2 will continue this thread with attention to analytic frameworks 
illuminating social factors (i.e., sociomathematical norms). Although time on Days 1 and 2 will 
be devoted to needed or novel analytical frameworks, Day 3 will focus explicitly on this topic 
and developing action items for the working group and the field as a whole. We will also 
intersperse time for networking during the sessions.   
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This report summarizes the work and conversations of the first meeting of the working group on 
Mathematics Curriculum Recommendations for Elementary Teacher Preparation at the PME-
NA 2021 conference. We share a theoretical framework that proved especially salient to our 
discussions and synthesize the outcomes of small group conversations that we facilitated. We will 
also share our plans for the continuation of this working group at the AMTE 2022 conference 
and our proposed next steps for designing research to address questions that arose. 

The organizers of the working group on Mathematics Curriculum Recommendations for 
Elementary Teacher Preparation had several goals for our initial meeting. First, we wanted to 
bring together a community of researchers interested in improving how future elementary 
teachers are prepared to teach mathematics. Second, we wanted to better understand the current 
state of teacher preparation programs. In particular, we wanted to know what participants 
perceived to be obstacles to the effective preparation of elementary teachers of mathematics, 
specifically in regards to following the recommendations from the Conference Board of the 
Mathematical Sciences (2012) and the Association of Mathematics Teacher Educators [AMTE] 
(2017) for PSTs to receive twelve credit hours of instruction in elementary mathematics. Such 
discussions also resulted in gathering preliminary data about the number and sequencing of 
elementary mathematics content and methods courses in participants’ programs. Finally, we 
wanted to initiate a discussion about what researchers thought were the most important topics, 
practices, and ideas to be included in such courses. Since the PME-NA 2021 conference, the 
organizers of the working group have met to debrief and think about our next steps for 
continuing this work. In this report, we will first share the content of our conversations and work 
at the PME-NA 2021 conference, and then we will discuss our planned next steps for continuing 
this work at the PME-NA 2022 conference and beyond. 

What We Learned at the PME-NA 2021 Conference 
Prior Research 

On the first day of the conference, we shared some research results to situate the need for this 
working group. First, we discussed results from Corven et al. (accepted) regarding the 
relationship between the number of instructional minutes on mathematics topics in teacher 
preparation and the specialized content knowledge (SCK; Ball et al., 2008) program graduates 
demonstrated for those topics. An important additional result shared was that incorporating other 
potential sources of learning about the topics (e.g., professional development, experience 
teaching the topic) did not change the strength of the relationship and appeared to be additive to 
prior instruction for the purpose of predicting SCK demonstrated (Corven et al., accepted). 
Participants later stated that these results increased their comfort with the idea of not including 
every elementary mathematics topic in their courses; however, other obstacles to making such a 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

2127



change (e.g., the need for PSTs to pass licensure exams) emerged. Next, we shared curriculum 
design principles from the Elementary Mathematics Project (EMP; Chapin et al., 2021), a 
curriculum that also chooses to focus on high-leverage mathematics topics and instructional 
practices. Several participants were excited to learn about the availability of the curriculum 
materials and the built-in professional development opportunities for mathematics teacher 
educators (MTEs), such as videos of expert instructors enacting the lessons with pre-service 
teachers (PSTs). One of the results of research on this curriculum that was shared related to the 
importance of wanting PSTs to engage in math communities and reimagine their relationship 
with mathematics (Gibbons et al., 2018). The EMP curriculum emphasizes using mathematical 
discussions in small groups and MTEs modeling how to facilitate whole-class discussions using 
student thinking (Chapin et al., 2021). 
A Guiding Theoretical Framework 

Although there are many similarities between the two programs that we discussed during the 
conference, the research presented on them exhibited a key theoretical framework that helped 
guide the remainder of our discussions. This framework was the knowledge-oriented vs. 
thinking-oriented approaches to teacher preparation proposed by Li and Howe (2021). 
Knowledge-oriented approaches emphasize teaching mathematical understandings (i.e., content) 
that PSTs will need to know to teach mathematics effectively, whereas thinking-oriented 
approaches emphasize PSTs learning to reason about, explain, and make sense of the 
mathematics they will teach. Thinking-oriented approaches do not treat mathematical knowledge 
as a fixed product that is given to students, and they often help teachers build skills for analyzing 
student thinking. The research from Corven et al. (accepted) looked at outcomes that are more 
knowledge-oriented, whereas the published research shared on EMP looked primarily at 
thinking-oriented outcomes. However, there is research on both programs to look at other 
outcomes. For example, Corven (2021) considered how PSTs in the first program understood 
student solutions to a division story problem, and Starks (2021) explored PSTs’ knowledge of 
decimals within programs using the EMP curriculum. Thus, although Li and Howe’s framework 
relates to the design of teacher preparation programs, we recognized that the distinction in the 
framework is not binary, and teacher preparation programs generate outcomes that are aligned 
with both teacher knowledge and teacher thinking. 
Obstacles to Ensuring PSTs are Well-Prepared to Teach Elementary Mathematics 

In our initial discussions on the first meeting of the working group, we generated a list of 
obstacles that participants identified as perceived barriers to the effective preparation of 
elementary teachers in mathematics. Some of these potential obstacles are listed below. 

 Assumption that PSTs already know elementary mathematics content 
 Lack of consistency between instructors of the same course 
 Lack of guidance or support for new instructors of the course (especially for adjunct faculty 

and graduate students) 
 Lack of cohesion or coherence across courses (especially when courses can be taken in any 

sequence) 
 Too few courses/credit hours, especially in particular program structures (e.g., a one-year 

Master’s degree program) 
 Too many topics or grade bands to cover, particularly when PSTs need to pass licensure 

exams 
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 Lack of cooperation and collaboration between mathematics and education department 
faculty 

Although the number of obstacles identified was disheartening (and we note that the above 
list is not complete), we observed that creating documents with specific recommendations for 
elementary teacher preparation courses could provide a first step towards addressing several of 
these obstacles. Specifically, recommendation documents could improve consistency between 
instructors in terms of which topics to teach and how much time to spend on each topic and, at 
the same time, support instructors new to teaching the course. Additionally, if we can obtain 
further research support to justify teaching fewer topics, then more institutions would likely feel 
comfortable promoting courses that feature deeper engagement on fewer mathematical topics. 
Although this change might have an impact on PSTs’ performance on content-based licensure 
exams, there could be other ways to address such an obstacle (e.g., a one-credit supplemental 
course that covers additional material specific to such an exam). However, such decisions would 
need to be made on an institution-by-institution basis. We also believe that producing these 
documents would support MTEs in advocating for additional courses at institutions that currently 
allot fewer than twelve credit hours to elementary mathematics coursework. 
Preliminary Ideas for Course Designs 

On the second day of the working group meeting, we broke into three small groups to 
brainstorm ideas for outlines of elementary content courses. Two of the small groups met in 
person, and one met virtually over Zoom. After working for about an hour, we came back 
together to share what we had come up with in small groups. 

Two of the groups developed similar topic outlines for two elementary mathematics content 
courses. Both groups developed a first course that focused on number and operations with whole 
numbers and decimals (i.e., in base 10), and a second course that focused on fractions and 
rational numbers. One group also elected to include measurement within this second course to 
link these critical topics. Another similarity is that both groups discussed ideas to bring in some 
thinking-oriented approaches within a course intended to promote content knowledge. Two 
specific ideas mentioned were (1) activities about sorting or categorizing student work and 
connecting students’ strategies to developmental progressions and (2) using number talks as a 
pedagogical technique to build PSTs’ number sense and help PSTs think about different 
strategies students may use for various operations. One group brought up an important question 
about wanting evidence that certain topics were easier or harder for PSTs to learn or were worth 
skipping in teacher preparation programs. Such research would help inform decisions about how 
much time to spend on each topic, or whether the topic should even be included at all. This idea 
was a key element of our debriefing conversation on the final day of the working group. 

The third group took a different tack by thinking about broader goals for PSTs’ mathematical 
experiences and considering thinking-oriented approaches to course design recommendations. As 
an example, this group supported using deep, whole-class discussions to deepen PSTs’ SCK and 
allow the instructor to understand PSTs’ current reasoning. They also called for explorations that 
allow PSTs to reconsider what it means to be “smart” in mathematics and to broaden their view 
of mathematics. Furthermore, they suggested designing tasks to engage PSTs in the Common 
Core Standards for Mathematical Practice to give them models for what they could do in their 
future classrooms. Like the first two groups, this group also mentioned the importance of moving 
away from the goals of covering lots of material and “exposing” PSTs to concepts (i.e., 
introducing them to PSTs without promoting mastery of them). One advantage of this group’s 
approach is that the activities they developed could be implemented across many different 
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mathematical topics. Additionally, this group wanted to connect the course content to what is 
currently being taught in elementary schools, specifically by using activities from reform-
oriented elementary mathematics textbooks. After discussion among the members of the working 
group, participants agreed that the different approaches the small groups took was valuable. 
Recommendation documents could include both a list of mathematical topics and suggested 
timeframes alongside pedagogical approaches instructors should consider when teaching the 
courses, allowing teacher preparation courses to attend to both knowledge- and thinking-oriented 
outcomes simultaneously. 

Next Steps 
As part of the debriefing conversation on the final day of the working group, we discussed 

potential next steps. As a preliminary note, three of the organizers of this working group will be 
running a working group session at the AMTE 2022 conference using some of the same 
activities we engaged in at PME-NA. Our goal is to get a broader perspective on these issues 
from practicing MTEs who may have a different perspective on or level of involvement with the 
mathematics education research community. Additionally, we will be encouraging attendees at 
that session to bring ideas generated from our conversations back to meetings of their local 
AMTE affiliates. We hope that such continuations of our work will help working group members 
gain a better understanding of MTEs’ needs for the documents we hope to produce. Two of the 
organizers have already conducted a discussion session at a local AMTE affiliate meeting (Long 
& Corven, 2021); one idea that arose from that conversation (more discussion of pedagogy and 
teaching methods within content courses) aligns with integrating knowledge- and thinking-
oriented approaches. However, we anticipate that other ideas could emerge from these 
conversations to complement the discussions we had last year. For example, the idea of 
following PSTs into the field post-graduation was not explicitly brought up in our discussions at 
the PME-NA 2021 conference. MTEs at regional institutions who may be members of AMTE 
(and/or a local affiliate), but not PME-NA, may have relationships with local schools at which 
their graduates teach that afford increased access to conduct such research. We see extensions to 
local AMTE affiliates as an opportunity to grow the membership of this working group, the 
mathematics education research community, and the PME-NA organization. 

As a working group, we developed some broad ideas for what types of research we would 
need to conduct to move forward. For example, additional research on the effect of eliminating a 
particular topic from teacher preparation coursework might be needed to convince institutions 
that removal is warranted. Thus, our goals for the PME-NA 2022 conference will be not only to 
continue with the drafting of recommendations documents, but also to spend an equal amount of 
time on designing specific research studies that we could conduct at our own institutions to 
inform this work. We also hope to engage in studies that are collaborative across institutions to 
examine the effects of different teacher preparation program structures, while accounting for 
potential differences in PST population. Alternatively, some participants may wish to conduct 
action research, for example, by teaching two sections of the same course with different 
emphases on topics and comparing outcomes. Our discussions at the PME-NA 2022 conference 
would focus on refining participants’ ideas for designing and conducting such studies. 
Additionally, the organizers of the working group have had preliminary discussions about 
applying for NSF grant funding to support collaborative research to meet the working group’s 
goals. Obviously, designing such studies, writing a grant proposal, and applying for such funding 
would take time, but we see the continuation of this working group as a resource to engage more 
individuals in such a proposal. 
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Additionally, at future meetings of the working group, we wish to engage more diverse and 
international (across North America) perspectives on the curriculum and development of 
elementary teacher preparation programs. We invite colleagues from all nations and institutions 
with an interest in this research area to participate in this working group and provide additional 
perspectives on the questions this working group is addressing. Furthermore, we have received 
interest from additional researchers in joining the organization team for this working group; we 
affirm that we enthusiastically support new members to join this working group in either a 
participant or leadership role. Our meeting at the PME-NA 2021 conference was an excellent 
first step towards addressing the questions we are focused on, and we look forward to applying 
the lessons we learned to our future meetings over the next several years. 
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In our first year of work at the PME-NA and AMTE conferences, we explored the current state of 
elementary teacher preparation programs and generated questions about how to create a viable 
recommendations document for the mathematics curriculum of elementary teacher preparation. 
Our current goal is to build upon this work by designing research studies to generate data and 
answer questions that underlie our future recommendations for elementary teacher preparation. 

Keywords: Preservice Teacher Education, Teacher Educators, Mathematical Knowledge for 
Teaching, Elementary School Education  

Teacher preparation programs vary substantially in what mathematics elementary pre-service 
teachers (PSTs) learn and to what degree across Canada (NCEE, 2016), Mexico (Hrusa et al., 
2020), and the United States (Malzahn, 2020). We confirmed these findings at the 2021 PME-
NA conference (see Corven et al., this volume, for details); many participants’ programs fell 
short of the recommended 12 credit hours in elementary mathematics (Conference Board of the 
Mathematical Sciences, 2012). The organizers of this working group believe experiences during 
teacher preparation affect how teachers teach elementary mathematics; thus, more guidance on 
how to effectively prepare elementary PSTs to teach mathematics may reduce undesirable 
variation between preparation programs and improve the average quality of graduates’ teaching. 
To reach these goals, we need to generate recommendations for the (re)design of elementary 
teacher preparation in mathematics that are concrete, actionable, and based on research. 

Limiting the number of mathematics topics covered in elementary teacher preparation may 
be both desirable and necessary. Corven et al. (in press) conclude the amount of instructional 
time PSTs receive on mathematics topics is strongly and positively associated with specialized 
content knowledge (SCK; Ball et al., 2008) novice teachers demonstrate for those topics. 
Further, since the amount of instructional time required to generate an appreciable increase in an 
average PST’s SCK for a topic seems to be substantial, attempting to cover every topic in 
elementary mathematics during teacher preparation is not feasible (Corven et al., in press). There 
has been some movement towards limiting the number of topics taught in elementary teacher 
preparation programs. One example is the Elementary Mathematics Project (Chapin et al., 2021), 
which also invites PSTs to build a new relationship with mathematics as members of dual 
communities of mathematics learners and future mathematics teachers (Gibbons et al., 2018). At 
our previous meeting, members of the working group wanted to know if research existed that 
addressed whether certain mathematical topics were more or less important for PSTs to know 
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and/or were easier or harder for PSTs to learn. Without answering such questions, content 
recommendations would only reflect individuals’ opinions, and therefore might be disregarded. 

At this working group’s meeting at the 2022 Association of Mathematics Teacher Educators 
conference, not only did some of the same questions arise, but participants shared different ideas 
for how to craft recommendations for teacher preparation programs based on local constraints. 
The organizers drew upon these conversations to revise a long-term plan for the working group, 
which we will enact this year. We see our meetings this past year as comprising Phase I of the 
working group; our goals were to get a sense of the landscape of elementary teacher preparation 
programs and to think about obstacles to creating program recommendations. This year, we 
move into Phase II, which consists of designing research to inform our future recommendations. 

Organization and Presentation Plan 
The first session will re-orient members to the work that has already been done so as not to 

be duplicative; however, members will have opportunities to ask questions about and make 
additions to the previously generated list of concerns about elementary teacher preparation. We 
will also review frameworks that inform our work, such as knowledge- vs. thinking-oriented 
approaches to teacher preparation (Li & Howe, 2021). We will then brainstorm research 
questions that would be important to answer to make informed recommendations for teacher 
preparation programs. We anticipate members asking research questions concerning the impact 
of inclusion and/or omission of certain mathematical topics in content courses, the perceptions of 
novice elementary teachers regarding their preparation to teach mathematics topics, and 
mathematics professional development opportunities for novice elementary teachers.  

In the second session, participants will work in groups to design small-scale research studies 
that they could conduct in their own contexts to generate data that will help answer one of the 
research questions from the previous day. We would encourage participants to consider methods 
like action research and survey research that can be conducted with minimal financial support 
and within each participant’s capacity. Additionally, participants may decide to collaborate on a 
multi-site study to compare or contrast outcomes from different approaches to teacher 
preparation or examine impacts of contextual factors. We expect participants to provide each 
other with feedback on the research plans and to help each other develop appropriate instruments 
(e.g., interview protocols, survey questions) for the collection of relevant data. We will ask 
participants to document their ideas in a shared Google Drive folder. 

During the final session, we will ask participants to share their proposed studies and receive 
additional feedback and ideas from the group. Ideally, participants could support each other in 
data collection efforts to allow for collaboration on specific research questions. Regardless, all 
study plan documents will be kept in the shared Google Drive to facilitate submission to local 
Institutional Review Boards. We expect this meeting of the working group will lead to ongoing 
productive collaborations among working group members prior to our next meeting. 

The New Long-Term Plan 
In Phase III, members will conduct the research designed in Phase II, and the working group 

will support each other in synthesizing the results of the studies and writing research reports for 
future PME-NA conferences. Thus, we expect Phase III to take two years to complete. In Phase 
IV, we will organize a conference to draft and refine the recommendations based on the Phase III 
research results. We will also disseminate the recommendations and the research supporting 
them via an edited book. Through this plan, we intend to support PME-NA members in the 
conduct of research to improve elementary teacher preparation throughout North America. 
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For the third time in four years, the Mathematical Play Working Group met to discuss the state 
of research into the role that play can have in mathematics education research. This meeting 
provided an opportunity for members within the group to share recent progress in their 
respective areas of focus. The group also continued theoretical discussions regarding areas of 
focus for new research and productive framings and perspectives for addressing mathematical 
play. Additionally, the working group dedicated a portion of the meeting to collaborating with 
the Embodied Mathematical Imagination and Cognition [EMIC] Working Group.  

Keywords: Instructional activities and practices; Affect, emotion, beliefs & attitudes; Informal 
education 
 

For the past four years, the Mathematical Play working group has convened to investigate 
and advance the field’s understanding of mathematical play. Our collaborative work has been 
characterized by: 1) experiencing mathematical play together, 2) identifying the features and 
affordances of mathematical play for learning and doing mathematics, 3) and discussing 
implications for designing mathematical play learning experiences across ages and contexts. 
Broadly, our work has spanned both theoretical and practical worlds; for example, we seek to 
understand what aspects of mathematical activity might allow it to be characterized as “play” 
while simultaneously considering the extent to which mathematical play is possible and 
productive in classrooms. Our explorations have ranged in context from early childhood 
preschool classrooms to university mathematics courses, and have examined the use of block 
play, videogames, partner activities, simulations, board games, and making/tinkering activities. 

Summary of 2021 Meeting 
Our goal for the 2021 working group meeting was to examine mathematical play along two 

dimensions - activity grounded in instruction and activity grounded in play - with specific 
exploration of activities that might support shifts along these dimensions in two specific ways 
(Figure 1). On the first day, we explored how traditional mathematical instructional tasks might 
be altered to afford greater opportunity for play. On the second day, we investigated ways play-
based activities might be adapted to better support meaningful learning toward specific 
conceptual outcomes. Working group sessions engaged participants in conceptualizing these two 
shifts through sharing and explorations of existing projects and discussions of perspectives to 
support such shifts. Finally, we spent the third day of the meeting collaborating with the 
Embodied Mathematical Imagination and Cognition [EMIC] Working Group.  
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Figure 1: Organization of two shifts we will explore – increasing the playfulness of high 

instructional tasks (Day 1) and increasing the instructional utility of high play tasks (Day 2) 

Day 1: Adapting Mathematical Tasks to Increase Opportunities for Play 
On the first day of the 2021 working group, Ellis and Plaxco each presented examples from 

their respective projects demonstrating efforts to shift existing activities grounded in instruction 
toward more playful settings. Ellis presented a new (as of the conference) project in which her 
research team is modifying existing tasks designed to support covariational reasoning about 
linear and quadratic relationships for play activities. This new area is based on Ellis’ extensive 
work supporting students’ sensemaking regarding rates of change and accumulating growth (e.g., 
Ellis, Ely, Singleton, & Tasova, 2020). In her group’s attempt to play-ify existing tasks, Ellis 
described scenarios in which players (with experience creating accumulation graphs from a given 
growing shape) would build accumulation graphs and for other players who were then tasked 
with reconstructing the growing shape. Working group attendees participated in a paired activity 
to play this game with each other. 
 

 
Figure 2: Screenshots of growing figures from Ellis’ presentation 

Following this, Ellis had group participants share and discuss and then shared out their 
experiences among the whole group. Ellis then presented brief examples of student data that 
exemplified some of the phenomena that the group had experienced. Following this presentation, 
Ellis outlined her team’s working definition for playful math as instances in which students 
engage in activity with (a) agency in exploration, (b) self-selection of goals, (c) self-direction in 
how to accomplish the goals. The ensuing discussion addressed several topics, notably the 
importance of focusing on student agency and the role it plays in authentic play as well as the 
tension between structure (toward an intended learning goal) and autonomy (the natural 
progression of the player’s activity).  

Plaxco then presented examples from his research collaboration in designing and creating the 
videogame Vector Unknown (Figure 3a; Mauntel, Levine, Plaxco, & Zandieh, 2021) for 
supporting students’ Linear Algebra understanding that is based on the existing Inquiry-Oriented 
Linear Algebra curriculum [IOLA; Wawro, Zandieh, Rasmussen, & Andrews-Larson, 2013]. In 
his presentation, Plaxco provided an additional instance of the importance of layer agency by 
describing a player (Lance, Figure 3b) deciding to play what Lance described as a “meta” game 
of achieving an additional goal beyond the goal of the game intended by the design team. The 
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resulting discussion connected Ellis’ presentation with Plaxco’s, specifically focusing on the role 
that level design can have in shifting players’ focus toward more authentic activities that can also 
tend to lead to richer mathematical discussions. 
 

  
(a) (b) 

Figure 3: A screenshot of the Vector Unknown (a) and photo of Lance deciding to play a 
“meta” game within the videogame (b) 

Day 2: Adapting Play Activities to Support Mathematics Learning 
On the second day, Molitoris-Miller, Reimer, and Simpson presented playful contexts that 

provide opportunities for mathematical thinking and learning. Molitoris-Miller suggested ways 
undergraduates encountered moments of mathematical play through explorations with the board 
game Catan (Austin, Kronenthal, & Miller, 2021). In particular, discussions focused on how 
board and game setup, players’ strategies and solution methods, and students’ mathematical 
arguments traversed the traditional boundaries of play and mathematics. 
 

  
(a) (b) 

Figure 4: Molitoris-Miller’s described board setup for the game Catan (a) and Reimer 
shared analysis of guided play episodes in preschool classrooms (b). 

Reimer then presented his research conducted in preschool classrooms to explore how young 
children and teachers engaged in spatial reasoning through play (Reimer, 2021). Reimer 
described guided play episodes that encouraged children to explore a variety of contexts and 
materials. In particular, discussion focused on ways teachers and children participated in play 
together, with specific attention to the agency and authorship afforded to children through co-
participation in play. 

Finally, Simpson engaged the working group in a tinkering task (Simpson, Zhong, & 
Maltese, 2022) using common materials to design a delivery mechanism for sharing objects with 
a friend next door. The group used popsicle sticks, elastic bands, straws, and other materials to 
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construct their mechanisms. Simpson guided discussions around the potential of low-notation, 
playful environments to provide opportunities for youth to experience, express, and build upon 
mathematical practices in a context that is not bounded by standardized tests and textbooks. 

 

 
Figure 5: Simpson’s engineering task offered opportunities to legitimize informal ways of 

thinking about mathematics. 

Day 3: Intra-working-group Discussion with EMIC 
The final day, the Mathematical Play and EMIC working groups met together for a session 

focused on exploring areas of overlapping interest. In particular, the two working groups 
converged to explore play as an embodied approach to mathematical learning, and embodied 
activities as opportunities for mathematical play. EMIC group members, led by Hortensia Soto, 
guided participants through an activity focused on supporting an embodied sense of the 
geometric properties of triangles, specifically, the fact that the interior angles of any triangle sum 
to 180° and external angles of any polygon sum to 360° (Soto, 2021). The groups also discussed 
how this activity might be generalized for any closed polygon. The following discussion centered 
around the importance of embodied activities for mathematical learning and discussed potential 
commonalities between the play, embodied mathematics, and creativity.  

Ongoing and Future Work 
 Since the conference, several subsets of attendees have continued collaborations and intend 
to develop these into extensive projects. For example, co-author Ellis and meeting attendee Rob 
Ely have secured internal grants at each of their universities, have continued to analyze their play 
data, and have developed analytical framings for mathematical play, which they intend to present 
at the next PME-NA conference. Co-authors Reimer, Williams-Pierce, and Simpson have 
continued collaborations, meeting to develop their focus on failure and feedback in free-play 
environments. Co-authors Plaxco, Zandieh, and Mauntel have continued development of a 3-
dimensional version of Vector Unknown and are collecting data with that version of the game 
during Spring 2022. In reflecting on the Working Group, co-authors Plaxco, Reimer, Williams-
Pierce, and Ellis identified agency as a critical aspect of mathematical play that warrants further 
development. This aspect of players’ experiences emerged across every discussion and 
presentation during the working group session as a critical component for not only successful 
play, but also deeper mathematical meaning to emerge during play. In light of this, we have 
chosen this as the central focus of the next Working Group, which we intend to shift in format 
from years’ past. Specifically, with our next Working Group, we intend to spend the time 
collaboratively developing theoretical framings related to Mathematical Play. The primary goal 
of this work is to develop a collective touchstone for: (1) defining mathematical play in a way 
that situates all of the group members’ work within the field, (2) identifying and characterizing 
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the role of agency in mathematical play, and (3) identifying meaningful structural connections 
between mathematical practices and playful disposition. 
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In this colloquium we build on findings established in the working group Mathematical Play: 

Across Ages, Context, and Content, which met in 2018, 2019, and 2021 (e.g., Plaxco et al., 
2021). In those meetings, the working group developed definitions and criteria for characterizing 
mathematical play and for exploring multiple contexts in which mathematical play occurs. The 
work presented in this playful mathematics and learning colloquium extends these 
characterizations to examine relationships between play and classroom-based learning.  

Playifying classroom mathematics offers opportunities to center student voices, particularly 
those voices that may be underrepresented in traditional classroom settings. It also offers spaces 
for challenging status-quo classroom norms, which can increase student agency and autonomy 
(Gresalfi et al., 2018). At the same time, there is a tension between the open-ended nature of play 
and the highly directed nature of typical classroom instruction. We explore this tension by 
identifying design principles for infusing play into classroom spaces, and by discussing 
theoretical and methodological constructs for characterizing the mathematical play that can arise 
both in and out of classroom spaces. In doing so, we explore mathematical play phenomena 
across ages (pre-kindergarten through college), contexts (informal and classroom settings), and 
domains (early number, algebra, geometry, probability, and calculus).  

Session 1: Playifying Mathematics in the Classroom 
The bulk of research on mathematical play investigates the mathematics that emerges in 

children’s natural play or in informal spaces. We instead introduce the construct of “playful 
math”, exploring a set of four design principles to playify classroom-based activities: (a) allow 
for free exploration within constraints; (b) allow the student to act as both designer and player; 
(c) engender task-based anticipation; and (d) enable task-based feedback. We share results from 
two related projects that enacted these principles in middle-school, high-school, and 
undergraduate settings in algebra, geometry, and probability. We found that the design principles 
were successful in eliciting playful engagement, which corresponded to increases in student 
agency, goal selection, and sustained engagement. 

Amy Ellis, Anna Bloodworth, & Dru Horne (30 mins): We share the results of two small-
group teaching experiments and one whole-classroom teaching experiment investigating rates of 
change through a task called Guess My Shape. In shifting from typical covariation activities to a 
game in which students became shape designers, we found that students introduced novel shapes 
and graphs that represented more challenging mathematical ideas than what had occurred in prior 
non-play versions of the tasks. We discuss the resulting mathematics that emerged and discuss 
implications for task design and student engagement. 

Rob Ely & Annelise Nielsen (30 mins): We present findings from a set of classroom activities 
in which undergraduates played the Double Spin probability game and a Fold-and-Cut geometry 
activity. We share characteristics of a form of novel engagement during playful math, the 
Explore-Strategize Cycle, in which exploration of phenomena in the task environment gave rise 
to strategic goal-directed activity, the outcome of which changed the space of potential 
phenomena explored next, and so forth in a cyclical manner. Such cycles were not present in 
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non-play activity. We present on Explore-Strategize Cycle and discuss resulting task design 
strategies. 

Discussion (30 mins): Participants will discuss in groups (a) the relationship between design 
principles for playifying tasks and the resulting student play, and (b) the relationship between 
student play and mathematical learning goals and outcomes.  

Session 2: Drawing Classroom Mathematics from Play 
Janet Walkoe & Mari Levin (30 mins): We claim that the insights children gain when playing 

create a rich body of experiences that are potential resources for later algebraic reasoning. 
Drawing on a systems approach of learning, we theorize movement toward expertise as a 
reorganization of sub-conceptual knowledge elements children gain as they interact with their 
world. We call these elements seeds of algebraic thinking (Walkoe & Levin, 2020). Here we 
provide examples of seeds and illustrate how they can be taken up in a range of experiences. We 
elaborate how our perspective highlights the relationship between children’s early play and their 
engagement in formal algebra instruction. 

Anita Wager, Candice Love, Madison Knowe, Melissa Gresalfi, & Amy Noelle Parks (30 
mins): In the Playful Learning Project, kindergarten teachers are engaging in professional 

development around integrating play in mathematics teaching. This involves recognizing the 

mathematical content embedded in spontaneous play and the possibilities for designing 

mathematical engagement that embody a spirit of playfulness. We discuss how the PD design 

elements supported teachers to: (a) recognize and elicit early number and geometric concepts in 

free play and design playful lessons to allow children to explore these concepts; (b) identify the 

key classroom mathematical routines and their emotional and mathematical heartbeats (e.g., free 

play, center-based play, choral counting, problem-solving); and, (c) identify structures in adopted 

curricula that support playful, exploratory mathematics and structures (and structures that do 

not). 

Discussion (30 mins): The discussion will address theoretical principles for recognizing and 

fertilizing the mathematical seeds found in children’s informal play.  

Session 3: Play and Intellectual Need 
Aaron Weinberg (30 mins): When a student encounters a problem they cannot solve using 

their current knowledge, they experience a need for a concept or tool to resolve it. Harel (2013) 
called this an intellectual need, and proposed that such a need is required for students to learn a 
concept or tool. We can design problematic situations that we hope will engender students’ 
intellectual need for particular concepts and tools we want them to learn. Yet, sometimes 
students respond with confusion rather than curiosity when faced with such problematic 
situations. Playifying mathematics tasks could help with this. I describe a theoretical framework 
for designing and enacting tasks that can provoke intellectual need, and I discuss ways in which 
playful math might help students persist in their mathematical exploration to experience 
intellectual need. 

Discussion: We include a full hour of discussion in order to integrate ideas across all three 
sessions of the colloquium. We will first coordinate small-group discussions to conceptualize 
and resolve the tension between the open-ended nature of play and the directed nature of 
classroom learning (30 minutes). We will then convene a whole-group discussion to identify 
principles for capitalizing on findings from informal and formal mathematical play in order to 
playify classroom spaces. 
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This working group was a continuation of a 2019 PME-NA working group focused on the 
challenges and opportunities of using simulations of teaching practice as an educative tool for 
preservice teachers. Initially, we shared our diverse experiences designing and implementing 
simulations before and during the COVID-19 school closures. This discussion inspired us to 
consider the various dimensions of simulations and the continuums of choices along each 
dimension. We aim to meet again at PME-NA 2022 to refine our definitions of the dimensions of 
simulations, discuss research collaborations, and develop an NSF grant proposal to continue 
our work.  

Keywords: Simulation, Preservice Teacher Education, Online and Distance Education, 
Technology, Classroom Discourse. 

During their professional preparation preservice teachers (PTs) must obtain authentic 
practice-based experiences (Ball & Forzani, 2009; Forzani, 2014). According to Grossman, 
Hammerness, and McDonald (2009) approximations of practice are one of the three key 
components of professional practice and they provide “opportunities to rehearse and enact 
discrete components of complex practice in settings of reduced complexity” (Grossman et al., 
2009, p. 283). Through approximations of practice PTs obtain opportunities to learn from their 
mistakes, try different instructional approaches, and improve their pedagogy (Girod & Girod, 
2008). PTs have the opportunity to enhance their skills in a safe environment and have a minimal 
chance to negatively impact actual students’ learning. A plethora of professions, such as 
medicine, aviation, and the military have expanded their use of simulations. Several researchers 
have investigated the impact of simulations on teacher professional learning (e.g., Bondurant & 
Amidon, 2021; Howell & Mikeska, 2021; Lee et al., 2021; Mikesa et al., 2021; Straub et al., 
2014). An endorsement from the American Association of Colleges for Teacher Education 
([AACTE], 2020) and the COVID-19 pandemic, the use of digital simulations has expanded. We 
see the expanded use of digital simulations as an opportunity to learn from our experiences and 
develop best practices.  

Focus of Work 
 We entered the working group with a set of guiding questions oriented around how our 
collective work, thinking, or use cases might have been affected by COVID-19, both in the short-
term in contrast to prior use of simulations, and in the longer term thinking about what parts of 
those changes are likely to persist in a post-pandemic world. In contrast to the 2019 working 
group that focused on the theory and design of simulations themselves, this 2021 session was 
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focused more directly on the contextualization of simulation use, particularly the contrast case 
provided by the context of working within COVID-19 inducted constraints. Our guiding 
questions, described in the main proceedings document, were as follows:   

1. What affordances and/or challenges in using, adapting, and integrating digital simulations 
existed before the pandemic? 

2. How and why did the affordances and/or challenges change during the pandemic? 
3. What affordances and/or challenges do you see in using, adapting, and integrating digital 

simulations after the pandemic? 

Organization for Active Participant Engagement 
 We began, as we had proposed, by grounding the discussion in the results of the prior 
working group. This was, in part, to orient the group as some presenters and participants had 
attended in 2019 while others had not. It also served to establish a common vocabulary, drawing 
on a provisional list of dimensions of authenticity that had been the core of the 2019 group’s 
discussion. We then went on to describe each of our own experiences before and after COVID-
19, beginning with the working group organizers and then inviting the participants to share 
similarly. While originally conceptualized as a one to one mapping of session dates to 
experiences with simulations before, during, and after COVID-19, we found that beginning with 
the contrast of prior experience to current experience was a more productive orientation for most 
participants, which ended up bridging both sessions 1 and 2.    

Subsequently, we discussed the commonalities among our work and attempted to determine 
the key design decisions or dimensions of simulations. Finally, we closed by deciding that we 
wish to meet again at PME-NA 2022 to refine our definitions of the dimensions of simulations, 
discuss research collaborations, and develop an NSF grant proposal to continue our work. 
Building on Prior Work 

Initially, the 2019 PME-NA organizers, Heather, Yvonne, and Carrie, shared the takeaways 
from their working group. The 2019 organizers discovered that it would be helpful to develop a 
common vocabulary and identify design characteristics of simulations. They identified the 
following dimensions of simulations: boundedness of set-up, complexity of intended response, 
role of feedback, extemporaneity, linearity of time, individuality, and elaboration of student 
character(s). They discussed how the researcher’s goals impact their design decisions. A key 
distinction the organizers uncovered among their work was whether the effectiveness of the 
simulations was the primary focus of the research.  
Contrasting Simulation Use Cases 

Next, each participant shared their work using simulations, beginning with the five 2021 
organizers. The first four shared their experiences within their own courses and the final 
organizer shared her experiences across multiple sites. New participants to the group were then 
invited to share their work using simulations. The aim was to only share how they used 
simulations before COVD-19. However, many of the organizers’ work continued or expanded 
during COVID-19. Therefore, the organizers shared their experiences and takeaways before and 
during COVID-19. These presentations inspired discussions that lasted into the second session. 

Liza studied elementary and secondary PTs’ use of equitable teaching practices in virtual 
simulations. Her takeaways were that overall PTs found the virtual simulations very authentic 
and beneficial to their pedagogical content knowledge and skills. She also explored the PTs’ 
implicit biases, perceptions of the student avatars, and quantity and quality of the opportunities 
that the PTs’ provided students of different social markers (gender, race) to participate. She 
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found that unless a random method was deliberately used, PTs did not call on students equitably. 
She also found that PTs typically asked closed questions that were not cognitively demanding. 
Finally, Liza noticed that the student avatars’ behaviors and words often reinforced stereotypes. 

Minsung studied elementary PTs’ experiences in non-digital simulations and digital-
simulations. In using simulations during the pandemic, Minsung noticed how PTs sequenced 
student work differently,  how PTs provided examples/counterexamples to address errors and 
misconceptions, whether PTs asked students to critique each other’s work, and the quantity and 
quality of PTs’ interactions with the students. Minsung also noticed the interactor effect (referred 
to as the interviewer effect in survey research). She noticed that each avatar’s dispositions varied 
depending who the interactor was. In the simulation facilitated by the female interactor, avatars 
shared that they were so excited with math. Minsung found that the affordances of using digital 
simulations include exploring some key pedagogical practices, analyzing student work samples 
in a shared work space, less nerve-wracking but feeling more real, conferencing their teaching 
performances with peers in a public space by reducing variability across different field 
placement settings/contexts, receiving content-specific feedbacks from the instructor, identifying 
their strengths and areas of improvement on the targeted teaching practices, and 
recording/assessing/researching teaching in a safe environment. 

Yvonne explored secondary PTs’ written and video-recorded responses to samples of 
students’ work in math content courses as a part of the Mathematics Of Doing Understanding 
Learning and Educating for Secondary Schools (MODULES2) project. She examined differences 
in Foundation and Contingency skills across 27 pairs of video and written simulations of practice 
(SoPs). Foundation was defined as whether or not math knowledge is harnessed productively in 
teaching and contingency was defined as responding to potentially unexpected student 
contributions (Rowland, 2013). She found 7 pairs with higher Foundation in the video SoP and 
zero pairs with higher Foundation in the written SoP. 

Carrie investigated elementary PTs’ facilitation of number talks in peer-to-peer rehearsals 
and virtual simulations. Carrie noticed that the foci of peer-to-peer feedback varied from 
understanding of properties to personal solution strategies. Virtual rehearsal simulation (VRS) 
feedback centered on positioning of students, understanding student solution strategies, and 
pressing for connections between strategies. In addition to variation in feedback foci, the 
development of elicitation strategies was studied. By coding different elicitation prompts, 
analysis of teaching episodes found that PTs who rehearsed in virtual simulations increased in 
their use of more closed-ended prompts during rehearsals, as compared to PTs who rehearsed 
with peers. However, when comparing change in elicitation strategies when teaching in 
classroom settings, PTs that rehearsed with virtual simulations increased in their use of more 
open-ended prompts while PTs that rehearsed with peers decreased in their use of more open-
ended prompts (Lee et al., 2021). The study of how PTs develop in their use of elicitation 
prompts during rehearsals seeks to better understand how to support stronger discourse practices.   

Heather’s perspective is a bit different as her work has been as a researcher studying 
elementary PTs’ facilitation of classroom discussions in virtual simulations across multiple sites, 
giving her a broad perspective on simulation use across very different contexts but a less intimate 
one as she has not been working with her own students. The focus across her projects has largely 
been on formative assessment, relying on a theory of action that supposes that some learning is 
produced by engagement alone, but that the primary learning mechanism is reflecting and 
receiving feedback and support. Her more recent work has focused on scaffolding across 
simulation types.  
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Heather reported several high level noticings from her experiences with math teacher 
educators (MTEs) and PTs. Heather’s first noticing was that before the pandemic people were 
hesitant and  cautious about using simulations. While some of the caution may have been well-
founded, she suspected that some were also fear of the new. Heather has always acknowledged 
the affordances, but also that simulations have a place among other activities and are neither 
designed as nor well-used as replacements for interactions with real children. Heather noticed 
that the field has swung toward simulations with enthusiasm as a result of the COVID-19 school 
closures, which increased both their popularity and the number of cases in which they were, of 
necessity, used as replacements for field work rather than complements to it. While the 
enthusiasm is encouraging, she noted this loss of hesitance as potentially problematic, as it might 
produce more acceptance of off-label use of simulation in the future, which might be appropriate 
but, like any off-label use, merits careful consideration of unintended consequences. 

Heather also observed that using simulations in online courses was easy and seamless. She 
conjectured that we may be more likely to accept interactions through a screen as legitimate 
human interactions after the abundance of online classes and meetings that we participated in 
during COVID-19. Like all online classes, simulations opened up access to PTs whose lives were 
less complicated with the removal of long distance commutes, but it limited access in other 
ways, exacerbating inequality for PTs with inadequate technology access. None of this is 
particular to simulations per-se, as distance learning forced all of us to consider more closely the 
affordance of distance-learning in ameliorating some sources of inequity while amplifying 
others, but the processor-intensive requirements of simulation certainly brought it into sharp 
focus in this context.  

Heather also reflected on PTs’ feedback on surveys that raised questions about transfer to 
classroom practice, in some cases related to simulation but in some cases more broadly. Many 
PTs commented that teaching five students in a small group on a screen was very like teaching in 
a zoom breakout room with real students. Some complained that it seemed unnatural in the 
simulation to see only the students' faces  and not themselves on video, and that not seeing 
themselves on screen made it difficult to regulate their facial expressions. While raised in the 
context of the simulation, this critique only makes sense in contrast to zoom teaching, as both 
Mursion simulation and real-life do not afford visual feedback of this kind. And it points to a 
larger set of competencies that PTs training during COVID-19 might struggle with, having spend 
most of their formative practice in an environment where facial regulation, body language, and 
even the ability to ‘hide’ by turning the camera off for a moment may have encouraged teaching 
practices that are unavailable in real life.  Many PTs reported simulations as more relevant to 
PTs who will eventually teach online. However, Heather considers connecting through a screen 
to be a surface feature of the experience. PTs also reported that the simulation helped them 
facilitate either a small group or a whole-class discussion, depending on the design of the 
simulation. 

Heather noticed that across the studies it was clear to her that intensity of use led to more PT 
learning. Heather conjectured that there may be a threshold of use to reach a minimum comfort 
level, and  wondered how to normalize the experience for PTs so their first experience was not 
focused solely on getting acclimated to the environment. PTs knowledge of and skills with 
leading argumentative discussions improved when they had more simulation experiences. PTs 
with less experience reported a desire to be better prepared for the simulation, because they were 
unable to support unpredictable student responses. Heather observed that the amount of learning 
available also varied by context and degree of support available from the MTEs, with those who 
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were able to provide more structure for preparation and reflection eliciting more learning. She 
was not surprised by this, as MTEs always mediate learning from experience. However, Heather 
pointed out that this finding hints at an affordance of simulation in allowing this direct 
mediation, which is not always available in traditional field work.  

Lastly, Heather noticed that MTEs paid most attention to what they had available to pay 
attention to. When ETS staff scored the videos and provided written feedback and scores, few 
MTEs viewed their PTs’ videos. When ETS staff only provided the videos, most MTEs watched 
the  videos despite the time commitment required to do so. These MTEs uniformly reported that 
they needed to watch the videos to understand their PTs’ strengths and weaknesses. The videos 
also provided the MTE insight about the degree to which their own instruction had been 
successful, both with respect to personally defined goals and overall. Finally, most of the MTEs 
owned what they saw, attributing their PTs’ performance to their own actions as teachers, and 
using it to reflect on how to grow professionally. 

Next, the working group participants were given the opportunity to share their experiences. 
The participants included: Kyle Turner, a graduate student from the University of Texas at 
Arlington, Bima Sapkota, a graduate student from Purdue University, Zeynep Arslan, a graduate 
student from Trabzon University, and Neet Priya Bajwa, from Illinois State University. Kyle, 
Bima, and Zeynep chose to share their experiences. 

Before the pandemic Kyle participated in the Mathematics Association of America (MAA) 
META Math research project. The goals of the META Math project were to “increase faculty 
capacity to guide undergraduate pre-service teachers in making explicit connections between 
undergraduate mathematics and secondary school mathematics, and developing deep, 
sophisticated understanding of mathematics taught in grades 7-12” (META Math). The 
investigators and assistants developed lessons, a year-long faculty development program to train 
faculty on how to use of the lessons, researched PT learning that resulted from the use of these 
lessons, and evaluated the effectiveness of the faculty development program. The in person 
simulations in this project involved PTs analyzing hypothetical student work samples that 
contained common misconceptions. PTs were asked to identify and using guiding questions to 
help the hypothetical student better understand the material. 

As an instructor of an elementary mathematics methods course, Bima used simulations 
during COVID as an alternative to field experiences. Using online conferencing, PTs rehearsed 
teaching elementary math lessons with their peers. PTs also video-recorded their peer-teaching 
sessions. Moreover, Bima is using the approximations of practice framework as her guiding 
framework for her ongoing dissertation study. In particular, Bima is investigating how teacher 
educators could assess secondary PTs’ Mathematical Knowledge for Teaching when they engage 
in approximations of practice, including lesson plan, implementation, and reflections on 
teaching. The focus of Bima’s dissertation research is on how to best support the PTs’ discipline-
specific practices, including posing purposeful questions and selecting mathematical tasks for 
students.  

Zeynep used both in person and virtual simulation with PTs. She found the simulations 
beneficial to the PTs content knowledge (of solving equations) and instructional practices.  
Looking to the Future 

Finally, we discussed the components of simulation experiences that are worth preserving 
after the pandemic and our future collaborations. The participants agreed that although the 
research using simulations is growing, the results have been promising, and there are many 
unresolved questions. All participants plan to continue to use simulations and expressed interest 
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in meeting again for a working group at PME-NA 2022. Liza expressed a desire to develop an 
agreed upon framework that captures the dimensions of simulations. She would like to solidify 
the design decisions that exist as well as best practices (when to do what, with whom, and why). 
Heather suggested continuing to use simulations as formative assessments (for PTs and MTEs) 
and as a ‘boundary condition’ to facilitate conversations. Heather expressed a need for a broader 
infrastructure, more vendors, and more equity of access. Yvonne expressed interest in working 
on a research commentary. Heather also suggested developing an NSF grant proposal to support 
a conference, noting that an affordance of the PME working group format is allowing a group of 
scholars to work toward such a goal over time and to allow graduate student members access to 
this type of collaborative experience. All attendees expressed interest in these future endeavors.  
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This working group explores the ethics of simulations of practice in teacher education. As the 
pedagogy of simulations of practice becomes increasingly popular in content and methods 
courses, we step back and ask: How are we equipping preservice teachers to engage with 
students and content in equitable ways? How are K-12 students portrayed and perceived in 
simulations? How may the need for efficiency run up against ethics? The working group expands 
on the work of a 2019 and 2021 PME-NA working group with a goal of disseminating 
conversations around the ethics of simulations of practice. We have reached out to different 
publishers with the goal of collaboratively editing a book. Working group participants will be 
invited to contribute book chapters. During our time together we will construct common themes 
with participants and develop an action plan for the completion of the book.  

Keywords: Simulation of Practice, Preservice Teacher Education, Online and Distance 
Education, Technology, Classroom Discourse 

Preservice teachers (PSTs) need ways to connect their content preparation to their future 
teaching practice. To do so, they need environments where they can experiment with teaching 
moves–including those that involve attending to power dynamics and handling student 
conceptions–prior to entering the field (Association of Mathematics Teacher Educators [AMTE], 
2017; Ball & Forzani, 2009; McDonald, Kazemi, & Kavanagh, 2013). One common approach to 
providing PSTs with these environments are simulations of practice; opportunities for PSTs to 
engage in practices that are proximal to actual teaching (cf. Grossman, 2009). For instance, in a 
simulation of orchestrating a discussion, a PST may lead a discussion with students acted by 
avatars with particular characteristics (e.g., Bondurant & Amidon, 2021); with fellow PSTs 
acting as students; or PSTs may be provided student work ahead of time and asked to describe 
different potential strategies for connecting student contributions. Simulations provide a variety 
of opportunities for teachers to develop their teaching knowledge and practices (Girod & Girod, 
2008). 

During COVID-19, the use of digital simulations, which are particularly amenable to online 
and hybrid applications, came into the mainstream and received both positive and negative 
attention at a broader scale than ever before. The American Association of Colleges for Teacher 
Education ([AACTE], 2020) endorsed digital simulation and collaborated with a technology 
provider, MursionTM; the first time a professional organization had provided such a strong 
endorsement. At the same time, MursionTM received negative press attention around the practice 
of having a single actor represent characters with a different race or ethnicity than their own 
(Baker-White, 2021).  

In short, digital simulations seem to be entering a new phase in teacher education; one in 
which their potential is beginning to be realized at scale, supported by educational theory and 
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research, but with much work remaining to be done to design simulations that are ethical, 
authentic, and useful. Furthermore, more attention is needed to the ways in which digital and 
non-digital approaches are complementary, overlapping, and mutually informative (Mikeska et. 
al 2021) and how attending simultaneously to the interactive and non-interactive working of 
teaching can help in the development of broader design principles and approaches, as we have 
argued for through this series of working groups.  

More generally, especially in the current climate, where pandemic-related school closures 
may have impacted mathematics learning (Kuhfeld & Tarasawa, 2020), and school closures may 
exacerbate already widening achievement gaps (Dorn, Hancock, Sarakatsannis, & Viruleg, 
2020), PSTs need experiences where they can attend to students and content in equitable ways. 
Teacher educators need ways to notice and provide feedback for such practices, as well as 
evaluate the explicit and implicit ethics informing the design of simulations, whether or not the 
simulations are digital. This working group seeks to expand this conversation in the field. 

Focus of the Work 
This working group seeks to explore the following questions: What common ethical concerns 

emerge from our work in the space of designing, implementing, and assessing authentic 
simulations in teacher development?  What are design principles for digital and non-digital 
simulations that promote equitable teaching? How can we disseminate our collective work in the 
space of simulations in teacher development? 

Organization and Plan for Active Engagement 
This continuing group will expand the conversation around simulations by critically 

examining the ethics, authenticity, and efficacy of our collective work in simulations with the 
goal of dissemination. Prior to convening in Nashville, we will inquire into different 
dissemination opportunities and select the best avenue to present to our members (edited volume 
or special journal issue).  

The working group will consist of three sessions during the conference followed by virtual 
meetings through the following year. Sessions will focus on creating a collective vision for the 
dissemination of work and formulating groups and a timeline.  
Session 1. Collective Understanding: Conceptualization and Common Language 

In this session, we will begin by briefly sharing the takeaways from our 2019 and 2021 PME-
NA sessions with a focus on ethical concerns, authenticity, and efficacy of simulation work. We 
will also engage new participants by asking them to share their experiences. From this brief 
review we will break into groups to further conceptualize issues around ethics and design 
principles. Within group discussions, a common discourse will be negotiated as a group. This 
common discourse will ground our approach to dissemination of work.  
Session 2. Identifying Key Topics for Dissemination  

From conceptualization and common discourse, we will then converge on key topics for a 
special call or edited volume on simulations in teacher education. It is anticipated this work will 
involve negotiations and exploration of essential investigators in each of the spaces identified. 
Session 3. Timeline  

Finally, we aim to design a call for chapter proposals and construct a feasible timeline for the 
writing and editing process. The organizers will brainstorm outlets for sharing the call for 
chapters. Additionally, they will compile a list of roles and responsibilities and delegate them to 
individuals. They will also add meeting dates and zoom links to their calendars to ensure the plan 
is effectively executed. 
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The Complex Connections: Reimagining Units Construction and Coordination working group 
began at PMENA 2018, with the aim of facilitating collaboration amongst researchers and 
educators sharing Steffe’s (2017) concerns about units construction and coordination for all 
learners. This working group made dramatic progress in their ability to conceptualize their work 
and impact the mathematics education field in the form of publications and task development. 

Keywords: Learning Theory, Learning Trajectories and Progressions, Mathematical Knowledge 
for Teaching, Number Concepts and Operations 

The Complex Connections: Reimagining Units Construction and Coordination working 
group began at PMENA 2018, with the aim of facilitating collaboration amongst researchers and 
educators sharing Steffe’s (2017) concerns about units construction and coordination for all 
learners. The main goals of the working group were to extend research around units construction 
and units coordination to new grade levels and to facilitate collaborations with researchers with 
different backgrounds and experiences. In this report, we describe how the goals of the working 
group have evolved, including progress and products up through the working group meetings at 
PMENA 2021. 

Past Two Years of Progress 
Given that this Working Group has been formed over the past four years, we thought it might 

be helpful to provide context to the progress made in this working group thus far. When this 
working group was formed in 2018, we had five leaders and a skeletal webpage. Our goals were 
two-fold: (1) Extending Units Coordination, and (2) Widening Units Coordination. Essentially, 
this meant considering how units coordination could frame mathematics education research in 
grade levels not examined (i.e., prekindergarten and secondary education). By widening the 
frame used for Units Coordination, we envisioned carrying this frame into mathematics 
education intersections (i.e., special education and cognitive psychology) not yet explored in 
mathematics education research.  

Since switching to a two-page proposal, our group has not provided context for progress 
made. So, we wanted to provide a brief discussion of the progress made in the past two years. By 
doing so, we hope to illustrate how many goals have been met and how our group continues to 
examine innovative approaches to examine nuances in individual’s units coordination 
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development, as well as scale-up this work to examine broad trends in individual’s units 
coordination in a variety of contexts and for a variety of purposes.  
Progress Made in 2019 

In 2019, our leadership team changed to include one new leader and our attendance grew 
dramatically (see Figure 1). Given this growth, we began examining Units Coordination in more 
depth, allowing for tasks to be created intentionally for online course designs (used for both 
research and teaching), how covariational reasoning contexts explain students’ reasoning through 
their units coordination, and details surrounding the intersection between mathematics education 
and special education. Our webpage (https://unitscoordination.wordpress.com/) began including 
a robust member list and tasks used in teaching experiments, interviews, and high education 
course designs. 

 

 
Figure 1: Attendees at the 2019 Complex Connections Working Group 

This group began to create a connected group of scholars, students, and teachers. Intellectual 
outcomes included 10+ publications bridging from prekindergarten to Calculus students. 
Moreover, unique modalities and online formats for engaging pre-service teachers began to 
emerge in this group’s work, setting the stage for important and innovative pedagogical tools for 
an unimagined world-wide pandemic. This group spent much of their time examining tasks that 
many were using in their research and teaching and often revisiting the question, “what 
constitutes as a unit?” and “what does it mean to coordinate units in these new contexts and with 
these new tools?”. These reflective questions seemed quite broad but allowed the group to refine 
and adjust their language and task development while designing new courses and research 
studies. In short, in 2019 this working group was better positioned to extend and widen the Units 
Coordination frame to more areas and with unique contexts. Outcomes included publications, 
and intellectual cohesiveness in the mathematics education field. 
Progress Made in 2020 (June 2021) 

In June of 2021, our leadership lost one leader to the PME-NA Steering Committee and 
gained one new leader. Due to COVID19, our working group moved to a hybrid format wherein 
many participants were in an online synchronous format. Considering the reduced attendance 
and engagement during this conference, our working group continued to grow in members by 
making innovative accommodations for non-English speakers. In total, we had 17 participants 
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with six of these serving also as group leaders. Outcomes from this working group included 
refined foci in how units and units coordination are used/defined in areas such as, integer 
reasoning, combinatorial reasoning, covariational reasoning, pre-service teachers’ fraction 
reasoning, and algebraic reasoning. The term “unit” was now considered to encompass several 
types of units: (1) discrete units, (2) continuous units, (3) static units, and (4) dynamic units. This 
allowed the group to again reflect on, “what constitutes as a ‘unit’?”, and “how can these new 
units be coordinated in such novel contexts?”. This group also examined novel contexts and 
tasks being developed for research and teaching purposes. Some of these tasks (see Figure 2) 
were not designed with units coordination frameworks, promoting the discussion around the 
question, “how might these tasks be helpful or limiting in their design and enactment?”. By 
refining how foci and questions, our groups’ intellectual growth continued to progress in a 
cohesive manner. 

 
 
 
 
 
 
 
 
 

 
Figure 2: Examples of some tasks discussed that broached novel ways to frame 

Mathematics Education with Units Coordination Learning Theories. 

In short, in June 2021 this working group was better positioned to extend and widen the 
Units Coordination frame to particular areas and with more refined language and tasks. 
Outcomes included five new publications, two new software apps designed to measure 
individuals’ units coordination, and a more comprehensive set of language around what 
constitutes as a unit and how units can be coordinated in several novel contexts. 

Progress Made Throughout the October 2021 Working Group 
 In the fall of 2021, the PME-NA conference held a second hybrid conference, allowing 
attendees to participate via online synchronously and/or in-person. The difference in this 
conference is that many more participants attended in-person. This only increased our 
participation from June of 2021. In particular, we had a total of 19 attendees and seven of these 
served as leaders. Many of these attendees were ones who participated in the Complex 
Connections Working Group each year they attended PME-NA. However, three of these 19 
participants were new participants and joined our group to both learn and contribute in unique 
ways. In the subsequent sections, we will elaborate on progress made during each day of the 
working group, explaining details of this group's intellectual growth and associated outcomes. 
Day One Progress and Outcomes 
 The first day of the working group began by using language from past working groups to 
define and characterize a unit, units coordination, and contexts participants used or envisioned 
using units coordination in their research and teaching. We divided into two in-person groups 
and one online group, capturing ideas in three separate Google documents. Participants also 
recorded several questions they still had in their discussion. By the end of this day’s working 

How many cm in this bar? 
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group, we were positioned to examine tasks from one research group and make note of tasks and 
apps we could examine in subsequent working groups.  

The group had a wide variety of ways to characterize units (see Figure 3). For example, one 
participant wrote that a unit is defined differently dependent upon the type of unit one is 
constructing (i.e., perceptual, figurative, abstract) whereas another participant implicitly suggests 
an individual’s formation of collections, suggesting discrete, static units. These variations 
suggested how often researchers and teachers use this term differently and why the progress this 
group has made in reflecting on these variations is important. 

 

 
Figure 3: Participant notes characterizing what constitutes as a unit 

 The group described units coordination in one broad manner, providing a more coherent 
characterization of this frame. For instance, one participant connected the units variation 
discussion to units coordination by stating that units coordination refers to, “how units change 
over time and how the relations and actions with units change in different situations.” Moreover, 
this group added that, “You have to at least distribute the elements of one composite unit across 
another composite unit.” This statement was echoed in each small group, providing a coherent 
frame of reference for the remainder of the time in the working group.  

The group members also described the contexts they used units coordination. This variation 
included variety in age of person (prekindergarten to college level) and variety of units in 
varying contexts (e.g., fractional units, whole number units, algebraic units, measurement units, 
covariational units). This wide variety explained the variation in how units were characterized 
but also provided means to coherently synthesize units coordination in a more in-depth and 
comprehensive manner.  

Finally, the groups explicated many questions they still had regarding their own work and 
this framework (see Figure 4). These questions served as the basis for the remainder of day one’s 
work and the basis for progress we would make in day two, day three, and beyond. 

 

 
Figure 4: Examples of questions participants had in small group discussions 

 Many of these questions pressed participants to reflect on their language and the underlying 
scheme theory used to explain how units coordination develops and changes over time. 
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Moreover, some participants were examining characteristics of tasks that they found leveraged 
students’ mathematical development but had been developed for only practical purposes.  
To examine units, units coordination, and to help participants answer some of these questions, 
we explored fraction tasks (designed for pre-service teachers - PST) and their responses. We 
discussed the limitations many of these tasks inherently had in their design and enactment.  
In short, progress from day one, allowed the working group to further refine their definitions and 
characterizations for units and units coordination. Novel contexts and questions surrounding 
tasks fundamentally provided more nuanced progress on task development, task enactment, 
participants’ responses, and analyses of these responses. 
Day Two Progress and Outcomes 
 The second day of the working group continued the examination and discussion of written 
assessment items. Both the in-person and remote participants analyzed the work of pre-service 
teachers (PSTs) on static fractions tasks, discussing the following prompts in small groups: 

 Is there indication that the PST coordinated units? 
 Is there counter-indication that the PST coordinated units? 
 What are the obstacles to overcome in assessing units coordination with this item? 
 What are the ways that you have assessed units coordination? 

One of the takeaways from the following discussion was the difficulty with making an 
assessment of an adult’s units coordination with fractions solely from their responses to written 
items. Participants discussed myriad ways that a student might make marks and representations 
on the paper to determine a normative size or number without coordinating fractional units. We 
discussed how such assessments, though useful for making inferences of children’s reasoning, 
may not be sensitive enough to assess adults’ fraction schemes. Yet, they may be useful in other 
ways. For instance, we shared a PST’s response to a task that was intended to evoke their use of l 
(see Figure 5). After project leaders shared this response, the members discussed how the PST’s 
converting the fraction 9/6 to a mixed number was not necessarily a counter-indication of their 
construction of an iterative fraction scheme. In fact, the members discussed that it might indicate 
a PST’s tendency to focus on part-whole relationships when developing appropriate pedagogical 
content knowledge for elementary school instruction. 

 

 
Figure 5: Screenshot of PST fraction task response shared by Working Group leaders 

 The second half of the Working Group was led by Dr. Teruni Lamberg, who participated in-
person. Dr. Lamberg shared a sequence of fractions tasks she had used with in-service 
elementary and middle grades teachers’ professional development. We continued Day 1 
discussions regarding relationships between fractions understandings, such as part-whole 
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schemes versus iterative or partitive schemes, and their constitutive operations. Dr. Lamberg’s 
tasks were not designed to assess units coordination, rather, they were designed to assess 
fractions understandings as described in the Common Core State Standards. Thus, consideration 
of these tasks provided opportunities to make connections between units coordination and 
fractions curricula. Of particular import was the discussion of the disembedding operation. 
Disembedding is a hallmark of coordination of two levels of units. It involves mentally 
“removing” an item or amount from a whole extent or collection, without modifying the size or 
numeracy of the extent or collection. We discussed Dr. Lamberg’s idea that intentionally varying 
color may be helpful in fostering students’ disembedding composite units, particularly in the 
context of fraction division. 
Day Three Progress and Outcomes 

The third day of the working group focused on how units coordination is assessed. The in-
person attendance, of six, was lower than the previous days, which is typical for the last working 
group day due to early flights. There were eight individuals who participated remotely. The first 
half of the session the discussion was led by Dr. Amy Hackenberg, who streamed a video of a 
teaching experiment session with a sixth-grade student as well as a written task (and rubric) that 
she had used in a clinical interview setting. Dr. Hackenberg explained how the contrasts in the 
student’s responses to the tasks in the video were useful for understanding the distinction 
between a student not coordinating units and a student coordinating units “in activity”. We 
discussed the details of the rubric for the interview task she shared, and several participants noted 
that this level of detail in the types of expected responses for students at different stages of units 
coordination could be an area of improvement in assessments with PSTs.  

One important benefit of this Working Group is to provide a space for discussion about units 
coordination research presented elsewhere in the program. In addition to Dr. Hackenberg’s 
discussion of her research, two participants in the working group from James Madison 
University elaborated on their research report investigating the validity of written instruments for 
assessing PSTs’ units coordination. Their research team presented their report at a session earlier 
that morning, and they attended the Working Group meeting to elaborate on their findings and to 
discuss potential collaborations. Several of the members of the Working Group who have been 
focused on PSTs’ fractions understandings expressed interest in collaborating with the design of 
methods to validate and improve upon written assessments.  

Two additional Working Group members shared applets that they have designed. As shown 
in Figure 6, Sarah Kerrigan created a Geogebra version of the Bars Tasks 
(https://www.geogebra.org/m/zhgajwzp). 

 

 
Figure 6: Screenshot of applet shared by Sarah Kerrigan 
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 Although this applet was created out of necessity, due to the need to assess students’ 
reasoning remotely because of the COVID19 pandemic, several participants noted its potential 
benefits over traditional paper and pencil assessments. We discussed the potential for students to 
complete the assessment via Geogebra and screen-record their activities, improving inferences of 
their process for solving the tasks. The Bars Tasks were originally validated with sixth-grade 
students by comparing researchers’ inferences based solely on the paper with other researchers’ 
inferences based on watching video-recordings of the students’ solving the task (Norton et al., 
2015). Kerrigan’s applet could potentially be used to either validate the written assessment with 
older students, such as with PSTs, or to replace the written assessment for use with other groups 
of students. 

Unlike Sarah Kerrigan’s applet, the applet that Dr. Cameron Byerley shared was not 
designed specifically to assess units coordination. She discussed an applet (see Figure 7) that was 
designed to help individuals construct proportional reasoning related to the risk of contracting, 
being hospitalized, or dying from COVID19. Units coordination is involved throughout students’ 
mathematical development, and one of the goals of the Working Group is to extend our 
understanding of its roles and its relationships with quantitative, covariational, and probabilistic 
reasoning. Dr. Byerley discussed how her knowledge of units coordination informed and 
influenced applet design decisions, such as the use of horizontal, left-aligned rectangular bars to 
represent and compare the size of COVID risks with everyday probabilities such as getting in a 
car accident or winning the lottery. Her discussion of interviews with citizens on their use of the 
applet was heartening, in that some of the participants expressed a deepened understanding of the 
risks they faced with not getting vaccinated, but disappointing in that others expressed either 
skepticism of the statistics or a disconnect between the sizes of the bars and the relative sizes of 
the risks. 

 

 
Figure 7: Screenshot from applet shared by Working Group Leader Cameron Byerley 

Progress Made Following the October 2021 Working Group 
 Since the members of the working group met, work has been done to develop a Special Issue, 
reflection of tasks relative to the granular size of studies and modalities, and updates of the 
working group website. The website (https://unitscoordination.wordpress.com/) now features 
new members, tasks, rubrics and publications. Thus, the working group has connected new 
resources, for different purposes, and connected scholars, so as to form new research questions 
and research foci. It is our hope to leverage the energy from these connections for more 
actionable work on a Special Issue in the fall of 2022. 
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Conclusion 
Throughout the past four years, this working group has refined and housed publications, 

tasks, discussions, and virtual tools to examine units construction and coordination. In the past 
year, this work has become more refined and intentional, prompting members to conceptualize 
their work with this frame in a more precise manner. Moreover, the working group website (now 
the second search item in a Google search for “units coordination”) has developed dramatically, 
bridging scholarship across grade levels, within the intersections of special education, 
mathematics education, early childhood education, and research in undergraduate mathematics 
education. Evidence of engagement with these tools is allowing scholars and teachers to develop 
rubrics, allowing more coherent foci with this frame across the nation. Thus, we measure 
progress through the conceptual development of the working group and aim to evidence this with 
a special issue in the next two years. 
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A powerful aspect of using neo-Piagetian frames to examine students’ construction and 
coordination of units is their potential to apply across mathematical domains. This working 
group aims to facilitate collaborations between scholars of algebraic and covariational 
reasoning, with the particular aim of extending research on units coordination and construction 
across these contexts. An ultimate goal of this working group will be to develop a Special Issue.  

Keywords: Algebra and Algebraic Thinking, Learning Theory, Number Concepts and 
Operations, Learning Trajectories and Progressions 

Background 
This Complex Connections working group, focusing on units construction and coordination 

learning theories, will provide collaborative discussions for participants examining, assessing, 
and teaching students’ algebraic and covariational reasoning. Thus, this paper delineates findings 
from these two constructs, set in units construction and coordination learning theories.  

A connection between middle-grades students’ units construction and coordination and their 
algebraic reasoning is emerging in the research. Notably, Hackenberg and her colleagues 
(Hackenberg et al., 2017) have determined that to meaningfully reason about unknowns relies 
cognitively on students’ operations on composite units. This suggests that construction of 
assimilatory composite units is a consequential prerequisite to much of the algebraic reasoning 
that is typical in middle-grades curricula. Additionally, Olive and Çaglayan (2008) demonstrated 
ways that assimilating with three levels of units supported middle-grades students’ solutions to a 
word problem that could be modeled algebraically. In their investigation, assimilating with three 
levels of units supported students to utilize a substitution method for solving the system of 
equations because they could anticipate an equation as a three-level unit structure and operate on 
that structure in mental activity. Additional connections have been drawn between students’ units 
construction and coordination and their algebraic reasoning as it relates to generalizing figural 
linear patterns (Hackenberg, 2013; Zwanch, 2022b), their equation writing (Hackenberg, 2013; 
Hackenberg & Lee, 2015; Hackenberg et al., 2021; Zwanch, 2019), and their guess and check 
strategies to solving algebraic equations (Zwanch, 2022a).  

Similar to connections being drawn between units construction and coordination with 
algebraic reasoning, researchers have started to investigate connections between units 
coordination and covariational reasoning. Carlson and colleagues (Carlson et al., 2002) built a 
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framework for capturing covariational reasoning and defined it as “the cognitive activities 
involved in coordinating two varying quantities while attending to the ways in which they 
change in relation to each other” (p. 354). Johnson (2015), directly built on Carlson and 
colleagues’ framework in her investigations of secondary students’ quantification of rate and 
ratio. Although these frameworks provide a way to categorize students’ covariational reasoning, 
there has been little work investigating connections between construction and coordination of 
units and levels of covariational reasoning in these frameworks. Given these advances in this 
field, members of the working group will discuss points of collaboration. 
Session 1: Extending to Algebraic Reasoning 
Goal: Discuss connections between algebraic reasoning and units construction/coordination 
Activities: In a large group, participants will solve algebraic reasoning tasks and analyze their 
solutions, focusing on the potential solution strategies of students. Participants will form small 
groups based on their own interests in (1) early and middle-grades algebra, (2) elementary 
algebra reasoning, and (3) secondary grades of algebraic reasoning. Within these small groups, 
participants will view and analyze videos, transcript excerpts, and written work taken from 
empirical studies. Participants will discuss theoretical and pragmatic connections between the 
students’ units construction and coordination and aspects of their solution strategies. 
Session 2: Extending to Covariational Reasoning 
Goal: Discuss connections between covariational reasoning and units construction/coordination 
Activities: In a large group discuss the theoretical connections between the two bodies of 
research before engaging in some covariational tasks. In small groups, participants will solve 
covariational tasks and analyze their solutions to identify what units constructions and 
coordination emerged in their work. After coming back together to share our ideas, we will break 
into groups again based on own interests (1) middle-grades covariational reasoning, (2) 
secondary-grades covariational reasoning, and (3) undergraduate covariational reasoning. 
Participants will have the opportunity to analyze student data from clinical interviews, discuss 
task design and assessment, and theoretical and teaching applications.   
Session 3: Extending to Algebraic and Covariational Reasoning 
Goal: Discuss connections between algebraic and covariational reasoning, and units 
construction/coordination 
Activities: In a large group, participants will solve algebraic reasoning and covariational 
reasoning tasks and analyze their solutions, utilizing units construction and coordination to orient 
to the potential students’ strategies. Participants will form small groups based on their own 
interests in algebra and covariational reasoning (1) early and middle-grades, (2) elementary 
grades (3) secondary grades. Within these small groups, participants will view and analyze 
videos, transcript excerpts, and written work taken from clinical interviews and teaching 
experiments. Participants will discuss theoretical and pragmatic connections between the 
students’ units construction and coordination, and aspects of their solution strategies. We will 
wrap this session up with a review of our drafted call for a Special Issue proposal. We plan to 
explore journal possibilities and language in the call. The details for this Special Issue will be 
advertised widely with our listserv and on our units coordination webpage 
(https://unitscoordination.wordpress.com/). Future work will be discussed to allow for 
opportunities for future collaboration. Additional information will be added to the group’s 
webpage, allowing for current research and resources to be made available.  
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The Embodied Mathematical Imagination and Cognition (EMIC) Working Group was 
established in 2015 at the annual PME-NA conference. As an interdisciplinary group of 
researchers, teachers, students, and practitioners, EMIC has strived to advance our 
understanding of how our physical experiences and body-based resources impact the ways we 
learn mathematics. Over the past several years, EMIC’s founding members have collaborated on 
initiatives to a) expand this area of research through grants, workshops, and publications, b) 
share these findings with teachers and practitioners, and c) grow the community through new 
members and opportunities for participation. This progress report highlights the progress and 
accomplishments of EMIC and its members.  

Keywords: Technology; Cognition; Informal Education; Learning Theory.  

A Brief History and Motivation of the EMIC Working Group 
The first meeting of the EMIC working group took place in East Lansing, MI during PME-

NA 2015. It has a somewhat longer origin, however, growing out of several earlier collaborative 
efforts to review the existing literature, document embodied behaviors, and design theoretically 
motivated interventions. One early event was the organization of the 2007 AERA symposium, 
“Mathematics Learning and Embodied Cognition.” This and other gatherings led to a funded 
NSF “catalyst” grant to explore a Science of Learning Center, which was to involve scholars 
from multiple institutions and countries. Though unfunded, those SLC efforts shaped a 
subsequent 6-year NSF-REESE grant, “Tangibility for the Teaching, Learning, and 
Communicating of Mathematics,” starting in 2008. Interest from the International PME 
community in this topic grew and led to special issues of Educational Studies in Mathematics 
(2009), The Journal of the Learning Sciences (2012), and an NCTM 2013 research pre-session 
keynote panel, “Embodied cognition: What it means to know and do mathematics,” along with a 
series of academic presentations, book chapters, and journal articles, as well as several masters’ 
theses and doctoral dissertations. By now, several research programs have formed to investigate 
the embodied nature of mathematics (e.g., Abrahamson 2014; Alibali & Nathan, 2012; Arzarello 
et al., 2009; De Freitas & Sinclair, 2014; Edwards, Ferrara, & Moore-Russo, 2014; Lakoff & 
Núñez, 2000; Radford 2009), demonstrating a “critical mass” of projects, findings, senior and 
junior investigators, and conceptual frameworks to support an on-going community of like-
minded scholars within the mathematics education research community. 

It was within this historical context that approximately 22 members of PME-NA 2015 came 
together for three 90-min sessions of semi-structured activities. On Day 1, the organizers 
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engaged attendees in some of the body-based math activities used in their research on 
proportional reasoning and geometry. One activity (Figure 1b) engaged participants in a 
projection activity using Alberti’s Window, which helped experience the role of body 
perspective on form and representation. We discussed how embodied theories are advancing our 
understanding of mathematical thinking, and how these ideas are shaping a new class of 
educational interventions. During Day 2, we used hands-on activities to expand our own 
understanding of topology. We then built on the emerging rapport among the group to hold a 
facilitated discussion of the potential intellectual benefits of forming a self-sustaining Working 
Group on embodied cognition, along with the necessary infrastructure it would need to maintain. 
Several concrete proposals led to the list of Future Steps on Day 3. However, before we tackled 
those matters, participants began the session doing math games and activities in small groups, 
including Spirograph, Set, Rush Hour, Tangrams, and Mastermind. We reflected on how some 
games and activities draw people into rich mathematical thinking and actions, and how we 
naturally engage in math through these activities. Day 3 culminated in an organized list of Future 
Steps, with some working group members assigned to specific tasks. We have convened 
annually since.  

 

 
Figure 1: A small selection of embodied activities created by EMIC organizers and 
experienced by EMIC participants. Clockwise from top left: experiencing geometric 

transformations, acting out geometry conjectures, constructing icosahedra first as small, 
then at human scale, and enacting topological relations. 

Founding Members 
The EMIC community has welcomed several new members since its inception in 2015 and 

the leaders of our working group at PME-NA have shifted each year to reflect the focus of each 
annual meeting. Below are the founding members of EMIC who have led the charge for many of 
this group’s collaborations within and between PME-NA convenings.  
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 Candace Walkington, Southern Methodist University 
 Caro Williams-Pierce, University at Albany, SUNY / University of Maryland 
 David Landy, Indiana University / Netflix 
 Dor Abrahamson, University of California, Berkeley 
 Erin Ottmar, Worcester Polytechnic Institute 
 Martha W. Alibali, University of Wisconsin-Madison 
 Mitchell J. Nathan, University of Wisconsin-Madison 
 Ricardo Nemirovsky, San Diego State University 
 Rogers Hall, Vanderbilt University  

Collective Efforts and Accomplishments 
Beyond PME-NA, EMIC members have actively collaborated over the past several years to 

continue advancing this field of research, bridging the gap between research and classroom 
practice, and expanding the EMIC community. Below, we provide overviews of the progress and 
accomplishments shared by members of our group (see Figures 1 and 2). 

 
Table 1: Events Organized by the EMIC Community Since PME-NA 2015 

2015 EMIC Working Group at PME-NA 37. Theme: Embodied Mathematical Imagination 
and Cognition. The launch of the working group and community at PME-NA. 

2016 EMIC Working Group at PME-NA 38. Theme: Finding Common Interests for Creating 
an Online Community of Scholars. 

2017 EMIC Working Group at PME-NA 39. Theme: Embodiment at the Crossroads of 
Mathematical Collaboration. Topics included the power of collaborative gestures.  

2018 EMIC Working Group at PME-NA 40. Theme: Extending Theoretical Frameworks of 
Embodied Cognition to Assessing and Assisting Mathematics Learning. 

2019 EMIC Working Group at PME-NA 41. Theme: Co-design of Novel Embodied 
Instructional Activities for Mathematics Education. Topics included the influences of 
eliciting movement in physical and video game-based learning activities.  

2019 (May) NSF-funded EMIC I Workshop. 
2020 (May). EMIC Virtual Panel #1. Hosted by embodiedmathematics.com. 
2020 (October). EMIC Virtual Panel #2. Hosted by embodiedmathematics.com. 
2021 (June; postponed from June 2020). EMIC Virtual Working Group at PME-NA 42. 

Theme: How Embodied Mathematics Can Bridge Cultural Divides. Topics included 
varieties of cultural and linguistic ways of expressing mathematical ideas.  

2021 (October; postponed from June 2020). NSF-funded EMIC II Workshop.  
2021 (October). EMIC Research Colloquium at PME-NA 43. Theme: Promoting Inclusive 

Mathematics Education Research and Practices. Topics included exploring varieties of 
physical inclusivity in different virtual stations and immersive technology. 

 
Highlights: Funded Grant Proposals and Projects 

1. Creation and maintenance of the website https://www.embodiedmathematics.com/. This 
is a portal for resources, events (including workshops and webinars), and 
announcements.  
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2. NSF EMIC I. A successful proposal to host a three-day NSF Synthesis and Design 
workshop, May 20-22, 2019, hosted by University of Wisconsin-Madison. The theme 
was “The Future of Embodied Design for Mathematical Imagination and Cognition” with 
8 members serving as organizers. There were 50 attendees, comprised of international 
researchers, educational practitioners, and graduate students. All attendees presented. 
Keynotes from Dr. Brian Bottge and Dr. Maxine McKinney de Royston. This resulted in 
a white paper (Nathan et al., 2021) and an open access journal article (Abrahamson et al., 
2020). 

a. Follow-up collaboration between a WG faculty member (Abrahamson) and 
workshop participant (Danny Luecke), a Secondary Math Education 
Developer/Instructor at Turtle Mountain Community College, North Dakota, to 
create pre-/in- service teacher courses, Ojibwe Math I, II, and III, as well as a 
course titled Math In Context. 

3. NSF EMIC II. A successful proposal to host a second NSF three-day Workshop in 2020 
(delayed to Sept. 25-26, 2021), hosted by Colorado State University. The theme was: 
“EMIC: Professional Development for Undergraduate Mathematics Instructors” with 7 
member organizers. Keynotes from Dr. Nathalie Sinclair, Dr. Brooke Ernest, Dr. 
Francisco Ortega, & Dr. Molly Kelton.  

4. Several grants awarded by IES CASL program to study embodied cognition, including: 
the role of action in pre-college proof performance in geometry (Funded 2016-2020 for 
Nathan & Walkington); the use of perceptual learning technology to study algebra 
learning (Ottmar & Landy, 2018), and use of augmented and virtual reality (AR/VR) to 
foster collaborative embodiment in immersive learning environments (Walkington & 
Nathan, 2020).  

Products and Dissemination 
1. Invitation by Springer to produce an edited book on our collective work on Embodied 

Mathematical Imagination and Cognition for the Research in Mathematics Education 
Series (Jinfa Cai, series editor).  

2. Exhibit presented by Abrahamson and Rosenbaum at an NSF-funded WG meeting 
(EMIC I, Madison, WI) has led to a research project (Palatnik, WG faculty), a journal 
paper (Benally, Kimiko, Palatnik, Abrahamson, in press), and a Spencer proposal (item). 

3. A joint symposium on Embodied Cognition with 6 members at the 2018 APA 
Technology, Mind & Society Conference (Harrison et al., 2018) 

4. Publication of Nathan (2021), a textbook on embodied cognition for education.  
Community Engagement/Broadening Participation 

1. Expanding a group website using the Google Sites platform to connect scholars, support 
ongoing interactions throughout the year, and regularly adding additional 
resources/activities https://sites.google.com/site/emicpmena/home 

2. Several members creating and teaching Embodied Cognition and Gesture seminars at 
their institutions. 

3. Extending the embodied-design agenda into special education in dialogue with Universal 
Design for Learning (Abrahamson, Flood, Miele, & Siu, in press) 

4. Some senior members joining junior members’ grant proposals as Co-PIs and advisors. 
5. Interest from Head of Education R&D (Dr. Ilona łowiecka-Tańska) of the largest STEM 

museum in Europe (the Copernicus Hall of Science in Warsaw, Poland) to incorporate 
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exhibits that had been developed for/at an NSF-funded WG meeting (EMIC I, Madison, 
WI) by Abrahamson and Rosenbaum. 

6. EMIC Virtual Workshop #1, May 19, 2020. Theme: “Instructional Gestures for 
Classrooms and On-Line Mathematics Learning.” Designed for an audience of K-16 
teachers, parents, and mathematics education researchers. Panelists: Dr. Mitchell J. 
Nathan, Dr. Martha Alibali, & Dr. Rebecca Boncoddo. Discussant: Dr. Hortensia Soto. 
Moderator: Dr. Caro Williams-Pierce. Hosted by embodiedmathematics.com. 

7. EMIC Virtual Workshop #1, October 12, 2020. Theme: “Reading Group: The Future of 
Embodied Design for Mathematics Teaching and Learning.” Convener: Dr. Dor 
Abrahamson, with a panel of authors from the (Abrahamson et al., 2020) paper.  

 

 
Figure 2: Embodied technologies designed by EMIC members that engage body based 

processes in support of mathematical reasoning. Clockwise from top left:  The 
collaborative video game, Rolly’s Adventure; Graspable Math; hand joints and 

holographic math objects in the augmented reality/virtual reality (AR/VR) shAR Geometry 
environment; Mathematical Imagery Trainer for Proportion (MIT-P); The Hidden 

Village-Online.  

Conclusions and Looking Ahead 
Embodied accounts of reasoning, learning, and instruction are proving to be highly 

generative frameworks for understanding and cultivating mathematics learning and teaching, and 
for informing a new generation of designs for interactive technologies, curricula, and 
assessments. The true potential for these ideas and practices to lead to transformational 
mathematics education depends on a thriving, informed, interactive community of scholars and 
practitioners who engage with these approaches, evaluate their impacts, and improve theory and 
practice. Thus, we see predictably recurrent events such as the PME-NA working groups and 
research colloquia as a cornerstone for maintaining a highly educated and engaged core 
community. We will continue to offer outreach events and pursue external funding for 
specialized workshops when the resources are available. Future research colloquium topics that 
offer particular promise to the mathematics education community are: Broadening participation 
in mathematics and STEM through embodied design for learning, teaching, and assessment; the 
growing access to augmented and immersive technology, such as AR and VR, as a means to 
transform learners’ collaborative interactions with mathematical objects and phenomena 
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(Walkington et al., 2021); and the potential for multimodal learning analytics that use machine 
learning methods to integrate complex data streams that include channels of speech, gesture, eye 
gaze, facial expressions, mouse clicks, and so on, to support more sophisticated descriptions of 
learners’ behaviors that can lead to real-time formative assessment and predictive models of 
educationally important student outcomes (Abrahamson et al., 2021; Closser, 2021).  
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The Embodied Mathematical Imagination and Cognition (EMIC) Research Colloquium offers 
hands-on individual and collaborative mathematics activities; technological, curricular, and 
pedagogical demonstrations; and open spaces for exploration and discussion regarding the 
embodied nature of mathematics education. At PME-NA 44 we will use the conference theme of 
“critical dissonance and resonant harmony” to invite the community to directly experience some 
of the many ways embodied perspectives challenge the status quo through expanded notions of 
mathematical activity and assessment, and to explore some current contributions, future 
potential, and challenges for more inclusive educational experiences for learners and teachers. 

Keywords: Cognition; Learning Theory; Social Justice; Systemic Change; Technology 

Theoretical Background 
It is increasingly apparent that effective mathematics education systems need to address 

the embodied needs of learners by designing educational experiences that: 1) are grounded in 
people’s natural propensities for movement, sensation, perception, and collaborative interactions 
with cultural and scientific tools; 2) support “multiple linguistic repertoires,” (McKinney de 
Royston et al., 2020, p. 10) including verbal, nonverbal, and multimodal ways of knowing, 
communicating, and assessment; and 3) facilitate learners’ participation in systems that support 
the distributed nature of knowledge and reasoning (e.g., Abrahamson 2014; Alibali & Nathan, 
2012; Arzarello et al., 2009; De Freitas & Sinclair, 2014; Edwards et al., 2014; Radford 2009; 
Walkington et al., 2021). Evidence-based design principles are informing innovations in 
material-based curricula and digital technologies that support embodied mathematical 
imagination and cognition (EMIC) using platforms such as physical and video games, skits and 
virtual reality, craft making and tactile computing, motion capture, and participatory simulations 
(e.g., Abrahamson et al., 2020). 

A Brief History and Motivation of the EMIC Working Group 
The EMIC working group officially started in East Lansing, MI during PME-NA 2015. 

However, it emerged from a variety of earlier initiatives, including a 2007 AERA symposium, 
“Mathematics Learning and Embodied Cognition,” a 6-year NSF-REESE grant (Nemirovsky et 
al., 2008), special issues of Educational Studies in Mathematics (2009), The Journal of the 
Learning Sciences (2012), and an NCTM 2013 research pre-session keynote panel, “Embodied 
cognition: What it means to know and do mathematics.” A group of PME-NA members 
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recognized a “critical mass” of investigators involved in related projects, and contributed 
findings and conceptual frameworks to form a stable and growing mathematics education 
research community to discuss, explore, and advance this scholarly program. We have convened 
annually at PME-NA ever since, organizing events that investigate the embodied nature of 
mathematics through physical and digital games, art and craft, individual and collaborative dance 
and movement, language, perception, immersive experiences, and more. EMIC members have 
continued to explore new technologies (e.g., Harrison et al., 2018; Walkington et al., 2021) and 
research methods (e.g., Abrahamson et al., 2021; Closser et al., 2021). They go beyond scholarly 
publications and presentations to offer: novel embodied technologies, including some that have 
gone to scale, for classroom use, special education, and emerging bilinguals; teacher learning 
programs for instructional uses of gestures; and webinars for teachers and parents. We are 
redesigning our website so it can continue to serve as a portal for resources, events (including 
workshops and webinars), teaching materials (e.g., syllabi), and announcements. 

EMIC 2022:  Critical Dissonance and Resonant Harmony 
The organizers (including the authors; plus Dr. Janet Walkoe, U. MD and coordinator M. 

Nathan) have several years of experience co-designing and facilitating the PME-NA sessions. In 
2022, we will organize hands-on activities and group discussions around the central questions 
that frame this year’s conference theme. On Day 1, we will use these prompts in small-group 
interactions to guide design activities with participants around (a) developmentally appropriate 
math topics (e.g., number, operations & algebra; geometry & measurement; probability & data 
analysis; functions & calculus; etc.); (b) research questions and designs for exploring 
embodiment of that topic; and (c) considerations of embodiment (vs. traditional) approaches to 
lesson design, instruction, and assessment. The first day will explore “How does this approach 
challenge a settled mathematics learning status quo?” As one example, an EMIC perspective 
might reframe high school geometry proofs from static two-column schemas to a deductive 
process grounded in movement- and object-based transformations. At least one organizer will 
join each small group. Day 1 will also include open-ended Q&A on the nature of embodiment 
theory, research methods, and design principles.  

On Day 2, participant-groups (membership can be fluid) will explore “How does this 
approach help to create more socially just contexts for learning and teaching mathematics?” and 
“Whose voice does your work center in the mathematics learning process?” We will start this off 
by sharing findings and videos from the EMIC community demonstrating examples of support 
for emerging bilingual students and students with physical disabilities. An example is describing 
expansive forms of assessment practices that include ways students exhibit nonverbal (e.g., 
gesture-based) and distributed ways of knowing. Day 3 reconfigures the small groups around 
common themes that arose in topic-specific groups on Days 1 & 2. We will invite these groups to 
reflect on who math education experiences are designed for, who is systematically marginalized, 
and what is gained in a truly inclusive approach. We then shift to a facilitated whole-group 
discussion, inviting members of each group to share ways an embodied framework can improve 
learning conditions for every mathematics learner, and benefit society more broadly.  

Conclusions and Looking Ahead 
Embodied approaches to design, instruction, and assessment show promise for fostering 

systemic change and harmony in mathematics education for amplifying inclusion of historically 
marginalized communities. There is much more to do to understand these impacts and realize 
their potential. An engaged community is vital for such transformative work to occur. 
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This Working Group was occasioned by a convergence of concerns over the widespread de facto 
acceptance of notions of objectivity in the field of mathematics education. Because the ideologies 
of the field continue to be based largely in elements of scientism, we propose that the 
mathematics education arena familiar to researchers must shift and take up the work of 
philosophy and critique for the field to remain relevant in current and future times. This 
scientism structures, for example, the common belief in the usefulness of mathematics and the 
subjectivity of the soft science research in which we engage (e.g., using inter-rater reliability). 
This working group provides participants the opportunity to engage in active learning 
experiences and critical discussions about the ways in which objectivity infiltrates aspects of our 
field, and to expose oneself to new viewpoints about the philosophy of mathematics education. 

Keywords: Doctoral Education, Research Methods, Systemic Change. 

Dialectically engaging with the idea of objectivity, the nature of knowledge in mathematics 
education, and the philosophy of mathematics education research is a task that is long overdue, 
particularly in the U.S. context. This Working Group captures this urgency whilst also capturing 
the anxiety of the present historical moment apropos politics, global health crises, and new ways 
of popularly understanding “facts.” Indeed, engaging with this issue at this particular point in the 
history of our field is an ethical imperative, which many mathematics education researchers 
continue to disavow by focusing instead on the production of qualified labor power in students 
(see Baldino & Cabral, 2013, 2015) as the implicit, neoliberal goal of mathematics education.  

This Working Group will examine various myths of objectivity in mathematics and 
mathematics education research, problematizing ideas that are taken for granted and often are 
glossed over. However, we first and foremost approach this Working Group with the guiding 
question, “Is our field prepared to ask and engage with these questions?” Myths are stories we 
tell ourselves and tell others, and as such, they have their own agency. A myth performs or 
creates an effect, such as trying to say that something is the “truth” of the world. In that sense, 
myths are “real,” but they do not necessarily preclude alternative myths from existing or being 
mutually exclusive with other myths. Conventional notions of objectivity, however, seek to kill 
alternative myths, and as such, strive to delineate a clear line between what is objective and what 
is not. As a consequence, the act of leaving myths of objectivity unrecognized is an exercise in 
hegemony and the reproduction of dominant epistemologies—what are sometimes called 
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“common sense.” An example of the ways in which myths of objectivity infiltrate mathematics 
education research is the work of Piaget (1970), whose Structuralism can be read as a resolution 
of the (ostensible) duality of objectivity and subjectivity into pure objectivity, claiming that 
differences in psychological structures should be simultaneously considered infinite in variability 
yet deterministic in universality. Another example can be seen in “equity” research that does not, 
in fact, achieve its espoused goal of equity but rather results in a meritocratic fetish of 
mathematics success and failure that implicates the primacy of school credit system even within 
research that claims to dismantle it (Baldino & Cabral, 2013, 2015; Bullock, 2013; Gutiérrez, 
2008; Martin, 2003; Moore & Johnson, under review; Pais, 2012; Straehler-Pohl & Pais, 2014). 
Another is the unquestioned understanding of dominant mathematics as necessary to be a 
“successful” member of society or as the only path towards solving present crises. In particular, 
even as there is more research that embraces students’ subjectivities, the mathematics that is 
taught—one that emerges from a dominating culture—is still framed as universal while the 
overlooked historical and material interests driving it continue to reinforce oppressive practices 
and structures (Bullock, 2018; Fasheh, 2012; Gutiérrez, 2017). As Martin et al. (2010) ask, 
whose mathematics are we teaching? “For whom? and for what purposes” (p. 14)? We do not 
posit that objectivity is a false narrative, but rather we posit that objectivity is a narrative into 
which the field has largely fallen whilst simultaneously assigning it ultimate epistemic authority. 
To be clear, we do not wish to throw objectivity out of researchers’ discourse, but we desire to 
shift participants’ discourse towards a dialectical engagement with objectivity and subjectivity. 

To the above ends, we organize this working group in a way that: (1) is welcoming to 
newcomers to the constituent perspectives surfaced while simultaneously digging deeply within 
and across in a manner that will push the thinking of veterans, (2) explicitly surfaces and honors 
a diversity of perspectives, (3) takes seriously the possibility of improving mathematics 
education practice in the face of the irreconcilable dialectic of objectivity and subjectivity that 
exists across the wholistic fabric of our work, and (4) honors and employs research-based and 
anti-hierarchical pedagogy. Thus, each day is comprised of a series of task- and inquiry-based 
explorations and discussions. Each task is designed and implemented by a different subset of 
contributors, rooted in our own humanity and experiences with/against uncritical notions of 
objectivity. We—the facilitators—are ourselves varied in terms of race, gender, sexuality, 
dis/ability, and career stage, as well as in terms of our particular areas of specialized expertise 
(including activism, art, media and critical discursive analysis, philosophy, and psychoanalysis), 
all of which contribute to a rich collection of tasks and discussions.  

The sequence of discussions is designed to give attention to as many aspects of our practice 
as possible. On Day 1, our two key areas of focus are Disciplinary Knowledge (e.g., 
Mathematics) and Research Design. On Day 2, our two key areas of focus are The 
Publication/Outreach Process and Final Products of Research. We conclude on Day 3 with an 
Overarching Conversation reaching across these interrelated areas as well as time spent Looking 
Ahead to implications for our own work as well as to possibilities for subsequent working 
groups, collaborations, and articles. Tasks vary substantively across the Working Group, 
including time spent: doing/reflecting on mathematics, critically examining unstated or 
uninterrogated assumptions in research design, examining research products through etic frames 
such as art, and examining our work towards meaningful social/educational change through etic 
frames such as activism. Each task gives rise to open-ended opportunities for discussion within 
and across topics of, for example, unearthing values, questioning reality and existence, 
examining what we mean by “knowing,” and surfacing tacit aspects of practice.  
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In this report, we describe the goals, organization, and outcomes of the Gender and Sexuality 
Working Group at the 2021 PME-NA annual meeting. We discuss the general organization and 
format of the group meetings and provide summaries of the papers, commentaries, and 
discussions that occurred. We then describe the ongoing projects and plans that have resulted 
from collaborations formed through the working group.  

Progress Made at the 2021 PME-NA Conference 
During the 2021 PME-NA conference, the Gender and Sexuality Working Group convened 

to discuss emerging conceptual and theoretical frameworks currently being utilized by scholars 
to explore topics related to gender and sexuality in mathematics education. The journal 
Mathematics Education Research Journal (MERJ) recently published a special issue on the topic 
of innovations within this area, and members of this working group contributed four of the seven 
articles published in this special issue. Authors of these four papers presented brief summaries of 
their work and another member of the working group provided a short commentary guided by 
the following two questions: (a) How does this article relate to your own work? (b) How do the 
theories and/or methodologies stimulate and/or “push” your own thinking? These presentations 
sparked lively discussions regarding the proposed conceptual and theoretical frameworks. This 
format allowed all members of the working group to become familiar with the emerging and 
developing perspectives, and to consider how these perspectives may inform their own 
research.   

 We begin with Hall’s overview of the MERJ special issue. Then, the remaining structure 
of this report follows the structure of the presentations as they occurred: paper presentation 
followed by a commentary.  

Mathematics Education Research Journal Special Issue Overview 
Jennifer Hall provided an overview of the recent Special Issue of the Mathematics Education 

Research Journal, entitled Innovations in ‘Gender Issues’ Research in Mathematics Education, 
which she co-edited with Eva Norén (Stockholm University). Jennifer and Eva were the Co-
Convenors of the International Organization of Women and Mathematics Education (IOWME) 
from 2016 to 2021, and they aimed to lead a project that would have a meaningful impact on the 
field. 
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Recently, there has been a resurgence of interest in ‘gender issues’ research, with scholars 
pushing the field in various ways. Hence, the Special Issue was an outlet for such researchers to 
share their work. Papers with the following foci were sought: (a) Non-binary/non-homogenous 
conceptions of gender; (b) Feminist and/or queer theory frameworks; (c) Transgender, non-
binary, and other gender minority participants, and (d) Gender-sensitive research designs. 

The call for abstract submissions was made from September to November of 2019 on 
channels such as the IOWME Facebook group and the Mathematics Education Research Group 
of Australasia mailing list. In total, 14 abstracts were received from authors from nine countries, 
and seven abstracts from authors in two countries were accepted and developed into papers. 

Each paper was reviewed by one of the co-editors of the Special Issue, an author of another 
article in the Special Issue, and an external reviewer, and went through the usual process for 
revision. The resulting papers comprised two short communications (up to 3,000 words) and five 
full-length articles (up to 9,000 words). The short communications were both position papers, 
whereas two of the full-length articles were theoretically-focused papers and three were 
empirically-focused papers. The published papers can be accessed at 
https://link.springer.com/journal/13394/volumes-and-issues/33-4. 

Many authors drew on feminist, queer, and/or poststructural theories in their work. When 
empirical research was discussed, qualitative methodologies and methods, such as narrative 
inquiry, interviews, and observations, were commonly used and/or recommended. Overall, there 
was an acknowledgement by the authors and co-editors of the Special Issue of the complexity of 
gender as a construct and the ever-changing nature of ‘gender issues’ research. 
Recommendations were made to look to other fields for inspiration and for examples of 
innovative research, as well as to increase awareness and focus on intersectionality in ‘gender 
issues’ research. Furthermore, researchers—both those focused on gender and those for whom 
gender is just one ‘variable’ in their research—were cautioned to clearly operationalize the term 
gender in their work and to use consistent terminology. It is hoped that the Special Issue will 
serve as a valuable resource for researchers in the coming years. 
Paper Presentation by Przybyla-Kuchek 

In alignment with our goals as a working group to share emerging theories and 
methodologies in gender and sexuality in mathematics education, Przybyla-Kuchek (2021) 
suggested Baxter’s (2003) Feminist Poststructural Discourse Analysis (FPDA) as a possible 
methodological approach to researching gender and its intersections with other social identities 
in mathematics classrooms. Although significant work on gender and sexuality in mathematics 
education takes identity into consideration, researchers commonly use methodological 
approaches that tend to focus on analysis of interviews with participants. Much has been learned 
from speaking to girls and women about their mathematical experiences, and this work continues 
to be important, but researchers should also consider how identities are experienced, enacted, or 
performed as they are being created. Researchers taking up poststructural theory and feminism 
together theorize gender as performative, and thus gives space to consider how identity is 
performed in and outside of classrooms. 

Przybyla-Kuchek highlighted the transcript of a seventh-grade mathematics classroom 
interaction that appears in her MERJ article, shared the video clip of the interaction, and briefly 
summarized the gendered discourses that could be producing the interaction. The interaction is of 
a spontaneously formed small group of students. Two White male students attempted to “help” 
Georgia, a White female student, answer a question on a worksheet. Gendered and racialized 
discourses played out in the interaction as the complex subject position of “damsel in distress” 
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was performed by two participants. One female student voluntarily took up a subject position in 
a more powerful way to distract one of the boys from “helping” Georgia. The boys’ subject 
positions as “super smart” were consistent and solidified in the interaction. Although the 
interaction was complex and multiple discourses were working to position the participants in 
relation to mathematics, Przybyla-Kuchek identified the interaction as a moment of resistance, a 
speech event in which gendered discourses were disrupted and participants created new and 
powerful subject positions.  

With such analyses, researchers can consider how powerful discourses (re)produce 
gendered subject positions for girls in mathematics classrooms. More importantly, using this 
approach, researchers and participants could identify the everyday, local ways in which powerful 
and even harmful discourses that produce girls as less capable in mathematics are disrupted. 
FPDA uncovers the significant work that participants are already doing to tear holes the fabric of 
discourses that constitute who can do mathematics and what it means to do mathematics. 
Furthermore, Przybyla-Kuchek considers how research is conducted and written to produce 
truths about girls and mathematics, and challenges mathematics educators to be self-reflexive 
across the entirety of the research process, including the writing and publication process.  
Commentary by Piatek-Jimenez  

  Piatek-Jimenez’ commentary surrounded the main themes that were discussed during a 
virtual meeting with Przybyla-Kuchek. In her paper, Przybyla-Kuchek (2021) discussed 
arguments by Walkerdine (1998) and Parks (2009) who suggested that the “gender gap” in 
mathematics is only as real as we have made it, through our designs of educational practices.  In 
other words, it is not that the researchers are discovering an underlying truth, but that a “truth” is 
being created through the process. This idea resonated with arguments made by Piatek-Jimenez 
and Dias (2021), related to large-scale assessments, where the authors analyzed recent TIMSS, 
PISA, and NAEP data, and noted that whether one can claim a gender achievement gap exists 
depends on how one chooses to analyze the data and interpret the results. This point also related 
to the plenary address presented by Dr. Toya Frank during the first night of the PME-NA 2021 
Conference, when she discussed conducting quantitative research. During her presentation, Dr. 
Frank noted “Numbers are not objective, but are socially constructed as well.” Piatek-Jimenez 
argued that such a lens is important when conducting gender and sexuality research, as it is 
important to remember that the work that we do is affected by socially constructed perceptions 
and there is no “truth” that we are “discovering.” 

  In addition to the lenses that are used while conducting research, the formats used to 
present the work influence how scholars in the field interact with and interpret the results. 
Przybyla-Kuchek (2021) discussed two innovative ways to present results, both of which disrupt 
the traditional structures used within mathematics education research. For example, Walshaw 
(2005) used a “split-text format,” where the entire transcript of an interview and Walshaw’s own 
writing and analysis were shown simultaneously on the page. Utilizing this format restructures 
the relationship between the author and the reader. It also allows the reader to conduct their own 
analysis of the text, removing “truth” from the analysis of the author. Such a format is not only 
unusual in our field, but Piatek-Jimenez argued that it is discouraged. For instance, Piatek-
Jimenez recalled being told by a mentor that the entirety of transcripts should never be made 
public. As such, Walshaw’s usage of split-text formatting is one way of interrupting common 
epistemological and research traditions. 

Additionally, Przybyla-Kuchek (2021) interrupted such norms by sharing a portion of one 
transcript prior to sharing the gender and racial/ethnic background of the participants. Based on 
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pseudonyms that the participants chose for themselves, one might make assumptions about the 
participants prior to learning their actual gender/racial/ethnic identities. By presenting the results 
using this format, Przybyla-Kuchek forced the reader to check their own assumptions and reread 
the interview transcript with alternate lenses. This method of presenting data provides the reader 
with a deeper understanding of the results of the study and how the reader’s own biases may 
influence their interaction with the article itself. 
Paper Presentation by Kersey 

Kersey presented the methods from two studies reported in a single article in the MERJ 
special issue. In the article, Kersey and Voight (2021) focused on the experiences of queer and/or 
transgender postsecondary students in science, technology, engineering, and mathematics 
(STEM) fields. Based on the paucity of research within and outside of mathematics education on 
this population, Kersey & Voigt inferred that STEM fields may be less welcoming than the 
humanities and social sciences and investigated this possibility through their studies. In the first 
study, narrative inquiry was employed with postsecondary transgender students, whereas the 
second study employed a grounded theory narrative study with undergraduate queer students. 
The authors reported that transgender students who had transitioned indicated that they were 
subjected to lower expectations when presenting as female. Transgender women experienced this 
change as a net positive, since their treatment by others was no longer accompanied by gender 
dysphoria. Queer students experienced mathematics and other STEM fields as objective and 
independent of identity, yet simultaneously exclusionary of their queer identities. Many of the 
queer students in these studies found strength and resilience in queer communities, but there 
were some transgender women who did not view being queer as a central facet of their identity 
and did not feel the same sense of community. In general, participants who were more gender-
nonconforming felt a greater need for community with other queer people. Kersey presented a 
tool used in their data collection that helped to draw connections between gender category 
oppression and gender transgression oppression. 
Commentary by Jackson  

Jackson commented on the article and presentation by remarking on three aspects: the use of 
queer theory, theory, and methods. Regarding queer theory, Jackson highlighted his appreciation 
for the way that queer theory was employed throughout the research project and article. For 
instance, in the methodology the authors “avoided placing boundaries around STEM, queer, or 
transgender.” The researcher did not themself decide who was a STEM student. Jackson 
encouraged the working group to pause and to think about how, in our own research,  what 
counts as in/outside of “math ed” and to what extent this is in conflict with some foundations of 
queer theory is defined by researchers. In the studies discussed in the article, the authors allowed 
the participants to identify with STEM, queer, transgender, or any other affiliation. There is a 
tension because this also brought forward some issues related to the construct of identity that the 
working group has been exploring and discussing. Throughout the article, the authors returned to 
the notion of identities and the way that identities are able to shift: Identities do not have to be 
stable, or have an interior expression. Jackson reflected on the notion that identity, in some 
regard, is about a claim to an affiliation; one can claim, but the claim isn’t always “settled” as 
there is always the contingency that another person can accept/reject that affiliation. This brought 
forward the notion of identity work, for whom we perform identities, and/or how we mobilize 
our identities. 

Methodologically, Jackson discussed the use of narrative inquiry and narrative analysis. 
Jackson highlighted the distinction between a narrated event and a narrative event. The analysis 
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in the paper was focused on narrated events, those from the past. Whereas narrative events could 
also be analyzed to highlight the way that discourses are used in the telling of events itself. 
Jackson discussed how this distinction challenged him to think about methodologies that would 
tighten the time frame between the narrated event and the narrative event. Jackson noted that at 
times the participants’ stories that were represented in the article seemed vague in the 
relationship to STEM contexts specifically, and that it seemed the participants themselves were 
analyzing/generalizing their own experiences. Jackson wondered about the insights that might be 
available through methods in which participants journaled immediately after each class to 
describe “unsettling” events or things that made them more or less comfortable. 

Jackson also commented that participants in the study used word such as masculine and 
feminine. Jackson wondered what methods would help us to accurately capture what is perceived 
as masculine or feminine since these meanings change in space and time. Furthermore, Jackson 
discussed the language of privilege and oppression used in the paper and how careful researchers 
have to be to use such terms. Jackson highlighted how the authors noted that some participants 
may not have been comfortable in naming an experience, or their set of experiences as 
oppressive. Hence, researchers need to capture rich details of experiences.  
Paper Presentation by Wiest 

The purpose of this paper was to call for research on sexual identity in mathematics 
education, which is starkly absent (Dubbs, 2016; Fischer, 2013). Wiest discussed that the little 
research that has been done has shown differences in academic outcomes based on sexual 
orientation in spatial skills (Xu et al., 2020) and mathematics and science grades and course 
taking (Pearson & Wilkinson, 2017). Individuals in academic STEM (science, technology, 
engineering, and mathematics) pursuits tend to report uncomfortable and unsupportive 
environments that take a toll on psychological well-being, career satisfaction, productivity, and 
persistence (e.g., Barres et al., 2017; Institute of Physics, Royal Astronomical Society, and Royal 
Society of Chemistry, 2019; Mattheis et al., 2019; Stout & Wright, 2016). Wiest argued that 
targeted research is needed on mathematics education and sexual identity. Wiest suggested 
research questions might be formulated within these broader questions: 

• What academic and social experiences and outcomes do lesbian, Gay, Bisexual, plus 

(LGB+) students have in general and in relation to individual and intersecting identities? 

How might these experiences and outcomes differ by age/grade level and academic 

setting? Which factors favorably and unfavorably influence student performance, 

dispositions, and success? How might these experiences and outcomes differ by specific 

fields and subfields of study, as well as by individuals’ degree of disclosure of LGB+ 

identities, and why? 
• What might “queer” curriculum and pedagogy look like? How might instruction be 

inclusive of LGB+ students and LGB+-headed families? How can the effectiveness of 

these instructional approaches and programs be evaluated? 
• What are the workplace experiences and roles of LGB+ school staff, including teachers, 

administrators, and counsellors? What are the roles of non-LGB+ staff? 
• How can education efforts best succeed within the broader sociopolitical climate, which 

can vary widely in relation to LGB+ acceptance? How might the field serve an advocacy 

role in that regard? 
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Commentary by Dias 
Dias highlighted that the purpose of Wiest’s (2021) paper is to call for research on sexual 

identity in mathematics education, summarize the existing research on sexual identity in 
STEM/mathematics education, and propose research questions that would advance the work in 
this area. Dias reflected on the absence of attention to sexual minorities in mathematics 
education research and calls for equity. 

Dias related the paper and presentation to her own work by discussing the following points. 
First, Weist (2021) highlighted that sexual identity affects learning in the mathematics 
classrooms, as do many other aspects of students’ subjectivities. These identities are important 
for educators, who are called upon to teach mathematics equitably to all students. Wiest wrote 
that teacher educators must prepare teachers with pedagogies that are inclusive of sexual 
minorities and humanize minoritized sexualities in their classrooms and in schools in general. 
Dias stated that this argument is consistent with her own arguments which has been criticized as 
being mathematics education without mathematics. Dias affirmed that her goal is that teachers 
are prepared to humanize LGB+ students, as well as students who don’t conform to the gender 
binary, and learn how to work with parents of LGB+ students for the sake of the students’ well-
being, when families are not supportive of their sexual identities. 

Second, Dias commented that Wiest uses LGB+ to indicate sexual orientations that include 
lesbian, gay, bisexual, and beyond (e.g., asexual, pansexual), essentially, all sexual orientations 
that are not strictly heterosexual. 

Third, Dias reflected on the point in Wiest’s paper regarding students’ challenges and 
resilience. Although some students exhibit resilience in response to challenges, many LGB+ 
students are negatively affected by their experiences both in and out of school (e.g., by physical 
and verbal victimization, by exclusion from school curricular materials and classroom 
discussions) that can result in a number of self-harmful outcomes, including poorer 
psychological well-being and lower educational engagement, performance, and aspirations. Dias 
noted the important contribution of this paper to call for more research that can inform teaching 
practices and school policies to help protect and support sexual minorities. 

Lastly, Dias noted the importance of disseminating research that shows that positive school 
support (and other factors such as openly gay teachers, gay-straight alliances, and participation in 
queer youth centers) are important for LGB+ students to feel comfortable in school. This idea 
encouraged a project that Dias is a part of in which spaces and moments for LGB+ student 
populations in campuses in the state of Sao Paulo, Brazil are being investigated. Weist mapped a 
variety of questions that can advance the field. We must call on journals and publishers to print 
this work. Dias stated that she will take the questions to her students and research group. In 
conclusion, Dias argued that Wiest’s publication is very important in that it calls attention of the 
mathematics education community to the need of research in this area clearly, comprehensively, 
and in a nuanced manner. 
Paper Presentation by Moore  

  In his presentation, Moore centered on the implications of sexuality for mathematics 
education researchers. Moore’s motivation to write the paper was to synthesize a theoretical 
basis for queer research in mathematics education—as one did not seem to have existed before. 
These implications can be summarized in three points: 

First, theory is important. Theory in our field is too often seen as a methodological tool, a 
setting that we must choose to best fit the situation and our insights. In this way, theory becomes 
a slave to context. The trouble with this approach is that if the contextual basis that we consider 
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mathematics education to be is always the same, then the theoretical impositions we make as 
researchers will always turn out in the same ways. 

Second, we must make our thinking, understandings and discourses about queerness in 
mathematics education as complicated as possible. This recommendation is not meant to be 
obtuse. It is rather to see that queerness is not only about identity and subjective positions but is 
rather about our research and the ways in which we go about doing it. The queer project rejects a 
suspiciously understandable approach to recognizing our subjects. Our recognitions of each other 
are always-already failed recognitions. So then why would we be so naïve as to think that the 
goal of research is to be as organized and scientific as possible? On the contrary, the goal is to 
make research as complicated as possible. Only then might we approximate the inherent failures 
that we have committed in attempting to recognize anything in our data.     

Third, we must take seriously the ways in which mathematics implicates and is implicated by 
gender and sexuality. Mathematics education cannot escape the anxieties, the identifications, the 
questions, and the desires that are produced by sexuality, and therefore also by gender as a sexual 
construct. Taking up the task of queer research in mathematics education means recognizing our 
enterprise as one of radical subjectivity. 

A queer understanding of our field leads us to understand the critical importance that 
Moore calls for in the paper: if we are to ask questions about identity, subjectivity, gender, and 
sexuality, then the queer project in mathematics education is precisely the project of making life 
livable—even for the heterosexual and cisgender. The queer project is expansive in this way, just 
as the Queer Identity Intersection (a diagram that Moore introduced in the paper) gives 
possibilities for emergent, reconstructive centers that do not exist now. To briefly recapitulate: If 
we are engaged in “gender and sexuality” research, then we must queer what we think about 
those terms, and see that in order to engage in such research means to be as complicated as 
possible, imaginative and philosophical with our approach to theory, creating new 
understandings that are not extensions of existing “classic” knowledge that we have inherited 
over the last 50 years, and seeing ourselves as engaged in a process of humanizing not only the 
research that we perform, but also the field of mathematics education, and the mathematics itself. 
Commentary by Pinheiro 
  Moore's (2021) review of theoretical literature provides lenses to understand the ways 
that research frameworks can contribute to our understanding of the intersection between 
mathematical and queer identities. In his article, Moore reviewed the theoretical framework of 28 
articles in which queer identities in mathematics education were discussed. Through the 
literature review, Moore proposed the framework, The Queer Identity Intersection (QII) of 
Mathematics Education. Such a framework is composed of two roads in which one can get 
situated and analyze through perspectives where you are in the roads and what you need to get to 
the intersection. Moore’s intentions with the QII framework were to provide researchers with an 
analytical tool that provides inciteful ideas for researchers’ conceptualizations of what they need 
to have a strong theoretical framework that can analyze queer students mathematical and queer 
identities at the intersections. For Moore, queer identities and mathematical identities are situated 
in the borderlands, a place that he suggests is uncomfortable because of the multitude of realities 
(e.g., queer identity reality and mathematical identity reality). Moore argues that both queer and 
mathematical identities, when enacted, contribute to the conceptualization of the learning 
processes of one's understanding of becoming part of a community of practice. Therefore, one’s 
mathematical identity is constantly affected by one’s queer identity, which influences students’ 
experiences with learning and knowing mathematics, and being part of the community of 
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practice that encompasses mathematics. Keeping in mind that queer identities are marginalized 
in schools, and that mathematical identities can be marginalizing forces that limit who is capable 
of learning and doing mathematics (Reinholz & Shah, 2018), Moore concludes that “to fully 
understand notion of queer identity in mathematics education, [he] suggests [the] intersection of 
queer identity and mathematical identity” (p. 18), since in the intersection, we are trying to 
understand the experience of the individual itself, not looking specifically at one or the other 
identity, but at the “element of identity that […] becomes the unit of analysis” (p. 18). Moore 
implicitly suggests that mathematics for social justice lessons must be implemented by 
considering students’ experiences in the mathematics classroom, considering the intersection 
between students’ queer identities and mathematical identities.  

After pointing to these important highlights, Pinheiro discussed how Moore’s (2021) article 
relates and contributes to his own research. Pinheiro also uses intersectionality theory to explore 
the ways that gender, sexuality, and mathematics play a role in queer high school students’ 
experiences with the teaching of mathematics for social justice. Pinheiro stated that the major 
push of Moore’s article to his understanding of issues of gender and sexuality intersected with 
mathematics comes from Moore’s idea that mathematical identity is also a social identity. 
Therefore, intersectionality, as a theory of social identities, applies directly to our understanding 
of how at the intersections, one’s experience in the mathematics classroom is defined and shaped 
specifically by the individual’s sexual, gender, and mathematical identities.  

Ongoing Projects 
After the conference concluded, the authors created a WhatsApp group with the intent of 

having an efficient channel for continuing our conversations. Everyone whose contact 
information was on the sign-up sheet created during the conference was given a choice to join 
the group. In the WhatsApp group we have identified common research interests and concrete 
projects upon which we are establishing new collaborations. As a result of this newly formed 
social media group, three members of the Working Group (Pinheiro, Dias and Moore) are 
planning to analyze data collected by Pinheiro on women’s experiences in an undergraduate 
mathematics program. Two other members of the group (Piatek-Jimenez and Hall) are also 
working on a research collaboration and are currently preparing a Spencer Foundation grant 
application to fund their work. 

Future Directions 
 The working group participants during the 2021 PME-NA expressed a desire to explore 

applications of these emerging theoretical and methodological perspectives. Particularly, there 
was interest in the application of different theories to data analysis, and what that application of 
methods might reveal and how it might impact students, teachers, and classrooms. To move 
forward in the 2022 PME-NA, we plan to share interview and classroom data with participants, 
and as a group we will analyze the data through various theoretical and methodological 
perspectives as a way to consider what researchers might conclude from the data using different 
theoretical approaches. Our hope is that the discussions will make space for participants to 
compare what different methods with various theoretical lenses are able to capture or limit in 
their own research in gender and sexuality in mathematics education. 
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Gender research in mathematics education continues to be important work for gender equity in 
mathematics, as well as in STEM fields more broadly. Additionally, authors recently called for 
research on sexuality, identified a dearth of research in this area, and a need to theorize and 
operationalize such research (Dubbs, 2016; Moore, 2021; Wiest, 2021). Building upon working 
group discussions of emerging theories and methodologies during PME-NA 2021, in the 2022 
working group sessions, we will apply these theories and methods to interview and classroom 
data to explore concrete ways of studying gender and sexuality in mathematics education that 
utilize different perspectives. Our goals are to (a) explore how gender and sexuality may be 
“seen” through different methods of data collection, focusing on how different meanings of 
gender and sexuality, as they are described and performed, may lead to new insights; and (b) 
produce a list of research questions and potential projects to consider for future research. 

Keywords: Gender; Equity, Inclusion, and Diversity; LGBTQIA+  

Throughout the progression of gender research from achievement and participation to 
broader systemic, cultural, and societal barriers, researchers have identified a plethora of barriers 
for girls and women in mathematics (Leyva, 2017; Lubienski & Ganley, 2017). They have also 
demonstrated the importance of mathematics education research to gender equity in 
mathematics, as well as in STEM more broadly. Despite a lull of gender research, in the past 5 
years there has been renewed interest in gender research with the emergence of new research 
paradigms (e.g., queer theory and postmodernism), and the consideration of intersectionality 
(Leyva, 2017; Lubienski & Ganley, 2017; Lubienski & Ataide Pinheiro, 2020; Stinson & 
Walshaw, 2017). For example, one important shift has been for researchers to move beyond 
male/female, men/women, and boys/girls binaries in terminology usage and throughout gender 
research methodology. Additionally, authors have recently called for research on sexuality in 
mathematics education, identified a shortage of research in this area and argued a need to 
theorize and operationalize such research (Dubbs, 2016; Moore, 2021; Wiest, 2021). For 
example, one area of continued interest is expanding notions of identity. Building upon the 
decades of gender research and expanding sexuality research in mathematics education, our 
working group continues to explore new approaches to gender and sexuality studies and identify 
paths for progress towards gender equity in the many ways it can be defined.  

History and Goals 
The Gender and Sexuality Working Group has convened for the past 4 years. In the past two 

conferences, we focused largely on establishing shared theoretical backgrounds, conceptualizing 
identity, and exploring methods for engaging in gender and sexuality research. During the PME-
NA 2021 working group sessions, we explored emerging theories and methodologies through 
presentations and commentaries on articles in the Special Issue of Mathematics Education 
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Research Journal titled: Innovations in ‘Gender Issues’ Research in Mathematics Education. 
Authors of four of the seven articles in the issue presented brief overviews of their ideas, 
highlighting new insights on gender and sexuality theories, methods, and trends. Emerging 
theories discussed included queer theory and feminist poststructural theory. Furthermore, as an 
editor of the issue and working group member, Hall provided insights on gender and sexuality 
research internationally, reflecting on Special Issue submissions. 

The working group participants during the PME-NA 2021 sessions expressed a desire to 
explore applications of these emerging theoretical and methodological perspectives. Particularly, 
there was interest in applying different theories to data analysis, what that application of methods 
might reveal, and how such research might impact students, teachers, and classrooms. To move 
forward, at PME-NA 2022, we plan to share interview and classroom data with participants. As a 
group, we will analyze data through various theoretical and methodological perspectives as a 
way to consider what researchers might conclude about gender and sexuality from the data. We 
expect to use these discussions to make space for participants to better understand how taking up 
different methods with various theoretical lenses can capture or limit their own research in 
gender and sexuality in mathematics education. Hence, our goals are to (a) explore how gender 
and sexuality may be “seen” through different methods of data collection, focusing on how 
different meanings of gender and sexuality, as they are described and performed, may lead to 
new insights; and (b) produce a list of research questions and potential projects to consider in our 
own future research. 

Working Group Structure 
Broadly, the working group structure will progress from jointly analyzing post-secondary 

interview data to analyzing K–12 classroom data. The sessions will culminate in group 
discussions about how participants operationalize gender and sexuality based on the types of data 
we collect and which theoretical perspectives we bring to the data. 
Session 1 

In the first session, participants will analyze a more familiar form of data for researchers 
studying gender and sexuality in mathematics education: interviews. The organizers will share 
several transcripts and audio/video from individual and focus group interviews with post-
secondary participants. The interviews focused on participants mathematical experiences and 
were collected as part of ongoing projects conducted by members of the working group. 
Session 2 

Building from discussions about the analysis of interview data from the first day, the 
organizers will share whole-class and small-group video data from K–12 mathematics 
classrooms. Participants will discuss, as a group, what they noticed relating to gender and 
sexuality in the data and generate research questions to pose to the group. There will be a focus 
on what meanings gender and sexuality take and how gender and sexuality are understood in 
analyzing the data, considering small-group and whole-class settings. 
Session 3 

On the last day of the working group, participants will reflect on the analysis done in the two 
previous sessions. Discussions will focus on how we might approach data from various 
perspectives including how interview data (i.e., how a participant discusses their experiences) 
highlights or even requires different theoretical orientations or understanding of gender and 
sexuality compared to classroom data (i.e., performances of gender and sexuality in the 
moment). Participants will identify potential new research questions to pose to the field of 
mathematics education and potential projects that could seek to answer such research questions.  
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Students’ aesthetic and affective responses are interrelated and both central to mathematics 
learning. This new working group will bring together researchers as a community to explore the 
connection between affect and aesthetic, and how this connection can help to understand how 
students experience mathematics. The goals of this working group are to evaluate the state of the 
field, build shared terms, and identify research questions for further inquiry. 

Keywords: Affect, Emotion, Beliefs, and Attitudes; Curriculum; Instructional Activities and 
Practices  

 Theoretical Background 
The role of affect in mathematical experiences and learning has become abundantly clear 

over time (e.g., Cheeseman & Mornane, 2014; DeBellis & Goldin, 2006; Malmivuori, 2001). 
Affect has been defined as all aspects of experience that involve feeling (McLeod, 1988); this 
ranges from deeply held, long duration constructs such as beliefs, attitudes, math anxiety, and 
motivation, to shorter-term and in-the-moment feelings such as emotions and engagement 
(Grootenboer & Marshman, 2016; McLeod, 1992; Middleton et al., 2017). In math, where 
success versus failure is starkly visible, students’ affective responses can be quite strong (Boaler, 
2015) and impactful (Grootenboer & Marshman, 2016; Op ’t Eynde et al., 2006).  

Yet, similar to how we would also examine a piece of art for explanations for an individual’s 
gasp in a museum, we argue that researchers also need to attend to the nature of the mathematical 
experience for explanations for how it potentially impacted its students (e.g., inspiring a 
question). We refer to the way a lesson supports the felt impulses that compel (or impede) a 
student to continue to progress (or not) through an experience as its aesthetic dimensions 
(Dietiker, 2015). Some researchers have recently begun to study the aesthetic potential of 
mathematical learning environments (e.g., Dietiker, 2016; Sinclair, 2001), learning for example 
how the design of technological tools can offer surprise and appeal (Sinclair et al., 2009). While 
still emerging, the field is learning how to design and enact what Sinclair (2001) calls 
“aesthetically-rich” mathematical experiences, which she describes as those that “enable children 
to wonder, to notice, to imagine alternatives, to appreciate contingencies and to experience 
pleasure and pride” (p. 26).  

This working group will explore the linkage between affect and aesthetic to tackle multiple 
dimensions of one of the most significant dilemmas facing mathematics classroom practice 
today: poor student experiences with mathematics that fuel negative student dispositions. 
Through our working group design, we plan to bring together graduate students, early career and 
senior faculty together, to solidify the current state of the field and help form informal and 
formal connections for future research endeavors.  

Working Group Goals and Strategies 
The goals of this working group are threefold: (a) we seek to bring together researchers in 

order to evaluate the state of the field in regards to aesthetic and affective issues, (b) we aim to 
build community, through structured but also informal conversation and sharing each other’s 
work, and (c) we will build shared terms (given the various constructs for similar ideas) and 
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articulate common research questions, to push for inquiry in these areas.  
This is a new working group to address the continued need for focus on students’ 

mathematical dispositions, and the potential enabled by identifying the shared interests in 
aesthetics and affect. Our aim is to enable new solutions to a persistent problem that can become 
possible by bringing together these two domains. We plan to continue this working group next 
year, expanding our focus to useful tools and methodologies. 

Session Organization   
Prior to the conference, we will survey our participants to gather information on their 

research interests specific to aesthetics and affect, student age group (elementary, secondary, 
postsecondary), and whether they are already doing work in this area or interested in it as a new 
topic. We will welcome participants to bring an artifact they would like to work on with the 
group for feedback, e.g., a task they wish to refine, to improve the aesthetic or affective response.  

Day 1: We will start by having participants introduce themselves and share their research 
interests (15 min). We will give two short interactive presentations, one on aesthetics and one on 
affect, with whole-group discussion on the linkages for 60 minutes. We’ll end with an overview 
of the goals of this working group and will ask participants to bring an item they are working on 
or would like to work on, to share for the next session (15 min). 

Day 2: We will form mixed subgroups based on the research foci shared on Day 1. These 
groups will analyze artifacts shared by participants to answer the question: How do these two 
perspectives (affect and aesthetic) inform what we know about this artifact? (45 min) Within 
each subgroup, we allot 45 minutes for participants to share an item they’ve been working on or 
their research interests and goals. To enable participants to meet each other, learn each other’s 
interests, bond informally, we will then have a jigsaw (reforming new groups) to share what was 
learned by considering multiple perspectives. An underlying goal is for participants to notice the 
common ideas across researchers, via differently named constructs.  

Day 3: Having shared our interests in the previous session, this day will focus on forming 
directions for the future. For the first 30 min, we will again form subgroups where participants 
brainstorm important research questions and potential future directions for this collective group. 
Each group will type into a shared Google Doc, for easy sharing with the whole group (40 min). 
We will maintain a Google Drive folder, where the Google Docs will be kept as a record after 
the conference. There will also be a folder for participants to share their published work with the 
group to facilitate spread of ideas–especially from new scholars. We will provide space for 
participants to list their names and contact information next to any research questions/directions 
they’d like to pursue. In the last 20 minutes, we will present our plans for the future of the 
working group, to focus on tools, instruments, methodologies, etc. helpful for studying the 
affective and aesthetic dimensions of mathematical learning. 
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This working group, which is a continuation of a regular working group space dedicated to 
goals of equity at PME-NA since 2009, invites scholars actively engaged in antiracist research 
and teaching practices to come together to strategize around how to respond to choques and 
dissonance to work towards harmony. This year, the aim is to dismantle or deconstruct instances 
of dissonance and harmony that have emerged from a choque, or a confrontation within our 
field. 

Keywords: Systemic Change, Equity, Inclusion, and Diversity 

Choques represent both moments of contestation and creative production. (Torre & Ayala, 
2009, p. 390)  
Our work in this session aims to provide a space for discussing a choque, an instance when 

we crash into something in our field and have to find new ways to think, act, and be. Choques 
could include revisions on a paper, moments in the classroom, interactions within a department 
or with colleagues, hitting a research wall, or recent events affecting your work because of the 
pandemic. We are also opening up a space for sharing moments of joy, especially those arising 
after a choque; those moments that help you find equilibrium. 

This working group is designed as a space for any who attend to engage in reciprocal 
practices and relationship building. There is an explicit expectation that all those who attend this 
working group will come prepared to share artifacts of their current efforts and also learn from 
and through the efforts of other attendees. To be explicit, the outcome is not to produce a product 
but to make the space for the building of relationships, strategic knowledge, and awareness of 
those looking to sustain this work. Moving from dissonance to harmony requires collectivity and 
relationality--you cannot form a harmony with only one voice. As such, relationships are central 
to the formation and sustainability of research collectives engaging in antiracist research and 
teaching that seeks to make systemic change.  

Within a context that includes the never-ending COVID-19 pandemic, our ability to plan and 
to go about things as usual seems more and more absurd. Yet, we also watched society quietly 
step back from the reckonings of Spring 2020 in the face of an ongoing white backlash (Gomez 
et al., 2022; Anderson, 2016). In other words, in the face of growing recognition that we cannot 
go on in this way, rather than leading to harmony, some choques lead us right back to a status 
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quo of dissonance. This reflects the need for us to embrace choques, to challenge ourselves to 
push through dissonance and discomfort with intention, commitment, and actions towards 
something new. 

History of the Working Group 
Originally created as a space to bring attention to issues of equity and diversity to 

mathematics teaching and learning (Foote et al., 2009), this working group has evolved as the 
field of mathematics education has changed over the past 13 years. Part of the evolution, as well 
as the continued need to hold a space at yearly PME-NA conferences, is evident in the shared 
leadership of this group since its initial meeting in Atlanta in 2009. After one year of interruption 
in 2020, the work of building space to discuss making change and working towards justice in 
mathematics education was renewed at PME-NA 43. Presently, the scholars involved in this 
group have emphasized a focus on bringing together PME-NA attendees committed to 
antiracism.  

Organization of the Working Group 
The organization of the working group embraces choques through pivots between harmony 

and dissonance. Each session will build on each other with the following format: 

 Session 1-Artifact Unpacking: The goal of this session is to share and learn from artifacts of 
choques, either those resulting in present dissonance, or those that eventually led to a sense 
of harmony.  Participants are expected to bring an artifact (e.g., an example of a choque that 
they either are or have been working through). Through structured collaboration, participants 
will share the artifact, describing the choque and where it has led them.  In this session, we 
hope to help participants work towards initiating their goal (i.e., write an article addressing 
an equity issue, build a collaborative mentorship team to address social justice issues; discuss 
an article to gain and share knowledge) Finally, questions of interest will be collected, 
organized, and posted for use during the following sessions of the working group. 

 Session 2-Interconnectedness & Common Ground: Using participant-generated goals 
emerging from their artifacts, participants will be organized into small groups to engage, 
share knowledge and practices, and imagine new possibilities. Small groups will engage in 
structured activities to help synthesize thinking around their artifacts towards productive 
collaborations and plans of action. 

 Session 3-Encouragement & Action: The final day of the working group will be a space for 
working group participants to continue the work of session two and more open-ended 
conversation and dialog on areas of interest. Participants will be encouraged to talk about 
next steps, with the emphasis being this is only the start of the conversation, but the 
connections made extend beyond the limits of any conference and organization 
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REPORT ON: This working group is a consistent space for equipping, informing, and 
challenging mathematics education researchers to “frame equity as a continually evolving 
process of growth”. Since its inception this working group has continued to productively orient, 
inspire, and organize mathematics education researchers to move toward outcomes in our field 
that prioritize anti-racist mathematics education as a mechanism for change. The challenge of 
this working group remains one of moving from collective reflections around issues of equity and 
diversity in mathematics education to actions that become catalysts for change. We acknowledge 
that this year's call for "productive struggle" is necessary, however it needs people and 
community to support such efforts.  

Keywords: Equity, Inclusion, and Diversity, & Social Justice 

“Healing is a process that we navigate for a lifetime.” (Ginwright, 2018, p. 6)   
This working group is a consistent space for equipping, informing, and challenging 

mathematics education researchers to “frame equity as a continually evolving process of 
growth”. Since its inception, this working group has continued to productively orient, inspire, 
and organize mathematics education researchers to move toward outcomes in our field that 
prioritize anti-racist mathematics education as a mechanism for change. The challenge of this 
working group remains one of moving from collective reflections around issues of equity and 
diversity in mathematics education to actions that become catalysts for change. The challenge of 
equity work is that it is contextual and complex. More so, the solutions are rarely simple and 
require sustained commitment to collective action. 

The Equity Working group seeks to push back on traditional views of measuring equity. 
Insofar to say that no one outcome can ever lead to equity. We are not defined by the products 
we create but instead we create change by being in community with each other. Equity becomes 
a reality for all through collective action. The Equity Working Groups is needed each year 
because each year the participants are different and the issues of inequity present in both 
mathematics education and in the greater North American context is always in flux. As the 
opening quote to this report states “healing is a process that we navigate for a lifetime” 
(Ginwright, 2018, p. 6) and this working groups is one way we can consistently navigate 
challenging and changing inequities in the field. This report will restate a brief history of the 
working group followed by an overview of the previous three years. Additionally, will point to 
the future of the Equity Working Group.   

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

2194



A History of the PMENA Equity Working Group  
This Working Group originates from the Diversity in Mathematics Education (DiME) Group, 

one of the Centers for Learning and Teaching (CLT) funded by the National Science Foundation 
(NSF). DiME scholars graduated from one of three major universities (University of Wisconsin-
Madison, University of California-Berkeley, and UCLA) that comprised the DiME Center. The 
Center was dedicated to creating a community of scholars poised to address critical problems 
facing mathematics education, specifically with respect to issues of equity (or, more accurately, 
issues of inequity).The DiME Group (as well as subsets of that group) has engaged in important 
scholarly activities, including the publication of a chapter in the Handbook of Research on 
Mathematics Teaching and Learning which examined issues of culture, race, and power in 
mathematics education (DiME Group, 2007), a one-day AERA Professional Development 
session examining equity and diversity issues in mathematics education (2008), a book on 
research of professional development that attends to both equity and mathematics issues with 
chapters by many DiME members and other scholars (Foote, 2010), and a book on teaching 
mathematics for social justice (Wager & Stinson, 2012) that also included contributions from 
several DiME members. In addition, several DiME members have published manuscripts in a 
myriad of leading mathematics education journals on equity in mathematics education. This 
working group provides a space for continued collaboration among DiME members and other 
colleagues interested in addressing the critical problems facing mathematics education. 

It is important to acknowledge some of the people whose work in the field of diversity and 
equity in mathematics education has been important to our work. Over time, the Working Group 
has encouraged building on and featuring senior scholars’ work, including Jo Boaler (Boaler, 
2002), Walter Secada (Secada, 1992), Marta Civil (Civil, 2007; Civil & Bernier, 2006; González, 
Andrade, Civil, & Moll, 2001), Eric Gutstein (Gutstein, 2003, 2006; Gutstein & Peterson, 2013), 
Jacqueline Leonard (Leonard, 2007; Leonard & Martin, 2013), Danny Martin (Martin, 2000, 
2009, 2013), Judit Moschkovitch (Moschkovich, 2002), Rochelle Gutiérrez (2002, 2003, 2008, 
2012, 2013) and Na'ilah Nasir (Nasir, 2002, 2011, 2013; Nasir, Hand & Taylor, 2008; Nasir & 
Shah, 2011). We have as well been building on the work of our advisors, Tom Carpenter 
(Carpenter, Fennema, & Franke, 1996), Geoff Saxe (Saxe, 2002), Alan Schoenfeld (Schoenfeld, 
2002), Megan Franke (Kazemi & Franke, 2004), and Anita Wager, (Wager & Stinson, 2012) as 
well as many others outside of the field of mathematics education.  
 

PMENA 2019: Heal, Connect, Advance  
During the 2019 PMENA working group we began by sharing three words; Heal, Connect, 

and Advance. These three words became the underpinnings of our activities. During the first 
session we asked participates to brainstorm what additional words are missing from the three we 
shared. We then had participants discuss the following question: 

What are some examples, movements, policies, or directions that have occurred in 
mathematics education that some may have intended as expansion, displacement, or growth 
that have actually served to privilege some and marginalize others? 

Both questions were used to pull generative themes from those attending the working 
group. Generative themes were used the second day to help groups identify the root 
cause(s) of the themes they identified. The activity allowed participants to co-construct 
knowledge together making it easier for them to connect with each other and provide 
outlets to advance their work related to equity. Figure 1 provides two examples of work 
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done during the conference.  

 
Figure 1: PMENA 2019 Problem Trees] 

PMENA 2021: Joy as a Form of Resistance 
Building on the work of PMENA 2019, we wanted to continue to advance an ecology of 

healing by centering Joy as a catalyst for action. We began the first day by asking participants to 
share what brings them joy because as Desmond Tutu and the Dalai Lama explain in The Book 
of Joy, “being joyful is not just about having more fun. We’re talking about a more empathetic, 
more empowered, even more spiritual state of mind that is totally engaged with the world” 
(2016, p. 63). For those engaged in challenging inequities in academia, moments of resistance 
are examples of experienced joy. On the second day of the working group, we focused on how 
the theories we use in mathematics education can and should align to what we value. Multiple 
theories, traditionally not seen in mathematics education were shared with participants as they 
were left with these questions:  

 What might that have to do with our work as researchers?  
 What does it mean for us as researchers to respect ourselves and recognize our power, 

as well as respect those who choose to work with us?  
 What does giving AND receiving mean in our roles and in our work? Who gets to 

determine that?  
  Our research is historically situated, as are we--what work are we continuing? Whose 

work are we continuing? Why? To what end?  
 If resilience is collective, shared between us and others, what does that look like when 

we are acting as researchers? When we are working with teachers and pre-service 
teachers? 
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PMENA 202X: A Sustained Movement 
 Build on the previous year it is evident that the equity working group (and all working 
groups) should embrace a virtual component. We seek to continue to provide both a virtual and 
physical space for people to engage in cognitive dissonance around understanding equity in 
mathematics education. Harmony begins when multiple voices come together to challenged and 
ultimately change issues of inequity. The Equity Working Groups seeks to sustain itself by 
continuing the working done at PMENA, for PMENA members.  
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This is a report on the working group aimed at providing a structure for Mathematics Teacher 
Educators (MTEs) to engage in Continuous Improvement Lesson Study (CILS), a process of 
MTE professional development that involves working collaboratively to design a lesson, improve 
preservice teacher (PST) learning, and MTE practice.  

Background 
The CILS process integrates lesson study (Lewis & Hurd, 2011) and the Continuous 

Improvement process (Berk & Hiebert, 2009). Lesson study is a collaborative process of 
investigating instruction with the goal of improving student learning through a single lesson. 
This teacher-driven professional development focuses on analyzing student learning and leads to 
enhanced instructor knowledge (e.g. Watanabe, 2004; Demir et al., 2013). Hiebert and 
colleagues at the University of Delaware developed a model “continuous improvement” for 
MTEs  to reflect through a process of “planning, enactment, analysis, and revision” (Berk & 
Hiebert, 2009, p. 339). We have integrated these two methods of researching and improving 
instruction and student outcomes, lesson study and continuous improvement to inform an 
integrated process that we call Continuous Improvement Lesson Study (CILS) and is shown in 
Figure 1. 

 

Figure 1: The Continuous Improvement Lesson Study (CILS) Process 

Working Group Summary 
We began the working group by discussing the CILS along with how we as MTEs 

improved our own practice while engaging in the process. Because CILS serves as professional 
development for MTEs, we had participants complete a Jamboard noting challenges they face in 
teaching preservice teachers (Figure 2) and used the responses when discussing the CILS process 
to illustrate how CILS helped us address these challenges in our own classroom.  
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Figure 2: Brainstorming from Participants on the first day of the Working group 

The expressed goal of the working group was to have mathematics teacher educators form 
CILS teams to study a research-based lesson MTEs taught to preservice teachers within their 
methods or content courses. While the participants were interested in our work and asked 
insightful questions about the process, it quickly became evident that most of the participants 
who attended the working group were interested in having their preservice teachers (PSTs) act as 
teachers while engaging with a lesson study with children and not in using CILS as a means to 
support their own professional development. 

 Because of the diverse interests related to lesson study, we invited the working group 
participants to share how their work intersects with lesson study more broadly.  We had good 
conversations about lesson study, the various ways lesson study has been adapted in higher 
education, and let the participants know our goal was still to work on CILS in preservice teacher 
coursework. For the second day, only one participant interested in working with CILS returned 
to the working group.  Our team had conversations with the participant about their work but did 
not form a CILS team with the participant since the participant was not attending the third day of 
the conference. 

Challenges 
Due to the Covid-19 pandemic, our working group members chose to present virtually but 

with the option of having conference participants join virtually or participate in person while at 
the conference. We believe that presenting online was one of the main reasons for the limited 
participation within the working group. When people walked by the working group room, there 
were no presenters standing at the front or outside the room to share more about the aims of the 
session and we were not physically at the conference which greatly decreased networking we had 
hoped to do to share more about our working group. Thus unfortunately, we were unable to 
achieve the set goals of the working group. 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

2200



New Modifications Proposed 
We propose two modifications moving forward for a refocused working group proposal for 

PME-NA 44 in Nashville, 1) partner with other researchers who engage in lesson study and 2) 
broaden the theme of the working group to be around lesson study adaptations, including those 
that support equity. New collaborators that have expressed interest in the newly adapted working 
group include Dr. Catherine Lewis, Professor at Mills College and President of the World 
Association of Lesson Study (WALS), and a leading U.S. expert in lesson study; Dr. Susie 
Hakansson, Mathematics Education Consultant and member of The California Action Network 
for Mathematics Excellence and Equity (CANMEE), and other members of the CANMEE 
network. CANMEE uses lesson study to improve mathematics learning, instruction, and the 
lesson study process with an equity lens.  

 The adaptations are meant to address the wide variety of lesson study participants from 
different levels, such as PSTs and in-service teachers conducting lesson study with children, to 
mathematics teacher educators engaging in lesson study with other higher education faculty 
members as a form of professional development (Appelgate et al., 2020; Soto et al., 2019). Some 
specific adaptations specific to equity that will be discussed include the addition of an equity 
commentator role in lesson study as well as selecting focal students to monitor and assess student 
learning, teaching mathematics through problem-solving, and developing and revising lessons 
focused on teaching mathematics for social justice and analyzing student and teacher learning. 
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This working group is a follow-up initiative that will allow the mathematics education 
community to engage with adaptations of lesson study designed to address equity in the 
mathematics classroom. This year we will examine four adaptations (Teaching Through 
Problem-solving, Focal Students and Equity Commentator from the California Action Network 
for Mathematics Excellence and Equity (CANMEE), Rights of the Learner, and Continuous 
Improvement Lesson Study (CILS)), identifying impacts on equitable teaching practices (i.e, 
practices that involve all students in cognitively demanding mathematics). Participants will view 
a video-recorded research lesson that grounds the discussion of the adaptations. The group aims 
to publish an edited volume on equity-focused lesson study, with a broader goal of supporting 
participants to develop lesson study that integrates equity across different contexts (e.g. K-12 
teachers, preservice teachers, graduate students, and mathematics teacher educators).   

Keywords: Equity, Inclusion, and Diversity, Teacher Educators, Professional Development 

Lesson Study 
Lesson study (LS) is a collaborative process of investigating instruction that serves as a 

teacher-driven professional development that focuses on analyzing student learning and leads to 
enhanced instructor knowledge (Watanabe, 2018). LS traditionally consists of four phases: 1) 
study the curriculum and formulate goals, 2) plan the lesson, 3) teach the researched lesson, and 
4) reflect on learning (Lewis & Hurd, 2011) and has been used both in K-12 and post-secondary 
classrooms. In the introduction to their 2019 book on LS in mathematics, Huang et al. (2019) 
noted that the field has not yet published “how to use LS as a tool to address equity of student 
learning opportunity” and called for this focus (p. 10). This working group will examine the 
following four equity-focused LS adaptations. 
Teaching Through Problem-solving 

In Teaching Through Problem-solving, widely used in Japan, students develop each new 
mathematical concept and procedure in the curriculum, by solving a problem that requires the 
new concept/procedure (Takahashi, 2021). Student reflective mathematics journals, organized 
board use and student-led discussion routines make student thinking visible and actionable 
during instruction, allowing students to take agency as authors (not simply consumers) of 
mathematics (LSGAMC, 2022). School-wide LS joined with Teaching Through Problem-solving 
has shown a strong positive impact on the mathematics achievement and perseverance of 
historically underserved learners (Lewis et al., 2022a,b).   
California Action Network for Mathematics Excellence and Equity (CANMEE) 

CANMEE incorporates equity into the lesson study process by including focal students and 
equity commentators. Selecting, interviewing, and writing assets-based descriptions of focal 
students allows teachers to learn about and know their students. Attending to focal students 
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operationalizes equity in the classroom by increasing students’ mathematical agency and 
identity, transforming teachers’ beliefs and perceptions of focal students, shifting teachers’ 
instructional practices (Bartell et al., 2017) that impact all students, and creating a culture of 
professionalism. Equity commentators bring new knowledge to the team, connect theory and 
practice, make claims about teaching and learning, and model reflection on teaching and 
learning. They focus on focal students’ access to high cognitively demanding grade level 
mathematics. Emerging evidence suggests impact on both students and teachers. 
Rights of the Learner (RotL) Framework  

Rights of the learner framework is based on the premise of students engaging in democratic 
sharing of ideas (Kalinec-Craig, 2017; Torres, 2020). The four Torres’s RotL are: “1) the right to 
be confused; 2) the right to claim a mistake and revise the thinking, 3) the right to speak, listen, 
and be heard; and 4) the right to write, do and represent what makes sense to them” (Kalinec-
Craig, 2017, p. 1). By focusing on the rights of the learner during LS, a teacher provides a more 
equitable classroom environment where students feel comfortable engaging in the content 
through their own unique understanding lens.   
The Continuous Improvement Lesson Study (CILS) Process 

The CILS (Dick et al., 2022) process integrates LS (Lewis & Hurd, 2011) and the 
Continuous Improvement process (Berk & Hiebert, 2009) to support equitable teaching practices 
of mathematics teacher educators (MTEs). The incorporation of continuous improvement within 
LS focuses on both preservice teacher learning and lesson revision as a lesson is taught multiple 
times by each participating MTE. We found that engaging in the CILS process supports MTEs to 
develop an educative curriculum and collaborative environment that supports equitable teaching.  

Working group Organization  
This working group is an extension of a previous working group, with additional lesson study 

researchers and a structure that enables participants to engage with various lesson study 
adaptations related to equitable teaching practices. Table 1 contains the structure of the working 
group. The plan is to continue meeting at future PME-NAs to conceptualize and test equity-
focused adaptations and share challenges/learnings with the goal of understanding/improving 
these adaptations and sharing them in an edited volume. 

 
Table 1: Overview of the Proposed Working group Session 

 Activities Take-Aways 
Session 

One 
1. Introductions and Agenda 
2. History of Lesson Study (LS) with Four Adaptations  
3. Questions and Small Group Discussions Regarding 

Equitable Teaching Practices 

1. Resources regarding the 
four adaptations. 

2. Homework (HW): Watch 
public lesson video 

Session 
Two 

1. Debrief videoed public lesson and unpack lesson 
through the four equity-focused LS adaptations  

2. Small group discussions, on chosen adaptation(s)  

1. Debrief lesson 
2. HW: Draft LS plan with 

equity-focused adaptation 
Session 
Three 

1. Share draft plans for testing equity-focused 
adaptations through LS implementation 

2. Subgroup work time for refinement of plans 
3. Subgroup brief share-out 
4. Final reflections, future work plan 

1. Continue planning for LS 
implementation 

2. Future plans for 
collaboration and sharing  
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In 2021 we met at PME-NA Mexico and Philadelphia. At PME-NA Mexico, the working 
group met virtually. Facilitators introduced central tenets of the self-based methodologies 
(SBMs) and relationships between SBMs and MTEs' work (Chapman, 2020). SBMs are useful in 
describing MTEs' living awareness, living contradictions, empathetic relations, growing 
relationships, practical knowledge, and change in self and practice (Chapman et al., 2020). 
Working group facilitators narrated their methodological decisions and provided examples of 
SBM studies in video form with captions to accommodate English and Spanish speakers. 
Attendees asked questions about the similarities and differences among SBMs. To close the 
working group, proposals for PME-NA 43 and the Association of Mathematics Teacher 
Educators (AMTE) 2022 conference were discussed. 

At PME-NA Philadelphia, the working group met in person and virtually. Two facilitators 
attended in person with the remainder attending virtually. The hybrid modality allowed MTEs 
attending the conference to meet virtually as needed alongside MTEs who were attending the 
conference in person. Facilitators shared the history of our working group and our collaborative 
project to create a special issue for the Philosophy of Mathematics Education Journal. The 
primary goal of the special issue is to create views of MTE work, their practices and from their 
unique perspectives, while the editors will focus on ways to encourage discussion about the 
philosophical underpinnings of the MTEs' stories, narratives, and empirical studies. Researchers 
using SBMs study their lived experiences by writing stories (i.e., using narrative inquiry), 
identifying a practice they want to improve (i.e., using self-study), or unpacking the influence of 
the socio-cultural and political contexts in their work (i.e., using autoethnography). We 
hypothesize that SBMs emphasize self-understanding, self-exploration, and contribute to 
understanding, conceptualizing, and improving MTE practices. SBM research processes produce 
empirical research about MTE practices while supporting MTE professional learning and 
unearthing how MTE knowledge, instructional approaches, beliefs, and identity inform their 
relationships with mathematics, pedagogy and practice. 

In preparation for the 2021 working group, we reviewed empirical studies using SBMs 
published between 2014 and 2021 to identify themes in findings. Findings from the SBM studies 
included two themes: “exploring MTEs’ work in different career stages” and “MTEs 
incorporating new practices” (Suazo-Flores et al., 2022, under review). These themes 
documented how MTEs’ knowledge is constituted and informed by experiences, and is therefore 
dynamic, constantly evolving according to the situation and time. 

As a research group, we have been using conference spaces, such as PME-NA and AMTE, to 
build a critical mass of scholars using SBMs and to invite others to explore the possibilities of 
SBMs for their inquiry. Drawing from a review of the use of SBMs (Chapman et al., 2020), the 
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working group is identifying how findings from the use of SBMs inform the field of mathematics 
teacher education. Our goal is to unpack how the use of SBMs benefits MTEs' development and 
contributes knowledge to the field of mathematics teacher education. 

Early reports on MTE practice (Chauvot, 2009; Tzur, 2001) described what MTEs know and 
how they develop their knowledge. Yet, how MTEs know in their interactions with teachers is 
less studied. In 2008, Jaworski stated that "co-learning between teachers and educators can be 
seen as the way ahead for developing mathematics teacher education practice" (p. 11). Within 
this context, we portray MTEs as learners of teaching about teaching mathematics. In conducting 
studies using SBMs, MTEs document interactions with teachers that yield new practices and 
intellectual growth, contributing knowledge to mathematics teacher education. When conducting 
such studies, MTEs draw from either implicit or explicit philosophical considerations (Stinson, 
2020). Our task at PME-NA Philadelphia was to invite MTEs to describe their ways of knowing 
in interactions to enable the facilitators of the working group to hypothesize about MTEs' 
philosophical positions. 

At PME-NA Philadelphia, attendees analyzed data from one facilitator’s study. The goal of 
the activity was to identify evidence of ways of acting and being with a teacher candidate. 
Working group members’ analysis of the data resulted in an awareness of MTE's ways of 
knowing, i.e., how her knowledge of mathematics teacher education and her identity informed 
her interactions with the teacher candidate. Building from the discussion of the data, attendees 
shared preliminary topics and data that might be of interest to the working group and for the 
special issue. Finally, the group closed the meeting with plans for future meetings. In 2022 we 
will meet at the AMTE conference.  Since most PME-NA 43 attendees were interested in 
contributing articles for the special issue at the Philosophy of Mathematics Education Journal, 
facilitators created writing groups to meet bi-monthly, virtually between the PME-NA 43 
meeting and the AMTE 2022 meeting. In addition, facilitators have been meeting weekly to 
develop a timeline and plan for the special issue.  
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Mathematics teacher educators (MTEs) are turning research lens on themselves to explore their 
knowledge and practices and with that contribute knowledge to the field of mathematics teacher 
education. In this working group we build from our exploration of MTEs’ work. MTEs will 
describe their work and their views of knowledge and being in their work as MTEs. We invite 
MTEs to join our working group and assert that MTEs’ discussions of their work will provide 
opportunities for professional learning that reveals how their knowledge and identity inform 
their practice. 

Keywords: Mathematics Teacher Educators, Philosophy, Practice, Qualitative Research. 

Qualitative methodologies employed in the study of mathematics teacher education have 
empowered mathematics teacher educators (MTEs) to turn the research lens on themselves and 
gain nuanced perspectives. The goals of self-based methodology ([SBM], Chapman et al., 2020) 
include improving one’s own practice, fueling ideas for others’ practices and contributing to 
dialogues about the complex work of MTEs. Published findings from inquiry into MTE practice 
have illustrated how studies of self can complement findings from explorations of instructional 
activities and their impacts on mathematics teachers, leaders and learners as well as their 
environments and contexts (e.g., Grant, 2019; Grant & Ferguson, 2021; Kastberg et al., 2020). 
Mathematics education as a field benefits when the complexity of the work of MTEs is laid bare.  

We aim to continue creating spaces at mathematics education conferences to support MTEs 
in the writing of articles of SBM studies (Suazo-Flores et al., 2018, 2019, 2020, 2021, 2022). 
Our focus at PME-NA 44 is the edition of a special issue for the Philosophy of Mathematics 
Education Journal. We learned that MTEs engaged in scholarly inquiry of their practices 
communicate their diverse ways of knowing, their views of what is real, and their perceptions of 
others’ knowledge, such as the ways they discover or construct knowledge (Guba, 1990; Paul & 
Marfo, 2001; Stinson, 2020). Moreover, MTEs research pursuits may be constrained by 
disciplinary cultural norms, research training and/or editorial preferences. Such inquiry makes 
explicit MTE’s role in conducting and reporting research (Guilfoyle et al., 2004), which creates 
trustworthiness in their reports (Grant & Lincoln, 2021).  

The working group at PME-NA 44 will include the work of authors studying MTEs’ lived 
experiences empirically, theoretically, and philosophically informed using SBM or some other 
intimate approach (Hamilton et al., 2016). This work contributes to the recognition and 
understanding of the complexity of mathematics teacher education. These papers delve into the 
“particularities and intricacies” of MTE’s work as informed by emotional, social, relational, and 
organizational contexts (Hamilton et al., 2016). We want to use this working time as a meeting 
space to continue supporting each other in the writing of such articles. 
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Session Information  
We have regularly met to continue creating professional development spaces to engage more 

MTEs in writing about their practice from their perspective (Suazo-Flores et al., 2018, 2019, 
2020, 2021, 2022). At PME-NA 44, MTEs are invited to join our working group to learn about 
the philosophical underpinnings of SBM studies (Chapman et al., 2020). Working group 
activities will include on Day 1, engaging the audience in thinking about philosophical 
underpinnings involved when conducting research studies that focus on the self. On Day 2, we 
will invite MTEs to present their studies and to identify philosophy and 
trustworthiness/authenticity (Grant & Lincoln, 2021). On Day 3, we will develop action items 
and discuss new projects such as writing a proposal for ICME-15. 
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“Taking up space as a disabled person is always revolutionary” (Ho, 2020, p. 115). We are 

mathematics education researchers and practitioners demanding radical changes within and 
beyond our field to center issues of/with/by the disabled. Our working group draws upon critical 
theories such as Disability Studies in Education, Critical Race Theory, and DisCrit in order to 
offer a justice-oriented vision of mathematics education based on conceptualizations of disability 
and ableism as it relates to other forms of oppression and identities (e.g., race, class, gender, 
queerness, citizenship, carcerality, material precarity, etc). Traditionally, research on 
mathematics and disabilities has been conducted within a special education paradigm. Under this 
paradigm, research often, implicitly or explicitly adopts a deficit and dehumanizing approach 
which locates the “problem” within the individual student rather than in the social, discursive, 
political, and structural context of education and other systemic dynamics of racialization 
(Meghji, 2022) and ableism (Goodley et al., 2019). We resist the continued dehumanization of 
and harms inflicted on disabled communities. We demand that mathematics education 
researchers and practitioners address this critical dissonance by taking up equity-oriented 
approaches to understanding disability and its intersections through Black Feminists and 
Disability Justice methodologies. Likewise, we call for more resonant harmony frameworks such 
as Multiple Mathematics Knowledge Bases and Culturally Responsive and Sustaining Practices 
that honor the voice, agency, and leadership of those most impacted. The purpose of this working 
group is to build upon our previous working group and to take up and move forward towards 
solidarity, interdependence, and collective action with the disabled community in our research 
agenda. 
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Struggle Toward Disability Justice 
Consisting of faculty, graduate students, disability activists, and classroom teachers, this 

PME-NA working group met from 2016 to 2018,. Some of the major accomplishments of this 
working group include (a) establishing and maintaining an email list-serv, (b) co-editing a 
special issue in the journal Investigations in Mathematical Learning (Lambert et al., 2018), and 
(c) publishing an NCTM book titled Humanizing Disability in Mathematics Education: Forging 
New Paths (Tan et al., 2019).  

Moving forward, we center Disability Justice, a theoretical framework developed through 
the grassroots efforts of disabled queer activists and disabled people of color (Sins Invalid, 
2019). It focuses on the relationship between ableism and other interlocking systems of 
oppression, such as racism, sexism, imperialism, settler colonialism, and capitalism. We 
specifically draw upon the 10 principles for disability justice created by Patty Berne and others 
from Sins Invalid: intersectionality, leadership of the most impacted, anti-capitalist politics, 
cross-movement solidarity, recognizing wholeness, sustainability, cross-disability solidarity, 
interdependence, collective access, and collective liberation. Given the legacy of harm done to 
disabled communities, Disability Justice, its centralization of the needs and experiences of folx 
experiencing intersectional oppression, allows researchers to recognize the intersecting legacies 
of white supremacy, colonial capitalism, gender oppression, and ableism to understand how 
people’s bodies and minds are labeled “deviant”, “unproductive” and/or invalid. (Sins Invalid, 
2019). Traditionally, researchers determine the questions asked, the methods of data collection, 
and the meaning made of the data, with no input from the disabled individuals of color.  
Acknowledging disabled students and communities of color have gifts (Annamma & Morrison, 
2018) such as unique mathematical ideas and perspectives and solutions to challenge current 
structures of ableism (Tan & Kastberg, 2017) and bringing them into the research process to shift 
power and decolonialize the research process. For example, members of the working group have 
published an emancipatory research study (Lewis & Lynn, 2018) where Lewis (disabled 
researcher) was positioned as the inquirer and Lynn (student with dyscalculia) as the expert. We 
aim to build out theories of intersectional disability justice in and through mathematics 
education.   

Plan for Resistance and Co-conspiring 
Session 1: Community, Caring, & Co-learning - Introductions and community building 

(40min), and discussing an agenda for the group for the upcoming year (50min); Session 2: 
Generating, Struggling, & Planning - Identify potential collaborative endeavors (30min), break 
up into subgroups based on areas of interest (40min), and regroup as a large to share out (20min); 
Session 3: Planning for Next Steps - Subgroup work (40min), large group share out and 
conversations (20min), and closing and identifying concrete next steps (30min). 
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The United States was recently categorized a “backsliding democracy” (International 
Institute for Democracy and Electoral Assistance, 2021), and commitment to citizen 
development in American schools has been inconsistent (Torney-Purta & Lopez, 2006). 
Citizenship scholars believe that one way to foster civic practices is through interdisciplinary 
connections and scholarship (Lee et al., 2021). This interest in interdisciplinarity is consistent 
with recent suggestions by mathematics education organizations, such as the National Council of 
Teachers of Mathematics (NCTM) (2018, 2020) which encourages students to investigate civic 
and social issues through mathematics in ways that foster their development as informed and 
engaged citizens. Additionally, the Association of Mathematics Teacher Educators (AMTE) 
(2017) also supports this interdisciplinarity by calling for mathematics teacher education 
programs to “uncover [teacher] candidates’ passion for and commitment to mathematics as a 
discipline and an essential component of an effective citizenry” ( p. 42). 

Yet, extant research centered on relationships across mathematics, mathematics education, 
and citizenship is scarce. The purpose of this study is to explore conceptions held by 
mathematics teacher educators (MTEs) and by middle-level preservice teachers (PSTs) regarding 
the relationships across mathematics, mathematics education, and citizenship. The goal is to 
learn how these conceptions relate to MTEs’ and PSTs’ views on teaching, including how their 
conceptions do and do not align with current calls for developing democratic citizens, so that 
educational stakeholders can respond to K-12 schools’ and the university’s role in sustaining 
democracy. These research questions guide the study: (1) How do MTEs and middle-level PSTs 
conceptualize the relationships across mathematics, mathematics education, and citizenship? (2) 
What relationships exist between the connections MTEs and PSTs make across mathematics, 
mathematics education, and citizenship and their views of their professional practice? 

Conceptual and Theoretical Framings 
Drawing on citizenship literature (e.g., Castro, 2013; Westheimer & Kahne, 2004), four 

multifaceted, overlapping conceptions were created to frame participants’ views on citizenship. 
Conforming citizens value consensus, established community norms, and patriotism; cognizant 
citizens are aware and informed of civic issues; contributing citizens participate in their 
communities; and critical citizens act as agents of change and focus on societal structures 
causing and perpetuating injustices. All of these citizens draw on specific intellectual and 
participatory civic skills (e.g., Patrick, 2002) and civic dispositions (e.g., Stitzlein, 2021). In 
relation to mathematics, these civic skills and dispositions connect to NCTM’s (2000) Process 
Standards: communication, connections, representations, reasoning and proof, and problem 
solving. Together, these citizenship conceptions, civic skills and dispositions, and NCTM’s 
Process Standards will serve as a framework for exploring the relationships across mathematics, 
mathematics education, and citizenship in the study. 
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The theoretical framework for this study draws on sociocultural theory, specifically the 
notion that people and their social, historical, and cultural contexts are inseparable (Rogoff, 
2003) and the use of figured worlds (Holland et al., 1998). A figured world is “a socially and 
culturally constructed realm of interpretation in which particular characters and actors are 
recognized, significance is assigned to certain acts, and particular outcomes are valued over 
others” (Holland et al., p. 52). The cultural context of the figured world becomes a means for 
interpreting the members, activities, discourse, and artifacts of that world. It is through these 
aspects of a figured world that the positioning and identities of the members of that world 
emerge. The figured worlds that PSTs create about their identities as classroom citizens in a 
mathematics methods course will be explored through this study, and these figured worlds will 
be compared and contrasted with PSTs’ citizenship in other contexts. 

Methods 
This study consists of two phases. Phase 1 of the study focuses on views held by MTEs; 

Phase 2 of the study focuses on the views of PSTs. Methods for each phase are described below. 
Phase 1 

Phase 1 utilizes an open-ended Qualtrics survey with responses from 90 MTEs and semi-
structured interviews with 20 MTEs. Both the survey protocol and the interview protocol consist 
of prompts to elicit participants’ views of citizenship, views of mathematics and mathematics 
education for citizenship, and connections to views of their professional practice. Qualitative 
data analysis will involve a mixture of deductive and inductive coding techniques (Miles et al., 
2014). Deductive codes represent different citizenship conceptions, civic skills, civic 
dispositions, and NCTM’s (2000) Process Standards. Inductive analysis will be utilized 
(Bhattacharya, 2017) to identify inductive codes, categories, and themes related to MTEs’ views 
of mathematics, mathematics education, and citizenship. 
Phase 2 

Phase 2 utilizes an ethnographically-informed case study (de Freitas et al., 2017) that focuses 
on 22 middle-level PSTs; their conceptions of the relationships across mathematics, mathematics 
education, and citizenship; and how those conceptions relate to their views of teaching. Data 
collection methods include observations of PSTs in their educational methods courses; course 
artifacts, surveys, and video-recording class sessions when PSTs engage in mathematics-related 
tasks focused on civic issues; and interviews. Like the Phase 1, qualitative data analysis in this 
phase will use a mixture of deductive and inductive coding techniques (Miles et al., 2014). 
Connections across emerging codes, categories, and themes that reflect the main elements of 
figured worlds – artifacts, discourse, and identity – will help me identify the figured worlds at 
play related to the PSTs’ identities, participation, and positioning as classroom citizens in the 
mathematics methods course and how those worlds relate to their citizenship in other areas. 

Anticipated Contributions 
Anticipated contributions of this study include strengthening interdisciplinary scholarship 

between mathematics education and citizenship. This scholarship has the potential to engage 
student citizens in civic issues and the potential to explore how mathematics can be used to foster 
the development of informed and engaged citizens. Further, by recognizing how MTEs and PSTs 
view mathematics and mathematics education for citizenship, efforts can be made to explore 
ways in which educational stakeholders can respond to K-12 schools’ and the university’s role in 
advancing the preservation of democracy.  
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EXAMINING CRITICAL FACTORS IN PARENT-CHILD MATH ENGAGEMENT 

Anastasia Betts 
University at Buffalo SUNY 

albetts@buffalo.edu 

Parent-child engagement in shared math activities has a significant positive impact on 
children’s mathematics achievement, yet studies of parent motivations and decision-making 
related to shared math activity with their children are largely absent from the research literature 
(Betts & Son, Accepted for Presentation).  Furthermore, many students arrive at school unready 
to take full advantage of mathematics learning in school, quite often due to low prior knowledge 
borne of insufficient exposure to early math concepts and skills in the home prior to beginning 
kindergarten (Betts, Thai, Jacobs, & Li, 2020; Duncan et al., 2007; Nguyen et al., 2016).  Parents 
are children’s first teachers and are often the most well-positioned in terms of proximity (both 
physical and relational) to provide children with the modeling, scaffolding, and expectations that 
lead to learning and success (Bandura, 1977; Bloom, 1984; Bronfenbrenner, 1992; Marjoribanks, 
1976; Mowder, 2005; Vygotsky, 1986).  Parents are also one of the biggest influences in the 
home learning environment prior to the onset of formal schooling (Blevins-Knabe, 2016; 
Cankaya & LeFevre, 2016).   

Dissertation Study Goals 
The purpose of the proposed study is to examine the factors that influence parents' cognitions 

and decision-making around shared math-activity with their young children by exploring how 
parents’ perceptions of their role, expectations for their child, personal math skills, self-efficacy, 
and perceptions of time and energy influence and interact with one another. These factors of 
Role, Expectations, Skills, Efficacy, and Time have been assembled into the RESET Framework, 
which was then used to create the RESET survey instrument. A further section of the survey was 
developed to examine the self-reports of Math Activity Participation of Parents (MAPP). This 
study provides an opportunity to develop tools and approaches for studying the home numeracy 
environment (i.e., the RESET Framework, the RESET-MAPP survey instrument), which may 
inform the design of better parent-engagement programs that can increase parent-child math 
activity and better outcomes for children. Research questions include: (1) To what extent are 
parents’ mathematical parenting beliefs and perceptions represented by the RESET framework? 
(2) What relationships exist between parents’ mathematical parenting beliefs and perceptions, 
and their self-reports of mathematical parenting behaviors? and (3) What mathematical parenting 
beliefs, perceptions, and behaviors characterize different groups of parents? 

Theoretical Framework 
No current literature exists for specifically understanding the interaction of factors that 

influence the motivations and decision-making of parents with respect to the mathematics 
education of their children (Mowder, 2005).  However, Hoover-Dempsey and Sandler’s (1997) 
parent education involvement model, Bandura (1977), Marjoribanks (1976), and Vygotsky’s 
(1986) social theories of learning, as well as Bronfenbrenner’s (1992) Ecological Systems 
Theory of Learning, and Mowder’s (2005) Parental Development Theory provide a rich 
conceptual framework upon which the present study was grounded. The domains of the RESET 
Framework were derived from the work of Hoover-Dempsey and Sandler (1995, 1997; Walker et 
al., 2005; Walker et al., 2010) as well as Mowder (2005) and others.  Additionally, Bandura, 
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Marjoribanks, and Vygotsky in their individual work describe the critical importance of the 
parent/caregiver in the role of the child’s development through providing models, establishing 
expectations, and acting as more knowledgeable others who both guide and “draw forth” the 
child’s development and learning.  Lastly, Bronfenbrenner’s Ecological Systems Theory of 
Learning informs the RESET Framework by describing how parents formulate their perceptions 
along the RESET domains, through proximal influences in the micro- and meso-systems (e.g., 
family, parent groups, community groups, etc.) and distal influences in the exo-system (e.g., 
economics, politics, education), and macrosystem (e.g., cultural values, attitudes, beliefs, and 
ideologies, etc.). 

Methodology 
This exploratory parallel mixed-methods study proposes to use the RESET framework to 

examine parents’ mathematics parenting cognitions and behaviors using the digital RESET-
MAPP survey and follow-up interviews.  The sample (n = 829) for the study includes parents of 
4- and 5-year-old children who have not yet begun kindergarten.  The sample was provided by a 
commercial sample provider, Innovate MR, which creates samples of participants from their 
nationwide database of hundreds of thousands of individuals (Innovate MR, n.d.). Samples are 
created using a blend of diverse sources including using online and offline strategies, large-scale 
advertising networks, specialty websites that cater to specific demographics (e.g., different 
ethnicities, cultural backgrounds, interests, educational levels, etc.), as well as using mail and TV 
advertisement strategies. The sample drawn for this study was diverse in terms of geography 
(e.g., participants will be drawn from a national database of research participants), 
ethnicity/cultural background, socio-economic status, education level, marital and employment 
statuses, age, and gender, etc.  Purposive sampling will be used to create the secondary sample (n 
≥ 18) for the follow-up interviews, drawn from the population of survey participants, and 
selected based on their ability to provide additional depth or elaboration to phenomena that 
emerge from the survey data.  Qualitative and quantitative data collected from the digital survey 
and qualitative data collected from the follow up interviews will be analyzed for insights into the 
specific research questions (noted earlier). Quantitative analysis will include descriptive statistics 
(e.g., measures of frequency, central tendency, dispersion/variation), as well as other tests to 
identify relationships and correlations. Qualitative analysis measures will include discourse 
analysis through coding frequency analysis. Analytical coding strategies, including a priori 
coding using the RESET framework, as well as other methods of inductive and deductive coding 
will be used. Qualitative data will be transformed into quantitative data as appropriate, and then 
triangulated with the existing quantitative data for means of deriving insights, drawing 
conclusions, and answering the specific research questions guiding this study. 

Significance of this Study 
The development of the RESET Framework is theoretically significant, as it has the potential 

to fill a gap in the research corpus by establishing a clear and useful conceptual framework for 
examining factors that influence parent involvement in their child’s mathematics education. 
Understanding parents’ beliefs, attitudes, and practices across the RESET domains provides 
practical significance through empowering the design of better parent engagement programs that 
that may increase parent-child interactions and improve child early mathematics knowledge. 
Lastly, this study will provide detailed information about the ways in which parents most need 
support that can empower them to better support their children.  
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LEARNERS’ COLLABORATIVE USE OF HUMAN-SCALE SPATIAL DIAGRAMS 

Camden Bock 
The University of Maine 
camden.bock@maine.edu 

Freudenthal (1971) describes a vision for a didactical exploration of geometry that is “tied to 
lived reality with strong bonds,” where lived reality is a material, spatial world that our bodies 
“live in,” “move in,” and “analyze” (pp. 418-419). Fruedenthal (1971) advocates for learners to 
explore phenomena from their lived reality with a rich mathematical lens. In geometry, diagrams 
provide an opportunity to connect learners’ embodied experiences of the material world to 
exploration of mathematical phenomena. Gestures can realize “virtual mathematical objects or 
mathematical relationships” in diagrams — linking the motion of learners’ bodies to the 
inscription — through multimodal, embodied discourse (Chen & Herbst, 2013, p. 302). 
However, diagrams are commonly inscribed on plane surfaces (e.g., blackboards, paper) at scales 
smaller than the learners who inscribe them (e.g., Greiffenhagen, 2014; de Freitas, 2012).  

Technologies have long existed to bring geometry out of the plane and into the learners’ 
material world (e.g., clay sculpture, wood joinery). However, the time it takes to modify the 
inscription of a material diagram is typically much greater than their planar counterparts (e.g., 
stylus, chalk). The recent commercial availability of 3D filament pens and immersive virtual, 
augmented, and extended realities offer new ways to quickly construct and modify diagrams in 
space (Ng & Sinclair, 2018; Dimmel et al., 2020). Digitally rendered spatial diagrams offer 
opportunities to bridge the digital affordances of dynamic geometry environments with material 
affordances that emulate learners’ interactions with their lived reality. I ask: How does the scale 
of a human-scale spatial diagram shape learners’ collaborative discourse? 

Background 
Dynamic geometry environments can connect the movements of learners’ bodies to 

continuous transformations of a digitally rendered figure. Multitouch tablets offer a surface 
where these maps can be made by the body itself, with the dragging of fingers (Ng & Sinclair, 
2015), rather than mediating these interactions through keyboard or mouse input systems. Touch 
screen tablets thus provide a portal that links the digital worlds of dynamic diagrams directly to 
movements of learners’ bodies. Digitally rendered spatial diagrams can extend this connection 
between movement and diagramming by allowing learners to pinch and drag components of a 
figure as they might grasp an object in the real world. The dragging or pinching of fingers to 
manipulate digitally rendered diagrams on multitouch tablets or digitally rendered spatial 
diagrams links the movement of the learners’ body to smooth transformations of a diagram, 
which can support students in descriptions of geometric transformations as “continuous and 
temporal processes” (Ng & Sinclair, 2015, p. 85; Bock & Dimmel, 2021a; 2021b). 

Spatial diagrams also offer learners novel ways to relate their body to a diagram. Learners 
might stand beside, look from above, or step inside a diagram (Dimmel & Bock, 2019; Bock & 
Dimmel, 2021a; Cangas et al., 2019). In human-scale and larger spatial diagrams, learners might 
put their head inside, kneel under, reach around, or reach through a diagram (Dimmel et al., 
2021; Palatnik & Abrahamson, 2022). Other human-scale embodiments of diagrams have been 
explored in walking-scale geometry, where learners use their bodies to become vertices or to 
trace lengths of segments (Ma, 2017). Human-scale spatial diagrams — digitally rendered or 
physically realized — offer opportunities for networks of learners’ bodies to interact with a 
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diagram. Within and among such collaborative, body-based diagrammatic interaction has the 
potential for creative mathematical acts (Sinclair et al., 2013) — moments when learners realize 
virtual objects and relationships in unscripted ways. 
Creative Acts 

Creative acts “bring forth” something that “was not present before” in a way that does not 
“align with current habits and norms” for mathematical behavior, to “change the way language 
and other signs are used and alter meanings that circulate in a situation” (Sinclair et al., 2013, p. 
241).  For example, a learner might use a gesture to realize the altitude of a triangle that was not 
inscribed on a diagram. This could be a creative act if the altitude shaped the learners’ 
mathematical discourse, and if using a gesture to realize the altitude of a triangle was unusual for 
their mathematical practice. The study of creative acts helps to understand how agency can be 
distributed in novel and mathematically meaningful interactions among learners, their bodies, 
and the potentials embedded in the milieu. The lens of creative acts can be applied to investigate 
the affordances (e.g., scale) of technologies that support creative acts (Sinclair et al., 2013). 

To understand the affordance of scale in human-scale spatial diagrams, it is important to 
understand learners’ discourse as multimodal (i.e., composed of speech, intonation, rhythm, 
gesture, body position, and body movement) and in relation with other learners and the spatial 
inscriptions composing a spatial diagram. The creative acts lens draws attention to the 
distribution of agency between learners, their bodies’, and diagrams. With human scale 
diagrams, learners’ can not only realize virtual mathematical objects and relationships with 
language, gesturing (above, in front of the diagram) and direct manipulation, but also by moving 
their body to vary their perspective, by gesturing (around, inside, outside and through the 
diagram), by starting and stopping their movement, and by directing their gaze. 

Research Question, Methods, Design 
I will conduct a series of semi-structured interviews where participants collaboratively 

explore a set of spatial diagrams. Interviewers will ask participants to repeat or clarify statements 
or actions they make during their exploration. Multimodal archives of participants’ exploration 
of the diagram will be collected, including video of their first person (virtual) perspective of the 
spatial diagram, video of their bodies in the ‘real’ world, and audio of the conversation between 
participants. Within each interview, episodes will be identified where learners relate their bodies 
to the spatial diagrams in new ways (e.g., stepping inside). Transcripts of verbal elements of 
discourse will be developed and embedded as subtitles in a composite video archive. 
Participants’ gestures and bodily relationships with the diagram will be spatially annotated on the 
video archives. Analysis will include a characterization of creative acts within the episode and 
coding of the relationships between learners’ bodies and the scale of the diagram. 

This study seeks to describe some of the ways that learners’ bodies can relate to human-scale 
spatial diagrams, which are uncommon in school settings. I am inspired by Benally et al.’s 
(2022) investigation of the collaborative construction of human-scale physical spatial diagrams 
and the asymmetric embodied relationships to a diagram. This study will contribute an 
understanding of what is possible with learners’ collaborative explorations of spatial diagrams. 
More specifically, this study will explore the ways that learners realize the potentials of diagrams 
by reconfiguring their embodied relationships with a human-scale or larger diagram. This work 
extends understandings of learners’ use of perspective in digital (Bock & Dimmel, 2021a, 2021b; 
Dimmel et al., 2020) and physical (Benally et al., 2022) spatial diagrams, the inscription of 
diagrams in space (Ng & Sinclair, 2018; Cangas et al., 2019), and the embodied relationships 
between learners and diagrams (Sinclair et al., 2013; de Freitas & Sinclair, 2014). 
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DEVELOPING COMBINATORIAL MEANING FOR ALGEBRAIC STRUCTURE: 
LESSONS FROM A DESIGN-RESEARCH CYCLE 
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Goals of Research 
The broad goal of my dissertation study is supporting mathematical thinkers (students and 

teachers alike) to develop mathematical meanings as personally powerful and to leverage such 
meanings in the teaching and learning of algebra (Silverman & Thompson, 2008). 
Correspondingly, the following research questions have guided the design and implementation of 
this work. First, what affordances does developing algebraic structure as a generalization of 
one’s own reasoning hold for mathematical thinkers? Second, how can teachers, in whole-class 
instruction, support students to develop personally powerful mathematical meanings related to 
algebraic structure? Through my dissertation, I report on two studies within a design-research 
cycle: a teaching experiment with two secondary algebra teachers (as participants) and a 
subsequent classroom study at the secondary level. Both interventions aimed to investigate the 
development of mathematical meanings as participants: (a) generalized quantitative relationships 
out of a combinatorics task (i.e., a counting problem) and (b) reasoned about their generalization 
in the context of symbolic tasks typical of secondary algebra curricula (Kaput, 2008/2017). 

Theoretical Framework 
I follow Thompson and colleagues’ definition of mathematical meanings as “the space of 

implications that the current understanding mobilizes” (2014, p. 13). Elsewhere (Burch, under 
review), I contrasted two potential mathematical meanings for the cubic identity for binomial 
expansion, i.e., (𝑎 + 𝑏)3 = 𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 𝑏3, which is the mathematical focus of my 
dissertation studies. Here, I briefly describe these two meanings—computational and 
combinatorial—before situating the combinatorial meaning within a theoretical model of 
combinatorial thinking (Lockwood, 2013). First, mathematical thinkers operating from a 
computational meaning credit equivalence between (𝑎 + 𝑏)3 and 𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 𝑏3 to the 
result of algebraic computation, i.e., sequential two-factor application of the distributive 
property. This meaning’s space of implications often implies a uni-directional nature that allows 
a thinker to determine an expansion from binomials but does not imply structural relationships 
that would allow the thinker to use the same kind of reasoning to determine binomial factors 
given an expanded polynomial (Tillema & Burch, 2021). By contrast, the combinatorial meaning 
emphasizing combinatorial and quantitative relationships (Tillema & Gatza, 2016) can mobilize 
a bi-directional understanding of the identity. That is, (𝑎 + 𝑏)3 can be interpreted as three 
independent events, (𝑎 + 𝑏) and (𝑎 + 𝑏) and (𝑎 + 𝑏), where a and b each represent a number of 
possibilities for two categories of outcomes that are available on each event. The expansion, 
𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 𝑏3, represents a case breakdown of all possible three-event outcomes, 
where cases are organized according to the number of a-possibilities selected (Tillema & Burch, 
in press). A thinker’s space of implications when operating from a combinatorial meaning 
includes opportunities to leverage structural relationships to multiply and factor any three 
binomials (beyond cubing) and to anticipate structural relationships in any degree of expansion. 
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Given hypothesized differences in the space of implications, the combinatorial meaning for 
the cubic identity has the greater potential of being personally powerful. Thus, it is this meaning 
that I aimed for study participants to develop. To that end, I find useful Lockwood’s (2013) 
model of combinatorial thinking (MCT) in guiding the development of this study. The MCT 
consists of three aspects on which a person might focus when solving a combinatorics (or 
counting) problem: a set of outcomes, a counting process, and a formula/expression. When 
approaching the cubic identity from a combinatorial perspective, a thinker could consider the 
following question related to the symbolic problem (𝑎 + 𝑏)3: What are all possible partial 
products when cubing the binomial (𝑎 + 𝑏)? The set of outcomes is the set of all possible partial 
products, where each partial product (i.e., outcome) contains one factor from each binomial. The 
counting process describes the method the thinker uses to produce (or organize) a set of 
outcomes (e.g., a case breakdown). Lockwood defined the formula/expression as determining the 
cardinality of the set of outcomes. In this example, 23 = 1 + 3 + 3 + 1 represents the number of 
partial products in a way that reflects the set’s organization. When emphasizing the 
combinatorial nature of algebraic structure, the formula/expression can represent the identity 
itself as (𝑎 + 𝑏)3 = 1𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 1𝑏3. Thinkers with a personally powerful 
combinatorial meaning operate from an expectation of connectedness between the three MCT 
components. That is, the counting process should be represented consistently in both the set of 
outcomes and the formula/expression used to symbolize them. Such a connectedness allows a 
thinker to mobilize their meaning toward answering broader questions related to relationships 
between the coefficients of a polynomial and its roots (Viète’s formulas). It is this connectedness 
in combinatorial reasoning that I aimed to support participants across both studies to develop. 

Methods 
In my dissertation, I report on two studies as part of a design-research program (Cobb et al., 

2017). In both studies, I acted as teacher-researcher with a mathematics education researcher 
collaborating as witness-researcher. The first study, a teaching experiment (Steffe & Thompson, 
2000), included two veteran secondary mathematics teachers who participated in six, 90- to 150-
minute, teaching episodes over four days. The second study was a classroom study (Cobb et al.), 
including 18 secondary students in a dual-credit Finite Mathematics course. All students 
participated in a curricular unit over 10 days of instruction. Four acted as focus students, which 
included real-time recording of classwork and clinical interviews before and after the classroom 
intervention. All interviews and classroom instruction were recorded with multiple video 
cameras capturing student work and researcher/student interaction. Videos have been mixed into 
single files for use in multiple iterations of retrospective data analysis (e.g., transcription, coding, 
making conjectures and interpretations) (Steffe & Thompson). Both interventions were anchored 
by the Card Problem (Tillema & Gatza, 2016) which provided a quantitative and combinatorial 
context from which to generalize the cubic identity for binomial expansion (Burch et al., 2021). 

Preliminary Findings & Anticipated Contributions 
Responses to my research questions will contribute to the integration of combinatorics in 

secondary curricula (Lockwood et al., 2020) in a way that (a) addresses shortcomings of current 
teaching methods (e.g., Mason, 2017) and (b) supports the development of coherent meanings 
related to algebraic structure (Warren et al., 2016). The findings from my first study show 
important differences in teachers’ combinatorial meanings that can inform teacher education and 
research efforts (Burch, under review). My second study will contribute empirically to the MCT 
literature by applying the MCT framework (Lockwood, 2013) as a model for algebra instruction. 
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In elementary school classrooms, teachers are expected to deliver instruction to a wide range 
of learners with diverse backgrounds and prior knowledge. The broad scope of student needs 
challenges teachers to provide all students with mathematical learning opportunities (MLOs) that 
are both accessible and cognitively demanding. Although rigorous MLOs are essential to 
develop students' conceptual understanding, many learners do not have access to the same 
cognitively demanding MLOs as their peers (Hiebert & Grouw, 2007; Lynch et al., 2018). The 
success of all learners in mathematics, including those who struggle, requires that teachers work 
together to provide instruction, support, and interventions that go beyond explaining the content 
and enable students to become expert learners and doers of mathematics (Hiebert & Grouw, 
2007; Lambert, 2020, 2021). Co-teaching is an instructional model that draws on the expertise of 
more than one teacher as they deliver joint instruction and consider the needs of every learner in 
the classroom (Cook & Friend, 2010). Research has identified five commonly used co-teaching 
models; however, we know little about the nuances of these co-teaching models in elementary 
mathematics and their relationship with the cognitive demand and accessibility of MLOs. The 
research question that guides this study is what is the relationship between different co-teaching 
models and the cognitive demand and accessibility of MLOs offered to students? Answering this 
question is critical to understanding how co-teaching can enrich learning opportunities for all 
elementary students in mathematics. 

Theoretical Framework 
The cognitive demand, or level of thinking, required to solve a task is meaningfully 

connected to students' development of conceptual understanding (Huinker & Bill, 2017). More 
cognitively demanding tasks allow students to struggle to make sense of mathematics and engage 
in more conceptual learning (Hiebert & Grouws, 2007; Lambert & Stylianou, 2013; Silver & 
Stein, 1996). A Task Analysis Guide for determining the cognitive demand required to solve a 
mathematical task was created using research on characteristics of academic tasks, high-level 
thinking skills, Professional Standards for Teaching Mathematics, and the examination and 
categorization of hundreds of tasks used in QUASAR classrooms (Smith & Stein, 1998, p. 348). 
In addition to the potential cognitive demand of tasks, it is important to consider the 
implementation of the task. Teachers have control to alter the cognitive demand of tasks both 
when they set up and when they implement the task (Stein et al., 2009).  

Universal Design for Learning (UDL) is a philosophical approach to instruction grounded in 
the learning sciences and neuroscience, in which teachers redesign curriculum and instruction 
with student experiences and variability in mind (Meyer, Rose, and Gordon, 2014). UDL Math is 
a mathematical version of UDL created to support teachers in designing instruction that centers 
all students as problem-solvers capable of engaging in cognitively demanding mathematical 
tasks (Lambert, 2021). The six design elements of the UDL Math framework delineate criteria 
for how the design of MLOs can develop students into mathematical learners (Lambert, 2021). 
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It's crucial to study the instructional design of co-taught lessons because co-teaching models are 
not all enacted the same way and may support teachers in enhancing student access to MLOs 
differently. The lenses of cognitive demand and UDL Math will be applied to co-taught lessons 
to determine how MLOs are influenced by each co-teaching model teachers enact in this study. 

Methods 
Data Gathering  

The participants in this study are a pair of elementary teachers who designed and enacted co-
taught math instruction for twenty students in a 2nd-grade class. I selected the teachers through 
purposeful sampling of pilot survey data (Patton, 2002). This study consisted of two data 
collection cycles during the 2021-22 school year at a diverse urban elementary school. Each 
cycle consisted of 45-minute video-recorded lesson observations 2-3 times a week. The first 
cycle lasted four weeks and provided the teacher pair time to develop their co-teaching 
relationship in math and gain familiarity with different co-teaching structures. During the second 
cycle, teachers delivered grade-level mathematics instruction using various co-teaching models. 
Instructional artifacts were collected and documented throughout the observations. Additionally, 
the teacher pair participated in reflective interviews and surveys throughout the data collection 
process to involve them as sense-makers of their instruction (Savin-Baden & Major, 2013).  
Data Analysis 

The analysis aims to understand the affordances of each co-teaching model for students' 
MLOs in elementary mathematics. After determining the co-teaching model used for each co-
taught lesson, I will analyze lessons for two criteria. First, I will code the students' access to 
MLOs with a coding scheme I developed based on evidence of UDL Math design elements in the 
lesson (Lambert, 2021). Second, the cognitive demand of MLOs during lessons will be analyzed 
using the Instructional Quality Assessment Rubrics (Boston, 2012). Interrater reliability will be 
calculated for both coding schemes applied to the data set. Considering both access and cognitive 
demand will give a rich picture of the affordances of each co-teaching model for student MLOs.   

Contributions 
Through this research, I seek to better understand how co-teaching structures impact students' 

access to cognitively demanding mathematics. The need to understand how the cognitive 
demand of MLOs can be maintained while designing accessible instruction is an essential topic 
in the field of education today. In today's classrooms, students have unique learning needs that 
must be considered when designing MLOs. The COVID-19 pandemic has further exacerbated 
the wide range of student differences in mathematical understanding. This study will produce an 
empirically grounded understanding of how co-teaching can support elementary mathematics 
instruction that is cognitively demanding and accessible to all students. In addition, this study is 
situated in actual classroom practice, allowing for important insights into how co-teaching can be 
used to plan and enact inclusive mathematics lessons. These findings will also benefit teacher 
professional learning by providing guidance on the design and enactment of co-taught 
mathematics instruction.  
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Mathematics is not language-free. Researchers have claimed that mathematics has its 
discourse (Barwell et al., 2007), which includes both linguistic non-linguistic parts, and each 
language system has different mathematics discourses (Barwell, 2018; Halliday, 1978). The 
stereotype that “mathematics is language-free” is not only toxic in diminishing roles of language 
in mathematics but can also make multilingual international students hidden from people’s 
attention and care in their mathematics classrooms. In this study, I refer to multilingual people as 
those who use one language in some situations and another in other situations (Planas & Setati, 
2009). According to this definition, I include people who are traditionally called “English as 
Second Language,” “English as Another Language,” or “non-native English speakers” as 
multilingual.  

I believe that multilingual international students’ experiences in proof-based mathematics 
classrooms should be investigated. The following is a summary of my reasoning for the claim: 1) 
language is a part of one’s identity; 2) many multilingual international students experience a 
transition in their language of instruction (LOI) as they moved to the U.S from their home 
country, which influences their experiences and identities; 3) transitions from computation-based 
mathematics to proof-based mathematics courses will influence their identities in mathematics 
courses; hence, 4) multilingual international students face a two-fold transitions, one linguistic 
and one mathematical, that influence their mathematics identity in proof-based mathematics 
courses. Thus, this study tries to answer the following research question and sub-questions: What 
are multilingual international students’ mathematics identities in various linguistic and 
mathematical contexts?   
1. How do multilingual international students leverage their first and/or other languages 

when the LOI in proof-based mathematics courses is different from their first and/or 
languages?  

2. What kinds of lived experiences do multilingual international students report to have 
affected their mathematics identities?  

In this study, mathematics identity is defined as one’s understanding of their relationship to 
mathematics, experiences that constructed this relationship across time and space, and one’s 
vision for their mathematical possibilities for the future, which I adapted from Norton's (1997) 
definition of identity. Further, I view language as sources of meaning (Barwell, 2018), which 
expands the notion that language is a resource that students bring to the mathematics classroom 
(Moschkovich, 2002), by acknowledging that language is not neutral but stratifying and 
stratified.  

Researcher Positionality  
I am a multilingual international student who is a Korean woman and has studied and taught 

mathematics in the U.S. in my second language, English. Throughout my experiences, I faced a 
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lot of challenges communicating mathematics in English and sometimes felt I was not valued by 
the community, and in turn, that led me to take some passive positions. I do not think that 
language is not the only component that intersects with my experiences, but I think it has been an 
important factor, especially related to my confidence. I tended to attribute the reasons for my 
challenging experiences solely to my lack of proficiency in speaking English, however, I believe 
there are a lot of external influences that shaped my view of my experience. This view is 
enhancing a deficit narrative about multilingual international students, whereas I adopt an anti-
deficit perspective toward multilingual international students’ experiences as it can be found in 
my research question and how I view language.  

Method 
For this study, I use narrative inquiry as a research method. Narrative inquiry is a research 

method that focuses on understanding human’s lived stories (Connelly & Clandinin, 1990). 
People’s experiences are in their stories as well as their beliefs, attitudes, and values, and their 
experiences are represented in a story as a whole rather than listed facts or figures (Foote & 
Bartell, 2011). According to the perspective, to understand students’ experiences during their 
education, it is required to listen to people’s stories of their education. By studying their stories, 
researchers can have a powerful tool to communicate, evoke emotions, empathize, and reflect on 
the experiences as well as provide insights into the factors of such experiences (Foote & Bartell, 
2011; Martinie et al., 2016). Narrative inquiry is a useful tool to study anyone’s experiences, but 
in the educational field, it has been more used to study marginalized populations’ experiences to 
invite readers to revisit their own views and experiences in the educational field (Kim, 2012; 
Martinie et al., 2016).  

The study participants will consist of five to six multilingual international undergraduate and 
graduate students in a large public university in the Midwestern U.S. The collected data will be 
their mathematics autobiography titled “Me and Math: my relationship with mathematics up to 
now” (Di Martino & Zan, 2010), one semi-structured synchronous interview based on their 
autobiography, and a series of email interviews that can provide multilingual international 
students with sufficient time to reflect and think about their experiences without worrying about 
a time constraint. Then the data will be analyzed to build a narrative because narratives can 
communicate who the participants have been in mathematics classrooms and what are their 
experiences as a mathematics doer better than the patterns of their behaviors.  

Anticipated Contributions 
In K-16 mathematics education, especially in higher education mathematics education, not 

much of multilingual international students’ experiences and how they view themselves in 
mathematics is studied even though it is important. Hence, this study will be one addition to a set 
of studies, as well as a calling for more research on this population to serve them in a better and 
more equitable way. Moreover, this study will contribute to challenging the deficit narratives 
about multilingual international students and focus on what they are bringing into the classroom 
by viewing language as sources of meaning (Barwell, 2018). Narratives of multilingual 
international students in their mathematics learning and doing that will appear as a result of this 
study will hopefully provide an opportunity for readers to empathize with their experiences, 
reflect and challenge their own perspectives toward multilingual international students, and 
further consider these students’ experiences in their teaching and research.  
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Los conceptos asociados al razonamiento proporcional, tales como fracción, razón y 
proporción son clave en la educación matemática en los niveles básicos, ya que son pilares de las 
matemáticas superiores y su aplicación es transversal a otras ciencias, tales como física, química, 
economía, entre otras disciplinas (Lamon, 2007; Lobato et al., 2010). Más allá de servir de 
fundamento, el razonamiento proporcional es crucial en el ámbito cotidiano de las personas.  

Dada la relevancia del tema, un sinnúmero de investigaciones ha reportado la problemática 
en la educación matemática alrededor del razonamiento proporcional; en nuestro estudio, 
resumimos tales problemáticas en cuatro categorías: 1) La carencia de sentido en el tratamiento 
de situaciones proporcionales debida a una excesiva aritmetización (Hart, 1988; Lamon, 1994, 
2007, 2020; Adjiage y Pluvinage, 2007). 2) Una pobreza en el desarrollo de habilidades 
proporcionales de los estudiantes al no tener la oportunidad para resolver problemas en contextos 
que les permitan explorar las múltiples representaciones de la proporcionalidad (Obando et al., 
2014; Mutaquin et al., 2017; Weiland et al., 2020). 3) Los estudiantes avanzan en su educación 
matemática con un concepto de razón vago o inexistente, lo cual conlleva a que la 
proporcionalidad no se vincule con las funciones lineales (Streefland, 1984; Harel et al., 1994). 
4) Incapacidad de los estudiantes para distinguir las relaciones lineales de las relaciones no 
lineales, provocando la tendencia a aplicar el modelo de la proporcionalidad directa en contextos 
donde no es aplicable (De Bock et al., 2002, 2007; Fernández y Llinares, 2012). 

Tomando en cuenta la problemática planteada, el problema al que se enfrenta la comunidad 
es cómo enseñar a los estudiantes a razonar proporcionalmente. El acercamiento escolar más 
frecuente hacia la proporcionalidad se da desde una perspectiva aritmética, separándola de sus 
vínculos con las relaciones funcionales y sus múltiples representaciones. En nuestra propuesta 
ponemos a prueba un diseño de enseñanza en el que consideramos que el tránsito entre múltiples 
representaciones, apoyado en simulaciones digitales, propicia mejoras en las habilidades de 
razonamiento proporcional en estudiantes de secundaria. 

Preguntas de Investigación y Marco Teórico 
Una vez planteada la problemática, en este estudio buscamos dar respuesta a las siguientes 

preguntas de investigación: 1) ¿Cómo diseñar una secuencia didáctica, mediada por la 
tecnología, que ayude a los estudiantes a promover sus habilidades de razonamiento proporcional 
y les permita aplicar el conocimiento adquirido en otros contextos? 2) ¿Qué ventajas (o 
desventajas) se pueden apreciar en el razonamiento proporcional de estudiantes de secundaria, 
cuando se les plantean tareas de proporcionalidad con múltiples representaciones y enfocadas a 
la distinción entre situaciones lineales y no lineales? 

Respecto al objeto de estudio, el razonamiento proporcional de los estudiantes de secundaria, 
tomamos como referencia la base teórica construida por Karplus et al. (1983), Lesh et al. (1988) 
y Lamon (1994). También, aceptamos como valido el modelo de razonamiento proporcional 
propuesto por Modestou y Gagatsis (2010), quienes consideran a la distinción entre situaciones 
lineales y no lineales un aspecto clave del razonamiento proporcional.  En este sentido, son 
fundamentales los estudios sobre la sobregeneralización de la linealidad de De Bock et al. (2002, 
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2007). Nuestro diseño de tareas busca que los estudiantes desarrollen las habilidades de 
razonamiento proporcional establecidas por Weiland et al. (2020) y Lobato et al. (2010), las 
cuales incluyen: 1) Atender y coordinar dos cantidades que varían dependientemente, 2) 
Distinguir las situaciones lineales de las no lineales, 3) Reconocer y utilizar las estructuras de las 
situaciones proporcionales (por ejemplo, razón unitaria, constante de proporcionalidad, 
linealidad), 3) Reconocer el invariante en una proporción, 4) Comprender la proporcionalidad 
desde múltiples representaciones, 5) Distinguir entre razones y fracciones. Consideramos a estas 
cinco habilidades como clave para nuestro estudio y son las que invocamos con el término 
habilidades proporcionales. 

Enfoque Metodológico 
El proyecto se enmarca en un enfoque de investigación basada en diseño (IBD), según la 

tradición de Gravemeijer y Cobb (2006), y Bakker (2018). La propuesta de enseñanza consiste 
en un enfoque socioconstructivista, de acuerdo con Cobb et al. (1992) y Simon (1995). En 
armonía con el enfoque epistemológico descrito, para la secuencia de actividades de enseñanza 
utilizamos una trayectoria hipotética de aprendizaje (Simon, 1995). A su vez, el diseño de 
actividades se basa en los principios de la didáctica de Cuevas y Pluvinage (2003). Acorde con el 
enfoque de diseño, se pretende innovar mediante la simulación de situaciones reales con 
tecnología digital. 

 En el análisis retrospectivo del diseño (análisis de datos) se evalúa la adquisición de 
habilidades con los niveles de razonamiento proporcional propuestos por Langrall y Swaford 
(2000), asimismo se buscará incrementar la teoría en esa dirección en función de los hallazgos. 

Resultados Preliminares 
El primer ciclo se realizó mediante una intervención didáctica presencial en dos grupos de 

una Escuela Secundaria en México. Participaron en el estudio 35 estudiantes (14-15 años) en el 
invierno de 2021. La instrucción se dividió en tres sesiones de 90 minutos en un salón de 
cómputo de la escuela. Cada estudiante contaba con una computadora personal que tenía 
precargados entornos didácticos virtuales interactivos (EDVI’s), en Geogebra. A la par de los 
EDVI´s cada estudiante contaba con hojas de actividades. Durante las sesiones se promovió un 
aprendizaje colaborativo y se discutieron las actividades de forma grupal. Nuestro primer ciclo 
de IBD reveló cuestiones sobre la eficacia de las tareas diseñadas y dio pautas para su rediseño. 
En general, los estudiantes lograron transitar en las múltiples representaciones de la 
proporcionalidad y aplicaron habilidades desarrolladas en problemas de aplicación; sin embargo, 
la evidencia fue insuficiente para hacer afirmaciones contundentes sobre la adquisición de 
habilidades. Por otro lado, debido a la diversidad de contextos se profundizó poco en la 
generalización de los modelos matemáticos a los que llegaban los estudiantes.  

En cuanto a la influencia de la tecnología en el estudio, es claro que su uso permite simular 
situaciones cotidianas susceptibles de problematizarse, además de brindar ventajas pragmáticas y 
epistémicas. El uso de entornos didácticos virtuales interactivos (EDVIS) permitió: presentar al 
estudiante datos aleatorios, interactuar con los contextos de forma dinámica, mostrar los objetos 
matemáticos en distintas representaciones y validar los resultados. Los datos sobre la experiencia 
de los estudiantes con los EDVI’s permitieron detectar concepciones erróneas que, 
probablemente en formas de enseñanza tradicionales, pasarían inadvertidas. Por otro lado, el 
interactuar con los EDVI´s provocó en los estudiantes un interés que iba más allá del contexto 
matemático planteado, involucrándose con problemas que se derivaban de las tareas. 
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THE ROLE OF STUDENTS’ GESTURES IN OFFLOADING COGNITIVE DEMANDS 
ON WORKING MEMORY IN PROVING ACTIVITIES 
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The role of individual cognitive differences in doing mathematics has become a significant 
area of research within the psychology of mathematics education (e.g., Bull & Lee, 2014; De 
Smedt et al., 2009; Ping & Goldin-Meadow, 2010). Prior literature revealed the importance of 
working memory (WM) – a mental workspace used by individuals to simultaneously maintain 
and actively manipulate relevant information when they are engaged in a cognitive task 
(Baddeley & Hitch, 1974; Daneman & Carpenter, 1980; Ma et al., 2014). WM modulates the 
number of pieces of information (chunks) an individual can operate on. If the task requires 
managing too many chunks simultaneously, a learner’s WM becomes overloaded and they tend 
to seek ways to offload some of the information onto the environment (Risko & Gilbert, 2016).  

A typical example of cognitive offloading is hand gesturing. Several studies investigated the 
role of students’ gestures in lightening the cognitive load on their WM in the context of 
elementary mathematics (Alibali & DiRusso, 1999; Cook et al., 2012; Goldin-Meadow et al., 
2001; Ping & Goldin-Meadow, 2010; Wagner et al., 2004). However, little is known about the 
effect of gesturing on students’ WM when they are engaged in high-level mathematical 
activities, proving activities in particular. 

Research literature shows that novice undergraduate students work with proofs in different 
ways than experienced mathematicians. Weber and Mejía-Ramos (2011) observed that, when 
reading a proof, mathematicians tend to skim the proof and grasp its overall framework before 
attending to the details. In contrast, novice readers may not have enough expertise to decide what 
is important to read first and tend to check everything, line by line (Selden & Selden, 2003). 

The goal of my dissertation research is to investigate how undergraduate students navigate 
cognitive challenges in working with proofs. In line with previous research findings, I 
hypothesize that various strategies in reading, constructing, and presenting proofs pose different 
cognitive load on a prover’s WM (Inglis & Mejía-Ramos, 2021; Selden & Selden, 1999). The 
requirement to simultaneously store and manipulate a growing amount of information contained 
in proofs will place a considerable burden on an individual’s WM. Therefore, a student will need 
to find available mechanisms for cognitive offloading. Without being allowed to write or draw, 
hand gesturing should become the primary way to offload the information onto the environment. 
Thus, the central research question guiding my study is how do undergraduate students use 
gestures to offload cognitive demands on WM when they are engaged in various proving 
activities, such as reading, constructing, and presenting mathematical proofs? 

Theoretical Framework 
In addressing this research question, I adopt an embodied (Barsalou, 2008; Lakoff & 

Johnson, 1999; Lakoff & Nuñez, 2000; Roth & Thom, 2009; Shapiro, 2007; Varela et al., 1991; 
Wilson 2002) and Piagetian (Piaget, 1970, 1972) perspective.  

Specifically, consistent with the Gesture as Simulated Action framework (Holster & Alibali, 
2008), I consider gestures as a unique type of action that plays an important role in students’ 
organization of thought and manifest the embodied nature of mathematical cognition (Alibali & 
Nathan, 2012). Next, I conceptualize the notion of mathematical proof through Harel and 
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Sowder’s (2005, 2007) transformational proof schemes, according to which the prover is actively 
involved in operating upon mathematical objects, observing the result, and building upon the 
proof. Hand gestures allow learners to “act on” abstract objects by simulating motion-based 
transformations as if these objects were physically present (e.g., Nathan et al., 2021; Williams-
Pierce et al., 2017). Finally, I use Pascual-Leone’s (1970) neo-Piagetian model of WM. Pascual-
Leone asserts that human cognitive performances are products of coordinated sensory-motor 
activity, and depend on the activation of a set of task-relevant mental schemes. WM capacity is 
then defined as the number of mental schemes one can activate at a time. The centrality of action 
in the proposed framework will help to explain the beneficial effect that gestures have on 
proving mathematical conjectures – by offloading cognitive demands on students’ WM. 

Data and Methods 
I recruited ten undergraduate students enrolled in Introduction to Proofs. Each of them 

participated in two WM screening assessments: Figural Intersection Task (Pascual-Leone & 
Baillargeon, 1994) and Direct Following Task (Pascual-Leone & Johnson, 2005, 2010). Based 
on the results of the assessments, the participants were divided into groups with low (three 
students; scores 5.5 and lower), medium, and high (three students; 6.75 and higher) WM 
capacity. Students with low and high WM capacities were invited to participate in five more 
interviews: three proof-based interviews, a stimulated recall interview, and a post-interview 
assessment of fundamental number theory concepts and proof techniques.  

During the three proof-based interviews, the participants were engaged in reading for 
comprehension, reading for validation, presenting, and constructing mathematical proofs. The 
participants were not given calculators, pens, scratch paper, or other figurative materials. Each 
interview consisted of a number-theoretic and a “geometry-based” task (a conjecture involving 
mathematical objects, the properties of which can be naturally represented via hand gesturing).  

The complexity of each task was conceptualized in terms of its M-demand – the number of 
schemes it requires to be activated (Case, 1978; Pascual-Leone & Goodman, 1979). I conducted 
a line-by-line analysis of the M-demands of the tasks based on the hypothetical sequence of 
mental actions that needed to be carried out to complete the proof. In doing that, I first broke the 
proof into lines, containing 1-2 mathematical statements. For each line, I counted the number of 
previous lines involved to make sense of the current line, and the number of contextual schemes 
that a prover may or may not need to activate when working with the proof. The need to activate 
these schemes places additional cognitive pressure on the participants' WM. The participants' 
mastery of these schemes was measured separately in a post-interview assessment. 

The described methodology allowed me to identify the places of proofs, in which the 
experienced M-demand exceeded an individual’s WM capacity. If the participant produced a 
hand gesture (or a sequence of gestures) when working on the target places of proofs, the gesture 
was labeled as having an offloading purpose. The nature of offloading gestures was then 
discussed with the participants during the stimulated recall interviews. The intra- and inter-
subject analysis of students’ gestures is being conducted at the current moment. 

Anticipated Contributions 
In summary, the most significant contribution of my study is closing the gap in 

understanding the effect of students’ hand gesturing on WM in proving activities. Understanding 
mechanisms underlying the phenomenon of cognitive offloading will inform undergraduate 
instruction and help to improve learning conditions for students in advanced mathematics 
classrooms, which addresses one of the major goals of research in mathematics education. 
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Background and Significance 
Over the last few decades, the field of higher education has been concerned with the retention 

of underrepresented students of Color in the science, technology, engineering, and math (STEM 
fields). STEM identity development has emerged as a useful analytic framework in this research, 
as students with stronger STEM identities—students who recognize themselves and are 
recognized by others as “STEM people”—are more likely to persist in the STEM fields (Carlone 
& Johnson, 2007; Chemers et al., 2011; Malone & Barabino, 2009). STEM identity develops 
through the process of socialization, in which agents of socialization set and maintain the norms, 
culture, and values that newcomers in the STEM fields should emulate. At institutions of higher 
education, instructors act as primary agents of socialization (Garibay, 2018) both implicitly and 
explicitly signaling who “belongs” in the STEM fields, and who doesn’t, with Black, Latinx, and 
Indigenous students often falling into the latter category (Haynes & Patton, 2019; Johnson, 2007; 
McGee, 2016). 

Although mathematics is a gateway into the broader STEM fields (Adiredja & Andrews-
Larson, 2017; Leyva et al., 2021), there is a dearth of literature that focuses on undergraduate 
mathematics socialization. Yet, mathematics courses are places where many underrepresented 
students of Color may experience socialization from their instructors that leads them to decide 
that they aren’t “math people”, and thus, are not “STEM people”—leading to their attrition from 
the STEM fields. Moreover, the role of graduate teaching assistants (GTAs) as agents of 
mathematics socialization remains unexamined, despite the large role they play in teaching these 
lower-level undergraduate mathematics courses that are gateway courses into the broader STEM 
fields (Ellis, 2014; Speer et al., 2005). 

Research Question and Guiding Concepts 
Given this background and dearth of research on the socializing influence of GTAs in 

mathematics departments, the primary question that guides this dissertation study is: How do 
GTAs perceive their role as agents of mathematics socialization for underrepresented 
undergraduate students of Color? At the heart of my research question is how GTAs might 
serve as gatekeepers into the culture of the mathematics community at their institution. How do 
GTAs define the shared values, beliefs, and practices of this culture? How do they identify the 
ways that these values and beliefs show up in their teaching practices and interactions with 
underrepresented undergraduate students of Color? How do they articulate and understand their 
roles as agents of mathematics socialization, and the power and opportunities they have to help 
underrepresented undergraduate students of Color feel a sense of belonging in undergraduate 
spaces? What constraints do they face in doing so?   

Besides GTAs’ individual beliefs, values, and descriptions of their teaching practices, this 
study also focuses on how race and power operate at a structural level to influence these beliefs, 
values, and practices, and how these beliefs, values, and practices may be exclusionary to 
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undergraduate students of Color—despite GTAs’ intentions. This focus on structurally-amplified 
effects—rather than individuals’ intentions—reflects the study’s grounding in Critical Race 
Theory (e.g. Bell, 1998; Davis, 2019; Delgado & Stefancic, 2017) and Critical Whiteness studies 
(e.g. Battey & Leyva, 2016; Leonardo, 2004; Matias et al., 2014), which also influence my 
choice to study GTAs at a historically white institution of higher education (HWI). With these 
foundational assumptions in mind, this study also draws on both Martin’s (2000) framework on 
mathematics identity and socialization, and Liu’s (2017) framework on power governors and 
privileged spaces to conceptualize mathematics identity as membership into mathematics 
communities as HWIs, and position GTAs as gatekeepers into the culture of this community.  

Study Design 
Due to the focus on values, beliefs, practices, and culture, this critical qualitative study 

borrows heavily from critical ethnographic methods (Madison, 2020). This study utilized 
purposeful sampling (Patton, 2014) to recruit ten mathematics GTAs from a large public flagship 
university that is a historical white institution. Data collection consisted of: (1) initial fieldwork 
in the mathematics department at the study site, (2) narrative individual interviews with each of 
the participants, and (3) six weekly focus groups with all ten participants. The initial fieldwork 
consisted of informational interviews, document analyses, and observations of the physical space 
of the study site, in order to help build the historical and current context of where participants 
teach, study, and work. The interviews and focus groups largely centered on how participants 
view the norms, culture, and values of mathematics, how they have come to these beliefs through 
their own socialization processes, and how they may perpetuate or seek to disrupt these norms 
and beliefs as agents of mathematics socialization for undergraduate students of Color. Data 
analysis will consist of open coding to look for line-by-line emerging themes to create initial 
codes. Codes will then be refined by looking for patterns and connections among the themes in 
order to create a codebook (Glesne, 2016). The codebook, as well as the guiding concepts, will 
be used to conduct “codeweaving” (Saldaña, 2009) in order to interpret and make sense of the 
findings through the lens of the guiding concepts.  

Preliminary Findings and Significance 
While data analysis is still ongoing, preliminary themes include (1) a lack of institutional 

support and disconnect from faculty values (2) colorblind and power-evasive discourse (Bonilla-
Silva, 2018) (3) dissonance between intention and practice, and (4) differentiation by race and 
nationality in opportunities and willingness to learn about and articulate structural racism in 
mathematics education. As analysis continues, it is important to note that while this dissertation 
study alone will not fully answer how GTAs act as agents of mathematics socialization for 
undergraduate students of Color, the findings will provide an important foundation to understand 
the influences that GTAs may have on undergraduate underrepresented students of Color, the 
opportunities they may have to enact change in mathematics departments, and how they might be 
supported in doing so. Ultimately, the goal of this study—and the goal of all of my scholarly 
work— is to build on the current body of critical mathematics education research that seeks to 
transform mathematics education spaces to be more inclusive and welcoming of 
underrepresented students of Color. More specifically, this line of research seeks to illuminate 
how to disrupt the ways in which mathematics socialization might uphold whiteness and 
perpetuate racism, so that we might better retain, support, and serve underrepresented students of 
Color in mathematics and the STEM fields, and work towards furthering racial equity and justice 
in higher education as a whole.  
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This dissertation study seeks to qualitatively describe the experiences and engagement of 
elementary preservice teachers (PSTs) during open-ended tasks. Ball (1990) identified a need to 
intervene in elementary PSTs’ “knowledge, assumptions, and feelings about mathematics and 
about themselves in relation to mathematics” (p. 13). Open-ended mathematics tasks have the 
potential to play a role in provoking this break with prior experience. While many tasks in 
mathematics education have encouraged students to share their own approaches to getting an 
answer (e.g. Humphreys & Parker, 2015; Parrish, 2014), recently developed open-ended tasks 
(e.g. Danielson, 2016, 2018; Ray-Riek, 2013) are different in that no set answer exists. 

Background and Theoretical Framework 
The open-ended mathematics tasks that are the focus of this research include “Which One 

Doesn’t Belong?” (Danielson, 2016), “Notice and Wonder” (Ray-Riek, 2013) and “How Many?” 
(Danielson, 2018). Practitioner resources have shared anecdotal evidence that these tasks may 
elicit engagement that is both broader in terms of which students engage and in terms of how 
they engage (Danielson; Illustrative Mathematics, 2021; Newell & Orton, 2019; Ray-Riek; 
Rumack & Huinker, 2019). These tasks may elicit similar engagement in PSTs, as it offers them 
the opportunity to become the “arbiter” (e.g. Dewey, 1934, p. 68) of their own mathematical 
experience rather than having the outcome set for them from the beginning.  

Despite these tasks’ popularity in practitioner circles, research into the tasks’ impacts is 
lacking. The use of these tasks meets the criteria for what Matney et. al (2020) called a black 
hole of research: “an instructional practice for which there is a scarcity of blind-peer-reviewed 
research evidence supporting its efficacy, yet has attained critical gravity in the teaching field” 
(p. 247). Existing in a ‘black hole’ does not mean that an instructional practice or activity has no 
value; rather, it means that there is a critical mass of something that intuitively attracts 
practitioners, but research has yet to thoroughly and systematically shed light on it. 

Because the use of open-ended tasks have not been thoroughly researched, identifying theory 
relevant to their potential requires reviewing theoretical and empirical literature regarding 
phenomena with similar characteristics. This review identifies three theories that provide insight 
into why these tasks may provoke more frequent and deeper engagement: positioning, aesthetic 
engagement, and self-determination theory (SDT).  

Sociocultural positioning theory posits that at any moment, each member of the classroom 
(teachers and students alike) is positioning others and being positioned by others (Hand & 
Gresalfi, 2015; Langer-Osuna & Esmonde, 2017). The teacher’s acts of positioning—which 
includes selection and implementation of tasks—can make certain identities available to students 
and not others. In other words, “what someone does in a particular activity is always done in 
relation to what one has opportunities to do” (Hand & Gresalfi, 2015, p. 191).  

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

2243



While positioning helps to explain the opportunities for engagement made possible by open-
ended tasks, aesthetic engagement and SDT suggest innate human characteristics with which 
these opportunities connect. For Dewey (1934), aesthetic engagement was both a universal 
human need and something which the environment must support in order for it to occur. As 
Sinclair (2001) noted, “these dual facets—of perception and of action—permit children to 
become absorbed in and identify themselves with some object or idea” (p. 26). This perspective 
expands engagement as not only a taking up of, but being “caught up in” (Wong, 2007, p. 209). 

The robust empirical basis for SDT (Ryan & Deci, 2017, 2020) strengthens the assertion that 
there are universal human characteristics and that environmental factors can support the 
expression of these characteristics. SDT asserts that humans, in addition to having physical 
needs, have basic psychological needs. When in an environment that supports these needs, 
“people’s curiosity, creativity, productivity, and compassion are most robustly expressed” (Ryan 
& Deci, 2017, p. 5) The need most relevant to open-ended tasks is autonomy, or the extent to 
which a person feels regulation over their own experiences and behavior (Ryan & Deci, 2017).  

Methodology and Methods 
This study seeks to formally research the impacts of a pre-existing phenomenon for which 

there are already anecdotally reported benefits. As such, it makes sense to not be tied to one 
methodology, but rather to choose a pragmatic selection (e.g., Coyle, 2010; Frost & Nolas, 2011; 
Frost et al., 2010; Morgan, 2007) of methodologies and associated methods that are most likely 
to provide the information needed to address the research question. Drawing upon multiple 
methodologies—particularly those of ethnography, case study, and grounded theory—allows for 
seeking participants’ perspective of the phenomenon, defining the phenomenon clearly, and 
providing space to not only understand the phenomenon through the lens of existing constructs 
but also for new insights to arise. 

This study consists of four data collection methods conducted in three sections of an 
undergraduate elementary math methods course: collection of PSTs’ introductory assignments 
regarding their relationship with math, in-person video-recorded observation of four open task 
sessions, an open-ended questionnaire, and semi-structured interviews. The instructor for the 
class will facilitate the PSTs’ completion and discussion of the tasks while the researcher 
observes. After each task implementation, participants will respond to the brief questionnaire. 
The researcher will interview willing participants to further understand specific instances of their 
engagement (including video-stimulated recall) as well as their responses to the questionnaire.  

Video-recordings, transcripts, and responses to semi-structured questionnaires and interviews 
will be coded according to existing engagement-related constructs (individual: behavioral, 
affective, and cognitive; collective engagement; expressions of autonomy; and aesthetic 
experience). The researcher will also code these items inductively for any new insights that arise. 
The introductory assignment will be used to provide further background for understanding PSTs’ 
responses on the questionnaire and in interviews. 

Importance of Research 
This study will have important implications for elementary mathematics teacher education 

and mathematics education research. It addresses a ‘black hole” of research by formally 
exploring the impacts of an instructional practice lauded by practitioners. In doing so, the study 
offers a potential opportunity for PSTs to experience mathematics in a different and more holistic 
way than what they likely experienced in their own K-12 education. Preliminary results suggest 
that open-ended tasks provoke many PSTs to think and feel about mathematics in a way they 
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have not previously experienced. The openness of the tasks seems to be a significant factor in 
positioning PSTs in a way that makes these experiences possible.  

References 
Ball, D. L. (1990). Breaking with experience in learning to teach mathematics: The role of a  preservice methods 

course. For the Learning of Mathematics, 10(2), 10–16. https://www.jstor.org/stable/40247978 
Coyle, A. (2010). Qualitative research and anomalous experience: A call for interpretative pluralism. Qualitative 

Research in Psychology, 7(1), 79–83. https://doi.org/10.1080/14780880903304600 
Danielson, C. (2016). A shapes book: Which one doesn’t belong? (teacher’s guide). Stenhouse. 
Danielson, C. (2018). How many: A counting book (teacher’s guide). Stenhouse. 
Dewey, J. (1934). Art as experience. Minton, Balch, & Company. 
Frost, N. A., & Nolas, S. (2011). Exploring and expanding on pluralism in qualitative research in psychology. 

Qualitative Research in Psychology, 8(2), 115–119. https://doi.org/10.1080/14780887.2011.572728 
Frost, N., Nolas, S. M., Brooks-Gordon, B., Esin, C., Holt, A., Mehdizadeh, L. & Shinebourne, P. (2010). Pluralism 

in qualitative research: the impact of different researchers and qualitative approaches on the analysis of 
qualitative data. Qualitative Research, 10(4), 441–460. https://doi.org/10.1177/1468794110366802 

Hand, V., & Gresalfi, M. G. (2015). The joint accomplishment of identity. Educational Psychologist, 50(3), 190-
203. https://doi.org/10.1080/00461520.2015.1075401 

Humphreys, C., & Parker R. (2015). Making number talks matter: Developing mathematical practices and 
deepening understanding, grades 3–10. Stenhouse. 

Illustrative Mathematics. (2021, September 15). Experience IM K-5 math: A focus on student thinking [webinar 
recording]. https://illustrativemathematics.org/experience-im-k-5-math-a-focus-on-student-thinking/ 

Langer-Osuna, J.M., & Esmonde, I. (2017). Identity in research on mathematics education. In J.Cai (Ed.), 
Compendium for research in mathematics education. National Council of Teachers of Mathematics. 

Matney, G., Lustgarten, A., & Nicholson, T. (2020). Black holes of research on instructional practice: The case of 
number talks. Investigations in Mathematics Learning, 12(4), 246-260. 
https://doi.org/10.1080/19477503.2020.1804273 

Middleton, J. A. (2013). Introduction/editorial: the problem of motivation in the middle grades. Middle Grades 
Research Journal, 8(1), xi-xiii. 

Morgan, D. L. (2007). Paradigms lost and pragmatism regained. Journal of Mixed Methods Research, 1(1), 48–76. 
https://doi.org/10.1177/2345678906292462 

Newell, C., & Orton, C. (2018). Classroom routines: An invitation to discourse. Teaching Children Mathematics, 
25(2), 94-102. https://doi.org/10.5951/teacchilmath.25.2.0094 

Parrish, S. (2014). Number talks: Whole number computation, grades K-5. Math solutions. 
Ray-Riek, M. (2013). Powerful problem solving: Activities for sense making with the mathematical practices. 

Heinemann. 
Rumack, A. M., & Huinker, D. (2019). Capturing mathematical curiosity with notice and wonder. Mathematics 

Teaching in the Middle School, 24(7), 394-399. https://doi.org/10.5951/mathteacmiddscho.24.7.0394  
Ryan, R. M., & Deci, E. L. (2017). Self-determination theory. The Guilford Press. 
Ryan, R. M., & Deci, E. L. (2020). Intrinsic and extrinsic motivation from a self-determination theory perspective: 

Definitions, theory, practices, and future directions. Contemporary Educational Psychology, 61. 
https://doi.org/10.1016/j.cedpsych.2020.101860  

Sinclair, N. (2001). The aesthetic is relevant. For the Learning of Mathematics, 21(1), 25–33. 
https://www.jstor.org/stable/40248343 

Wong, D. (2007). Beyond control and rationality: Dewey, aesthetics, motivation, and educative experiences. 
Teachers College Record, 109(1), 192–220. https://www.tcrecord.org/Content.asp?ContentId=12740 

 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

2245



THE BLACK WOMAN'S TOOLKIT: STORIES OF PERSISTENCE IN 
UNDERGRADUATE MATHEMATICS COURSES. 

Olanrewaju T. Oriowo 
University of North Carolina at Charlotte 

ooriowo@uncc.edu 

Keywords: Equity, Inclusion, and Diversity, Gender, Preservice Teacher Education 

This study is an asset-based approach to exploring the experiences of Black women, who are 
pursuing secondary mathematics licensure, as mathematics learners. The most recent American 
Community Survey shows that although Black women are making great strides in undergraduate 
degree attainment, very few were in the field of education and fewer still in mathematics and 
statistics. Black women accounted for 6.24% of bachelor’s degrees in 2020 (NCES, 2022) which 
is actually about two thirds of the undergraduate degrees awarded to Black students. However, 
only 3.24% of the degrees awarded to Black women were in the field of education and 0.4% in 
the field of mathematics and science (NCES, 2022). Since data that drills down to the specific 
licensure areas for the education degrees is unavailable, we can assume that secondary 
mathematics education was not a popular choice, implying that the actual percentage of 
secondary mathematics education degrees might be closer to the proportion of mathematics and 
statistics degrees.  

Research supports the belief that having a teacher or role model who is of the same race or 
ethnicity has positive implications on students’ dispositions, motivation, and achievement (e.g. 
NCES, 2019; Young et al., 2020). To put this in perspective, 15% of students enrolled in US 
public elementary and secondary schools are Black or African American (NCES, 2022), 7.5% of 
public school teachers are assigned to secondary mathematics, and 6.7% of teachers are Black. If 
we were to assume the proportion of secondary mathematics teachers applies to distributions by 
race, then we can expect about 0.5% of secondary mathematics teachers to be Black. At this rate, 
a fraction of a percentage of these students can hope to have a black, female, mathematics 
teacher over the course of their educational journey.  

Young et al. 's (2020) study revealed a discontinuity between the ability of Black girls 
compared to their participation patterns in Advanced Placement (AP) courses, noting that the 
mentorship of Black educators can provide the “aspirational role model to emulate” (p. 215). The 
purpose of this study, therefore, is to 1) contribute to literature that focuses on the successes and 
persistence of Black women, specifically future secondary mathematics educators, who engage 
in the study of mathematics at the collegiate level, 2) elucidate the knowledge, skills, and 
resources that these women leverage in order to find that success, and 3) gain insight into ways 
that teacher preparation programs can recruit more Black women into mathematics education 
programs and create learning environments that are inclusive and that support the development 
of a robust mathematics identity.  

I focus on the experience of the first, credit-bearing, undergraduate mathematics course in 
this study because mathematics courses are very important gatekeepers to continued participation 
in STEM and, by extension, other mathematics-related programs (such as secondary 
mathematics education) in many universities (Ellis et al., 2014; Tao & Gloria, 2018) and 
therefore an important site to examine for critical experiences that help or hinder the uptake of 
secondary mathematics education as a course of study. I define persistence as continuing the 
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journey to degree attainment as a secondary mathematics education major (or minor, depending 
on the institutional program structure). 

The two overarching research questions guiding this study are as follows: 

1. When sharing stories of persistence and success in the first undergraduate mathematics 
course, which cultural capital do Black girls who are Secondary Mathematics Education 
majors, believe was instrumental in that success? 

2. How do the counternarratives of the participants compare and contrast in terms of their 
capital? 

Using a counternarrative research design, I propose to engage narrators in the reflective 
telling of mathematics learning experiences before, during, and after a particular event: the first, 
credit-bearing mathematics course taken at their current 4-yr institution as a requirement for their 
major. I chose Counternarrative Inquiry, not only because it allows attention to the ways in 
which marginalized peoples are resisting derogatory dominant narratives (Mertens, 2020), but 
because it also preserves the voice of the participants, which is vital for this study and is aligned 
to the theoretical framework. I will use Yosso’s (2005) Community Cultural Wealth (CCW) as 
the analytical framework, applying it through a lens of Critical Race Theory (Bell, 1995; 
Delgado & Stefancic, 2017) and Black Feminist Thought (Collins, 2015; Combahee River 
Collective, 1977), to draw attention to what is revealed in the stories told by the narrators.  

Preliminary findings from a pilot study reveals that aspirational capital, defined as the “the 
ability to maintain hopes and dreams for the future, even in the face of real and perceived 
barriers…this resilience is evidenced in those who allow themselves…to dream of possibilities 
beyond their present circumstances” (Yosso, 2005, p. 77-78), is a fundamental anchor is the 
persistence of the two Black women participants. Social capital, which is derived from networks 
of peers and the community that provide emotional and instrumental support (Yosso, 2005), is 
notable in its limited use towards success. It is especially evident when participants tell stories 
about classroom experiences, stories that highlight an isolation and loneliness that has been 
reported in several research studies (e.g., King & Pringle, 2018; Marra et al., 2009, etc.).  

Where there have been several studies documenting the underrepresentation of Black women 
in undergraduate and graduate STEM and STEM-related disciplines (Alexander & Hermann, 
2016; Ellington & Frederick, 2010; Haynes et al., 2016), asset-based studies that attend to the 
experiences and barriers that begin to offer insight as to sociopolitical and cultural factors that 
surround how Black women experience mathematics are relatively few (King & Pringle, 2018; 
Lim, 2008; Young et al., 2018). Per Young et al.’s (2020) recommendation, this study will 
contribute to the body of research that attends to sociocultural hurdles that Black girls and 
women overcome en route to success.  
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Spatial reasoning comprises a vital set of skills for development in science, technology, 
engineering, arts, and mathematics (STEAM) domains (Lord & Rupert, 1995; Wai et al., 2009) 
that support mathematical and academic achievement (Duncan et al., 2007) but is rarely taught in 
early childhood classrooms (Clements & Sarama, 2011; Moss et al., 2015). Many factors may 
influence teachers enacting spatial reasoning instructional practices, including the professional 
learning opportunities they have experienced (Horn & Garner, 2022; Putnam & Borko, 2000), 
the tools to which they have access (Kazemi & Hubbard, 2008; Lave & Wenger, 1991), and their 
knowledge of and beliefs about teaching spatial reasoning (Ball et al., 2008; Batista et al., 1982; 
Skott, 2013). This study seeks to address the problem that we do not have a clear picture of how, 
or if, early childhood teachers enact spatial reasoning instructional practices by considering how 
professional development (PD), tools, and teachers’ knowledge and beliefs interact with teaching 
practice to develop ways of supporting teachers’ situated learning for teaching spatial reasoning. 

This research aims to develop a local theory of situated teacher learning specific to learning 
and enacting spatial reasoning instructional practices (see Figure 1; Cobb et al., 2003) and a suite 
of pedagogical tools (Putnam & Borko, 2000) to support those enactments. The proposed 
situated teacher learning and practice model is adapted from Clarke & Hollingsworth’s (2002) 
model of teacher growth. It specifies conjectured domains contributing to teacher learning and 
practice, and will undergo iterative refinement using design-based research methods (Cobb et al., 
2003; Sandoval, 2014) as responsive to the research context. Simultaneously, tools related to 
enacting spatial reasoning teaching practices will be developed in context as pedagogical tools 
(Putnam & Borko, 2000). By developing this local theory and tools to support teacher learning, I 
aim to answer the question: How can we support early childhood educators in enacting spatial 
reasoning teaching practices? 

 

 
Figure 1: Proposed Model of Situated Teacher Learning & Practice 

Methods 
This study is conducted at a local STEM-focused elementary school and employs design-

based research methods (Cobb et al., 2003; Sandoval, 2014) within a descriptive case study 
(Merriam, 1998; Yin, 2009). The case will be bounded by grade levels within the school, 
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specifically kindergarten and first-grade, and design iterations will focus on leveraging an open-
source curriculum aligned with state and national standards for teaching spatial reasoning. 
Kindergarten and first-grade teachers will be new to the building in fall 2022, which, combined 
with the school’s inquiry learning framework and adoption of an open-source mathematics 
curriculum, offers a unique opportunity to spatialize a standards-aligned curriculum by offering a 
companion guide to typical mathematics instruction. Data collection will occur concurrently with 
summer and fall semester professional learning opportunities for situated teacher learning about 
spatial reasoning in which they will collaboratively construct pedagogical tools to enact spatial 
reasoning teaching practices (Horn & Garner, 2022; Moss et al., 2015). Given the school 
calendar and professional learning session structures, I anticipate three opportunities for group 
professional learning with individualized coaching occurring more frequently. 

Using semi-structured interviews (Merriam, 1998), I will collect data on in-service teachers’ 
background knowledge and beliefs about teaching spatial reasoning and their experiences with 
professional development that could support their enactment of spatial reasoning teaching 
practices. These interviews inform two learning components within the proposed model of 
situated teacher learning (i.e., the external and personal domains; see Figure 1). I am also 
creating a companion guide for the kindergarten and first-grade mathematics curriculum with 
representations and extensions. Pending school district approval, I will observe teachers enacting 
spatial reasoning instruction within typical mathematics instruction. I will also conduct debrief 
interviews to elicit feedback after teachers enact recommended practices in the classroom for 
personal reflections that will be used to triangulate findings and support internal validity and 
trustworthiness of findings (Merriam, 1998). Data collection and analysis will occur recursively 
to inform revisions to the research design and suite of tools as I learn how to better support 
teachers’ spatial reasoning instructional practices. 
Data Analysis 

I will use iterative rounds of qualitative data analysis to explore how researchers can support 
early childhood teachers in enacting spatial reasoning teaching practices. I will apply a priori 
provisional codes based on learning components in the proposed bidirectional model of situated 
teacher learning while reading sources and recording preliminary jottings (Saldaña, 2016). I 
conjecture that data might inform multiple components and will therefore employ simultaneous 
coding (Miles et al., 2014) of passages that align with inclusion into multiple a priori descriptive 
codes. I will then engage in open coding to locate emergent themes using methods most 
appropriate for each data source type. Interviews will be coded using In Vivo coding methods 
(Saldaña, 2016) to develop codes and themes that can then be supported by descriptive statistics 
emerging from survey data of teachers’ perceptions about enacting spatial reasoning instruction. 
Between iterative coding rounds, member checking will ensure accurate capture of teachers’ 
perspectives and provide opportunities to integrate revisions (Merriam, 1998).  

Results and Implications 
This in-progress research contextualizes Horn and Garner’s (2022) work on teacher learning 

using a sociocultural approach to create a local theory for early childhood teachers’ enactment of 
spatial reasoning instruction. Given that current educational standards minimally mandate spatial 
reasoning skills instruction (National Research Council, 2006), we must understand how spatial 
reasoning aligns with our current curricular requirements to provide opportunities for teachers 
and students to learn these critical skills (Clements & Sarama, 2011). The proposed theoretical 
framework could guide future research to design professional learning opportunities and tools for 
teachers’ use to leverage their knowledge and beliefs to teach spatial reasoning. 
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Mathematizing (the process of transforming a real-world situation into a mathematical 

model) receives a lot of attention in modelling literature because it is difficult for students. 
(Galbraith & Stillman, 2006; Jankvist & Niss, 2020).  Many existing studies further our 
understanding of participants’ difficulties with mathematizing by characterizing the “blockages” 
that occur (Brahmia, 2014; Stillman & Brown, 2014).  While these studies adequately describe 
the blockages in terms of student knowledge, the field would benefit from a study of the mental 
processes that may be important for participants to productively engage in while mathematizing. 
Such mental processes would include quantitative reasoning and associated theories such as 
covariational/multivariational reasoning. Framing mathematizing this way is appropriate because 
previous studies focused on quantitative reasoning have indicated that quantitative reasoning 
promotes mathematization (Ellis, 2007; Ellis, Ozgur, Kulow, Williams, & Amidon, 2012; 
Mkhatshwa, 2020).  Additionally, researchers have suggested that quantitative reasoning is a lens 
with which to understand participants’ mathematical reasoning about real world scenarios 
(Carlson, Larsen, & Lesh, 2003; Czocher & Hardison, 2021; Larson, 2013).  In order to provide 
theoretical structure for and empirical evidence of the cognitive sources of students’ blockages, 
as well as give consideration to how facilitators could help students overcome them, I will be 
analyzing STEM undergraduates’ mathematization in terms of mental processes rather than 
actions and behaviors. Thus, the goal of this study is to answer the research question: “How do 
the mathematical models undergraduate STEM majors construct during mathematization arise 
from their quantitative, covariational, and multivariational reasoning?” The study will extend the 
field’s understanding of quantitative, covariational, and multivariational reasoning by applying 
those theories in a novel demographic doing modeling tasks. Additionally, it will extend findings 
on STEM undergraduates’ understandings of differential equations (Arslan, 2010; Rowland & 
Jovanoski, 2004) by stating a participant’s meaning for the differential equation they constructed 
and its terms. Finally, the results will inform development of instructional materials based on 
participants’ already-existing ways of thinking rather than promoting specific behaviors. 
Theoretical Framework 

My theoretical framework synthesizes five interrelated constructs/theories: quantitative 
reasoning, covariational reasoning, multivariational reasoning, schema of action (SoA), and 
mathematical modeling. Quantitative reasoning is “the analysis of a situation into a quantitative 
structure- a network of quantities and quantitative relationships" (Thompson, 1993), where a 
quantity is a triple consisting of an object, attribute, and quantification. Covariational reasoning 
is defined as "the cognitive activities involved in coordinating two varying quantities while 
attending to the ways in which they change in relation to each other" (Carlson et al., 2002, p. 
354). Multivariational reasoning is the extension of covariational reasoning to two or more 
varying quantities (Jones, 2018). An SoA is defined as an organized pattern of thoughts or 
behaviors that can be applied to different cognitive objects in different situations (Nunes & 
Bryant, 2021). Lastly, a mathematical model is a conceptual system consisting of elements, the 
relationships among elements, operations, and rules of governing interactions. Because a 
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mathematical model is a conceptual system, it is held, at least partially, internally and is 
expressed into the world through different representations, which are dictated by a participant’s 
use of any external notation systems (Lesh & Doerr, 2003). Synthesizing these theories: (1) The 
elements of a mathematical model can be characterized by the quantities participants 
construct/impose onto the task scenario. (2) The rules governing the relationships and 
interactions between elements can be characterized by an individual’s quantitative, covariational, 
and multivariational reasoning.  (3) The operations on the quantities are determined by the SoA’s 
employed by the STEM undergraduates to justify those operations. 
Methods 

The data collection for this study is part of a larger study of facilitator scaffolding moves that 
improve participants’ mathematical modeling competencies. The data come from task-based 
interviews designed to evoke complex thought processes where the interviewer’s role is to elicit 
complete coherent reasons the participants give for their own activities (Goldin, 2000). In the 
larger study, participants will be given at least six tasks over ten sessions. I will curate data from 
the sessions corresponding to three different dynamics scenarios common to differential 
equations (Cats & Birds (lotka-volterra predator-prey model), Tropical Fish (net rate inflow-
outflow), and Ebola (SIR disease transmission model)). I choose these tasks because they invite 
different ways of constructing quantities and uses of quantitative operations. Additionally, 
dynamic tasks elicit dynamic reasoning, which is connected with quantitative reasoning and 
covariational reasoning (Keene, 2007). Probing questions like “What does <quantity> mean to 
you?”, and “Why did you choose to <add/subtract/multiply/divide> <quantity> and <quantity>?” 
will bring out the participants’ rationales for associating specific elements of the scenarios with 
the arithmetic operations they choose (that is, mathematization).  

In the initial phase of analysis, I will go through the transcripts and written work to identify 
instances where participants: discuss their conception of a quantity, justify the usage of 
arithmetic operations, or reason about a quantity’s values co-varying/multi-varying with other 
quantities. For each instance, I will identify the quantities participants construct/impose onto 
each task scenario by noting the object, attribute, and documenting evidence of quantification 
using the quantification criteria developed by Czocher and Hardison (2021). I will then 
document levels of covariational reasoning (Thompson & Carlson, 2017) and types of 
multivariational reasoning (Jones, 2018; Kuster & Jones, 2019; Panorkou & Germia, 2020) used 
with the quantities. I will then examine moments when a participant uses an arithmetic operation 
(+,−,⋅,÷) and its associated SoA. In some cases, the participant may give an explicit reason for 
using the operation and in others I may need to infer it based on data from previous tasks. I will 
use the SoA’s documented in Thompson (2011), and Nunes and Bryant (2021) and extend those 
lists as needed.  Each model a participant develops will be characterized by the quantities present 
in the model, including how each quantity was derived, the covariational/multivariational 
reasoning used with each quantity, and the SoA the participant used when using arithmetic 
operations with the quantities they deem relevant to the scenario. This will yield descriptions of 
how participants transform the quantities they impose onto a situation into mathematical 
representations via participants’ quantitative, covariational, and multivariational reasoning. By 
performing this analysis across tasks and across participants, I will be able to provide evidence of 
the mental processes participants engage in while mathematizing different dynamic scenarios.  
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A major hurdle for students at two-year institutions is to complete developmental (remedial) 
or transfer-level (credit-earning) mathematics courses with a grade of C or better. A national 
study revealed that about 68% of students at two-year institutions take remedial courses (Chen, 
2016). Some students take two or three remedial courses consecutively and only about 11% of 
those students pass their transfer level “gateway” course (Jaggars & Stacey, 2014). As the name 
implies, gateway courses are used as a prerequisite to enter many majors. College algebra is one 
such gateway course (Giang-Nguyen, 2015; Tunstall, 2018) and nearly 1/3 of the college algebra 
enrollments occur at two-year institutions (Bressoud, 2021). However, college algebra has only 
about a 50% pass rate (C or better) (Giang-Nguyen, 2015; Okello, 2010). Further, many college 
algebra students fear mathematics and have their performance influenced by prior experiences in 
mathematics (Herriot, 2006). 

Affective factors—in particular, mindset and self-efficacy—may play a vital role in the 
success of students at two-year institutions (Center for Community College Student Engagement 
(CCCSE), 2019). Specifically, researchers have found that mindset interventions can influence 
students to seek help (Shively & Ryan, 2013), increase perseverance, and lead to lower failure 
rates in mathematics (Lewis, 2019). In addition, Auten (2013) found that mindsets of students 
and teachers play a vital role in students’ academic success at community colleges. Although 
previous work has examined student achievement after mindset interventions (Aronson et al., 
2001; Blackwell et al., 2007; Steele, 2007), few studies have documented the experiences of two-
year college students and their instructors while they are enrolled in courses that attempt to foster 
growth mindsets. Knowing more about college students’ experiences, personal views, 
motivations, attitudes regarding mathematics (Mesa, 2017), and faculty members’ perceptions as 
they work to implement strategies aimed at fostering growth mindsets in their students would 
provide evidence about which factors contribute to the effectiveness of mindset interventions. 
Rather than focusing on the outcome of mindset intervention, I seek to understand the process of 
attempting to positively affect students mindsets and self-efficacy beliefs. 

Thus, my research questions are: (1) How does each instructor approach and implement 
growth mindset components into their courses? (2) What do two-year college instructors report 
about their experiences during the process of developing and implementing strategies for 
fostering growth mindset in their developmental courses and how do they perceive the effects of 
their approaches on students? (3) What do two-year college students report about their 
experiences and effects on mindset and self-efficacy beliefs as they engage with their instructors’ 
who are attempting to foster a growth mindset in their developmental courses? 

This will be a qualitative study with a conceptual framework based on a constructivist 
paradigm and mindset theory. The constructivist paradigm—the belief that learners (students and 
teachers) will construct their own understanding through experiencing and reflecting on 
experiences (Lerman, 1989)—will be used as a lens through which to investigate how students 
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and teachers construct their own understanding of growth mindset beliefs as they interact in 
mathematics classrooms geared toward fostering growth mindset beliefs.   

Mindset theory is based on the idea that people hold different beliefs about whether certain 
attributes (e.g., intelligence and personality) are malleable. People form implicit theories based 
on their goals and how they interpret the outcomes of their efforts (Bernecker & Job, 2019; 
Dweck, 2006). A growth mindset (incremental theory) is based on the belief that intelligence is 
malleable and can be grown through effort and guidance, while a fixed mindset (entity theory) is 
based on the belief that each person has only a certain amount of talent or intelligence (Dweck, 
2006). In learning and performance, people with growth mindsets are open to change; they see 
failure or adversity as the need to put forth more effort (Bernecker & Job, 2019); and compared 
to people without growth mindsets, their goals are more aimed at improvement (Dweck, 2006). 
In this work, mindset theory will serve as a lens through which to view students’ and teachers’ 
perspectives about their experiences, as teachers attempt to foster growth mindset beliefs in their 
students over the course of one semester.  

Self-efficacy beliefs can play a major role in the actions of students. Self-efficacy is the 
belief in one’s capability of “organizing and executing” a plan to reach a certain goal (Bandura, 
1997, p. 3). This belief can influence one’s effort, the amount of time they are willing to spend 
on a task, and how long they are willing to persist when faced with failure or obstacles (Bandura, 
1997). My goal is to determine whether students’ self-efficacy beliefs were influenced as they 
engaged in a classroom that fostered growth mindset beliefs. 

In this case study, I will focus on one to three two-year college instructors who are teaching a 
developmental mathematics course and some of their students. The developmental mathematics 
course is specifically designed for students whose next mathematics course is college algebra. I 
will work with the participating instructors to develop approaches for promoting growth 
mindsets in their students. I will document the instructor collaboration process from my own 
perspective and instructors will keep weekly journals to document their experiences. Before and 
after the semester, I will interview the instructors and some of their students, regarding their 
perceptions about the course, their prior experiences, and their mindsets related to mathematics. 
For the students only, I will also ask about their mathematical self-efficacies. I will use surveys 
to assess mindsets of instructors, and mindset and self-efficacy beliefs of students before and 
after the semester. The survey questions I intend to use are designed to measure mathematical 
mindsets and mathematical self-efficacy beliefs on a 5-point Likert scale (Rothrock, 2019; 
Williams, 2015). Student responses will be used to determine if there were shifts in mindset and 
self-efficacy beliefs during the semester.  

This research is important because it builds on past work that has investigated student 
mindset and self-efficacy at the collegiate level and additional work on effectiveness of growth 
mindset interventions. In particular, this study will fill a gap in existing research by examining 
the process of fostering growth mindset beliefs in the mathematics classroom from both 
instructor and student perspectives. Most community colleges have not implemented the much-
needed direct efforts to influence mindset and self-efficacy (CCCSE, 2019), and it is important to 
learn more about two-year college students’ experiences and personal views within the 
mathematics classroom, and faculty members’ strategies (Mesa, 2017). Therefore, my study will 
capture how instructors experience their work attempting to foster growth mindsets in their 
students, and how students perceive the effects of those efforts. This study will add to the 
literature about mindset studies in mathematics at community colleges by documenting the 
perceptions and experiences of students and instructors in their work on mathematical mindsets. 
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We have all encountered students who seem over- or under-confident in their skills. For 
example, the student who is confident they will do well but fails every exam. Or the student who 
repeatedly worries of failing yet gets 100% on every exam. These students have incongruous 
mathematics self-efficacy. Mathematics self-efficacy (MSE) is a person’s beliefs about their 
ability to succeed in mathematical activities. Incongruous math self-efficacy (IMSE) is when a 
person’s MSE and their abilities do not match to a significant extent.  
Background and Theoretical Framework 

Self-efficacy is defined as a person’s beliefs about their ability to complete a particular task 
(ranging from a problem to a full course) (Bandura, 1986). Much research has been done on self-
efficacy and its predictive power in student success (e.g., Bandura, 1986; Hackett & Betz, 1982; 
MacPhee et al., 2013; Zeldin et al., 2008). This research suggests that a student’s self-efficacy is 
directly correlated to their success in mathematics, their career choices, and their success within 
their career (e.g., Buschor et al. 2014; Hackett, 1985; Hackett & Betz, 1989; Pajares & Miller, 
1994). Research suggests, however, that some students are overconfident, and some are 
underconfident; that is, some students have IMSE, also called “feeling-of- knowing accuracy” or 
calibration (Schraw, 1995; Pajares & Miller, 1994). These terms have been used to describe a 
disconnect between a person’s self-efficacy beliefs about a topic and their abilities as measured 
through assessments (e.g., Stolp & Zabrucky, 2009; Sheldrake, 2016) 

More research is needed on IMSE; in particular, qualitative work with undergraduate 
students is often lacking in the literature. Much of the current literature is quantitative in nature 
(Labuhn et al., 2010). In addition, much of the work on IMSE is much focused on K – 12 
students, as well as teachers (e.g., Chen, 2006; Dassa & Nichols, 2019; Labuhn et al., 2010). 
When looking at the population of undergraduate students there is even less focused on IMSE 
(Morán-Soto & Benson, 2018), even though undergraduates differ in significant ways from K – 
12 students, particularly in their need for self-motivation.  

My dissertation study will focus on undergraduate students in an intermediate algebra course. 
The following research questions will guide the study. Research question 1: What are the global 
and problem focused mathematics self-efficacy beliefs of undergraduate students in an 
intermediate algebra course? Research question 2: For these students, what is the relationship 
between problem focused self-efficacy beliefs and performance on a given set of problems? 
Research question 3: For these students, what is the relationship between global mathematics 
self-efficacy beliefs and performance on an exam in their course? Research question 4: For 
these students, what changes occur in the global and problem focused mathematics self-efficacy 
beliefs before and after a mastery experience (exam/problems)? 
Methods 

Using the pilot study as a foundation, students from intermediate algebra will be selected 
based on an initial survey assessing their MSE beliefs and mathematics history. Fifteen 
participants will be selected based on their MSE scores, selecting for variation in MSE. They 
will then be interviewed before their exam. The first interview will follow a semi-structured in-
depth format and ask for a more detailed mathematics history focusing on MSE beliefs in the 
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participants’ own words. During interview 1 there will also be a problem focused section where 
the participants will be asked their MSE for three problems from their course work and then be 
asked to solve the problems. A second survey will be administered after the participants have 
taken their first exam, but before their grades are returned. This survey will ask participants how 
they feel about the exam, and their predicted results. After their grades are returned, a second 
interview will be conducted to assess the participants’ predicted results compared to their actual 
results, and any changes to their MSE beliefs.  
Preliminary Findings and Anticipated Results 

The purpose of this study is to identify students who display the characteristics of IMSE and 
to examine their understanding of this misalignment. In doing so, I hope to uncover more about 
the MSE beliefs of undergraduate students in an intermediate algebra course.  

In terms of research question one, in my pilot study I found a range of MSE beliefs, both 
global and problem focused. Out of the five participants, four expressed moderate to high global 
MSE beliefs. Across the three problems participants solved in interview one, participants seemed 
to have more confidence with computational problems, versus word problems, and there was 
evidence of IMSE in the problem focused self-efficacy ratings, with participants being confident 
in their answers and getting them wrong, as well as not being confident in their answers, and 
getting them correct. In my larger dissertation study, I anticipate a broader range of MSE beliefs, 
as well as more instances of IMSE beliefs. I am also interested in a potential connection between 
participants’ global MSE beliefs and their problem focused MSE beliefs.  

In terms of research question two, in my pilot study students’ global MSE aligned with their 
problem performance. There were, however, instances of problem focused IMSE identified in all 
participants who completed the study. For one participant in particular, Gabrielle, she expressed 
high confidence on the more difficult computational problem but was incorrect in her solution; 
she then expressed low confidence in the word problem and was the only participant to get it 
correct. In my dissertation study, I anticipate finding more cases like Gabrielle. 

In terms of research question three, in my pilot study, participants overestimated their 
performance on the exam. No participant passed the exam; however, all but one participant 
thought that they would pass. Participants did tend to hedge their predictions. In my dissertation 
study, I expect to find more instances of IMSE and hope to examine the relationship between 
global MSE beliefs of students and final course grade. I also hope to find students who 
underestimate their performance and see how their data compares.  

In terms of research question four, in my pilot study there was little to no change in students’ 
global MSE or course grade predictions before and after the exam. There was, however, change 
in the participants’ problem focused MSE especially related to the easier computational problem 
and the word problem. Before solving these problems, students would rate them as very difficult, 
but then after solving would rate them as less difficult. In my dissertation study, I anticipate 
finding similar results. I hope to find more instances of global MSE changes based on exam 
performance, and how this might be related to final course grade performance.  
Implications 

This work has important implications for research and practice.  In particular, we hope to 
expand the current understanding of the relationship between performance and MSE by 
providing qualitative case studies of instances of IMSE. In addition, there are practical 
implications from having an improved understanding of these relationships, particularly for 
helping students better judge their own expected performance and their need for additional study.  
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Background of the Project  
The importance of integrating STEM education into preschool classrooms has been echoed 

across contexts (National Research Council, 2011; Chesloff, 2013). However, teachers’ low  
confidence and negative attitudes toward STEM, combined with few opportunities for 
professional development (PD), have resulted in an avoidance of STEM teaching (Timur, 2012). 
Effective PD programs provide opportunities to improve teachers’ confidence and attitudes 
toward STEM and are crucial to the success of preschool programs (Hamre et al., 2017). Prior 
studies have shown that effective PD includes developmentally appropriate instruction, 
individual coaching (Bowman, 2001), group-focused interventions (Ginsburg et al., 2006), and 
modeling instruction (Wasik et al., 2006). However, PD workshops may provide only one of the 
aspects mentioned above which is inadequate and may not be high quality (Gomez et al., 2015). 
Further, common PD programs for preschool teachers lack research-based practices and are not 
monitored for content and effectiveness (Gomez et al., 2015).  

Goals of the Research 
The goal of the current project is to assess the effectiveness of a PD program exposing Head 

Start preschool teachers to STEM. This program uses research-based practices and combines the 
use of developmentally appropriate activities, group sessions, individualized coaching, and 
modeling instructional practices. Further the program is comprehensive and long term, which 
allows for greater growth among our teacher participants and connection with teachers. Through 
the program, I aim to increase teachers’ attitudes and self-efficacy towards STEM teaching, 
increase their ability to recognize STEM activities in their teaching, and expand current 
curriculum to incorporate more STEM activities. As part of a research fellowship with the AIMS 
(Activities Integrating Math and Science) Center that focuses on increasing STEM in classrooms 
through PD, I am working with a team to design and implement a six-month PD program with 
preschool teachers focused on increasing STEM activities in their classrooms. For my 
dissertation, I am leading the research behind the PD program to investigate the following 
research questions: 1) How do teachers’ self-efficacy and attitudes toward STEM change after 
participating in the PD? 2) In what ways do teachers expand and implement activities presented 
in the PD? 3) What aspects of the PD lead to the greatest growth in teachers’ use of STEM 
activities in their classrooms? 

Methodology 
The current project will provide STEM PD for a Head Start preschool site. Participants 

include 26 California Head Start preschool teachers who teach 131 children in 8 classrooms with 
each classroom having 2-4 teachers. This PD program will take place over 6 months, beginning 
in January 2022, with each month covering a different module and focus: patterns, spatial 
communication, movement, board games, robots, and coding. Each module will follow the same 
format and consist of a 2-hour professional learning (PL) session, classroom integration of what 
was learned in the PL session with follow up individualized coaching, and a family engagement 
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section with take home kits for each child around the module’s topic. I will be focusing on 
studying the program, as well as the PL sessions. To study the implementation of the program, I 
will analyze survey and interview responses. I will also review participants’ responses and 
interactions during the PL sessions, as well as researcher field notes of the sessions. Prior to the 
beginning, and after completion of the 6-month PD program, teachers will complete a 5-point 
Likert scale survey to uncover their attitudes and self-efficacy around teaching STEM. This 
survey was created by combining the Early Childhood Teacher’s Attitudes toward Science 
Teaching Scale (Cho, 2003) and two sections of the Teacher Efficacy and Attitudes Toward 
STEM (T-STEM) Survey (Friday Institute for Educational Innovation, 2012). Additionally, 
teachers will fill out a 4-question open-ended reflection worksheet at the end of each PL session 
asking: what they enjoyed about the session, what was difficult and challenging about the 
session, how researchers could more effectively lead the session in the future, and a final 
question specific to each module. For example, the question for the pattern module is: “What 
patterns are you now noticing in your daily life? Personal experience? Community?” A subset of 
10 teachers will also participate in 20-minute exit interviews asking about their overall 
experience with the program, classroom implementation, expansion of activities, and growth as a 
preschool teacher of STEM. PL worksheets, interviews and researcher field notes during the 
sessions will be qualitatively coded to find common themes. I will also include measures of 
fidelity of the program including number of PL sessions attended, coaching sessions attended, 
and completion of worksheets. Analyzing these data sources will help us determine the 
effectiveness of the program. Specifically analyzing the survey responses before and after 
completing the program will allow us to assess teacher growth in self-efficacy and attitudes 
toward STEM teaching. By examining the worksheets, interviews and field notes I will be able 
to detect common themes around how teacher’s ability to recognize STEM improved as the 
program continued and whether they felt as if they had improved in this competency. I will also 
be able to analyze how teachers were able to implement the activities from the sessions into their 
classroom and expand on these activities.  

Preliminary or Expected Findings 
I expect to see increases in teacher attitude and self-efficacy toward STEM as measured by 

the Early Childhood Teacher’s Attitudes toward Science Teaching Scale and the T-STEM 
Survey. I will run repeated measures t-tests to assess growth in these surveys. To assess whether 
a teacher's abilities to recognize STEM in their teaching as well as expand their current 
curriculum to include STEM, the worksheet responses, exit interview responses and field notes 
will be examined. I also expect to see teachers develop an increased awareness of the ways 
children learn and experience STEM in the preschool classroom. 

Expected Contributions 
This dissertation work will have direct contributions to the teachers and their students who 

participated in this professional development program. As a research practice partnership study, 
one of the main goals is to provide impact to educators and their students. In addition, this work 
will examine the effectiveness of this program and provide recommendations for future 
preschool professional development programs. This will also provide further insights into how 
we can best increase STEM in preschool classrooms and increase teachers’ attitudes and self-
efficacy towards STEM.  
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Introduction 
As culturally responsive frameworks and anti-bias resources become more commonplace, 

mathematics teachers across the United States are increasingly seeking content from the internet 
as they plan their lessons (Gewertz, 2015; Timberlake et al., 2017). However, there is mounting 
evidence that resources from online spaces may not be standards-aligned, developmentally 
appropriate, equity-based, or even accurate (Gallagher et al., 2019; Greene, 2016). Still there are 
teachers who are able to discern high quality and social justice-oriented resources embedded in 
critical pedagogy that lead to positive student academic, cultural, and affective outcomes. To 
date, there has been little investigation into secondary mathematics teachers’ decision-making 
processes when selecting which materials to use from online spaces and even less about choosing 
critical content centered around teaching mathematics for social justice. Therefore, the goal of 
this project is to explore mathematics teachers’ decision-making processes when planning and 
enacting social justice-oriented mathematics lessons from online spaces.  

Background & Theoretical Perspective 
Previous studies have investigated how in-service and pre-service mathematics teachers 

design, implement, and revise lessons centered around social justice (Harper et al., 2021; Myers, 
2019). While these studies referenced sources linked to online spaces, they did not interrogate 
the decision-making processes of the participants as they navigated these spaces. 

This study draws from the theoretical frameworks of teacher decision-making and critical 
mathematics education to investigate how secondary mathematics teachers engage with these 
spaces, make decisions to use certain materials, and enact these instructional resources in the 
classroom.  Remillard and Heck’s (2014) model of the curriculum enactment process provides 
insight into what factors influence teachers’ decisions when using curriculum. A focus on critical 
mathematics provides a lens into how educators who teach mathematics for social justice 
approach curricular content from online spaces when planning and enacting their lessons. 
Critical Mathematics Educators’ Decision-Making 

Over the past decade, researchers have begun to explore the decision-making processes of 
social justice and critical educators. King and Nomikou (2018) linked the ideas of decision-
making and teacher agency by suggesting that educators are more apt to take risks in their 
decision-making if they feel they have more autonomy and agency over their work. MacPherson 
(2010) investigated eight different decision-making orientations that pre-service teachers take up 
when teaching culturally and linguistically diverse learners. In her study, Bartell’s (2013) 
participants felt that one of the challenges of TMSJ was making the decision of how to balance 
social justice with mathematics content. These previous findings suggest that research on 
decision-making throughout the curriculum enactment process in critical mathematics education 
still needs to be explored. 
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Methods 
The following research questions will guide my exploration. 

1. How do secondary mathematics teachers engage with online spaces when searching for 
critical mathematics content? 

2. What are secondary mathematics teachers’ decision-making processes when choosing 
online materials to teach and/or supplement their curriculum in critical ways? 

3. How do secondary mathematics teachers enact critical mathematics content found from 
online spaces in their classrooms? 

Research Design & Data Collection 
A sample of secondary mathematics teachers will be recruited from across the United States 

based on recommendations from critical mathematics education scholars to take part in a 
multiple-case study (Yin, 2009). As part of phase I of study activities, the participants will be 
given a demographics survey, asked to provide three social justice-oriented mathematics lesson 
plans, and interviewed about their interactions with online spaces during lesson planning. During 
phase II, teachers will be asked to keep a journal as they plan for one social justice-oriented 
lesson. A semi-structured interview will take place prior to enacting this lesson in the classroom. 
For phase III, I will visit the participants’ schools to observe the lesson plan that was discussed 
via Microsoft Teams to see how the lesson is enacted in the classroom. At the end of the school 
day, the teacher will be interviewed to learn how the lesson plan was enacted in the classroom 
and understand the teacher’s in-the-moment decisions.  
Data Analysis 

To answer RQ1 and RQ2, I will provide a summary of the participants’ demographics, 
including the school characteristics, teacher characteristics, and course information. I will also 
provide response-level excerpts open coded using an In Vivo approach (Saldaña, 2013) from all 
interviews and the planning journals. These codes will be analyzed using Remillard and Heck’s 
(2014) model of curriculum enactment and categorized by common characteristics of critical 
mathematics teachers based on literature (Gutiérrez, 2012; Gutstein, 2006; Ladson-Billings, 
1995). Additionally, data gathered from all lesson plans provided will be analyzed using an 
appropriate lesson plan analysis protocol selected through relevant literature (Hu et al., 2019).  

To answer RQ3, I will first open code the data gathered from the lesson planning 
observations based on teacher actions and verbal communication. I will then categorize this data 
by in-the-moment decisions identified through a comparison of the intended and enacted lesson 
plans. I will analyze these moments using a critical framework protocol that has been used with 
teachers previously to identify strengths with cultural competence and critical consciousness or 
adapt a critical framework that already exists, as necessary (Brown & Crippen, 2016; Hu et al., 
2019).  

Anticipated Contributions 
Anticipated findings include insights into how social justice topics are embedded in 

secondary mathematics curriculum. I also hope to understand these educators’ rationales for 
decisions they make when they plan and enact their critical mathematics lessons. This research 
may also set the stage for further research into critical mathematics educators’ decision-making 
processes. Lastly, findings may be used to inform mathematics methods course content for pre-
service teachers and professional development opportunities for in-service mathematics teachers 
to learn how to critically navigate online spaces when planning for instruction.  
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Background and Significance 
Although mathematics education research is designed to improve mathematics education for 

all students, some scholars may have positioned Black learners of mathematics as historically 
and systematically inferior to their counterparts thereby furthering the perception that Black 
learners have deficits (Bullock, 2019; Gardner-Neblett et al., 2021; Gutiérrez, 2008; Martin, 
2019). Mathematics education has not fully addressed how racism is related to its teaching, and 
consequently, the published quantitative research reflects colorblind narratives that fail to 
consider mathematics as a racialized and gendered space (Battey & Leyva, 2016; Gutiérrez, 
2008; Parks & Schmeichel, 2012; Ridgeway & McGee, 2018). Hence there is a dire need for 
scholars who conduct quantitative mathematics education research to challenge the dominant 
deficit discourses about Black learners and teachers in mathematics education. To this end, 
critical scholars in mathematics education have recently put forth calls to advance mathematics 
education research, policy, and practice toward liberation for Black learners. That is, researchers 
must attend to the sociohistorical and sociopolitical dimensions of education, including the 
manifestations of structural racism and antiblackness, especially in posing research questions 
posed and data collection and interpretations.  

Given this background and the urgency for quantitative mathematics education scholars to 
use research to create, foster, and sustain mathematics spaces as sites of resistance against 
antiblackness and white supremacy, the primary question that guides this dissertation is: How 
can quantitative mathematics education researchers use critical racial research to support and 
create liberatory mathematics education, particularly for Black learners, teachers, and 
researchers of mathematics? I use two theories: Quantitative Critical Theory (QuantCrit; 
Gillborn et al., 2018) and Black Critical Theory (BlackCrit; Dumas & ross, 2016), and apply 
them to quantitative education research to illuminate, critique, and dismantle anti-black discourse 
and practices. This manuscript-style dissertation is motivated by three distinct but interrelated 
lines of inquiry that explore the possibilities of critical racial research in transforming 
mathematics education research and education more broadly. Each area of inquiry is reflected in 
a paper, and each paper represents parts of a complete statement of the need for QuantCrit and 
BlackCrit practices in mathematics education research. 

Research Questions & Design of Studies 
Specifically, in my dissertation, I seek to identify the problems of antiblackness in 

mathematics education research, the possibilities of using critical racial research theories and 
methodologies in rupturing antiblackness, and how Black mathematics education researchers 
could learn to use QuantCrit and BlackCrit to expose, critique, and dismantle antiblackness in 
mathematics education. In Paper 1, I provide a primer on why and how QuantCrit and BlackCrit 
could be applied to mathematics education research. In Paper 1, I will address the following 
research question: Using a Black Critical Theory (BlackCrit) lens, what contributions does 
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QuantCrit provide to larger critical conversations centering race and racism in mathematics 
education? Paper 1 is a conceptual paper that attends to why QuantCrit and BlackCrit are 
necessary theoretical and methodological frames in quantitative mathematics education research 
and how QuantCrit could be applied to mathematics education scholarship and praxis. 

Critical quantitative education scholars increasingly use secondary data to disrupt deficit 
discourses about Communities of Color (e.g., Covarrubias, 2011; Gillborn, 2010; Morris & 
Perry, 2017; Pérez Huber et al., 2018; Young & Cunningham, 2021). In Paper 2, using secondary 
data analysis of Black New York City Mathematics Teaching fellows’ dispositions towards 
teaching racially and culturally diverse students, I provide an empirical example of BlackCrit and 
QuantCrit. In Paper 2, I explore What might a BlackCrit QuantCrit lens uncover about Black 
mathematics teachers' dispositions towards teaching racially and culturally diverse students? I 
will analyze the subset of 42 questions that attend to the participants' dispositions towards 
teaching racially and culturally diverse students in mathematics classrooms. Undergirding the 
tenets of QuantCrit, I will be analyzing the data in a three-step process: 1) perform a K-means 
cluster of the 74 participants who self-selected Black as their racial/ethnic group, 2) use the 
clusters to create typologies of the participant's dispositions, 3) compare the distinct typologies to 
interrogate the dispositions of Black NYMTF.  

Paper 3 is based on a critical ethnographic study of a six-session collaborative research 
workshop developed by the researcher that centers on how Black Graduate Students in 
Mathematics Education Research (BGMER) conceptualize and apply QuantCrit and BlackCrit to 
their own scholarship. Paper 3 answers the following research questions: 1) What supports do 
Black emerging mathematics education scholars need to become critical racial researchers who 
use QuantCrit and BlackCrit in their research? And 2) How do Black graduate mathematics 
education researchers use QuantCrit and BlackCrit to attend to the specificity of antiblackness 
in a collaborative research workshop focused on QuantCrit and BlackCrit? 

 I aim to not only know what critical literacies BGMERs employ and share in the workshops 
but also how BGMERs apply BlackCrit and QuantCrit to their research projects. I will collect 
field notes, transcribed audio and video from the workshops, and artifacts (such as participants' 
annotations or notes on the pre-engagement reading materials and participants workshopped 
research projects), and keep a research journal to reflect on my research processes, as well as, 
engage in member checking to study the cultural practices and norms of six sessions of the 
workshop over a period of three months and analyze the data using a constant comparison 
analysis, allowing me to use the direct experiences and perspectives of the critical scholars to 
develop a theory on the phenomenon. 

Background and Significance 
The three studies contribute to the literature by informing how mathematics education 

researchers can use QuantCrit and BlackCrit in mathematics education research. Specifically, I 
seek to identify the problems of antiblackness in quantitative mathematics education research, 
the possibilities of using critical racial research theories and methodologies in rupturing 
antiblackness, and how Black mathematics education researchers could learn to use QuantCrit 
and BlackCrit to expose, critique, and dismantle antiblackness in mathematics education. 
QuantCrit and BlackCrit are relatively new frameworks in education; there is little research 
specific to mathematics education on how QuantCrit and BlackCrit can be applied to research in 
mathematics education. The findings from the three studies will lay the groundwork for future 
research into the possible kinds of questions that researchers need to start asking to dismantle 
antiblackness and how we execute the inquiry. 
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Background and Theoretical Framework 
In mathematics curricular documents (e.g., National Governors Association Center for Best 

Practices & Council of Chief State School Officers, 2010; Zorn, 2015), it is common practice to 
outline cognitive goals, habits of mind, and standards of practice that are intended to organize 
students’ curricular experiences. Correspondingly, there is extensive research on the degree to 
which students engage with and understand these pre-determined, cross-curricular themes, such 
as function, equivalence, and abstraction (e.g., Warren & Cooper, 2009; Zandieh et al., 2017).  
However, we do not often ask students directly about the themes they construct based on their 
experiences within the mathematics curriculum. In mathematics courses, too, we do not tend to 
provide students with opportunities to engage in thematic reflection. A natural question arises: 
How are mathematics students organizing their experiences across the mathematics curriculum? 
In other words, which experiences are salient? Which experiences are viewed as (dis)connected? 
In what ways do students find meaning and continuity across their mathematical experiences? 

To address this question, I conceptualize organizing one’s experience as an artistic act. Such 
acts are governed in part by cognitive, rational thinking processes; however, they are equally 
impacted by extra-rational forces, such as emotions, beliefs about (school) mathematics, and 
one’s many identities. To attend holistically to both the rational and extra-rational dimensions of 
organizing experience, I use the theory of everyday aesthetics (Saito, 2010). This modern branch 
of aesthetics is grounded in non-Western aesthetic traditions and the classic work of John Dewey 
(1934/2005). Dewey argued that aesthetics should not be restricted to just evaluations of finished 
“museum art”. Rather, he situated the aesthetic in moment-to-moment experience:  

in order to understand the esthetic in its ultimate and approved forms, one must begin with it 
in the raw; in the events and scenes that hold the attentive eye and ear of man, arousing his 
interest and affording him enjoyment as he looks and listens. (p. 3, emphasis in original) 

Aesthetics in this sense describe impactful experiences that combine emotion, the senses, 
satisfaction, and understanding. As Sinclair (2009) put it, “Dewey looks for integration with the 
human being in interaction with the world” (p. 50). By attending to the everyday aesthetics 
involved in organizing and making sense of one’s experiences, then, we gain a holistic and 
humanistic view on the ways of being and thinking students bring into our mathematics classes. 

Although the use of everyday aesthetics to study education is only just emerging (e.g., 
Marini, 2021; Marini & Merchán, 2021; Sinclair, 2009), aesthetics in general has been a lens 
used by mathematics education researchers to make sense of important extra-rational dimensions 
in learning (Dirkx, 2008). In particular, Sinclair (2001, 2008, 2018) has written extensively about 
the powerful role of aesthetics in mathematical learning and inquiry. Attention to the role of 
aesthetics in mathematical thinking and sense-making may not be a common topic, but it is one 
that has appeared in both classic and modern research (e.g., Dreyfus & Eisenberg, 1986; Jasien 
& Horn, 2022) that continues to shine a light on humanistic aspects of doing mathematics. 
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Research Questions and Methods 
I focus on undergraduate mathematics students—as they have had years to organize and 

make sense of their K-16 mathematics experiences—and consider two research questions: (1) 
What are themes students construct across the undergraduate mathematics curriculum? (2) What 
ways do students organize and make sense of their experiences across the undergraduate 
mathematics curriculum?  

To study these questions, I will recruit ~5 students with at least two semesters of 
undergraduate mathematics courses completed. Participants will then be invited to reflect on 
their mathematics experiences by individually creating art that responds to the following prompt: 
Consider your journey as an undergraduate mathematics student. This includes your 
experiences, emotions, people you’ve interacted with, highs and lows, mathematical content, etc. 
What are some patterns and themes that you have noticed? Feel free to use any of the artistic 
resources provided to you to organize and make sense of your experiences. You can also reflect 
in writing using a story, a poem, or a song, if you wish. This arts-based approach allows students 
to reflect individually in a holistic, multimodal, and multisensory way (Bagnoli, 2009; Papoi, 
2017). Consistent with the theory of everyday aesthetics, it also provides students the 
opportunity for reflection on the connective and cohesive forces (Clark & Rossiter, 2008; 
Sinclair, 2009) they consider to be present across their everyday mathematical experiences.   

In line with my goal to learn how students organize their experiences, analysis of these 
artistic artifacts will be carried out via a (video-recorded) discussion led by students and 
governed by their interests and curiosities. To begin, each participant will share their artistic 
artifact and what it means to them. Follow-up discussion will then concern themes that students 
identify across each of their artifacts and experiences. 

I conceptualize this discussion as a “book club” where the “text” of interest is the 
mathematics curriculum. Like a book club, the goal of this discussion is for a community of 
learners to come together to reflect on their opinions, interpretations of, and feelings about a text 
(e.g., its themes), while being open to the possibility that their views may be transformed and 
enhanced by other participants’ views of the text (Kerka, 1996). In fact, productive book clubs 
encourage the sharing of alternative (and potentially contradictory) perspectives of the text to 
facilitate further exploration and discussion of themes (Beach & Yussen, 2011). As the facilitator 
of this book club, my role is primarily to allow the discussion to be driven by participants, but I 
will also point out occasional observations and offer suggestions for new topics to consider. 

Implications 
We know from studies with pre-service teachers that undergraduate mathematics students do 

not always develop the connections between mathematics content areas we may have expected 
(e.g., Wasserman, 2018). Research akin to this proposed study has the potential to help us 
understand the themes students actually come away with on not only a course-by-course basis 
but also across sequences of courses and the entire mathematics curriculum. It also builds on the 
calls of researchers (Melhuish et al., 2020; Zandieh et al., 2017) for further study into the extent 
to which students develop understandings of key themes, such as function, across the 
undergraduate curriculum. Research of this nature has the potential to offer suggestions for how 
we might modify the curricula of courses and course sequences to build on patterns, themes, and 
connections that we know students are likely to construct. In other words, it allows us to 
integrate a realistic, asset-based view of learners’ capabilities (Peck, 2020) into our curricula, a 
piece of the puzzle essential to improved curriculum design (Lattuca & Stark, 2009). 
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SYNERGIES AND TAKE-UP WHEN PRACTICE-BASED PROFESSIONAL 
DEVELOPMENT AND COLLABORATIVE LESSON DESIGN ARE USED TOGETHER 

Jennifer Valerio 
University of Pennsylvania 

valerioj@upenn.edu 

Background and Framing Concepts 
Designing professional development (PD) that helps teachers enact more ambitious 

instruction responsive to emergent student thinking is challenging work. Two approaches to this 
sort of PD, practice-based professional development (PBPD) and lesson study (LS), have 
different mechanisms for fostering change and different focus points. Although there is 
substantial research support for each approach (e.g., Grossman et al., 2018; Huang & Shimizu, 
2016; Kavanagh et al., 2020; Lewis, 2016), each has limitations that can be characterized as 
“problems of enactment” (Kennedy, 1999) when used alone. 

 LS focuses on changing teaching via teacher-led, structured inquiry into problems of 
practice and by improving the planning process and instructional resources teachers use to enact 
lessons (Hiebert & Morris, 2012). Inherent within LS’s focus on developing knowledge for and 
of action is a focus on student learning and the scrutiny and refinement of instructional materials 
(Watanabe et al., 2008). Lewis’s (2016) research on LS over the course of two decades identifies 
four types of outcomes: changes in teachers’ knowledge, beliefs, professional community, and 
curriculum resources. Missing from this list is a change in teachers’ actual teaching practices-- 
what they do when they are teaching. LS, therefore, faces the possibility that without structured 
opportunities to develop a new set of pedagogical skills, teachers may face the “problem of 
enactment” described by Kennedy (1999), i.e., vision change without the necessary pedagogical 
skills to enact the new vision, making teachers unable to execute the lesson plans as intended. 

PBPD, by contrast, emphasizes knowledge in action, and prioritizes changing teaching 
through pedagogical training in enacting core teaching practices, i.e., specific instructional skills 
such as launching problems and facilitating discussions (Ball & Forzani, 2009; Grossman, 
Hammerness, et al., 2009; Grossman et al., 2018). This model employs pedagogies of enactment, 
including representation, decomposition, and approximation, (Grossman, Compton, et al., 2009) 
which require teachers to rehearse teaching practices in situations of increasing complexity in 
order to develop adaptive expertise (Kavanagh et al., 2020). Challenges arise, however, in the 
transfer of pedagogical skills to specific educational contexts (Zeichner, 2012; Philip et al, 2018). 
A parallel “problem of enactment,” then, may arise if vision and practice changes occur without 
the necessary resources to support enactment in teachers’ specific learning contexts. 

Because the two PD approaches involve different processes, pedagogies, and expertise, they 
are seldom used together in ways that give equal weight to each approach. Yet, when used in 
tandem, LS and PBPD could prove complementary in ways that help teachers surmount the 
“problems of enactment” that can otherwise undermine translation of vision into practice when 
each approach is used alone.  

During the 2020-2021 school year, the Responsive Math Teaching (RMT) Project at Penn 
Graduate School of Education devoted equal time and resources to both approaches to 
professional development with the same group of K-8 teachers in a large, urban school district, 
providing an opportunity to study how the two approaches might work together to foster changes 
in teaching. This study draws on both constructivist (Piaget, 1973) and socio-cultural (Vygotsky, 
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1978) frameworks in order to trace individual teachers’ learning across time within the context of 
an inquiry community.  

Goals and Research Questions 
This study explores how RMT’s Collaborative Lesson Design (CLD), a modification of 

lesson study, and PBPD might have valuable synergies, i.e., ways in which they are mutually 
supportive such that the affordances of one approach complement the challenges of the other. In 
addition to looking for evidence of synergy between the two approaches, this study also 
endeavors to better understand and describe whether and how take-up occurs as teachers and 
tools move between the two PD forms. Here, I define take-up as the acceptance, adoption, and 
incorporation of ideas into one’s own classroom practice. I have intentionally used the term take-
up to incorporate both vision and practice changes.  

The research questions that follow examine the interplay between PBPD and CLD and the 
teacher take-up that occurs therein:  

1. To what extent does individual teachers’ take-up of responsive teaching evolve over the 
course of the year across both forms of PD and what does this evolution look like? 

2. What evidence is there that participation in CLD supports classroom enactment of the 
practices learned in PBPD?  

3. What evidence is there that participation in PBPD supports the enactment of lessons 
planned in CLD? 

Methods 
This study focuses on eight purposefully selected participants and employs a qualitative, 

interpretive, case study approach (Creswell & Poth, 2018), working from the assumption that 
doing so provides a deeper, more contextualized understanding of the interplay between PBPD 
and CLD and of individual teacher take-up than a broader, decontextualized look across a larger 
number of participants. Cases are defined as individual teachers from a large, under-resourced 
urban school district participating in both forms of professional development during the 2020-
2021 school year (Miles, Huberman, & Saldana, 2020; Ravitch & Carl, 2016). 

Preliminary Findings 
Although it is early in the data analysis process, some tentative findings have emerged. 

Across participants, the take-up of responsive teaching practices involves an iterative process of 
building knowledge, deploying that knowledge during enactment, encountering struggles during 
enactment, and then returning to knowledge-building with a focus on addressing the specific 
struggles that have emerged. I anticipate that my findings will ultimately include take-up 
mappings (Valerio, 2021) for illustrative cases, a description of the types of struggles teachers 
encountered, and a description of the supports that helped teachers overcome these struggles.  

Additionally, preliminary data indicate that CLD supports the enactment of practices 
addressed in PBPD by giving teachers the opportunity to adapt the practices for their specific 
context and students, to design and adapt high leverage math tasks suitable to their context, and 
to tap into the expertise of colleagues for advice about a variety implementation challenges. 
PBPD supports the enactment of lessons developed through CLD by providing space for teachers 
to decompose and rehearse ways to address enactment challenges that arise and to further hone 
both their teaching practices and their emergent vision of responsive instruction. Further data 
analysis will more fully flesh out these findings.   
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USING VIDEO TAGGING TOOLS TO UNDERSTAND FACILITATOR NOTICING 
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Background & Significance 
Much of the math education research community has emphasized the importance of teachers 

noticing, or attending to and flexibly responding to student thinking (e.g. Carpenter et al., 1989; 
Empson & Jacobs, 2008). Like other teaching practices, noticing is a skill that teachers often 
need to develop (van Es, 2011).  

Video clubs (VCs) are a type of professional development (PD) that can help teachers learn 
to notice (Sherin & Han, 2004; Luna & Sherin 2017; Sherin & van Es, 2005). A VC is a small 
group of teachers who meet to watch a short video clip of classroom instruction. They then 
participate in a discussion about aspects of student thinking in the video, which is usually led by 
a facilitator. The facilitator guides teachers to focus on students and reason about student ideas 
(van Es et al., 2014; Borko, Jacobs et al., 2014). 

A number of researchers argue that facilitators are key to teachers learning to notice (Castro 
Superfine et al., 2019; van Es, 2011; Goldsmith & Seago, 2008). However, few studies examine 
how teacher educators learn to facilitate a VC. Studies about facilitator learning have found that 
facilitators often have difficulty leading teacher discussions about student thinking (Borko, 
Koellner et al., 2014; Elliott et al., 2009; Jackson et al., 2015). This difficulty might be because 
facilitators need to develop their own noticing abilities (Amador, 2016; 2020).  

The purpose of this study is to support facilitators in learning to lead VC discussions that 
help teachers learn to notice. I plan to design a facilitator PD (F-PD) that employs a video 
tagging tool that supports facilitators’ own noticing development. I will implement the F-PD 
with mathematics education graduate students who instruct pre-service teachers (PSTs).  My 
research questions are: 

 How can a video-based F-PD support facilitators in learning to lead PSTs in a VC? 
o In what ways can a video-tagging tool support facilitators in noticing student thinking 

while participating in a VC? 
o In what ways can a video-tagging tool support facilitators noticing teacher thinking 

while leading VC discussion? 

Background and Theoretical Framing 
The processes involved in teacher noticing generally include: (1) attending to important 

moments of student mathematical thinking, (2) interpreting that thinking using knowledge of 
content, pedagogy, and students, and (3) determining how to respond (Jacobs et al., 2010; Sherin 
& van Es, 2009). As teachers’ noticing skills develop, they can learn to focus more on the 
relationship between students’ thinking and instruction, and often seek to understand students’ 
mathematical thoughts (van Es, 2011). VCs can support this development (Sherin, 2007). 

Facilitators can be key to supporting teachers’ noticing learning in PD like VCs, but to do so 
they may need to develop their own noticing abilities (Amador, 2016; 2021). Noticing is more 
complex for facilitators than for teachers because they need to notice both student and teacher 
thinking (Amador 2021; Kazemi et al., 2011). Specifically, a facilitator needs to understand how 
a teacher reasons about instances of student thinking in relation to their classroom instruction. A 

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee 
State University.  

2276



facilitator must consider several aspects of teacher thinking at once, including: (1) the way 
teachers understand the math content (Lesseig et al., 2017), (2) the way teachers make sense of 
student thinking, and (3) how teachers relate content and student ideas to learning goals (Borko, 
Jacobs et al., 2014).  

I intend to develop a series of VCs and VC planning activities to help facilitators with 
noticing student and teacher thinking. One of the features that will make my F-PD different from 
traditional video clubs is that I will employ a video tagging tool, which allows users to annotate 
video directly on the screen. This tool could scaffold facilitators’ noticing development in several 
ways, which I explain in the Research Plan.  

Research Plan 
My dissertation employs design research methods (Cobb et al., 2003; The Design-Based 

Research Collective 2003; Gravemeijer & Van Eerde, 2009). Consequently, the F-PD design 
described here is the first iteration of what could be many as I refine and re-implement the 
design, based on my findings of how facilitators learn to notice.  

The F-PD includes five group meetings and two independent work sessions with six math 
education graduate students called facilitator participants (FPs). These FPs aim to build careers 
in teacher education. In Part 1 of the F-PD, FPs engage in virtual VCs via Zoom (www.zoom.us) 
so that they can focus on noticing student thinking. During these VCs, FPs annotate the videos 
that they watch, which could help them identify, reason about, and remember interesting 
moments of student thinking that they can then discuss with other FPs. Part 2 of the F-PD shifts 
focus to noticing of teacher thinking. Here, FPs use video annotations in a different way. They 
first analyze example VC annotations by PSTs (Walton & Walkoe, in press) to understand how 
PSTs think about student thinking. FPs use this analysis to write hypothetical discussion 
protocols that they could use for VC discussion.  

Data collection will include video recordings of the virtual sessions, FPs’ video annotations 
from Part 1, and FPs’ video discussion protocols from Part 2. I will code the Part 1 data using 
similar methods to other research in noticing (Sherin & van Es, 2009) to understand how FPs 
noticing of student thinking developed. I will focus on noticing of teacher thinking as I examine 
the data from Part Two. I will analyze FPs’ discussion protocol assignments using deductive 
codes based on a framework I developed that outlines facilitator noticing of teacher thinking.  

Impact 
Teacher noticing of student thinking has been shown to enhance K-12 learning of 

mathematics (Carpenter et al., 1989; Empson & Jacobs, 2008). In order for teachers to learn to 
notice, they need access to high quality PD led by well-prepared facilitators.  

I plan to widely disseminate my F-PD design for use with other facilitators. The demand for 
video-based PD continues to rise (van Es & Sherin, 2017) and my design could create a greater 
number of experienced facilitators, giving more teachers access to noticing PD.  

This project will help researchers further understand and describe the cognitive processes 
related to noticing, especially from the facilitator perspective. In particular, the exploration of 
video tagging will help determine how scaffolds can support noticing development. More 
broadly, the project will also contribute to the conceptualization of facilitator learning, which is 
an understudied field in education research (Elliott et al., 2009; Tekkumru-Kisa & Stein, 2017), 
but one that is imperative for developing facilitators who can provide high quality learning 
experiences to teachers.  
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INVESTIGATING SECONDARY PRE-SERVICE TEACHERS’ MATHEMATICAL 
CREATIVITY 

Anne Waswa 
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Mathematical creativity (MC) is important in school and outside school (Chamberlin & 
Moon, 2005; Panaoura & Panaoura, 2014), it is one of the aims of mathematics (Mann, 2006), 
and of mathematics education (Andrade & Pasia, 2020; Levenson, 2013). Encouraging creativity 
in learning has potential to increase student rigor in learning, challenge students to learn more, 
and promote student engagement in learning (Garfinkel & Albrecht, 2018). On the other hand, 
lack of support for creativity can result in a decline in learned variability, can hinder radical 
breakthrough solutions, and restrict academic achievement to narrow sets (Kim, 2016). 
Unfortunately, research on MC has not been foregrounded (Haavold, 2018; Haylock, 1987; 
Leikin, 2009, 2011). Among the important areas of research is teachers’ MC because as 
Sheffield (2013) argued, we cannot separate teachers from the development of MC. However, 
there is less research that focuses on the conceptions of MC of pre-service teachers (PSTs) and 
the MC of PSTs as they actively engage in problem solving. Therefore, my research seeks to 
address the following research questions: (1) What is secondary PSTs’ mathematical creativity 
when they engage in problem solving? (2) What are PSTs’ conceptions of mathematical 
creativity in the teaching and learning of mathematics? 

Theoretical Frameworks 
Radical Constructivism 

The theory of knowing and learning that inform my study is radical constructivism (von 
Glasersfeld’s, 1995), whose fundamental principles are also informed by Piaget’s constructivist 
theory of knowing. I will draw from this theory, not to explain PSTSs’ MC, but to drive and 
form the kinds of descriptions that I can provide regarding PSTs’ MC. The fundamental 
principles of radical constructivism include that, “knowledge is not passively received either 
through the senses or by way of communication; knowledge is actively built up by the cognizing 
subject” and that “the function of cognition is adaptive, in the biological sense of the term, 
tending towards fit or viability; cognition serves the subject’s organization of the experiential 
world, not the discovery of an objective ontological reality” (von Glasersfeld, 1995, p. 51). The 
first principle informs my assumptions of PSTs as actively constructing their knowledge as they 
engaged in PS. The second fundamental principle speaks to the acquisition of knowledge through 
mental mechanisms. The notion of fit and viability speaks to the construction of knowledge that 
works for the cognizing subject, as opposed to the construction of knowledge being some 
movement toward or approximation of reality and truth. It follows that the models I develop in 
my study are merely viable models, meaning that I cannot develop with certainty models of 
PSTs’ mathematics and MC that provide a true picture of their knowledge.  
Framework for MC 

I adopt Lithner’s (2008) research framework for creative and imitative reasoning. In 
particular, I use Lithner’s framework to define the qualities that characterizes reasoning as 
creative, and what differentiates creative mathematically founded reasoning (CMR) from general 
creative reasoning. Lithner (2008) defines reasoning as “the line of thought adopted to produce 
assertions and reach conclusions in task solving” (p. 257). According to Lithner (2008), CMR 
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should be novel, plausible, and mathematically founded. Other characteristics that I focus on that 
are indicative of creative thinking include fluency and flexibility (see Lithner, 2008).  

Methods 
The study is qualitative in nature, with a teaching experiment (TE) (Steffe & Thompson, 

2000) and clinical interviews (Ginsburg, 1997) serving as the main methods of data collection. 
Participants will be six secondary mathematics PSTs. 
Teaching Experiment 

The main aim of using a teaching experiment (TE) “is for the researcher to experience, 
firsthand, students’ mathematical learning and reasoning” (Steffe & Thompson, 2000, p.267). 
From this experience a goal of teaching experiment includes “[constructing] models of students’ 
mathematics” (p. 268), and this aligns with my goal of understanding and developing PSTs’ 
viable models of mathematics in relation to their MC. I plan to conduct tentatively eight one-
hour sessions with my participants together with a witness, potentially a graduate student. All 
sessions will be video-taped using two cameras. One camera will capture PSTs’ written work 
from overhead and their explanations while the other camera will capture their facial 
expressions, explanations, gestures, and the surrounding environment. Witnesses’ notes during 
the episodes and together with my notes, and participants’ scanned written work, will be 
additional sources of data. The tasks will focus on quadratic growth and linear growth, and I will 
leverage literature from researcher that focuses on these topics (e.g., Ellis 2011a; 2011b; Fonger 
et al., 2020; Graf et al., 2018; Lobato et al., 2012). I also leverage literature from quantitative 
reasoning and/or covariation reasoning (e.g., Carlson et al., 2002; Ellis, 2007; Ellis et al., 2020; 
Moore, 2013; Moore et al., 2014; Moore & Thompson, 2015; Saldanha & Thompson,1998; 
Thompson, 2011; Thompson & Carlson, 2017).  
Clinical Interview 

My goal in conducting clinical interviews is to offer ground for open and reflective thinking 
and sharing with PSTs, in order to understand PSTs’ conceptions of MC. I plan to conduct two 
clinical interviews with each PST, one before the TE and another after the TE to track and 
compare their conceptions of MC before and after conducting the TE. I will use an interview 
protocol as a guide. The protocol contains open-ended questions that focus on PSTs’ experiences 
with MC outside school, in school, and in their teacher preparation program. 
Data Analysis 

I will use MAXQDA software to organize and analyze my data. My approach to data 
analysis will entail ongoing and retrospective analysis (Simon, 2019; Steffe & Thompson, 2000) 
and conceptual analysis (Thompson, 2008).  

Anticipated Contributions 
My research extends existing research on conceptions of MC by using a different approach of 

investigating PSTs’ conceptions of MC in the context of problem solving. The novelty in this 
contribution is that PSTs reflect on their own MC after engaging in PS when describing their 
conceptions of MC. In addition, my research goes beyond identifying characteristics of MC to 
making connections between PSTs’ mathematical meanings and their MC. This a 
methodological contribution to the field in terms of providing a different approach to studying 
MC. The findings of these research will potentially inform teacher preparation in terms of 
contributing ideas on understanding and supporting PSTs’ MC and their teaching with and for 
MC from the developed models of PSTs’ mathematical meanings and their MC. 
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The nature and form of knowledge that teachers utilize while creating technology-infused 
curriculum materials is of great importance due to the abundance of technology that is accessible 
and sometimes necessary for teachers to engage with during their day-to-day tasks. Many 
teachers still rely on textbooks to guide their instruction (Banilower et al, 2018), but recent 
research has shown that textbooks seldomly suggest using technology in ways that fully leverage 
its affordances (Sherman et al, 2020). Thus, it would be of great importance to the mathematics 
education community to better understand what knowledge is needed for teachers to be able to 
adapt their curricular materials to better integrate technology.  

One framework for thinking about this type of knowledge is the Technological Pedagogical 
Content Knowledge (TPACK) (Mishra & Koehler, 2006) framework, but many questions remain 
with respect to theorizing the nature and form of this knowledge (Angeli, Valanides, & 
Christodoulou, 2016). Attempts at theorizing this type of knowledge in the moment of planning 
have been conducted (Bibi & Khan, 2017) with university instructors, but how this knowledge is 
utilized in relative novice mathematics teachers will be a new contribution to the field. 
Furthermore, while fine-grained analyses of conceptual change have mostly focused on 
disciplines such as mathematics (Izsak, 2005; Levin, 2018) or physics (diSessa, 1993), studies 
involving harder to define concepts such as ideology (Philip, 2011) and pedagogical knowledge 
(Markauskaite & Goodyear, 2014) have also been approached from a Knowledge in Pieces (KiP) 
(diSessa, 1993) epistemological perspective. However, examining mathematics teachers’ 
knowledge in use during the act of lesson planning with mathematical action technology (MAT) 
(Dick & Hollebrands, 2011) has not been explored and may provide some guidance to 
mathematics teacher educators on how they may structure interventions to develop such 
knowledge. 

Theoretical Framework 
Given that this line of research is centered around understanding what resources (broadly 

speaking) are drawn upon by Prospective Mathematics Teachers (PMTs) at a fine-grained level 
of analysis, I will bring a KiP epistemological framing to better understand the knowledge 
resources that PMTs utilize when designing technology-infused curriculum materials for middle 
school students. Much of the data will be analyzed through the lens of the TPACK framework, 
but I acknowledge that this may need to be extended to better suit the context of my study. The 
TPACK framework extends Shulman’s (1987) Pedagogical Content Knowledge (PCK) to 
include technological knowledge and has many connections to Mathematical Knowledge for 
Teaching (MKT) (Hill, Ball, and Schilling 2008), but connecting KiP to TPACK may help to 
clarify how TPACK may apply in this context.  

Methods 
Stemming from some earlier projects that focused on analyzing the PMT-designed or PMT-

adapted curriculum, I am now focusing on understanding and describing the nature of what the 
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process of designing MAT-infused curriculum looks like in the moment of planning. With a 
focus on the knowledge that PMTs demonstrate in the moment of planning lessons that 
incorporate MAT, I am planning to conduct a Microgenetic Learning Analysis (MLA) (Parnafes 
& diSessa, 2013). In utilizing MLA, I will engage in many of the same techniques that are 
utilized in grounded theory (Strauss & Corbin, 1990), but my focus is on knowledge with the 
goal being to gain insight into the ways in which different knowledge systems interact with each 
other while the PMTs are working on creating technology-infused lesson materials.  

At this point, I have collected data from four interviews with five participants. Each 
participant is enrolled in a course on incorporating technology into middle school mathematics 
classes. It is composed of both prospective elementary and secondary teachers. The first 
interview was focused on reflecting on their first lesson plan that was created for the course. The 
second interview was a task-based interview involving mathematics content that is relevant to 
their final lesson plan. This interview was conveyed through the same digital platform that they 
utilized in their final lesson construction. The third interview was a two-hour long interview 
where they were in the process of creating their final lesson plan. The fourth interview was a 
reflection on their experience in the course and their final lesson construction.  

The interviews were semi-structured with the exception of the third interview where they 
were free to create their lesson in a manner that they typically worked. During this interview I 
asked questions about why they made the curricular decisions that I observed and what they were 
thinking about. I plan to conduct one more round of interviews to serve as a member-check 
(Creswell & Poth, 2016) interview once some initial data analysis has been completed. In 
addition to the interview video and audio data, I asked each participant to share their computer 
screen which I also have recorded. Throughout the semester, I observed every class meeting 
except for one and recorded observation notes of moments in the class session when the 
participants were speaking about something that may be relevant to how they may think about 
constructing a lesson involving technology. 

For the analysis, I am beginning to do this with an open consideration of the data where I am 
“tagging” moments in the video of my interviews where I see knowledge related to Technology, 
Pedagogy, and Content. From here, I plan to look for themes across the four rounds of interviews 
and then try to construct a model of how each participant’s knowledge changed over the course 
of the semester. I hope to be able to construct models of how their thinking changed over as it 
pertains to constructing lessons with technology.  

Contributions of the Study 
As technology has become more and more omnipresent in mathematics classrooms there is a 

need to better understand how PMTs and in-service teachers learn how to effectively integrate 
technology into their curriculum. Methodologically, few mathematics education studies that 
examine the in-the-moment knowledge that teachers exhibit as they create lesson materials and 
furthermore even fewer studies do so with the added complexity of integrating technology. It is 
my hope that this study provides some guidance for future studies on how teachers develop their 
knowledge of creating lessons that integrate mathematical action technology. Finally, as the 
knowledge in pieces epistemological frame has typically been utilized in studies of mathematics 
content knowledge or science content knowledge, this study will be an attempt at expanding the 
reach of this perspective to teacher knowledge involved in creating curriculum.  
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